COMPLEX ALGEBRAIC SURFACES CLASS 16

RAVI VAKIL

CONTENTS

1. Castelnuovo's Theorem 1
1.1. Motivation: Minimal rational surfaces 1
1.2. Motivation Luroth's theorem (in characteristic 0) 2
2. Proof of Castelnuovo's criterion (part 1) 2

On board beforehand:

- Useful trick. $|D| \neq \emptyset$ (i.e. $\left.h^{0}(D)>0\right), C$ irreducible, $C^{2} \geq 0$ implies $D C \geq 0$.
- Genus formula. $2 g(C)-2=C \cdot\left(K_{S}+C\right)$.
- Riemann-Roch: $\chi(D)=\chi(\mathcal{O})+\frac{1}{2} D \cdot(D-K)$.
- Riemann-Roch: In the case when $h^{1}(\mathcal{O})=0$ and $h^{0}(K-D)=0$, we have $h^{0}(D) \geq$ $1+\frac{1}{2} D \cdot(D-K)$ (with equality iff $\left.h^{1}(D)=h^{2}(\mathcal{O})=0\right)$.

1. Castelnuovo's Theorem

We saw how tricky it was to show that a surface is rational.
Theorem: Castelnuovo's Rationality Criterion. Let S be a surface with $q=P_{2}=0$. Then S is rational.

Reminder. $q=h^{1}\left(S, \mathcal{O}_{S}\right)=h^{0}\left(S, \Omega_{S}\right)=h^{2}\left(S, \Omega_{S}\right)=h^{1}\left(S, K_{S}\right)$ (draw Hodge diamond). This is called the irregularity of a surface.

$$
P_{2}=h^{0}\left(S, K_{S}^{\otimes 2}\right)
$$

It was once believed that this could be weakened to $q=P_{1}=0$, which is somehow more attractive (as P_{1} is an entry in the Hodge diamond), but this false, and we may see examples before the end of the course (Enriques surfaces, Godeaux surfaces).
1.1. Motivation: Minimal rational surfaces. We know lots of rational surfaces now: \mathbb{P}^{2}, \mathbb{F}_{n}, and blow-ups of these. At this point, we may suspect that we've found them all. How can we show this? We'll use Castelnuovo's criterion.

[^0]1.2. Motivation Luroth's theorem (in characteristic $\mathbf{0}$). A variety V of dimension n is unirational if there is a dominant map (i.e. one with dense image) $\mathbb{P}^{n} \rightarrow V$.

Lüroth's Theorem. Every unirational curve is rational.
Proof. This is true in arbitrary characteristic, but here's a proof that works only in characteristic 0 . Suppose $\mathbb{P}^{1} \rightarrow C$, where C is a curve, possibly singular and not proper. Then we also get a rational map $\mathbb{P}^{1} \rightarrow C^{\prime}$, where C^{\prime} is a smooth compactification of a smoothing of C. By our lemma from long ago, any rational map from a smooth curve to anything projective extends to a morphism, so we have $\mathbb{P}^{1} \rightarrow C^{\prime}$. Dominant implies surjective. So we can apply the Riemann-Hurwitz formula, to see that

$$
2-2 g\left(\mathbb{P}^{1}\right)=d\left(2-2 g\left(C^{\prime}\right)\right) \text { - ramification contribution. }
$$

The left side is 2 , but if $g\left(C^{\prime}\right)>0$ the right side can't be positive.

Theorem. In characteristic 0 , every unirational surface is rational.
In positive characteristic, the theorem is false! Ask Ted Hwa for an example.
Question: where does the following argument break down in positive characteristic?
Proof. Suppose S is a unirational surface. If there was any doubt, let's say that it is smooth and compact. (Otherwise, there is a way of producing a smooth and compact birational model.) So we have $\mathbb{P}^{2} \rightarrow S$. By the elimination of indeterminacy, we can blow up \mathbb{P}^{2} and get a morphism $\mathrm{Bl} \mathbb{P}^{2} \rightarrow S$. This morphism is dominant and hence surjective. Interpret $q(S)$ as $H^{0}\left(S, \Omega_{S}\right)$, and recall $P_{2}(S)=H^{0}\left(S, \mathcal{K}_{S}^{\otimes 2}\right)$. If $q>0$ or $P_{2}>0$, then pullback the nonzero form (i.e. section of either Ω_{S} or $\mathcal{K}_{S}^{\otimes 2}$) to get a non-zero section of the corresponding bundle on $\mathrm{Bl}\left(\mathbb{P}^{2}\right)$. This would give $q\left(\mathrm{Bl}\left(\mathbb{P}^{2}\right)\right)>0$ or $P_{2}\left(\mathrm{Bl}\left(\mathbb{P}^{2}\right)\right)>0$.

Hence $q(S)=P_{2}(S)=0$. Then by Castelnuovo, S is rational.

Remark. Even in characteristic 0 , there are 3-folds that are unirational but not rational, and they are not even that exotic! It is not hard to show that smooth cubic threefolds in \mathbb{P}^{4} are all unirational; Clemens and Griffiths showed that none of them are rational! Iskovskih and Manin did the same for quartic threefolds as well.

2. Proof of Castelnuovo's criterion (part 1)

We'll make a couple of reduction steps.
Castelnuovo'. Let S be a minimal surface with $q=P_{2}=0$. Then there exists a smooth rational curve C on S such that $C^{2} \geq 0$. Keep on board.

Proof that Castelnuovo' implies Castelnuovo's criterion.

$\mathcal{O}_{S}(C)$ clearly has a section, one whose zero set is C. We'll see that in fact $h^{0}\left(S, \mathcal{O}_{S}(C)\right) \geq$ 2 , so "the curve moves". Consider $0 \rightarrow \mathcal{O}_{S} \rightarrow \mathcal{O}_{S}(C) \rightarrow \mathcal{O}_{C}(C) \rightarrow 0$. Now $q=h^{1}\left(S, \mathcal{O}_{S}\right)=$

0 , so when we take global sections, the sequence remains exact, so

$$
\begin{aligned}
h^{0}\left(S, \mathcal{O}_{S}(C)\right) & \left.=h^{0}\left(S, \mathcal{O}_{S}\right)+h^{0}\left(C, \mathcal{O}_{C}(C)\right)\right) \\
& =1+C^{2}-g(C)+1+h^{1}\left(C, \mathcal{O}_{C}(C)\right) \\
& =2+C^{2} \quad\left(\text { as } C \cong \mathbb{P}^{1}, \text { and } \mathcal{O}_{C}(C) \text { has positive degree }\right) \\
& \geq 2
\end{aligned}
$$

So taking 2 sections, C and one other, we get a rational map $S \rightarrow \mathbb{P}^{1}$. After blowing up, this becomes a morphism $\tilde{S} \rightarrow \mathbb{P}^{1}$. One of its fibers is isomorphic to C. By the Noether-Enriques theorem, it follows that S is rational.

So now we want to prove Castelnuovo'. Instead we'll prove
Castelnuovo". $\quad q=P_{2}=0$ implies that there is an effective divisor E on S such that $K \cdot E<0$ and $|K+E|=\emptyset$. Keep on board: We seek $|E| \neq,|E+K|=\emptyset, K \cdot E<0$.

Castelnuovo" implies Castelnuovo'. For then some component C of E satisfies $K \cdot C<0$, and any component satisfies $h^{0}(S, K+C)=0$. Applying Riemann-Roch to $K+C$ we get

$$
\begin{aligned}
0 & =h^{0}(K+C) \\
& \geq h^{0}(K+C)-h^{1}(K+C)+h^{0}(-C) \\
& =\chi(K+C) \\
& =\chi\left(\mathcal{O}_{X}\right)+\frac{1}{2}((K+C)-K) \cdot(K+C) \\
& >h^{0}\left(\mathcal{O}_{X}\right)-h^{1}\left(\mathcal{O}_{X}\right)+h^{2}\left(\mathcal{O}_{X}\right)+\frac{1}{2}(C+K) \cdot C \\
& \geq 1+\frac{1}{2}(C+K) \cdot C \\
& =g(C)
\end{aligned}
$$

Hence $g(C)=0 .(C+K) \cdot C=-2$, hence $C^{2} \geq-1$. If $C^{2}=-1$, then C is an exceptional curve, and we hypothesized that there weren't any. So Castelnuovo' follows.

Proof of Castelnuovo" in the case $K^{2}=0$.

How can we possibly use $P_{2}=0$? Only one reasonable way: Our hypothesis $P_{2}=0$ gives $h^{2}(-K)=0$ (Serre duality). Hence by Riemann-Roch (and $q=0$):

$$
h^{0}(-K) \geq h^{0}(-K)-h^{1}(-K)+h^{2}(-K)=h^{0}(\mathcal{O})-h^{1}(\mathcal{O})+h^{2}(\mathcal{O})+K^{2} \geq 1+K^{2}
$$

(We'll use this in the $K^{2}>0$ case too.)
So $|-K| \neq \emptyset$. Let H be a hyperplane section of S. Then $H \cdot K<0$. Note:

- If $n=0$, then $|H+n K| \neq \emptyset$.
- If $n \gg 0$ then $|H+n K|=\emptyset($ as $(H+n K) \cdot H<0)$

Thus there is an $n \geq 0$ such that $|H+n K| \neq \emptyset$, but $|H+(n+1) K|=\emptyset$ as $|H| \neq \emptyset$, and $(H+n K) \cdot H<0$ for $n \gg 0)$. Let D be an element. $|K+D|=\emptyset$, and $K \cdot D=-(-K) \cdot H<$ 0.

Proof of Castelnuovo" in the case $K^{2}>0$.

$$
\text { Recall } h^{0}(-K)=1+K^{2}, \text { so } h^{0}(-K) \geq-2 \text {. Suppose } D \in|-K|
$$

Three cases:
(1) There is a reducible choice of D, i.e. A, B effective with $A+B \in|-K|$.
(2) $\operatorname{Pic}(C)=\mathbb{Z} K$. (This implies that there is no reducible choice of D (why?), but we don't care.)
(3) All divisors in $|-K|$ irreducible, and $\operatorname{Pic}(C) \neq \mathbb{Z} K$.

Case 1: There is a reducible choice of D, i.e. A, B effective with $A+B \in|-K|$. Then $A \cdot K$ or $B \cdot K<0$, say the former. Then A is an effective divisor on S such that $A \cdot K<0$, and $|A+K|=|-B|=\emptyset$.

Case 2: $\operatorname{Pic}(C)=\mathbb{Z} K$. This is the only case where characteristic 0 comes up! From the exact sequence

$$
H^{1}\left(S, \mathcal{O}_{S}\right) \rightarrow \operatorname{Pic} S \rightarrow H^{2}(S, \mathbb{Z}) \rightarrow H^{2}\left(S, \mathcal{O}_{S}\right)
$$

we have $H^{2}(S, \mathbb{Z}) \cong \operatorname{Pic} S=\mathbb{Z} K$. Thus $b_{2}=1$. By Poincare duality, the intersection form on $H^{2}(S, \mathbb{Z})$ is unimodular, so $K^{2}=1$. By Noether's formula,

$$
1=\chi\left(\mathcal{O}_{S}\right)=\frac{1}{12}\left(K^{2}+2-2 b_{1}+b_{2}\right)
$$

from which $b_{1}=-4$, contradiction.
Case 3: All divisors D in $|-K|$ irreducible and $\operatorname{Pic}(C) \neq \mathbb{Z} K$. Suppose H were an effective divisor. As $|-K| \neq \emptyset$, there exists $n>0$ such that $|H+n K| \neq \emptyset$ and $|H+(n+1) K|=\emptyset$. If $(H+n K) \cdot K<0$, we'd be done.

Take an H such that $H+n K \neq 0$. Let $E \in|H+n K|, E=\sum n_{i} C_{i}$. Then $K \cdot E=-D \cdot E$, and by the useful remark $D \cdot E \geq 0$ since D is irreducible. We are painfully close to being done: we have $K \cdot E \leq 0$, and we want $K \cdot E<0$!

Thus $K \cdot C_{i} \leq 0$ for some $C=C_{i}$. Hence $|K+C|=\emptyset$, from which $0=h^{0}(K+C) \geq$ $1+\frac{1}{2}\left(C^{2}+C K\right)=g(C) . g(C)=0$, and $C^{2}=-2-K \cdot C$ (genus formula). We have gained exactly one thing in this paragraph: our divisor C is irreducible, whereas our divisor E was not necessarily. We know that $|C| \neq \emptyset,|K+C|=\emptyset$, and $K \cdot C \leq 0$, and we want to show that $K \cdot C<0$.

So we'll assume $K \cdot C=0$, and find a contradiction. From the genus formula, $C^{2}=-2$. We'll calculate $h^{0}(-K-C)$. Note that $h^{0}(2 K+C)=h^{0}(2 K+(-D)) \leq h^{0}(K+C)=0$.

Thus

$$
\begin{aligned}
h^{0}(-K-C) \geq \chi(-K-C) & =\chi\left(\mathcal{O}_{X}\right)+\frac{1}{2}\left((K+C)^{2}+K(K+C)\right) \\
& =1+\frac{1}{2}\left(C^{2}+3 K C+2 K^{2}\right) \\
& \geq K^{2} \\
& \geq 1
\end{aligned}
$$

Since $C^{2}=-2$, we have $C \neq-K$, so there exists a nonzero effective divisor A such that $A+C \in|-K|$. This contradicts our hypothesis that $|-K|$ has no reducible divisors.

All that's left is:
Proof of Castelnuovo" in the case $K^{2}<0$.

[^0]: Date: Friday, November 22.

