Homework 1 Solutions
(If you find any errors, please send an e-mail to farana at stanford dot edu)

Problem 1

Let \((M, d)\) be a metric space. Prove that

\[
 d'(x, y) = \frac{d(x, y)}{1 + d(x, y)} \\
 d''(x, y) = \min\{d(x, y), 1\}
\]

define metrics on \(M\). Prove that \(d'\) and \(d''\) are bounded by 1.

Solution. We first study the properties of \(d'\):

1. As \(d\) takes values in \([0, \infty)\), given that it is a metric, it is clear that \(d'\) takes values in \([0, \infty)\).

2. Notice that \(d'(x, y) = 0\) if and only if \(d(x, y) = 0\) if and only if \(x = y\), the last equivalence because \(d\) is a metric.

3. As \(d\) is symmetric, given that it is a metric, it is clear that \(d'\) is symmetric.

4. Let \(x, y, z \in M\) be arbitrary. As \(d\) is a metric we know that \(d(x, z) \leq d(x, y) + d(y, z)\). Using the fact that the map \(x \mapsto 1/(1 + x)\) is increasing for \(x \in [0, \infty)\) we have:

\[
 d'(x, z) = \frac{d(x, z)}{1 + d(x, z)} \\
 \leq \frac{d(x, y) + d(y, z)}{1 + d(x, y) + d(y, z)} \\
 = \frac{d(x, y)}{1 + d(x, y) + d(y, z)} + \frac{d(y, z)}{1 + d(x, y) + d(y, z)} \\
 \leq \frac{d(x, y)}{1 + d(x, y)} + \frac{d(y, z)}{1 + d(y, z)} \\
 = d'(x, y) + d'(y, z)
\]

5. For any \(x, y \in M\) we have:

\[
 d'(x, y) = \frac{d(x, y)}{1 + d(x, y)} \leq \frac{d(x, y)}{d(x, y)} = 1
\]

We now study the properties of \(d''\):

1. As \(d\) takes values in \([0, \infty)\), given that it is a metric, it is clear that \(d''\) takes values in \([0, \infty)\).
2. Notice that \(d''(x, y) = 0 \) if and only if \(d(x, y) = 0 \) if and only if \(x = y \), the last equivalence because \(d \) is a metric.

3. As \(d \) is symmetric, given that it is a metric, it is clear that \(d' \) is symmetric.

4. Let \(x, y, z \in M \) be arbitrary. As \(d \) is a metric we know that \(d(x, z) \leq d(x, y) + d(y, z) \). Notice then that:

\[
\begin{align*}
 d''(x, z) &= \min\{d(x, z), 1\} \\
 &\leq \min\{d(x, y) + d(y, z), 1\} \\
 &\leq \min\{d(x, y), 1\} + \min\{d(y, z), 1\} \\
 &= d''(x, y) + d''(y, z)
\end{align*}
\]

5. For any \(x, y \in M \) we have:

\[
 d''(x, y) = \min\{d(x, y), 1\} \leq 1
\]

Problem 2

Let \(H^\infty \) denote the set of all real sequences \(\{a_n\} \) such that \(|a_n| \leq 1 \) for every positive integer \(n \). \(H^\infty \) is called the Hilbert cube.

(a) Let \(\{a_n\}, \{b_n\} \in H^\infty \). Prove that the series

\[
\sum_{n=1}^{\infty} \frac{|a_n - b_n|}{2^n}
\]

converges.

Solution. We compute:

\[
\sum_{n=1}^{\infty} \frac{|a_n - b_n|}{2^n} \leq \sum_{n=1}^{\infty} \frac{|a_n| + |b_n|}{2^n} \leq \sum_{n=1}^{\infty} \frac{2}{2^n} = \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} < \infty
\]

where in the last line we used the fact that the geometric series of \(1/2 \) converges.

(b) Prove that

\[
d(\{a_n\}, \{b_n\}) = \sum_{i=1}^{\infty} \frac{|a_n - b_n|}{2^n}
\]

defines a metric on \(H^\infty \).

Solution. We study the properties of \(d \):

(a) It is clear that \(d \) takes values in \([0, \infty)\). The values of \(d \) are finite because of Part (a).
(b) Notice that \(d(x, y) = 0 \) if and only if \(|a_n - b_n| = 0 \) for all \(n \in \mathbb{N} \) if and only if \(a_n = b_n \) for all \(n \in \mathbb{N} \) if and only if \(\{a_n\} = \{b_n\} \) in \(H^\infty \).

(c) It is clear that \(d \) is symmetric.

(d) Let \(\{a_n\}, \{b_n\}, \{c_n\} \in H^\infty \) be arbitrary. We compute:

\[
d(\{a_n\}, \{c_n\}) = \sum_{i=1}^{\infty} \frac{|a_n - c_n|}{2^n} \\
\leq \sum_{i=1}^{\infty} \frac{|a_n - b_n| + |b_n - c_n|}{2^n} \\
= \sum_{i=1}^{\infty} \frac{|a_n - b_n|}{2^n} + \sum_{i=1}^{\infty} \frac{|b_n - c_n|}{2^n} \\
= d(\{a_n\}, \{b_n\}) + d(\{b_n\}, \{c_n\})
\]

Problem 3

Let \(H^\infty \) be the Hilbert cube as defined in Problem 2 (Exercise 35.9).

i) Consider a sequence \(\{x^{(n)}\} \) of points in \(H^\infty \). Show that \(\{x^{(n)}\} \) converges to \(x \in H^\infty \) if and only if it converges coordinate-wise, i.e. if and only if, for each \(i \), the sequence of real numbers \(x^{(n)}_i \) which are the \(i \)th coordinates of \(x^{(n)} \) converges to the \(i \)th coordinate of \(x \).

Solution. Suppose first that \(\{x^{(n)}\} \to x \) when \(n \to \infty \). It follows that \(d(x^{(n)}, x) \to 0 \) when \(n \to \infty \). Notice that this implies \(|x^{(n)}_i - x_i| \to 0 \) when \(n \to \infty \) for all \(i \in \mathbb{N} \), else \(d(x^{(n)}, x) \) would be bounded below by some positive constant. It follows that \(x^{(n)}_i \to x_i \) when \(n \to \infty \) for all \(i \in \mathbb{N} \).

Suppose now that \(x^{(n)}_i \to x_i \) when \(n \to \infty \) for all \(i \in \mathbb{N} \). We know that the series \(\sum_{i=1}^{\infty} 1/2^i \) is convergent, and so its tail satisfies \(\sum_{i=m}^{\infty} 1/2^i \to 0 \) when \(m \to \infty \). Let \(\epsilon > 0 \) be arbitrary. Let \(m \in \mathbb{N} \) be big enough so that \(\sum_{i=m+1}^{\infty} 1/2^i \leq \epsilon/4 \). As \(\{1, \ldots, n-1\} \) is finite and \(x^{(n)}_i \to x_i \) when \(n \to \infty \) for all \(i \in \{1, \ldots, n-1\} \) we can find \(N \in \mathbb{N} \) such that \(|x^{(n)}_i - x_i| \leq 2^n \epsilon/2m \) for all \(n \geq N \) and all \(i \in \{1, \ldots, n-1\} \). Notice then that for all \(n \geq N \) we have:

\[
d(\{x^{(n)}\}, \{x\}) = \sum_{i=1}^{\infty} \frac{|x^{(n)}_i - x_i|}{2^n} \\
= \sum_{i=1}^{m} \frac{|x^{(n)}_i - x_i|}{2^n} + \sum_{i=m+1}^{\infty} \frac{|x^{(n)}_i - x_i|}{2^n} \\
\leq \sum_{i=1}^{m} \frac{\epsilon}{2m} + 2 \cdot \sum_{i=m+1}^{\infty} \frac{1}{2^n} \\
\leq \frac{\epsilon}{2} + 2 \cdot \frac{\epsilon}{2} \\
\leq \epsilon
\]
It follows that \(d(x^{(n)}, x) \to 0\) when \(n \to \infty\). We conclude that \(\{x^{(n)}\} \to x\) when \(n \to \infty\).

ii) Consider a sequence \(\{x^{(n)}\}\) of points in \(H^\infty\). Show that it has a convergent subsequence (limit in \(H^\infty\)).

\textbf{Solution.} Notice that the sequence \(\{x^{(n)}_i\}\) indexed by \(i \in \mathbb{N}\) is bounded for all \(i \in \mathbb{N}\). The Bolzano-Weierstrass theorem in \([0, 1]\) allows us to find convergent subsequences of these sequences. But we want to be careful on how we obtain such convergent subsequences. The argument that follows is called \textit{diagonal argument} and is used multiple times in real analysis. Start with \(i = 1\). Using the Bolzano-Weierstrass theorem in \([0, 1]\) we find a sequence \(n^{(1)}_k \nearrow \infty\) of integers such that \(x^{(n^{(1)}_k)}_1 \to x_1\) when \(k \to \infty\) for some \(x_1 \in [0, 1]\). Now we use the Bolzano-Weierstrass theorem in \([0, 1]\) over the sequence \(x^{(n^{(1)}_k)}_2\) to find a subsequence \(n^{(2)}_k \nearrow \infty\) of \(n^{(1)}_k\) such that \(x^{(n^{(2)}_k)}_2 \to x_2\) when \(k \to \infty\) for some \(x_2 \in [0, 1]\). We proceed inductively in this way for all \(i \in \mathbb{N}\), finding subsequences \(n^{(i+1)}_k \nearrow \infty\) of \(n^{(i)}_k\) such that \(x^{(n^{(i+1)}_k)}_i \to x_i\) when \(k \to \infty\) for some \(x_{i+1} \in [0, 1]\). Now we consider the sequence of integers \(\{n^{(k)}_k\}\). Notice that \(\{n^{(k)}_k\}\) eventually becomes a subsequence of all of the sequences \(\{n^{(i)}_k\}\). In particular we have \(x^{(n^{(k)}_k)}_i \to x_i\) for all \(i \in \mathbb{N}\). Letting \(x = \{x_i\}\) we see that \(x \in H^\infty\) and by Part i) that \(x^{(n^{(k)}_k)} \to x\) when \(k \to \infty\).

\textbf{Problem 4}

Show that the subspaces \(\ell^1, \ell^2 \subseteq \mathbb{R}^\infty\) satisfy the inclusion \(\ell^1 \subseteq \ell^2\). Show, by finding an example, that the containment is strict. Find a sequence of points \(\{x^{(n)}\} \in \ell^1 \subseteq \ell^2\) that converge in \(\ell^2\) but do not converge in \(\ell^1\).

\textbf{Solution.} Let \(\{a_n\} \in \ell^1\). In particular we have \(a_n \to 0\) when \(n \to \infty\). Then there exists \(N \in \mathbb{N}\) such that \(|a_n| \leq 1\) for all \(n \geq N\). Now we compute:

\[
\sum_{i=1}^{\infty} |a_n|^2 = \sum_{i=1}^{N-1} |a_n|^2 + \sum_{i=N}^{\infty} |a_n|^2 \leq \sum_{i=1}^{N-1} |a_n|^2 + \sum_{i=N}^{\infty} |a_n| < \infty
\]

We conclude that \(\{a_n\} \in \ell^2\). This proves the inclusion \(\ell^1 \subseteq \ell^2\).

The containment is strict because the sequence \(\{a_n\}\) given by \(a_n = 1/n\) belongs to \(\ell^2\) but not to \(\ell^1\) as was seen in Homework 2.

We construct \(\{x^{(n)}\}\) a sequence of elements in \(\ell^1\) that converge in \(\ell^2\) but do not converge in \(\ell^1\). Let \(x^{(n)} \in \ell^1\) be given by \(x^{(n)}_k = 1/k\) if \(k \leq n\) and \(x^{(n)}_k = 0\) if \(k \geq n + 1\). Let \(x \in \ell^2\) be given by \(x_k = 1/k\) for all \(k \in \mathbb{N}\). Notice that \(x^{(n)} \to x\) in \(\ell^2\) when \(n \to \infty\) because the series \(\sum_{k \in \mathbb{N}} 1/k^2\) is...
convergent. On the other hand \(x^{(n)} \not\to x \) in \(\ell^1 \) because the series \(\sum_{k\in\mathbb{N}} 1/k \) diverges to \(+\infty\).

Problem 5

Let \(\{a_n\} \in \ell^1 \) and \(\{b_n\} \in \ell^\infty \). Prove that \(\{a_nb_n\} \in \ell^1 \).

Solution. As \(\{b_n\} \in \ell^\infty \) there exists \(M > 0 \) such that \(|b_n| \leq M \) for all \(n \in \mathbb{N} \). Using this fact and the fact \(\{a_n\} \in \ell^1 \) we get:

\[
\sum_{n=1}^{\infty} |a_nb_n| = \sum_{n=1}^{\infty} |a_n||b_n| \leq \sum_{n=1}^{\infty} |a_n|M = M \sum_{n=1}^{\infty} |a_n| < \infty
\]

We conclude that \(\{a_nb_n\} \in \ell^1 \).

Problem 6

Let \(\{a_n\} \) be a sequence such that \(\{a_nb_n\} \in \ell^1 \) for every sequence \(\{b_n\} \in \ell^1 \). Prove that \(\{a_n\} \in \ell^\infty \). Show (by example) that the above statement is false if \(\ell^\infty \) is replaced by \(c_0 \).

Solution. Suppose by contradiction that \(\{a_n\} \not\in \ell^\infty \). Then we can find a sequence \(n_k \nearrow \infty \) such that \(|a_{n_k}| > 2^k \). Let \(\{b_n\} \) be given by \(b_{n_k} = 1/2^k \) for all \(k \in \mathbb{N} \) and 0 elsewhere. Notice that \(\{b_n\} \in \ell^1 \). Now we compute:

\[
\sum_{n=1}^{\infty} |a_nb_n| \geq \sum_{k=1}^{\infty} |a_{n_k}b_{n_k}| = \sum_{k=1}^{\infty} |a_{n_k}| \frac{1}{2^k} > \sum_{k=1}^{\infty} 1 = \infty
\]

This contradicts the fact \(\{a_nb_n\} \in \ell^1 \). We conclude that \(\{a_n\} \in \ell^\infty \).

It is straightforward to check that the sequence \(\{a_n\} \) given by \(a_n = 1 \) for all \(n \in \mathbb{N} \) provides a counterexample for the claim obtained when \(\ell^\infty \) is replaced with \(c_0 \).

Problem 7

Let \((M,d)\) be a metric space, and let \(d'\) and \(d''\) be defined as in Exercise 35.7 (Problem 1). Let \(\{a_n\} \) be a sequence in \(M \) and let \(a \in M \). Prove that the following statements are equivalent.

(a) \(\{a_n\} \) converges to \(a \) in \((M,d)\).

(b) \(\{a_n\} \) converges to \(a \) in \((M,d')\).

(c) \(\{a_n\} \) converges to \(a \) in \((M,d'')\).
Solution. Suppose that \(a_n \to a \) when \(n \to \infty \) in \((M,d) \). It follows that \(d(a_n,a) \to 0 \) when \(n \to \infty \). Directly from the definition of \(d' \) we see that \(d'(a_n,a) \to 0 \) when \(n \to \infty \). It follows that \(a_n \to a \) when \(n \to \infty \) in \((M,d') \). Suppose now that \(a_n \to a \) when \(n \to \infty \) in \((M,d') \). It follows that \(d'(a_n,a) \to 0 \) when \(n \to \infty \). Directly from the definition of \(d' \) we see that this can only happen if \(d(a_n,a) \to 0 \) when \(n \to \infty \). It follows that \(a_n \to a \) when \(n \to \infty \) in \((M,d) \).

Problem 8

Let \(X \) be a subset of a metric space \(M \). We say that a point \(x \in M \) is an accumulation point of \(X \) if there exists a sequence \(\{x_n\} \) in \(X \) such that \(\lim_{n \to \infty} x_n = x \) and \(x_n \neq x \) for every positive integer \(n \). We let \(X^a \) denote the set of accumulation points of \(X \).

(a) Prove that \(X \) is closed if and only if \(X^a \subseteq X \).

Solution. It is straightforward to check from the definitions that the set of limit points of \(X \) is exactly the union of \(X \) with its accumulation points. It follows at once that \(X \) is closed if and only if every limit point of \(X \) belongs to \(X \) if and only if \(X^a \subseteq X \).

(b) Prove the following form of the Bolzano-Weierstrass theorem: If \(X \) is a bounded infinite subset of \(\mathbb{R} \), the \(X^a \neq \emptyset \).

Solution. As \(X \) is infinite we can construct a sequence \(\{a_n\} \) of distincts points of \(X \). As this sequence is bounded, the usual Bolzano-Weierstrass theorem gives us a sequence of integers \(n_k \not\to \infty \) such that \(a_{n_k} \to a \) for some \(a \in \mathbb{R} \). Notice that \(a \) could potentially equal some of the \(a_{n_k} \). But as the \(a_{n_k} \) are all different, this happens only once, and so we can consider the sequence \(a_{n_k} \) after that moment to see that \(a \in X^a \). We conclude that \(X^a \neq \emptyset \).

Problem 9

Let \(X \subseteq M \) be any subset of a metric space \(M \).

i) Show that the interior \(X^o \) of \(X \) equals the union of all open sets \(Y \subseteq M \) such that \(Y \subseteq X \).

Solution. Consider first \(x \in X^o \). Then \(B_\epsilon(x) \subseteq X \) for some \(\epsilon > 0 \). Now \(B_\epsilon(x) \) is an open set of \(M \) such that \(B_\epsilon(x) \subseteq X \), so it is contained in the union in consideration. As \(x \in B_\epsilon(x) \),
x belongs to the union in consideration. Suppose now that x belong to the union in consideration. The $x \in Y$ for some open set Y of M such that $Y \subseteq X$. As Y is open and $x \in Y$ it follows that $B_\epsilon(x) \subseteq Y$ for some $\epsilon > 0$. But then $B_\epsilon(x) \subseteq Y \subseteq X$ so that by definition $x \in X^\circ$. We conclude that X° equals the union of all open sets $Y \subseteq M$ such that $Y \subseteq X$.

ii) Show that the closure \overline{X} of X equals the intersection of all closed sets $C \subseteq M$ such that $X \subseteq C$.

Solution. Consider first $x \in \overline{X}$. Then there exists a sequence $\{x_n\}$ of points of X such that $x_n \to x$ when $n \to \infty$. Let C be a closed set of M such that $X \subseteq C$. Notice that x_n are points of C and $x_n \to x$ when $n \to \infty$. As C is closed it follows that $x \in C$. We see then that x belongs to the intersection in consideration. We now want to show that the intersection in consideration is contained in \overline{X}. Notice that we would be done if we are able to show that \overline{X} is closed. Let $x \in M$ be a limit point of \overline{X}, i.e. there exists a sequences $x^{(i)}$ of points of \overline{X} such that $x^{(i)} \to x$ when $i \to \infty$. As $x^{(i)} \in \overline{X}$ we can find sequences $x_n^{(i)}$ for all $i \in N$ such that $x_n^{(i)} \to x^{(i)}$ when $n \to \infty$. From this sequences we can build a sequence of points of X converging to x. Let $\epsilon_k = 1/k$. As $x^{(i)} \to x$ when $i \to \infty$ we can find $i_k \in N$ such that $d(x^{(i_k)}, x) \leq \epsilon_k/2$. As $x_n^{(i_k)} \to x^{(i_k)}$ when $n \to \infty$ we can find $n_k \in N$ such that $d(x_n^{(i_k)}, x_{n_k}) \leq \epsilon_k/2$. The triangle inequality then shows that $d(x, x_{n_k}) \leq \epsilon_k$. Let $x_k = x_{n_k}$. Notice that $x_k \in X$ for all $k \in N$. From the construction we see that $d(x, x_k) = \epsilon_k = 1/k \to 0$ when $k \to \infty$, i.e. $x_k \to x$ when $k \to \infty$. It follows that $x \in \overline{X}$. We conclude that \overline{X} is closed. From this we deduce that the intersection in consideration is contained in \overline{X}. We conclude that \overline{X} equals the intersection of all closed sets $C \subseteq M$ such that $X \subseteq C$.

Problem 10

If X is a subset of a metric space M, we define the *boundary* of X to be the set $\partial X = \overline{X} \cap (X')^c$. Let M be a metric space. Prove the following:

(a) ∂X is closed for all $X, X \subseteq M$.

Solution. By Problem 9 we know that \overline{X} and $(X')^c$ are closed. It follows that $\partial X = \overline{X} \cap (X')^c$ must be closed.

(b) $X \cup \partial X = \overline{X}$ for all $X, X \subseteq M$.

Solution. From the definitions we see that $X \cup \partial X \subseteq \overline{X}$. Now let $x \in \overline{X}$. We want to show that $x \in X \cup \partial X$. If $x \in X$ we are done. Suppose that $x \notin X$. We want to show that $x \in \partial X = \overline{X} \cap (X')^c$. As $x \in \overline{X}$ this amounts to showing that $x \in (X')^c$. Suppose by contradiction that this was not the case. Then we can find $\epsilon > 0$ such that $B_\epsilon(x) \cap X' = \emptyset$. This is equivalent to $B_\epsilon(x) \subseteq X$. But then $x \in X^\circ \subseteq X$ contradicting the assumption $x \notin X$.

7
It follows that $X \subseteq X \cup \partial X$. We conclude that $X \cup \partial X = \overline{X}$.

(c) $X \setminus \partial X = X^\circ$ for all X, $X \subseteq M$.

Solution. Let $x \in X \setminus \partial X$. As $\partial X = \overline{X} \cap (X')^-$ this is equivalent to $x \in X$ and $x \notin \cap (X')^-$. It follows that we can find $\varepsilon > 0$ such that $B_\varepsilon(x) \cap X' = \emptyset$. This is equivalent to $B_\varepsilon(x) \subseteq X'$. It follows that $x \in X^\circ$. This shows that $X \setminus \partial X \subseteq X^\circ$. Now let $x \in X^\circ$. We want to show that $x \in X \setminus \partial X$. As $\partial X = \overline{X} \cap (X')^-$ this amounts to showing that $x \notin (X')^-$. As $x \in X^\circ$ we can find $\varepsilon > 0$ such that $B_\varepsilon(x) \subseteq X$. Notice then that $x \notin (X')^-$ as any sequence of points of X' converging to x must eventually fall inside $B_\varepsilon(x) \subseteq X$. This shows that $X^\circ \subseteq X \setminus \partial X$. We conclude that $X \setminus \partial X = X^\circ$.

(d) If X is a proper nonempty subset of \mathbb{R}, then $\partial X \neq \emptyset$.

Solution. Let X be a proper nonempty subset of \mathbb{R}. Suppose by contradiction that $\partial X = \emptyset$. By Part (b) we must have $\overline{X} = X \cup \partial X = X$, so that X is closed. By Part (c) we must have $X^\circ = X \setminus \partial X = X$, so that X is open. It follows that $X \subseteq \mathbb{R}$ is open and closed. The only open and closed subsets of \mathbb{R} are \emptyset and \mathbb{R} (we will later call this property *connectedness*). As we are assuming X be a proper nonempty subset of \mathbb{R} we reach a contradiction.

Since we have not mentioned the notion of connectedness in class, nor proved that \mathbb{R} is connected, here is a proof that doesn’t use this property. Suppose X has no limit points; we will get a contraction. Let $x \in X$. By part (c), if it is not an interior point of X, the boundary is not empty and we are done. So we can assume that all points of X are interior points. Reversing the roles of X and its complement, we can assume that every point of X' is an interior point of X'. Let $x \in X$. Consider the set of points $b \in \mathbb{R}$ such that there is an open interval of the form $(a, b) \subset X$ with $a < x < b$. Denote it by Z. Since x is an interior point, it is nonempty. Suppose Z is bounded above and let lub(Z) = c. If $c \in X$, it can’t be an interior point of X since that would imply that c is not an upper bound for Z. If $c \in X'$ it can’t be an interior point of X' or Z would have a smaller upper bound. So Z is not bounded above and $[x, \infty) \subset \mathbb{R}$. Similarly consider the set of points $a \in \mathbb{R}$ such that there is an open interval of the form $(a, b) \subset X$ with $a < x < b$. If it were bounded below, X would have a boundary point. So $(-\infty, x] \subset X$. But this implies that $X = \mathbb{R}$, a contradiction.