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1. GEOMETRICALLY RULED SURFACES AND PROJECTIVIZATIONS OF RANK 2 LOCALLY
FREE SHEAVES

Last time, we began analyzing geometrically ruled surfaces by studying projectiviza-
tions of rank 2 locally free sheaves.

We proved:

Proposition. Every geometrically ruled surface over C is C-isomorphic to PC(E) for
some rank 2 locally free sheaf (vector bundle) over C. The bundles PC(E) and PC(E ′)
are isomorphic (over C) iff there is an invertible sheaf (line bundle) L on C such that
E ′ ∼= E ⊗ L.

I then stated the first part of the following lemma.

Lemma: All rank 2 locally free sheaves are filtered nicely by invertible sheaves. Sup-
pose E is a rank 2 locally free sheaf on a curve C.

(i) There exists an exact sequence 0 → L → E → M → 0 with L, M ∈ Pic C. Termi-
nology: E is an extension of M by L.

(ii) If h0(E) ≥ 1, we can take L = OC(D), with D the divisor of zeros of a section of E.
(Hence D is effective, i.e. D ≥ 0.)

(iii) If h0(E) ≥ 2 and deg E > 0, we can assume D > 0.

(i) is the most important one.

I mentioned the application of Riemann-Roch for rank 2 vector bundles on a curve:

χ(E) = deg E + 2(1− g).
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Second: the filtrations correspond to sections of the projective bundle. Hence all pro-
jective bundles over curves have sections.

Proof. (i) We can twist E by some invertible sheaf N so that it has a non-zero section s.
Here’s how: take a rational section of E. It has some poles of various orders at various
points. Twist by the invertible sheaf allowing these poles.

The section s gives OC → E ⊗N .

Here’s an argument which doesn’t work. (Find the mistake.) The cokernel is locally free,
call it M ′, and the kernel of E ⊗N → M ′, which is a subsheaf of OC , is necessarily OC(D)
for D the zero-divisor of the section s. Hence we have

0 → OC(D) → E ⊗N → M ′ → 0.

Twist this by N∗, and we get (i).

In fact, the cokernel needn’t be an invertible sheaf! (This is the only flaw.) In gen-
eral, the cokernel of a morphism of locally free sheaves needn’t be locally free! (This is
different behavior than for vector bundles, and is one good reason to keep the two con-
cepts separate in your mind.) You’ve seen an example before: If X is a variety and D
a divisor, consider the morphism of invertible sheaves OX(−D) → OX . then we have
0 → OX(−D) → OX → OD → 0. (If you want to see a morphism from a rank 1 locally
free to a rank 2 locally free, tweak this to get 0 → OX(−D) → OX ⊕OX → OD⊕OX → 0.)
Hence this morphism doesn’t correspond to a morphism of vector bundles. How to patch?
We’ll use the useful fact is that any subsheaf of a locally free sheaf on a smooth curve is also lo-
cally free. (The proof is omitted. The key is to show that torsion-free sheaves on a smooth
curve are locally free, which is an algebraic fact.) Dualize the problematic morphism
OX → E ⊗ N to get E∗ ⊗ N∗ → OX . Take the image of E∗ ⊗ N∗ in OX . By the useful
fact, the image is also an invertible sheaf OX(−D) (check first that the image isn’t 0). The
kernel of this morphism is a subsheaf of a locally free sheaf, and is thus also locally free,
in fact of rank 1. So we get

0 → M ′ → E∗ ⊗N∗ → O(D) → 0.

Dualizing gives us 0 → O(D)
(∗)→ E ⊗N → (M ′)∗ → 0.

Useful facts (proofs omitted): (i) the morphism (*) corresponds to a section of E ⊗ N ,
with poles along D. (ii) to translate to vector bundles, a morphism of vector bundles
on a smooth variety corresponds to a morphism of locally free sheaves whose cokernel is
locally free (the kernel automatically is). (iii) related fact: sections of the projective bundle
correspond to filtrations.

For (ii), note that if h0(E) > 0, then E already has a non-zero section, and we can omit
the twist by N . Then that last exact sequence is the one we desire.

For (iii), it suffices to show that there is a section of E that vanishes at some point. Let
s and t be two linearly independent sections. As deg E > 0, the section s ∧ t of ∧2E must
vanish at some point p ∈ C. That means at that point there are α and β (not both 0) such
that αs(p) + βt(p) = 0. So the section αs + βt vanishes at p, proving (iii). �
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Hence we want to classify extensions of invertible sheaves. Up to twists by invertible
sheaves, these correspond to projective bundles with section.

Given an extension 0 → L → E → M → 0, we get a class of H1(C, L ⊗ M∗) as fol-
lows. (This has nothing to do with C being a curve, or with L being invertible.) Twist
by M∗, take the long exact sequence, and look at the image of 1 ∈ H0(C,OC). Extensions
are classified precisely by this cohomology group. In other words, two extensions are
isomorphic

0 → L → E → M → 0
|| ↓∼ ||

0 → L → E ′ → M → 0

if they induce the same element of H1(C, L⊗M∗). One direction is now clear.

Exercise: Check the other direction. (Hint, useful in other circumstances: Given an
element of H1(C, L⊗M∗), say in Cech cohomology, recover the extension.) Check that the
0 ∈ H1(C, L⊗M∗) corresponds to L⊕M . Check that if a = kb where a, b ∈ H1(C, L⊗M∗)
and k 6= 0, then Ea

∼= Eb.

Proposition. Every rank 2 locally free sheaf on P1 decomposes into the sum of two
invertible sheaves. Hence every geometrically ruled surface over P1 is isomorphic to a
Hirzebruch surface

Fn = PP1(OP1 ⊕OP1(n))

for n ≥ 0.

Hence every geometrically ruled surface is one of the Fn’s described earlier. (We don’t
yet know that they are all different yet.)

Proof. We can twist by a line bundle so as to assume that deg E = 0 or 1. By Riemann-Roch,
h0(E) ≥ 1, so there is an exact sequence

0 → OP1(k) → E → OP1(d− k) → 0

with k ≥ 0. But these extensions are classified by H1(P1,OP1(2k − d)) ∼= H0(P1,O(−2 −
2k + d))∗ = {0}, so this must be a direct sum. �

Exercise: Grothendieck’s Theorem. Show that every vector bundle on P1 is a direct sum
of line bundles.

Similarly, you can prove:

Proposition.

(a) Every rank 2 vector bundle on an elliptic curve is either decomposable, or isomor-
phic to E ⊗ L, where L ∈ Pic C and E is either (i) the unique non-trivial extension
ofOC byOC , or (ii) the non-trivial extension ofOC(p) byOC for some p. (Exercise.)

(b) For every curve C of genus g, there exist families of rank 2 vector bundles parametrized
by some variety S (possibly singular, non-compact) of dimension at least 2g − 3.
(See Beauville.)
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2. GEOMETRIC FACTS ABOUT GEOMETRICALLY RULED SURFACES OVER C , FROM
GEOMETRIC FACTS ABOUT C

(This should be moved to early in the course notes.) First, we’ll need the definition of
O(1) for a projective bundle π : PE → B. There is a “tautological” subline bundle of π∗E;
this is defined to beOP (−1) (andOP (n) is defined to be the appropriate multiple = tensor
power of this).

You can check:

Exercise.

(a) This agrees with the definition of O(1) on a projective space (in the case where E
is a point).

(b) In the general case, the restriction of OP (1) to a fiber of π is O(1) on the fiber. (This
is basically immediate from (a).)

(c) In the case where dim B = 1 and dim P = 2, O(1) · F = 1 for any fiber F . (This is
basically immediate from (b); and it generalizes to projective bundles of arbitrary
dimension once we have intersection theory.)

Proposition. Suppose π : S → C is a geometrically ruled surface, corresponding to rank
2 locally free sheaf E. Let h = OS(1) ∈ Pic S or H2(S, Z) Then:

(i) Pic S = π∗ Pic C ⊕ Zh,
(ii) H2(S, Z) = Zh + Zf , where f is the class of a fiber,

(iii) h2 = deg E,
(iv) [K] = −2h + (deg E + 2g(C)− 2)f in H2(S, Z).

Remarks.

• This tells us about the intersection theory on S.
• (i) and (ii) are true for P1-bundles over an arbitrary base. There are also analogues

of (iii) and (iv) over an arbitrary base.
• Note that h · f = 1.
• (ii) follows from (i), as H2 is a quotient of Pic.
• Assuming (ii) and (iii), proof of (iv) is an exercise: [K] = ah + bf in H2(S, Z). Use

the genus formula for a fiber F to get a = −2, and the genus formula for a section
to get b.

Proof of (i). We get a map from π∗ Pic C⊕Zh → Pic S. It is injective: suppose (π∗L, nh) 7→ 0;
then by restricting to a fiber F , we get n = 0; by restricting to a section, we get L = 0.

Surjectivity: Any element of Pic S is of the form D + mh where D · F = 0. I claim that
D = π∗D′ for some D′ on C. Here’s why. Consider Dn := D + nF .

I claim that h0(K −Dn) = 0 for n � 0. Reason: take a very ample divisor class [H] on
S, so [H] · F > 0. Choose n big enough that [H] · (K −Dn) < 0. If h0(K −Dn) > 0, then
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there is a non-zero section. There is a section of O(H) whose zero set is an effective curve
meeting this zero-set. But H · (K −Dn) < 0, contradiction.

Now D2
n = D2, and Dn ·K = D ·K − nF ·K = D ·K − 2n, so by Riemann-Roch:

h0(Dn)− h1(Dn) + h2(Dn) = χ(OS) +
1

2
(D2

n −Dn ·K)

⇒ h0(Dn) ≥ 0 +
1

2
(D2 −D ·K + 2n) > 0.

Let E ∈ |Dn| be the zero-set of a non-zero section. Then E · F ′ = 0 for every fiber F ′, so E
must be a union of fibers with multiplicity, i.e. E is the pullback of some points on C.

Proof of (iii). ) Define c2(E) := χ(OS)−χ(E)+χ(∧2E). Motivation: If 0 → L → E → M →
0, we want c2(E) = L ·M . Well,

L ·M = L∗ ·M∗ = χ(OS)− χ(L)− χ(M) + χ(L⊗M) = χ(OS)− χ(E) + χ(∧2E) = c2(E).

Apply this now to π∗E on S. There is an exact sequence on C: 0 → L → E → M → 0, so
c2(π

∗E) = (π∗L ·π∗M) = 0. From here on, this argument is “dual” to the one I presented
in class, which used a different definition of projective bundle. Also,

0 → O(−1) → π∗E → Q → 0.

Hence h · [Q] = 0. Also, taking the “determinant” of the short exact sequence, we get
Q ∼= (π∗ ∧2 E)⊗OS(1), from which [Q] = h + π∗[∧2(E)]. Hence

0 = h · [Q] = h2 + h · π∗(∧2E) = h2 + deg E,

and we’re done. �

Remark. Now that we’ve defined c2, we can describe Noether’s theorem as χ(OS) =
1
12

(c2(TS) + K2
S).
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