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Recap of last time. Extended example of Pn. OPn(d) ↔ degree d homogeneous things.

Maps to projective space corresponded to vector spaces of sections of an invertible sheaf
L that are basepoint free (no common zero). Hyperplane sections correspond to H0(X,L).

For example, if the sections of L have no common zero, then we can map to some
projective space by the vector space of all sections. Then we say that the invertible sheaf is
L is basepoint free. (I didn’t give this definition last time.)

Definition. The corresponding map to projective space is called a linear system. (I’m not
sure if I’ll use this terminology, but I want to play it safe.)

|L| : X → Pn = PH0(X,L)∗.

Definition. An invertible sheaf L is very ample if the global sections of L gives a closed
immersion into projective space.

Fact. equivalent to: “separates points and tangent vectors”.

Definition. An invertible sheaf is ample if some power of it is very ample.

Note: A very ample sheaf on a curve has positive degree. Hence an ample sheaf on a
curve has positive degree. We’ll see later today that this is an “if and only if”.

Date: Friday, October 11.
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Fact (Serre vanishing). Suppose M is any coherent sheaf e.g. an invertible sheaf, or
more generally a locally free sheaf (essentially, a vector bundle), and L is ample. Then for
n >> 0, H i(X,M⊗Ln) = 0 for i > 0.

1. SERRE DUALITY AND RIEMANN-ROCH; BACK TO CURVES

Fact: Serre duality. If X is proper nonsingular and dimension n, then for 0 ≤ i ≤ n,

H i(X,L)⊗Hn−i(X,K ⊗ L∨) → Hn(X,K) ∼ C
is a perfect pairing.

(True for vector bundles. More general formulation for arbitrary coherent sheaves.)
Thus hi(X,L) = hn−i(X, K ⊗ L∗) and χ(C,L) = (−1)nχ(C,K ⊗ L∨).

In particular, we have Serre duality for curves. For any invertible sheaf L, the map

H0(C,L)⊗H1(C,K ⊗ L∨) → H1(C,K) ∼ C
is a perfect pairing.

Hence two possible definitions of genus are the same: h0(C,K) and h1(C,OC).

Fact: Riemann-Roch Theorem.

h0(C,L)− h1(C,L) = deg(L)− g + 1.

(I.e. χ(C,L) = deg−g + 1 — rememeber that the cohomology of a coherent sheaf van-
ishes above the dimension of the variety.)

Generalizations: Hirzebruch-Riemann-Roch, to Grothendieck-Riemann-Roch. Hirzebruch-
Riemann-Roch, which we’ll be using, is a consequence of the Atiyah-Singer index theo-
rem, which Rafe Mazzeo spoke about in the colloquium yesterday.

Proof of Riemann-Roch: (i) algebraic, (ii) complex-analytic, (iii) Atiyah-Singer.

Using Serre duality:

h0(C,L)− h0(C,K ⊗ L∨) = deg(L)− g + 1.

Corollary. deg K = 2g − 2. (Do it.)

So we have another definition of g.

2. APPLICATIONS OF RIEMANN-ROCH

Theorem. If degL ≥ 2g − 1, then h1(C,L) = 0. Hence h0(C,L) = degL − g + 1.

Proof: Serre duality, and the fact that invertible sheaves of negative degree have no
sections. Then Riemann-Roch.
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Theorem (numerical criterion for basepoint freeness). If degL ≥ 2g, then L is basepoint
free. (Remind them of definition.)

Proof: H0(C,L(−p)) is the vector space of sections with a zero at p. Want to show that
H0(C,L)−H0(C,L(−p)) > 0. Do it using previous result: difference is 1!

Example. If C is genus 1 and L is degree 2, then we get a map to P1. This shows that
every genus 1 curve is a double cover of P1. (Explain “hyperplane section” in this case.)

2.1. Classification of genus 2 curves. Theorem. Any genus 2 curve has a unique double
cover of P1 branched over 6 points. (The 6 points are unique up to automorphisms of P1.)
Any double cover of P1 branched over 6 points comes from a genus 2 curve. Hence genus
2 curves are classified by the space of 6 distinct points of P1, modulo automorphisms of
P1. In particular, there is a dimension 6− dim Aut P1 = 3 moduli space.

Proof. First, every genus 2 curve C has a degree 2 map to P1 via K (basepoint freeness).
The numerical criterion for basepoint freeness doesn’t apply, unfortunately. Let’s check
that K has 2 sections: h0(K) − h0(O) = deg(K) − 2 + 1 = 1. Next, let’s check that K is
basepoint free. We want K(−p) has only 1 section for all p. If K(−p) had two sections,
then we’d have a degree 1 map to P1 from C (explain), contradiction.

Next we’ll see that the only degree 2 maps to P1 arise from the canonical bundle. Sup-
pose L is degree 2, and has 2 sections. Then by RR, K ⊗ L∗ has 1 section, and is degree 0.
But the only degree 0 sheaf with a section is the trivial sheaf.

Finally, any double cover of P1 branched over 6 points is genus 2. This follows from the
Riemann-Hurwitz formula.

Using naive geometry: 2χ(P1)− 6 = χ(C), i.e. −2 = 2− 2g, so g = 2..

Fact. Riemann-Hurwitz formula: KC = π∗KP1+ ramification divisor. Taking degrees:
2g − 2 = 2(−2) + 6. �

2.2. A numerical criterion for very ampleness. Theorem. If degL ≥ 2g + 1, then L is
very ample. (Remind them of definition.)

Proof. I’ll show you that it separates points. Suppose p 6= q. H0(C,L) − H0(C,L(−p −
q)) = 2. Hence there is a section vanishing at p and not at q, and vice versa.

Same idea works for separating tangent vectors. h0(C,L) − h0(C,L(−2p)) = 2. Hence
there is a section vanishing at p but not to order 2.

Example. C genus 1, L has degree 3. Then C ↪→ P2, degree 3. Hence every elliptic curve
can be described by a plane cubic. (We’ll soon see that any plane cubic is a genus 1 curve.)

Corollary. L on C is ample iff it has positive degree.
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3. NORMAL BUNDLES; THE ADJUNCTION FORMULA

There is one more natural place to find line bundles: the normal bundle to a submani-
fold of dimension 1 less. I’ll now discuss normal bundles algebraically, and as an appli-
cation prove the adjunction formula.

Suppose D is a nonsingular divisor (codimension 1) on nonsingular X . Then we can
understand the canonical sheaf of D in terms of the canonical sheaf of X .

The adjunction formula. KD = KX(D)|D. This is sometimes (sloppily) written as KD =
KD(D). Remember this!

(Remind them what KX(D) means.)

This actually holds in much more generality, e.g. D can be arbitrarily singular, and X
need not be smooth.

Here is an informal description of why this is true.

•Motivation: tangent space in differential geometry to a point p in a manifold W is the
space of curves, modulo some equivalence relation.

• The cotangent space is the dual of this space, and can be interpreted as the space of
functions vanishing at p modulo an equivalence relation: the functions vanishing to order
2 at p. In the space O of functions near p, the first is the ideal Ip, the second is the ideal I2

p .
Thus the cotangent space is Ip/I

2
p .

• Aside: in this case, Ip is a maximal ideal mp, as O/Ip is a field. So the cotangent space
is mp/m

2
p. That’s why the Zariski tangent spaced is defined as mp/m

2
p. This is a purely

algebraic definition. It works for any algebraic X , not even defined over a field, not even
non-singular.

•Next consider Y to be a nonsingular subvariety of X , of codimension c. Then there is
a conormal bundle of Y in X (the dual of the normal bundle. It has rank d. The conormal
sheaf is the sheaf of sections of Y . It is locally free of rank d. Definition (motivated by
previous discussion). In sheaf language: the conormal bundle is I/I2. This is a priori a
sheaf on all of X , but in fact it lives on Y (“is supported on Y ”).

• Now suppose further that Y is a divisor, so I’ll now call it D. Then I = OX(−D).
We’re modding out this sheaf by sections vanishing on D; this is the same as restricting
to D. Hence I/I2 ∼ O(−D)|D is the conormal bundle, so O(D)|D is the normal bundle.
(Thanks to Konstantin Loginov for pointing this out, in 2014.)

Proof of the adjunction formula. We have an exact sequence

0 → TD → TX |D → ND → 0.

Dualize to get:

0 → N∗
D → ΩX |D → ΩD → 0.
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Take top wedge powers to get KX |D ∼ KD ⊗N∗
D from which

KD ∼ KX |D ⊗ND = KX |D ⊗OX(D)|D = KX(D)|D.

�

3.1. Applications of the adjunction formula. 1) Cubics in P2 have trivial canonical bun-
dle. Hence all genus 1 curves have canonical sheaf that is not degree 0, but also trivial.

2) Quartics in P3 also have trivial canonical bundle. K3 surfaces.

3) What’s the genus of a smooth degree d curve in P3? Answer: (d− 1)(d− 2)/2.

4) Smooth quartics in P2 are embedded by their canonical sheaf. More on this in a
second.

5) Smooth complete interesction of surfaces of degree 2 and 3 in P3: also embedded by
their canonical sheaf.

3.2. Classification of curves of genus 3. I’ll discuss at greater length next day.

Theorem. Every smooth curve of genus 3 is of (precisely) one of the two following forms.

(i) A smooth quartic curve in P2 (in a unique way, up to automorphisms of P2).

(ii) A double cover of P1 branched over 8 points (in a unique way, up to automorphisms
of P2).
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