COMPLEX ALGEBRAIC SURFACES CLASS 12

RAVI VAKIL

Contents

1.	Geometric facts about a geometrically ruled surface $\pi:S=\mathbb{P}_{C}E o C$ from	
	geometric facts about C	2
2.	The Hodge diamond of a ruled surface	2
3.	The surfaces \mathbb{F}_n	3
3.1.	Getting from one \mathbb{F}_n to another by elementary transformations	4
4.	Fun with rational surfaces (beginning)	4

Last day:

Lemma: All rank 2 locally free sheaves are filtered nicely by invertible sheaves. Suppose E is a rank 2 locally free sheaf on a curve C.

- (i) There exists an exact sequence $0 \to L \to E \to M \to 0$ with $L, M \in \text{Pic } C$. Terminology: E is an extension of M by L.
- (ii) If $h^0(E) \ge 1$, we can take $L = \mathcal{O}_C(D)$, with D the divisor of zeros of a section of E. (Hence D is effective, i.e. $D \ge 0$.)
- (iii) If $h^0(E) \ge 2$ and $\deg E > 0$, we can assume D > 0.
 - (i) is the most important one.

We showed that extensions $0 \to L \to E \to M \to 0$ are classified by $H^1(C, L \otimes M^*)$. The element 0 corresponded to a splitting. If one element is a non-zero multiple of the other, they correspond to the same E, although different extensions.

As an application, we proved: **Proposition**. Every rank 2 locally free sheaf on \mathbb{P}^1 is a direct sum of invertible sheaves.

I can't remember if I stated the implication:

Every geometrically ruled surface over \mathbb{P}^1 is isomorphic to a Hirzebruch surface

$$\mathbb{F}_n = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(n))$$

for $n \geq 0$.

Date: Friday, November 8.

(We don't yet know that they are all different yet, but we will soon.)

We then began to study:

1. Geometric facts about a geometrically ruled surface $\pi:S=\mathbb{P}_CE o C$ from geometric facts about C

In particular, we found the intersection theory of S in terms of $\operatorname{Pic} C$. One of the players was the class $\mathcal{O}(1)$ of the projective bundle. Let me repeat the definition of this.

There is a "tautological" subline bundle of π^*E ; this is defined to be $\mathcal{O}_P(-1)$ (and $\mathcal{O}_P(n)$ is defined to be the appropriate multiple = tensor power of this).

You can check:

Exercise.

- (a) This agrees with the definition of $\mathcal{O}(1)$ on a projective space (in the case where E is a point).
- (b) In the general case, the restriction of $\mathcal{O}_P(1)$ to a fiber of π is $\mathcal{O}(1)$ on the fiber.
- (c) In the case where $\dim C = 1$ and $\dim P = 2$, $\mathcal{O}(1) \cdot F = 1$ for any fiber F. (This generalizes to projective bundles of arbitrary dimension once we have intersection theory.)
- (d) Hence if L is any invertible sheaf on C, then $\pi^*L \cdot \mathcal{O}(1) = \deg L$.

Once you check (a), the rest follow quickly in order.

With this definition, we have:

Proposition. Suppose $\pi: S \to C$ is a geometrically ruled surface, corresponding to rank 2 locally free sheaf E. Let $h = \mathcal{O}_S(1) \in \operatorname{Pic} S$ or $H^2(S, \mathbb{Z})$ Then:

- (i) $\operatorname{Pic} S = \pi^* \operatorname{Pic} C \oplus \mathbb{Z} h$,
- (ii) $H^2(S,\mathbb{Z}) = \mathbb{Z}h + \mathbb{Z}f$, where f is the class of a fiber,
- (iii) $h^2 = \deg E$
- (iv) $[K] = -2h + (\deg E + 2g(C) 2)f$ in $H^2(S, \mathbb{Z})$.

I gave a proof of this, but my proof of (iv) needs to be edited. The corrected version is in the Class 11 notes. (Remark: The reason for the discrepancy is because there are two possible definitions of the projectivization of a vector space. The traditional one is that of one-dimensional subspaces of a vector space. That's the one that most of the world uses. An alternate one is that of one-dimensional quotients of a vector space. That's the one that Grothendieck used, because it makes certain statements cleaner, and as a result much but not of the algebraic geometry community uses this definition. So be warned.)

2. THE HODGE DIAMOND OF A RULED SURFACE

Recall that the outer entries of a Hodge diamond are birational invariants. I should have proved this earlier, and will now. (Move to earlier notes at some point.)

Theorem. $h^0(S,\Omega_S)=h^{1,0}$ is a birational invariant. (Similarly for $h^{2,0}$, and also so for pluricanonical forms $P_n=H^0(S,\mathcal{K}_S^{\otimes n})$.) (This works for smooth projective varieties of any dimension.)

Proof. Suppose $\phi: S' \dashrightarrow S$ is a birational map, which is a morphism from $S' - F \to S$, where F is a finite set. Thus we have a map $H^0(S,\Omega_S) \to H^0(S' - F,\Omega_{S'-F})$. In fact, this extends: the poles of a differential form are pure codimension 1. Thus we have $H^0(S,\Omega_S) \to H^0(S',\Omega_{S'})$ which takes a preserves the restriction of the form to their common open set. The same argument works for the rational map $S \to S'$, so we get an isomorphism.

Hence the numerical invariants of a ruled surface $\pi:S\to C$ are as follows. The outer entries of the Hodge diamond are the same as for $C\times\mathbb{P}^1$, which can be checked directly to be

$$h^{0,0}=1$$
 $h^{1,0}=g$
 $h^{0,1}=g$
 $h^{0,1}=g$
 $h^{0,1}=g$
 $h^{0,2}=0$
 $h^{0,2}=g$
 $h^{0,2}=g$

The central number is the rank of the Picard group (by the Lefschetz (1,1)-theorem), or over \mathbb{C} can be found using the Euler characteristic.

Also, $P_n=H^0(S,\mathcal{K}_S^{\otimes n})=0$. Important fact: this characterizes ruled surfaces. (I doubt we'll get to this fact in this course, but we might.)

Second important fact: if $q=P_2=0$, then S is rational. (Castelnuovo's Rationality Criterion, to be discussed in a few classes.)

3. The surfaces \mathbb{F}_n

We already know that $\operatorname{Pic} \mathbb{F}_n = \mathbb{Z} h \oplus \mathbb{Z} f$ ($n \geq 0$) with $f^2 = 0$, $f \cdot h = 1$, and $h^2 = n$. All geometrically ruled surfaces over \mathbb{P}^1 are of this sort. But are they all different? Yes!:

Proposition. If n > 0, there is a unique irreducible curve E on \mathbb{F}_n with negative self-intersection. If e is its class in $\operatorname{Pic} \mathbb{F}_n$, then e = h - nf.

(This curve is often called E.)

Corollary. $e^2 = -n$. Note that $\mathbb{F}_0 = \mathbb{P}^1 \times \mathbb{P}^1$ has no curves of negative self-intersection, as they all "move" (under the automorphisms of both \mathbb{P}^1 's). Hence \mathbb{F}_n and \mathbb{F}_m are not isomorphic unless n = m. Also, all \mathbb{F}_n are minimal except for \mathbb{F}_1 , which has a (-1)-curve. In fact, \mathbb{F}_1 is the blow-up of \mathbb{P}^2 at a point. Reason: the blow-up of \mathbb{P}^2 at a point is a rational geometrically ruled surface with a (-1)-curve, so it must be \mathbb{F}_1 !

Proof of the proposition. First, I'll produce the curve E of negative self intersection, which is a section. Consider the section E of $\pi: \mathbb{F}_n \to \mathbb{P}^1$ corresponding to the subline bundle $\mathcal{O}_{\mathbb{P}^1}$. Let e be its class of this curve E in $\operatorname{Pic} \mathbb{F}_n$. e = h + rf for some r. Since $\mathcal{O}_{\mathbb{F}_n}(1)|_E = \mathcal{O}_{\mathbb{P}^1}$, we know that $h \cdot e = \deg \mathcal{O}_{\mathbb{F}_n}(1)|_E = 0$, from which r = -n, and then $e^2 = (h - nf)^2 = -n$.

Next, I'll show that this is the only curve of negative self-intersection. If C is irreducible on \mathbb{F}_n . [C] = ah + bf. $C \cdot f = 0$ implies $a \geq 0$. $C \cdot E \geq 0$ implies $(bf \cdot (h - nf)) = b \geq 0$. Finally, $C \cdot C = (ah + bf) = a^2n + 2ab \geq 0$.

3.1. Getting from one \mathbb{F}_n to another by elementary transformations. Consider \mathbb{F}_n . Blow up a point on E_i and blow down the proper transform of the fiber. We again have a rational ruled surface. Show that you have \mathbb{F}_{n+1} .

Instead, blow up a point not on E, and blow down the proper transform of the fiber. Show that you have \mathbb{F}_{n-1} . What goes wrong when n=0?

4. Fun with rational surfaces (beginning)

The surface F_0 . This is $\mathbb{P}^1 \times \mathbb{P}^1$. By the above determination of the intersection theory of \mathbb{F}_n , the intersection theory of \mathbb{F}_0 is $\mathbb{Z}[h,f]/h^2=f^2=0, hf=1$. h and f are the classes of fibers of the two projections to \mathbb{P}^1 . Let ([x;y],[u;v]) be co-ordinates to $\mathbb{P}^1 \times \mathbb{P}^1$. Then xu,xv,yu,yv are sections of $\mathcal{O}(h+f)$, that separate points and tangent vectors, and hence give a closed immersion into \mathbb{P}^3 . The degree of the immersed surface is $(h+f)^2=h^2+2hf+f^2=0+2+0=2$, so we have a smooth quadric in \mathbb{P}^3 . Conversely, any two smooth quadrics over an algebraically closed field are isomorphic. The reason is linear algebra: quadratic forms in 4 variables are classified, and are (up to change of basis):

$$0, \quad x_0^2, \quad x_0^2 + x_1^2, \quad x_0^2 + x_1^2 + x_2^2, \quad x_0^2 + x_1^2 + x_2^2 + x_3^2.$$

Only the last one is smooth. (The rest are: all of projective space, a double plane, the union of two planes, and a quadric cone.)

Thus all smooth quadrics in \mathbb{P}^3 (over an algebraically closed field) are isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$.

Many of the other surfaces corresponds to blow-ups of \mathbb{P}^2 at a certain number of points. Before discussing them, here is a

Useful proposition. Consider the blow-up of \mathbb{P}^2 at n general points, giving exceptional divisors E_1, \ldots, E_n . Then the intersection ring on \mathbb{P}^2 is given by

$$\mathbb{Z}[H, E_1, \dots, E_n]/H^2 = 1, HE_i = 0, E_i \cdot E_j = 0, E_i^2 = -1.$$

We can understand divisors and sections of divisors in terms of divisors on \mathbb{P}^2 with certain multiplicities at the E_j . More precisely: the vector space of sections of $aH-b_1E_1-\cdots-b_nE_n$ is naturally isomorphic to the vector space of degree a polynomials in \mathbb{P}^2 vanishing with multiplicity at least b_i on E_i .

I'll prove this next class.

The surface \mathbb{F}_1 . As observed before, \mathbb{F}_1 is (isomorphic to) the blow-up of \mathbb{P}^2 at a point.

Consider the divisor class $2H - E_1$. This corresponds to conics in \mathbb{P}^2 through p_1 , which gives a five-dimensional vector space. It separates points and tangent vectors (somewhat obviously away from E_1 , and not so obviously along E_1). Thus we get an immersion of \mathbb{F}_1 into \mathbb{P}^4 . Its degree is $(2H - E) \cdot (2H - E) = 3$. We get a cubic surface in \mathbb{P}^4 .

Blow up \mathbb{P}^2 at two points. Now blow up \mathbb{P}^2 at two points. Where are the (-1)-curves? There are obviously two: our two exceptional divisors. But there is one more: the proper transform of the line joining the two points. It has self-intersection number $(H-E_1-E_2)^2=-1$.

When you blow down that "bonus" rational curve, what do you get? In fact: $\mathbb{P}^1 \times \mathbb{P}^1$. Eric saw this by interpreting what we just did as an elementary transformation of \mathbb{F}_1 .

Here's another way of seeing it. Conic through 2 points $(2H - E_1 - E_2)$ gives a map to \mathbb{P}^3 , and it is degree 2. Get smooth quadric surface.

What are the maps to the two \mathbb{P}^1 's? Answer: projection from each of two points. You can see why the proper transform of the line gets sent to a point under these two projections.