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To avoid constantly rederiving the value of h1(OP1(n)), let me just note for future (and
past) reference that it vanishes if n ≥ −1, by our calculations of h0 and Serre duality or
Riemann-Roch.

1. RULED SURFACES, CONTINUED

Last day, we began talking about ruled surfaces.

A surface is ruled if it is birationally equivalent to C × P1, where C is a smooth curve.

A surface S → C is geometrically ruled such that the fibers are all isomorphic to P1. We’re
in process of proving that this is equivalent to

(a) S is a P1-bundle over C,
(b) S is the projectivization of a rank 2 vector bundle E over C.

Clearly (b) implies (a) implies geometrically ruled.

The theorem we’re in the process of proving is:

Noether-Enriques Theorem. Suppose π : S → C is geometrically ruled. Then S is
of type (b) above, i.e. it is the projectivization of some rank 2 invertible sheaf / vector
bundle.

We’re proving more generally: Suppose π : S → C, and x ∈ C such π is smooth over
C and π−1(x) is isomorphic to P1. Then there is a Zariski-open subset U ⊂ C containing x
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and a commutative diagram

π−1(U)
∼→ U × P1

π

↘ ↙
U.

Three-step proof. At this point, we’ve completed step 2, and we know that there is a
divisor H of S such that H · F = 1.

Hence the result will follow from:

Proposition. Suppose π : X → Y (with no restrictions on dimension), and x ∈ Y , π−1(x)
is isomorphic to P1, and there is a divisor H on X meeting π∗(x) with multiplicity 1. Then
there is a Zariski-open subset U ⊂ Y containing x and a commutative diagram

π−1(U)
∼→ U × P1

π

↘ ↙
U.

Proof. I’ll prove this in the case where dimY = 1 and Y is smooth, but if you’re quite
happy with the argument, make the necessary adjustments in your head to make it work.
To what extent can you do away with smoothness assumptions?

We now have our line bundle H such that H · F = 1, where F = π−1(x). Twist

0→ OS(−F )→ OS
rest.→ OF → 0

by H + rF to get

0→ OS(H + (r − 1)F )→ OS(H + rF )
rest.→ OF (1)→ 0.

Take the long exact sequence:

H0(S,OS(H+rF ))
rest.→ H0(F,OF (1))→ H1(S,OS(H+(r−1)F ))→ H1(S,OS(H+rF ))→ 0.

For r � 0, the dimension of H1(S,OS(H + rF )) must stabilize. So restrict to this range,
and we get:

H0(S,OS(H + rF ))
rest.→ H0(F,OF (1))→ 0.

h0(F,OF (1)) = 2, so let V be a sub vector space of H0(S,OS(H + rF )) of dimension 2 that
surjects onto H0(F,OF (1)). This gives us a one-dimensional linear system (such things
are called pencils), inducing:

|V | : S 99K P1.

This is an honest-to-goodness morphism on F (draw picture). The fixed components
must then be components of fibers of π, and the fixed points lie on other fibers of π.

Let {x1, . . . , xm} be the set of points of C where the fibers contain fixed components, or
fixed points, or where the fibers are reducible. We thus get a morphism S−π−1{x1, . . . , xm} →
(C − {x1, . . . , xm})× P1. This is an isomorphism.
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Remark. If you parse this argument, you will see that the locally free sheaf you are projec-
tivizing is π∗(OS(H + iE)) = π∗(OS(H))⊗OC(i× (the point x)). Later today, we will see
that the projectivization of a rank 2 locally free sheaf is the same as the projectivization of
that sheaf twisted by a line bundle, so we could just as well have taken π∗(OS(H)), and
the result is independent of k.

We’ll now discuss geometrically ruled surfaces at some length.

Lemma for future use. Suppose π : S → C is a surjective morphism from a surface to a
curve, with connected fibers, and F =

∑
i niFi is a reducible fiber of π. Then F 2

i < 0 for all
i.

(Aside: more generally, the intersection matrix of the Fi’s is almost negative definite. It
has all negative eigenvalues except for one zero eigenvalue corresponding to F 2 = 0.)

Proof. 0 = Fi · F = Fi ·
∑

j njFj =
∑

j nj(Fi · Fj) = niF
2
i +

∑
j njFi · Fj > niF

2
i .

Proposition. Let S be a minimal surface, C a smooth curve, π : S → C with generic fiber
isomorphic to P1. Then S is geometrically ruled by π, i.e. all fibers are isomorphic to P1.

Proof. Let F be a fiber of π, so F 2 = 0, F ·K = −2. F can’t be multiple, as described earlier.
So we’ll show that it can’t be reducible. If it were, then let F =

∑
niFi be a reducible fiber.

Fi ·K = F 2
i + Fi ·K = 2gi − 2 ≥ −2

from which Fi · K ≥ −1. If equality holds, then gi = 0 and F 2
i = −1, in which case by

Castelnuovo’s criterion Fi is an exceptional curve; but we said that S was minimal. So in
fact K · Fi ≥ 0, from which K · F ≥ 0, contradicting F ·K = −2.

Remark: Elementary transformations. Now is a good time to describe how to get new
geometrically ruled surfaces from old ones. Geometrically: take a point on a fiber, blow
it up. The strict transform has self-intersection

(F strict)2 = (F proper − E)2 = (F proper)2 + E2 = 0 +−1,

so we can blow it down. This is called an elementary transformation. A trick we’ll use later:
If you blow up, then to compute the self-intersection of the proper transform, take the
self-intersection of the original divisor, and subtract the multiplicity of the original curve
at the point.

Theorem (Minimal models of C × P1 for C irrational, i.e. not ∼= P1). Let C be a curve
not isomorphic to P1. The minimal models of C × P1 are the geometrically ruled surfaces
over C.

(We’ll deal with the rational case soon.)

Proof. First, a geometrically ruled surface π : S → C has no exceptional curves. Reason: If
there were one, where would it be? It couldn’t surject onto C, as by the Riemann-Hurwitz
formula there are no morphisms from P1 onto a curve of positive genus. It can’t lie in a
fiber, as it would then be a fiber, and fibers have self-intersection 0, not −1.
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Now let S be a minimal surface, with a birational map φ : S 99K C × P1, and let pr1

be the projection of C × P1 → C. Then we have pr1 ◦ φ : S 99K C. By the elimination of
indeterminacy theorem, we have

S ′

ε

↙
f

↘
S

pr1◦φ
99K C

where f is a morphism and ε is a combination of blow-ups ε1 ◦ · · · ◦ εn. Take n to be the
minimal number needed. We’ll see that n = 0, and hence that the bottom rational map is
actually a morphism by the previous Proposition!

If n > 0, then consider
S ′

εn

↙
f

↘
Sn−1 99K C

Then the exceptional divisor of εn must map to a fixed point ofC, so by the second univer-
sal property of blowing-up, the horizontal rational map is also a morphism, contradicting
the minimality of n.

All that’s left is Exercise: Apply hte previous Proposition to finish off the proof.

2. GEOMETRICALLY RULED SURFACES AND PROJECTIVIZATIONS OF RANK 2 LOCALLY
FREE SHEAVES

Proposition. Every geometrically ruled surface over C is C-isomorphic to PC(E) for
some rank 2 locally free sheaf (vector bundle) over C. The bundles PC(E) and PC(E ′)
are isomorphic (over C) iff there is an invertible sheaf (line bundle) L on C such that
E ′ ∼= E ⊗ L.

So if we want to understand geometrically ruled surfaces, we are reduced to under-
standing rank 2 vector bundles. Moreover, we can twist these vector bundles by line
bundles, we can reduce things farther. Define the degree of a rank 2 sheaf by degE =
deg(∧2E). Then deg(E ⊗ L) = degE + 2 degL, so we can restrict to the case of rank 2
invertible sheaves of degree 0 and 1 if we wanted.

Proof. By the Noether-Enriques theorem, a geometrically ruled surface over C is lo-
cally trivial (in the Zariski topology). Thus these projective bundles are classified by
H1(C,AutU(U×P1) = PGL(2,OC)). (Warning: This group PGL(2) is nonabelian!) (Sketch
identification.)

From the long exact sequence for 1→ O∗C → GL(2,OC)→ PGL(2,OC)→ 1, we get:

Pic(C)→ H1(C,GL(2,OC))→ H1(C,PGL(2,OC))→ H2(C,O∗C).
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The term on the right is 0 for dimensional reasons (in the Zariski topology, all cohomology
vanishes above the dimension) so we have:

Pic(C)→ H1(C,GL(2,OC))→ H1(C,PGL(2,OC))→ 0.

The second term parametrizes rank 2 vector bundles. Now as an exercise, you can check
that (i) The map from the second term to the third is the “take projectivization” map. (ii)
The action of the first term on the second is by tensoring the vector bundle by the line
bundle.

Next time we’ll prove:

Lemma: All rank 2 locally free sheaves are filtered nicely by invertible sheaves. Sup-
pose E is a rank 2 locally free sheaf on a curve C. There exists an exact sequence 0→ L→
E →M → 0 with L,M ∈ PicC. Terminology: E is an extension of M by L.

As an immediate application, we have Riemann-Roch for rank 2 vector bundles on a curve:

χ(E) = χ(L) + χ(M) = deg(L)− g + 1 + degM − g + 1 = degE + 2(1− g).

In fact, a similar lemma and similar follow-up show Riemann-Roch for rank d vector bundles
on a curve:

χ(E) = degE + d(1− g).
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