
18.014 QUIZ I SOLUTIONS

The following are (fairly complete) sketches. If you have any questions, please
ask!

1. (16 points)

(a) State the triangle inequality for |a+ b|.
(b) Show that |x| − |y| ≤ |x− y| for all x, y.

Solution. (a) For any real numbers a and b, |a + b| ≥ |a| + |b|. (b) Substitute
a = y and b = x− y in (a), and rearrange.

2. (16 points) State the Riemann condition for the existence of the integral∫ b
a
f , where f is a function on [a, b].

Solution. Suppose f is defined on [a, b]. Then f is integrable on [a, b] if and
only if given any ε > 0, there exist, correspondingly, step functions s and t, with
s ≤ f ≤ t on [a, b], such that ∫ b

a

t−
∫ b

a

s < ε.

Warning: it is essential to say something logically equivalent to this, and not, for
example, that there exist step functions s and t with s ≤ f ≤ t on [a, b] such that∫ b
a
t −

∫ b
a
s < ε, where ε is any positive number. Can you see why this is not the

same thing?

3. (16 points) Evaluate
∫ 2

−1
x2[x]dx, where [·] denotes the “greatest integer”

function.

Solution. ∫ 2

−1

x2[x]dx =
∫ 0

−1

x2[x]dx+
∫ 1

0

x2[x]dx+
∫ 2

1

x2[x]dx

=
∫ 0

−1

(−x2)dx+
∫ 1

0

0dx+
∫ 2

1

x2dx

=
(
−x3/3

)∣∣0
−1

+ 0 +
(
x3/3

)∣∣2
1

= −1/3 + 7/3
= 2.

(You don’t need to give the names of the properties used; but note that every line
is something that we’ve seen.)
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4. (16 points) Suppose that
∫ 1

0
x

x6+1dx = a and
∫ 2

0
x

x6+1dx = b. Express∫ −1

−2
3x
x6+1 in terms of a and b.

Solution. ∫ −1

−2

3x
x6 + 1

=
∫ −1

0

3x
x6 + 1

−
∫ −2

0

3x
x6 + 1

= 3
∫ −1

0

x

x6 + 1
− 3

∫ −2

0

x

x6 + 1

= 3
∫ 0

1

(−x)
(−x)6 + 1

− 3
∫ 0

2

(−x)
(−x)6 + 1

= −3
∫ 0

1

x

x6 + 1
+ 3

∫ 0

2

x

x6 + 1

= 3
∫ 1

0

x

x6 + 1
− 3

∫ 2

0

x

x6 + 1
= 3a− 3b

The most common answer was 3b − 3a. There is a quick way of seeing that this
can’t be correct: can you see why 3b−3a must be positive, and why

∫ −1

−2
3x
x6+1 must

be negative?

5. (16 points) Consider the solid in three-space that lies above z = 0, such that
the cross-section for given z is a square with sides parallel to the x and y axes
having as left edge the line segment connecting the point (z, 0) on the x-axis to
the point (z, z3) on the curve y = x3. Find the volume of the portion of the solid
between z = 0 and z = a, where a > 0.

Solution. The cross-section of the solid for given z (between 0 and a) is a square
of side length z3, hence of area z6. Thus the volume is∫ a

0

z6dz = a7/7.

6. (20 points) Suppose x and y are real numbers with x < y.

(a) If y − x > 1, show that there is an integer z such that x < z < y. (You may
use standard properties of the integers. If you use the well-ordering principle,
the Archimedean property, or the principle of induction, mention the fact that
you are using it.)

(b) Even if y − x is not greater than 1, show that there is a rational number r
such that x < r < y. (Hint: Why is there a positive integer n such that
y − x > 1/n? Then consider nx < ny instead of x < y.)

Solution.

(a) Solution using the well-ordering principle.
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We use a useful lemma: Any nonempty set S of integers bounded below has a
minimal element.

Proof of lemma: let b be the lower bound. Then there exists an integer n less
than b. Let S′ = {x|x+ n ∈ S}. Then S′ is a set of integers that are positive (as
if x ∈ S′, then x+ n ≥ b, from which x ≥ b− n > 0), and S′ is nonempty. By the
well-ordering principle, S′ has a minimal element. Then min(S′) + n is a minimal
element of S.

We can now solve the problem. Let S be the set of integers greater than x. It is
nonempty (there is an integer greater than x) and bounded below (by x), so it has a
minimal element; call it z. Then z−x ≤ 1. As y−z = (y−x)−(z−x) ≥ y−x−1 > 0,
y > z, and we’re done.

Solution, not using the well-ordering principle. The set of integers Z consists of
positive integers, zero, and negatives of positive integers. We split the proof into
cases.

Case 1: x ≥ 1. Let S = {a ∈ P |a ≤ x}. S has at least one element, 1, and is
bounded above by x+ 1. Therefore by the least upper bound axiom there is a real
number s = supS. Since s − 1 < s, s − 1 is not an upper bound of S. Therefore
there exists k ∈ S such that k > s − 1. Then k + 1 > s = supS and therefore
k+ 1 /∈ S. Since k ∈ Z+, it belongs to every inductive set. Therefore k+ 1 belongs
to every inductive set, and k + 1 ∈ Z+. Since k + 1 /∈ S, k + 1 > x. We have
k ≤ x < k + 1 ≤ x+ 1 < y, from which x < k + 1 < y.

Case 2: x < 1, y > 1. Then x < 1 < y, and we’re done.

Case 3: x < 1, 0 < y ≤ 1. Then x < 0 < y, and we’re done.

Case 4: x < 1, −1 < y ≤ 0. Then x < −1 < y, and we’re done.

Case 5: x < 1, y ≤ −1. Then −y ≥ 1, and from the first case applied to the pair
−y, −x, we know there is a positive integer z such that −y < z < −x. We then
have x < −z < y, where −z is an integer.

(b) y − x > 0, so 1/(y − x) > 0 as well. Now given any real number u, there is
an integer n greater than it. (This is Theorem I.29 in Apostol; it was used to prove
the Archimedean property; this was also used in the first solution of (a) above.)
Apply this fact in the case u = 1/(y−x); then n > 1/(y−x) > 0, and y−x > 1/n.
Hence ny− nx > 1. By part (a) (with x and y replaced by nx and ny), there is an
integer z such that nx < z < ny, i.e. x < z/n < y. Thus z/n is a rational number
between x and y.

3


