18.024 QUIZ IV SOLUTIONS

1. Let $\vec{F}=P \vec{i}+Q \vec{j}$ be a vector field defined in all of \mathbb{R}^{2} except the origin. Assume $Q_{x}-P_{y}=\frac{1}{x^{2}+y^{2}}$. You are given that $\oint_{C_{1}} \vec{F} \cdot d \vec{\alpha}=5$, where C_{1} is the unit circle centered at the origin, directed counterclockwise. Find $\oint_{C_{2}} \vec{F} \cdot d \vec{\alpha}$, if C_{2} is the circle of radius 2 centered at the origin, oriented counterclockwise.

Solution. By Green's theorem,

$$
\begin{aligned}
\oint_{C_{2}} \vec{F} \cdot d \vec{\alpha} & =\oint_{C_{1}} \vec{F} \cdot d \vec{\alpha}+\iint_{R} \frac{1}{r^{2}} d x d y \\
& =5+\int_{0}^{2 \pi} \int_{1}^{2} 1 / r d r d \theta \\
& =\mathbf{5}+\mathbf{2} \pi \ln \mathbf{2}
\end{aligned}
$$

2. Find the area of the region bounded by the curve $4 x^{2}-4 x y+y^{2}-2 y=0$ and $y=1$. (Hint: use a suitable linear transformation.)

Solution. Let $u=2 x-y, v=y$, so $x=(u+v) / 2, y=v$, and $\partial(x, y) / \partial(u, v)=$ $1 / 2$. The region corresponds to the area $-\sqrt{2} \leq u \leq \sqrt{2}, u^{2} / 2 \leq v \leq 1$, which has area

$$
\begin{aligned}
\int_{-\sqrt{2}}^{\sqrt{2}}\left(1-u^{2} / 2\right) d u & \left.=\left(u-u^{3} / 6\right)^{\sqrt{2}}\right)-\sqrt{2} \\
& =2(\sqrt{2}-2 \sqrt{2} / 6) \\
& =\frac{\sqrt{2}}{3}(3 \cdot 2-2) \\
& =4 \sqrt{2} / 3 .
\end{aligned}
$$

Answer: $4 \sqrt{2} / 3 \times 1 / 2=\mathbf{2} \sqrt{\mathbf{2}} / \mathbf{3}$.
3. Find the area of the portion of the surface $z=x y+4$ lying in the cylinder $x^{2}+y^{2}=a^{2}$.

Solution.

$$
\begin{aligned}
\iint_{x^{2}+y^{2} \leq a^{2}} \sqrt{1+x^{2}+y^{2}} d x d y & =\int_{0}^{2 \pi} \int_{0}^{a} \sqrt{1+r^{2}} r d r d \theta \\
& =2 \pi\left(\frac{1}{3}\left(r^{2}+1\right)^{3 / 2}\right)_{0}^{a} \\
& =\mathbf{2 \pi / 3}\left(\left(\mathbf{a}^{2}+\mathbf{1}\right)^{\mathbf{3 / 2}}-\mathbf{1}\right) .
\end{aligned}
$$

Date: Spring 2001.
4. Calculate the hypervolume of a four-dimensional sphere $w^{2}+x^{2}+y^{2}+z^{2} \leq R^{2}$. You may use the following integrals:

$$
\begin{gathered}
\int_{0}^{\pi / 2} \sin ^{2} \theta d \theta=\int_{0}^{\pi / 2} \cos ^{2} \theta d \theta=\pi / 4 \\
\int_{0}^{\pi / 2} \sin ^{4} \theta d \theta=\int_{0}^{\pi / 2} \cos ^{4} \theta d \theta=3 \pi / 16 \\
\int_{0}^{\pi / 2} \sin ^{2} \theta \cos ^{2} \theta d \theta=\pi / 16
\end{gathered}
$$

Solution.

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{R} \int_{0}^{\pi} 2 \sqrt{R^{2}-\rho^{2}} \rho^{2} \sin \phi d \phi d \rho d \theta & =2 \pi \times 2 \times 2 \times \int_{0}^{R} \sqrt{R^{2}-\rho^{2}} \rho^{2} d \rho \\
& =8 \pi \int_{0}^{\pi / 2} R \cos \alpha \times R^{2} \sin ^{2} \alpha \times R \cos \alpha d \alpha \\
& =8 \pi R^{4} \int_{0}^{\pi / 2} \sin ^{2} \alpha \cos ^{2} \alpha d \alpha \\
& =\pi^{\mathbf{2}} \mathbf{R}^{\mathbf{4}} / \mathbf{2}
\end{aligned}
$$

5. Let C be the intersection of the plane $a x+b y+3 z=0$ with the cylinder $x^{2}+y^{2}=c$, oriented counterclockwise as viewed from a point high on the z-axis. Use Stokes' theorem to evaluate the integral $\oint_{C} \vec{F} \cdot d \vec{\alpha}$ where \vec{F} is the vector field

$$
\vec{F}=(y-\sin x) \vec{i}+\left(y^{10}-3 z\right) \vec{j}+(4 x-2 y+17 z) \vec{k}
$$

Solution. $\vec{\nabla} \times \vec{F}=\vec{i}-4 \vec{j}-\vec{k}$. Do the integral over the flat (tilted) oval, using Stokes.

$$
\vec{\nabla} \times \vec{F} \cdot \vec{n}=(1,-4,-1) \cdot(a, b, 3) / \sqrt{a^{2}+b^{2}+9}=(a-4 b-3) / \sqrt{a^{2}+b^{2}+9} .
$$

The answer is

$$
\pi c \cdot \sqrt{a^{2}+b^{2}+9} / 3 \cdot(a-4 b-3) / \sqrt{a^{2}+b^{2}+9}=\pi \mathbf{c}(\mathbf{a}-\mathbf{4} \mathbf{b}-\mathbf{3}) / \mathbf{3} .
$$

6. Suppose $\vec{F}=y \vec{i}-x \vec{j}+z \vec{k}$. Let S be that portion of the surface $z=f(x, y)$ contained in the cylinder $x^{2}+y^{2} \leq 9$, and let \vec{n} be the upward normal. Find the relationship between the total flux upward through $S \iint_{S} \vec{F} \cdot \vec{n} d A$ and the average value of f on the disc $x^{2}+y^{2} \leq 9$. (Hint: Use the divergence theorem on the three-dimensional region bounded by S, the cylinder $x^{2}+y^{2}=9$, and the disc $z=0, x^{2}+y^{2} \leq 9$.) You may assume that $f(x, y)$ is continuously differentiable and non-negative.

Solution.

$$
\iiint \vec{\nabla} \cdot \vec{F} d V=\iint_{x^{2}+y^{2} \leq 9} f(x, y)=\text { average of } f \times \mathbf{9} \pi
$$

