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1. Fun with rational surfaces 1

Last day we began:

1. FUN WITH RATIONAL SURFACES

I’ll start again, but skip over things we did last time.

The surface F0. This is P1×P1. Its intersection theory isZ[h, f ]/h2 = f 2 = 0, hf = 1. h and
f are the classes of fibers of the two projections to P1. These are traditionally called rulings.
Using the divisor h+ f , we can embed F0 as a smooth quadric in P3. More precisely than
last day: Let ([x; y], [u; v]) be co-ordinates to P1 × P1. Then xu, xv, yu, yv are sections of
O(h + f), that separate points and tangent vectors, and hence give a closed immersion
into P3. If the base field is algebraically closed, all smooth quadrics are isomorphic to
P1 × P1.

Now, what do the rulings look like in projective space? What’s their degree? Answer:
h · (h+ f) = 1. They are lines! (Draw pictures of a hyperboloid with one sheet, and show
them the lines.) Question: where are the lines in an ellipsoid? Answer: they are complex,
so don’t be misled by the real picture.

Many of the other surfaces corresponds to blow-ups of P2 at a certain number of points.
Before discussing them, here is a useful proposition that I mentioned last day.

Useful proposition. Consider the blow-up of P2 at n general points, giving exceptional
divisors E1, . . . , En. Then the intersection ring on P2 is given by

Z[H,E1, . . . , En]/H2 = 1, HEi = 0, Ei · Ej = 0, E2
i = −1.

We can understand divisors and sections of divisors in terms of divisors on P2 with certain
multiplicities at the Ej . More precisely: the vector space of sections of aH − b1E1 − · · · −
bnEn is naturally isomorphic to the vector space of degree a polynomials in P2 vanishing
with multiplicity at least bi on Ei.
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Sketch of proof. Any divisor inO(aH−b1E1−· · ·−bnEn) pushes forward to some divisorD
in class aH on P2. The strict transform of that divisor (i.e., somewhat hideously: the clo-
sure of its preimage where the blow-up is an isomorphism) is in class aH−(multp1 D)E1−
· · ·−(multpn D)En. So the actually original divisor must be this, plus some moreEi’s, from
which bi ≤ multp1 D.

The vector space structure is the same, as both are subvector spaces of the sections over
P2 − p1 − · · · − pn.

The surface F1. As observed before, F1 is (isomorphic to) the blow-up of P2 at a point.

Consider the divisor class 2H −E1. This corresponds to conics in P2 through p1, which
gives a five-dimensional vector space. It separates points and tangent vectors (somewhat
obviously away from E1, and not so obviously along E1). Thus we get an immersion of
F1 into P4. Its degree is (2H − E) · (2H − E) = 3. We get a cubic surface in P4.

Interpretation as projection from Veronese surface. Recall that we had an embedding of P2

into P5 via all conics. We can interpret F1 and its cubic embedding in P4 as a projection as
follows. Suppose F1 = Bl[0;0;1] P2.

P2
[x2

0,x0x1;x2
1;x0x2;x1x2;x2

2]
↪→ P5

↑ ↗ ↓ should be dashed

F1

[x2
0,x0x1;x2

1;x0x2;x1x2]
↪→ P4.

Project the quartic Veronese surface in P5 down into P4 from [0; 0; 0; 0; 0; 1]. This is well
defined except at that one point of the Veronese surface. We have a rational map P2 99K P4.
By the elimination of indeterminacy theorem, we can resolve the map after some blow-
ups of P2. In fact, we need only one: F1 → P2.

Blow up P2 at two points. Now blow up P2 at two points. Where are the (−1)-curves?
There are obviously two: our two exceptional divisors. But there is one more: the proper
transform of the line joining the two points. It has self-intersection number (H − E1 −
E2)2 = −1.

When you blow down that “bonus” rational curve, what do you get? In fact: P1 × P1.
Last time, Eric saw this by interpreting what we just did as an elementary transformation
of F1.

Here’s another way of seeing it. The divisor 2H−E1−E1 corresponds to conic through
our points, and is very ample. It gives an immersion into P3, and it is degree 2. Get
smooth quadric surface. But we know that all smooth quadrics are P1 × P1.

What are the maps to the two P1’s? Answer: projection from each of two points. You
can see why the proper transform of the line gets sent to a point under these two projec-
tions.
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Blow up P2 at three points, no two on a line. Where are the (−1)-curves? Answer: the 3
exceptional divisors E1, E2, E3, but also the (proper transforms of) the lines through pairs
of those points H − Ei − Ej .

We can make an diagram showing how these six curves intersect, with a vertex for each
curve, and an edge for each intersection. In this case, we get a hexagon.

If you blow down those other 3 curves? Answer: P2. The rational map P2 99K P2 is
ancient, and is called a Cremona transformation.

Description 1: conics through these 3 points, i.e. 2H − E1 − E2 − E3. The space of
all conics is a six-dimensional vector space, and if we require the conics to vanish at the
three points, we knock the vector space down to dimension 3. So this gives a map to P2.
It blows down the line H − E1 − E2.

Description 2: Consider the rational map P2 99K P2 given by [x; y; z] 7→ [1/x; 1/y; 1/z].
By the elimination of indeterminacy theorem, we can resolve this map after some blow-
ups. In fact, we need 3.

For fun, let’s look more closely. If x = 0 and y, z 6= 0, then we map to [1; 0; 0]; that’s
a line being blown down. If x = 0 and y = 0 and z 6= 0, it isn’t so clear. In fact, if
[x; y; z] = [at, bt, 1] where a and b aren’t both 0, then [x; y; z] 7→ [1/a; 1/b; t]. Then let t go to
0, and we see that the limit is [1/a; 1/b; 0]. Thus the limit depends on the path of approach,
and this is a point where the rational map is undefined, and will have to be blown up.
That’s pi. And so on...

Aside: What happens if you blow up at 3 points on a line? Get a (-2)-curve.

Blow up P2 at four points. Blow up at 4 general points. Get 10 = 4 +
(

4
2

)
(-1)-curves.

Make graph. This is a highly symmetric graph, and is called the Peterson graph. Its auto-
morphism group is S5; both Tyler and Diane gave me arguments for this within minutes
of the end of class.

Blow up P2 at five points. Blow up at 5 general points. Get 5 +
(

5
2

)
= 15, plus one

more: conic. Cubics through these points. Get quartic surface in P4. (It is the complete
intersection of two complete quadrics.

The (-1)-curves turn into lines: E1 · (3H −
∑
Ei) = 1. (H − E1 − E2) · (3H −

∑
Ei) = 1.

(2H −
∑
Ei) · (3H −

∑
Ei) = 1.

We could have saved ourselves some effort by instead noting that KS = −3H +
∑
Ei.

The divisor we are using to embed is −KS . If E is a (-1)-curve, then we know that E2 =
−1, and by the genus formula (KS + E) · E = −2, from which (−KS · E) = 1. Note that
we can reverse this: if S is embedded by the anticanonical divisor, then lines correspond
to (−1)-curves. Exercise.

Blow up P2 at six points. Now this is serious. Blow up at 6 points: Get 6 +
(

6
2

)
+
(

6
5

)
=

6 + 15 + 6 = 27.
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Get smooth cubic surface in P3! With 27 lines! We’ll prove (next day) (i) there are no
more lines on this surface, (ii) that almost all smooth cubic surfaces are P2 blown up at six
points and hence have 27 lines, (iii) all smooth cubic surfaces have 27 lines, and (iv) all
smooth cubic surfaces are P2 blown up at six points.

The automorphism group of the graph of exceptional curves is W (E6), the Weyl group
of E6.

Blow up P2 at seven, eight, nine points.

Get 56, [I can’t remember the number, maybe 148],∞ lines. More interesting geometry
here too. For example, blow up at 7 points. Get map to P2. It is a double cover. (−1)-
curves map to lines. Fact: the branch locus is a quartic plane curve. (−1)-curves map
2-to-1 to the 28 bitangents of a smooth quartic plane curve.

The automorphism group of the graph of exceptional curves is W (En), for n = 7, 8, 9.
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