# COMPLEX ALGEBRAIC SURFACES CLASS 14 

RAVI VAKIL

## CONTENTS

1. Combinatorial aspects ..... 1
2. del Pezzo surfaces ..... 2
3. Cubic surfaces ..... 3
3.1. Automorphisms of the intersection graph ..... 5
3.2. Every smooth cubic has 27 lines, and is the blow-up of $\mathbb{P}^{2}$ at 6 points ..... 5

Last day we looked at a lot of rational surfaces. We made use of:
Useful proposition. Consider the blow-up of $\mathbb{P}^{2}$ at $n$ general points, giving exceptional divisors $E_{1}, \ldots, E_{n}$. Then the intersection ring on $\mathbb{P}^{2}$ is given by

$$
\mathbb{Z}\left[H, E_{1}, \ldots, E_{n}\right] / H^{2}=1, H E_{i}=0, E_{i} \cdot E_{j}=0, E_{i}^{2}=-1
$$

We can understand divisors and sections of divisors in terms of divisors on $\mathbb{P}^{2}$ with certain multiplicities at the $E_{j}$. More precisely: the vector space of sections of $a H-b_{1} E_{1}-\cdots-$ $b_{n} E_{n}$ is naturally isomorphic to the vector space of degree $a$ polynomials in $\mathbb{P}^{2}$ vanishing with multiplicity at least $b_{i}$ on $E_{i}$.

We also proved the following. Suppose $S$ is a surface, and $-K_{S}$ gives a map to projective space. Then ( -1 )-curves map isomorphically onto lines. Conversely, if $S$ is a surface, and $-K_{S}$ gives a map to projective space, then any curve mapping isomorphically onto a line is a ( -1 )-curve.

Today: Cubic surfaces. But first, some interesting combinatorial remarks, due to Tyler, Diane and others.

## 1. COMBINATORIAL ASPECTS

Proposition. The automorphism group of the Peterson graph is $S_{5}$. (I haven't drawn the Peterson graph in these notes, sorry!)

Proof. Two (equivalent) proofs. Diane's: To each vertex put a size 2 subset of $\{1, \ldots, 5\}$. Join them by an edge if the don't intersect.

Date: Friday, November 15.

Tyler's: Label the edges as follows (3 have label 1, etc.). Observe that as soon as you've labeled one edge with a number, the other two are determined: they are those that are distance 3 from it. Hence if $G$ is the automorphism group of the graph, we have a morphism $G \rightarrow S_{5}$. It is surjective: you can get a 5 -cycle (rotate) and a 2 -cycle (do it). It is injective: suppose you have an automorphism fixing the colors. We'll show that the three 1-labeled edges are fixed. Look at the two pairs of edges each 1-edged meets; note that this gives a partition of $\{2,3,4,5\}$ into two couples. There are 3 ways to do this, and they correspond to the 3 edges.

Connection between Diane's and Tyler's: in Diane's construction: label an edge with the number missing in its vertex labels.

If you remember, I described a pattern of automorphism groups of the intersection graphs of the blow-up of $\mathbb{P}^{2}$ at $n$ up to 9 points. The answer was:


I expressed disappointment that $S_{3} \times S_{2}$ was not isomorphic to $D_{12}$, the symmetries of hexagon, because that's what the correct answer was. But in fact:

Proposition (Tyler). $S_{3} \times S_{2} \cong D_{12}$.
Proof. $x=(12)(12)$ and $y=(12)(123)$ generate $S_{3} \times S_{2}$. They also satisfy the relations defining $D_{12}: x^{2}=y^{6}=e, x y x=y^{-1}$.

Remark. The map $D_{12} \rightarrow S_{3}$ corresponds to the induced permutation of the 3 diagonals. The map $D_{12} \rightarrow S_{2}$ corresponds to the permutation of the two inscribed equilateral triangles.

## 2. DEL PeZzo surfaces

Another remark about these surfaces.
Definition. A surface $S$ is a del Pezzo surface if $-K_{S}$ is ample.
This is yet another ancient idea that remains important. Most recently, they have come up in physics.

Examples from last day: $\mathbb{P}^{1} \times \mathbb{P}^{1}$, and the blow-up of $\mathbb{P}^{2}$ at up to 8 general points. Let's get rid of that nasty word "general", by making more precise which points you throw out.

Proposition. The blow up of $\mathbb{P}^{2}$ at up to 8 distinct points, no 3 on a line and no 6 on a conic, is a del Pezzo surface.

Proof. Check using our useful proposition that $-K$ or $-2 K$ is very ample. If $n \leq 6$, $-K$ is ample, i.e. cubics vanishing at the $n$ points gives something that separates points
and tangent vectors. If $n=7$ or $8,-K$ isn't very ample, but $-2 K$ is: the linear system corresponding to sextics vanishing at the $n$ points separate points and tangent vectors.

Proposition. The blow up of $\mathbb{P}^{2}$ at up to 8 distinct points, with 3 on a line or 6 on a conic, is not a del Pezzo surface.

Proof. First, note that a del Pezzo surface can't have a (-2)-curve, i.e. a genus 0 curve $C$ with self-intersection $\leq-2$. Reason: genus formula gives

$$
-2=2 g-2=C \cdot(K+C)=C \cdot K+C \cdot C \leq C \cdot K-2
$$

so $0 \leq C \cdot K$. But $-K$ is ample, so $K \cdot C<0$ for all $C$.
If at least there are at least 3 points on a line, then there is a genus 0 curve of selfintersection at most -2 .

Similarly, if there are at least 6 points on a conic, then there is a genus 0 curve of selfintersection at most -2 .

Remark: Slight extension. You can allow "infinitely near" points: blow up $p_{1}$, and blow up a point $p_{2}$ on the exceptional divisor $E_{1}$; somewhat archaic (but still-used) terminology is that $p_{2}$ is an "infinitely near point" to $E_{2}$.

But as soon as you blow up a point on an exceptional divisor, you have a genus 0 curve of self-intersection at most -2 , and hence it can't be a del Pezzo surface.

Theorem. The only del Pezzo surfaces are the above blow-ups of $\mathbb{P}^{2}$ (up to 8 points, no 3 on a line, no 6 on a conic), and $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Proof: later in the course.

## 3. CUbic surfaces

Blow up $\mathbb{P}^{2}$ at six points. $27(-1)$-curves. Reminder of where they are: 6 exceptional divisors $E_{i} .\binom{6}{2}$ lines $L_{i j} .6$ conics $C_{i j k l m}$.

Anticanonical map gives embedding in to $\mathbb{P}^{3}$. (Remember: $(-1)$-curves $\leftrightarrow$ lines.)
Get smooth cubic surface in $\mathbb{P}^{3}$ with lines. We'll see: (i) there are no more lines on this surface, (ii) that almost all smooth cubic surfaces are $\mathbb{P}^{2}$ blown up at six points and hence have 27 lines, (iii) all smooth cubic surfaces have 27 lines, and (iv) all smooth cubic surfaces are $\mathbb{P}^{2}$ blown up at six points.

Proposition. We have found all the lines.
Proof. Diophantine equations. Suppose $D=a H-\sum b_{i} E_{i}$ is a line, i.e. a ( -1 )-curve.

First case: some $b_{i}<0$. Then $D \cdot E_{i}=-b_{i}<0$. But $D$ is the class of a line, so $D \cdot E_{i} \geq 0$ unless the line and $E_{i}$ have a component in common. Thus they must be equal, i.e. $D=E_{i}$. Hence we've found six lines: $E_{1}, \ldots, E_{6}$.

Second case: all $b_{i} \geq 0$. Also note that $a>0$.
Then degree $=1$ means $\left(3 H-\sum E_{i}\right) \cdot D=1$, from which $3 a-\sum b_{i}=1$.
$D^{2}=-1$ implies $a^{2}-\sum b_{i}^{2}=-1$.
Recall (or re-prove) the quadratic mean - arithmetic mean inequality:

$$
\sqrt{\left(\frac{\sum b_{i}^{2}}{6}\right)} \geq \frac{\sum b_{i}}{6}
$$

from which $\sum b_{i}^{2} \geq\left(\sum b_{i}\right)^{2} / 6$. Thus

$$
a^{2}=\sum b_{i}^{2}-1 \geq\left(\sum b_{i}\right)^{2} / 6-1=(3 a-1)^{2} / 6-1
$$

from which $6 a^{2}+6 \geq 9 a^{2}-6 a+1 \Rightarrow 0 \geq 3 a^{2}-6 a-5 \Rightarrow 8 \geq 3(a-1)^{2}$. Thus $a=1$ or 2 .
If $a=1$, then we are considering the class of lines, then we get $\sum b_{i}=2$ and $\sum b_{i}^{2}=2$, from which two of the $b_{i}$ 's are 1 and the rest are 0 .

If $a=2$, we get $\sum b_{i}=5$ and $\sum b_{i}^{2}=5$. The five $b_{i}$ 's must be equal to 1 , and the last equal to 0 .

Proposition. Almost all smooth cubic surfaces are $\mathbb{P}^{2}$ blown up at six points.
Proof. By dimension count. Dimension of space of cubic surfaces: count cubic equations in 4 variables (20). Subtract 1 to projectivize, to get 19 . There is a $\mathbb{P}^{19}$ parametrizing all smooth cubic surfaces. An open set $\mathcal{S}$ corresponds to the smooth ones.

Now how many ways can we get a cubic surface by blowing up six points in the plane? Choose six points in the plane (12 dimensions), except mod out by the automorphisms of the plane $\operatorname{dim} P G L(3)=8$. Then map to projective space using four linearly independent sections of $3 H-\sum E_{i}$. There is a four-dimensional space of sections, so we have 16 dimensions of choice of 4 sections. But any multiple of such a 4 -tuple gives the same embedding, so -1 . Get:

$$
12-8+16-1=19
$$

Thus we have a 19-dimensional family!
It's not an open subset yet; there may be, and in fact are, many ways of representing the surface as a blow-up of six points. But there are only a finite number: any such description corresponds to six lines on the surface, no 2 intersecting. So the image of this 19-dimensional family lies in $S$, and must be dense in $S$.

We'll see soon: Every smooth cubic has 27 lines, and is the blow-up of $\mathbb{P}^{2}$ at 6 points
3.1. Automorphisms of the intersection graph. Again, we can make a graph of the combinatorial structure of the 27 lines. It again is highly symmetric.

Theorem. Its automorphism group is $W\left(E_{6}\right)$, a finite group of order $51840=2^{7} \times 3^{4} \times 5$.
Sketch of proof. Recall the definition of $W\left(E_{6}\right) .6$ skew lines gives full structure. Get map to $\mathbb{P}^{2}$. See $S_{6}$ in it. Last one: Cremona transformation.

Interpretation of this group in two ways:
Geometrically: as the monodromy of the 27 lines as you make loops in $\mathcal{S}$.
Algebraically: Let $M$ be the variety parametrizing (surface, line). There is a morphism from $M$ to $\mathcal{S}$, of degree 27. $M$ turns out to be irreducible. Hence we have a field extension of degree $27 k(\mathcal{S}) \subset k(M)$. If we take the Galois closure of the this field extension, we get a field extension of order 51840, and its Galois group is $W\left(E_{6}\right)$.

Next day we'll show that:
3.2. Every smooth cubic has 27 lines, and is the blow-up of $\mathbb{P}^{2}$ at $\mathbf{6}$ points. Let $S$ be a smooth cubic surface.

Earlier today (in response to a question of Eric's) I said:
Proposition. $S$ is anticanonically embedded.
Proof: Adjunction formula. $S$ has degree 3, so $K_{S}=\left.\mathcal{O}_{\mathbb{P}^{3}}(-4+3)\right|_{S}$.
Hence lines correspond to ( -1 )-curves.
The strategy of proof that every smooth cubic is a blow-up of $\mathbb{P}^{2}$ at 6 points is as follows.
Proposition. Every cubic surface (even singular ones) contains a line.
Proposition. Given any line $l$ in $S$, there are exactly 10 other lines in $S$ meeting $l$ (distinct from $l$ ). These fall into 5 disjoint pairs of concurrent lines.

Corollary. Any smooth cubic contains two skew lines. Finally:
Theorem. $S$ is the blow-up of $\mathbb{P}^{2}$ at 6 points.
We'll see instead that $S$ is the blow-up of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at 5 points. We'd seen earlier that $\mathbb{P}^{2}$ blown up at 2 points is $\mathbb{P}^{1}$ blown up at one point, so we'll be done.

Proof. Let $l$ and $l^{\prime}$ be disjoint lines. We define rational maps $\phi: l \times l^{\prime} \rightarrow S$ and $\psi: S \rightarrow$ $l \times L^{\prime}$ as follows: if $\left(p, p^{\prime}\right)$ is a generic point of $l \times l^{\prime}$, the line $\left\langle p, p^{\prime}\right\rangle$ meets $S$ in a third point $p^{\prime \prime}$. Define $\phi\left(p, p^{\prime}\right)=p^{\prime \prime}$. For $s \in S-l-l^{\prime}$, set $p=l \cap\left\langle s, l^{\prime}\right\rangle, p^{\prime}=l^{\prime} \cap\langle s, l\rangle$ and put $\phi(s)=\left(p, p^{\prime}\right)$. It is clear that $\phi$ and $\psi$ are inverses. Moreover, $\phi$ is a morphism: we can define at a points of $l$ (or $l$ ) by replacing the plane $\langle s, l\rangle$ by the tangent plane to $S$ at $s$
(checking that this gives a morphism, explain). Thus $\psi$ is a birational morphism, and is a composite of blow-ups. Which curves are blown-down? Those lines meeting both $l$ and $l^{\prime}$.

We'll see why there are precisely 5 of them, one of each the pairs described above.

