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1 Introduction

Wave propagation in complex media is an ubiquitous phenomenon – applications include
light propagation through the atmosphere, underwater acoustic, tomography, and innumer-
able other ones. These problems may have very different specific details but possess one
unifying feature: the precise knowledge of the medium between the wave source and the re-
ceiver is not and can not be known. This makes the numerical computation of the solutions of
the exact wave equations (whether acoustic, electromagnetic or elastic) not only beyond the
reach of even the fastest modern computers but also pointless – as we do not know the details
of the medium, there is nothing to plug into the computer as the coefficients to solve the wave
equations. Fortunately, the microscopic details of the medium often do not matter for quanti-
ties of interest. An obvious situation when that is true is if the medium is essentially uniform,
so that the fluctuations have a very small effect on the wave evolution. However, even very
small fluctuations will have a non-trivial effect after a sufficiently long time, and propagation
over long distances, a regime often encountered in practice. A surprising phenomenon is that
while such small fluctuations will eventually have a large effect, the macroscopic features of
the wave will nevertheless not depend on the fine details on the microstructure. That is, the
wave will be very far from what it would be in a uniform medium (both on the microscopic
and the macroscopic levels) but its macroscopic features can be captured by models that do
not need the knowledge of the microstructure. An introduction to such models and some of
the ways to obtain them are the subject of these notes.

As we can not know the details of the medium, it is convenient to model the media
parameters (sound speed, elastic parameters, the dielectric constant and so on) as random
fields. The main interest will be then in finding the features of the solutions of the wave
equations with random coefficients that would not depend on the particular realization of the
random medium but rather on its statistics which may be encoded in a few parameters. This
is particularly important in the inverse problems – we can not afford to use unstable data (in
the statistical sense) for (usually) ill-posed inverse problems, so it is imperative to be sure
that the data used for inverse problems is as stable (non-random) as possible.
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The main regimes of wave propagation in heterogenous media

Let us now describe some of the physical parameters that will eventually determine which
of the macroscopic models would be appropriate to use in a particular setting. We have at
least three basic length scales: L – the overall propagation distance from the source to our
observation point, λ – the scale on which the initial source is localized, and lc – the typical
scale of variations of the medium. The latter two scales are often not defined in a precise way,
and we will explain later what exactly we mean by them. Generally, we will be interested in
the situations when the propagation distance L is much larger than both λ and lc, giving even
small variations in the microstructure a chance to have a strong effect on the macroscopic
features of the wave. This brings us to the next important parameter: ε � 1 is the relative
strength of the microscopic fluctuations in the parameters of the medium.

Note that λ can often be chosen – this is, essentially, the wave length of the probing
signal, and we may modify it to suit a particular application. The propagation distance
L can also be chosen – this is the observation scale, that the observer can often (but not
always) control. On the other hand, the scale of the medium variations lc is typically outside
of our control – the medium is usually given to us, and we can not modify it. The same
is true for ε – this parameter is a feature of the medium and not of a particular setting of
the physical experiment. A typical question we will be facing is “Given the strength of the
microscopic fluctuations ε � 1, and the medium variations scale lc, as well as the probing
signal wave length λ, how large can the propagation distance L be, so that we can still have
an effective macroscopic model for the wave, and what will that model be?” The answer will,
broadly speaking, depend on two factors: the relative size of lc and λ, and on the statistics of
the small scale fluctuations of the medium. The three regimes we would ideally describe in
some detail are random geometric optics, radiative transport, and random homogenization.
However, due to the lack of time, we will focus solely on the geometric optics regime.

The macroscopic models are often written in terms of the energy density in the phase
space. The underlying premise is that the multiple scattering of the waves by the medium
inhomogeneities will create “waves going in all directions at each point”. Thus, the primary
object is now not the wave field but the (empirical) wave energy density W (t, x, ξ) at the
time t > 0, at a position x ∈ Rn, with the wave vector ξ ∈ Rn. The wave energy evolution is
described in terms of the kinetic equation

∂W (t, x, ξ)

∂t
+∇ξω(ξ) · ∇xW (t, x, ξ) = LscW (t, x, ξ). (1.1)

Here, ω(ξ) is the dispersion relation of the wave and depends on the particular type of the
wave. The left side of (1.1) has nothing to do with the inhomogeneities of the medium1

and represents the free transport of the wave energy along the characteristics Ẋ = ∇ξω(ξ)
(which are straight lines). On the other hand, the scattering operator Lsc incorporates the
macroscopic effects of the small scale inhomogeneities, and involves the possibility for waves
to scatter in different directions at a given point. Its exact form depends on the physical
regime of the problem, and the task of modeling is typically two-fold: to find the relation of
the phase space energy density W (t, x, ξ) to the underlying wave field that can be directly

1Strictly speaking, this statement assumes that the fluctuations are sufficiently weak so that they do not
modify the wave dispersion relation.
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measured (pressure, electric and magnetic fields, elastic displacements, and so on, depending
on the problem), and to identify the scattering operator Lsc for a particular physical problem.
Next, we describe some of the possible macroscopic models.
Random geometric optics. The geometric optics regime arises when the wave length of
the signal is much smaller than the typical scale of variations in the medium, whether the
latter are random or not. Then the wave propagation is described in terms of the rays (this
description goes back to Fermat and Huygens’) that are straight lines in a uniform medium
but are curved if the sound speed is varying. In our terminology, this corresponds to the
relative sizes

λ� lc � L,

and the problem has three scales: on the microscopic level (scale λ) one considers the precise
wave evolution, on the intermediate scale lc the problem is described in terms of rays in a
random medium, and, finally, the macroscopic description (on the scale L we will need to find
in terms of λ, lc and ε) will be in terms of the Fokker-Planck equation:

∂W (t, x, ξ)

∂t
+∇ω(ξ) · ∇xW (t, x, ξ) =

n∑
i,j=1

∂

∂ξi

(
Dij(ξ)

∂W (t, x, ξ)

∂ξj

)
. (1.2)

That is, the scattering operator in (1.1) in this regime is a momentum diffusion:

Lscf(ξ) =
n∑

i,j=1

∂

∂ξi

(
Dij(ξ)

∂f(ξ)

∂ξj

)
. (1.3)

This means that multiple scattering makes the ray direction diffuse over long distances –
this is the macroscopic effect of the small scale heterogeneities, and it is encoded in the
deterministic effective diffusion matrix Dij(ξ). The role of the fluctuations is to create a
non-trivial diffusion, in the absence of fluctuations, we have D = 0, of course.
Radiative transport regime. The radiative transport regime arises when the correlation
length of the medium is comparable to the wave length of the probing signal: λ ≈ lc � L.
This is a two-scale problem, the microscopic scale is λ = lc, and the macroscopic scale is
L (that will, once again, be determined by λ = lc and ε), and on the microscopic level
the interactions between the inhomogeneities and the wave are of a different nature than in
the geometric optics regime, leading to a different macroscopic limit. The effective kinetic
equation is of the radiative transfer type:

∂W (t, x, ξ)

∂t
+∇ω(ξ) · ∇xW (t, x, ξ) =

∫
σ(ξ, p)(W (t, x, p)−W (t, x, ξ))dp. (1.4)

The scattering operator is now of the form

Lscf(ξ) =

∫
σ(ξ, p)(f(p)− f(ξ))dp. (1.5)

The (deterministic) differential scattering cross-section σ(ξ, p) encodes the macroscopic ef-
fect of the small scale inhomogeneities, as the diffusion coefficient Dij(ξ) did it the random
geometric optics regime.
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The homogenization regime. The homogenization regime corresponds to probing signals
with λ� lc, so that from the point of view the wave, the inhomogeneities are small scale. In
that case, the phase of the wave is affected in a non-trivial case before the wave amplitude,
and the kinetic equation description does not capture this phase modulation.
The spatial diffusion regime. We would be remiss not to mention that a typical situation
in a weakly random medium is that, no matter what exactly the scattering operator Lsc in
the kinetic equation (1.1) is, the multiple scattering will lead to equilibration of energy in
all directions: W (t, x, ξ) = W (t, x, |ξ|) is uniformly distributed in momenta after “very long”
times, and the energy density satisfies the spatial diffusion equation:

∂W (t, x, |ξ|)
∂t

= D(|ξ|∆xW (t, x, |ξ)). (1.6)

In this ultimate regime, the only input of the random medium is in the diffusion coeffi-
cient D(|ξ|). This model, is extremely simple, and by virtue of its simplicity, is very popular
in practice.

When do things happen in a weakly random medium?

We finish this introduction with an illustration of when one can expect a weakly random
medium to have a non-trivial effect. Probably, the simplest such situation is evolution of a
particle in a random time-dependent velocity field:

dX(t)

dt
= εV (t), X(0) = 0, (1.7)

that is,

X(t) = ε

∫ t

0

V (s)ds. (1.8)

We need to make some assumptions on V (t): we assume that it is a statistically homogeneous
in time field. Intuitively, it means that the statistics of the random field is “the same at
all times” – which is a reasonable model for “unknown complex environments”. On a more
formal level, this condition holds if given any collection of times t1, t2, . . . , tN , and a shift h,
the joint law of the random variables V (t1+h), V (t2+h), . . . , V (tN +h) does not depend on h.
This means, in particular, that the expected value V̄ = 〈V (t)〉 does not depend on t, and that
the two-point correlation matrix Rij(t, s) = 〈Vi(t)Vj(s)〉 depends only on the difference t− s.
Accordingly, we define

Rij(t) = 〈Vi(0)Vj(t)〉,

and the power-spectrum matrix as the Fourier transform of the two-point correlation matrix

R̂ij(ω) =

∫
e−itωRij(t)dt.

The stationarity condition can be relaxed to local stationarity – so that the random medium
characteristics can vary on a macroscopic or mesoscopic scale but we will not discuss this
direction here.
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Going back to the particle trajectory (1.8), we see that its average position is

X̄(t) = 〈X(t)〉 = εV̄ t,

where V̄ = 〈V (0)〉 is the mean velocity. Therefore, if V̄ 6= 0, then the particle moves by a
distance O(1) after a time t ∼ ε−1, which is by no means a surprising result. If V̄ = 0, then
X̄(t) = 0 for all t > 0, and the way to find out if the particle performs a non-trivial motion
is to look at its variance:

〈Xi(t)Xj(t)〉 = ε2
∫ t

0

ds1

∫ t

0

ds2E(Vi(s1)Vj(s2)) = ε2
∫ t

0

ds1

∫ t

0

ds2Rij(s1 − s2)

= ε2
∫ t

0

ds1

∫ s1

0

ds2Rij(s1 − s2) + ε2
∫ t

0

ds1

∫ t

s1

ds2Rij(s1 − s2)

= ε2
∫ t

0

ds1

∫ s1

0

ds2Rij(s2) + ε2
∫ t

0

ds1

∫ t−s1

0

ds2Rij(−s2) (1.9)

= ε2
∫ t

0

(t− s2)[Rij(s2) +Rij(−s2)]ds2 = ε2[Dijt+O(1)], as t→ +∞.

with the diffusivity matrix

Dij =

∫ ∞
−∞

Rij(s)ds = R̂ij(0). (1.10)

Expression (1.9) tells us (at least) two things: first, we should expect a non-trivial behavior for
the particle at times of the order t ∼ ε−2, and, second, that the particle behavior at this time
scale should be a Brownian motion BD(t) with the correlation matrix Dij. Strictly speaking,
we have only computed that its variance agrees with that of BD(t) but it is not difficult to
make this rigorous. That is, we have the following result: if X(t) solves (1.7) with a mean-zero
statistically time homogeneous random field V (t) then the process Xε(t) = X(t/ε2) converges,
as t → +∞, to a Brownian motion with the covariance matrix Dij. The main observation
here is that “mean-zero randomness of size ε has a non-trivial effect on the time scales of the
order ε−2” – something that any probabilist knows very well from the classical central limit
theorem, going at least as far back as de Moivre and 1733.

It is instructive to observe that the diffusivity matrix Dij is positive-definite (otherwise,
the above claim would make no sense). This is a consequence of Bochner’s theorem that
asserts that for any statistically time homogeneous process V (t) ∈ Rn the power-spectrum
matrix R̂ij(ω) is nonnegative-definite for each ω ∈ R.

Of course, in order for the above discussion to be valid, the diffusivity matrix Dij needs to
be finite – otherwise, obviously, the conclusion can not hold. This imposes a decay condition
on the two-point correlation matrix Dij. What happens if it is violated, that is, if the matrix
Dij is infinite? This tells us that by the times of the order t ∼ ε−2 the particle is “already
at infinity”, hence something non-trivial happens before the “classical’ times scale t ∼ ε−2 –
this has very interesting implications, for which we will also not have time here.
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Organization of the notes

The goal of the present notes is to present some of the mathematical results on the aforemen-
tioned kinetic models. Ideally, one would like to do that for the true wave equation

1

c2(x)
φtt −∆φ = 0, (1.11)

with a weakly random velocity profile c(x), and occasionally we will be able to do this.
However, we should mention two models that are much simpler mathematically but rich
enough to appreciate the difficulties and the diversity of the possible regimes. The first is
simply a first-order advection equation

φt + v(t, x) · ∇φ(x) = 0, (1.12)

with a weakly random velocity v(t, x). Its advantage is that the method of characteristics
allows us to obtain various results about the solutions of the PDE (1.12) using the particle
methods of the probability theory. The simple advection equation captures some (but by no
means all) of the common features of the solutions of the first order hyperbolic systems (such
as the acoustic, electromagnetic and elastic wave equations) surprisingly well. The second,
on which we will mostly focus, is the Schrödinger equation

iφt +
1

2
∆φ− εV (t, x)φ = 0, (1.13)

with a weakly random potential V (t, x). This equation appears not only in the quantum
mechanics but also as the paraxial approximation for the propagation of a time-harmonic
narrow beam - then, the “time” t is the coordinate in the direction of the beam, and the
“spatial” variables x correspond to the true spatial variables in the directions perpendicular
to the beam.

2 The geometric optics via the Wigner transform

In this section we introduce a useful tool, the Wigner transform, for the passage from the
oscillatory solutions of a linear hyperbolic or dispersive non-dissipative PDE to the charac-
teristic in the phase space. In order to keep the presentation manageable we will focus solely
on the solutions of the Schrödinger equation

iφt +
1

2
∆φ− V (t, x)φ = 0, (2.1)

with a real potential V (t, x). The generalization of the methods and results we describe
below to the wave equations is usually (but not always) reasonably straightforward though
it typically involves rather lengthy calculations that we will try to avoid here, to the extent
possible.
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2.1 The Wigner transform and its properties

The unscaled Wigner transform

The Schrödinger equation (2.1) preserves the total energy of the solution (or the total number
of particles depending on the point of view or physical application):

E(t) =

∫
|φ(t, x)|2dx = E(0),

as may be verified by a straightforward time differentiation. However, often one is interested
not only in the conservation of the total energy E(t) but also in its local spatial distribution –
that is, where the energy is concentrated. This requires understanding the local energy den-
sity E(t, x) = |φ(t, x)|2. Note that even if φ(t, x) is oscillatory the function E(t, x) may vary
slowly in space – this happens if the phase of φ(t, x) oscillates much faster than its ampli-
tude, as in the geometric optics regime. Unfortunately, while all the information about the
“relatively simple” function E(t, x) may be extracted from a “complicated” function φ(t, x),
the energy density E(t, x) itself does not satisfy a closed equation. Rather, its evolution is
described by a conservation law

∂E

∂t
+∇ · F = 0,

with the flux

F (t, x) =
1

2i

(
φ̄∇φ− φ∇φ̄

)
.

A remedy for this lack of equation for E(t, x) when the potential V = 0 was proposed by
Wigner in his 1932 paper [12] (where he credits Leo Szilard for this discovery). Wigner
introduced the following object:

W (t, x, k) =

∫
φ
(
t, x− y

2

)
φ̄
(
t, x+

y

2

)
eik·y

dy

(2π)n
. (2.2)

It is immediate to check that∫
W (t, x, k)dk = |φ(t, x)|2 = E(t, x), (2.3)

so that in some senseW (t, x, k) is “a local energy density resolved over momenta”. In addition,
the “average momentum” is∫

kW (t, x, k)dk =
1

i

∫
ikφ

(
t, x− y

2

)
φ̄
(
t, x+

y

2

)
eik·y

dydk

(2π)n

= −1

i

∫
∇y

[
φ
(
t, x− y

2

)
φ̄
(
t, x+

y

2

)]
eik·y

dydk

(2π)n

=
1

2i

[
φ̄(t, x)∇φ(t, x)− φ(t, x)∇φ̄(t, x)

]
.

Therefore, the flux can be expressed in terms of the Wigner transform as

F (t, x) =

∫
kW (t, x, k)dk,
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re-enforcing the interpretation of W (t, x, k) as a phase space energy density. It is also imme-
diate to observe that W (t, x, k) is real-valued.

A remarkable observation is that if V = 0, the function W (t, x, k) satisfies an evolution
equation:

Wt + k · ∇xW = 0. (2.4)

Therefore, one may describe the energy density evolution for the Schrödinger equation with
zero potential as follows: compute the initial data W (0, x, k), solve the kinetic equation (2.4)
and find |φ(t, x)|2 using relation (2.3). However, there is one drawback in the interpretation
of W (t, x, k) as the energy density resolved over positions and momenta – there is no reason
for W (t, x, k) to be non-negative!

The Schrödinger equation (2.1) with a potential V 6≡ 0 leads to the following evolution
equation for W (t, x, k):

∂W

∂t
+ k · ∇xW =

1

i

∫
eip·xV̂ (p)

[
W
(
k − p

2

)
−W

(
k − p

2

)] dp

(2π)n
. (2.5)

While the uniform kinetic equation (2.4) posseses some nice properties – in particular, it
preserves positivity of the initial data and has a particle interpretation: it describes density
evolution of particles moving along the trajectories Ẋ = K, K̇ = 0, the Wigner equation (2.5)
has very few attractions. In particular, it does not preserve positivity of the initial data.
Probably, for that reason the Wigner transform ideas did not evolve mathematically (at
least they did not spread widely in the mathematics community though they were used by
physicists and engineers) until the work of P. Gérard and L. Tartar in the late eighties.
They have realized that the Wigner transforms become a useful tool in the analysis of the
semiclassical asymptotics, that is, in the study of the oscillatory solutions of the Schrödinger
equation (as well as in other oscillatory problems).

The semiclassical Wigner transform

The definition of the Wigner transform for oscillatory functions has to be modified: to see
this, consider a simple oscillating plane wave φε(x) = eik0·x/ε with a fixed k0 ∈ Rn. Then its
Wigner transform as defined by (2.2) is

W (x, k) =

∫
eik·yeik0·(x−y/2)/ε−ik0·(x+y/2)/ε

dy

(2π)n
= δ

(
k − k0

ε

)
.

We see that W (x, k) does not have a nice limit as ε→ 0. On the other hand, its rescaled ver-
sion Wε(x, k) = ε−dW (x, k/ε) does converge (actually, equals to) to δ(k−k0). This motivates
the following defininition of the (rescaled) Wigner transform of a family of functions φε(x):

Wε(x, k) =
1

εd

∫
φε

(
x− y

2

)
φ̄ε

(
x+

y

2

)
eik·y/ε

dy

(2π)n
,

that may be more conveniently re-written as

Definition 2.1 The Wigner transform (or the Wigner distribution) of a family of functions
φε(x) is a distribution Wε(x, k) ∈ S ′(Rn × Rn) defined by

Wε(t, x, k) =

∫
φε

(
x− εy

2

)
φ̄ε

(
x+

εy

2

)
eik·y

dy

(2π)n
. (2.6)
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Expression (2.6) shows that Wε(x, k) is well suited to study functions oscillalting on the
scale ε� 1 – in that case the difference of the arguments εy is chosen so that the function φε
changes by O(1).

The Wigner transform is mostly used for families of solutions of non-dissipative evolution
equations that conserve the L2-norm (or a weighted L2-norm), simply because the scaling
in (2.6) is particularly well suited for families of functions φε(x) that are uniformly (in the
parameter ε ∈ (0, 1)) bounded in L2(Rn). Let us define the space of test functions

A =

{
λ(x, k) ∈ S(Rn × Rn) :

∫
sup
x

[∣∣∣λ̃(x, y)
∣∣∣] dy < +∞

}
with the norm

‖λ‖A =

∫
sup
x

[∣∣∣λ̃(x, y)
∣∣∣] dy.

We have the following proposition.

Proposition 2.2 Let the family of functions φε(x) be uniformly bounded in L2(Rn). Then
the corresponding family of Wigner transforms Wε(x, k) is uniformly bounded in A′(Rn×Rn).

The following is an immediate corollary of the above proposition and the Banach-Alaoglu
theorem.

Corollary 2.3 Let the family of functions ψε(x) be uniformly bounded in L2(Rn). Then the
corresponding family of Wigner transforms Wε(x, k) has a weak-? converging subsequence in
the space A′(Rn × Rn).

The limit is a non-negative measure of a bounded total mass.

Proposition 2.4 Let φε(x) be a uniformly bounded family of functions in L2(Rn), and let
W (x, k) ∈ S ′(Rn × Rn) be a limit point of the corresponding family Wε(x, k). Then we have
W (x, k) ≥ 0 and the total mass ∫

R2n

W (dxdk) < +∞.

We summarize Corollary 2.3 and Proposition 2.4 into the following theorem.

Theorem 2.5 Let the family φε be uniformly bounded in L2(Rn). Then the Wigner transform
Wε converges weakly along a subsequence εk → 0 to a distribution W (x, k) ∈ S ′(Rn × Rn).
Any such limit point W (x, k) is a non-negative measure of bounded total mass.

Can the weak convergence of the Wigner transforms become strong? This is possible
in principle – for instance, the Wigner transforms of ψε(x) = eik0·x/ε is independent of ε –
Wε(x, k) = δ(k − k0). However, this is impossible in L2(Rn × Rn) as the L2-norm of Wε is
unbounded unless φε(x) converges strongly to zero:∫

|Wε(x, k)|2dxdk

=

∫
eik·y−ik·y

′
φε

(
x− εy

2

)
φ̄ε

(
x+

εy

2

)
φ̄ε

(
x− εy′

2

)
φε

(
x+

εy′

2

)
dydy′dxdk

(2π)2n

=

∫ ∣∣∣φε (x− εy

2

)
φε

(
x+

εy

2

)∣∣∣2 dydx
(2π)n

=
1

(2πε)n
‖φε‖4L2(Rn).
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Therefore, it is impossible to expect even weak convergence of Wε in L2(Rn ×Rn) unless the
family φε converges strongly to zero. In that case, however, Wε = 0, which is not a very
interesting case.

Examples of the Wigner measures

We now give some examples of the Wigner measures, leaving the computations leading to the
limit measures as an exercise to the reader.

A strongly converging sequence. Let φε(x) converge strongly in L2(Rn) to a limit
φ(x). Then the limit Wigner measure is W (x, k) = |φ(x)|2δ(k). This means that for non-
oscillatory families the limit Wigner measure is supported at k = 0.

The localized case. The Wigner transform of the family fε(x) = ε−n/2φ(x/ε) with a
compactly supported function φ(x) is W (x, k) = (2π)−n|φ̂(k)|2δ(x).

The WKB case. The Wigner measure of the family φε(x) = A(x) exp{iS(x)/ε} with a
smooth amplitude A(x) and phase function S(x), is W (x, k) = |A(x)|2δ(k −∇S(x)) since

W ε(x, k) =

∫
eik·yeiS(x−

εy
2
)/εA(x− εy

2
)e−iS(x+

εy
2
)/εĀ(x+

εy

2
)
dy

(2π)n

=

∫
eik·ye−i∇S(x)·y|A(x)|2 dy

(2π)n
+O(ε) = |A(x)|2δ(k −∇S) +O(ε).

Coherent states. The WKB and concentrated cases can be combined – this is a coherent
state

φε(x) =
1

εn/2
φ

(
x− x0
ε

)
eik0·x.

The Wigner measure of this family is

W (x, k) =
1

(2π)n
δ(x− x0)|φ̂(k − k0)|2.

Scale mismatch. The Wigner transform captures oscillations on a scale ε but not on a
different scale. To see this, consider a WKB family φε(x) = A(x)eik0·x/ε

α
– we have treated

the case α = 1 but now we look at 0 ≤ α < 1 or α > 1. First, if α ∈ (0, 1) then we have

W ε(x, k) =

∫
eik·yeik0·(x−

εy
2
)/εαA(x− εy

2
)e−ik0·(x+

εy
2
)/εαĀ(x+

εy

2
)
dy

(2π)n

=

∫
ei(k−ε

1−αk0)·y|A(x)|2 dy

(2π)n
+O(ε) = |A(x)|2δ(k) + o(1).

Therefore, if 0 ≤ α < 1 then Wε has the limit W (x, k) = |A(x)|2δ(k) as in the case α = 0 –
the limit does not capture the oscillations at all. On the other hand, if α > 1 then

〈a,Wε〉 =

∫
eik·yeik0·(x−

εy
2
)/εαa(x, k)A(x− εy

2
)e−ik0·(x+

εy
2
)/εαĀ(x+

εy

2
)
dydxdk

(2π)n

=

∫
e−ik0·y/ε

1−α
ã(x, y)A(x− εy

2
)Ā(x+

εy

2
)
dxdy

(2π)n
→ 0
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as ε → 0. We see that when the family oscillates on a scale much smaller than ε the limit
Wigner measure computed with respect to a “too large” scale ε vanishes and does not capture
the oscillations correctly. This is a mixed blessing of the Wigner measures – they are very
useful but only as long they are computed with respect to a correct scale. We will make this
statement precise in the next section.

Basic properties of the Wigner measures

It turns out that though the definition of the Wigner transform Wε(x, k) involves integration
over the whole space, the limit Wigner measure is a local notion in space (on the macroscopic
scale). We say that a family of functions φε(x) is pure if the Wigner transforms Wε converge
as ε→ 0 to the limit W (x, k) – that is, we do not need to pass to a subsequence εk → 0 and
the limit is unique.

Proposition 2.6 (Localization) Let φε(x) be a pure family of uniformly bounded functions
in L2 and let µ(x, k) be the unique limit Wigner measure of this family. Let θ(x) be a smooth
function. Then the family ψε(x) = θ(x)φε(x) is also pure, and the Wigner transforms Wε[ψε]
of the family ψε(x) converge to |θ(x)|2µ(x, k) as ε → 0. Moreover, let φε be a uniformly
bounded pure family of L2 functions, and let ψε coincide with φε in an open neighbourhood of
a point x0. Then the the limit Wigner measures µ[φ] and µ[ψ] coincide in this neighborhood.

Another useful and intuitively clear property is that the Wigner measure of waves going in
different directions is the sum of the individual Wigner measures.

Lemma 2.7 (Orthogonality) Let φε, ψε be two pure families of functions with Wigner
measures µ and ν, respectively,which are mutually singular. Then the Wigner measure of the
sum φε + ψε is µ+ ν.

The above properties: positivity, orthogonality and localization show that the Wigner mea-
sure may be indeed reasonably interpreted as the phase space energy density. However, the
following pair of examples shows that the limit may not capture the energy correctly. The
first “bad” example is the family

φε(x) = A(x)eik·x/ε
2

.

Then the limit Wigner transform is W = 0 while the spatial energy density

Eε(x) = |φε(x)|2 ≡ |A(x)|2

does not vanish in the limit ε → 0. The second “misbehavior” is more classical, and can be
seen on standard “escape to infinity” example

φε(x) = θ

(
x− 1

ε

)
, x ∈ R, (2.7)

with θ(x) ∈ C∞c (R). Then the limit Wigner measure W (x, k) = 0 and the local energy
density |φε(x)|2 converges weakly to zero as well. However, the total mass ‖φε‖L2 ≡ ‖θ‖L2 is
not captured correctly by the limit.
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It turns out that the above two examples exhaust the possibilities for the Wigner measure
to fail to capture the energy correctly and it is well suited for families of functions that
depend on a small parameter in an oscillatory manner, the ε-oscillatory families of [5]. The
ε-oscillatory property guarantees that the functions φε oscillate on a scale which is not smaller
than O(ε), and is characterized by the following definition.

Definition 2.8 A family of functions φε that is bounded in L2
loc is said to be ε-oscillatory if

for every smooth and compactly supported function θ(x)

lim sup
ε→0

∫
|ξ|≥R/ε

|θ̂φε(ξ)|2dξ → 0 as R→ +∞. (2.8)

A simple and intuitive sufficient condition for (2.8) is that there exist a positive integer j and
a constant C independent of ε such that

εj
∣∣∣∣∣∣∣∣∂jφε∂xj

∣∣∣∣∣∣∣∣
L2
loc

≤ C. (2.9)

Indeed, if (2.9) is satisfied then ∫
Rn
|ξ|j|θ̂φε|2dξ ≤

C

εj

and therefore∫
|ξ|≥R/ε

|θ̂φε(ξ)|2dξ ≤
( ε
R

)j ∫
|ξ|≥R/ε

|ξ|j|θ̂φε(ξ)|2dξ ≤
C

εj

( ε
R

)j
=

C

Rj
→ 0 as R→ +∞

so that (2.8) holds. Condition (2.9) is satisfied, for instance, for high frequency plane
waves φε(x) = Aeiξ·x/ε with wave vector ξ/ε, ξ ∈ Rn but not by a similar family with a
wave vector ξ/ε2: ψε(x) = Aeiξ·x/ε

2
. Another natural example of ε-oscillatory functions

is gε(x) = g (x/ε), where g(x) is a periodic function with a bounded gradient.
In order to curtail the ability of a family of functions to “run away to infinity” (as it

happens with the family (2.7)), we introduce the following definition.

Definition 2.9 A bounded family φε(x) ∈ L2(Rn) is said to be compact at infinity if

lim sup
ε→0

∫
|x|≥R

|φε(x)|2dx→ 0 as R→ +∞. (2.10)

The main reason for introducing ε-oscillatory and compact at infinity families of functions
is the following theorem concerning weak convergence of energy, i.e. of the integral of the
square of the wave function.

Theorem 2.10 Let φε be a pure, uniformly bounded family in L2
loc with the limit Wigner

measure µ(x, k). Then, if |φε(x)|2 converges to a measure ν on Rn, we have∫
Rn
µ(·, dk) ≤ ν (2.11)
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with equality if and only if φε is an ε-oscillatory family. Moreover, we also have∫
Rn×Rn

µ(dx, dk) ≤ lim sup
ε→0

∫
Rn
|φε(x)|2dx (2.12)

with equality holding if and only if φε is ε-oscillatory and compact at infinity. In this case
lim sup can be replaced by lim in the right side of (2.12).

With this theorem and the positivity property we can interpret µ(x, k) as the limit phase
space energy density of the family φε, that is, the energy density resolved over directions and
wave numbers.

The evolution of the Wigner transform

We will now derive the evolution equation for the Wigner measure of a family of func-
tions φε(t, x) that satisfy the semiclassical Schrödinger equation

iε
∂φε
∂t

+
ε2

2
∆φε − V (x)φε(x) = 0 (2.13)

with a smooth potential V (x). The initial data φε(0, x) = φ0
ε(x) forms an ε-oscillatory and

compact at infinity family of functions uniformly bounded in L2(Rn). Physically, we are
in the regime where the potential varies on the scale much larger than the initial data. In
particular, if V (t, x) is a random potential, we should be thinking of the regime λ � lc
in the terminology of the introduction. As (2.13) preserves the L2-norm of solutions, the
family φε(t, x) is bounded in L2(Rn) for each t ≥ 0 and it makes sense to define the Wigner
transform

Wε(t, x, k) =

∫
φε

(
t, x− εy

2

)
φ̄ε

(
t, x+

εy

2

)
eik·y

dy

(2π)n
. (2.14)

We may obtain the equation for the limit Wigner transform by differentiating (2.14) with
respect to time, and using (2.13). We arrive at the following equation for the Wigner transform

W ε
t + k · ∇xW

ε =
1

iε

∫
Rn
eip·xV̂ (p)

[
W ε(x, k − εp

2
)−W ε(x, k +

εp

2
)
] dp

(2π)n
. (2.15)

The limit Wigner measure W (t, x, k) satisfies the Liouville equation in phase space

Wt + k · ∇xW −∇V · ∇kW = 0 (2.16)

with the initial condition W (0, x, k) = W0(x, k). We have the following proposition.

Proposition 2.11 Let the family φ0
ε(x) be uniformly bounded in L2(Rn) and pure and let

W0(x, k) be its Wigner measure. Then the Wigner transforms Wε(t, x, k) converge uniformly
on finite time intervals in S ′ to the solution of (2.16) with the initial data W (0, x, k) =
W0(x, k).

Let us now compare the information one may obtain from the Liouville equation (2.16) to the
standard geometric optics approach. First, we derive the eikonal and transport equations for
the semiclassical Schrödinger equation (2.13). We consider initial data of the form

φε(0, x) = eiS0(x)/εA0(x) (2.17)
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with a smooth, real valued initial phase function S0(x) and a smooth compactly supported
complex valued initial amplitude A0(x). We then look for an asymptotic solution of (2.13) in
the same form as the initial data (2.17), with an evolved phase and amplitude

φε(t, x) = eiS(t,x)/ε(A(t, x) + εA1(t, x) + . . . ). (2.18)

Inserting this form into (2.13) and equating the powers of ε we get evolution equations for
the phase and amplitude

St +
1

2
|∇S|2 + V (x) = 0, S(0, x) = S0(x) (2.19)

and

(|A|2)t +∇ · (|A|2∇S) = 0, |A(0, x)|2 = |A0(x)|2. (2.20)

The phase equation (2.19) is called the eikonal and the amplitude equation (2.20) the transport
equation. The eikonal equation that evolves the phase is nonlinear and, in general, it will
have a solution only up to some finite time t∗ that depends on the initial phase.

How are the eikonal and transport equations related to the Liouville equation (2.16)? As
we have computed before, for the WKB initial data (2.17) the initial Wigner distribution has
the form

W0(x, k) = |A0(x)|2δ(k −∇S0(x)). (2.21)

As long as the geometric optics approximation (2.18) remains valid we expect the solution of
the Liouville equation (2.16) to have the same form:

W (t, x, k) = |A(t, x)|2δ(k −∇S(t, x)). (2.22)

We insert this ansatz into (2.16) :(
∂

∂t
+ k · ∇x −∇V · ∇k

)(
|A(t, x)|2δ(k −∇S(t, x))

)
= 0. (2.23)

or, equivalently,

δ(k −∇S)

(
∂

∂t
+ k · ∇x −∇V · ∇k

)
(|A(t, x)|2) (2.24)

+|A(t, x)|2
n∑

m,p=1

(
∂2S

∂t∂xm
+ kp

∂2S

∂xp∂xm
− ∂V

∂xm

)
Dm = 0,

where

Dm = δ(k1 − Sx1) . . . δ(km−1 − Sxm−1)δ
′(km − Sxm)δ(km+1 − Sxm+1) . . . δ(kn − Sxn).

Equating similar terms in (2.24) we obtain the transport equation (2.20) from the term in
the first line, while the coefficient at Dm gives the eikonal equation (2.19) differentiated with
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respect to xm. Expression (2.22) holds of course only until the time when the solution of the
eikonal equation stops being smooth.

Let us see what happens with the Wigner measure when a caustic forms. Consider the
Schrödinger equation (2.13) with V = 0 – the corresponding Liouville equation is

Wt + k · ∇xW = 0, W (0, x, k) = W0(x, k). (2.25)

Its solution is W (t, x, k) = W0(x − kt, k) and clearly exists for all time. If the initial
phase S0(x) = −x2/2 with a smooth initial amplitude A0(x) then the Wigner transform
at t = 0 is W0(x, k) = |A0(x)|2δ(k + x) so that solution of (2.25) is

W (t, x, k) = |A0(x− kt)|2δ(k + x− kt).

This means that at the time t = 1 the Wigner measure

W (t = 1, x, k) = |A0(x− k)|2δ(x)

is no longer singular in wave vectors k but rather in space being concentrated at x = 0. This
is the caustic point. On the other hand, solution of the eikonal equation (2.19) with the same
initial phase and V = 0 is given by S(t, x) = −x2/(2(1 − t)) – we see that the same caustic
appears at t = 1. The transport equation becomes

(|A|2)t −
x

1− t
· ∇(|A|2)t −

n

1− t
|A|2.

The corresponding trajectories satisfy

Ẋ = − X

1− t
, X(0) = x

and are given by X(t) = x(1− t) – hence they all arrive to the point x = 0 at the time t = 1.
At this time the geometric optics approximation breaks down and is no longer valid while the
solution of the Liouville equation exists beyond this time.

We see that from the Wigner distribution we can recover the information contained in
the leading order of the standard high frequency approximation. In addition, it provides
flexibility to deal with initial data that is not of the form (2.21).

2.2 Random geometric optics: “short” times

We now assume that the potential V (t, x) is random, weak and varies on the scale much larger
than the initial data. More precisely, we consider the semiclassical Schrödinger equation

iεφt +
ε2

2
∆φ− δV (x)φ = 0 (2.26)

with the ε-oscillatory initial data φ(0, x) = φε0(x). This equation is written on the scale of
the variations of the random potential, and δ � 1 is the parameter measuring its strength.
Passing to the high frequency limit ε → 0 we obtain the Liouville equation for the Wigner
measure of the family φε(t, x):

∂W

∂t
+ k · ∇xW − δ∇xV (x) · ∇kW = 0, (2.27)
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with the initial data W (0, x, k) = W0(x, k), the Wigner measure of the family φε0(x). As the
parameter δ � 1 is small, the effect of the randomness will be felt only after long times. We
will build our analysis of (2.27) slowly, starting with relatively short times, and later for the
long times. We will assume that V (x) is a spatially homogeneous random process with mean
zero and the correlation function R(x):

〈V (x)〉 = 0, R(x) = 〈V (y)V (x+ y)〉. (2.28)

It will be convenient for us to use the correlation matrix for the force ∇V :〈∂V (y)

∂yi

∂V (x+ y)

∂yj

〉
= −∂

2R(x)

∂xi∂xj
. (2.29)

The characteristics at short times

We begin with the very basic theory of characteristics in a weakly random medium – this
material originated in the classical paper by J.B. Keller [7]. The characteristics for the
Liouville equation (2.27) are

dX

dt
= −K(t),

dK

dt
= δ∇V (X(t)), X(0) = x, K(0) = k. (2.30)

Let us seek the trajectories X(t), K(t) as a formal perturbation expansion

X(t) = X0(t) + δX1(t) + δ2X2(t) + . . . , K(t) = K0(t) + δK1(t) + δ2K2(t) + . . . .

We insert this expansion into the characteristics (2.30), and get in the leading order:

X0(t) = x− k0t, K0(t) = k.

As expected, in the leading order the characteristics are straight lines. The first order correc-
tion in δ is

K1(t) =

∫ t

0

∇V (X0(s))ds =

∫ t

0

∇V (x− ks)ds, (2.31)

and

X1(t) =

∫ t

0

K1(s)ds =

∫ t

0

(t− s)∇V (x− ks)ds. (2.32)

Naively, in order to see how long this approximation should hold, we estimate that during
a time T we would get K1(T ) ∼ T , and X1(T ) of the order T 2 meaning that we would
need δT 2 � 1, or T � δ−1/2 for the spatial trajectory to stay close to the straight line. Let
us now see how randomness affects this ballpark estimate – we have, as in (1.9):

〈K2
1(t)〉 =

∫ t

0

∫ t

0

〈∇V (x− ks) · ∇V (x− ks′)〉dsds′

= −
∫ t

0

∫ t

0

∆R(k(s− s′))dsds′ = Dt+O(1), as t→ +∞,

with the diffusion coefficient

D = −
∫ ∞
−∞

∆R(ks)ds. (2.33)
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With a little bit more work, one can show that an appropriate rescaling of K1(t) converges
to a Brownian motion with the diffusion matrix

Dij = −
∫ ∞
−∞

∂2R(ks)

∂xi∂xj
ds. (2.34)

The variance of X1(t) can also be computed explicitly:

〈X2
1 (t)〉 =

∫ t

0

∫ t

0

(t− s)(t− s′)〈∇V (x− ks) · ∇V (x− ks′)〉dsds′

= −
∫ t

0

∫ t

0

(t− s)(t− s′)∆R(k(s− s′))dsds′ = Dt3

3
+O(1), as t→ +∞,

and, once again, with a bit more work it can be shown that an appropriate rescaling of X(t)
converges, at large times to the time integral of the Brownian motion with the diffusion
matrix Dij. The above computations indicate that the simple perturbation expansion should
hold for times T such that

δ2T 3 ∼ O(1),

that is, for times of the order T ∼ δ−2/3, which is much longer than the “deterministic
prediction” T ∼ δ−1/2.

Formally, this means that for large times (but much smaller than δ−2/3), the expected
value of the solutions of the Liouville equation (2.27) is well-approximated by the solutions
of the Fokker-Planck kinetic equation

∂W̄

∂t
+ k · ∇xW̄ = δ2

n∑
i,j=1

Dij
∂2W̄

∂ki∂kj
, (2.35)

that is, 〈W (t, x, k)〉 ≈ W̄ (t, x, k). This is probably the simplest way to get to a kinetic
description of waves in random media. Instead of trying to make this approximation result
precise, for times t � δ−2/3, let us explain why such result, while providing a very nice
“hooligan’s derivation of the kinetic limit”, can not “truly hold” for longer times, when the
deviation of the characteristics from straight lines will be not small. The problem is that the
original characteristics (2.30) preserve the classical Hamiltonian:

ω(x, k) =
k2

2
+ V (x),

that is, ω(X(t), K(t)) = ω(X(0), K(0)). In particular, if, say, V (x) is a bounded random
potential, it is impossible for K(t) to behave as a Brownian motion for large times. Never-
theless, the overall picture described above is not too wrong, and in the next step we will see
how it can be naturally modified to see what happens at large times.

2.3 Random geometric optics: the long time limit

A particle in a random Hamiltonian

We will now study the “truly” long time asymptotics of geometric optics in a weakly random
medium. This problem can be analyzed in the general setting of a particle in a weakly random
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Hamiltonian field:

dXδ

dt
= ∇kHδ,

dKδ

dt
= −∇xHδ, Xδ(0) = 0, Kδ(0) = k0, (2.36)

with a random Hamiltonian of the form Hδ(x, k) = H0(k)+δH1(x, k). Here H0(k) is the back-
ground Hamiltonian and H1(x, k) is a random perturbation, while the small parameter δ � 1
measures the relative strength of random fluctuations. This was done in [1] and [9]. Here, we
will resist the temptation to describe the general results, and restrict ourselves to the case at
hand, with H0(k) = |k|2/2 and H1(x, k) = V (x), which simplifies some considerations. Thus,
we are interested in the Liouville equations

∂φ

∂t
+ k · ∇xφ− δ∇V (x) · ∇kφ = 0, (2.37)

and the corresponding characteristics

dX

dt
= K,

dK

dt
= −δ∇xV (X), X(0) = 0, K(0) = k0, (2.38)

on the time scale t ∼ δ−2. As usual, we will assume that the random potential V (x) is a
man-zero statistically homogeneous random field, with a rapidly decaying correlation func-
tion R(x):

〈V (x)〉 = 0, 〈V (y)V (x+ y)〉 = R(x), (2.39)

We have already seen that at relatively short times t � δ−2/3 the “boosted” devia-
tion (K(t) − k0)/δ behaves as a Brownian motion. At the longer times, we are interested
not in the deviation from the original direction but in the particle momentum itself. An
important simple observation is that (2.38) preserves the Hamiltonian

H(x, k) =
k2

2
+ δV (x). (2.40)

Hence, the law of any possible limit for the process Kδ(t) = K(t/δ2), as δ → 0, has to
be supported on the sphere |K(t)| = |k0| (and can not be a regular Brownian motion).
Moreover, one would expect the law of the limit process to be isotropic – there is no preferred
direction in the problem. One possibility is that Kδ(t) tends to a uniform distribution on the
sphere {|k| = |k0|} – and this is, indeed, what happens at times t � δ−2. However, at an
intermediate stage, at times of the order δ−2, the process Kδ(t) converges to the Brownian
motion Bs(t) on the sphere (this is an isotropic diffusion such that |Bs(t)| = 1 for all t).
This intuitive result has been first proved in [8] in dimensions higher than two, and later
extended to two dimensions with the Poisson distribution of scatterers in [2], and in a general
two-dimensional setting in [10]. The rescaled spatial component Xδ(t) = δ2X(t/δ2) converges
to the time integral of the Brownian motion on the sphere:

X(t) =

∫ t

0

Bs(τ)dτ.

In turn, the long time limit of a momentum diffusion is the standard spatial Brownian motion,
and we will see that on the times longer than δ−2 the spatial component X(t) converges to
the Brownian motion, while K(t) becomes uniformly distributed on the sphere {|k| = |k0|}.
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Let us mention that another important, (in the context of waves in random media) Hamil-
tonian

Hδ(x, k) = (c0 + δc1(x))|k|, (2.41)

arises in the geometrical optics limit of the wave equation. We will not address it directly here,
but, as we have mentioned, the analysis of the classical Hamiltonian (2.40) can be generalized
in a relatively straightforward way – see [9] for details. We stick here with (2.40) solely for
the sake of simplicity of presentation.

The Fokker-Planck limit

Let the function φδ(t, x, k) satisfy the Liouville equation

∂φδ

∂t
+ k · ∇xφ

δ − δ∇V (x) · ∇kφ
δ = 0, (2.42)

φδ(0, x, k) = φ0(δ
2x, k).

There are two assumptions implicitly made here: first is that the random potential is weak,
and the second is that the initial data varies on the scale 1/δ2 relative to the scale of the
variations of the potential. In the terminology of the introduction, this means that lc/L = δ2 –
or, we choose the particular observation scale L = lc/δ

2. One may wonder also as to what
happens on other observation scales – we will address this further below.

Let us define the diffusion matrix Dmn by

Dml(k) = − 1

|k|

∫ ∞
−∞

∂2R(sk̂)

∂xn∂xm
ds, m, l = 1, . . . , n. (2.43)

Note that if the correlation function is isotropic: R = R(|x|), then Dmn has a particularly
simple form:

Dml(k) = D(δmn − k̂lk̂m), D = − 2

|k|

∫ ∞
0

R′(r)

r
dr, m, l = 1, . . . , n. (2.44)

We have the following result.

Theorem 2.12 Let φδ be the solution of (2.42), with the initial data φ0 ∈ C∞c (R2d), whose
support is contained inside a spherical shell A(M) = {(x, k) : M−1 < |k| < M} for some
positive M > 0, and let φ̄ satisfy

∂φ̄

∂t
+ k · ∇xφ̄ =

d∑
m,n=1

∂

∂km

(
Dmn(k)

∂φ̄

∂kn

)
(2.45)

φ̄(0, x, k) = φ0(x, k).

Suppose that M ≥ M0 > 0 and T ≥ T0 > 0. Then, there exist two constants C, α0 > 0 such
that for all T ≥ T0

sup
(t,x,k)∈[0,T ]×K

∣∣∣∣Eφδ ( t

δ2
,
x

δ2
, k

)
− φ̄(t, x, k)

∣∣∣∣ ≤ CT (1 + ‖φ0‖1,4)δα0 (2.46)

for all compact sets K ⊂ A(M).
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Note that

d∑
m=1

Dnm(k̂, k)k̂m = −
d∑

m=1

1

2|k|

∫ ∞
−∞

∂2R(sk̂)

∂xn∂xm
k̂mds = −

d∑
m=1

1

2|k|

∫ ∞
−∞

d

ds

(
∂R(sk̂)

∂xn

)
ds = 0

and thus the K-process generated by (2.45) is indeed a diffusion process on a sphere |k| =
const, or, equivalently, equations (2.45) for different values of |k| are decoupled. Another
important point is that the assumption that the initial data does not concentrate close to k = 0
is important – if |k| is very small, the particle moves very slowly, and does not have a sufficient
time to sample enough of the random medium by the time δ−2.

Beyond the Fokker-Planck limit

Let us now return to the question of what happens to the solutions of the Liouville equation
with the initial data that varies on a scale much longer than δ−2 – in other words, the
observation is taken on even larger scales than described by the Fokker-Planck limit. It is
straightforward to see that solutions of the Fokker-Planck equation (2.45) themselves converge
in the long time limit to the solutions of the spatial diffusion equation. More, precisely, we
have the following result. Let φ̄γ(t, x, k) = φ̄(t/γ2, x/γ, k), where φ̄ satisfies (2.45) with slowly
varying initial data φ̄γ(0, t, x, k) = φ0(γx, k). We also let w(t, x, |k|) be the solution of the
spatial diffusion equation:

∂w

∂t
=

d∑
m,n=1

amn(|k|) ∂2w

∂xn∂xm
, (2.47)

w(0, x, |k|) = φ̄0(x, |k|)

with the averaged initial data

φ̄0(x, k) =
1

Γn−1

∫
Sn−1

φ0(x, k)dΩ(k̂).

Here, dΩ(k̂) is the surface measure on the unit sphere Sn−1 and Γn is the area of an n-
dimensional sphere. The diffusion matrix A := [anm] in (2.47) is given explicitly as

aij(k) =
|k|2

Γn−1

∫
Sn−1

k̂iχj(k)dΩ(k̂). (2.48)

The functions χj appearing above are the mean-zero solutions of

d∑
m,i=1

∂

∂km

(
Dmi(k)

∂χj
∂ki

)
= −k̂j, (2.49)

and when the correlation functionR(x) is isotropic, so thatDmi is given by (2.44), they are just
multiples of k̂j: aj(k) = c(|k|)k̂j, with an appropriate constant c(|k|) that can be computed
explicitly. In that case, the matrix anm is a multiple of identity, and (2.47) becomes the
standard diffusion equation

∂w

∂t
= ā(|k|)∆xw, (2.50)

with an appropriate diffusion constant ā.
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Theorem 2.13 For every pair of times 0 < T∗ < T < +∞ the re-scaled solution φ̄γ(t, x, k) =
φ̄(t/γ2, x/γ, k) of (2.45) converges as γ → 0 in C([T∗, T ];L∞(R2d)) to w(t, x, k). Moreover,
there exists a constant C0 > 0, so that we have

‖w(t, ·)− φ̄γ(t, ·)‖L∞ ≤ C0 (γT +
√
γ) ‖φ0‖C1 , (2.51)

for all T∗ ≤ t ≤ T .

The proof of Theorem 2.13 is based on classical asymptotic expansions and is quite straight-
forward. As an immediate corollary of Theorems 2.12 and 2.13, we obtain the following
result.

Theorem 2.14 Let φδ be solution of (2.42) with the initial data φδ(0, x, k) = φ0(δ
2+αx, k)

and let w̄(t, x) be the solution of the diffusion equation (2.47) with the initial data w(0, x, k) =
φ̄0(x, k). Then, there exists α0 > 0 and a constant C > 0 so that for all 0 ≤ α < α0 and all
0 < T∗ ≤ T we have for all compact sets K ⊂ A(M):

sup
(t,x,k)∈[T∗,T ]×K

∣∣w(t, x, k)− Eφ̄δ(t, x, k)
∣∣ ≤ CTδα0−α, (2.52)

where φ̄δ(t, x, k) := φδ (t/δ2+2α, x/δ2+α, k) .

Theorem 2.14 shows that if the initial data varies on a scale slightly larger than δ−2 then we
observe spatial diffusion for the solution (and uniform distribution in k) on the appropriate
time scale. The requirement that α is small is most likely technical and a constraint of a
“perturbative” proof – the result should hold for any α > 0.

To summarize: if the initial data for the random Liouville equation

∂φ

∂t
+ k · ∇xφ− δV (x) · ∇xφ = 0, (2.53)

varies on the scale δ−2: φ(0, x) = φ0(δ
2x, k), then on the time scale t ∼ δ−2 the expec-

tation of the rescaled solution φδ(t, x, k) = φ(t/δ2, x/δ2, k) converges to the solution of the
Fokker-Planck equation. On the other hand, if the initial data varies on an even larger
scale: φ(0, x, k) = φ(δ2+αx, k) then on the time scale t ∼ δ−2−2α the expectation of the
rescaled field φδ(t, x, k) = φ(t/δ2+2α, x/δ2+α, k) converges to the solution of the spatial dif-
fusion equation and is uniformly distributed in the directions k̂ for each |k| fixed. Thus, the
appropriate kinetic limit depends on the scale of the probing signal, which, in turn, determines
the proper time scale of the observations.

A formal derivation of the momentum diffusion

We now describe how the momentum diffusion operator in (2.45) can be derived in a quick
formal way. We represent the solution of (2.42) as φδ(t, x, k) = ψδ(δ2t, δ2x, k) and write an
asymptotic multiple scale expansion for ψδ

ψδ(t, x, k) = φ̄(t, x, k) + δφ1

(
t, x,

x

δ2
, k
)

+ δ2φ2

(
t, x,

x

δ2
, k
)

+ . . . (2.54)
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We assume formally that the leading order term φ̄ is deterministic and independent of the
fast variable z = x/δ2. We insert this expansion into (2.42) and obtain in the order O (δ−1):

∇V (z) · ∇kφ̄− k · ∇zφ1 = 0. (2.55)

Let θ � 1 be a small positive regularization parameter that will be later sent to zero, and
consider a regularized version of (2.55):

1

|k|
∇V (z) · ∇kφ̄− k̂ · ∇zφ1 + θφ1 = 0,

Its solution is

φ1(z, k) = − 1

|k|

∫ ∞
0

d∑
m=1

∂V (z + sk̂)

∂zm

∂φ̄(t, x, k)

∂km
e−θsds, (2.56)

and the role of θ > 0 is to ensure that the integral in the right side converges. The next order
equation becomes upon averaging

∂φ̄

∂t
+ k · ∇xφ̄ = 〈∇V (z) · ∇kφ1〉. (2.57)

The term in the right side above may be written using expression (2.56) for φ1:

〈∇V (z) · ∇kφ1〉 =
〈 d∑
m,n=1

∂V (z)

∂zm

∂

∂km

( 1

|k|

∫ ∞
0

∂V (z + sk̂)

∂zn

∂φ̄(t, x, k)

∂kn
e−θsds

)〉
.

Using spatial stationarity of H1(z, k) we may rewrite the above as

−
〈 d∑
m,n=1

V (z)
∂

∂zm

∂

∂km

( 1

|k|

∫ ∞
0

∂V (z + sk̂)

∂zn

∂φ̄(t, x, k)

∂kn
e−θsds

)〉
= −

d∑
m,n=1

∂

∂km

( 1

|k|

∫ ∞
0

〈
V (z, k)

∂2V (z + sk̂)

∂zn∂zm

〉∂φ̄(t, x, k)

∂kn
e−θsds

)
= −

d∑
m,n=1

∂

∂km

( 1

|k|

∫ ∞
0

∂2R(sk̂)

∂xn∂xm

∂φ̄(t, x, k)

∂kn
e−θsds

)
→ −1

2

d∑
m,n=1

∂

∂km

(
1

|k|

∫ ∞
−∞

∂2R(sk̂)

∂xn∂xm

∂φ̄(t, x, k)

∂kn
ds

)
, as θ → 0+.

We insert the above expression into (2.57) and obtain

∂φ̄

∂t
=

d∑
m,n=1

∂

∂kn

(
Dnm(k)

∂φ̄

∂km

)
+ k · ∇xφ̄ (2.58)

with the diffusion matrix D(k̂, k) as in (2.43). Observe that (2.58) is nothing but (2.45).
However, the naive asymptotic expansion (2.54) may not be justified directly, to the best of
my knowledge. The rigorous proof is based on a completely different method.
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3 Passive sensor imaging using noisy signals

In this section, we describe how imaging can be done using cross-correlation of signals in the
presence of random noise sources. That is, we have the following setup: two (or more) sensors
are located at the positions x1 and x2, and record the time-dependent wave fields u(t, x1)
and u(t, x2) that come from a noisy distribution of sources. Our goal is to estimate the travel
time from x1 to x2, as well as to find any reflectors present in the medium. We will be following
the paper [3] by J. Garnier and G. Papanicolaou where a detailed list of references can be
found, as well as a much deeper discussion of the problem. The main miracle is the following
basic observation. Consider the cross-correlation function of the recorded signals u(t, x1)
and u(t, x2), with a time lag τ :

CT (τ, x1, x2) =
1

T

∫ T

0

u(t, x1)u(t+ τ, x2)dt. (3.1)

It turns out that if the noisy sources form a space-time stationary random field, then the
cross-correlation encodes the Green’s function between the points x1 and x2:

∂CT (τ, x1, x2)

∂τ
= G(τ, x1, x2)−G(−τ, x1, x2) + o(1), as T → +∞. (3.2)

Naturally, it is very rare that the sources are distributed randomly in all of space, and we have
sensors in their midst. A more common situation is that the sources are distributed randomly
in a bounded set, and the sensors are located away from them. Our goal here is to explain
relation (3.2), as well as its generalization to other spatial configurations of random sources,
and indicate some implications to the inverse problems. We will see that one important
factor is that there should be some energy flux between the sensors. For example, if the line
connecting the sensors points toward the noisy sources, the cross-correlation will carry more
information about the Green’s function than if it is orthogonal to the direction toward the
sources. This leads to the idea that “directional diversity is good” – a medium in which waves
“propagate in all directions” is better for us than a non-scattering medium. Examples when
this is the case are an ergodic cavity when even a small set of random sources will create
directional diversity due to reverberations, and a random medium with a large number of
(weak) random scatterers. However, a random medium has to have a “just right” transport
mean free path: on one hand, it has to be sufficiently small so that multiple scattering would
create directional diversity. On the other, the coherent part of the signal traveling from x1
to x2 (which is exponentially attenuated in the presence of multiple scattering) should not be
too weak meaning that the distance between the sensors should be smaller than the transport
mean free path.

The wave equation with noisy sources

We consider the wave equation

1

c2(x)

∂2u

∂t2
−∆u = n(t, x). (3.3)
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Here, c(x) is the deterministic background sound speed, and n(t, x) is a random distribution
of sources. We assume that it is stationary in time, with the correlation function

〈n(t1, x1)n(t2, x2)〉 = Γ(x1, x2)F (t2 − t1). (3.4)

We also assume that the coherence time of the sources is much smaller than the travel time
between the sensors – this is a very important physical assumption. If we denote the ratio of
these time scales by ε� 1, the time correlation function F (t) takes the form

Fε(t) = F
( t
ε

)
, (3.5)

and its Fourier transform is
F̂ε(ω) = εF̂ (εω). (3.6)

For simplicity, we will assume that the spatial correlation function is a modulated delta-
function:

Γ(x1, x2) = θ(x1)δ(x1 − x2). (3.7)

The function θ(x) characterizes the support and strength of the sources. This assumption
can be weakened but the spatial decorrelation length of the random sources should be much
smaller than the distance between the sensors.

The stationary in time solution of the wave equation has the form

u(t, x) =

∫ t

−∞

∫
G(t− s, x, y)nε(s, y)dyds =

∫ ∞
0

∫
G(s, x, y)nε(t− s, y)dyds. (3.8)

Here, G(t, x, y) is the solution of

1

c2(x)

∂2G

∂t2
−∆G = δ(t)δ(x− y), t ≥ 0, (3.9)

with G(0, x, y) = Gt(0, x, y) = 0. We may extend G(t, x, y) = 0 for t ≤ 0 and write

u(t, x) =

∫ ∞
−∞

∫
G(s, x, y)nε(t− s, y)dyds. (3.10)

The stationarity of nε(t) implies that the wave-fields u(t, x) are themselves stationary, hence
the mean of CT does not depend on T and is given by

C1(τ, x1, x2) := 〈CT (τ, x1, x2)〉 = 〈u(0, x1)u(τ, x2)〉. (3.11)

We may now compute the mean correlation:

C1(τ, x1, x2) =

∫
G(s1, x1, y1)G(s2, x2, y2)〈nε(−s1, y1)nε(τ − s2, y2)〉dy1dy2ds1ds2

=

∫
G(s1, x1, y)G(τ + s1 + s2, x2, y)θ(y)Fε(s2)dyds1ds2. (3.12)
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This expression may be re-written in the Fourier domain:

C1(τ, x1, x2) =

∫
e−iω1s1−iω2(τ+s1+s2)Ĝ(ω1, x1, y)Ĝ(ω2, x2, y)θ(y)Fε(s2)dyds1ds2

dω1dω2

(2π)2

=

∫
e−iω2(τ+s2)Ĝ(−ω2, x1, y)Ĝ(ω2, x2, y)θ(y)Fε(s2)dyds2

dω2

2π

=

∫
Ĝ(ω, x1, y)Ĝ(ω, x2, y)F̂ε(ω)e−iωτθ(y)

dydω

2π
. (3.13)

Here, we use the convention as in [3]:

f̂(ω) =

∫
eiωtf(t)dt, f(t) =

∫
e−iωtf̂(ω)

dω

2π
.

An important observation is that the correlation is self-averaging in the limit T → +∞, in
other words,

CT (τ, x1, x2)→ C1(τ, x1, x2), as T → +∞, (3.14)

in probability. This is extremely important for potential applications in inverse problems: it
follows that the cross-correlation is not random in the large T limit, and is thus an appropriate
quantity to be used as an input into the inverse problems. We will not prove it here: the
proof is by a direct computation of the variance of CT (τ, x1, x2) and showing that it tends to
zero as T → +∞, at the rate O(1/T ) – see Appendix A in [3] for details.

The Green’s function from the correlations in a homogeneous medium

We now show how the Green’s function emerges from the correlations in the simplest case: the
medium is homogeneous, c(x) = c0, and the sources are uniformly (statistically) distributed
in space: θ(x) ≡ 1. In this exact situation, the wave field will diverge so we need to introduce
some absorption:

1

c20

(
1

Ta
+
∂

∂t

)2

u−∆u = nε(t, x). (3.15)

Proposition 3.1 Assume that the dimension n = 3 and the sources are distributed statisti-
cally homogeneously in space: θ(x) ≡ 1, then

∂C1(τ, x1, x2)

∂τ
= −c

2
0Ta
4
e−|x1−x2|/(c0Ta) [Fε ? G(τ, x1, x2)− Fε ? G(−τ, x1, x2)] . (3.16)

Here, ? denotes the convolution in τ , and

G(t, x1, x2) =
1

4π|x1 − x2|
δ
(
t− |x1 − x2|

c0

)
is the Green’s function for the wave equation in a homogeneous medium without the dissipa-
tion.
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Now, if the decoherence time ε is much smaller than the travel time between the sensors, that
is, if ε� 1, we can approximate Fε(t) by the delta-function, and (3.16) turns into

∂C1(τ, x1, x2)

∂τ
≈ −c

2
0Ta
4
e−|x1−x2|/(c0Ta) [G(τ, x1, x2)−G(−τ, x1, x2)] . (3.17)

Therefore, we may estimate the travel time between x1 and x2, up to the decorrelation time
of the random sources.

In order to prove Proposition 3.1, recall that the Green’s function of a homogeneous
medium with dissipation is

Ga(t, x1, x2) = G(t, x1, x2)e
−t/Ta .

The cross-correlation function is given then by (recall that θ ≡ 1)

C1(τ, x1, x2) =

∫
Ga(s, x1, y)Ga(τ + s+ s′, x2, y)Fε(s

′)dydsds′

=
1

16π2

∫
e−s/Ta

|x1 − y|
e−(τ+s+s

′)/Ta

|x2 − y|
δ
(
s− |x1 − y|

c0

)
δ
(
τ + s+ s′ − |x2 − y|

c0

)
Fε(s

′)dydsds′

=
1

16π2

∫
e−|x1−y|/(c0Ta)

|x1 − y|
e−|x2−y|/(c0Ta)

|x2 − y|
Fε(τ −

|x2 − y| − |x1 − y|
c0

)dy.

Let us use the coordinate axes such that x1 = (h, 0, 0) and x2 = (−h, 0, 0), and use the change
of variables for y = (y1, y2, y3):

y1 = h sin θ cosh r, y2 = h cos θ sinh r cosψ, y3 = h cos θ sinh r sinψ,

with r ∈ (0,+∞), θ ∈ (−π/2, π/2) and ψ ∈ (0, 2π). The Jacobian is

J = h3 cos θ sinh r(cosh2 r − sin2 θ),

while
|x1 − y| = h(cosh r − sin θ), |x2 − y| = h(cosh r + sin θ).

Using these expressions in the integral above we obtain

C1(τ, x1, x2) =
h3

16π2

∫ ∞
0

dr

∫ π/2

−π/2
dθ

∫ 2π

0

dψ
cos θ sinh r(cosh2 r − sin2 θ)e−2h cosh r/(c0Ta)

h2(cosh r − sin θ)(cosh r + sin θ)

×Fε(τ −
2h sin θ

c0
) =

h

8π

∫ ∞
0

dr

∫ π/2

−π/2
dθcos θ sinh re−2h cosh r/(c0Ta)Fε(τ −

2h sin θ

c0
).

After another change of variables, w = h cosh r and s = (2h/c0) sin θ, this becomes

C1(τ, x1, x2) =
c0

16πh

∫ ∞
h

dw

∫ 2h/c0

−2h/c0
dse−2w/(c0Ta)Fε(τ − s) =

c20Tae
−2h/(c0Ta)

32πh

2h/c0∫
−2h/c0

dsFε(τ − s).

Differentiating in τ leads to

∂C1(τ, x1, x2)

∂τ
=
c20Tae

−2h/(c0Ta)

32πh
[Fε(τ + 2h/c0)− Fε(τ − 2h/c0)]. (3.18)

Now, as |x1 − x2| = 2h, we get (3.16).
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Travel time estimation with spatially localized noisy sources

We now consider the cross-correlation of signals when the noisy sources are localized, so
that the function θ(x) 6≡ 1. The medium has a smooth sound speed profile c0(x), which is
homogeneous outside of a large sphere that encloses both the sensors and the sources. The
outgoing time-harmonic Green’s function is the solution of

∆xĜ0(ω, x, y) +
ω2

c20(x)
Ĝ0(ω, x, y) = −δ(x− y), (3.19)

together with the radiation condition at infinity. When the medium is uniform, the Green’s
function is

Ĝ0(ω, x, y) =
eik|x−y|

4π|x− y|
, k = ω/c0,

in three dimensions. When the medium is slowly varying, the high frequency (WKB, for
Wentzell-Kramers-Brillouin) asymptotics for Green’s function is

Ĝ0

(ω
ε
, x, y

)
∼ a(x, y)eiωτ(x,y)/ε. (3.20)

Here, the functions a(x, y) and τ(x, y) are smooth except at x = y. The travel time τ(x, y)
can be obtained from Fermat’s principle:

τ(x, y) = inf
γ
Tγ, (3.21)

where the infimum is taken over all C1-curves γ : [0, Tγ]→ R3 such that X(0) = x, X(Tγ) = y
and ∣∣∣∣dXt

dt

∣∣∣∣ = c0(Xt).

The minimizing curve in (3.21) is the ray, and we assume that the profile c0(x) is such that
there is a unique ray joining any two points x and y in the region of interest. Recall that the
rays satisfy the Hamiltonian system

dX

dt
= c0(X)K̂, X(0) = x,

dK

dt
= −∇c0(X)|K(t)|, K(0) = k.

Our assumption on the uniqueness of the ray means that for every x and y there exists one k
with |k| = 1, such that X(0) = x, K(0) = k, and X(t) = y for some t, and then this time t is
the travel time from x to y.

Lemma 3.2 If ∇yτ(x1, y) = ∇yτ(x2, y) then x1 and x2 lie on the same ray issuing from y
and

|τ(x1, y)− τ(x2, y)| = τ(x1, x2).

On the other hand, if ∇yτ(x1, y) = −∇yτ(x2, y) then x1 and x2 lie on the opposite sides of
the same ray issuing from y and

τ(x1, y) + τ(x2, y) = τ(x1, x2).

27



Proof. Let us look at the ray connecting x1 and y. We can look at it as “starting at y in the
direction k0” or, equivalently, as “starting at x1 in the direction k1”. Then we have

X(t; y, k0) = X(τ − t;x1, k1), K(t; y, k0) = −K(τ − t;x1, k1).

Note that we also have

∇2τ(x1, X(t;x1, k1)) =
1

c0(X(t;x1, k1))
K̂(t;x1, k1),

with the gradient taken with respect to the second variable. Let us use this identity at the
time t = τ(x1, y):

−k0 = K(τ ;x1, k1) = ∇2τ(x1, X(τ ;x1, k1)) = ∇yτ(x1, y).

Therefore, if ∇yτ(x1, y) = ∇yτ(x2, y) then the ray connecting x1 and y, and x2 and y has to
start at the same angle, whence x1 and x2 lie on the same ray going through y, and on the
same side of y. On the other hand, if ∇yτ(x1, y) = −∇yτ(x2, y) then, for the same reason,
they have to lie on the same ray passing through y but on two different sides from y.

We are now ready to prove the following proposition.

Proposition 3.3 As ε → 0, the cross-correlation C1(τ, x1, x2) has singular components if
and only if the ray going through x1 and x2 reaches into the source region, that is, into the
support of the function θ. In this case, there are either one or two singular components at
τ = ±τ(x1, x2). More precisely, any ray going from the source region to x2 and then to x1
gives rise to a singular component at τ = −τ(x1, x2), while rays going frist from the source
region to x1 and then to x2 give rise to the singular component at τ = τ(x1, x2).

This proposition explains why travel time estimation is bad when the ray joining the two
sensors is nearly orthogonal to the direction toward the noisy sources.

In order to prove Proposition 3.3 we use expression (3.13), and recall that F̂ε(ω) = εF̂ (εω):

C1(τ, x1, x2) =

∫
Ĝ(ω, x1, y)Ĝ(ω, x2, y)F̂ε(ω)e−iωτθ(y)

dydω

2π
(3.22)

= ε

∫
Ĝ(ω, x1, y)Ĝ(ω, x2, y)F̂ (εω)e−iωτθ(y)

dydω

2π

=

∫
Ĝ(
ω

ε
, x1, y)Ĝ(

ω

ε
, x2, y)F̂ (ω)e−iωτ/εθ(y)

dydω

2π
.

Using the WKB-approximation of Green’s function gives

C1(τ, x1, x2) =

∫
ā(x1, y)a(x2, y)F̂ (ω)eiωT (y)/ε

dydω

2π
,

with the phase
ωT (y) = ω[τ(x2, y)− τ(x1, y)− τ ].

The stationary phase method implies that the main contribution to the integral comes from
the critical points of the phase, where

∂

∂ω
(ωT (y)) = 0, ∇y(ωT (ω, y)) = 0.
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It follows that
τ(x2, y)− τ(x1, y) = τ, ∇yτ(x2, y) = ∇yτ(x1, y). (3.23)

Now, Lemma 3.2 and the second condition in (3.23) imply that x1 and x2 lie on the same
side of a ray issuing from y. If the points are aligned so that y → x1 → x2 then the first
condition in (3.23) implies that τ = τ(x1, x2). On the other hand, if they are aligned so that
y → x2 → x1 then the first condition in (3.23) implies that τ = −τ(x1, x2). Finally, in order
for a stationary point y to contribute to the integral, we should have θ(y) 6= 0, which means
that y has to lie in the source region.

Here, we have only touched upon the possibilities of imaging using passive sensors and
random noise sources. This method extends to many other imaging problems, such as in the
presence of reflectors, and in heterogeneous media, and we refer to [3] for various extensions,
as well as to [4] for more recent results.
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