COMPLEX ALGEBRAIC SURFACES CLASS 13

RAVI VAKIL

CONTENTS

1. Fun with rational surfaces

1

Last day we began:

1. FUN WITH RATIONAL SURFACES

I'll start again, but skip over things we did last time.

The surface \mathbb{F}_0 . This is $\mathbb{P}^1 \times \mathbb{P}^1$. Its intersection theory is $\mathbb{Z}[h,f]/h^2 = f^2 = 0, hf = 1$. h and f are the classes of fibers of the two projections to \mathbb{P}^1 . These are traditionally called *rulings*. Using the divisor h+f, we can embed \mathbb{F}_0 as a smooth quadric in \mathbb{P}^3 . More precisely than last day: Let ([x;y],[u;v]) be co-ordinates to $\mathbb{P}^1 \times \mathbb{P}^1$. Then xu,xv,yu,yv are sections of $\mathcal{O}(h+f)$, that separate points and tangent vectors, and hence give a closed immersion into \mathbb{P}^3 . If the base field is algebraically closed, all smooth quadrics are isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$.

Now, what do the rulings look like in projective space? What's their degree? Answer: $h \cdot (h + f) = 1$. They are lines! (Draw pictures of a hyperboloid with one sheet, and show them the lines.) Question: where are the lines in an ellipsoid? Answer: they are complex, so don't be misled by the real picture.

Many of the other surfaces corresponds to blow-ups of \mathbb{P}^2 at a certain number of points. Before discussing them, here is a useful proposition that I mentioned last day.

Useful proposition. Consider the blow-up of \mathbb{P}^2 at n general points, giving exceptional divisors E_1, \ldots, E_n . Then the intersection ring on \mathbb{P}^2 is given by

$$\mathbb{Z}[H, E_1, \dots, E_n]/H^2 = 1, HE_i = 0, E_i \cdot E_j = 0, E_i^2 = -1.$$

We can understand divisors and sections of divisors in terms of divisors on \mathbb{P}^2 with certain multiplicities at the E_j . More precisely: the vector space of sections of $aH - b_1E_1 - \cdots - b_nE_n$ is naturally isomorphic to the vector space of degree a polynomials in \mathbb{P}^2 vanishing with multiplicity at least b_i on E_i .

Date: Wednesday, November 13.

Sketch of proof. Any divisor in $\mathcal{O}(aH-b_1E_1-\cdots-b_nE_n)$ pushes forward to some divisor D in class aH on \mathbb{P}^2 . The strict transform of that divisor (i.e., somewhat hideously: the closure of its preimage where the blow-up is an isomorphism) is in class $aH-(\operatorname{mult}_{p_1}D)E_1-\cdots-(\operatorname{mult}_{p_n}D)E_n$. So the actually original divisor must be this, plus some more E_i 's, from which $b_i \leq \operatorname{mult}_{p_1}D$.

The vector space structure is the same, as both are subvector spaces of the sections over $\mathbb{P}^2 - p_1 - \cdots - p_n$.

The surface \mathbb{F}_1 . As observed before, \mathbb{F}_1 is (isomorphic to) the blow-up of \mathbb{P}^2 at a point.

Consider the divisor class $2H - E_1$. This corresponds to conics in \mathbb{P}^2 through p_1 , which gives a five-dimensional vector space. It separates points and tangent vectors (somewhat obviously away from E_1 , and not so obviously along E_1). Thus we get an immersion of \mathbb{F}_1 into \mathbb{P}^4 . Its degree is $(2H - E) \cdot (2H - E) = 3$. We get a cubic surface in \mathbb{P}^4 .

Interpretation as projection from Veronese surface. Recall that we had an embedding of \mathbb{P}^2 into \mathbb{P}^5 via all conics. We can interpret \mathbb{F}_1 and its cubic embedding in \mathbb{P}^4 as a projection as follows. Suppose $\mathbb{F}_1 = \mathrm{Bl}_{[0;0;1]} \mathbb{P}^2$.

$$\begin{array}{cccc} \mathbb{P}^2 & \stackrel{[x_0^2,x_0x_1;x_1^2;x_0x_2;x_1x_2;x_2^2]}{\longleftrightarrow} & \mathbb{P}^5 \\ \uparrow & \nearrow & \downarrow \textbf{should be dashed} \\ \mathbb{F}_1 & \stackrel{[x_0^2,x_0x_1;x_1^2;x_0x_2;x_1x_2]}{\longleftrightarrow} & \mathbb{P}^4. \end{array}$$

Project the quartic Veronese surface in \mathbb{P}^5 down into \mathbb{P}^4 from [0;0;0;0;0;1]. This is well defined except at that one point of the Veronese surface. We have a rational map $\mathbb{P}^2 \dashrightarrow \mathbb{P}^4$. By the elimination of indeterminacy theorem, we can resolve the map after some blowups of \mathbb{P}^2 . In fact, we need only one: $\mathbb{F}_1 \to \mathbb{P}^2$.

Blow up \mathbb{P}^2 **at two points.** Now blow up \mathbb{P}^2 at two points. Where are the (-1)-curves? There are obviously two: our two exceptional divisors. But there is one more: the proper transform of the line joining the two points. It has self-intersection number $(H - E_1 - E_2)^2 = -1$.

When you blow down that "bonus" rational curve, what do you get? In fact: $\mathbb{P}^1 \times \mathbb{P}^1$. Last time, Eric saw this by interpreting what we just did as an elementary transformation of \mathbb{F}_1 .

Here's another way of seeing it. The divisor $2H - E_1 - E_1$ corresponds to conic through our points, and is very ample. It gives an immersion into \mathbb{P}^3 , and it is degree 2. Get smooth quadric surface. But we know that all smooth quadrics are $\mathbb{P}^1 \times \mathbb{P}^1$.

What are the maps to the two \mathbb{P}^1 's? Answer: projection from each of two points. You can see why the proper transform of the line gets sent to a point under these two projections.

Blow up \mathbb{P}^2 at three points, no two on a line. Where are the (-1)-curves? Answer: the 3 exceptional divisors E_1 , E_2 , E_3 , but also the (proper transforms of) the lines through pairs of those points $H - E_i - E_j$.

We can make an diagram showing how these six curves intersect, with a vertex for each curve, and an edge for each intersection. In this case, we get a hexagon.

If you blow down those other 3 curves? Answer: \mathbb{P}^2 . The rational map $\mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ is ancient, and is called a Cremona transformation.

Description 1: conics through these 3 points, i.e. $2H - E_1 - E_2 - E_3$. The space of all conics is a six-dimensional vector space, and if we require the conics to vanish at the three points, we knock the vector space down to dimension 3. So this gives a map to \mathbb{P}^2 . It blows down the line $H - E_1 - E_2$.

Description 2: Consider the rational map $\mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ given by $[x;y;z] \mapsto [1/x;1/y;1/z]$. By the elimination of indeterminacy theorem, we can resolve this map after some blowups. In fact, we need 3.

For fun, let's look more closely. If x=0 and $y,z\neq 0$, then we map to [1;0;0]; that's a line being blown down. If x=0 and y=0 and $z\neq 0$, it isn't so clear. In fact, if [x;y;z]=[at,bt,1] where a and b aren't both 0, then $[x;y;z]\mapsto [1/a;1/b;t]$. Then let t go to 0, and we see that the limit is [1/a;1/b;0]. Thus the limit depends on the path of approach, and this is a point where the rational map is undefined, and will have to be blown up. That's p_i . And so on...

Aside: What happens if you blow up at 3 points on a line? Get a (-2)-curve.

Blow up \mathbb{P}^2 at four points. Blow up at 4 general points. Get $10 = 4 + \binom{4}{2}$ (-1)-curves.

Make graph. This is a highly symmetric graph, and is called the *Peterson graph*. Its automorphism group is S_5 ; both Tyler and Diane gave me arguments for this within minutes of the end of class.

Blow up \mathbb{P}^2 at five points. Blow up at 5 general points. Get $5 + {5 \choose 2} = 15$, plus one more: conic. Cubics through these points. Get quartic surface in \mathbb{P}^4 . (It is the complete intersection of two complete quadrics.

The (-1)-curves turn into lines:
$$E_1 \cdot (3H - \sum E_i) = 1$$
. $(H - E_1 - E_2) \cdot (3H - \sum E_i) = 1$. $(2H - \sum E_i) \cdot (3H - \sum E_i) = 1$.

We could have saved ourselves some effort by instead noting that $K_S = -3H + \sum E_i$. The divisor we are using to embed is $-K_S$. If E is a (-1)-curve, then we know that $E^2 = -1$, and by the genus formula $(K_S + E) \cdot E = -2$, from which $(-K_S \cdot E) = 1$. Note that we can reverse this: if S is embedded by the anticanonical divisor, then lines correspond to (-1)-curves. **Exercise**.

Blow up \mathbb{P}^2 at six points. Now this is serious. Blow up at 6 points: Get $6 + \binom{6}{2} + \binom{6}{5} = 6 + 15 + 6 = 27$.

Get smooth cubic surface in \mathbb{P}^3 ! With 27 lines! We'll prove (next day) (i) there are no more lines on this surface, (ii) that almost all smooth cubic surfaces are \mathbb{P}^2 blown up at six points and hence have 27 lines, (iii) all smooth cubic surfaces have 27 lines, and (iv) all smooth cubic surfaces are \mathbb{P}^2 blown up at six points.

The automorphism group of the graph of exceptional curves is $W(E_6)$, the Weyl group of E_6 .

Blow up \mathbb{P}^2 at seven, eight, nine points.

Get 56, [I can't remember the number, maybe 148], ∞ lines. More interesting geometry here too. For example, blow up at 7 points. Get map to \mathbb{P}^2 . It is a double cover. (-1)-curves map to lines. Fact: the branch locus is a quartic plane curve. (-1)-curves map 2-to-1 to the 28 bitangents of a smooth quartic plane curve.

The automorphism group of the graph of exceptional curves is $W(E_n)$, for n = 7, 8, 9.