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Abstract

We consider a regularized Wigner equation with an oscillatory kernel, the regularization acts
in the space variable to damp high frequencies. The oscillatory kernel is directly derived from the
Schrödinger equation with an oscillatory potential. The problem therefore contains three scales,
ε the oscillation length, θ the regularization parameter, δ the potential lattice.

We prove that the homogenized limit (as ε vanishes) of this equation is a scattering equation
with discrete jumps. As δ vanishes, the discrete scattering kernel boils down to a standard regular
scattering kernel. As θ vanishes we recover the quantum scattering operator with collisions
preserving energy sphere.

1 Introduction

The kinetic equation

∂W̄

∂t
+ k · ∇xW̄ =

∫
Rd

|α(p− k)|2[W̄ (p)− W̄ (k)]δ
(
k2 − p2

2

)
dp. (1.1)

describes the phase space semi-classical limit of the energy density of the solutions of the Schrödinger
equation in the weak coupling limit:

iε
∂ψε

∂t
+ ε2∆ψε +

√
εV

(x
ε

)
ψε = 0 (1.2)

as ε→ 0. Here x ∈ Rd is the physical space coordinate and k ∈ Rd is the wave vector. The passage
from (1.2) to (1.1) with a spatially homogeneous random potential V has been first proved in [18, 13]
for a short time interval and later extended to a global in time result in [10]. More precisely, it turns
out that W̄ (t, x, k) is the weak limit as ε→ 0 of the Wigner transform of ψ defined as

Wε(t, x, k) =
∫
eik·yψε

(
t, x− εy

2

)
ψ∗ε

(
t, x− εy

2

) dy

(2π)d
. (1.3)

The Wigner transform itself satisfies an evolution equation

∂Wε

∂t
+ k · ∇xWε =

1
i
√
ε

∫
eip·x/ε

[
Wε(x, k −

p

2
)−Wε(x, k +

p

2
)
]
V̂ (p)

dp

(2π)d
. (1.4)

The scattering cross-section |α(p)|2 in (1.1) turns out to be the power spectrum of the random
potential V .

∗Département de Mathématiques et Applications, École Normale Supérieure, CNRS UMR8553, 45 rue d’Ulm,
F 75230 Paris cedex 05, France; email: perthame@dma.ens.fr

†Department of Mathematics, University of Chicago, Chicago, IL 60637, USA; ryzhik@math.uchicago.edu

1



The proofs in [18, 13, 10] are based on the intricate analysis of the individual contributions
of various terms in the Duhamel expansion of (1.2) and are highly technical. The difficulties are
intrinsic to the problem as the limit is only weak and the oscillatory terms are not small in the
strong norms. The problem becomes much simpler if the random potential is random in time as
well [2, 3, 11, 16] – this introduces an additional mixing that allows to obtain L2 estimates on the
corrected test functions for (1.4).

The purpose of this paper is to consider a deterministic model where the kinetic limit can be
obtained in a straightforward manner. It turns out that this may be achieved by introducing a
high-frequency damping in the Wigner equation, replacing (1.4) with

∂Wε

∂t
+ k · ∇xWε +

θ

ε
(Wε − χε ? Wε) =

1
i
√
ε

∫
eip·x/ε

[
Wε(x, k −

p

2
)−Wε(x, k +

p

2
)
]
V̂ (p)

dp

(2π)d
,

(1.5)
with a positive function χε = ε−dχ(x/ε) such that

∫
χ(x)dx = 1. The regularization parameter

θ � 1 is small. Heuristically, the last term on the left side of (1.5) is absorbing for the high
frequency component as χε ? W

hf
ε ≈ 0 while it is not damping the low frequencies of Wε, since

χε ? W
lf
ε ≈W lf

ε for the low frequency part of Wε. This is also reflected in the energy balance

1
2
d

dt

∫
|W (t, x, k)|2dxdk = −θ

ε

∫
(1− χ̂(εp))|Ŵ (t, p, k)|2dpdk ≤ 0. (1.6)

Hence, the purpose of the weak high frequency damping is to capture correctly only the low frequency
behavior while getting rid of the high frequency oscillations. This leads to the strong L2-convergence
of the solution of (1.5) to the solution of a kinetic equation as the high frequency oscillations are
absent in the limit.

The potential V in (1.5) is not required to be random or periodic: the only requirement is that
its Fourier transform has a non-trivial singular part: see (2.4) below. This is another interesting
aspect of the current set-up: the regularized Wigner equation may be homogenized in a very general
setting with almost no underlying small-scale structure, such as periodicity or statistical homogeneity,
assumed.

On the other hand, the derivation of a scattering equation from the true Wigner equation with a
given potential is certainly impossible in a general deterministic framework. This is because of some
inconsistency in the cancellations in the potential that are involved to produce the coefficient α2 that
depends upon V in a quadratic way, a phenomena that has been pointed out in [8]. Introduction
of a regularization allows us to get forward with several steps which are based on three different
limits. Firstly the homogenization parameter ε vanishes, secondly the potential pseudo period
lattice, denoted by δ below vanishes and thirdly the regularization parameter θ vanishes. We note
that the final result of the three sequential limits is exactly the same kinetic equation (1.1) with an
appropriately defined function α(p). Two comments are in order: first, the final kinetic equation is
completely independent of the choice of the regularization function χ(x). Second, only the singular
part of the measure-valued Fourier transform V̂ (p) contributes to the scattering cross-section.

We note that the result we prove below, the strong convergence to the homogenized limit, is
certainly impossible for the unregularized Wigner equation because it preserves the L2 norm of the
solution, while the scattering equation does not.

There are other ways to obtain a non-trivial semi-classical limit with a non-uniform potential.
One way is a different scaling: we refer to [14] for the derivation of the standard Liouville equation for
a fixed slowly varying potential, and to [1, 12] for the semi-classical limit in a rapidly oscillating pe-
riodic potential. None of them produce scattering but rather a modification of the bi-characteristics.
Another way mentioned above to produce a scattering term is to introduce random potentials as
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performed in [18, 13, 10]. The capability of a deterministic model to produce a scattering operator in
the limit is more recent: see [7, 15] for two different formalisms (a simple homogeneous box without
transport in the limit, or scattering localized at a single point). In the regime and method of Born
series, the results have been pushed forward in [5], [6].

Our formalism allows us to use different methods that rely on the homogenization methods as
presented in [4, 9] for instance, that is, building a multi-scale expansion

Wε = W̄ +
√
εW1(t, x,

x

ε
, k) + εW2(t, x,

x

ε
, k) + . . .

Here again the regularized equation allows us to make sense of the expansion. The specific difficulty
is that the corrector equation for W1, W2 is ill-posed without regularization in our framework.

We recall that the general formalism behind the transition wave→Wigner→scattering is much
more general than for the Schrödinger equation, we refer to [17] for a general presentation of this
subject. However, there are no rigorous results on the passage to the kinetic limit available for
time-independent systems other than the Schrödinger equation. On the other hand, the method of
the present paper should extend to the regularized versions of the Wigner equations that correspond
to, say, the acoustic wave equations, without major difficulties.

The organization of the paper is as follows. We present in Section 2 in detail our model and the
various results. We insist in particular on the interplay and relative size of the various parameters
that arise here. The third section is devoted to the construction of the correctors and to preliminary
estimates. As usual, the scattering equation arises as a solvability condition in order to be able
to build the correctors. However, the solvability condition is not completely standard. The fourth
section furnishes the technical estimates on the remainder and proves the main theorem (the limit
ε→ 0). The last section deals with the easier limits on the two additional parameters of the problem.

Acknowledgment. This work has been performed while LR was visiting ENS, Paris. He thanks
ENS for its hospitality. LR’s work was also supported in part by NSF grant DMS-0203537.

2 The main results

We consider a regularized Wigner equation

∂Wε

∂t
+ k · ∇xWε +

θ

ε
(Wε − χε ? Wε) = LεWε, t ≥ 0, x ∈ Rd, k ∈ Rd, (2.1)

Lεf(x, k) =
1
i
√
ε

∫
eip·x/ε

[
f(x, k − p

2
)− f(x, k +

p

2
)
]
V̂ (p)

dp

(2π)d
. (2.2)

Throughout the paper the notation f̂ represents the Fourier transform in the x variable

f̂(p) =
∫
e−ip·xf(x)dx,

and the inverse Fourier transform is then

f(x) =
∫
eip·xf̂(p)

dp

(2π)d
.

The function χε(x) =
1
εd
χ

(x
ε

)
in (2.1) with χ ∈ S(Rd) (the Schwartz space) and χ(x) = χ(|x|) ≥ 0

radially symmetric, and normalized so that∫
Rd

χ(x)dx = 1.
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Henceforth, χ̂ ∈ S(Rd) satisfies

χ̂ ∈ R, |χ̂(p)| < 1 for p 6= 0, χ̂(0) = 1.

The parameter θ is small but fixed – we may allow θ to depend on ε so that θ � ε but we do not
pursue this issue here for the sake of clarity of presentation. The last term on the left side of (2.1)
is regularizing in L2, that is:

1
2
d

dt

∫
|Wε(t, x, k)|2dxdk = −θ

ε

∫
|1− χ̂(εp)|2 |Ŵε(p, k)|2

dpdk

(2π)d
. (2.3)

The energy balance (2.3) shows that the effect of the regularization is damping of the high frequencies.
This allows us to show the strong convergence of the solution of (2.1) to the solution of a kinetic
equation in the limit ε→ 0. The regularization allows us to make the formal asymptotic expansions
rigorous and circumvent dealing with the weak convergence.

We assume that the Fourier transform of the potential V (x) has the form

V̂ (p) =
∞∑

j=1

αj [δ(p− pj) + δ(p+ pj)] + Φ̂(p) (2.4)

with the real Fourier coefficients αj ∈ R and Φ̂(p) that is smooth, sufficiently rapidly decaying and
with Φ̂(0) = 0. We also assume that the sequence αj satisfies the following conditions:

∞∑
j=1

|αj |
|1− χ̂(pj)|

< +∞ (2.5)

and
∞∑

j,l=1

|αj ||αl|
|1− χ̂(pl)||1− χ̂(pj + pl)|

+
∑
j 6=l

|αj ||αl|
|1− χ̂(pl)||1− χ̂(pj − pl))|

< +∞. (2.6)

Recall that χ̂(0) = 1 so that (2.5) means that V̂ (p) is not singular at p = 0: oscillations are not
concentrated at the zero wave number.

These conditions are satisfied if, for instance, αj ∈ l1 and the wave vectors pj are non-resonant:
there exists ω0 > 0 so that

|pj | ≥ ω0 > 0, |pj ± pl| ≥ ω0 for j 6= l. (2.7)

On the other hand, (2.5) implies that αj ∈ l1 and thus the potential V (x)) satisfies

|V (x)| ≤
∫
|V̂ (p)|dp < +∞.

It follows that the operator Lε is uniformly bounded from L2(Rd ×Rd) into itself and the existence
theory for (2.1)–(2.2) is thus standard.

We define the scattering kernel

Kθ(k, p) =
1

(2π)d

2θ(1− χ̂(p))
θ2(1− χ̂(p))2 + ((k + p

2) · p)2
, (2.8)

and use the convention that for j ≤ −1, pj = −p−j . Then we have the following theorem which
shows that only the singular (oscillatory) component of the potential affects the limit.
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Theorem 2.1 Let the initial data Wε(0, x, k) = W0(x, k) for (2.1) belong to L2(Rd×Rd) and assume
(2.4), (2.5) and (2.6) on the potential V (x) and the regularization function χ(x). Then the operator
Lε is uniformly bounded on L2(Rd×Rd) and the solution of (2.1) converges in C

(
[0, T ];L2(Rd×Rd)

)
to the solution of the kinetic equation

∂W̄

∂t
+ k · ∇xW̄ =

∑
j∈Z∗

|αj |2Kθ(k, pj)[W̄ (k + pj)− W̄ (k)] (2.9)

with the initial data W̄ (0, x, k) = W0(x, k).

Note that the scattering kernel Kθ(k, pj) is positive and (2.9) is a kinetic equation that may be given
a probabilistic interpretation.

Let us now assume that we are given a family of potentials V δ(x) of the form (2.4), parametrized
by a parameter δ > 0, such that, uniformly,

∞∑
j=1

|αδ
j |2

1
1− χ̂(pδ

j)
<∞. (2.10)

For instance the wave vectors pδ
j may be picked so that there is exactly one pj in each cube of a cubic

lattice in Rd
+ = {q = (q1, . . . , qd) ∈ Rd : q1 > 0} with the cube side δ � 1, while the amplitudes

are scaled so that αδ
j = δd/2α(pδ

j) for a smooth function α(p). Then the scattering term on the right
side of (2.9) has the form

Kδ
θW̄ (k) = δd

∑
j∈Z∗

|α(pδ
j)|2Kθ(k, pδ

j)[W̄ (k + pδ
j)− W̄ (k)]

that is a Riemann sum of∫
|α(p)|2Kθ(k, p)[W̄ (k + p)− W̄ (k)]dp =

∫
|α(p− k)|2Kθ(k, p− k)[W̄ (p)− W̄ (k)]dp,

with ∫
|α(p)|2 1

1− χ̂(p)
dp <∞. (2.11)

We have the following convergence result.

Theorem 2.2 Let the initial data W0(x, k) for (2.9) belong to L2(Rd × Rd) and make the above
assumptions (2.10), (2.11) on the distribution of the points pδ

j and amplitudes αδ
j . Then, the op-

erator Kδ
θ is uniformly bounded in L2(Rd) as δ vanishes and the solution W̄ δ

θ of (2.9) converges in
C

(
[0, T ];L2(Rd × Rd)

)
to the solution of the kinetic equation

∂Ū

∂t
+ k · ∇xŪ =

∫
Rd

|α(p− k)|2Kθ(k, p− k)[Ū(p)− Ū(k)]dp (2.12)

with the initial data Ū(0, x, k) = W0(x, k).

Equation (2.12) is now a continuous scattering equation but it allows interaction of waves with
different frequencies ω = k2/2, unlike the kinetic equation (1.1) which preserves the energy sphere.
The final observation is that the scattering kernel Kθ(k, p− k) converges as θ → 0:

Pθ(k, p) = |α(p− k)|2Kθ(k, p− k)

= |α(p− k)|22θ(1− χ̂(p− k))

{
θ2 (1− χ̂(p− k))2 +

(
p2 − k2

2

)2
}−1

→ 2π|α(p− k)|2

1− χ̂(p− k)
δ

(
p2 − k2

2(1− χ̂(p− k))

)
= 2π|α(p− k)|2 δ

(
p2 − k2

2

)
. (2.13)
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This calculation requires an extra assumption in order to manipulate the operator

PθU(k) =
∫
|α(p− k)|2Kθ(k, p− k)[U(p)− U(k)]dp,

namely

Mα :=
∫

Sd−1

sup
r>0

rd−2|α(rω)|2 dω <∞. (2.14)

This implies our last result.

Theorem 2.3 Let the initial data W0(x, k) for (2.12) belong to L2(Rd ×Rd) and assume (2.14) on
the scattering function α(p) and the bound of Lemma 5.1 on χ. Then, the operator Pθ is uniformly
bounded in L2(Rd) and the solution Ūθ of (2.12) converges in C

(
[0, T ];L2(Rd × Rd)

)
, as θ → 0, to

the solution of the kinetic equation

∂Z̄

∂t
+ k · ∇xZ̄ =

∫
Rd

|α(p− k)|2[Z̄(p)− Z̄(k)]δ
(
k2 − p2

2

)
dp (2.15)

with the initial data W̄ (0, x, k) = W0(x, k).

Note that the final equation (2.15) is independent from the regularization function χ(p) and is
nothing but the transport equation (1.1) with an appropriately defined scattering cross-section α(·).

3 Proof of Theorem 2.1: the formal expansion

In order to make the proof less cumbersome we will assume that the smooth component Φ̂(p) in (2.4)
vanishes. Its presence does not modify the proof in any significant way but makes the calculations
somewhat longer.

We will construct an expansion

Wε(t, x, k) = W̄ (t, x, k) +
√
εW ε

1 + εW ε
2 +Rε. (3.1)

Here W̄ (t, x, k) is the solution of the kinetic equation (2.9). The two correctors W ε
j (t, x, k) =

Wj(t, x, x/ε, k), j = 1, 2, are bounded in L2(Rd
x × Rd

k) and will be constructed explicitly so as to
make the remainder Rε have L2-norm of order O(

√
ε). We note that the functions W1,2(t, x, z, k) do

not decay in the fast variable z = x/ε but only in the macroscopic variables x and k – this is similar
to the usual periodic homogenization [4, 9].

The construction of the functions W1,2(t, x, z, k) is similar to that in the case when the potential
V is random and time-dependent [2, 3, 11]. The main difference with the present case is in the way
the second corrector is defined and bounded.

The first corrector

The correctors are built as follows. The first corrector W1 cancels the terms that are formally of the
order ε−1/2 when we insert the formal expansion (3.1) into the evolution equation (2.1) for Wε. It
satisfies

k · ∇zW1 + θ

(
W1 −

∫
χ(y)W1(t, x, z − y)dy

)
=

1
i

∫
eip·z

[
W̄ (t, x, k − p

2
)− W̄ (t, x, k +

p

2
)
] V̂ (p)dp

(2π)d
.

(3.2)
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Taking the Fourier transform in z, we obtain

[θ(1− χ̂(p)) + ik · p] Ŵ1(t, x, p, k) =
1
i
V̂ (p)

[
W̄ (t, x, k − p

2
)− W̄ (t, x, k +

p

2
)
]
, (3.3)

where p is the dual Fourier variable to z. Hence, the first term in the expansion (3.1) may be written
as

W ε
1 (t, x, k) =

∫
eip·x/ε V̂ (p)

[
W̄ (t, x, k − p

2)− W̄ (t, x, k + p
2)

]
i
(
θ(1− χ̂(p)) + ik · p

) dp

(2π)d
. (3.4)

We observe that

‖W ε
1 (t)‖L2(R2d) ≤

1
θ

∫
|V̂ (p)|

|1− χ̂(p)|

[
‖W̄ (t, x, k +

p

2
)‖L2(R2d) + ‖W̄ (t, x, k − q

2
)‖L2(R2d)

] dp

(2π)d

≤ C

θ

∫
|V̂ (p)|dp
|1− χ̂(p)|

‖W̄ (t)‖L2(R2d) ≤ C
∞∑

j=1

|αj |
|1− χ̂(pj)|

‖W0‖L2(R2d),

and it follows from the assumption (2.5) in Theorem 2.1 that the L2-norm of W ε
1 is bounded.

The second corrector

The corrector W2(t, x, z, k) should cancel terms of order one when we insert the expansion (3.1) into
(2.1). It satisfies

k · ∇zW2 + θ

(
W2 −

∫
χ(y)W2(t, x, z − y)dy

)
= −

(
∂W̄

∂t
+ k · ∇xW̄

)
(3.5)

+
1
i

∫
eip·z

[
W1(t, x, k −

p

2
)−W1(t, x, k +

p

2
)
] V̂ (p)dp

(2π)d
.

The integral on the second line above may be re-written, using expression (3.4) for W1 (with x/ε
replaced by z), as

1
i

∫
eip·z

[
W1(t, x, k −

p

2
)−W1(t, x, k +

p

2
)
] V̂ (p)dp

(2π)d
=

1
i

∫
ei(p+q)·zV̂ (p)V̂ (q)

×
[
W̄ (k − p

2 −
q
2)− W̄ (k − p

2 + q
2)

i(θ(1− χ̂(q)) + i(k − p
2) · q)

−
W̄ (k + p

2 −
q
2)− W̄ (k + p

2 + q
2)

i(θ(1− χ̂(q)) + i(k + p
2) · q)

]
dpdq

(2π)2d
.

This may be further transformed as∫
ei(p+q)·zV̂ (p)V̂ (q)

[
W̄ (k − p

2 + q
2)− W̄ (k − p

2 −
q
2)

θ(1− χ̂(q)) + i(k − p
2) · q

+
W̄ (k + p

2 −
q
2)− W̄ (k + p

2 + q
2)

θ(1− χ̂(q)) + i(k + p
2) · q

]
dpdq

(2π)2d

=
∫
eip·zV̂ (p− q)V̂ (q)

[
W̄ (k − p

2 + q)− W̄ (k − p
2)

θ(1− χ̂(q)) + i(k − p−q
2 ) · q

+
W0(k + p

2 − q)−W0(k + p
2)

θ(1− χ̂(q)) + i(k + p−q
2 ) · q

]
dpdq

(2π)2d

=
∫
eip·zG(p)

dp

(2π)d

where the function G(t, x, k, p) is defined by

G(p) =
∫
V̂ (p− q)V̂ (q)

[
W̄ (k − p

2 + q)− W̄ (k − p
2)

θ(1− χ̂(q)) + i(k − p−q
2 ) · q

+
W̄ (k + p

2 − q)− W̄ (k + p
2)

θ(1− χ̂(q)) + i(k + p−q
2 ) · q

]
dq

(2π)d
. (3.6)
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We may re-write (3.5) as

k · ∇zW2 + θ

(
W2 −

∫
χ(y)W2(t, x, z − y)dy

)
= −

(
∂W̄

∂t
+ k · ∇xW̄

)
+

∫
eip·zG(p)

dp

(2π)d
. (3.7)

After Fourier transform in z we arrive at

[θ(1− χ̂(p)) + ik · p] Ŵ2(t, x, p, k) = −
(
∂W̄

∂t
+ k · ∇xW̄

)
δ(p) +G(p).

Hence, in order for W2(t, x, z, k) to be uniformly bounded in z, we have to require that the distri-
bution G(p) defined by (3.6) has the form

G(t, x, p, k) =
(
∂W̄

∂t
+ k · ∇xW̄

)
δ(p) +B(t, x, k, p), (3.8)

where B(t, x, k, p) is sufficiently regular at p = 0. The matching of the δ(p)-contributions on the two
sides of (3.8) gives rise to the kinetic equation (2.9) for W̄ .

The transport equation as the solvability condition

In order to see how the equation (2.9) for W̄ arises, we insert expression (2.4) for V̂ (p) into (3.6)
and obtain that the distribution G(p) has the form (recall that we have assumed for simplicity that
Φ̂(p) = 0 in (2.4))

G(p) =
∑
j,l

∫
αjαl[δ(p− q − pj) + δ(p− q + pj)][δ(q − pl) + δ(q + pl)]

×

[
W̄ (k − p

2 + q)− W̄ (k − p
2)

θ(1− χ̂(q)) + i(k − p−q
2 ) · q

+
W̄ (k + p

2 − q)− W̄ (k + p
2)

θ(1− χ̂(q)) + i(k + p−q
2 ) · q

]
dq

(2π)d

= G11 +G21 +G12 +G22.

The four terms above arise from the cross-products of the delta functions. The term G11 that comes
from δ(p− pj)δ(q − pl) has the form

G11(p)=
∑
j,l

αjαl

(2π)d

[
W̄ (k − pj−pl

2 )− W̄ (k − pj+pl

2 )
θ(1− χ̂(pl)) + i(k − pj

2 ) · pl
+
W̄ (k + pj−pl

2 )− W̄ (k + pj+pl

2 )
θ(1− χ̂(pl)) + i(k + pj

2 ) · pl

]
×δ(p− (pj + pl)) =

∑
j,l

αjαlsjl(t, x, k)δ(p− (pj + pl)). (3.9)

The contribution G21 comes from δ(p+ pj)δ(q − pl), so that

G21(p) =
∑
j,l

αjαl

(2π)d

[
W̄ (k + pj+pl

2 )− W̄ (k − pl−pj

2 )
θ(1− χ̂(pl)) + i(k + pj

2 ) · pl
+
W̄ (k − pj+pl

2 )− W̄ (k + pl−pj

2 )
θ(1− χ̂(pl)) + i(k − pj

2 ) · pl

]
×δ(p− (pl − pj)) =

∑
j,l

αjαlrjl(t, x, k)δ(p− (pl − pj)). (3.10)

The third term G12 comes from δ(p− pj)δ(q + pl), and is given by

G12(p) =
∑
j,l

αjαl

(2π)d

[
W̄ (k − pj+pl

2 )− W̄ (k − pj−pl

2 )
θ(1− χ̂(−pl))− i(k − pj

2 ) · pl
+
W̄ (k + pj+pl

2 )− W̄ (k + pj−pl

2 )
θ(1− χ̂(−pl))− i(k + pj

2 ) · pl

]
×δ(p− (pj − pl)) =

∑
j,l

αjαlujl(t, x, k)δ(p− (pj − pl)). (3.11)
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The last term G22 arises from δ(p+ pj)δ(q + pl), so that

G22(p) =
∑
j,l

αjαl

(2π)d

[
W̄ (k + pj−pl

2 )− W̄ (k + pj+pl

2 )
θ(1− χ̂(−pl))− i(k + pj

2 ) · pl
+
W̄ (k − pj−pl

2 )− W̄ (k − pj+pl

2 )
θ(1− χ̂(−pl))− i(k − pj

2 ) · pl

]
×δ(p+ pj + pl) =

∑
j,l

αjαlqjl(t, x, k)δ(p+ pj + pl). (3.12)

Hence, the distribution G(t, x, p, k) has the from

G(t, x, p, k) =
∑
j,l

αjαl

[
sjl(t, x, k)δ(p− (pj + pl)) + rjl(t, x, k)δ(p− (pl − pj) (3.13)

+ujl(t, x, k)δ(p− (pj − pl)) + qjl(t, x, k)δ(p+ pj + pl)
]

= G0(t, x, k)δ(p) +
∑
j,l

αjαl[sjl(t, x, k)δ(p− (pj + pl)) + qjl(t, x, k)δ(p+ pj + pl)]

+
∑
j 6=l

αjαl[rjl(t, x, k)δ(p− (pl − pj) + ujl(t, x, k)δ(p− (pj − pl))].

The explicit definitions of the coefficients sjl, rjl, ujl and qjl above follow from the expressions
(3.9)-(3.12) for Gmn, m,n = 1, 2. Note that (3.13) realizes the decomposition (3.8) of G(p) into a
delta-function part at p = 0 and another component that is regular at p = 0 (in our particular case,
as we have assumed that Φ̂(p) = 0 in (2.4), this part vanishes at p = 0). In particular, we have an
explicit expression for G0(p):

G0 =
∑

|αj |2[rjj(t, x, k) + ujj(t, x, k)]

=
1

(2π)d

∑
|αj |2

[
W̄ (k + pj)− W̄ (k)

θ(1− χ̂(pj)) + i(k + pj

2 ) · pj
+

W̄ (k − pj)− W̄ (k)
θ(1− χ̂(pj)) + i(k − pj

2 ) · pj

+
W̄ (k − pj)− W̄ (k)

θ(1− χ̂(pj))− i(k − pj

2 ) · pj
+

W̄ (k + pj)− W̄ (k)
θ(1− χ̂(pj))− i(k + pj

2 ) · pj

]
=

∑
|αj |2

{
Kθ(k, pj)[W̄ (k + pj)− W̄ (k)] +Kθ(k,−pj)[W̄ (k − pj)− W̄ (k)]

}
. (3.14)

We used the radial symmetry of the function χ in the calculation above. The scattering kernel in
(3.14) is given by

Kθ(k, p) =
1

(2π)d

[
1

θ(1− χ̂(p)) + i(k + p
2) · p

+
1

θ(1− χ̂(p))− i(k + p
2) · p

]
(3.15)

=
1

(2π)d

2θ(1− χ̂(p))
θ2(1− χ̂(p))2 + ((k + p

2) · p)2

and coincides with that in (2.8).
Equation (3.8) implies that

∂W̄

∂t
+ k · ∇xW̄ = G0(t, x, k).

Thus, using (3.14) and (3.15), we obtain the following kinetic equation for W̄ (t, x, k):

∂W̄

∂t
+ k · ∇xW̄ =

∞∑
j=1

|αj |2
{
Kθ(k, pj)[W̄ (k + pj)− W̄ (k)] +Kθ(k,−pj)[W̄ (k − pj)− W̄ (k)]

}
,

(3.16)
which is nothing but (2.9).
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Bounds for the discrete kinetic equation

In order for the solution W̄ of (3.16) to satisfy a uniform bound in L2 we need the total scattering
cross-section

S(k) =
∑

|αj |2 {Kθ(k, pj) +Kθ(k,−pj)}

to belong to L∞(Rd). This condition is ensured, for instance, under assumption (2.5) in Theorem
2.1. In order to show that (3.16) is, indeed, dissipative in the L2-norm, we note that the kernel
Kθ(k, p) has the property

Kθ(k − p, p) = Kθ(k,−p). (3.17)

This symmetry relation is a discrete version of the usual symmetry property σ(k, p) = σ(p, k) of the
differential scattering cross-section in the transport theory. Indeed, multiplying (3.16) by W̄ , using
again the convention p−j = −pj , α−j = αj and integrating we get

d

dt

∥∥W̄ (t)
∥∥2

L2(R2d)
= 2

∑
j∈Z

|αj |2
∫
Kθ(k, pj)

[
W̄ (t, x, k + pj)− W̄ (t, x, k)

]
W̄ (t, x, k)dk dx

= 2
∑
j∈Z

|αj |2
∫
Kθ(k − pj , pj)

[
W̄ (t, x, k)− W̄ (t, x, k − pj)

]
W̄ (t, x, k − pj)dk dx

= 2
∑
j∈Z

|αj |2
∫
Kθ(k,−pj)

[
W̄ (t, x, k)− W̄ (t, x, k − pj)

]
W̄ (t, x, k − pj)dk dx

= 2
∑
j∈Z

|αj |2
∫
Kθ(k, pj)

[
W̄ (t, x, k)− W̄ (t, x, k + pj)

]
W̄ (t, x, k + pj)dk dx

= −
∑
j∈Z

|αj |2
∫
Kθ(k,−pj)

[
W̄ (t, x, k)− W̄ (t, x, k + pj)

]2
dk dx ≤ 0.

We conclude that
‖W̄ (t)‖L2(R2d) ≤ ‖W0(t)‖L2(R2d). (3.18)

Bounds for the second corrector

We go back to constructing and bounding the second corrector W2. Equation (3.7) for W2 may be
now written as

k · ∇zW2 + θ

(
W2 −

∫
χ(y)W2(t, x, z − y)dy

)
=

∫
eip·zB(t, x, k, p)

dp

(2π)d
(3.19)

with

B(p) = G(p)−G0δ(p) =
∑
j,l

αjαl[sjl(t, x, k)δ(p− (pj + pl)) + qjl(t, x, k)δ(p+ pj + pl)]

+
∑
j 6=l

αjαl[rjl(t, x, k)δ(p− (pl − pj) + ujl(t, x, k)δ(p− (pj − pl))].

It is convenient to look first at a general equation of the form

k · ∇zw + θ

(
w −

∫
χ(y)w(t, x, z − y)dy

)
= g(t, x, k)eiω·z.
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Its solution is given explicitly as

w(t, x, z, k) =
g(t, x, k)eiω·z

θ(1− χ̂(ω)) + ik · ω
. (3.20)

Hence, the L2-norm of the function wε(t, x, k) = w(t, x, x/ε, k) may be estimated as

‖wε(t)‖L2(R2d) ≤
C

θ(1− χ̂(ω))
‖g(t)‖L2(R2d).

The explicit expressions (3.9)-(3.12) for the functions sjl, rjl, qjl and ujl imply that (we now use the
notation ‖ . . . ‖2 for ‖ . . . ‖L2(R2d))

‖sjl(t)‖2 + ‖rjl(t)‖2 + ‖qjl(t)‖2 + ‖ujl(t)‖2 ≤ C
‖W̄ (t)

θ(1− χ̂(pl))
. (3.21)

The estimate (3.20), together with (3.21), the defining equation (3.19) for W2, expression (3.13) for
G(p), and the uniform bound (3.18) on ‖W̄ (t)‖L2(R2d), imply that

‖W2(t)‖2 ≤
C

θ2

 ∞∑
j,l=1

|αj ||αl|
(1− χ̂(pl))(1− χ̂(pj + pl))

+
∑
j 6=l

|αj ||αl|
(1− χ̂(pl))(1− χ̂(pj − pl))

 ≤ C

θ2
, (3.22)

provided that
∞∑

j,l=1

|αj ||αl|
(1− χ̂(pl))(1− χ̂(pj + pl))

+
∑
j 6=l

|αj ||αl|
(1− χ̂(pl))(1− χ̂(pj − pl))

< +∞ (3.23)

which is the assumptions (2.6) in Theorem 2.1 on the sequence αj .

4 Proof of Theorem 2.1: estimates on the remainder

Now, that we have shown that both W ε
1 and W ε

2 are uniformly bounded in L2, it remains only to
verify that the remainder Rε in the expansion (3.1) is small. Recall that

Rε = Wε − W̄ −
√
εW ε

1 − εW ε
2 .

Equation (2.1) may be expanded as

∂W0

∂t
+
√
ε
∂W1

∂t
+ ε

∂W2

∂t
+
∂Rε

∂t
+ k · ∇xW0 +

√
εk · ∇xW1 + εk · ∇xW2 + k · ∇xRε (4.1)

+
1√
ε
k · ∇zW1 + k · ∇zW2 +

θ

ε
(Wε − χε ? Wε) =

1√
ε
LεW0 + LεW1 +

√
εLεW2 + LεRε.

Here we have used the operator Lε defined in equation (2.2). We re-write (4.1) as

∂Rε

∂t
+ k · ∇xRε +

θ

ε
(Rε − χε ? Rε)− LεRε = gε (4.2)

with

gε(t, x, k) = −∂W̄
∂t

−
√
ε
∂W1

∂t
− ε

∂W2

∂t
− k · ∇xW̄ −

√
εk · ∇xW1 − εk · ∇xW2 (4.3)

− 1√
ε
k · ∇zW1 − k · ∇zW2 +

1√
ε
LεW̄ + LεW1 +

√
εLεW2

− θ

ε

(
W̄ +

√
εW1 + εW2 − χε ? (W̄ +

√
εW1 + εW2)

)
.
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We will show that
‖gε(t)‖L2(R2d) ≤ CT

√
ε. (4.4)

This will imply that ‖Rε(t)‖ ≤ CT
√
ε for 0 ≤ t ≤ T and finish the proof of Theorem 2.1.

As a general remark, we will use throughout the proof that Dl
xW̄ satisfies the equation (2.1) and

therefore
‖Dl

xW̄ (t)‖L2(R2d) ≤ ‖Dl
xW̄

0‖L2(R2d).

Let us look at the term on the last line in (4.3):

W̄ +
√
εW1 + εW2 − χε ? (W̄ +

√
εW1 + εW2) = Iε

0 +
√
εIε

1 + εIε
2 (4.5)

The first right hand side term above is

Iε
0(t, x, k) = W̄ − χε ? W̄ . (4.6)

After Fourier transform, its L2-norm is estimated as

‖Iε
0‖22 =

∫
|1− χ̂(εp)|2|̂̄W (p, y)|2 dpdy

(2π)2d
.

Note that the radial symmetry of χ(x) implies that χ̂′(0) = 0 and thus

|1− χ̂(p)| ≤ C|p|2.

This leads to
‖Iε

0‖22 ≤ Cε4
∫
|p|4|̂̄W (p, y)|2dpdy ≤ Cε4‖D2W̄‖2 ≤ Cε4, (4.7)

as the initial data W0 for the kinetic equation (3.16) is smooth. The second term in (4.5) is

Iε
1(t, x, k) = W ε

1 − χε ? W
ε
1 =

∫
χ(y)

[
W1

(
x,
x

ε

)
−W1

(
x− εy,

x

ε
− y

)]
dy

=
∫
χ(y)

[
W1

(
x,
x

ε

)
−W1

(
x,
x

ε
− y

)
+W1

(
x,
x

ε
− y

)
−W1

(
x− εy,

x

ε
− y

)]
dy

= Iε
11 + Iε

12.

The term
Iε
11 = χ(z) ?z W

ε
1 (t, x, z =

x

ε
, k)

is not small and will be used to cancel the term k · ∇zW1 in (4.3), using the defining equation for
W1. We check that the other one is small:

Iε
12(x, k) =

∫
χ(y)

[
W1

(
x,
x

ε
− y, k

)
−W1

(
x− εy,

x

ε
− y, k

)]
dy. (4.8)
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Observe that, using (3.4),

‖Iε
12(x, k)‖2 ≤

∫
χ(y)

∥∥∥W1

(
x,
x

ε
− y, k

)
−W1

(
x− εy,

x

ε
− y, k

)∥∥∥
2
dy

≤
∫
χ(y)

∥∥∥W1

(
x+ εy,

x

ε
, k

)
−W1

(
x,
x

ε
, k

)∥∥∥
2
dy

≤
∫
χ(y)

∥∥∥∥∥
∫
eip·x/ε V̂ (p)

i[(θ(1− χ̂(p)) + ik· ]
[W̄1(t, x+ εy, k − p

2
)−

W̄1(t, x, k −
p

2
) + W̄1(t, x, k +

p

2
)− W̄1(t, x+ εy, k +

p

2
)]

dp

(2π)d

∥∥∥∥
2

dy

≤ 2
θ

∫
|V̂ (p)|

1− χ̂(p)
dp

(2π)d

∫
χ(y)

∥∥W̄1(t, x, k)− W̄1(t, x+ εy, k)
∥∥

2
dy

≤ Cε

θ

∫
|y|χ(y)dy ‖∇xW̄ (t)‖2.

We used above the assumption (2.5), and thus

‖Iε
12‖2 ≤ C ε. (4.9)

Next, we bound

Iε
2(t, x, k) = W ε

2 − χε ? W
ε
2 =

∫
χ(y)

[
W2

(
x,
x

ε

)
−W2

(
x− εy,

x

ε
− y

)]
dy

=
∫
χ(y)

[
W2

(
x,
x

ε

)
−W2

(
x,
x

ε
− y

)
+W2

(
x,
x

ε
− y

)
−W2

(
x− εy,

x

ε
− y

)]
dy

= Iε
21 + Iε

22.

The term I21 is not small and will be used to cancel the term k · ∇zW2 in (4.3), using the defining
equation for W2. We check that the other one is small:

Iε
22(t, x, k) =

∫
χ(y)

[
W2

(
x,
x

ε
− y

)
−W2

(
x− εy,

x

ε
− y

)]
dy. (4.10)

Once again,

|W2 (x, z)−W2 (x− εy, z)| ≤
∫
|Ŵ2(x, p)− Ŵ2(x− εy, p)|dp. (4.11)

The function W2 has many similar terms that come from (3.13), we look at the one that has the
function sjl(t, x, k) in it:

Ŵ s
2 (t, x, p, k) =

∑ αjαl[sjl(t, x, k)δ(p− (pj + pl))
θ(1− χ̂(pj + pl)) + ik · (pj + pl)

.

The corresponding term in (4.11) is

|W s
2 (x, z)−W s

2 (x− εy, z)| ≤
∫
|Ŵ s

2 (x, p)− Ŵ s
2 (x− εy, p)|dp

≤ C

θ

∑ |αjαl|
1− χ̂(pj + pl)

|sjl(t, x, k)− sjl(t, x− εy, k)|.
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This leads to a term in term in Iε
22 that is bounded as

|Is
22(t, x, k)| ≤

∫
χ(y)

∣∣∣W s
2

(
x,
x

ε
− y

)
−W s

2

(
x− εy,

x

ε
− y

)∣∣∣ dy
≤ C

θ

∑ |αjαl|
1− χ̂(pj + pl)

∫
χ(y)|sjl(t, x, k)− sjl(t, x− εy, k)|dy.

Its L2-norm is estimated as

‖|I2
22(t)‖2 ≤

C

θ

∑ |αjαl

(1− χ̂(pj + pl))

∫
χ(y)‖sjl(t, x, k)− sjl(t, x− εy, k)‖2dy

≤ Cε

θ

∑ |αjαl|
1− χ̂(pj + pl)

∫
|y|χ(y)dy sup

j,l
‖∇xsjl(t)‖2

≤ Cε

θ

∑ |αjαl|
(1− χ̂(pj + pl))(1− χ̂(pl))

∫
|y|χ(y)dy ‖∇xW̄ (t)‖2 ≤ Cε.

The other contributions in I22 that arise from the terms in W2 that involve the functions rjl, qjl and
ujl may be bounded in an identical way, so that

‖I22‖2 ≤ Cε (4.12)

as well.
Equations (3.2) and (3.5) for W1 and W2, respectively, imply that the error term gε given by

(4.3) may be written as

gε(t, x, k) = −
√
ε
∂W1

∂t
−ε∂W2

∂t
−
√
εk ·∇xW1−εk ·∇xW2 +

√
εLεW2−

θ

ε

(
I0 +

√
εI12 + εI22

)
(4.13)

with I0, I12 and I22 defined by (4.6), (4.8) and (4.10).
Since ∂W̄

∂t satisfies the same equation as W̄ , we also have∥∥∥∥∂W̄ (t)
∂t

∥∥∥∥
L2(R2d)

≤
∥∥∥∥∂W̄0

∂t

∥∥∥∥
L2(R2d)

, ∀t ≥ 0.

Then, the operator Kδ
θ being bounded in L2, we deduce from the equation on W̄ that

∥∥k · ∇xW̄
∥∥

L2(R2d)
≤

∥∥∥∥∂W̄ (t)
∂t

∥∥∥∥
L2(R2d)

+
∥∥∥Kδ

θW̄ (t)
∥∥∥

L2(R2d)
≤ C

where C involves ‖W̄0‖L2(R2d) and ‖k · ∇W0‖L2(R2d). Therefore one may verify in a direct manner
that ∥∥∥∥∂W1

∂t

∥∥∥∥
2

+
∥∥∥∥∂W2

∂t

∥∥∥∥
2

+ ‖k · ∇xW1‖2 + ‖k · ∇xW2‖2 ≤ C,

using the definition of W1 and W2. The uniform boundedness of Lε in L2 implies that ‖LεW2‖2 ≤ C.
Altogether, these bounds, taken with the estimates (4.7), (4.9) and (4.12), imply (4.4). Therefore,
‖Rε(t)‖ ≤ C

√
ε and the proof of Theorem 2.1 is complete for a smooth initial data. Passing to a

pure L2 statement is automatic by density and L2 stability. �
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5 Proof of Theorems 2.2 and 2.3

The proofs of the last two Theorems follow similar lines and thus we only treat Theorem 2.3 which
involves more elaborate estimates.

The main difficulty is to derive the L2 bounds on the operator Pθ. We recall that, once this is
done, the existence of a unique solutions in C

(
[0,∞);L2(Rd)

)
is standard using the Banach fixed

point Theorem. This theory provides a solution both for θ > 0 or θ = 0 with the corresponding
assumptions.

The asymptotic behavior as θ → 0 is also standard and we recall the argument without details.
It follows from the inequalities∥∥PθŪθ − P0Z̄

∥∥
L2(Rd)

≤
∥∥Pθ[Ūθ − Z̄]

∥∥
L2(Rd)

+
∥∥[P0 − Pθ]Z̄

∥∥
L2(Rd)

≤ C
∥∥Ūθ − Z̄

∥∥
L2(Rd)

+ o(θ).

Indeed, since we have
∂(Ūθ − Z̄)

∂t
+ k · ∇x[Ūθ − Z̄] = PθŪθ − P0Z̄, (5.1)

we deduce

1
2
d

dt

∥∥Ūθ(t)− Z̄(t)
∥∥2

L2(R2d)
≤

∥∥Ūθ(t)− Z̄(t)
∥∥

L2(R2d)

∥∥PθŪθ − P0Z̄
∥∥

L2(Rd)

≤
∥∥Ūθ(t)− Z̄(t)

∥∥
L2(R2d)

[
C‖Ūθ − Z̄‖L2(R2d) + o(θ)

]
.

Then, thanks to the Gronwall lemma, we conclude that the L2 limit of Ūθ(t) is Z̄(t).
It remains to prove the L2 bounds on the operator Pθ which we state in the

Lemma 5.1 With the assumption (2.14) and with

Mχ =
∫ ∞

0

[
1− χ̂(r)

r2
+
|χ̂′(r)|
r

]2 r dr

1− χ̂(r)
<∞,

we have
‖PθU‖L2(Rd) ≤ C (Mα + θMχ).

Notice that the integrability assumptionMχ <∞ involves a further cancellation of second derivatives
χ̂′′(0) = 0.
Proof. We consider a test function V ∈ L2(Rd) and write∫

Pθ[U ](k) V (k)dk =
∫
α(p− k)

2θ(1− χ̂(p− k))

θ2
(
1− χ̂(p− k)

)2 +
( (p+k)·(p−k)

2

)2

[
U(p)− U(k)]V (k)

dpdk

(2π)d

= C

∫ ∫
2α(q−)θ(1− χ̂(q−))

θ2
(
1− χ̂(q−)

)2 +
( q+·q−

2

)2

[
U

(
q+ + q−

2

)
− U

(
q+ − q−

2

)]
V

(
q+ − q−

2

)
dq+dq−

This involves two terms which can be treated in a similar manner and thus we only consider the
“cross term” U( q++q−

2 )V ( q+−q−
2 ).
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We set q− = rω and q+ = q1ω + q′ with q1 ∈ R and q′ ⊥ ω, and ϕ(r) = 1− χ̂(q−). We arrive at

C

∫ ∫
α(rω)

2θϕ(r)(
θϕ(r)

)2 +
( q1 r

2

)2U(q′ + (q1 + r)ω)V (q′ + (q1 − r)ω) dq1 dq′ rd−1dr dω

≤ C

∫ ∫
sup
ρ>0

[ρd−2α(ρω)]
2

1 +
s2

2

U
(
q′ + ω(sθ

ϕ(r)
r

+ r)
)
V

(
q′ + ω(sθ

ϕ(r)
r

− r)
)
dq′ ds dr dω

= I + II,

where the integral is treated in two different ways for sθ|Q(r)| ≤ 1
2 and sθ|Q(r)| ≥ 1

2 with Q(r) =
ϕ(r)
r2 − ϕ′(r)

r .
On one hand, we have for sθ|Q(r)| ≤ 1

2 :

I ≤ C

∫
ω,s

sup
ρ>0

[ρd−2α(ρω)]
2

1 +
s2

2

(∫
U2

(
q′ + ω(sθ

ϕ(r)
r

+ r)
)
dq′ dr

×
∫
V 2

(
q′ + ω(sθ

ϕ(r)
r

− r)
)
dq′ dr

)1/2

ds dω

≤ C

∫
ω,s

sup
ρ>0

[ρd−2α(ρω)]
2

1 +
s2

2

( ∫
U2

(
q′ + ωR

)
(1− sθQ(r))−1dq′ dR

∫
V 2

(
q′ + ωR

)
(1 + sθQ(r))−1dq′ dR

)1/2
ds dω

≤ CMα‖U‖L2(Rd)‖V ‖L2(Rd),

where we have used the change of variable r → R = r ± sθϕ(r)
r .

On the other hand, we have for sθ|Q(r)| ≥ 1
2 :

II ≤ C̃

∫
ω,r

sup
ρ>0

[ρd−2α(ρω)]
(
θ|Q(r)|

)2
( ∫

U2
(
q′ + ω(sθ

ϕ(r)
r

+ r)
)
dq′ ds∫

V 2
(
q′ + ω(sθ

ϕ(r)
r

− r)
)
dq′ ds

)1/2
dr dω

≤ C̃

∫
ω,r

sup
ρ>0

[ρd−2α(ρω)]
(
θ|Q(r)|

)2
( ∫

U2
(
q′ + ωS

)
dq′ dS∫

V 2
(
q′ + ωS

)
dq′ dS

)1/2 r dr

θϕ(r)
dω

≤ CθMχ‖U‖L2(Rd)‖V ‖L2(Rd),

because ∫ (
|Q(r)|

)2 r dr

ϕ(r)
≤Mχ <∞.

This completes the proof of Lemma 5.1. �
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