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Abstract

We consider the evolution of the separation distance between two particles advected by a
random velocity field with slowly decaying temporal and spatial correlations in the weak coupling
regime. It has been shown in [5] that the motion of a single particle converges to a fractional
Brownian motion on a time scale δ−γ with some γ < 2, which is shorter than the classical diffusive
time scale δ−2 (see [9]). In the present paper we prove that unlike the single particle position, the
two-particle separation behaves diffusively, and evolves on the classical time scale δ−2, even when
the random flow is slowly decorrelating in time and space. The results of this paper illustrate
that the flows under consideration display both diffusive and superdiffusive transport on different
time scales for various physical quantities.

1 Introduction

Motion of a particle in a random velocity field

We consider the motion of a particle advected by a weakly random velocity field V (t, x):

Ẋ(t) = δV (t,X(t)), X(0) = x ∈ Rd. (1.1)

Here δ � 1 is a small parameter measuring the strength of the flow. This problem has been
intensively studied – see the comprehensive review [12] for extensive references. The basic result is
that under appropriate mixing and time-stationarity assumptions on the field V (t, x), the rescaled
process xδ(t) = X(t/δ2) converges, as δ → 0 to a diffusion process with the diffusion matrix given
by the Kubo formula

Dpq =
∫ ∞

0
E [Vp(t, 0)Vq(0, 0) + Vq(t, 0)Vp(0, 0)] dt, p, q = 1, . . . , d. (1.2)

Here E denotes the expectation with respect to the realizations of the field.
This result, obviously, can hold only if the temporal correlations of V (t, x) decay sufficiently

fast so that the entries of the matrix [Dpq] is finite. The situation is quite different when they
are infinite. One particular example of such velocity field was considered in [5] when V (t, x) is an
Ornstein-Uhlenbeck process given by

V (t, x) :=
∫
eik·xV̂ (t, dk), (1.3)
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with V̂ (t, dk) a stationary, stochastic measure-valued process defined by

V̂ (t, dk) =
√

2
∫ t

−∞
e−|k|

2β(t−s)|k|βB̂(ds, dk). (1.4)

Here B̂(dt, dk) is an Rd-valued, space-time noise, that is, a Gaussian, distribution valued process
satisfying B̂∗(dt, dk) = B̂(dt,−dk) and

E
[
B̂i(dt, dk)B̂∗j (dt′, dk′)

]
= R̂ij(k)δ(t− t′)δ(k − k′)dtdt′dkdk′,

with β ≥ 0 and the spatial power spectrum given by

R̂(k) =
a(|k|)
|k|2α+d−2

(
I − k ⊗ k

|k|2

)
. (1.5)

The function a(·) is non-negative, bounded, measurable, supported in [0,K0] for some K0 > 0
and continuous at 0 with a(0) > 0. In order to ensure that the spectrum is integrable at k = 0 so
that V (t, x) is a vector valued, stationary random field, we assume that α < 1. Informally, V̂ (t, dk)
is a stationary solution of the stochastic differential equation

dV̂i(t, dk) = −|k|2βV̂i(t, dk)dt+
√

2|k|βB̂i(dt, dk), i = 1, . . . , d. (1.6)

The covariance matrix of V (t, x) is

Rij(t, x) = E[Vi(t, x)Vj(0, 0)] =
∫
eik·xe−|k|

2β |t|R̂ij(k)dk, i, j = 1, . . . , d. (1.7)

It is straightforward to verify that the diffusion matrix given by the Kubo-Taylor formula (1.2) is
finite if and only if α+β < 1. It has been shown in [4] that then in fact the process xδ(t) = X(t/δ2)
converges in law to a Brownian motions with the diffusivity matrix given by (1.2).

On the other hand, it has been shown in [5] that in the opposite regime α + β > 1 (when
β > 0, α < 1) the result is as follows. Because of the slow decay of the temporal correlations of
the velocity field, the process X(t) becomes non-trivial on a shorter time scale t ∼ O(δ−2γ) with
γ = β/(α+2β−1) < 1. Hence, one should consider the process xδ(t) = X(t/δ2γ), which, in the limit
δ → 0 converges to a superdiffusive fractional Brownian motion BH(t), with the Hurst exponent

H =
1
2

+
α+ β − 1

2β
∈ (1/2, 1).

Similar (but less sharp) results have been obtained in [10, 11] for a particle in a Gaussian time-
independent velocity field with a large mean and slowly decaying correlations.

Behavior of the two-particle separation

One may also consider the evolution of the separation between a pair of particles advected by such
random flow: let X(t, x) and X(t, x + z) be two trajectories of (1.1) starting at the points x and
x+ z, respectively, and set zδ(t) = X(t/δ2, x+ z)−X(t/δ2, x). The processes xδ(t) and zδ(t) satisfy
the system

ẋδ(t) =
1
δ
V

(
t

δ2
, xδ(t)

)
, xδ(0) = 0, (1.8)

żδ(t) =
1
δ
W

(
t

δ2
, xδ(t), zδ(t)

)
, zδ(0) = z,
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where
W (t, x, z) := V (t, x+ z)− V (t, x) .

When the velocity field V (t, x) is as above (see (1.3)-(1.7)), the random field W (t, x, z) is given by

W (t, x, z) =
√

2
∫ t

−∞

∫
e−|k|

2β(t−s)eik·x(eik·z − 1)|k|βB̂(ds, dk). (1.9)

The two-particle separation was also considered in [9]. It was shown that for rapidly decorrelating
(in time and space) fields the process zδ(t) converges weakly, as δ → 0 to a diffusion process with
the diffusion matrix

cpq(z) :=
∫ ∞

0
[Rpq(t, 0) +Rqp(t, 0)−Rpq(t, z)−Rqp(t, z)] dt. (1.10)

When the two-point correlation function has the form (1.5)-(1.7), this matrix takes the form

cpq(z) =
∫

1− cos(k · z)
|k|2β

R̂pq(k)dk, z ∈ Rd, p, q = 1, . . . , d. (1.11)

A direct calculation shows that |cpq(z)| < +∞ for 1 < α + β < 2, which is a larger range of the
parameters α and β than that for the ”one-particle” diffusion matrix Dpq given by (1.2) to remain
finite. In particular, in the range 1 < α + β < 2 the matrix Dpq is infinite while cpq is finite. In
agreement with this calculation, it was observed in [5] that, even when α+ β > 1, the process Z(t)
behaves trivially on the ”fractional diffusion” time scale t ∼ O(δ−2γ): Z(t/δ2γ) ≈ z. That is, all
individual particles starting at positions separated by distance z ∼ O(1) perform perfectly correlated
fractional Brownian motions on this time scale, and thus move together as a group.

A natural question addressed in the present paper is to find the time scale on which the particle
separation has a non-trivial limit. It turns out that in the range 1 < α + β < 2 the two particle
separation (unlike the one-particle position) becomes non-trivial on the ”diffusion” time scale t ∼
O(δ−2), that is, much larger than the time scale t ∼ O(δ−2γ), when one particle position has a
non-trivial limit. Our main result can be formulated as follows.

Theorem 1.1 Let Qδ be the law of {zδ(t), t ≥ 0} on C[0,+∞). Suppose that α + β > 1 and
α+ 2β < 2. Then, the family of measures {Qδ, δ > 0} converges weakly, as δ → 0+ to the law of a
diffusion with the generator given by

Lf(z) =
d∑

p,q=1

cpq(z)∂2
p,qf(z) (1.12)

for any function f(z) that is twice continuously differentiable.

We should mention that we do not try to identify the behavior of the individual particles on the time
scale O(δ−2) but rather only of the particle separation. Theorem 1.1 shows that slowly decaying
temporal and spatial correlations of the random flow bring about multiple temporal scales: while the
one-particle quantities evolve on the shorter ”anomalous” time scale O(δ−2γ), for some γ ∈ (0, 1),
the two particle separation evolves on a longer ”classical diffusive” time scale. Similar temporal
separation was observed in one-dimensional wave propagation [13, 6] and wave propagation in higher
dimensions [2, 7]. We believe that this very interesting phenomenon is an important characteristic
feature of media with long range correlations in a wide range of problems.

A Gaussian field with the covariance matrix given by (1.7) is statistically isotropic, in the sense
that for any matrix g ∈ SO(d) the laws of the fields {V (t, gx), (t, x) ∈ R1+d} and {gV (t, x), (t, x) ∈
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R1+d} are identical. This hypothesis, simplifies our computations but does not seem to be crucial for
the validity of our result. Namely, we conjecture that, at the cost of some additional complication
of calculations one should be able to prove that if the covariance matrix of the field is given by

R(t, x) =
∫

R
eik·xe−r(k)tR̂(k)dk,

where trR̂(k) ∼ |k|−(2α+d−2) and r(k) ∼ |k|2β for |k| � 1, and α, β are as in the statement of
Theorem 1.1 then the conclusion of the theorem is still correct. Note also that the presence of the
factor I − k ⊗ k/|k|2 in formula (1.5) ensures that the realizations of the random field are almost
surely divergence free. The role of incompressibility in our result does not seem to be crucial either.
If it does not hold the limiting diffusion would pick up a drift term, which vanishes in our situation,
see condition (3.39) below. However, it should be noted that incompressibility has played a role in
establishing the limit for the single particle motion in [5].

Acknowledgment. This work was supported by NSF grants DMS-0908507 and DMS-0908011.
LR was also supported by an NSSEFF Fellowship, and TK by Polish Ministry of Science and Higher
Education grant NN 201419139.

2 Proof of Theorem 1.1

The cut-off process

The idea of the proof is quite similar to that in [9]: one introduces a regularized process z(M)
δ (t)

that ”does not behave wildly” for a finite value of the cut-off parameter M . One first establishes
convergence for the regularized process, and then uses the ”uniformly nice in M” properties of the
limit to establish the convergence of the original, unregularized process zδ(t).

More precisely, given M > 1, we consider a cut-off function φM belonging to C∞0 (Rd) – the space
of infinitely smooth, compactly supported functions, such that φM (z) = 1 when |z| ≤ M − 1 and
φM (z) = 0, when |z| ≥ M . Let W (M)(t, z, x) := W (t, z, x)φM (z) and let (xδ(t), z

(M)
δ (t)) be the

solution of

ẋδ(t) =
1
δ
V

(
t

δ2
, xδ(t)

)
, (2.1)

ż
(M)
δ (t) =

1
δ
W (M)

(
t

δ2
, xδ(t), z

(M)
δ (t)

)
,

xδ(0) = 0, z
(M)
δ (0) = z0.

The regularization ensures that |z(M)
δ (t)| ≤M for all t ≥ 0. The first step in the proof of Theorem 1.1

is to establish tightness for the regularized processes z(M)
δ (t).

Theorem 2.1 Suppose that M > 1 is fixed. Then the family of laws of {z(M)
δ (t), t ≥ 0} is tight on

C[0,+∞) as δ → 0+.

With this result in hand, by an argument in step (vi) of the proof of Theorem 3 of [9], tightness of
the laws Qδ of the process zδ(t) follows from the tightness of the laws Qδ,M of z(M)

δ (t).
Next, we identify the possible limits Q∗M of the laws Qδ,M of the processes z(M)

δ , as δ → 0+.
For any path π ∈ C[0,+∞) and t ≥ 0, let Πt(π) := π(t). Denote by Mt the natural filtration
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corresponding to the canonical process {Πt, t ≥ 0} and by Cmb (Rd) the space of functions possessing
m continuous and bounded derivatives. We introduce also the regularized coefficients

c(M)
pq (z) := φ2

M (z)cpq(z), (2.2)

with cpq(z) given by (1.11), and the drift

b(M)
p (z) :=

1
2

d∑
q=1

∂zq [φ
2
M (z)]cpq(z). (2.3)

The drift b(M) appears only because of the regularization that violates the incompressibility con-
straint in the z-component.

Theorem 2.2 Suppose that 1 < α+ β and α+ 2β < 2. Then, for any f ∈ C2
b (Rd), M > 1 and Ψs

that is bounded and Ms-measurable we have∫ {[
f(Πt)− f(Πs)−

∫ t

s
LMf(Πρ)dρ

]
Ψs

}
Q∗M (dπ) = 0, (2.4)

where

LMf(z) =
d∑

p,q=1

c(M)
pq (z)∂2

p,qf(z) +
d∑
p=1

b(M)
p (z)∂pf(z). (2.5)

Thanks to C2 smoothness of the coefficients of the operator LM we conclude that for each M > 1
there exists a unique limiting measure Q∗M , see [15], Corollary 8.1.7. Hence, QM,δ ⇒ Q∗M , as δ → 0+.

Theorem 1.1 as a consequence of Theorems 2.1 and 2.2

To conclude the weak convergence of Qδ, as δ → 0+, we consider the stopping time

τM (π) := inf[t ≥ 0 : |π(t)| ≥M − 1] for a given π ∈ C[0,+∞),

with the usual convention τM = +∞ if the infimum is taken over an empty set. Observe that
Qδ coincides with Qδ,M when restricted to MτM – the σ-algebra consisting of those sets A that
A ∩ [τM ≤ t] ∈ Mt for all t ≥ 0. Hence, also Q∗M and Q∗M ′ coincide on that σ-algebra, when
M ≤M ′. The family {Q∗M , M ≥ 1} is tight, as M → +∞. Indeed, it suffices only to show that for
any T, ε > 0 there exists M0 such that

Q∗M (τM0 ≤ T ) < ε, ∀M ≥M0. (2.6)

This follows from elementary properties of diffusions, see e.g. (2.1), p. 88 of [15].
As an immediate consequence of Theorem 2.2 we conclude that any Q∗, that is a limiting measure

of {Q∗M , M ≥ 1}, as M → +∞, has to satisfy the martingale problem∫ {[
f(Πt)− f(Πs)−

∫ t

s
Lf(Π%)d%

]
Ψs

}
Q∗(dπ) = 0 (2.7)

for any f ∈ C2
b (Rd) and Ψs that is bounded, Ms measurable. Here operator L is given by (1.12).

Thus, Q∗M ⇒ Q∗, as M → +∞ and Theorem 1.1 follows.
Therefore, the demonstration of Theorem 1.1 is reduced to the proof of Theorems 2.1 and 2.2.
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A martingale estimate

Both Theorems 2.1 and 2.2 are consequences of the following estimate. We denote by ‖f‖R,m the
Cm-norm of the function f over the ball centered at 0 of radius R > 0 and by Ft, t ≥ 0 the natural
filtration corresponding to {V (t, ·), t ≥ 0}.

Theorem 2.3 Under the assumptions of Theorem 2.2 there exist constants C, ε > 0 and γ ∈ (1, 2)
such that∣∣∣∣E{[f(z(M)

δ (u)− Y )− f(z(M)
δ (t)− Y )−

∫ u

t
LMf(z(M)

δ (s)− Y )ds
]

Ψ
}∣∣∣∣ ≤ C‖Ψ‖L2‖f‖4M,3δ

ε(u−t),

(2.8)
where t ≥ δγ, u−t ≥ δγ, f ∈ C3

b (Rd) is arbitrary, LM is given by (2.5) and Ψ, Y are Ft/δ2-measurable
random variables with ‖Y ‖L∞ ≤ 2M .

Proofs of Theorems 2.1 and 2.2

Theorem 2.2 is a direct consequence of Theorem 2.3 and tightness claim made in Theorem 2.1. We
turn to the proof of Theorem 2.1. Let Zδ(t) := z

(M)
δ (ti+1) for t ∈ [ti, ti+1), with ∆ti = δγ , and γ as

in the statement of Theorem 2.3. We show in Corollary 3.7 below that for each ρ > 0 and T > 0,
we have

lim
δ→0+

Qδ,M

(
sup
t∈[0,T ]

|Zδ(t)− z
(M)
δ (t)| ≥ ρ

)
= 0.

Therefore, tightness of Qδ,M follows if we show tightness of the laws of {Zδ(t), t ≥ 0} over D[0,+∞),
as δ → 0+.

Suppose that u− t ≥ δγ and Ψ is a random variable that is Ft/δ2-measurable. Then, we have∣∣E{|Zδ(u)− Zδ(t)|2iΨ
}∣∣ =

∣∣∣E{|z(M)
δ (tl)− z

(M)
δ (tk)|2iΨ

}∣∣∣ , (2.9)

for some l ≥ k ≥ 1 such that 0 < tl − u < δγ , 0 < tk − t < δγ . We use Theorem 2.3, with
f(x) = |x|2i, i = 1, 2 and Y = z

(M)
δ (tk). According to this result, there exist constants C,C ′ > 0,

possibly depending on M , but independent of the random variable and δ > 0, such that the right
hand side of (2.9) is less than or equal to

C(tl − tk)
(
EΨ2

)1/2 ≤ C ′(u− t) (EΨ2
)1/2

, i = 1, 2 (2.10)

for all Ψ that are Ft/δ2 measurable.
Using this estimate with Ψ ≡ 1, we get∣∣E{|Zδ(u)− Zδ(t)|2i

}∣∣ ≤ C(u− t), i = 1, 2. (2.11)

Next, let Ψ := |Zδ(t)−Zδ(s)|2 for t > s. As Ψ = |z(M)
δ (tk)−Zδ(s)|2, it is Ftk/δ2-measurable. When

t− s > δγ we can apply again Theorem 2.3 and obtain, using (2.11):∣∣E{|Zδ(u)− Zδ(t)|2|Zδ(t)− Zδ(s)|2
}∣∣ =

∣∣∣E{|z(M)
δ (tl)− z

(M)
δ (tk)|2Ψ

}∣∣∣
≤ C(u− t)

{
E|Zδ(t)− Zδ(s)|4

}1/2 ≤ C(u− t)(t− s)1/2 ≤ C(u− s)3/2. (2.12)

If, on the other hand 0 < t− s < δγ , then from Theorem 2.1 and Corollary 3.4 below we get∣∣E{|Zδ(u)− Zδ(t)|2|Zδ(t)− Zδ(s)|2
}∣∣ ≤ C(u− t)

{
E|Zδ(t)− Zδ(s)|4

}1/2 (2.13)

≤ C(u− t)δ2(γ−1) ≤ C(u− s)1+2(γ−1).
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Finally, we consider the situation when 0 < u− t < δγ . Then only the case t− s > δγ requires our
attention, since otherwise |Zδ(u)− Zδ(t)|2|Zδ(t)− Zδ(s)|2 = 0. For a given ε1 > 0 we can write

E
{
|Zδ(u)− Zδ(t)|2|Zδ(t)− Zδ(s)|2

}
≤ Cδ2(γ−1)

{
E|Zδ(t)− Zδ(s)|2(1+ε1)

}1/(1+ε1)
. (2.14)

We use Theorem 2.3, this time with f(x) = |x|2(1+ε1), Y = Zδ(s) and Ψ ≡ 1. Then, the right hand
side of (2.14) can be estimated by

C ′δ2(γ−1)(t− s)1/(1+ε1) ≤ C ′(u− s)2(1−1/γ)+1/(1+ε1).

We choose ε1 > 0 so that 2(1− 1/γ) + 1/(1 + ε1) > 1. The above considerations imply tightness of
the laws of {Zδ(t), t ≥ 0} in D[0,+∞), by virtue of Theorem 15.6 of [3]. This concludes the proof
of Theorem 2.1. The rest of the paper contains the proof of Theorem 2.3.

3 Proof of Theorem 2.3

3.1 Preliminaries on Gaussian random fields

We quote here an estimate of the supremum of the norm of a centered Gaussian field that will be of
particular use for us in the sequel. We recall that for a centered, not necessarily stationary, Gaussian
d-dimensional vector field G(t, x;ω), (t, x) ∈ R1+d, a d-ball centered at (t0, x0) and of radius % is
defined as a ball with the corresponding center and radius with respect to the pseudometric

d(t1, x1; t2, x2) =
[
E|G(t1, x1)−G(t2, x2)|2

]1/2
.

Suppose that R ⊂ R1+d. For a given ε > 0 we let N(ε) be the minimal number of d-balls with radius
ε > 0 needed to cover R. Let also

Σ(G) := sup
(t,x)∈R

trQ(t, x; t, x),

where Q is the covariance matrix of G:

Qij(t, x, s, y) = E(Gi(t, x)Gj(s, y)), i, j = 1, . . . , d.

We will use the following Borell-Fernique-Talagrand type of estimates of the tail probabilities for
Gaussian fields, see, for instance, Theorem 5.4, p. 121 of [1].

Theorem 3.1 Suppose that

N(ε) ≤ C1 exp{C1ε
−2/(1+C2)}, ε ∈ (0, 1] (3.1)

for some positive constants where C1, C2 > 0. Then, there exist constants C,Λ > 0 depending only
on C1, C2 such that

P

(
sup

(t,x)∈R
|G(t, x;ω)| ≥ λ

)
≤ C exp

{
− λ2

8Σ(G)

}
(3.2)

for all λ ≥ Λ.

The aforementioned result is stated in [1] for all λ > 0, but in order to guarantee that the constants
appearing in estimate (3.2) depend only on parameters C1, C2 we need to assume that λ is sufficiently
large, see the proof of this theorem on p. 121 in [1].

As a simple corollary of the above result we obtain.
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Corollary 3.2 Suppose that V (t, x) is a stationary field given by (1.3). Then, for any fixed ρ > 0
there exists a constant C > 0 and a constant Λ > 0 such that

P
[
∃(t, x) : |V (t, x)| ≥ Λ(log1/2+ρ(|t|+ |x|+ 1) + n)

]
≤ Ce−n2/C , (3.3)

for all n ≥ 1.

Proof. Consider a field

G(t, x) := V (t, x)
[
log1/2+ρ(|t|+ |x|+ 1) + n

]−1
.

Choose an arbitrary ε > 0. The region D := [|x|+ |t| ≥ exp
{
ε−2/(1+2ρ)

}
] can be covered by finitely

many d-balls of radius ε. Since the covariance matrix R(t, x) is Lipschitz continuous, the metric
d(·; ·) is Hölder continuous with respect to the Euclidean distance, with exponent 1/2. Hence, the
complement of D can be covered by C exp

{
2(d+ 1)ε−2/(1+2ρ)

}
d-balls of radius ε. Note also that

Σ(G) ≤ Cn−2. Hence, from Theorem 3.1 we conclude that there exists Λ > 0 so that

P

(
sup
x∈Rd

|G(x;ω)| ≥ Λ

)
≤ C exp

{
− Λ2

8Σ(G)

}
≤ C1 exp

{
−C2n

2
}

and (3.3) holds. �

Corollary 3.3 For any m > 1 there exists constants γ1, γ2 > 0 such that

E

[
sup

|t|+|x|≤δ−2

|V (t, x)|m
]
≤ γ1(log δ−1)mγ2 , (3.4)

for all δ ∈ (0, 1/2).

Proof. Observe that for λ > 2 log(1 + δ−1))1/2+ρ, the inequality |V (t, x)| ≥ 2Λλ implies

|V (t, x)| ≥ Λ([log(1 + |t|+ |x|)]1/2+ρ + λ).

Thus, by virtue of Corollary 3.2, we obtain

P

[
sup

|t|+|x|≤δ−2

|V (t, x)| ≥ 2Λλ

]
≤ C1e

−C2λ2
,

and, as a result, for any m > 1 we can write

E

[
sup

|t|+|x|≤δ−2

|V (t, x)|m
]
≤ C[log(1 + δ−1)](1/2+ρ)m, (3.5)

which in turn implies (3.4). �
As an immediate consequence of Corollary 3.3 we get

Corollary 3.4 Suppose that α < 1. Then, for any M > 0 and m ≥ 1 there exists constants
γ1, γ2 > 0 such that{

E

[
sup
s∈[0,T ]

sup
|z|≤M, |x|≤δ−2

∣∣∣W ( s
δ2
, z, x

)∣∣∣m]}1/m

≤ C[log(1 + δ−1)](1/2+ρ).
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In our next result we bound the moments of the supremum of a d-dimensional Gaussian field
G(x) = (G1(x), . . . , Gd(x)), x ∈ RN over a given region using the bounds on its covariance. Suppose
that the field is a.s. differentiable and

Σ(G) := sup
x∈RN

[
E|G(x)|2 + E|∇xG(x)|2

]
.

For a given k ∈ ZN denote �k := [x ∈ RN : sup1≤j≤N |xj − kj | ≤ 1]. Define also M(R) as
the minimal number of boxes �k needed to cover a given region R. Assume furthermore that Rδ,
δ ∈ (0, 1] are (non-random) regions such that there exist C0, d0 > 0 such that

M(Rδ) ≤ C0δ
−d0 , δ ∈ (0, 1]. (3.6)

Proposition 3.5 Under the above assumptions for any m ≥ 1 and µ > 0 there exists a constant
C > 0, depending only on d,N,C0, d0,m, µ such that

E

{
sup
x∈Rδ

|G (x)|m
}
≤ CΣm/2(G)δ−µ, ∀ δ ∈ (0, 1]. (3.7)

Proof. Suppose that p > d. It follows from the Sobolev embedding theorem there exists a deter-
ministic constant depending only on N and d such that

sup
x∈�k

|G (x) | ≤ C
{∫

�k

(|G(x)|p + |∇xG(x)|p) dx
}1/p

, ∀ k ∈ ZN .

This, in particular, implies (using Gaussianity of the field) that for any given integer n ≥ 1 we have

E

[
sup
x∈�k

|G (x) |nm
]
≤ CnΣmn/2(G) (3.8)

for some constant Cn, depending on n. Observe that

sup
x∈Rδ

|G(x)|m ≤

{∑
sup
x∈�k

|G (x) |nm
}1/n

,

where the summation extends over the smallest set of k-s for which Rδ ⊂
⋃
k �k. Jensen inequality

implies that

E

{
sup
x∈Rδ

|G(x)|m
}
≤

{∑
E

[
sup
x∈�k

|G (x) |nm
]}1/n

.

Using (3.6) and (3.8) we obtain

E

{
sup
x∈Rδ

|G(x)|m
}
≤ C

{
δ−2d0Σmn/2(G)

}1/n
= Cδ−2d0/nΣm/2(G) ≤ Cδ−µΣm/2(G),

upon a choice of a sufficiently large n. �
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3.2 A priori bounds on trajectories

Proposition 3.6 Suppose that (xδ(t), zδ(t)) are given by (1.8). Then for any fixed T > 0 there exist
constants C1, C2 > 0 such that

P

[
sup
t∈[0,T ]

(|xδ(t)|+ |zδ(t)|) ≥ δ−2

]
≤ C1e

−C2/δ2 , δ ∈ (0, 1]. (3.9)

Proof. We prove that

P

[
sup
t∈[0,T ]

|xδ(t)| ≥ Cδ−2

]
≤ C1e

−C2/δ2 . (3.10)

An analogous estimate then holds for xδ(t) + zδ(t), hence the estimate for zδ(t) would follow. Using
(3.3) with n = δ−1, we conclude that

|xδ(t)| ≤ Cδ−1

(∫ t

0
log1/2+ρ(Tδ−2 + |xδ(s)|)ds+ δ−1

)
, ∀ t ∈ [0, T ] (3.11)

outside an event A(δ) such that P(A(δ)) ≤ C1e
−C2/δ2 . But then (still, outside the event A(δ))

log1/2+ρ(T/δ2 + |xδ(s)|) ≤ C3(|xδ(t)|+ 1) +
C3

δ

so

|xδ(t)| ≤
C4

δ

(∫ t

0
|xδ(s)|+ δ−1

)
, (3.12)

which, in turn implies that, by Gronwall’s inequality

|xδ(t)| ≤ C5e
C4(t+1)δ−1

. (3.13)

Using (3.13) in (3.11) we obtain

|xδ(t)| ≤ C6δ
−1

(∫ t

0
δ−1/2−ρds+ δ−1

)
. (3.14)

We use (3.11) with (3.14) we obtain

|xδ(t)| ≤ C7

(
δ−1

∫ t

0
log−1/2−ρ δ−1ds+ δ−1

)
≤ C8δ

−2 (3.15)

outside A(δ). Thus we obtained (3.10). Finally, (3.9) follows once we adjust the constants C1 and
C2 in the right-hand side of (3.9) appropriately. �

Let T ≥ 0 be fixed, and define the event

Aδ,T := [ sup
s∈[0,T ]

|xδ(s)| ≥ δ−2].

Proposition 3.6 says, in particular, that

P[Aδ,T ] ≤ C1e
−C2δ−2

, ∀ δ ∈ (0, 1], (3.16)

with the constants C1 and C2 that may depend on T .
We also conclude the following.
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Corollary 3.7 For each γ > 1 and T,M, ρ > 0 fixed we have

lim
δ→0+

P

(
sup

s,t∈[0,T ],|s−t|≤δγ
|z(M)
δ (t)− z(M)

δ (s)| ≥ ρ

)
= 0. (3.17)

Proof. The probability under the limit can be estimated by

P(Aδ,T ) + P

(
sup
s∈[0,T ]

sup
|z|≤M, |x|≤δ−2

∣∣∣W ( s
δ2
, z, x

)∣∣∣ ≥ δ1−γρ)

and the conclusion follows from (3.16), Corollary 3.4 and an application of Chebyshev inequality. �

3.3 The proof of the martingale estimate

We now turn to the proof of the martingale estimate (2.8). We divide the interval [t, u] into subin-
tervals [ti, ti+1], where ti := t+ i∆t and ∆t := δγ , with 1 < γ < 2. The last interval [tK−1, tK ] could
be of size less than δγ . To abbreviate the notation we shall also assume that Y = 0, as its presence
does not influence the argument. We write then

E
{[
f(z(M)

δ (u))− f(z(M)
δ (t))

]
Ψ
}

=
∑
i

E
{[
f(z(M)

δ (ti+1))− f(z(M)
δ (ti))

]
Ψ
}

=
∑
i

E
{[
f(z(M)

δ (ti+1))− f(z(M)
δ (ti))

]
Ψ, Aδ,ti−1

}
(3.18)

+
∑
i

E
{[
f(z(M)

δ (ti+1))− f(z(M)
δ (ti))

]
Ψ, Acδ,ti−1

}
.

The summation extends from i = 0 up to K − 1. Observe also that since t ≥ δγ we have t−1 ≥ 0.
Denote the terms on the utmost right hand side of (3.18) by K1 and K2. It is easy to observe,

using (3.16), that

|K1| ≤ C‖Ψ‖L2‖f‖4M,0δ
ε+γ ≤ C‖Ψ‖L2‖f‖4M,0δ

ε(u− t),

for some C, ε > 0, as u− t > δγ . In the rest of this proof we shall estimate K2. Note that

f(z(M)
δ (ti+1))− f(z(M)

δ (ti)) =
1
δ

d∑
p=1

∫ ti+1

ti

∂pf(z(M)
δ (s))W (M)

p

( s
δ2
, z

(M)
δ (s), xδ(s)

)
ds

=
1
δ

d∑
p=1

∫ ti+1

ti

∂pf(z(M)
δ (ti−1))W (M)

p

( s
δ2
, z

(M)
δ (ti−1), xδ(ti−1)

)
ds (3.19)

+
1
δ

d∑
p=1

∫ ti+1

ti

{∫ s

ti−1

d

dρ

[
∂pf(z(M)

δ (ρ))W (M)
p

( s
δ2
, z

(M)
δ (ρ), xδ(ρ)

)]
dρ

}
ds.

We substitute this expression into (3.18) and denote the respective terms that arise from K2 by J1

and J2. The reason that the decomposition (3.19) is helpful is that there is a ”relatively large” time
gap between the time ti−1, and all times s ∈ [ti, ti+1]. This will allow us to use the mixing in time
properties of the field W (t, z, x) (which are slightly better than those of V (t, x)) to establish ”near
independence” of what happens at time s and what happened before time ti−1.
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The estimate of J1

We can write
J1 =

∑
i

J
(i)
1 ,

with

J
(i)
1 =

1
δ

E


 d∑
p=1

∫ ti+1

ti

∂pf(z(M)
δ (ti−1))W (M)

p

( s
δ2
, z

(M)
δ (ti−1), xδ(ti−1)

)
ds

Ψ, Acδ,ti−1


=

1
δ

d∑
p=1

∫ ti+1

ti

E
{
∂pf(zδ(ti−1))ΨW (M)

p

(
s

δ2
,
ti−1

δ2
, zδ(ti−1), xδ(ti−1)

)
, Acδ,ti−1

}
ds.

Here we have denoted

W
(M) (s, τ, z, x) := E

{
W (M) (s, z, x)

∣∣∣Fτ} = φM (z)W (s, τ, z, x) (3.20)

for any s ≥ τ , where
W (s, τ, z, x) := E {W (s, z, x)| Fτ} . (3.21)

Rewriting the formula for W (s, τ, z, x) using the spectral decomposition (1.3) and (1.4) we get

W (s, τ, z, x)= E


∫
Rd

eik·x
(
eik·z − 1

)
V̂ (s, dk)

∣∣∣Fτ
 (3.22)

=
√

2

τ∫
−∞

∫
Rd

e−|k|
2β(s−ρ)|k|βeik·x(eik·z − 1)B̂(dρ, dk).

The next lemma gives an estimate of J1 using the aforementioned gap between the time ti−1 and
times s ∈ [ti, ti+1], as well as the sufficient mixing properties of the field W (t, x, z).

Lemma 3.8 Suppose that α+ 2β < 2 and ` = (`1, . . . , `d) is a multi-index of non-negative integers.
Then, there exists ε > 0 so that

sup
i

sup
s∈[ti,ti+1]

{
E

[
sup

|z|≤M, |x|≤δ−2

∣∣∣∣∂`zW p

(
s

δ2
,
ti−1

δ2
, z, x

)∣∣∣∣2
]}1/2

≤ Cδ1+ε, δ ∈ (0, 1].

Proof. We only consider ` = 0. The case of other multi-indices can be treated similarly – indeed,
the main difficulty here is that the correlation function of the random field W decays rather slowly.
However, each differentiation in z improves the decay of the correlation function in space – hence,
` = 0 is actually the most difficult case.

Thanks to the time stationarity of the field V (t, x) it suffices only to prove that

sup
s∈[δγ−2,2δγ−2]

{
E

[
sup

|z|≤M, |x|≤δ−2

∣∣W (s, 0, z, x)
∣∣2]}1/2

≤ Cδ1+ε. (3.23)

Since supp a(·) ⊂ [0,K0] we have, for any p = 1, . . . , d,

E
{
W

2
p (s, 0, z, 0)

}
≤ C[φM (z)]2

0∫
−∞

∫
Rd

e−2|k|2β(s−ρ)|k|2βtrR̂(k)|eik·z − 1|2dρdk (3.24)

≤ C1[0,M ](|z|)
∫
|k|≤K0

e−2|k|2βs|eik·z − 1|2 dk

|k|2α+d−2
≤ CM2

∫ K0

0
e−2|k|2βδγ−2 dk

k2α−3
.
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Changing variables m = kδ
γ−2
2β , where 1 < γ < 2 we get that the last integral equals

δ(2−α)(2−γ)/β
∫ K0δ(γ−2)/(2β)

0

e−2m2β
dm

m2α−3
≤ δ(2−α)(2−γ)/β

∫ ∞
0

e−2m2β
dm

m2α−3
.

Assuming that (2−α)/β > 2, we can select γ sufficiently close to 1 to ensure that the right hand side
can be estimated by Cδ2+2ε for some ε > 0, as δ → 0+. This requirement amounts to α + 2β < 2.
The conclusion of the lemma is a direct consequence of Proposition 3.5. �

We have shown therefore the following.

Corollary 3.9 Under the assumptions of Theorem 2.2 there exist constants C, ε > 0 and γ ∈ (1, 2)
such that for u, t ∈ [0, T ]

|J1| ≤ Cδε‖Ψ‖L2‖f‖4M,1(u− t), ∀δ ∈ (0, 1], u− t ≥ δγ . (3.25)

The limit of J2

As Corollary 3.9 shows, our task is reduced to finding the limit of the term J2. We recall, for the
convenience of the reader that

J2 =
∑
i

E


1
δ

d∑
p=1

∫ ti+1

ti

∫ s

ti−1

d

dρ

[
∂pf(z(M)

δ (ρ))W (M)
p

( s
δ2
, z

(M)
δ (ρ), xδ(ρ)

)]
dρds

Ψ, Acδ,ti−1


We introduce, for s > ρ > τ ,

W (M)
pq (s, ρ, z, x) := W (M)

p (s, z, x)W (M)
q (ρ, z, x) , (3.26)

Ŵ (M)
pq (s, ρ, τ, z, x) = E

{
W (M)
pq (s, ρ, z, x)

∣∣∣Fτ} ,
W

(M)
pq (s, z) := EW (M)

pq (s, 0, z, 0)

W̃ (M)
pq (s, ρ, τ, z, x) := Ŵ (M)

pq (s, ρ, τ, z, x)−W (M)
pq (s− ρ, z).

We also introduce the corresponding notions without the cut-off φM (z), with the superscript M
dropped, and also

Ŵ (M)
pq (s, ρ, z, x) = Ŵ (M)

pq (s, ρ, ρ, z, x) .

We further Taylor-expand the term in J2 corresponding to a fixed i as

1
δ

d∑
p=1

∫ ti+1

ti

∫ s

ti−1

d

dρ

[
∂pf(z(M)

δ (ρ))W (M)
p

( s
δ2
, z

(M)
δ (ρ), xδ(ρ)

)]
dρds (3.27)

=
1
δ2

d∑
p,q=1

∫ ti+1

ti

∫ s

ti−1

∂2
pqf(z(M)

δ (ρ))W (M)
pq

( s
δ2
,
ρ

δ2
, z

(M)
δ (ρ), xδ(ρ)

)
dρds

+
1
δ2

d∑
p,q=1

∫ ti+1

ti

∫ s

ti−1

∂pf(z(M)
δ (ρ))∂zqW

(M)
p

( s
δ2
, z

(M)
δ (ρ), xδ(ρ)

)
W (M)
q

( ρ
δ2
, z

(M)
δ (ρ), xδ(ρ)

)
dρds

+
1
δ2

d∑
p,q=1

∫ ti+1

ti

∫ s

ti−1

∂pf(z(M)
δ (ρ))∂xqW

(M)
p

( s
δ2
, z

(M)
δ (ρ), xδ(ρ)

)
Vq

( ρ
δ2
, xδ(ρ)

)
dρds.

Denote the respective terms that arising from J2 by J21, J22, J23 respectively. We will show that
these terms have the following limits.
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Proposition 3.10 There exists constants C, ε > 0 such that∣∣∣∣∣∣J21 −
∑
i

d∑
p,q=1

∫ ti+1

ti

E
{
∂2
pqf(z(M)

δ (ti−1))c(M)
pq

(
z
(M)
δ (ti−1)

)
Ψ, Acδ,ti−1

}
ds

∣∣∣∣∣∣ (3.28)

≤ Cδε(u− t)‖f‖4M,3‖Ψ‖L2 , , ∀δ ∈ (0, 1], u− t ≥ δγ .

Proposition 3.11 There exists constants C, ε > 0 such that∣∣∣∣∣∣J22 −
1
2

E

Ψ
d∑
q=1

∫ u

t
(cpq∂zqφ

2
M )(z(M)

δ (s))∂pf(z(M)
δ (s))ds

∣∣∣∣∣∣ (3.29)

≤ Cδε(u− t)‖f‖4M,1‖Ψ‖L2

and
|J23| ≤ Cδε(u− t)‖f‖4M,1‖Ψ‖L2 , , ∀δ ∈ (0, 1], u− t ≥ δγ . (3.30)

This will complete the proof of Theorem 2.3 as the non-trivial terms in (3.28) and (3.29) combine
to produce the operator LM , see formulas (2.2), (2.3) and (2.5).

The proof of Proposition 3.10

We have

J21 =
1
δ2

d∑
p,q=1

∑
i

∫ ti+1

ti

∫ s

ti−1

E
{
∂2
pqf(z(M)

δ (ρ))W (M)
pq

( s
δ2
,
ρ

δ2
, z

(M)
δ (ρ), xδ(ρ)

)
Ψ, Acδ,ti−1

}
dsdρ.

We can further write
J21 = A1 +A2 +A3,

where Aj =
∑

iA
(i)
j , j = 1, 2, 3, with

A
(i)
1 :=

1
δ2

d∑
p,q=1

ti+1∫
ti

ds

s∫
ti−1

dρ

ρ∫
ti−1

dτE
{
d

dτ

{
∂2
pqf(z(M)

δ (τ))W (M)
pq

( s
δ2
,
ρ

δ2
, z

(M)
δ (τ), xδ(τ)

)}
Ψ, Acδ,ti−1

}

A
(i)
2 :=

1
δ2

d∑
p,q=1

ti+1∫
ti

ds

s∫
ti−1

dρE
{
∂2
pqf(z(M)

δ (ti−1))W̃ (M)
pq

(
s

δ2
,
ρ

δ2
,
ti−1

δ2
, z

(M)
δ (ti−1), xδ(ti−1)

)
Ψ, Acδ,ti−1

}

A
(i)
3 :=

1
δ2

d∑
p,q=1

∫ ti+1

ti

ds

∫ s

ti−1

dρE
{
∂2
pqf(z(M)

δ (ti−1))W (M)
pq

(
s− ρ
δ2

, z
(M)
δ (ti−1)

)
Ψ, Acδ,ti−1

}
.

We will see that the term A1 is small since each A(i)
1 involves three integrals over intervals of length

smaller than δγ , with γ > 1. This produces a term of the order δ3γ−2, which after summation over i
will still be of the order δε with ε > 0. The terms A(i)

2 are small because of the time-mixing properties
of the filed W (t, x, z): there is either a ”large” gap between s and ρ or between ρ and ti−1 that will
make A(i)

2 small. Finally, A3 will lead to the non-trivial contribution in (3.28).
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Estimates for A(i)
1

We have

d

dτ

{
∂2
pqf(z(M)

δ (τ))W (M)
pq

( s
δ2
,
ρ

δ2
, zδ(τ), xδ(τ)

)}
=

1
δ

d∑
r=1

∂3
pqrf(z(M)

δ (τ))W (M)
pq

( s
δ2
,
ρ

δ2
, z

(M)
δ (τ), xδ(τ)

)
W (M)
r

( τ
δ2
, z

(M)
δ (τ), xδ(τ)

)
+

1
δ

d∑
r=1

∂2
pqf(z(M)

δ (τ))∂zrW
(M)
pq

( s
δ2
,
ρ

δ2
, z

(M)
δ (τ), xδ(τ)

)
W (M)
r

( τ
δ2
, z

(M)
δ (τ), xδ(τ)

)
+

1
δ

d∑
r=1

∂2
pqf(z(M)

δ (τ))∂xrW
(M)
pq

( s
δ2
,
ρ

δ2
, z

(M)
δ (τ), xδ(τ)

)
Vr

( τ
δ2
, xδ(τ)

)
.

Denote the three sums appearing on the right hand side by Cjpq, j = 1, 2, 3 respectively.

Lemma 3.12 There exist constants C, ε > 0 such that

sup
i

sup
s∈[ti,ti+1]

∣∣∣∣∣E
{

Ψ
∫ s

ti−1

dρ

∫ ρ

ti−1

Cjpqdτ,A
c
δ,ti−1

}∣∣∣∣∣ ≤ Cδ3+ε‖Ψ‖L2‖f‖4M,3 (3.31)

for j = 1, 2, 3, δ ∈ (0, 1].

Proof. We conduct the proof for j = 1. The other cases can be done similarly. Let

W (M)
pqr (s, ρ, τ, z, x) := W (M)

r (τ, z, x)W (M)
pq (s, ρ, z, x) .

It suffices to show that for any µ > 0 there exist constants C, ε > 0 such that∣∣∣∣∣
∫ s

ti−1

dρ

∫ ρ

ti−1

dτE
{
∂3
pqrf(z(M)

δ (τ))ΨW (M)
pqr

( s
δ2
,
ρ

δ2
,
τ

δ2
, z

(M)
δ (τ), xδ(τ)

)
, Acδ,ti−1

}∣∣∣∣∣
≤ Cδ3+ε‖Ψ‖L2‖f‖4M,3 (3.32)

with the constants independent of i, s. Using the definition of the event Aδ,ti−1
we can estimate the

left hand side of (3.32) by

C‖Ψ‖L2‖f‖4M,3δ
γ

∫ s−ti−1

0
w(s−ρ)/δ2dρ, (3.33)

where (cf. (3.22))

ws :=

{
E

[
sup

|z|≤M, |x|≤δ−2

∣∣W (s, 0, z, x)
∣∣6]}1/6

for any s ≥ ρ. From Proposition 3.5, with m = 6, we conclude that for any µ > 0 (to be adjusted
later on) we can choose an appropriate C > 0 so that

w(s−ρ)/δ2 ≤ Cδ−µ sup
|z|≤M

{
E
∣∣∣∣W (

s− ρ
δ2

, 0, z, 0
)∣∣∣∣2
}1/2

, ∀ δ ∈ (0, 1].
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Computing the conditional expectation appearing in on the right hand side of the expression above
it follows that

w(s−ρ)/δ2 ≤ Cδ−µCM
{∫ K0

0
e−2k2β(s−ρ)δ−2 dk

k2α−3

}1/2

.

Changing variables ρ′ := (s− ρ)/δ2 we can estimate expression (3.33) by

C‖Ψ‖L2‖f‖4M,3δ
2+γ−µ

∫ s/δ2

0
dρ

{∫ K0

0
e−2k2βρ dk

k2α−3

}1/2

.

Performing the change of variables k′ := kρ1/(2β) we obtain that the expression above equals

C‖Ψ‖L2‖f‖4M,3δ
2+γ−µ

∫ s/δ2

0

dρ

ρ(2−α)/(2β)

{∫ K0ρ1/(2β)

0

e−2k2β
dk

k2α−3

}1/2

.

The integral with respect to ρ is not singular at 0 and has an integrable singularity at ∞, due to
the assumption that α+ 2β < 2. Since γ > 1 we can choose µ < γ − 1, thus (3.31) holds. �

It follows from Lemma 3.12 that

|A(i)
1 | ≤ Cδ

1+γ+ε‖Ψ‖L2‖f‖4M,3,

hence, after summation over i we get the estimate

|A1| ≤ Cδ1+ε(u− t)‖Ψ‖L2‖f‖4M,3. (3.34)

Estimates for A2

To deduce that
|A2| ≤ Cδε(u− t)‖Ψ‖L2‖f‖4M,3, (3.35)

it suffices to show the following.

Lemma 3.13 There exist C, ε > 0 such that

sup
i

sup
s∈[ti,ti+1]

∣∣∣∣∣E
{∫ s

ti−1

W̃ (M)
pq

(
s

δ2
,
ρ

δ2
,
ti−1

δ2
, z

(M)
δ (ti−1), xδ(ti−1)

)
dρ (3.36)

× ∂2
pqf(z(M)

δ (ti−1))Ψ, Acδ,ti−1

}∣∣∣∣ ≤ C‖Ψ‖L2‖f‖4M,2δ
2+ε.

Proof. Changing variables ρ′ := ρ/δ2, and dropping the primes, we obtain that the expression
under the supremum equals

δ2

∣∣∣∣∣E
{
∂2
pqf(z(M)

δ (ti−1))Ψ
∫ s/δ2

ti−1/δ2
W̃ (M)
pq

(
s

δ2
, ρ,

ti−1

δ2
, z

(M)
δ (ti−1), xδ(ti−1)

)
dρ,Acδ,ti−1

}∣∣∣∣∣ .
Using elementary rules of computing the conditional expectation of Gaussians we get

W̃pq (s, ρ, 0, z, 0) = 2
∫ 0

−∞

∫ 0

−∞
exp

{
−|k1|2β(s− u1)− |k2|2β(ρ− u2)

}
(|k1||k2|)β

×(eik1·z − 1)(eik2·z − 1)B̃pq(du1, dk1; du2, dk2)
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where

B̃pq(du1, dk1; du2, dk2) := B̂p(du1, dk1)B̂q(du2, dk2)− R̂pq(k1)δ(u1 − u2)δ(k1 + k2)du1du2dk1dk2.

A simple calculation shows that∫ s

0
W̃pq (s, ρ, 0, z, 0) dρ = 2

∫ 0

−∞

∫ 0

−∞

∫ ∫
exp

{
−|k1|2β(s− u1)

}( |k1|
|k2|

)β
×
[
exp

{
|k2|2βu2

}
− exp

{
−|k2|2β(s− u2)

}]
×(eik1·z − 1)(eik2·z − 1)B̃pq(du1, dk1; du2, dk2) = 2Z1(s, z)Z2(s, z)− 2Z̄(s, z),

where

Z1(s, z) =
∫ 0

−∞

∫
exp

{
−|k1|2β(s− u1)

}
|k1|β(eik1·z − 1)B̂p(du1, dk1),

Z2(s, z) =
∫ 0

−∞

∫ [
1− exp

{
−|k2|2βs

}] e|k2|2βu2(eik2·z − 1)
|k2|β

B̂q(du2, dk2),

and

Z̄(s, z) :=
∫

1− e−|k|2βs

2|k|β
e−|k|

2βs|eik·z − 1|2R̂pq(k)dk.

It suffices only to prove that there exist C1, ε1 > 0 such that

sup
s∈[δγ−2,2δγ−2]

sup
|z|≤M

EZ2
1 (s, z) ≤ C1δ

ε1 , (3.37)

sup
s∈[δγ−2,2δγ−2]

sup
|z|≤M

|Z̄(s, z)| ≤ C1δ
ε1

and

sup
s∈[δγ−2,2δγ−2]

sup
|z|≤M

EZ2
2 (s, z) ≤ C1. (3.38)

Using (1.5), we conclude that

|Z̄(s, z)| ≤ CM2

∫ K0

0
(1− e−k2βδγ−2

)e−k
2βδγ−2 dk

k2α+2β−3

for some constant C > 0. Changing variables k′ := kδ(γ−2)/(2β), we obtain that

|Z̄(s, z)| ≤ CM2δ(2−γ)(2−α−β)/β

∫ +∞

0
(1− e−k2β

)e−k
2β dk

k2α+2β−3

On the other hand, we have

EZ2
1 (s, z) ≤ CM2

∫ K0

0

e−k
2β
1 δγ−2

k2α−3
1

dk1 ≤ Cδε1

for some ε1 > 0, since α < 1. Analogous computation for z2 yields

EZ2
2 (s, z) ≤ CM2

∫ K0

0

[1− e−k
2β
2 δγ−2

]2

k2α+4β−3
2

dk2 ≤ C.

This finishes the proof of Lemma 3.13. �
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The limit of A3

From the definition of A3 we get directly that∣∣∣∣∣∣A3 −
∑
i

d∑
p,q=1

∫ ti+1

ti

E
{
∂2
pqf(z(M)

δ (ti−1))c(M)
pq

(
z
(M)
δ (ti−1)

)
Ψ, Acδ,ti−1

}
ds

∣∣∣∣∣∣
≤ C(u− t)‖f‖4M,2‖Ψ‖2 sup

|z|≤M

∫ +∞

δγ−2

dρ

∫
Rd
e−|k|

2βρtr R̂(k)[1− cos(k · z)]2dk

≤ CM2(u− t)‖f‖4M,2‖Ψ‖2
∫ K0

0

e−k
2βδγ−2

dk

k2α+2β−3

≤ Cδ(2−γ)(2−α−β)/β‖f‖4M,2‖Ψ‖2(u− t)
∫ +∞

0

e−k
2β
dk

k2α+2β−3
≤ Cδε‖f‖4M,2‖Ψ‖2(u− t)

for some ε > 0, provided that α+ β < 2. This completes the proof of Proposition 3.10.

Estimates of J22 and J23: sketch of the proof of Proposition 3.11

As for the estimates of J22, J23 they go precisely along the lines of estimates for J21. The term
W

(M)
pq (s, ρ, z, x) appearing there should be replaced by

U (M)
pq (s, ρ, z, x) = ∂zqW

(M)
p (s, z, x)W (M)

q (ρ, z, x)

or by
R(M)
pq (s, ρ, z, x) = ∂xqW

(M)
p (s, z, x)W (M)

q (ρ, z, x).

in the case of J22 or J23, respectively. Estimates are somewhat easier to come by this time because
the differentiation operators correspond to multiplication of the spectrum by k variable that causes
lowering the degree of singularity of the denominator. The resulting bounds therefore improve.

Divergence free condition on the field V (t, x) implies

d∑
q=1

ER(M)
pq (s, ρ, z, x) = 0. (3.39)

Note also that

d∑
q=1

EU (M)
pq (s, ρ, z, x) =

d∑
q=1

[
φM (z)∂zqφM (z)W pq(s− ρ, z) + φ2

M (z)∂zqW pq(s− ρ, z)
]

=
1
2

d∑
q=1

∂zqφ
2
M (z)W pq(s− ρ, z).

The last equality follows from the fact that due to divergence free condition for the field we have

d∑
q=1

∂zqW pq(s, z) = 0.

Using the above facts we conclude that (3.29) and (3.30) hold.
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