COMPLEX ALGEBRAIC SURFACES CLASS 13

RAVI VAKIL

CONTENTS

1. Fun with rational surfaces

Last day we began:

1. FUN With rational surfaces

I'll start again, but skip over things we did last time.
The surface \mathbb{F}_{0}. This is $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Its intersection theory is $\mathbb{Z}[h, f] / h^{2}=f^{2}=0, h f=1$. h and f are the classes of fibers of the two projections to \mathbb{P}^{1}. These are traditionally called rulings. Using the divisor $h+f$, we can embed \mathbb{F}_{0} as a smooth quadric in \mathbb{P}^{3}. More precisely than last day: Let $([x ; y],[u ; v])$ be co-ordinates to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Then $x u, x v, y u, y v$ are sections of $\mathcal{O}(h+f)$, that separate points and tangent vectors, and hence give a closed immersion into \mathbb{P}^{3}. If the base field is algebraically closed, all smooth quadrics are isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Now, what do the rulings look like in projective space? What's their degree? Answer: $h \cdot(h+f)=1$. They are lines! (Draw pictures of a hyperboloid with one sheet, and show them the lines.) Question: where are the lines in an ellipsoid? Answer: they are complex, so don't be misled by the real picture.

Many of the other surfaces corresponds to blow-ups of \mathbb{P}^{2} at a certain number of points. Before discussing them, here is a useful proposition that I mentioned last day.

Useful proposition. Consider the blow-up of \mathbb{P}^{2} at n general points, giving exceptional divisors E_{1}, \ldots, E_{n}. Then the intersection ring on \mathbb{P}^{2} is given by

$$
\mathbb{Z}\left[H, E_{1}, \ldots, E_{n}\right] / H^{2}=1, H E_{i}=0, E_{i} \cdot E_{j}=0, E_{i}^{2}=-1
$$

We can understand divisors and sections of divisors in terms of divisors on \mathbb{P}^{2} with certain multiplicities at the E_{j}. More precisely: the vector space of sections of $a H-b_{1} E_{1}-\cdots-$ $b_{n} E_{n}$ is naturally isomorphic to the vector space of degree a polynomials in \mathbb{P}^{2} vanishing with multiplicity at least b_{i} on E_{i}.

Date: Wednesday, November 13.

Sketch of proof. Any divisor in $\mathcal{O}\left(a H-b_{1} E_{1}-\cdots-b_{n} E_{n}\right)$ pushes forward to some divisor D in class $a H$ on \mathbb{P}^{2}. The strict transform of that divisor (i.e., somewhat hideously: the closure of its preimage where the blow-up is an isomorphism) is in class $a H-\left(\operatorname{mult}_{p_{1}} D\right) E_{1}-$ $\cdots-\left(\operatorname{mult}_{p_{n}} D\right) E_{n}$. So the actually original divisor must be this, plus some more E_{i} 's, from which $b_{i} \leq \operatorname{mult}_{p_{1}} D$.

The vector space structure is the same, as both are subvector spaces of the sections over $\mathbb{P}^{2}-p_{1}-\cdots-p_{n}$.

The surface \mathbb{F}_{1}. As observed before, \mathbb{F}_{1} is (isomorphic to) the blow-up of \mathbb{P}^{2} at a point.
Consider the divisor class $2 H-E_{1}$. This corresponds to conics in \mathbb{P}^{2} through p_{1}, which gives a five-dimensional vector space. It separates points and tangent vectors (somewhat obviously away from E_{1}, and not so obviously along E_{1}). Thus we get an immersion of \mathbb{F}_{1} into \mathbb{P}^{4}. Its degree is $(2 H-E) \cdot(2 H-E)=3$. We get a cubic surface in \mathbb{P}^{4}.

Interpretation as projection from Veronese surface. Recall that we had an embedding of \mathbb{P}^{2} into \mathbb{P}^{5} via all conics. We can interpret \mathbb{F}_{1} and its cubic embedding in \mathbb{P}^{4} as a projection as follows. Suppose $\mathbb{F}_{1}=\mathrm{Bl}_{[0 ; 0 ; 1]} \mathbb{P}^{2}$.

Project the quartic Veronese surface in \mathbb{P}^{5} down into \mathbb{P}^{4} from $[0 ; 0 ; 0 ; 0 ; 0 ; 1]$. This is well defined except at that one point of the Veronese surface. We have a rational map $\mathbb{P}^{2} \rightarrow \mathbb{P}^{4}$. By the elimination of indeterminacy theorem, we can resolve the map after some blowups of \mathbb{P}^{2}. In fact, we need only one: $\mathbb{F}_{1} \rightarrow \mathbb{P}^{2}$.

Blow up \mathbb{P}^{2} at two points. Now blow up \mathbb{P}^{2} at two points. Where are the (-1)-curves? There are obviously two: our two exceptional divisors. But there is one more: the proper transform of the line joining the two points. It has self-intersection number ($H-E_{1}-$ $\left.E_{2}\right)^{2}=-1$.

When you blow down that "bonus" rational curve, what do you get? In fact: $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Last time, Eric saw this by interpreting what we just did as an elementary transformation of \mathbb{F}_{1}.

Here's another way of seeing it. The divisor $2 \mathrm{H}-E_{1}-E_{1}$ corresponds to conic through our points, and is very ample. It gives an immersion into \mathbb{P}^{3}, and it is degree 2 . Get smooth quadric surface. But we know that all smooth quadrics are $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

What are the maps to the two $\mathbb{P}^{1 '}$ s? Answer: projection from each of two points. You can see why the proper transform of the line gets sent to a point under these two projections.

Blow up \mathbb{P}^{2} at three points, no two on a line. Where are the (-1)-curves? Answer: the 3 exceptional divisors E_{1}, E_{2}, E_{3}, but also the (proper transforms of) the lines through pairs of those points $H-E_{i}-E_{j}$.

We can make an diagram showing how these six curves intersect, with a vertex for each curve, and an edge for each intersection. In this case, we get a hexagon.

If you blow down those other 3 curves? Answer: \mathbb{P}^{2}. The rational map $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ is ancient, and is called a Cremona transformation.

Description 1: conics through these 3 points, i.e. $2 H-E_{1}-E_{2}-E_{3}$. The space of all conics is a six-dimensional vector space, and if we require the conics to vanish at the three points, we knock the vector space down to dimension 3 . So this gives a map to \mathbb{P}^{2}. It blows down the line $H-E_{1}-E_{2}$.

Description 2: Consider the rational map $\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ given by $[x ; y ; z] \mapsto[1 / x ; 1 / y ; 1 / z]$. By the elimination of indeterminacy theorem, we can resolve this map after some blowups. In fact, we need 3 .

For fun, let's look more closely. If $x=0$ and $y, z \neq 0$, then we map to $[1 ; 0 ; 0]$; that's a line being blown down. If $x=0$ and $y=0$ and $z \neq 0$, it isn't so clear. In fact, if $[x ; y ; z]=[a t, b t, 1]$ where a and b aren't both 0 , then $[x ; y ; z] \mapsto[1 / a ; 1 / b ; t]$. Then let t go to 0 , and we see that the limit is $[1 / a ; 1 / b ; 0]$. Thus the limit depends on the path of approach, and this is a point where the rational map is undefined, and will have to be blown up. That's p_{i}. And so on...

Aside: What happens if you blow up at 3 points on a line? Get a (-2)-curve.
Blow up \mathbb{P}^{2} at four points. Blow up at 4 general points. Get $10=4+\binom{4}{2}(-1)$-curves.
Make graph. This is a highly symmetric graph, and is called the Peterson graph. Its automorphism group is S_{5}; both Tyler and Diane gave me arguments for this within minutes of the end of class.

Blow up \mathbb{P}^{2} at five points. Blow up at 5 general points. Get $5+\binom{5}{2}=15$, plus one more: conic. Cubics through these points. Get quartic surface in \mathbb{P}^{4}. (It is the complete intersection of two complete quadrics.

The (-1)-curves turn into lines: $E_{1} \cdot\left(3 H-\sum E_{i}\right)=1 .\left(H-E_{1}-E_{2}\right) \cdot\left(3 H-\sum E_{i}\right)=1$. $\left(2 H-\sum E_{i}\right) \cdot\left(3 H-\sum E_{i}\right)=1$.

We could have saved ourselves some effort by instead noting that $K_{S}=-3 H+\sum E_{i}$. The divisor we are using to embed is $-K_{S}$. If E is a (-1)-curve, then we know that $E^{2}=$ -1 , and by the genus formula $\left(K_{S}+E\right) \cdot E=-2$, from which $\left(-K_{S} \cdot E\right)=1$. Note that we can reverse this: if S is embedded by the anticanonical divisor, then lines correspond to (-1)-curves. Exercise.

Blow up \mathbb{P}^{2} at six points. Now this is serious. Blow up at 6 points: Get $6+\binom{6}{2}+\binom{6}{5}=$ $6+15+6=27$.

Get smooth cubic surface in \mathbb{P}^{3} ! With 27 lines! We'll prove (next day) (i) there are no more lines on this surface, (ii) that almost all smooth cubic surfaces are \mathbb{P}^{2} blown up at six points and hence have 27 lines, (iii) all smooth cubic surfaces have 27 lines, and (iv) all smooth cubic surfaces are \mathbb{P}^{2} blown up at six points.

The automorphism group of the graph of exceptional curves is $W\left(E_{6}\right)$, the Weyl group of E_{6}.

Blow up \mathbb{P}^{2} at seven, eight, nine points.

Get 56, [I can't remember the number, maybe 148], ∞ lines. More interesting geometry here too. For example, blow up at 7 points. Get map to \mathbb{P}^{2}. It is a double cover. (-1)curves map to lines. Fact: the branch locus is a quartic plane curve. (-1)-curves map 2-to- 1 to the 28 bitangents of a smooth quartic plane curve.

The automorphism group of the graph of exceptional curves is $W\left(E_{n}\right)$, for $n=7,8,9$.

