COMPLEX ALGEBRAIC SURFACES CLASS 17

RAVI VAKIL

CONTENTS

1. Castelnuovo's Theorem 1
2. Application: The only minimal rational surfaces are \mathbb{P}^{2} and $\mathbb{F}_{n}(n \neq 1)$ 3
3. Albanese variety 4
3.1. The universal property of the Albanese variety 4

On board beforehand:

- Useful trick. $|D| \neq \emptyset$ (i.e. $h^{0}(D)>0$), C irreducible, $C^{2} \geq 0$ implies $D C \geq 0$.
- Genus formula. $2 g(C)-2=C \cdot\left(K_{S}+C\right)$.
- Riemann-Roch: $\chi(D)=\chi(\mathcal{O})+\frac{1}{2} D \cdot(D-K)$.
- Riemann-Roch: In the case when $h^{1}(\mathcal{O})=0$ and $h^{0}(K-D)=0$, we have $h^{0}(D) \geq$ $1+\frac{1}{2} D \cdot(D-K)$ (with equality iff $\left.h^{1}(D)=h^{2}(\mathcal{O})=0\right)$.

Also, I have been repeatedly using a fact that I may not have explicitly mentioned. A singular curve C still has a notion of genus (called the arithmetic genus), $g(C)=1-\chi\left(\mathcal{O}_{C}\right)$, which is $h^{1}\left(C, \mathcal{O}_{C}\right)$ if C is connected. (Warning: this is usually denoted p_{a}.) Fact: C irreducible and $g(C)=0$ implies that C is smooth and genus 0 .

1. Castelnuovo's Theorem

We spent last time on most of the proof of :
Theorem: Castelnuovo's Rationality Criterion. Let S be a surface with $q=P_{2}=0$. Then S is rational.

Reminder. $q=h^{1}\left(S, \mathcal{O}_{S}\right)=h^{0}\left(S, \Omega_{S}\right)=h^{2}\left(S, \Omega_{S}\right)=h^{1}\left(S, K_{S}\right)$ (draw Hodge diamond). This is called the irregularity of a surface. $P_{2}=h^{0}\left(S, K_{S}^{\otimes 2}\right)$.

We first reduced this to:
Castelnuovo'. Let S be a minimal surface with $q=P_{2}=0$. Then there exists a smooth rational curve C on S such that $C^{2} \geq 0$.

Date: Wednesday, November 27, 2002. Patch on Fri. Dec. 5.

And then reduced it to:
Castelnuovo". $q=P_{2}=0$ and S minimal implies that there is an effective divisor E on S (i.e. $|E| \neq \emptyset$) such that $K \cdot E<0$ and $|K+E|=\emptyset$. Keep on board.

The proof was in 3 cases: $K^{2}<0,=0$, and >0.
We did the cases $K^{2}=0$ and $K^{2}>0$, so we're left with:
Proof of Castelnuovo" in the case $K^{2}<0$.
Step 1. Find an effective divisor E on S such that $K \cdot E<0$. (2 out of the 3 desired conclusions.) Let H be a hyperplane section of S. If $K \cdot H<0$, we can take $E=H$, and we win. If $K \cdot H=0$, then $K+n H$ has sections for $n \gg 0$, and we win again: take $E \in|K+n H|$; it is effective, and $K \cdot E<0$.

So now assume $K \cdot H>0$. Let $r_{0}=K \cdot H /\left(-K^{2}\right)$. This is positive. Note that $\left(H+r_{0} K\right)^{2}=H^{2}+2\left(K \cdot H /\left(-K^{2}\right)\right) H K+(K \cdot H)^{2} /\left(-K^{2}\right)^{2} K^{2}=H^{2}+(K \cdot H)^{2} /\left(-K^{2}\right)>0$. (Don't be nervous with rational coefficients; we can still formally manipulate them in the same way. We should just be careful about them being actual divisors.) Also ($H+r_{0} K$) . $K=0$. So if $p / q\left(p, q \in \mathbb{Z}^{+}\right)$is a touch greater than r_{0}, we have

$$
\left(H+\frac{p}{q} K\right)^{2}>0, \quad\left(H+\frac{p}{q} K\right) \cdot K<0, \quad\left(H+\frac{p}{q} K\right) \cdot H>0 .
$$

Let $D_{m}=m q\left(H+\frac{p}{q} K\right)$, so

$$
D_{m}^{2}>0, \quad D_{M} \cdot K<0, \quad D_{m} \cdot H>0
$$

As $m \rightarrow \infty, h^{0}\left(K-D_{m}\right)=0$, as $\left(K-D_{m}\right) \cdot H<0$. By Riemann-Roch,

$$
h^{0}\left(D_{m}\right) \geq \chi\left(\mathcal{O}_{X}\right)+\frac{1}{2}\left(D_{m}^{2}-D_{m} \cdot K\right) \rightarrow \infty
$$

as $m \rightarrow \infty$. Hence $h^{0}\left(D_{m}\right)>0$ for some large m; take $E \in\left|D_{m}\right|$. It is effective, and $K \cdot E<0$.

Step 1. Remember our useful remark from a few classes ago: If D is an effective divisor, and C is an irreducible curve such that $C^{2} \geq 0$, then $D \cdot C \geq 0$.

Suppose we have an effective divisor E on S such that $K \cdot E<0$. Then let C be some irreducible component of E such that $K \cdot C<0$. By the genus formula,

$$
2 g(C)-2=K \cdot C+C^{2} \Rightarrow-2=K \cdot C+C^{2}-2 g(C) \leq-1+C^{2},
$$

so $C^{2} \geq-1$, and $C^{2}=-1$ iff C is an exceptional curve, which is excluded. Hence $C^{2} \geq 0$.
Thus $(a C+n K) \cdot C<0$ for $n \gg 0$. Thus by the useful remark, $h^{0}(S, a C+n K)=0$ for $n \gg 0$. Clearly $h^{0}(S, a C+0 K)>0$ (as there is a divisor in the linear system $a C$, notably $a C$ itself), so there is some n such that $|a C+n K| \neq \emptyset,|a C+(n+1) K|=\emptyset$. If $D \in|a C+n K|$, then $K \cdot D \leq-a$, and $|K+D|=\emptyset$.

Suppose S is a minimal rational surface. Let H be a hyperplane section, i.e. a very ample divisor. Consider the set A of smooth rational curves C with $C^{2} \geq 0$. By Castelnuovo', this set is non-empty.

Castelnuovo'. Let S be a minimal surface with $q=P_{2}=0$. Then there exists a smooth rational curve C on S such that $C^{2} \geq 0$.

Keep on board. Let m be the smallest possible choice of C^{2} in this family. Among those with this value of C^{2}, choose some C with the smallest possible value of $C \cdot H$ (which is necessarily positive).

Lemma. All curves in $|C|$ are smooth and genus 0 .
Proof. Suppose $D=\sum n_{i} C_{i} \in|C|$ isn't irreducible. $K \cdot D<0$, so choose some C_{j} such that $K \cdot C_{j}<0$. I'll show you that C_{j} is a smooth rational curve with $C_{j}^{2} \leq C^{2}$ and $H \cdot C_{j}<H \cdot C$, contradicting our choice of C.

Andre pointed out a gap here in the original notes. Here is the patch. By the useful trick, if $h^{0}\left(S, K_{S}+C\right)>0$, then $\left(K_{S}+C\right) \cdot C \geq 0$. But by the genus formula, $\left(K_{S}+C\right) \cdot C=-2$.

Recall:
Exercise. (I proved this when showing that Castelnuovo" implies Castelnuovo', but it's a good exercise to re-prove it yourself.) If $K_{S} \cdot C<0$ and $h^{0}\left(S, K_{S}+C\right)=0$ and $q=0$, then C is a smooth rational curve with $C^{2} \geq-1$. Method: apply Riemann-Roch to $K_{S}+C$.

Now here $q=0$ (as S is rational), and $h^{0}\left(S, \mathcal{O}_{S}\left(K+C_{j}\right)\right) \leq h^{0}\left(S, \mathcal{O}_{S}\left(K+\sum n_{i} C_{i}\right)\right)=0$. So C_{j} is a smooth rational curve. Also, $C^{2}=\left(\sum n_{i} C_{i}\right)^{2} \geq \sum n_{i}^{2} C_{i}^{2} \geq C_{j}^{2}$. Finally, $C \cdot H=$ $\left(\sum n_{i} C_{i}\right) \cdot H \geq C_{j} \dot{H}$.

Lemma. $\operatorname{dim}|C| \leq 2$, i.e. $h^{0}(S, \mathcal{O}(C)) \leq 3$.
Proof. Assume otherwise. Pick some point $p \in S$. Pick an open subset containing p, over which $\mathcal{O}(C)$ is trivialized. Then via this trivialization, the $h^{0}(S, \mathcal{O}(C))$ corresponds to some vector space functions, of dimension at least 4 . Thus there is some non-zero function that restricts to something vanishing to order 2 at p. In that case, the zero set is singular, contradicting our previous lemma.

Lemma. $m=0$ or 1 .
Proof. We know $m \geq 0$ by construction. Let C_{0} be a fixed curve in that class. Consider the exact sequence $0 \rightarrow \mathcal{O}_{S} \rightarrow \mathcal{O}_{S}(C) \rightarrow \mathcal{O}_{C_{0}}(m) \rightarrow 0$. As $q=0$, this is exact on global sections, so $3 \geq h^{0}\left(S, \mathcal{O}_{S}(C)\right)=1+h^{0}\left(\mathbb{P}^{1}, \mathcal{O}(m)\right)=2+m$.

Note also that $\mathcal{O}(C)$ has no base points. (Explain.)
Theorem. Let S be a minimal rational surface. Then $S \cong \mathbb{P}^{2}$ or some \mathbb{F}_{n} for $n \neq 1$.
Proof. If $m=0$, then $|C|$ determines a morphism $S \rightarrow \mathbb{P}^{1}$ (as there are no base points), all of whose fibres are smooth rational curves. So S is a rational ruled surface \mathbb{F}_{n}.

If $m=1$, then $|C|$ determines a morphism $S \rightarrow \mathbb{P}^{2}$. The preimages are reduced points (any two sections intersect in $m=1$ point, counted with multiplicity), so this is an isomorphism.

3. Albanese variety

I next want to introduce the last important tool you haven't yet seen in the classification of surfaces, the albanese variety.

As a goal, I will prove (next day):
Theorem. Let S, S^{\prime} be two non-ruled minimal surfaces. Then every birational map from S^{\prime} to S is an isomorphism. In particular, every non-ruled surface admits a unique minimal model (up to isomorphism); the group of birational maps from a non-ruled minimal surface to itself coincides with the group of automorphisms of the surface.
3.1. The universal property of the Albanese variety. An abelian variety over \mathbb{C} is an projective algebraic variety that is a complex torus \mathbb{C}^{n} / L (L a lattice of rank $2 n$); it is a group. In the purely algebraic category, an abelian variety over a field k is a smooth projective group scheme.

Hard theorem. For any (smooth projective) variety X over a field k, there exists an abelian variety A and a morphism $X \rightarrow A$ with the following universal property: for any abelian variety T and any morphism $f: X \rightarrow T$, there exists a unique morphism $\tilde{f}: A \rightarrow T$ such that $\tilde{f} \circ \alpha=f$.

Exercise. A is determined up to isomorphism.
This is called the Albanese variety of X, written $\operatorname{Alb}(X)$.
Hard theorem continued. α induces an isomorphism $\alpha^{*}: H^{0}\left(A, \Omega_{A}^{1}\right) \rightarrow H^{0}\left(X, \Omega_{X}^{1}\right)$.
The proof in general is hard, but over \mathbb{C} there is an easier proof using Hodge theory (see Beauville, for example). For simplicity, I'll work in the complex category.

Some fast consequences.

$\operatorname{dim} \operatorname{Alb}(X)=h^{1}\left(X, \Omega_{X}^{1}\right)$. In particular, if X is a surface, $\operatorname{dim} \operatorname{Alb}(X)=q$. So as a corollary, if $q=0$, every morphism from X to a complex torus is trivial (i.e. every map is
reduced to a point). Also, every map from \mathbb{P}^{1} to a complex torus is trivial. (Explain why in the complex category.)

The Albanese variety is functorial in nature. If $f: X \rightarrow Y$ is a morphism of smooth projective varieties, there is a unique morphism $F: \operatorname{Alb}(X) \rightarrow \operatorname{Alb}(Y)$ such that the diagram

is commutative.
Moreover, the Abelian variety $\operatorname{Alb}(X)$ is generated by $\alpha(X)$ (i.e. there is no abelian subvariety of $\operatorname{Alb}(X)$ containing $\alpha(X)$), as the Abelian subvariety of $\operatorname{Alb}(X)$ generated by $\alpha(X)$ satisfies the universal property. In particular, $\alpha(X)$ is not reduced to a point if $\operatorname{Alb}(X)$ is not a point. It also follows that if the morphism f is surjective, then so is the morphism $F: \operatorname{Alb}(X) \rightarrow \operatorname{Alb}(Y)$.

Fact: If X is a curve, then $\operatorname{Alb}(X)$ is the $\operatorname{Jacobian} \operatorname{Pic}^{0}(X)$ (usually denoted $\operatorname{Jac}(X)$).

