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Last day:

Lemma: All rank 2 locally free sheaves are filtered nicely by invertible sheaves. Sup-
pose E is a rank 2 locally free sheaf on a curve C.

(i) There exists an exact sequence 0 → L → E → M → 0 with L,M ∈ PicC. Terminol-
ogy: E is an extension of M by L.

(ii) If h0(E) ≥ 1, we can take L = OC(D), with D the divisor of zeros of a section of E.
(Hence D is effective, i.e. D ≥ 0.)

(iii) If h0(E) ≥ 2 and degE > 0, we can assume D > 0.

(i) is the most important one.

We showed that extensions 0→ L→ E →M → 0 are classified by H1(C,L⊗M∗). The
element 0 corresponded to a splitting. If one element is a non-zero multiple of the other,
they correspond to the same E, although different extensions.

As an application, we proved: Proposition. Every rank 2 locally free sheaf on P1 is a
direct sum of invertible sheaves.

I can’t remember if I stated the implication:

Every geometrically ruled surface over P1 is isomorphic to a Hirzebruch surface

Fn = PP1(OP1 ⊕OP1(n))

for n ≥ 0.

Date: Friday, November 8.
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(We don’t yet know that they are all different yet, but we will soon.)

We then began to study :

1. GEOMETRIC FACTS ABOUT A GEOMETRICALLY RULED SURFACE π : S = PCE → C
FROM GEOMETRIC FACTS ABOUT C

In particular, we found the intersection theory of S in terms of PicC. One of the players
was the class O(1) of the projective bundle. Let me repeat the definition of this.

There is a “tautological” subline bundle of π∗E; this is defined to beOP (−1) (andOP (n)
is defined to be the appropriate multiple = tensor power of this).

You can check:

Exercise.

(a) This agrees with the definition of O(1) on a projective space (in the case where E is
a point).

(b) In the general case, the restriction of OP (1) to a fiber of π is O(1) on the fiber.
(c) In the case where dimC = 1 and dimP = 2, O(1) · F = 1 for any fiber F . (This

generalizes to projective bundles of arbitrary dimension once we have intersection
theory.)

(d) Hence if L is any invertible sheaf on C, then π∗L · O(1) = degL.

Once you check (a), the rest follow quickly in order.

With this definition, we have:

Proposition. Suppose π : S → C is a geometrically ruled surface, corresponding to rank
2 locally free sheaf E. Let h = OS(1) ∈ PicS or H2(S,Z) Then:

(i) PicS = π∗ PicC ⊕ Zh,
(ii) H2(S,Z) = Zh+ Zf , where f is the class of a fiber,

(iii) h2 = degE,
(iv) [K] = −2h+ (degE + 2g(C)− 2)f in H2(S,Z).

I gave a proof of this, but my proof of (iv) needs to be edited. The corrected version is
in the Class 11 notes. (Remark: The reason for the discrepancy is because there are two
possible definitions of the projectivization of a vector space. The traditional one is that
of one-dimensional subspaces of a vector space. That’s the one that most of the world
uses. An alternate one is that of one-dimensional quotients of a vector space. That’s the
one that Grothendieck used, because it makes certain statements cleaner, and as a result
much but not of the algebraic geometry community uses this definition. So be warned.)
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2. THE HODGE DIAMOND OF A RULED SURFACE

Recall that the outer entries of a Hodge diamond are birational invariants. I should
have proved this earlier, and will now. (Move to earlier notes at some point.)

Theorem. h0(S,ΩS) = h1,0 is a birational invariant. (Similarly for h2,0, and also so for
pluricanonical forms Pn = H0(S,K⊗nS ).) (This works for smooth projective varieties of
any dimension.)

Proof. Suppose φ : S ′ 99K S is a birational map, which is a morphism from S ′ − F → S,
where F is a finite set. Thus we have a map H0(S,ΩS) → H0(S ′ − F,ΩS′−F ). In fact,
this extends: the poles of a differential form are pure codimension 1. Thus we have
H0(S,ΩS) → H0(S ′,ΩS′) which takes a preserves the restriction of the form to their com-
mon open set. The same argument works for the rational map S → S ′, so we get an
isomorphism.

Hence the numerical invariants of a ruled surface π : S → C are as follows. The outer
entries of the Hodge diamond are the same as for C × P1, which can be checked directly
to be

h0,0 = 1
h1,0 = g h0,1 = g

h2,0 = 0 h1,1 h0,2 = 0
h2,1 = g h1,2 = g

h2,2 = 1

The central number is the rank of the Picard group (by the Lefschetz (1,1)-theorem), or
over C can be found using the Euler characteristic.

Also, Pn = H0(S,K⊗nS ) = 0. Important fact: this characterizes ruled surfaces. (I doubt
we’ll get to this fact in this course, but we might.)

Second important fact: if q = P2 = 0, then S is rational. (Castelnuovo’s Rationality
Criterion, to be discussed in a few classes.)

3. THE SURFACES Fn

We already know that PicFn = Zh⊕ Zf (n ≥ 0) with f 2 = 0, f · h = 1, and h2 = n. All
geometrically ruled surfaces over P1 are of this sort. But are they all different? Yes!:

Proposition. If n > 0, there is a unique irreducible curve E on Fn with negative self-
intersection. If e is its class in PicFn, then e = h− nf .

(This curve is often called E.)
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Corollary. e2 = −n. Note that F0 = P1 × P1 has no curves of negative self-intersection,
as they all “move” (under the automorphisms of both P1’s). Hence Fn and Fm are not
isomorphic unless n = m. Also, all Fn are minimal except for F1, which has a (−1)-curve.
In fact, F1 is the blow-up of P2 at a point. Reason: the blow-up of P2 at a point is a rational
geometrically ruled surface with a (-1)-curve, so it must be F1!

Proof of the proposition. First, I’ll produce the curve E of negative self intersection, which is
a section. Consider the section E of π : Fn → P1 corresponding to the subline bundleOP1 .
Let e be its class of this curve E in PicFn. e = h+ rf for some r. SinceOFn(1)|E = OP1 , we
know that h · e = degOFn(1)|E = 0, from which r = −n, and then e2 = (h− nf)2 = −n.

Next, I’ll show that this is the only curve of negative self-intersection. If C is irreducible
on Fn. [C] = ah + bf . C · f = 0 implies a ≥ 0. C · E ≥ 0 implies (bf · (h − nf)) = b ≥ 0.
Finally, C · C = (ah+ bf) = a2n+ 2ab ≥ 0.

3.1. Getting from one Fn to another by elementary transformations. Consider Fn. Blow
up a point on E, and blow down the proper transform of the fiber. We again have a
rational ruled surface. Show that you have Fn+1.

Instead, blow up a point not on E, and blow down the proper transform of the fiber.
Show that you have Fn−1. What goes wrong when n = 0?

4. FUN WITH RATIONAL SURFACES (BEGINNING)

The surface F0. This is P1 × P1. By the above determination of the intersection theory
of Fn, the intersection theory of F0 is Z[h, f ]/h2 = f 2 = 0, hf = 1. h and f are the classes
of fibers of the two projections to P1. Let ([x; y], [u; v]) be co-ordinates to P1 × P1. Then
xu, xv, yu, yv are sections ofO(h+ f), that separate points and tangent vectors, and hence
give a closed immersion into P3. The degree of the immersed surface is (h + f)2 = h2 +
2hf + f 2 = 0 + 2 + 0 = 2, so we have a smooth quadric in P3. Conversely, any two smooth
quadrics over an algebraically closed field are isomorphic. The reason is linear algebra:
quadratic forms in 4 variables are classified, and are (up to change of basis):

0, x2
0, x2

0 + x2
1, x2

0 + x2
1 + x2

2, x2
0 + x2

1 + x2
2 + x2

3.

Only the last one is smooth. (The rest are: all of projective space, a double plane, the
union of two planes, and a quadric cone.)

Thus all smooth quadrics in P3 (over an algebraically closed field) are isomorphic to
P1 × P1.

Many of the other surfaces corresponds to blow-ups of P2 at a certain number of points.
Before discussing them, here is a

Useful proposition. Consider the blow-up of P2 at n general points, giving exceptional
divisors E1, . . . , En. Then the intersection ring on P2 is given by

Z[H,E1, . . . , En]/H2 = 1, HEi = 0, Ei · Ej = 0, E2
i = −1.
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We can understand divisors and sections of divisors in terms of divisors on P2 with certain
multiplicities at the Ej . More precisely: the vector space of sections of aH − b1E1 − · · · −
bnEn is naturally isomorphic to the vector space of degree a polynomials in P2 vanishing
with multiplicity at least bi on Ei.

I’ll prove this next class.

The surface F1. As observed before, F1 is (isomorphic to) the blow-up of P2 at a point.

Consider the divisor class 2H −E1. This corresponds to conics in P2 through p1, which
gives a five-dimensional vector space. It separates points and tangent vectors (somewhat
obviously away from E1, and not so obviously along E1). Thus we get an immersion of
F1 into P4. Its degree is (2H − E) · (2H − E) = 3. We get a cubic surface in P4.

Blow up P2 at two points. Now blow up P2 at two points. Where are the (−1)-curves?
There are obviously two: our two exceptional divisors. But there is one more: the proper
transform of the line joining the two points. It has self-intersection number (H − E1 −
E2)2 = −1.

When you blow down that “bonus” rational curve, what do you get? In fact: P1 × P1.
Eric saw this by interpreting what we just did as an elementary transformation of F1.

Here’s another way of seeing it. Conic through 2 points (2H − E1 − E2) gives a map to
P3, and it is degree 2. Get smooth quadric surface.

What are the maps to the two P1’s? Answer: projection from each of two points. You
can see why the proper transform of the line gets sent to a point under these two projec-
tions.
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