MODERN ALGEBRA (MATH 210) EXAM PRACTICE PROBLEMS AND GALOIS THEORY PRACTICE PROBLEMS

The final exam will have roughly 9 problems, with roughly 2 on groups, 2 on rings, 1 on Jordan-Holder, 1 on semidirect products, and 3 on Galois theory.

1. PRACTICE PROBLEMS FOR THE EXAM

P1. Show that the rotation group of the cube is isomorphic to S_4 .

P2. If *A* and *B* are subgroups of finite index in a group *G*, and the indices of *A* and *B* in *G* are relatively prime, show that G = AB.

P3. Suppose *p* is an odd prime.

- (a) Show that exactly half of $(\mathbb{Z}/p\mathbb{Z})^* = \{1, 2, ..., p-1\}$ are squares modulo *p*. (*Hint:* consider the structure of the group $(\mathbb{Z}/p\mathbb{Z})^*$.)
- (b) Prove that $a^{(p-1)/2} \equiv \pm 1 \pmod{p}$ for all $a \in (\mathbb{Z}/p\mathbb{Z})^*$.
- (c) Show that $a^{(p-1)/2} \equiv 1 \pmod{p}$ if and only if a is a perfect square in $(\mathbb{Z}/p\mathbb{Z})^*$.
- (d) Show that if neither a nor b are perfect squares modulo p, then ab is a perfect square modulo p.

P4. Are the following ideals prime in $\mathbb{C}[x, y]$?

- (a) (x, y 1),
- **(b)** (x, y^2) ,
- (c) $(y x^2, y 1)$.

P5. If $\alpha \in E$ an extension of *F*, and $f(x), g(x) \in F[x]$ with $f(\alpha) = g(\alpha) = 0$, and *f* is irreducible, show that f(x) is a factor of g(x).

P6. Let p and q be distinct primes.

- (i) Prove that every group of order pq is solvable. (*Hint:* show that the group can't be simple.)
- (ii) Prove that every group *G* of order p^2q is solvable. (*Hint:* Show that *G* can't be simple.)

P7. Suppose $f(x) \in F[x^p]$ is irreducible of positive degree. Show that f(x) is *not* separable.

Date: Thursday, December 5, 2002.

- **P8**.
 - (a) Suppose the splitting field E of a cubic f(x) over \mathbb{Q} has Galois group S_3 , and f(x) has roots x_1, x_2, x_3 . Show that E^{A_3} is generated (over \mathbb{Q}) by $\Delta = (x_1 x_2)(x_1 x_3)(x_2 x_3)$.
- (b) Show that the splitting field *E* of a cubic $f(x) = x^3 + ax^2 + bx + c$ over \mathbb{Q} has Galois group $\mathbb{Z}/3\mathbb{Z}$ if and only if $\sqrt{\Delta} \in \mathbb{Q}$, where $\Delta := a^2b^2 4b^3 4a^3c 27c^2 + 18abc$. (If *E* has roots x_1, x_2, x_3 , then you may use the fact that $[(x_1 x_2)(x_1 x_3)(x_2 x_3)]^2 = \Delta$, which you could have computed with some effort from a problem on the last problem set.)

P9. Let *E* be the splitting field of

$$f(x) = (x^7 - 1)/(x - 1) = x^6 + x^5 + x^4 + x^3 + x^2 + x^1 + 1$$

over \mathbb{Q} . Let ζ be a zero of f(x), i.e. a primitive seventh root of 1.

- (a) Show that f(x) is irreducible. (*Hint:* consider f(y + 1) and use Eisenstein.)
- (b) Find the degree of the extension E/\mathbb{Q} .
- (c) Show that the Galois group of E/\mathbb{Q} is cyclic, and find an explicit generator.
- (d) Let $\beta = \zeta + \zeta^2 + \zeta^4$. Show that the intermediate field $\mathbb{Q}(\beta)$ is actually $\mathbb{Q}(\sqrt{-7})$. (*Hint:* first show that $[\mathbb{Q}(\beta) : \mathbb{Q}] = 2$ by finding a linear dependence over \mathbb{Q} among $\{1, \beta, \beta^2\}$.)
- (e) Let $\gamma_q = \zeta + \zeta^q$. Find a q such that $\mathbb{Q}(\gamma_q)$ is a degree 3 extension of \mathbb{Q} . (*Possible hint:* use (c).) Is this extension Galois?

2. GALOIS THEORY PRACTICE PROBLEMS

G1. Suppose *G* is the Galois group of the Galois extension E/F, and H < G is a subgroup (not necessarily normal) with α conjugates. Find $|\operatorname{Aut}(H/k)|$ in terms of α , |G|, |H|.

G2. Describe the splitting field of $x^3 - 2$ over \mathbb{Q} , and all intermediate fields.

G3. Suppose *F* is characteristic 2, and E/F is a degree 2 extension with $E = F(\alpha)$, and α satisfying $T^2 + bT + c = 0$. What is the condition on *b* and *c* such that E/F is Galois?

G4. Show that the polynomial $t^5 - 4t + 2$ is not soluble by radicals.