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Recap of last time. Last time we began discussing blow-ups:

Given p S, there is a surface S"= BI,S and a morphism n : S - S, unique up to
isomorphism, such that (i) the restriction of m to n~1(S — {p}) is an isomorphism onto
S — {p}, and (ii) n~(p) is isomorphic to P1. n1(p) is called the exceptional divisor p, and
is called the exceptional divisor.

A key example, and indeed the analytic-, formal-, or etale-local situation, was given by
blowing up S = A? at the origin, which I’'ll describe again soon when it comes up in a
proof.

For the definition, complex analytically, you can take the same construction. Then you
need to think a little bit about uniqueness. There is a more intrinsic definition that works
algebraically, let 1 be the ideal sheaf of the point. Then S"= Proj L[g=419.

1. HOw BASIC ASPECTS OF SURFACES CHANGE UNDER BLOW-UP

Definition. If C is acurve on S, define the strict transform CStit of C to the the closure of

the pullback on S —p, i.e. M|S2.2(C n'S —p). The proper transform CP™P*" is given by the
pullback of the defining equation, so for example m®5(C) = Os(CH.

Lemma. If C has multiplicity m at p, then CProrer = Cstrict + mE j e, nt@ Lgltict 4 mE.

Proof. The multiplicity of C being m means that in local coordinates, the defining equation
has terms of degree m, but not lower. (Better: the defining equation lies in m™ but not
m™*1) Analytically, this means that the leading term in x and y has degree m.
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We do this by local calculation which will be useful in general. (Draw picture.) Uy =
{((X0,¥0),[1;V]) : Yo = XoV} = SpecK[Xq, Yo, V] Yo = Xov = Speck[Xxq,Vv]. The exceptional
divisor E is given by yo = 0 (after morphism).

Up = {((X1,y1), [u;1]) @ x4 = yiu} = Speck[Xy,ys,ul/X; = yiu = Speckl[ys,u]. The
exceptional divisor E is given by y; = 0.

Map down to (X,y) = Speck[X, y]. (Xo,Y0,V) B (Xo,Y0), (X1,Y1,V) B (X1, Y1).

Given afunction f(x,y) = 0. Pull it back to Ug: T(X,y) = fi (X, y)+higher = f,,(Xq, XoV) +
higher + - - -. O

Exercise. To see if you understood that, do the same calculation on patch 2.

Theorem. Suppose n: S”- S isablow up of S at p, with exceptional curve E LSt Let
D and D"e divisorson S. Thenn™® - n™®"=D -DYE - n'™® =0, E? = —1.

Remark. A curve on a smooth surface that is isomorphic to P! and has self-intersection —1
is called a (—1)-curve.

Proof. The first we did yesterday. The second: by Serre’s moving lemma, we can move
D away from p, then pull back. For the third: choose a curve C passing through p with
multiplicity 1. (How to do this: hyperplane section of S.) Then Cs"'t. E = 1. Also
CProper . E =, as CSt'°t + E = CProPer wwe’re done.

Theorem. (a) There is an isomorphism Pic S [Z15 Pic STdefined by (D,n) B n'® +nE.
(b) The same with Pic replaced by NS.

Proof. The arguments are the same for both parts, so I’ll do (a). It is surjective: the divisors
upstairs are either E or strict transforms (which are proper transforms plus E’s). It is
injective: if 1'® + nE = 0, then intersect with E to see that n = 0; then apply nto see
that D = 0.

Theorem. Kgo=n"Kg + E.

Proof. Clearly Kso= n"Kgs + mE for some m. By the adjunction formula for E, Kg =
Ks«(E)|e. Taking degrees:

—2=mMKs+mE+E)-E=—-m-—1.

O

Exercise/Remark. If you want practice with the canonical bundle in local coordinates,
take a meromorphic section of Kg that has neither zero nor pole at p (possible by Serre’s
moving lemma), write it as f(x, y)dx [dy, and pull it back to the open set U; to see that
you get T(Xg, XoV)dXo CdiXev) = F(Xo, XoV)XedXe V.
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2. RATIONAL MAPS OF SURFACES, LINEAR SYSTEMS, AND ELIMINATION OF
INDETERMINACY

A rational map S [TIIX, where X is a variety, means a morphism from an dense open
set of S. Recall that a rational map from a curve C to a projective variety can always be
extended to a morphism. Similarly, a rational map from a surface S to a projective variety
can be extended over most points; the set of indeterminacy is a finite set of points. More
precisely, givenamap 1 : S [TT1R". This is given by n + 1 sections of some line bundle. It
makes sense except where the sections are all zero. This will be in codimension 2.

Let F be this finite set. We’ll denote (S — F) the image of S, and denote it (S). (I'm

not sure we need to take the closure.) If C is a curve on S, then we’ll denote n(C — F) the
image of C, and denote it 1(C). Here we definitely need to take the closure.

Now suppose you have a divisor D on S. Given a subspace V of dimension n of
HO(S, O(D)), we might hope to get a map to projective space PV "(This is called a linear
system of dimension n; | should have introduced this notation earlier.) If it is base point
free, we do.

If it has base points, the locus could have components of dimension 1. Such a compo-
nent is called a fixed component of the linear system V. The fixed part of V is the biggest
divisor contained in every element of V. So if this fixed part is F, then D — F has no fixed
components.

(I'm not happy with how | explained the previous paragraphs in class. | hope this is
clearer.)

Lemma. If the linear systems has no fixed part, then it has only a finite number of fixed
points.

Proof. Take two general sections, and look at their two zero-sets. Where do they intersect?
At a bunch of points. Hence we get at most D?? O

We’ve basically shown that there is a bijection between:

(i) { rational maps m : S [IT1R" such that (S) is contained in no hyperplane }
(i1) { linear systems on S without fixed part and of dimension n }

(Explain the correspondence.)

Theorem (Elimination of indeterminacy). Letm : S [IITX be a rational map from a
surface to a projective variety. Then there exists a surface S5 a morphismn : S - S
which is the composite of a finite number of blow-ups, and a morphism f : S¥- X such



that the diagram

IS commutative.
Proof. Idea: blow up fixed points, show that D? decreases.

We immediately reduce to the case where X is P™, and n(S) isn’t contained in any
hyperplane of P™. Then ¢ corresponds to a linear system V []D| of dimension non S,
with no fixed component. If V has no base point, then we’re done.

Otherwise, we blow up a base point x, and consider S; — S at x (and hence a rational
map S; [IT13). The exceptional curve is now in the fixed part of the linear system, with
some multiplicity k = 1. So we subtract KE to get rid of the fixed part, i.e. get a new linear
systemV; CJm'® —KkE|, to get the same rational map ¢, : S; [I113, given by D; = D—KE.
If this is a morphism, we win, otherwise we keep going.

At some point, this process must stop (and hence we win in the long run). We prove
this is the case when D? = i, by induction on i. Base case, i = 0: the number of fixed
points is bounded by D? = 0, so there aren’t any. Inductive step: Now i > 0. Then
we blow-up once, and we get a new surface with divisor class. On this surface, D? =
(D — KE)(D — kE) = D? — k? < D?. So by the inductive hypothesis, the process will
terminate on this new surface, completing the induction. O

3. THE UNIVERSAL PROPERTY OF BLOWING UP

Theorem (Universal property of blowing up). Let f : X - S be a birational morphism
of surfaces, and suppose that the rational map f~* is undefined at a point p of S. Then f
factorizes as N

f:x2S8:=BL,S%sS
where g is a birational morphism and 1t is the blow-up at p.

Proof: next day.

3.1. Applications of the universal property of blowing up. Two theorems.

Theorem (all birational morphisms factor into blow-ups). Letf : S - Sy be a birational
morphism of surfaces. Then there is a sequence of blow-ups my : Sx - Sk—1 (K—1,...,n)

and an isomorphismu : S _'%n suchthatf =My e - om°oU.

Proof. If f is an isomorphism, we’re done. Otherwise, there is a point p of Sy such that 1
is undefined At p, and we can factor through S - S; = Bl; So. We can repeat this.

If n(fy) is the number of contracted curves of n(fy) < n(fc—,): if E is the exceptional
divisor of my : Sk - Sk—1, then the preimage of E in S contains a curve which is contracted
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by f—; but not fi. As the number of contracted curves can’t be negative, the process must
terminate. O

Theorem (all birational maps can be factored into blow-ups). Let ¢ : S [TII$"be a
birational map of surfaces. Then there is a surface S™and a commutative diagram

SEIII]
f g
I 1 | |
S b so

where the morphisms T and g are composites of blow-ups.

Proof. By the theorem of elimination of indeterminacy, we can find such a diagram such
that  is a composition of blow-ups. By the Theorem above, g must then be a composition
of blow-ups too. O

We’ve now proved some powerful stuff, so let’s take a step back and see what we now
know, and how it relates to classification.

Two surfaces are birational iff they can be be related by sequences of blow-ups. We’ll
be interested in birational classification, but biregular classification is very close.

If f : S - SUis birational which is the composition of n blow-ups, then NS(S) £
NS(SY [CZ1, so n is independent of the choice of blow-ups. Exercise: Use this to show
that every birational morphism from S to itself is an isomorphism.

Fact. In a blow-up, H_i of the structure sheaf is preserved, i.e. if m: S¥~ S is a blow-up,
then 1~ H'(Os) - H'(Os)) is an isomorphism.

The algebraic way of proving this fact comes from the Leray spectral sequence, and the
fact that m@so= Os and R'm@so= 0 for i > 0. This in turn requires some infinitesimal
analysis, in the form of “formal function theorems”. | suspect that there should be a
relatively straightforward analytic proof.

In particular, by these numbers are birational invariants.

So look at what this means for the Hodge diamond. When you blow up, you add 1 to
the central entry (the rank of the Neron-Severi group). Everything else is constant.

Next day: More consequences of these powerful theorems. Proof of the universal prop-
erty of blowing up. Castelnuovo’s criterion for blowing down curves.



