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Recap of last time. Last time we began discussing blow-ups:

Given p ∈ S, there is a surface S ′ = BlpS and a morphism π : S ′ → S, unique up to
isomorphism, such that (i) the restriction of π to π−1(S − {p}) is an isomorphism onto
S − {p}, and (ii) π−1(p) is isomorphic to P1. π−1(p) is called the exceptional divisor p, and
is called the exceptional divisor.

A key example, and indeed the analytic-, formal-, or etale-local situation, was given by
blowing up S = A2 at the origin, which I’ll describe again soon when it comes up in a
proof.

For the definition, complex analytically, you can take the same construction. Then you
need to think a little bit about uniqueness. There is a more intrinsic definition that works
algebraically, let I be the ideal sheaf of the point. Then S ′ = Proj⊕d≥0Id.

1. HOW BASIC ASPECTS OF SURFACES CHANGE UNDER BLOW-UP

Definition. If C is a curve on S, define the strict transform Cstrict of C to the the closure of
the pullback on S − p, i.e. π|∗S′−E(C ∩ S − p). The proper transform Cproper is given by the
pullback of the defining equation, so for example π∗OS(C) = OS′(C ′).

Lemma. If C has multiplicity m at p, then Cproper = Cstrict +mE, i.e. π∗C ∼= Cstrict +mE.

Proof. The multiplicity ofC beingmmeans that in local coordinates, the defining equation
has terms of degree m, but not lower. (Better: the defining equation lies in mm but not
mm+1.) Analytically, this means that the leading term in x and y has degree m.
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We do this by local calculation which will be useful in general. (Draw picture.) U0 =
{((x0, y0), [1; v]) : y0 = x0v} = Spec k[x0, y0, v]/y0 = x0v = Spec k[x0, v]. The exceptional
divisor E is given by y0 = 0 (after morphism).

U1 = {((x1, y1), [u; 1]) : x1 = y1u} = Spec k[x1, y1, u]/x1 = y1u = Spec k[y1, u]. The
exceptional divisor E is given by y1 = 0.

Map down to (x, y) = Spec k[x, y]. (x0, y0, v) 7→ (x0, y0), (x1, y1, v) 7→ (x1, y1).

Given a function f(x, y) = 0. Pull it back to U0: f(x, y) = fm(x, y)+higher = fm(x0, x0v)+
higher + · · · .

Exercise. To see if you understood that, do the same calculation on patch 2.

Theorem. Suppose π : S ′ → S is a blow up of S at p, with exceptional curve E ⊂ S ′. Let
D and D′ be divisors on S. Then π∗D · π∗D′ = D ·D′, E · π∗D = 0, E2 = −1.

Remark. A curve on a smooth surface that is isomorphic to P1 and has self-intersection−1
is called a (−1)-curve.

Proof. The first we did yesterday. The second: by Serre’s moving lemma, we can move
D away from p, then pull back. For the third: choose a curve C passing through p with
multiplicity 1. (How to do this: hyperplane section of S.) Then Cstrict · E = 1. Also
Cproper · E = 0. as Cstrict + E = Cproper, we’re done.

Theorem. (a) There is an isomorphism PicS⊕Z ∼→ PicS ′ defined by (D,n) 7→ π∗D+nE.
(b) The same with Pic replaced by NS.

Proof. The arguments are the same for both parts, so I’ll do (a). It is surjective: the divisors
upstairs are either E or strict transforms (which are proper transforms plus E’s). It is
injective: if π∗D + nE = 0, then intersect with E to see that n = 0; then apply π∗ to see
that D = 0.

Theorem. KS′ = π∗KS + E.

Proof. Clearly KS′ = π∗KS + mE for some m. By the adjunction formula for E, KE =
KS′(E)|E . Taking degrees:

−2 = (π∗KS +mE + E) · E = −m− 1.

Exercise/Remark. If you want practice with the canonical bundle in local coordinates,
take a meromorphic section of KS that has neither zero nor pole at p (possible by Serre’s
moving lemma), write it as f(x, y)dx ∧ dy, and pull it back to the open set U1 to see that
you get f(x0, x0v)dx0 ∧ d(x0v) = f(x0, x0v)x0dx0 ∧ dv.
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2. RATIONAL MAPS OF SURFACES, LINEAR SYSTEMS, AND ELIMINATION OF
INDETERMINACY

A rational map S 99K X , where X is a variety, means a morphism from an dense open
set of S. Recall that a rational map from a curve C to a projective variety can always be
extended to a morphism. Similarly, a rational map from a surface S to a projective variety
can be extended over most points; the set of indeterminacy is a finite set of points. More
precisely, given a map π : S 99K Pn. This is given by n+ 1 sections of some line bundle. It
makes sense except where the sections are all zero. This will be in codimension 2.

Let F be this finite set. We’ll denote π(S − F ) the image of S, and denote it π(S). (I’m
not sure we need to take the closure.) If C is a curve on S, then we’ll denote π(C − F ) the
image of C, and denote it π(C). Here we definitely need to take the closure.

Now suppose you have a divisor D on S. Given a subspace V of dimension n of
H0(S,O(D)), we might hope to get a map to projective space PV ∗. (This is called a linear
system of dimension n; I should have introduced this notation earlier.) If it is base point
free, we do.

If it has base points, the locus could have components of dimension 1. Such a compo-
nent is called a fixed component of the linear system V . The fixed part of V is the biggest
divisor contained in every element of V . So if this fixed part is F , then D−F has no fixed
components.

(I’m not happy with how I explained the previous paragraphs in class. I hope this is
clearer.)

Lemma. If the linear systems has no fixed part, then it has only a finite number of fixed
points.

Proof. Take two general sections, and look at their two zero-sets. Where do they intersect?
At a bunch of points. Hence we get at most D2?

We’ve basically shown that there is a bijection between:

(i) { rational maps π : S 99K Pn such that π(S) is contained in no hyperplane }

(ii) { linear systems on S without fixed part and of dimension n }

(Explain the correspondence.)

Theorem (Elimination of indeterminacy). Let π : S 99K X be a rational map from a
surface to a projective variety. Then there exists a surface S ′, a morphism η : S ′ → S
which is the composite of a finite number of blow-ups, and a morphism f : S ′ → X such
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that the diagram
S ′

η

↙
f

↘
S

π
99K X

is commutative.

Proof. Idea: blow up fixed points, show that D2 decreases.

We immediately reduce to the case where X is Pm, and π(S) isn’t contained in any
hyperplane of Pm. Then φ corresponds to a linear system V ⊂ |D| of dimension n on S,
with no fixed component. If V has no base point, then we’re done.

Otherwise, we blow up a base point x, and consider S1 → S at x (and hence a rational
map S1 99K S). The exceptional curve is now in the fixed part of the linear system, with
some multiplicity k ≥ 1. So we subtract kE to get rid of the fixed part, i.e. get a new linear
system V1 ⊂ |π∗D−kE|, to get the same rational map φ1 : S1 99K S, given byD1 = D−kE.
If this is a morphism, we win, otherwise we keep going.

At some point, this process must stop (and hence we win in the long run). We prove
this is the case when D2 = i, by induction on i. Base case, i = 0: the number of fixed
points is bounded by D2 = 0, so there aren’t any. Inductive step: Now i > 0. Then
we blow-up once, and we get a new surface with divisor class. On this surface, D2

1 =
(D − kE)(D − kE) = D2 − k2 < D2. So by the inductive hypothesis, the process will
terminate on this new surface, completing the induction.

3. THE UNIVERSAL PROPERTY OF BLOWING UP

Theorem (Universal property of blowing up). Let f : X → S be a birational morphism
of surfaces, and suppose that the rational map f−1 is undefined at a point p of S. Then f
factorizes as

f : X
g→ S̃ := Blp S

π→ S

where g is a birational morphism and π is the blow-up at p.

Proof: next day.

3.1. Applications of the universal property of blowing up. Two theorems.

Theorem (all birational morphisms factor into blow-ups). Let f : S → S0 be a birational
morphism of surfaces. Then there is a sequence of blow-ups πk : Sk → Sk−1 (k − 1, . . . , n)
and an isomorphism u : S

∼→ Sn such that f = π1 ◦ · · · ◦ πn ◦ u.

Proof. If f is an isomorphism, we’re done. Otherwise, there is a point p of S0 such that f−1

is undefined At p, and we can factor through S → S1 = Blp S0. We can repeat this.

If n(fk) is the number of contracted curves of n(fk) < n(fk−1): if E is the exceptional
divisor of πk : Sk → Sk−1, then the preimage ofE in S contains a curve which is contracted
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by fk−1 but not fk. As the number of contracted curves can’t be negative, the process must
terminate.

Theorem (all birational maps can be factored into blow-ups). Let φ : S 99K S ′ be a
birational map of surfaces. Then there is a surface S ′′ and a commutative diagram

S ′′

f

↙
g

↘
S

φ
99K S ′

where the morphisms f and g are composites of blow-ups.

Proof. By the theorem of elimination of indeterminacy, we can find such a diagram such
that f is a composition of blow-ups. By the Theorem above, g must then be a composition
of blow-ups too.

We’ve now proved some powerful stuff, so let’s take a step back and see what we now
know, and how it relates to classification.

Two surfaces are birational iff they can be be related by sequences of blow-ups. We’ll
be interested in birational classification, but biregular classification is very close.

If f : S → S ′ is birational which is the composition of n blow-ups, then NS(S) ∼=
NS(S ′) ⊕ Zn, so n is independent of the choice of blow-ups. Exercise: Use this to show
that every birational morphism from S to itself is an isomorphism.

Fact. In a blow-up, H i of the structure sheaf is preserved, i.e. if π : S ′ → S is a blow-up,
then π∗ : H i(OS)→ H i(OS′) is an isomorphism.

The algebraic way of proving this fact comes from the Leray spectral sequence, and the
fact that π∗OS′ = OS and Riπ∗OS′ = 0 for i > 0. This in turn requires some infinitesimal
analysis, in the form of “formal function theorems”. I suspect that there should be a
relatively straightforward analytic proof.

In particular, by these numbers are birational invariants.

So look at what this means for the Hodge diamond. When you blow up, you add 1 to
the central entry (the rank of the Neron-Severi group). Everything else is constant.

Next day: More consequences of these powerful theorems. Proof of the universal prop-
erty of blowing up. Castelnuovo’s criterion for blowing down curves.
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