Problem 1 Solution We know that
\[\frac{\sin \pi z}{\pi} = z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right) \]
Plug in \(z = \frac{1}{2} \). Since that is not a zero of \(\sin \pi z \), we can invert all the factors to get
\[\frac{\pi}{2} = \prod_{n=1}^{\infty} \frac{n^2 - \frac{1}{4}}{n^2 - \frac{1}{4}} = \prod_{n=1}^{\infty} \frac{(2n)^2}{(2n-1)(2n+1)} \]

Problem 2 Solution
1. Define \(\log(1 + z) = \sum_{n=1}^{\infty} (\frac{-1}{n})^{n+1} z^n \). Such definition gives the desired logarithmic property and it is analytic on the unit disk. Note that \(\prod (1 + a_n) \) converges to nonzero value if and only if \(\sum \log(1 + a_n) \) converges. So now we are studying the convergence of \(\sum \log(1 + a_n) \) and \(\sum a_n \). We can write
\[\sum \log(1 + a_n) = \sum (a_n - a_n^2/2 + O(a_n^3)) \]
Since \(\sum |a_n|^2 \) converges, we have that \(\lim \sum O(a_n^3) \) converges too. Hence \(\lim \sum (1 + a_n) \) converges if and only if \(\sum a_n \) does.

2. Let \(a_n = (-1)^n \frac{1}{\sqrt{n}} \) for \(n \geq 2 \). \(\sum a_n \) converges by alternating series. However since
\[\sum \log(1 + a_n) = \sum (a_n - a_n^2/2 + O(a_n^3)) \]
and we have that \(\sum -a_n^2 \) diverges to \(\infty \) but \(\lim \sum O(a_n^3) \) and \(\sum a_n \) converge, \(\lim (1 + a_n) \) does not converge.

3. Let \(a_{2k} = \frac{1}{k} - \frac{1}{\sqrt{k}} \) and \(a_{2k+1} = \frac{1}{\sqrt{k}} \) for \(k \geq 2 \) and define \(a_0 = a_1 = a_2 = a_3 = 0 \). Then the series diverges since we are summing up \(\sum 1/k \). However the product will converge since the subsequence
\[\prod_{n=1}^{\infty} (1 + a_n) = \prod_{k=1}^{\infty} \left(1 + \frac{1}{k} - \frac{1}{\sqrt{k}} \right) \left(1 + \frac{1}{\sqrt{k}} \right) = \prod \left(1 + \frac{1}{k^{1/2}} \right) \]
which converges since
\[\sum \frac{1}{k^{3/2}} \]

Problem 3 Solution For \(z = 0 \) the equality is obvious. Let \(z \neq 0 \) and \(a_N = \prod_{k=1}^{N} \cos(z/2^k) \). Then by trig identity we have
\[\sin(\frac{z}{2N})a_N = \frac{\sin(z)}{2^N} \]
Thus if we can show that
\[\frac{1}{z} = \lim_{N} \frac{1}{N} \frac{\prod_{k=1}^{N}}{\sin(\frac{z}{2^N})} \]
we are done. This is a standard L'Hopital argument, taking the derivative top and bottom we got the limit as
\[\lim_{N} e^{-\log 2z} \frac{(-\log 2)}{[\cos(\frac{z}{2^N}) e^{-\log \frac{2z}{(\log 2)]} z]} = \frac{1}{z} \]
Problem 4 Solution Let \(a_N = \prod_{k=0}^{N} (1 + z^{2^k}) \) then by the property \((1 - z)(1 + z) = 1 - z^2\) we have that
\[
a_N = \frac{1 - z^{2N}}{1 - z}
\]
Since \(|z| < 1\) we have that \(a_N \to \frac{1}{1-z}.\)

Problem 5 Solution Let \(f \) be a meromorphic function. By the definition of meromorphic function, we have that its poles do not accumulate. Let \(\{ p_n \} \) be its poles, with the correct order. i.e if \(f(z) \) has a pole at \(z_0 \) of order \(k \) then there should be \(p_{j_k} = \cdots = p_{j_k} = z_0 \) and no other \(p \)'s with this value. By Weierstrass factor we can create an entire function \(g \) so that \(g \) vanishes on the poles of \(f \) with a multiplicity at a point equals to the order of the pole at this point. Thus \(f \cdot g \) is entire and \(f = \frac{f}{g}. \)

For the second part, use Weierstrass factor to create \(f \) and \(g \) that vanishes exactly on \(\{ a_n \} \) and \(\{ b_n \} \), then \(\frac{f}{g} \) is what we want.

Problem 6 Solution Suppose \(f \) is locally injective, then for any \(z \in U \) there exists \(D \) so that \(z \in D \) and \(f \) is injective on \(D \). Thus by proposition 1.1 \(f' \) does not vanish on \(D \), in particular \(f'(z) \neq 0. \)
Since \(z \in U \) is arbitrary, we finish one direction.

Now suppose \(f'(z) \) is nowhere vanishing on \(U \). Fix \(z_0 \in U. \) At \(z_0 \) we can write \(f(z) \) as
\[
f(z) = f(z_0) + f'(z_0)(z - z_0) + g(z)
\]
where \(g(z) = O((z - z_0)^2). \)

Choose two small circle \(C_2 \) around \(z_0, C_2 \) inside of \(C_1 \), so that the following two statement hold simultaneously

1. \(\sup |f(z) - f(z_0)| := \lambda \) where the sup is taken inside of \(C_2 \).
2. For any complex \(w \) so that whenever \(|w| \leq \lambda \) we have \(|f'(z_0)(z - z_0) - w| > |g(z)| \) on \(C_1 \).

From (2) and Rouche, we have that \(f(z) - f(z_0) - w \) has only 1 zero inside of \(C_1 \). Thus for any \(w = f(z') - f(z_0) \) so that \(z' \) is inside of \(C_2 \), \(f(z) - f(z_0) - w \) has at most one zero. Thus \(f \) is injective inside of \(C_2 \)

Problem 7 Solution By translation, we can assume \(z_0 = 0. \) Thus we can write \(F(z) = z^2(1 + G(z)) \) whereas \(G(z) = O(|z|^3). \) For a small enough neighborhood we can assume \(G(z) + 1 \) never vanishes, and we can define \(g(z) = z\sqrt{1 + G(z)} \). So \(g \) is holomorphic on this neighborhood and \(g'(z) = F \).

Since \(g'(0) = 0 \) would imply \(F''(0) = 0 \), we have that on a even smaller neighborhood of \(0 \) we can make \(g'(0) \) nonzero, call this neighborhood \(B \). Then \(g \) is a conformal map from \(B \) to \(g(B) \). Since \(g(0) = 0 \) and \(g(B) \) is open, we can assume that there are small segments of \(X \) and \(Y \) axis intersecting at \(0 \) and those two segments are contained in \(g(B) \). Call the segment on \(X \) axis \(L_1 \) and \(Y \) axis \(L_2 \).
Define
\[
\Gamma_n = g^{-1}(L_n)
\]
for \(n = 1, 2. \)
Thus \(F(\Gamma_1) = (L_1)^2 > 0 \) except for \(F(0) = 0. \) Similarly we have \(F(\Gamma_2) < 0 \) except for \(F(0) = 0. \)
\(\Gamma_n \) intersects orthogonally since \(L_1 \) and \(L_2 \) are orthogonal and \(g \) preserves angles.

Problem 8 Solution Let \(F \) be a homeomorphism from \(U \) to \(V \). Let \(\gamma_1 \) and \(\gamma_2 \) be two curves in \(V \) with the same end points. Want to show they are homotopic.

Let \(\Gamma_n(x) = F^{-1}(\gamma_n(x)) \). Then we shall have a homotopy \(H(x, t) \) from \(\Gamma_1 \) to \(\Gamma_2 \).

Then define \(\Theta(x, t) \) so that
\[
\Theta(x, t) = F \circ H(x, t)
\]
Then \(\Theta(x, 0) = F \circ F^{-1}(\gamma_1) = \gamma_1 \) and similarly for \(t = 1 \). And since \(F \) is continuous \(\Theta \) is continuous.
Problem 9 Solution We know that the unit disk is conformal equivalent to \(\mathbb{H} \), so we just have to find a surjection map from \(\mathbb{H} \) to \(\mathbb{C} \). Define \(D(z) = z - i \) and \(S(z) = z^2 \). I claim that \(S \circ D \) is surjective to \(\mathbb{C} \).

Indeed \(\mathbb{H} - i \) contains \(x \) axis. For any \(z \) we can write \(re^{i\theta} \) for \(\theta \in [0, 2\pi] \) and pick \(\sqrt{r}e^{i\theta/2} \) that squares to \(z \). Note that \(e^{i\theta/2} \) now is on the upper plane or \(x \) axis, thus we are done since the square map is surjective from \(\mathbb{H} \) to \(\mathbb{C} \).

Problem 10 Solution Note that \(f \) indeed maps into the upper half plane since

\[
f(x + iy) = \frac{-1}{2}(x + iy + \frac{x - iy}{x^2 + y^2})
\]

so the imaginary part is

\[
\frac{(1 - y)y}{2(x^2 + y^2)}
\]

which is always positive.

To see that \(f \) is injective, let \(f(z_1) = f(z_2) \) for two distinct \(z_1, z_2 \), then

\[
f(z_1) = f(z_2) \iff z_1 + \frac{1}{z_1} = z_2 + \frac{1}{z_2}
\]

\[
\iff z_1 - z_2 = \frac{z_1 - z_2}{z_1 z_2}
\]

\[
\iff z_1 z_2 = 1
\]

which is absurd since \(|z_1 z_2| < 1 \).

To see \(f \) is surjective, we can check that for \(w \in \mathbb{H} \), we have that \(f(z) = w \) is the same to solve

\[
z^2 + 2wz + 1 = 0
\]

For \(w \neq \pm 1 \), which is the case on \(\mathbb{H} \), we have that the quadratic has distinct two roots say \(z_1 \) and \(z_2 \).
Since \(z_1 + z_2 = -2w \) we have that one of the root has to have negative imaginary part, say \(z_2 \).

Write \(z_n = r_n e^{i\theta_n} \), since \(z_1 z_2 = 1 \) we have that

\[
z_1 = r_1 e^{i\theta} \quad z_2 = r_2 e^{-i\theta}
\]

where \(\theta \in (0, \pi) \) and \(r_1 r_2 = 1 \). Note that we have ruled out the case \(r_1, r_2 = 1 \), since that would result \(\theta = 0, \pi \) which means \(w = \pm 1 \).

Since \(z_1 + z_2 \) has imaginary part \(r_1 \sin \theta - r_2 \sin \theta \), and this number has to be negative, thus \(r_1 < r_2 \).
By the fact \(r_1 r_2 = 1 \) we have that \(z_1 \) is in the upper disk.