COMPLEX ALGEBRAIC SURFACES CLASS 12

RAVI VAKIL

CONTENTS

1. Geometric facts about a geometrically ruled surface $\pi: S=\mathbb{P}_{C} E \rightarrow C$ from
geometric facts about C
2. The Hodge diamond of a ruled surface 3
3. The surfaces \mathbb{F}_{n} 3
3.1. Getting from one \mathbb{F}_{n} to another by elementary transformations 4
4. Fun with rational surfaces (beginning) 4

Last day:
Lemma: All rank 2 locally free sheaves are filtered nicely by invertible sheaves. Suppose E is a rank 2 locally free sheaf on a curve C.
(i) There exists an exact sequence $0 \rightarrow L \rightarrow E \rightarrow M \rightarrow 0$ with $L, M \in \operatorname{Pic} C$. Terminology: E is an extension of M by L.
(ii) If $h^{0}(E) \geq 1$, we can take $L=\mathcal{O}_{C}(D)$, with D the divisor of zeros of a section of E. (Hence D is effective, i.e. $D \geq 0$.)
(iii) If $h^{0}(E) \geq 2$ and $\operatorname{deg} E>0$, we can assume $D>0$.
(i) is the most important one.

We showed that extensions $0 \rightarrow L \rightarrow E \rightarrow M \rightarrow 0$ are classified by $H^{1}\left(C, L \otimes M^{*}\right)$. The element 0 corresponded to a splitting. If one element is a non-zero multiple of the other, they correspond to the same E, although different extensions.

As an application, we proved: Proposition. Every rank 2 locally free sheaf on \mathbb{P}^{1} is a direct sum of invertible sheaves.

I can't remember if I stated the implication:
Every geometrically ruled surface over \mathbb{P}^{1} is isomorphic to a Hirzebruch surface

$$
\mathbb{F}_{n}=\mathbb{P}_{\mathbb{P}^{1}}\left(\mathcal{O}_{\mathbb{P}^{1}} \oplus \mathcal{O}_{\mathbb{P}^{1}}(n)\right)
$$

for $n \geq 0$.
Date: Friday, November 8.
(We don't yet know that they are all different yet, but we will soon.)
We then began to study :

1. GEOMETRIC FACTS ABOUT A GEOMETRICALLY RULED SURFACE $\pi: S=\mathbb{P}_{C} E \rightarrow C$ FROM GEOMETRIC FACTS ABOUT C

In particular, we found the intersection theory of S in terms of Pic C. One of the players was the class $\mathcal{O}(1)$ of the projective bundle. Let me repeat the definition of this.

There is a "tautological" subline bundle of $\pi^{*} E$; this is defined to be $\mathcal{O}_{P}(-1)$ (and $\mathcal{O}_{P}(n)$ is defined to be the appropriate multiple $=$ tensor power of this).

You can check:

Exercise.

(a) This agrees with the definition of $\mathcal{O}(1)$ on a projective space (in the case where E is a point).
(b) In the general case, the restriction of $\mathcal{O}_{P}(1)$ to a fiber of π is $\mathcal{O}(1)$ on the fiber.
(c) In the case where $\operatorname{dim} C=1$ and $\operatorname{dim} P=2, \mathcal{O}(1) \cdot F=1$ for any fiber F. (This generalizes to projective bundles of arbitrary dimension once we have intersection theory.)
(d) Hence if L is any invertible sheaf on C, then $\pi^{*} L \cdot \mathcal{O}(1)=\operatorname{deg} L$.

Once you check (a), the rest follow quickly in order.
With this definition, we have:
Proposition. Suppose $\pi: S \rightarrow C$ is a geometrically ruled surface, corresponding to rank 2 locally free sheaf E. Let $h=\mathcal{O}_{S}(1) \in \operatorname{Pic} S$ or $H^{2}(S, \mathbb{Z})$ Then:
(i) $\operatorname{Pic} S=\pi^{*} \operatorname{Pic} C \oplus \mathbb{Z} h$,
(ii) $H^{2}(S, \mathbb{Z})=\mathbb{Z} h+\mathbb{Z} f$, where f is the class of a fiber,
(iii) $h^{2}=\operatorname{deg} E$,
(iv) $[K]=-2 h+(\operatorname{deg} E+2 g(C)-2) f$ in $H^{2}(S, \mathbb{Z})$.

I gave a proof of this, but my proof of (iv) needs to be edited. The corrected version is in the Class 11 notes. (Remark: The reason for the discrepancy is because there are two possible definitions of the projectivization of a vector space. The traditional one is that of one-dimensional subspaces of a vector space. That's the one that most of the world uses. An alternate one is that of one-dimensional quotients of a vector space. That's the one that Grothendieck used, because it makes certain statements cleaner, and as a result much but not of the algebraic geometry community uses this definition. So be warned.)

Recall that the outer entries of a Hodge diamond are birational invariants. I should have proved this earlier, and will now. (Move to earlier notes at some point.)

Theorem. $h^{0}\left(S, \Omega_{S}\right)=h^{1,0}$ is a birational invariant. (Similarly for $h^{2,0}$, and also so for pluricanonical forms $P_{n}=H^{0}\left(S, \mathcal{K}_{S}^{\otimes n}\right)$.) (This works for smooth projective varieties of any dimension.)

Proof. Suppose $\phi: S^{\prime} \rightarrow S$ is a birational map, which is a morphism from $S^{\prime}-F \rightarrow S$, where F is a finite set. Thus we have a map $H^{0}\left(S, \Omega_{S}\right) \rightarrow H^{0}\left(S^{\prime}-F, \Omega_{S^{\prime}-F}\right)$. In fact, this extends: the poles of a differential form are pure codimension 1. Thus we have $H^{0}\left(S, \Omega_{S}\right) \rightarrow H^{0}\left(S^{\prime}, \Omega_{S^{\prime}}\right)$ which takes a preserves the restriction of the form to their common open set. The same argument works for the rational map $S \rightarrow S^{\prime}$, so we get an isomorphism.

Hence the numerical invariants of a ruled surface $\pi: S \rightarrow C$ are as follows. The outer entries of the Hodge diamond are the same as for $C \times \mathbb{P}^{1}$, which can be checked directly to be

$$
h^{2,0}=0 \begin{array}{ccc}
& h^{1,0}=g & h^{0,0}=1 \\
& h^{1,1} & h^{0,1}=g \\
& h^{2,1}=g & \\
& h^{1,2}=g
\end{array} h^{0,2}=0
$$

The central number is the rank of the Picard group (by the Lefschetz (1,1)-theorem), or over \mathbb{C} can be found using the Euler characteristic.

Also, $P_{n}=H^{0}\left(S, \mathcal{K}_{S}^{\otimes n}\right)=0$. Important fact: this characterizes ruled surfaces. (I doubt we'll get to this fact in this course, but we might.)

Second important fact: if $q=P_{2}=0$, then S is rational. (Castelnuovo's Rationality Criterion, to be discussed in a few classes.)

3. THE SURFACES \mathbb{F}_{n}

We already know that Pic $\mathbb{F}_{n}=\mathbb{Z} h \oplus \mathbb{Z} f(n \geq 0)$ with $f^{2}=0, f \cdot h=1$, and $h^{2}=n$. All geometrically ruled surfaces over \mathbb{P}^{1} are of this sort. But are they all different? Yes!:

Proposition. If $n>0$, there is a unique irreducible curve E on \mathbb{F}_{n} with negative selfintersection. If e is its class in Pic \mathbb{F}_{n}, then $e=h-n f$.
(This curve is often called E.)

Corollary. $e^{2}=-n$. Note that $\mathbb{F}_{0}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ has no curves of negative self-intersection, as they all "move" (under the automorphisms of both \mathbb{P}^{1} s). Hence \mathbb{F}_{n} and \mathbb{F}_{m} are not isomorphic unless $n=m$. Also, all \mathbb{F}_{n} are minimal except for \mathbb{F}_{1}, which has a (-1)-curve. In fact, \mathbb{F}_{1} is the blow-up of \mathbb{P}^{2} at a point. Reason: the blow-up of \mathbb{P}^{2} at a point is a rational geometrically ruled surface with a (-1)-curve, so it must be \mathbb{F}_{1} !

Proof of the proposition. First, I'll produce the curve E of negative self intersection, which is a section. Consider the section E of $\pi: \mathbb{F}_{n} \rightarrow \mathbb{P}^{1}$ corresponding to the subline bundle $\mathcal{O}_{\mathbb{P}^{1}}$. Let e be its class of this curve E in $\operatorname{Pic} \mathbb{F}_{n} . e=h+r f$ for some r. Since $\left.\mathcal{O}_{\mathbb{F}_{n}}(1)\right|_{E}=\mathcal{O}_{\mathbb{P}^{1}}$, we know that $h \cdot e=\left.\operatorname{deg} \mathcal{O}_{\mathbb{F}_{n}}(1)\right|_{E}=0$, from which $r=-n$, and then $e^{2}=(h-n f)^{2}=-n$.

Next, I'll show that this is the only curve of negative self-intersection. If C is irreducible on $\mathbb{F}_{n} .[C]=a h+b f . C \cdot f=0$ implies $a \geq 0 . C \cdot E \geq 0$ implies $(b f \cdot(h-n f))=b \geq 0$. Finally, $C \cdot C=(a h+b f)=a^{2} n+2 a b \geq 0$.
3.1. Getting from one \mathbb{F}_{n} to another by elementary transformations. Consider \mathbb{F}_{n}. Blow up a point on E, and blow down the proper transform of the fiber. We again have a rational ruled surface. Show that you have \mathbb{F}_{n+1}.

Instead, blow up a point not on E, and blow down the proper transform of the fiber. Show that you have \mathbb{F}_{n-1}. What goes wrong when $n=0$?

4. Fun with rational surfaces (beginning)

The surface F_{0}. This is $\mathbb{P}^{1} \times \mathbb{P}^{1}$. By the above determination of the intersection theory of \mathbb{F}_{n}, the intersection theory of \mathbb{F}_{0} is $\mathbb{Z}[h, f] / h^{2}=f^{2}=0, h f=1$. h and f are the classes of fibers of the two projections to \mathbb{P}^{1}. Let $([x ; y],[u ; v])$ be co-ordinates to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Then $x u, x v, y u, y v$ are sections of $\mathcal{O}(h+f)$, that separate points and tangent vectors, and hence give a closed immersion into \mathbb{P}^{3}. The degree of the immersed surface is $(h+f)^{2}=h^{2}+$ $2 h f+f^{2}=0+2+0=2$, so we have a smooth quadric in \mathbb{P}^{3}. Conversely, any two smooth quadrics over an algebraically closed field are isomorphic. The reason is linear algebra: quadratic forms in 4 variables are classified, and are (up to change of basis):

$$
0, \quad x_{0}^{2}, \quad x_{0}^{2}+x_{1}^{2}, \quad x_{0}^{2}+x_{1}^{2}+x_{2}^{2}, \quad x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2} .
$$

Only the last one is smooth. (The rest are: all of projective space, a double plane, the union of two planes, and a quadric cone.)

Thus all smooth quadrics in \mathbb{P}^{3} (over an algebraically closed field) are isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Many of the other surfaces corresponds to blow-ups of \mathbb{P}^{2} at a certain number of points. Before discussing them, here is a

Useful proposition. Consider the blow-up of \mathbb{P}^{2} at n general points, giving exceptional divisors E_{1}, \ldots, E_{n}. Then the intersection ring on \mathbb{P}^{2} is given by

$$
\mathbb{Z}\left[H, E_{1}, \ldots, E_{n}\right] / H^{2}=1, H E_{i}=0, E_{i} \cdot E_{j}=0, E_{i}^{2}=-1
$$

We can understand divisors and sections of divisors in terms of divisors on \mathbb{P}^{2} with certain multiplicities at the E_{j}. More precisely: the vector space of sections of $a H-b_{1} E_{1}-\cdots-$ $b_{n} E_{n}$ is naturally isomorphic to the vector space of degree a polynomials in \mathbb{P}^{2} vanishing with multiplicity at least b_{i} on E_{i}.

I'll prove this next class.
The surface \mathbb{F}_{1}. As observed before, \mathbb{F}_{1} is (isomorphic to) the blow-up of \mathbb{P}^{2} at a point.
Consider the divisor class $2 H-E_{1}$. This corresponds to conics in \mathbb{P}^{2} through p_{1}, which gives a five-dimensional vector space. It separates points and tangent vectors (somewhat obviously away from E_{1}, and not so obviously along E_{1}). Thus we get an immersion of \mathbb{F}_{1} into \mathbb{P}^{4}. Its degree is $(2 H-E) \cdot(2 H-E)=3$. We get a cubic surface in \mathbb{P}^{4}.

Blow up \mathbb{P}^{2} at two points. Now blow up \mathbb{P}^{2} at two points. Where are the (-1)-curves? There are obviously two: our two exceptional divisors. But there is one more: the proper transform of the line joining the two points. It has self-intersection number ($H-E_{1}-$ $\left.E_{2}\right)^{2}=-1$.

When you blow down that "bonus" rational curve, what do you get? In fact: $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Eric saw this by interpreting what we just did as an elementary transformation of \mathbb{F}_{1}.

Here's another way of seeing it. Conic through 2 points $\left(2 H-E_{1}-E_{2}\right)$ gives a map to \mathbb{P}^{3}, and it is degree 2 . Get smooth quadric surface.

What are the maps to the two $\mathbb{P}^{1 /}$ s? Answer: projection from each of two points. You can see why the proper transform of the line gets sent to a point under these two projections.

