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Last day:

Lemma: All rank 2 locally free sheaves are filtered nicely by invertible sheaves. Sup-
pose E is a rank 2 locally free sheaf on a curve C.

(i) There exists an exact sequence 0 — L. - E — M — 0 with L, M € PicC. Terminol-
ogy: F is an extension of M by L.
(i) If B°(F) > 1, we can take L = O¢(D), with D the divisor of zeros of a section of E.
(Hence D is effective, i.e. D > 0.)
(iii) If °(F) > 2 and deg E > 0, we can assume D > 0.

(i) is the most important one.

We showed that extensions 0 — L — E — M — 0 are classified by H'(C, L ® M*). The
element O corresponded to a splitting. If one element is a non-zero multiple of the other,
they correspond to the same E, although different extensions.

As an application, we proved: Proposition. Every rank 2 locally free sheaf on P! is a
direct sum of invertible sheaves.

| can’t remember if | stated the implication:

Every geometrically ruled surface over P! is isomorphic to a Hirzebruch surface
Fn = P[pl(@[pl D Opl (TL))
forn > 0.
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(We don’t yet know that they are all different yet, but we will soon.)

We then began to study :

1. GEOMETRIC FACTS ABOUT A GEOMETRICALLY RULED SURFACE 7 : S =P-F — C
FROM GEOMETRIC FACTS ABOUT C

In particular, we found the intersection theory of S in terms of Pic C'. One of the players
was the class O(1) of the projective bundle. Let me repeat the definition of this.

There is a “tautological”” subline bundle of 7* E; this is defined to be Op(—1) (and Op(n)
is defined to be the appropriate multiple = tensor power of this).

You can check:

Exercise.

(@) This agrees with the definition of O(1) on a projective space (in the case where E is
a point).

(b) In the general case, the restriction of Op(1) to a fiber of 7 is O(1) on the fiber.

(c) In the case where dimC = 1 and dim P = 2, O(1) - FF = 1 for any fiber F. (This
generalizes to projective bundles of arbitrary dimension once we have intersection
theory.)

(d) Hence if L is any invertible sheaf on C, then 7*L - O(1) = deg L.

Once you check (a), the rest follow quickly in order.
With this definition, we have:

Proposition. Suppose 7 : S — C'is a geometrically ruled surface, corresponding to rank
2 locally free sheaf E. Let h = Og(1) € Pic S or H*(S,Z) Then:

(i) Pic S = 7* Pic C @ Zh,

(il) H*(S,Z) = Zh + Zf, where f is the class of a fiber,
(iii) h? = deg E,
(iv) [K] = —2h + (deg E + 2¢(C) — 2)f in H*(S,Z).

| gave a proof of this, but my proof of (iv) needs to be edited. The corrected version is
in the Class 11 notes. (Remark: The reason for the discrepancy is because there are two
possible definitions of the projectivization of a vector space. The traditional one is that
of one-dimensional subspaces of a vector space. That’s the one that most of the world
uses. An alternate one is that of one-dimensional quotients of a vector space. That’s the
one that Grothendieck used, because it makes certain statements cleaner, and as a result
much but not of the algebraic geometry community uses this definition. So be warned.)
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2. THE HODGE DIAMOND OF A RULED SURFACE

Recall that the outer entries of a Hodge diamond are birational invariants. | should
have proved this earlier, and will now. (Move to earlier notes at some point.)

Theorem. 1°(S,Qg) = A’ is a birational invariant. (Similarly for 2*°, and also so for
pluricanonical forms P, = H°(S,K5").) (This works for smooth projective varieties of
any dimension.)

Proof. Suppose ¢ : S’ --+ S is a birational map, which is a morphism from S’ — FF — S,
where F is a finite set. Thus we have a map H°(S,Qs) — H°(S' — F,Qs_r). In fact,
this extends: the poles of a differential form are pure codimension 1. Thus we have
H°(S,Qs5) — H°(S’,Qs) which takes a preserves the restriction of the form to their com-
mon open set. The same argument works for the rational map S — S’, so we get an
isomorphism. O

Hence the numerical invariants of a ruled surface = : S — C are as follows. The outer
entries of the Hodge diamond are the same as for C' x P!, which can be checked directly
to be

hoo =1
hl,O =g hO,l =g
h?0 =0 Kbt ho? =0
h2’1 =g h1’2 =g
h?? =1

The central number is the rank of the Picard group (by the Lefschetz (1,1)-theorem), or
over C can be found using the Euler characteristic.

Also, P, = H°(S,K%") = 0. Important fact: this characterizes ruled surfaces. (I doubt
we’ll get to this fact in this course, but we might.)

Second important fact: if ¢ = P, = 0, then S is rational. (Castelnuovo’s Rationality
Criterion, to be discussed in a few classes.)

3. THE SURFACES I,

We already know that PicF, = Zh® Zf (n > 0) with f2 =0, f-h =1, and h? = n. All
geometrically ruled surfaces over P! are of this sort. But are they all different? Yes!:

Proposition. If n > 0, there is a unique irreducible curve E on F, with negative self-
intersection. If e isits class in PicF,,,thene = h — nf.

(This curve is often called E.)



Corollary. ¢? = —n. Note that F, = P! x P! has no curves of negative self-intersection,
as they all “move” (under the automorphisms of both P!’s). Hence F, and F,, are not
isomorphic unless n = m. Also, all F,, are minimal except for F;, which has a (—1)-curve.
In fact, I, is the blow-up of P? at a point. Reason: the blow-up of P? at a point is a rational
geometrically ruled surface with a (-1)-curve, so it must be F; !

Proof of the proposition. First, I’ll produce the curve FE of negative self intersection, which is
a section. Consider the section E of 7 : F, — P! corresponding to the subline bundle Op:.
Let e be its class of this curve E in PicF,. e = h+r f for some r. Since Oy, (1)|g = Op1, We
know that / - e = deg O, (1)|z = 0, from which r = —n, and then €? = (h — nf)? = —n.

Next, I'll show that this is the only curve of negative self-intersection. If C'is irreducible
onF,. [Cl=ah+bf. C-f=0impliesa > 0. C-E > 0implies (bf - (h —nf)) =b > 0.
Finally, C'- C' = (ah + bf) = a*n + 2ab > 0. O

3.1. Getting from one F,, to another by elementary transformations. Consider F,,. Blow
up a point on FE, and blow down the proper transform of the fiber. We again have a
rational ruled surface. Show that you have F,, ;.

Instead, blow up a point not on F, and blow down the proper transform of the fiber.
Show that you have F,, ;. What goes wrong when n = 0?

4. FUN WITH RATIONAL SURFACES (BEGINNING)

The surface Fy. This is P! x P!, By the above determination of the intersection theory
of IF,,, the intersection theory of F, is Z[h, f]/h* = f> = 0,hf = 1. h and f are the classes
of fibers of the two projections to P'. Let ([z; y], [u;v]) be co-ordinates to P! x P'. Then
xu, xv, yu, yv are sections of O(h + f), that separate points and tangent vectors, and hence
give a closed immersion into P3. The degree of the immersed surface is (h + f)? = h? +
2hf+ f? = 0+2+0 = 2, so we have a smooth quadric in P>. Conversely, any two smooth
quadrics over an algebraically closed field are isomorphic. The reason is linear algebra:
guadratic forms in 4 variables are classified, and are (up to change of basis):

0, =2, zi+a% a2+a?+a23 28+ +22+ 75
Only the last one is smooth. (The rest are: all of projective space, a double plane, the
union of two planes, and a quadric cone.)

Thus all smooth quadrics in P* (over an algebraically closed field) are isomorphic to
P! x P,

Many of the other surfaces corresponds to blow-ups of F? at a certain number of points.
Before discussing them, here is a

Useful proposition. Consider the blow-up of P? at n general points, giving exceptional
divisors E,, ..., E,. Then the intersection ring on P? is given by

Z[H,Ey,...,E,)/H*=1,HE; =0,F;- E; =0, E? = —1.
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We can understand divisors and sections of divisors in terms of divisors on P2 with certain
multiplicities at the E;. More precisely: the vector space of sections of a — bjEy — - -+ —
b, E, is naturally isomorphic to the vector space of degree a polynomials in P2 vanishing
with multiplicity at least b; on E;.

I’ll prove this next class.
The surface IF;. As observed before, I, is (isomorphic to) the blow-up of P? at a point.

Consider the divisor class 2H — E;. This corresponds to conics in IP? through p;, which
gives a five-dimensional vector space. It separates points and tangent vectors (somewhat
obviously away from FEi, and not so obviously along F;). Thus we get an immersion of
IF, into P*. Its degree is (2H — F) - (2H — E) = 3. We get a cubic surface in P*.

Blow up P? at two points. Now blow up P? at two points. Where are the (—1)-curves?
There are obviously two: our two exceptional divisors. But there is one more: the proper
transform of the line joining the two points. It has self-intersection number (H — F; —
E2)2 - —]_

When you blow down that “bonus” rational curve, what do you get? In fact: P! x P!,
Eric saw this by interpreting what we just did as an elementary transformation of [; .

Here’s another way of seeing it. Conic through 2 points (2H — F; — F,) gives a map to
P3, and it is degree 2. Get smooth quadric surface.

What are the maps to the two P'’s? Answer: projection from each of two points. You
can see why the proper transform of the line gets sent to a point under these two projec-
tions.



