Problem 1:

a) What is the value of \(\int_{\gamma} \frac{f'(\zeta)}{f(\zeta)} \, d\zeta \) for \(f(z) = \frac{(2z - 1)^7}{z^3} \) where \(\gamma \) is the unit circle, oriented counter-clockwise? Clearly state the general result you are using.

b) Decide how many solutions (counted with multiplicity) there are to the equation \(3z^4 - z^3 + 6z^2 + 1 = 0 \) in the region \(1 < |z| < 2 \). Explain your answer.

Problem 2:

a) Let \(h(z) = \frac{z}{z - \sin z} \). Show that \(h(z) \) has a pole of order 2 at \(z = 0 \) and compute the coefficient \(a_{-2} \) (where \(h(z) = \sum_{j=-2}^{\infty} a_j z^j \)). Expand the equation \(h(z)(z - \sin z) = z \) into power series and solve for \(a_{-1}, a_0 \) by matching terms. Why is this computation justified?

b) Compute the following integral. Justify your steps.
\[
\int_{-\infty}^{+\infty} \frac{x^2}{(1 + x^2)^2} \, dx.
\]

Problem 3:

a) Let \(f(z) \) be an entire holomorphic function. Suppose the real part \(\text{Re} f(z) \) is bounded on all of \(\mathbb{C} \). Show that \(f(z) \) is constant. Carefully state any theorems you are using. Hint: What happens when you compose with the exponential function?

b) Let \(f(z) \) be holomorphic and non-constant in a region \(\Omega \) and suppose that \(f'(z_0) = 0 \) at some \(z_0 \in \Omega \). Let \(w_0 = f(z_0) \). Show that the equation \(f(z) = w \) has more than one solution (counted with multiplicity) for points \(z \) sufficiently close to \(z_0 \) and \(w \) sufficiently close to \(w_0 \). Hint: What is the multiplicity of the zero of \(f(z) - w_0 \) at \(z = z_0 \)?

Problem 4:

a) Define what it means for a holomorphic function to have a pole at the point at infinity.

b) Let \(f : \mathbb{C} \to \mathbb{C} \) be an entire holomorphic function from the complex plane to itself with a pole at infinity. Prove that \(f \) is a polynomial. You may not use the general theorem that a meromorphic function on the extended complex plane is a rational function. You are being asked to prove a special case of that theorem.