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(At the end of last lecture I discussed the Weak Factorization Theorem, Resolution of
Singularities, and de Jong’s Alternation Theorem.)

Recap of last time. Proof of the universal property of blowing up.

Exercise. The blow-up Blp S → S has a universal property in the “other direction”: every
morphism f from Blp S to a variety X to a variety X that contracts E to a point factors
through S. (Hint, basically proof: reduce first to the case X affine, then X = An, then
to X = A1, so we’re talking about functions on S − {p}. But every function on S − {p}
extends over S.)

Minimal surfaces: those with no (−1)-curves.

To understand surfaces up to birational or biregular invariance, we should focus on
minimal surfaces.

Theorem (Castelnuovo’s contractibility criterion). Let S be a surface and E ⊂ S a
rational curve with E2 = −1.

I won’t prove this in its entirety, but will say the strategy. We’ll produce a line bundle
that will give a map to projective space that will preserve S−E, but collapse E to a point.
Then the harder part is to show that the point is a smooth point of the new surface. I’ll
omit that: the proofs involve some infinitesimal analysis beyond what I claimed are the
prerequisites of the course.

1. CONSTRUCTION OF CASTELNUOVO’S CONTRACTION MAP

Choose a very ample divisor on S. By taking an appropriate multiple, we may assume
thatH1(S,O(H)) = 0 by Serre vanishing. Suppose k = H ·E, and consider the line bundle
O(H + kE). Note that (H + kE) · E = 0; this is the motivation for taking this divisor.
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We’ll now show that O(H + kE) is basepoint free (and hence gives a map to projective
space), and that it just collapses E and keeps the rest of the surface the way it was.

First, we’ll show that H1(X,O(H + kE)) = 0. Fix a section t of OS(E) vanishing along
E. Take the exact sequence

0→ OS(−E)
t→ OS → OE → 0.

The morphism labeled t means “multiply by t”. Twist this by H + iE to get

0→ OS(H + (i− 1)E)
t→ OS(H + iE)→ OE(k − i)→ 0.

By Serre duality, H1(E,OE(r)) = H0(E,OE(−2 − r)), which is 0 for r ≥ 0, so taking the
long exact sequence we get:

0→ H0(S,OS(H + (i− 1)E))
t→ H0(S,OS(H + iE))→ H0(E,OE(k − i))

→ H1(S,OS(H + (i− 1)E))
t→ H1(S,OS(H + iE))→ 0.

for 1 ≤ i ≤ k. By induction on i, H1(S,OS(H + iE)) = 0 for 1 ≤ i ≤ k, so we have:

0→ H0(S,OS(H + (i− 1)E))
t→ H0(S,OS(H + iE))→ H0(E,OE(k − i))→ 0.

So we can build up H0(S,OS(H + kE)) inductively. Choose a basis s0, . . . , sn of
H0(S,OS(H)). Then using i = 1, the sections of H0(S,OS(H + E)) correspond to

ts0, . . . , tsn, plus k terms coming from H0(E,OE(k − 1)).

Using i = 2, the sections of H0(S,OS(H + 2E)) correspond to

t2s0, . . . , t
2sn, plus k terms × t, plus k − 1 terms coming from H0(E,OE(k − 2)).

Keep doing this k times to get:

tks0, . . . , t
ksn, plus k terms (×tk−1) plus k − 1 terms (×tk−2) plus · · · plus 1 term (×t0)

By looking just at the first n + 1 terms, we see that there are no basepoints away from
(t = 0) = E. For a point on E, all the terms are non-zero except for the last one. Thus we
have a basepoint free map, that sends E to [0; · · · ; 0; 1]. By looking at the first n+ 1 terms,
we see that it is an embedding everywhere else: it separates points and tangent vectors.

That completes the construction of the map. However, we can see the blow-up as the
resolution of the projection from [0; · · · ; 0; 1]...

The proof uses infinitesimal analysis, and I’ll omit it. (If time, give them a sketch. The
image surface is smooth at the key point p = [0; . . . ; 0; 1], if m/m2 has dimension 2 as a
k-vector space, i.e. O/m2 has dimension 3. It is singular if the dimension is bigger than 3.
We can pull back this scheme in the target, by intersecting x2

0 = 0, . . . , x2
n−1 = 0. We can

pull back these equations to our original surface, to get as an equation the square of the
ideal E. This has a 3-dimensional space of sections. All that needs to be checked is that
the pullback of the first-order neighborhood of p really is the dimension of the pre-image
scheme; this requires infinitesimal analysis.)
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2. RULED SURFACES

A surface is ruled if it is birationally equivalent to C × P1, where C is a smooth curve.
(More generally, a variety is ruled if through every curve, there is a P1.)

Examples:

1. C × P1.
2. P2.
3. a P1-bundle over C (i.e. something that Zariski-locally on C is isomorphic to P1×C).
4. Special case of above: ifE is a rank 2 vector bundle overC, then its projectivization is

a ruled surface over C. Informal description. In fact, we’ll see that this is the same as
(3) above. Precise definition: F is a rank 2 locally free sheaf. Then the corresponding
ruled surface is

ProjC ⊕∞i=0 SymiF .

Question over C: Suppose you had a surface S → C such that the fibers are all isomor-
phic to CP1. (This is called geometrically ruled.) Is S necessarily a P1-bundle over C?

Those of type (3) above are geometrically ruled.

An important example are the following rational (geometrically) ruled surfaces over
P1, sometimes called Hirzebruch surfaces: the projectivization of the locally free sheaves
OP1 ⊕ OP1(n), where n ≥ 0. Called Fn. In fancy notation Fn = PP1(OP1 ⊕ OP1(n)). We’ll
see in a class or so that these are all different, and these are all the geometrically ruled
surfaces over P1.

You may naively think that geometrically ruled is the same as (3) (P1-bundles). And
you would be right, but it is not obvious. Here is an example showing that your intuition
may be wrong.

Example. There is a map from a threefold to a surface that is geometrically ruled but not
of form (3). Instead, I’ll give an example a sixfold fibered over a fivefold.

Consider the P5 parametrizing plane conics, with point [ax2 ; axy; ay2 ; axz; ayz; az2 ] corre-
sponding to conic ax2x2 + · · ·+ az2z2 = 0 in P2. There is a universal conic:

U = {([x; y; z], [ax2 ; · · · ; az2 ]) : ax2x2 + · · ·+ az2z2 = 0} ⊂ P2 × P5

↓
P5

Throw out the locus in P5 corresponding to reducible conics:

U ′ → U ⊂ P2 × P5

↓ ↓
P5 −∆ P5

Fact: This isn’t a trivial P1-bundle over any Zariski-open set. Argument is short, and
if you’re curious, ask me about it. Key idea: if it were, then there would be a divisor
intersecting the class of a fiber with multiplicity 1. (Describe why.) We can work out the
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topology of U explicitly, and show that any divisor meets the class of a fiber with even
multiplicity.

More strongly: if you restrict to the generic point, i.e. to the function field of P5, then
you don’t get P1 over that field.

Arithmetic version of that same comment. Those of you who are more arithmetically in-
clined will be less surprised by this example. (Skip in class.) For example, any conic in
the complex plane is isomorphic to the projective line, but over a trickier field such as Q
this isn’t true. For example, x2 + y2 + z2 = 0 in P2

R is not isomorphic to P1
R. This is just

an artifact of working over a field that isn’t algebraically closed. And this example shows
that even if you think you only care about algebraically closed fields, such as C, then you
may still come across non-algebraically closed fields, such as function fields of curves, or
varieties in general.

Noether-Enriques Theorem. Suppose π : S → C is geometrically ruled. Then S is
of type (3) above, i.e. it is the projectivization of some rank 2 invertible sheaf / vector
bundle.

Slightly more generally: Suppose π : S → C, and x ∈ C such π is smooth over C and
π−1(x) is isomorphic to P1. Then there is a Zariski-open subset U ⊂ C containing x and a
commutative diagram

π−1(U)
∼→ U × P1

π

↘ ↙
U.

Proof. Three-step proof. The key step is 2, where we produce a divisor H of S meeting the
class of a fiber with multiplicity 1.

Step 1: H2(S,OS) = 0. Let F be the class of π−1(x). F 2 = 0. By the genus formula,
−2 = F · K. Suppose otherwise that H2(S,OS) > 0, so by Serre duality K has a section.
Let K be the divisor associated to the zero set of that section. Then K = nF + K ′, where
K ′ has no F -component. Finally, −2 = K · F = (K ′ + nF ) · F ≥ 0, contradiction.

Step 2: There is a divisor H of S such that H · F = 1. Here we work over C. There is another
proof in Hartshorne Chapter V which works over any field. Recall that from the long
exact sequence for 0→ Z→ OS → O∗S → 1, we have Pic(S)→ H2(S,Z)→ H2(S,OS) = 0
using Step 1. Thus it suffices to find a class h ∈ H2(S,Z) with h · f = 1, where f is the
image of F in H2(S,Z).

Consider the map of Z-modules H2(S,Z)→ Z given by a 7→ a · f . The image is an ideal
of Z, say dZ for d ≥ 0. Clearly non-zero: take a very ample. We want to show that d = 1.

The map a 7→ (a · f)/d is a linear form on H2(S,Z). By Poincare duality, H2(S,Z) ⊗
H2(S,Z) → H4(S,Z) = Z is a duality, i.e. H2(S,Z) → Hom(H2(S,Z),Z) is a surjective
(with kernel equal to the torsion subgroup). Thus there is an element f ′ ∈ H2(S,Z) such
that a · f = (a · f)/d for all a ∈ H2(S,Z). If d > 1, this class is a bit hard to imagine; let’s
get a contradiction.
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Let k be the image of K in H2(S,Z). I claim that for any b ∈ H2(S,Z), F (b) = b2 + b · k
is always even. Proof: it is always an integer. It’s even for all irreducible curves. And it is
additive modulo 2, i.e. F (b1 + b2) ≡ F (b1) + F (b2) (mod 2).

Thus the following number is even: f ′ · f ′ + f ′ · k = f · f/4 + f · k/2 = −2/d, and we’re
done.

Interesting consequence we’ll us later: there are no multiple fibers. (Draw picture.) (A
multiple fiber is a multiple of an irreducible F ′ by an integer greater than 1.) Reason:
there is a divisor class meeting it with multiplicity 1

Step 3: next day.
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