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Today, I’m going to sketch the Enriques classification of surfaces. I’m not going to prove
any theorems.

1. KODAIRA DIMENSION

Definition. Let V be a smooth projective variety, φnK the rational map from V to the
projective space associated with the linear system |nK|. The Kodaira dimension of V , writ-
ten κ(V ), is the maximum dimension of the images φnK(V ) for n ≥ 1. If |nK| = ∅, then
φnK(V ) = ∅, and we say dim ∅ = −∞.

Hence κ(V ) ∈ {−∞, 0, 1, 2, . . . , dimV }.

Exercise. If V is a curve, then V = −∞ if g = 0, V = 0 if g = 1, and V = 1 if g ≥ 2.

Notice that this is a good trichotomy; there is a big change in behavior between these
three classes of curves.

Date: Friday, December 6.
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In the case we’re interested in, dimV = 2, so there are four possible Kodaira dimen-
sions.

The classification theorem of Enriques classifies all possibilities for which the κ = −∞,
0, and 1. For 2, there are infinitely many families, and we can still say something interest-
ing.

Exercise. Using the adjunction formula, show that the complete intersection of n − 2

hypersurfaces in Pn, of degrees d1, . . . , dn−2, has Kodaira dimension−∞ if ~d = (2), (3), or
(2, 2); 0 if ~d = (4), (2, 3), or (2, 2, 2) (examples of K3 surfaces), and 2 otherwise.

Exercise. If S = C ×D where C and D are smooth curves, then

• If C or D is rational, then S is ruled, and κ = −∞.
• If C and D are elliptic, κ = 0. (Abelian surface)
• If C is elliptic and g(D) ≥ 2, then κ(S) = 1.
• If C and D are of genus at least 2, then κ(S) = 2.

Remark: two of the above are examples of elliptic fibrations. An elliptic fibration on X
is a holomorphic map f : X → C where C is a curve, such that the general fiber of f is
a smooth elliptic curve. An elliptic surface is a surface with a given elliptic fibration. You
should think of this as a variation of “ruled surface”.

Before I begin stating the classification, here is a fun fact, saying that the plurigenera
“stabilize” by the twelfth plurigenus.

• κ = −∞ iff P12 = 0.
• κ = 0 iff P12 = 1.
• κ = 1 iff P12 ≥ 2 and K2 = 0.
• κ = 2 iff P12 ≥ 2 and K2 > 0.

2. KODAIRA DIMENSION −∞

Key theorem:

Enriques’ Theorem. Let S be a surface with P4 = P6 = 0 (or P12 = 0). Then S is ruled.

Idea behind proof. If q = 0, we’re done: P2 = 0, so S is rational by Castelnuovo’s criterion
for rationality.

If q ≥ 1, there is more work to be done, but it isn’t harder than what we’ve done so far.
How to start: The image of S in the Albanese is a curve, smooth of genus q. That will be
the base of our ruled surface.

We already computed that if S is ruled then Pn = 0 for all n.

Thus: κ(S) = −∞ iff Pn = 0 for all n ≥ 1, iff (by Enriques’ theorem) S is ruled.
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3. KODAIRA DIMENSION 0

Theorem and Definition. Let S be a minimal surface with κ = 0. Then S belongs to one
of the 4 following cases.

1. pg = 0, q = 0: then 2K = 0, and we say that S is an Enriques surface.
2. pg = 0, q = 1: then S is a bielliptic surface.
3. pg = 1, q = 0: then K ≡ 0, and we say that S is a K3 surface.
4. pg = 1, q = 2: then S is an abelian surface.

3.1. Abelian surfaces. We’ve seen these.

3.2. Bielliptic surfaces. Definition. A surface is bielliptic if S ∼= (E × F )/G, where E
and F are elliptic curves, and G is a finite group of translations of E acting on F such that
F/G ∼= P1. (Caution: Used to be called hyperelliptic surfaces.)

Theorem. Then every bielliptic surface is one of the following types:

1. (E × F )/G, G = Z/2 acting on F by x 7→ −x.
2. (E × F )/G, G = Z/2⊕ Z/2 acting on F by x 7→ −x, x 7→ x+ ε (ε ∈ F2),
3. (E × Fi)/G, G = Z/4Z acting on F by x 7→ ix.
4. (E × Fi)/G, G = Z/4Z⊕ Z/2 acting on F by x 7→ ix, x 7→ x+ (1 + i)/2.
5. (E × Fρ)/G, G = Z/3 acting by x 7→ ρx.
6. (E × Fρ)/G, G = Z/3× Z/3 acting by x 7→ ρx, x 7→ (1− ρ)/3.
7. (E × Fρ)/G, G = Z/6 acting by x 7→ −ρx.

They are always elliptic fibrations. They have covering spaces of degree at most 6 that
are abelian surfaces. Hodge diamond:

1
1 1

0 2 0
1 1

1

3.3. K3 surfaces. K3 surface: pg = 1, q = 0, implies K ≡ 0, simply connected.

Examples:

1. complete intersections: quartic in P3, intersection of cubic and quadric in P4, and
intersection of 3 quadrics in P5.

2. Double cover of P2 branched over a sextic curve
3. Let A be an abelian surface, and let τ be the involution given by a 7→ −a. The

fixed points are the 2-torsion points, of which there are 16 in C2/Λ ∼= R4/Λ. The
quotient will be singular at these 16 points, with singularity analytically isomorphic
to y2 + x2 = z2 in C3. Blow these up, to get something smooth; the exceptional
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divisors are (−2)-curves. This is a K3 surface, called the Kummer surface of A. Easy
Exercise. Any smooth rational curve on a K3 surface is a (-2)-curve.

Noether’s formula

χ(OS) =
1

12

(
K2
S + χtop(S)

)

gives χtop = 24 from which b2 = 22 . Thus the Hodge diamond is:

1
0 0

1 20 1
0 0

1

The algebraic K3 surfaces come in families, of which the first few are on the example
list. Given an ample divisor D on a K3 surface, of self-intersection d. Then the K3 along
with the divisor is called a “degree d K3 surface”. It turns out that d is an even integer,
and for each such d the space of degree d K3 surfaces is irreducible of dimension 19, and
determined by the Hodge structure on H2. (I believe this is due to Piatetski-Shapiro. This
is one of th most famous examples of a Torelli theorem.)

For example: d = 4, get the quartic surfaces. (Exercise: check that there is a 19-
dimensional family of such K3’s.) d = 6, d = 8 also get complete intersections described
above. (Same exercise. ) d = 2, get the double covers of P2. There is a 19-dimensional
family of them: There is a

(
8
2

)
= 28-dimensional family of degree 6 equations in 3 vari-

ables, minus 1 to projectivize, minus dim AutP2 = 8 for automorphisms of P2, so we
indeed get 19.

3.4. Enriques surfaces. Enriques surfaces are K3 surfaces, quotient by a fixed-free invo-
lution.

Example: Let S be the quartic K3 surface in P3 defined by x4 + y4 = z4 + w4. Let σ be
the automorphism sending [x : y : z : w] to [x; iy;−z;−iw], which has order 4, and acts
on S. The quotient of S by the the cyclic group generated by σ is an algebraic surface X .
K 6= 0, but 2K = 0. (Why didn’t I mod out by σ2? Because that has a fixed point!)

Hodge diamond:

1
0 0

0 10 0
0 0

1

Enriques surfaces are always elliptic fibrations.

That completes the case of Kodaira dimension 0.
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4. KODAIRA DIMENSION 1 AND ELLIPTIC SURFACES

Theorem. Any surface of Kodaira dimension 1 is an elliptic surface.

In fact some elliptic surfaces have lower Kodaira dimension, e.g. Enriques surfaces and
E1 × E2. They never have higher.

5. SURFACES OF GENERAL TYPE

OMIT THIS IF THERE ISN’T ENOUGH TIME.

Lemma. If K2 > 0, then there is an integer n0 such that φnK maps S birationally onto its
image for all n ≥ n0.

Proof. Let H be a hyperplane section of S. Since K2 > 0, Riemann-Roch gives us:

h0(nK −H) + h0(H + (1− n)K)→∞
as n→∞. We have H ·K > 0 as S is non-ruled (omitted), hence (H + (1− n)K) ·H < 0
for n sufficiently large. Thus there is an n0 such that h0(nK − H) ≥ 1 for all n ≥ n0.
Let E ∈ |nK − H|. It is clear that the system |nK| = |H + E| separates points of S − E,
and separates tangents to points of S − E. The restriction of φnK to S − E is thus an
embedding.

Proposition. Let S be a minimal surface. Then the following are equivalent.

1. κ = 2.
2. K2 > 0 and S is irrational.
3. there exists an integer n0 such that φnK is a birational map of S to its image for n ≥ n0.

Two-thirds of the proof are easy.

5.1. Inequalities among various invariants. Noether’s inequality: pg ≤ 2 +K2/2.

This impliesK2 ≥ 2χ(OX)−6. Proof. χ(OS) ≤ 1+pg, from which 2χ(OS)−6 ≤ 2pg−4 ≤
K2.

Theorem. Let S be a non-ruled surface. Then χtop(S) ≥ 0 and χ(OS) ≥ 0. Moreover, if S
is of general type, then χ(OS) > 0.

Immediately: pg ≥ q.

Also, substituting χtop ≥ 0 into Noether’s equality

χ(OS) =
1

12

(
K2
S + χtop(S)

)

gives K2 ≤ 12χ(OS).

5



This last inequality can be strengthened: Bogomolov-Miyaoka-Yau inequalityK2 < 9χ(OS).
(Bogomolov is the next speaker in the algebraic geometry seminar.)

Geography: K2 ≥ 1, χ(OS) ≥ 1, Noether K2 ≥ 2χ(OS)− 6, BMY K2 ≤ 9χ(OS). Region
in the first quadrant of the (χ(OS), K2)-plane. Which are achievable? Persson’s theorem:
all values with K2 ≤ 8χ(OS) occur.

Note that the signature of the intersection form is τ = (K2−2χtop)/3 = (K2−2(12χ(OS)−
K2))/3 = K2 − 8χ(OS), so Persson’s surfaces all have negative signature. Surfaces with
positive signature are in general much harder to construct.

Hard to construct things on the BMY line.

6. CONCLUSION OF THE COURSE

My subtext was to teach you enough algebraic geometry so you could use it and read
it in your working life. We’ve seen most of the tools that you’ll need to be familiar with
to read much of the literature; you’re now equipped to ready the rest of Beauville or
Barth-Peters-Van de Ven. If you have any follow-up questions, as always just drop by.
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