
COMPLEX ALGEBRAIC SURFACES CLASS 12

RAVI VAKIL

CONTENTS

1. Geometric facts about a geometrically ruled surface ���������
	��� � from
geometric facts about � 2

2. The Hodge diamond of a ruled surface 3
3. The surfaces ��� 3
3.1. Getting from one ��� to another by elementary transformations 4
4. Fun with rational surfaces (beginning) 4

Last day:

Lemma: All rank 2 locally free sheaves are filtered nicely by invertible sheaves. Sup-
pose � is a rank 2 locally free sheaf on a curve � .

(i) There exists an exact sequence �  �� �� �  � with ����� �����! "� . Terminol-
ogy: � is an extension of � by � .

(ii) If #%$'& �)(+*-, , we can take �.�0/1	 &32 ( , with 2 the divisor of zeros of a section of � .
(Hence 2 is effective, i.e. 2 * � .)

(iii) If # $ & �)(4*65 and 7%8:9 ��; � , we can assume 2 ; � .
(i) is the most important one.

We showed that extensions �  �< �= �  � are classified by >@?A& �1�B�DCE�GF�( . The
element 0 corresponded to a splitting. If one element is a non-zero multiple of the other,
they correspond to the same � , although different extensions.

As an application, we proved: Proposition. Every rank 2 locally free sheaf on � ? is a
direct sum of invertible sheaves.

I can’t remember if I stated the implication:

Every geometrically ruled surface over � ? is isomorphic to a Hirzebruch surface

�H� �6�JILK & /MINK%O./MINK &QP (R(
for P * � .

Date: Friday, November 8.
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(We don’t yet know that they are all different yet, but we will soon.)

We then began to study :

1. GEOMETRIC FACTS ABOUT A GEOMETRICALLY RULED SURFACE � �L� �6� 	 �  �
FROM GEOMETRIC FACTS ABOUT �

In particular, we found the intersection theory of � in terms of ���! � . One of the players
was the class / & , ( of the projective bundle. Let me repeat the definition of this.

There is a “tautological” subline bundle of ��F � ; this is defined to be / � &�� , ( (and / � &QP (
is defined to be the appropriate multiple = tensor power of this).

You can check:

Exercise.

(a) This agrees with the definition of / & , ( on a projective space (in the case where � is
a point).

(b) In the general case, the restriction of / � & , ( to a fiber of � is / & , ( on the fiber.
(c) In the case where 7 ��� � � , and 7 ����� � 5 , / & , (	��
 � , for any fiber 
 . (This

generalizes to projective bundles of arbitrary dimension once we have intersection
theory.)

(d) Hence if � is any invertible sheaf on � , then � F ��� / & , (�� 7 8:9 � .

Once you check (a), the rest follow quickly in order.

With this definition, we have:

Proposition. Suppose �@�L�< � is a geometrically ruled surface, corresponding to rank
2 locally free sheaf � . Let # � /� & , ( � ���! � or >�� & � ��� ( Then:

(i) ���! ��� � FH���! � O�� # ,
(ii) > � & � ��� ( ��� #�� ��� , where � is the class of a fiber,

(iii) # � � 7 8:9 � ,
(iv) ����� � � 5 #��G& 7%8:9 � � 5�� & � ( � 5 (�� in >�� & � ��� ( .

I gave a proof of this, but my proof of (iv) needs to be edited. The corrected version is
in the Class 11 notes. (Remark: The reason for the discrepancy is because there are two
possible definitions of the projectivization of a vector space. The traditional one is that
of one-dimensional subspaces of a vector space. That’s the one that most of the world
uses. An alternate one is that of one-dimensional quotients of a vector space. That’s the
one that Grothendieck used, because it makes certain statements cleaner, and as a result
much but not of the algebraic geometry community uses this definition. So be warned.)
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2. THE HODGE DIAMOND OF A RULED SURFACE

Recall that the outer entries of a Hodge diamond are birational invariants. I should
have proved this earlier, and will now. (Move to earlier notes at some point.)

Theorem. # $'& � � � L()� #J?�� $ is a birational invariant. (Similarly for # � � $ , and also so for
pluricanonical forms � � � > $ & � ����� � ( .) (This works for smooth projective varieties of
any dimension.)

Proof. Suppose � �"�	��
�
� � is a birational map, which is a morphism from ��� � 
� � ,
where 
 is a finite set. Thus we have a map > $ & � � � L(  > $ & �	� � 
�� � ������"( . In fact,
this extends: the poles of a differential form are pure codimension 1. Thus we have
> $ & � � � L(4 > $ & � � � � �� ( which takes a preserves the restriction of the form to their com-
mon open set. The same argument works for the rational map �  ��� , so we get an
isomorphism.

Hence the numerical invariants of a ruled surface � �H�  � are as follows. The outer
entries of the Hodge diamond are the same as for ��� � ? , which can be checked directly
to be

#%$�� $ � ,
# ?�� $ � � # $�� ? � �

# � � $ � � #J?�� ? #%$�� � � �
# � � ? � � #J?�� � � �

# � � � � ,

The central number is the rank of the Picard group (by the Lefschetz (1,1)-theorem), or
over � can be found using the Euler characteristic.

Also, � � � > $ & � ����� � (M� � . Important fact: this characterizes ruled surfaces. (I doubt
we’ll get to this fact in this course, but we might.)

Second important fact: if � � �
�
� � , then � is rational. (Castelnuovo’s Rationality

Criterion, to be discussed in a few classes.)

3. THE SURFACES ���

We already know that ���  ��� � � # O ��� ( P * � ) with � � � � , � � # ��, , and # � � P . All
geometrically ruled surfaces over � ? are of this sort. But are they all different? Yes!:

Proposition. If P ; � , there is a unique irreducible curve � on �J� with negative self-
intersection. If � is its class in ���! �H� , then � � # �<P � .

(This curve is often called � .)
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Corollary. � � � �MP . Note that � $ � � ? � � ? has no curves of negative self-intersection,
as they all “move” (under the automorphisms of both � ? ’s). Hence �H� and � � are not
isomorphic unless P ��� . Also, all ��� are minimal except for � ? , which has a & � , ( -curve.
In fact, � ? is the blow-up of � � at a point. Reason: the blow-up of � � at a point is a rational
geometrically ruled surface with a (-1)-curve, so it must be � ? !
Proof of the proposition. First, I’ll produce the curve � of negative self intersection, which is
a section. Consider the section � of � � ���  � ? corresponding to the subline bundle / I K .
Let � be its class of this curve � in ���  �H� . � � # ��� � for some � . Since /���� & , (
	 � ��/ ILK , we
know that # � � � 7%8:9 /���� & , (
	 � � � , from which � � �MP , and then � � � & # ��P � ( � � �MP .

Next, I’ll show that this is the only curve of negative self-intersection. If � is irreducible
on �H� . � � � �� # ��� � . � � � � � implies � * � . � � � * � implies &�� � � &3# � P �"( ( � � * � .
Finally, � � � � & � #���� �"( ��� � P � 5�� � * � .

3.1. Getting from one ��� to another by elementary transformations. Consider �J� . Blow
up a point on � , and blow down the proper transform of the fiber. We again have a
rational ruled surface. Show that you have ����� ? .

Instead, blow up a point not on � , and blow down the proper transform of the fiber.
Show that you have �H� � ? . What goes wrong when P � � ?

4. FUN WITH RATIONAL SURFACES (BEGINNING)

The surface 
 $ . This is � ? � � ? . By the above determination of the intersection theory
of �H� , the intersection theory of � $ is � � # � � ��� # � � � � � � � # � � , . # and � are the classes
of fibers of the two projections to � ? . Let & ������� � � ������� � ( be co-ordinates to � ? �@� ? . Then
� � � � � � �!� � �"� are sections of / & #	� � ( , that separate points and tangent vectors, and hence
give a closed immersion into ��# . The degree of the immersed surface is & # � �"( � � # � �5 # � � � � � � � 5 � � �G5 , so we have a smooth quadric in � # . Conversely, any two smooth
quadrics over an algebraically closed field are isomorphic. The reason is linear algebra:
quadratic forms in 4 variables are classified, and are (up to change of basis):

� � � �$ � � �$ �$� � ? � � �$ �%� � ? �%� �� � � �$ �$� � ? �$� �� �$� �#�&
Only the last one is smooth. (The rest are: all of projective space, a double plane, the
union of two planes, and a quadric cone.)

Thus all smooth quadrics in �'# (over an algebraically closed field) are isomorphic to� ? � � ? .
Many of the other surfaces corresponds to blow-ups of � � at a certain number of points.

Before discussing them, here is a

Useful proposition. Consider the blow-up of � � at P general points, giving exceptional
divisors � ? , &(&)& , � � . Then the intersection ring on � � is given by

� � > �B� ? � &)&(& � � ����� > � � , � > �+*J� � � �,* � �.-�� � � � �* � � , &
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We can understand divisors and sections of divisors in terms of divisors on � � with certain
multiplicities at the � - . More precisely: the vector space of sections of � > �%� ? � ? � � � � �
� � � � is naturally isomorphic to the vector space of degree � polynomials in � � vanishing
with multiplicity at least � * on �+* .

I’ll prove this next class.

The surface � ? & As observed before, � ? is (isomorphic to) the blow-up of � � at a point.

Consider the divisor class 5 > � � ? . This corresponds to conics in � � through � ? , which
gives a five-dimensional vector space. It separates points and tangent vectors (somewhat
obviously away from � ? , and not so obviously along � ? ). Thus we get an immersion of
� ? into ��� . Its degree is & 5 > � � ( � & 5 > � � ( ��� . We get a cubic surface in ��� .
Blow up � � at two points. Now blow up � � at two points. Where are the &�� , ( -curves?
There are obviously two: our two exceptional divisors. But there is one more: the proper
transform of the line joining the two points. It has self-intersection number &3> � � ? ��
�
( � � � , .
When you blow down that “bonus” rational curve, what do you get? In fact: � ? � � ? .

Eric saw this by interpreting what we just did as an elementary transformation of � ? .
Here’s another way of seeing it. Conic through 2 points ( 5 > � � ? � � � ) gives a map to�'# , and it is degree 2. Get smooth quadric surface.

What are the maps to the two � ? ’s? Answer: projection from each of two points. You
can see why the proper transform of the line gets sent to a point under these two projec-
tions.

5


