18.014 QUIZ I SOLUTIONS

The following are (fairly complete) sketches. If you have any questions, please ask!

1. (16 points)
(a) State the triangle inequality for $|a+b|$.
(b) Show that $|x|-|y| \leq|x-y|$ for all x, y.

Solution. (a) For any real numbers a and $b,|a+b| \geq|a|+|b|$. (b) Substitute $a=y$ and $b=x-y$ in (a), and rearrange.
2. (16 points) State the Riemann condition for the existence of the integral $\int_{a}^{b} f$, where f is a function on $[a, b]$.

Solution. Suppose f is defined on $[a, b]$. Then f is integrable on $[a, b]$ if and only if given any $\epsilon>0$, there exist, correspondingly, step functions s and t, with $s \leq f \leq t$ on $[a, b]$, such that

$$
\int_{a}^{b} t-\int_{a}^{b} s<\epsilon
$$

Warning: it is essential to say something logically equivalent to this, and not, for example, that there exist step functions s and t with $s \leq f \leq t$ on $[a, b]$ such that $\int_{a}^{b} t-\int_{a}^{b} s<\epsilon$, where ϵ is any positive number. Can you see why this is not the same thing?
3. (16 points) Evaluate $\int_{-1}^{2} x^{2}[x] d x$, where [•] denotes the "greatest integer" function.

Solution.

$$
\begin{aligned}
\int_{-1}^{2} x^{2}[x] d x & =\int_{-1}^{0} x^{2}[x] d x+\int_{0}^{1} x^{2}[x] d x+\int_{1}^{2} x^{2}[x] d x \\
& =\int_{-1}^{0}\left(-x^{2}\right) d x+\int_{0}^{1} 0 d x+\int_{1}^{2} x^{2} d x \\
& =\left.\left(-x^{3} / 3\right)\right|_{-1} ^{0}+0+\left.\left(x^{3} / 3\right)\right|_{1} ^{2} \\
& =-1 / 3+7 / 3 \\
& =2
\end{aligned}
$$

(You don't need to give the names of the properties used; but note that every line is something that we've seen.)
4. (16 points) Suppose that $\int_{0}^{1} \frac{x}{x^{6}+1} d x=a$ and $\int_{0}^{2} \frac{x}{x^{6}+1} d x=b$. Express $\int_{-2}^{-1} \frac{3 x}{x^{6}+1}$ in terms of a and b.

Solution.

$$
\begin{aligned}
\int_{-2}^{-1} \frac{3 x}{x^{6}+1} & =\int_{0}^{-1} \frac{3 x}{x^{6}+1}-\int_{0}^{-2} \frac{3 x}{x^{6}+1} \\
& =3 \int_{0}^{-1} \frac{x}{x^{6}+1}-3 \int_{0}^{-2} \frac{x}{x^{6}+1} \\
& =3 \int_{1}^{0} \frac{(-x)}{(-x)^{6}+1}-3 \int_{2}^{0} \frac{(-x)}{(-x)^{6}+1} \\
& =-3 \int_{1}^{0} \frac{x}{x^{6}+1}+3 \int_{2}^{0} \frac{x}{x^{6}+1} \\
& =3 \int_{0}^{1} \frac{x}{x^{6}+1}-3 \int_{0}^{2} \frac{x}{x^{6}+1} \\
& =3 a-3 b
\end{aligned}
$$

The most common answer was $3 b-3 a$. There is a quick way of seeing that this can't be correct: can you see why $3 b-3 a$ must be positive, and why $\int_{-2}^{-1} \frac{3 x}{x^{6}+1}$ must be negative?
5. (16 points) Consider the solid in three-space that lies above $z=0$, such that the cross-section for given z is a square with sides parallel to the x and y axes having as left edge the line segment connecting the point $(z, 0)$ on the x-axis to the point $\left(z, z^{3}\right)$ on the curve $y=x^{3}$. Find the volume of the portion of the solid between $z=0$ and $z=a$, where $a>0$.

Solution. The cross-section of the solid for given z (between 0 and a) is a square of side length z^{3}, hence of area z^{6}. Thus the volume is

$$
\int_{0}^{a} z^{6} d z=a^{7} / 7
$$

6. (20 points) Suppose x and y are real numbers with $x<y$.
(a) If $y-x>1$, show that there is an integer z such that $x<z<y$. (You may use standard properties of the integers. If you use the well-ordering principle, the Archimedean property, or the principle of induction, mention the fact that you are using it.)
(b) Even if $y-x$ is not greater than 1 , show that there is a rational number r such that $x<r<y$. (Hint: Why is there a positive integer n such that $y-x>1 / n$? Then consider $n x<n y$ instead of $x<y$.)

Solution.

(a) Solution using the well-ordering principle.

We use a useful lemma: Any nonempty set S of integers bounded below has a minimal element.

Proof of lemma: let b be the lower bound. Then there exists an integer n less than b. Let $S^{\prime}=\{x \mid x+n \in S\}$. Then S^{\prime} is a set of integers that are positive (as if $x \in S^{\prime}$, then $x+n \geq b$, from which $x \geq b-n>0$), and S^{\prime} is nonempty. By the well-ordering principle, S^{\prime} has a minimal element. Then $\min \left(S^{\prime}\right)+n$ is a minimal element of S.

We can now solve the problem. Let S be the set of integers greater than x. It is nonempty (there is an integer greater than x) and bounded below (by x), so it has a minimal element; call it z. Then $z-x \leq 1$. As $y-z=(y-x)-(z-x) \geq y-x-1>0$, $y>z$, and we're done.

Solution, not using the well-ordering principle. The set of integers \mathbb{Z} consists of positive integers, zero, and negatives of positive integers. We split the proof into cases.

Case 1: $x \geq 1$. Let $S=\{a \in P \mid a \leq x\}$. S has at least one element, 1 , and is bounded above by $x+1$. Therefore by the least upper bound axiom there is a real number $s=\sup S$. Since $s-1<s, s-1$ is not an upper bound of S. Therefore there exists $k \in S$ such that $k>s-1$. Then $k+1>s=\sup S$ and therefore $k+1 \notin S$. Since $k \in \mathbb{Z}^{+}$, it belongs to every inductive set. Therefore $k+1$ belongs to every inductive set, and $k+1 \in \mathbb{Z}^{+}$. Since $k+1 \notin S, k+1>x$. We have $k \leq x<k+1 \leq x+1<y$, from which $x<k+1<y$.

Case 2: $x<1, y>1$. Then $x<1<y$, and we're done.
Case 3: $x<1,0<y \leq 1$. Then $x<0<y$, and we're done.

Case 4: $x<1,-1<y \leq 0$. Then $x<-1<y$, and we're done.
Case 5: $x<1, y \leq-1$. Then $-y \geq 1$, and from the first case applied to the pair $-y,-x$, we know there is a positive integer z such that $-y<z<-x$. We then have $x<-z<y$, where $-z$ is an integer.
(b) $y-x>0$, so $1 /(y-x)>0$ as well. Now given any real number u, there is an integer n greater than it. (This is Theorem I. 29 in Apostol; it was used to prove the Archimedean property; this was also used in the first solution of (a) above.) Apply this fact in the case $u=1 /(y-x)$; then $n>1 /(y-x)>0$, and $y-x>1 / n$. Hence $n y-n x>1$. By part (a) (with x and y replaced by $n x$ and $n y$), there is an integer z such that $n x<z<n y$, i.e. $x<z / n<y$. Thus z / n is a rational number between x and y.

