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1 Introduction to the Fisher-KPP equation

The Freidlin-Gärtner formula

In these notes we will consider equations of the form

ut −∆u = µ(x)u− u2, t > 0, x ∈ Rn, (1.1)

with a smooth function µ(x) that is 1-periodic in all variables xj, j = 1, . . . , n. This equa-
tion is known as the Fisher-Kolmogorov-Petrovskii-Piskunov, or Fisher-KPP equation, and
was introduced in 1937 by Fisher, and KPP, in their two respective papers, Fisher’s paper
focusing on numerical and “applied tools” analysis, and KPP giving a rigorous mathematical
treatment. Both papers were pioneering in many respects, and are true classics of applied
mathematics and applied analysis. The Fisher-KPP equation is at the first sight a simple
combination of the diffusion equation

ut = ∆u,

and an ordinary differential equation

du

dt
= µu− u2.

This simplicity is not totally deceptive but nevertheless, this model provided mathematics
rich enough to survive almost eighty years of attack and is still capable of providing new and
surprising results.

Before going to the origins of the model, let us describe the particular mathematical
question we will focus on: what happens to solutions of (1.1) with compactly supported
initial data u(0, x) = u0(x) such that 0 ≤ u0(x) ≤ 1. A crucial role in the final result on the
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time evolution will be played by the periodic eigenvalue problem for the Schrödinger operator
with the potential µ(x):

−∆φ− µ(x)φ = λφ, (1.2)

φ(x) is 1-periodic in all its variables.

A classical result of the spectral theory for second order elliptic operators (a good basic
reference is, as usual, [6]) is that this eigenvalue problem is self-adjoint, has a purely discrete
spectrum λk, k ∈ N, with

lim
k→+∞

λk = +∞,

and all eigenvalues of (1.2) are real. The Krein-Rutman theorem [5], together with the
comparison principle, implies that there is a unique eigenvalue λ1 that corresponds to a
positive eigenfunction φ1 (all other eigenfunctions change sign). Moreover, λ1 is a simple
eigenvalue, and it is is the smallest eigenvalue of (1.2). It is called the principal eigenvalue
of (1.2), and has a variational characterization in terms of the Rayleigh quotient:

λ1 = inf
ψ∈H1(Tn)

∫
Tn

(|∇ψ|2 − µ(x)ψ2)dx∫
Tn
|ψ(x)|2dx

. (1.3)

Here Tn = [0, 1]n is the n-dimensional torus (the unit period cell of µ(x)), and H1(Tn) is
the set of all 1-periodic functions in the Sobolev space H1. Our main assumption about the
function µ(x) will be that

λ1 < 0. (1.4)

This condition holds, for instance, if the (continuous) function µ(x) is non-negative and not
identically equal to zero in Tn: this can be seen by simply taking the test function ψ(x) ≡ 1
in (1.4). However, in general, we allow µ(x) to change sign. Assuming (1.4), we will show the
following: first, the steady equation

−∆u = µ(x)u− u2, x ∈ Rn, (1.5)

posed in the whole space, has a unique positive bounded solution p(x). Moreover, p(x) is
1-periodic in all variables. Second, any solution of the Cauchy problem for (1.1) with a
nonnegative, bounded and compactly supported initial data u0(x) (that is positive on some
open set) will tend to p(x) as t → +∞, uniformly on every compact subset of Rn. For
example, when µ(x) ≡ 1, then p(x) ≡ 1, and this result says that u(t, x) → 1 as t → +∞,
uniformly on compact sets in x.

Finally, and this is the core of these lectures, we will prove the following propagation
result. For each unit vector e ∈ Rn, |e| = 1, consider the solution of the linear equation

vt −∆v = µ(x)v, x ∈ Rn, (1.6)

of the form
v(t, x) = e−λ(x·e−ct)φ(x), (1.7)
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with a positive 1-periodic function φ(x). Such exponential solutions are extremely important
in the theory for the nonlinear problem. We will see that for each direction e ∈ Sn−1 they exist
only for c ≥ c∗(e), where c∗(e) is the smallest possible propagation speed of such exponential
(it does depend on the choice of e). If we set

w∗(e) = inf
|e′|=1,(e·e′)>0

c∗(e
′)

(e · e′)
, (1.8)

then solutions of the nonlinear problem (1.1) with a nonnegative bounded and compactly
supported initial data u0(x) obey the following asymptotics: for each w ∈ (0, w∗(e)), and
each x ∈ Rn, we have

lim
t→+∞

sup
r∈[0,w]

|u(t, x+ rte)− p(x+ rte)| = 0, (1.9)

and for each w ∈ (w∗(e),+∞) we have

lim
t→+∞

sup
r≥w

u(t, x+ rte) = 0. (1.10)

That is, if we observe the solution u(t, x) along the ray in the direction e ∈ Sn−1, u(t, x) is
close to p(x) at distances much smaller than w∗(e)t, and u(t, x) is close to zero at distances
much larger than w∗(e)t. The remarkable fact is that the invasion speed w∗(e) is completely
determined by the linear problem (1.6)! This is a reflection of a general principle that we will
see repeatedly1 “every question for the KPP equation can be understood from an appropriate
version of the linearized equation”. The more precise asymptotics for the location of the
transition between these two regions is known as the “Bramson correction” and is somewhat
more delicate.

This propagation result was discovered by Freidlin and Gärtner [10] who proved it with
probabilistic tools. Since then its scope was considerably extended and at least four additional
methods of proof are known:
(i) Probabilistic proofs using large deviation methods, due to Freidlin [11].
(ii) Viscosity solution methods (Evans and Souganidis [7, 8]).
(iii) Monotone dynamical systems methods in the discrete setting (Weinberger [22]).
(iv) PDE methods that we adapt in the present notes to the relatively simple case we consider
(Berestycki, Hamel and Nadin [2]).

Origins of the model

Let us briefly discuss how the Fisher-KPP equation comes about. The original motivation
in [9] and [14] was by problems in genetics, while Freidlin and Gärtner motivated their study
of (1.1) as a general model for concentration waves in a periodic medium. There is also a nice
interpretation of this equation in terms of population dynamics. Let a population of animals,
or bacteria, or even some flora be described in terms of its local density u(t, x). That is,

1As any other general principle, it can be easily disproved, and, in particular, the meaning of the word
“appropriate” occasionally requires a serious thought for a particular question about the solutions of the KPP
equation.
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u(t, x)dx is the number of individuals present at time t in an infinitesimal volume dx around
a point x – the total number of individuals present in a given domain Ω at a time t is∫

Ω

u(t, x)dx.

This description assumes implicitly that the number of individuals is large, or equivalently,
they are not too sparse – probably, one should not describe the population of camels in a
desert in this way. The individuals multiply and disappear. In other words, in the absence of
a spatial displacement, the population density evolves as

du

dt
= µ(x)u− u2 = (µ(x)− u)u. (1.11)

Here, x is the spatial position, and µ(x) is the local growth rate at x for small u. These
equations are uncoupled at different points x. The negative term in the right side of (1.11)
accounts for the fact that there are limited resources – too many individuals present at
one point prevent population growth due to competition. The threshold value at which the
growth becomes negative in this model is u = µ(x). Hence, µ(x) can be both interpreted as
the growth rate for small u, and as the carrying capacity of the population. We will allow
µ(x) to be negative in some regions – these would reflect a “hostile” environment as opposed
to a “favorable” domain where µ(x) > 0. As we will see, the overall balance between the
“good” and “bad” regions that measures the chances of survival is measured by the principal
eigenvalue λ1 that we have mentioned before.

An aspect missing in (1.11) is movement of the individuals, displacements and migrations.
Assume for the moment that there is no growth of the population but the species may disperse.
If the chances of entering a small volume dx around x from position y are k(x, y) then the
balance equation for the population density is

∂u(t, x)

∂t
=

∫
k(x, y)u(t, y)dy −

(∫
k(y, x)dy

)
u(t, x). (1.12)

The first term on the right accounts for individuals entering the volume dx from all other
positions y and the negative term accounts for those leaving dx. Assume now that the
transition kernel k(x, y) is localized and radially symmetric:

k(x, y) =
1

εn
r

(
|x− y|
ε

)
,

and the mean drift is zero: ∫
xr(x)dx = 0.

Then, expanding (1.12) in ε we obtain, in the leading order:

∂u

∂t
= Dε2∆u, (1.13)

with the diffusion coefficient

D =

∫
|x|2r(x)dx.
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Exercise 1.1 This formal procedure is not difficult to make rigorous – it is, essentially, the
PDE version of the convergence of a discrete time random walk on a lattice to a Brownian
motion when the lattice step and the time step are scaled appropriately. Make this connection
in a careful fashion.

Putting (1.11) and (1.13) together (with the appropriate time rescaling in (1.13) to get
rid of the ε2 factor and setting D = 1) gives the Fisher-KPP equation

∂u

∂t
= ∆u+ µ(x)u− u2, (1.14)

that we will study in this chapter. A much more detailed explanation of the modeling issues
is given in Murray’s books [16, 17]. One may also obtain this equation in a more careful
fashion using birth-death processes in probability theory.

A completely different point of view of where the Fisher-KPP equation comes from, and
why it is important, comes from the probability theory [15]. Consider a branching Brownian
motion that starts at x = 0 and branches at an exponentially distributed rate. This means
that the particle starts at x = 0 and performs a Brownian motion until a random time τ1,
with the probability distribution function

P (τ1 > t) = e−t.

At this time the particle splits into two particles, each of them continues to perform an
independent Brownian motion, until an exponentially distributed time when it splits into
two, and the process is repeated – note that the times at which individual particles branch
are independent. Then, at any given time t > 0 we will have a random number Nt of particles
X1(t) ≤ X2(t) ≤ · · · ≤ XNt(t) (the number Nt depends on t as well), with XNt(t) being
the rightmost particle at this time. The remarkable fact is that the probability distribution
function of the rightmost particle

u(t, x) = Prob [XNt(t) ≥ x]

satisfies the Fisher-KPP equation

ut =
1

2
uxx + u− u2,

with the initial data u(0, x) = 1x≤0. We will not pursue this connection here, but the reader
should be aware that a very rich probabilistic literature on the subject exists that also provides
a rich intuition for the behavior of the solutions of the Fisher-KPP equation.

Pushed and pulled fronts

The equation
ut = ∆u+ µu− u2 (1.15)

is an example of a more general equation of the form

ut = ∆u+ f(u). (1.16)

5



Such equation is said to be of the Fisher-KPP type if the nonlinearity f(u) satisfies the
following assumption:

f ∈ C1[0, 1], f(0) = f(1) = 0, f(u) > 0 for all u ∈ (0, 1), (1.17)

f(u) ≤ f ′(0)u. (1.18)

The crucial assumption above is (1.18) – it means that the fastest rate of growth f(u)/u is
close to u = 0. We will see that it implies that solutions of the Cauchy problem for the Fisher-
KPP type problems are governed by what happens far ahead of the bulk of the solution, where
u is small and it grows the fastest. Because of that the solutions are said to be pulled.

In order to appreciate the difference between “pulled” Fisher-KPP fronts and “pushed”
fronts for other types of nonlinearity f(u), consider a reaction-diffusion equation

ut = D∆u+ f(u), (1.19)

with a nonlinearity f(u) that is not of the Fisher-KPP type but rather satisfies

f ∈ C1[0, 1], f(u) = f(1) = 0, for all 0 ≤ u ≤ θ0, and f(u) > 0 for all u ∈ (θ0, 1), (1.20)

with some θ0 > 0. Here, the rate of growth vanishes if u is small – a very small population
can not grow. Such nonlinearities are known as the ignition type, and θ0 is known as the
ignition temperature because they are commonly used in the combustion literature. Let us
consider solutions of (1.19) with the initial data u0(x) such that 0 < u0(x) < 1 that decays
as |x| → +∞. Consider the “extreme” case D = 0, then if f(u) is of the ignition type, we
will have

u(t, x) ≡ u0(x), if 0 < u0(x) ≤ θ0,

and
u(t, x)→ 1, as t→ +∞ if θ0 < u0(x).

This means that there is no propagation – solution tends to one only on the (bounded) set
where u0(x) > θ0. On the other hand, if f(u) is if the Fisher-KPP type, then

u(t, x)→ 1, as t→ +∞ for all x ∈ R.

This is another sense in which Fisher-KPP propagation is pulled – it may occur even in the
absence of diffusion, while for the ignition type nonlinearities diffusion is necessary to make
solutions propagate.

2 The steady solution as the long time limit for the

Cauchy problem

It is reasonable to expect that if solutions of (1.14) converge as t → +∞ to a certain limit
p(x) 6= 0, this function should satisfy the steady problem2

−∆p = µ(x)p− p2, x ∈ Rn, (2.1)

p(x) > 0 for all x ∈ Rn and p(x) is bounded.

2Another reasonable possibility is that the limit is a solution of the time-dependent problem that is defined
for all times, positive and negative, of which a steady solution is just one example.
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The condition p(x) > 0 comes from the maximum principle: it is natural to assume that
p(x) ≥ 0 as it is “physically” a population density, and then the maximum principle implies
that p(x) > 0 for all x ∈ Rn. In this section we will investigate existence of such steady
solutions.

This question is not immediately obvious even in the homogeneous case: is u ≡ 1 the
only non-negative (not identically equal to zero) bounded solution of (we consider the one-
dimensional case for utmost simplicity)

∆u+ u(1− u) = 0, x ∈ R, (2.2)

in the whole space? The maximum principle immediately implies that u(x) can not have a
maximum xm such that u(xm) ≥ 1, whence either u(x) ≡ 1, or 0 < u(x) < 1 for all x ∈ R.
For the same reason, in the latter case u(x) can not have a local minimum, thus it has to
vanish as x → −∞ or x → +∞. We assume without loss of generality that this happens as
x → +∞. Consider then the function ψε(x) = ε sin(πx/R) defined on the interval [0, R]. It
satisfies ψε(0) = ψε(R) = 0, and

∆ψε + ψε(1− ψε) = − π
2

R2
εψε + εψε − ε2ψ2

ε = εψε(1−
π2

R2
− εψε) > 0,

if R is sufficiently large and ε > 0 is sufficiently small. In that case, ψε(x) is a subsolution to
(2.2). Let us choose ε > 0 so small that ψε(x) < u(x) for 0 ≤ x ≤ R, and look at the shifts
ψε,z(x) = ψε(x− z), defined for z ≤ x ≤ z +R. As u(x)→ 0 as x→ +∞, there exists

z0 = sup{z : ψε,z(x) ≤ u(x) for all z ≤ x ≤ z +R.

It is immediate to see that ψε,z0(x) ≤ u(x) for all x ∈ [z0, z0+R] but there exists x0 ∈ (z, z+R)
such that ψε,z0(x0) = u(x0), that is, the graphs of u(x) and ψε,z0(x) touch at x0. This is a
contradiction to the fact that u(x) is a solution to (2.2), and ψε,z0 is a sub-solution. Therefore,
it is impossible that u(x)→ 0 as x→ ±∞, whence u(x) ≡ 1, and (2.2) has a unique bounded
positive solution.

We go back to the general case (2.1) – the technicalities will be less trivial, but the heart of
the analysis will be exactly as above. One of the main points here is that we impose neither
periodicity nor any decay conditions on p(x) as |x| → +∞, but only require that p(x) is
positive and bounded. Let us recall that we denote by λ1 the principal eigenvalue of

−∆φ− µ(x)φ = λ1φ, (2.3)

φ(x) is 1-periodic in all its variables, φ(x) > 0,

and that the requirement that the eigenfunction φ(x) is positive identifies λ1 uniquely because
of the Krein-Rutman theorem. The next result explains the role of the principal eigenvalue
rather succinctly.

Theorem 2.1 The problem (2.1) has a unique solution if λ1 < 0 and no solutions if λ1 ≥ 0.

The existence part of Theorem 2.1 has been known for a long time now but the uniqueness
part is recent [3]. This result is important for two reasons: (1) it classifies all solutions to the
steady problem, and (2) it is the key to understanding the long time behavior of the solutions
to the corresponding Cauchy problem, as shown by the following theorem.
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Theorem 2.2 Let u(t, x) be the solution of the initial value problem

∂u

∂t
= ∆u+ µ(x)u− u2, t > 0, x ∈ Rn, (2.4)

u(0, x) = u0(x),

with a bounded non-negative function u0(x) such that u0(x) 6≡ 0, and let λ1 be the principal
eigenvalue of (2.3). Then if λ1 < 0 we have

u(t, x)→ p(x) as t→ +∞, (2.5)

uniformly on compact sets K ⊂ Rn. On the other hand, if λ1 ≥ 0 then

u(t, x)→ 0 as t→ +∞, (2.6)

uniformly in Rn.

In the rest of this section we will prove these two theorems – the proof of Theorem 2.1, in
particular, is not short but it utilizes various tools that are interesting in their own right.

Triviality of the steady solutions when λ1 ≥ 0

Let us first explain what happens if λ1 > 0. Let φ(x) be the corresponding (periodic) principal
eigenfunction of (2.3), and let u(t, x) satisfy the time-dependent problem (2.4). As φ(x) is
periodic and positive, its minimum is positive. Hence, as u0(x) is bounded, we can find M > 0
so that at t = 0 we have

u(0, x) = u0(x) ≤ sup
x∈Rn

u0(x) ≤M min
x∈Tn

φ(x) ≤Mφ(x). (2.7)

The function
ψ(t, x) = Me−λ1tφ(x)

satisfies
ψt = ∆ψ + µ(x)ψ, (2.8)

which means that ψ(t, x) is a super-solution to (2.4):

ψt > ∆ψ + µ(x)ψ − ψ2. (2.9)

This, together with the inequality (2.7), by virtue of the parabolic maximum principle, implies
that for all t ≥ 0 we have

u(t, x) ≤ ψ(t, x) = Me−λ1tφ(x) ≤M‖φ‖L∞(Tn)e
−λ1t. (2.10)

It follows that
u(t, x)→ 0 as t→ +∞, (2.11)

uniformly in Rn, and, in particular, precludes the existence of non-trivial bounded solutions
to (2.1).
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The argument in the case λ1 = 0 is similar albeit with a nice additional step. In this
situation, the eigenfunction is a periodic function φ(x) > 0 such that

−∆φ = µ(x)φ. (2.12)

By the same token as before, we know that for any solution of (2.4) with a bounded initial
data u0(x) ≥ 0 we can find a constant M > 0 so that

u(0, x) ≤Mφ(x). (2.13)

The parabolic maximum principle3 implies that this inequality holds for all t ≥ 0:

u(t, x) ≤Mφ(x), for all x ∈ Rn.

Let now Mk be the smallest constant M so that we have

u(k, x) ≤Mφ(x) for all x ∈ Rn, (2.14)

at the time t = k. The sequence Mk is non-increasing: since Mkφ(x) is a super-solution, (2.14)
together with the strong maximum principle guarantees that (with the strict inequality)

u(k + 1, x) < Mkφ(x), (2.15)

which implies that Mk+1 ≤Mk. Let us now show that the strong maximum principle implies
that this inequality is strict: Mk+1 < Mk. It suffices to verify this for k = 1: assume that
M2 = M1. Then there exists a sequence xk such that

u(2, xk) ≥
(
M1 −

1

k

)
φ(xk). (2.16)

Let us define the translates

vk(t, x) = u(t, x+ xk), φk(x) = φ(x+ xk).

The parabolic regularity theory implies that the shifted functions vk(t, x) and φk(x) are uni-
formly bounded in C2,α

loc for 1 ≤ t ≤ 2, hence we may extract a subsequence kn → +∞ so that
the limits

v̄(t, x) = lim
n→+∞

vkn(t, x), φ̄(x) = lim
n→+∞

φkn(x)

exist. The shifted coefficients µk(x) = µ(x+xk) also converge after extracting a subsequence,
locally uniformly to a limit µ̄(x). The limits satisfy

∂v̄

∂t
= ∆v̄ + µ̄(x)v̄ − v̄2, 1 ≤ t ≤ 2, x ∈ Rn, (2.17)

and
−∆φ̄ = µ̄(x)φ̄. (2.18)

3Recall that φ(x) is a super-solution to the problem (2.4) that u(t, x) satisfies.

9



In addition, we have v̄(t = 1, x) ≤ M1φ̄(x) for all x ∈ Rn, and v̄(t = 2, x = 0) = M1φ̄(0).
This contradicts the strong maximum principle since φ̄ is a strict super-solution to (2.17).
Therefore, the sequence Mn is strictly decreasing.

Let now
M̄ = lim

k→+∞
Mk. (2.19)

We need to show that M̄ = 0, in order to conclude that u(t, x) → 0 as t → +∞, uniformly
in x ∈ Rn. As in the previous step, choose xk so that

v(k, xk) ≥ (Mk −
1

k
)φ(xk),

and define the translates

vk(t, x) = v(k + t, xk + x), φk(x) = φ(x+ xk), (2.20)

as well as µk(x) = µ(x+ xk). Note that

v(k − 1, x) ≤Mk−1φ(x), (2.21)

for all x ∈ Rn. Once again, the parabolic regularity theory implies that the sequences vk(t, x),
φk(x) and µk(x) = µ(x+xk) (after extraction of a subsequence) converge as k → +∞, locally
uniformly, to the respective limits v̄(t, x), φ̄(x) and µ̄(x) that satisfy, in this case,

∂v̄

∂t
= ∆v̄ + µ̄(x)v̄ − v̄2, −∞ < t < +∞, x ∈ Rn, (2.22)

and
−∆φ̄ = µ̄(x)φ̄. (2.23)

That is, v̄(t, x) is a global in time solution, defined for positive and negative t. In addition,
the normalization (2.20) implies that

v̄(0, 0) = M̄φ̄(0), (2.24)

while we also have, from (2.21):

v̄(−1, x) ≤ M̄φ̄(x), x ∈ Rn. (2.25)

The parabolic strong maximum principle implies that then v̄(t, x) ≡ M̄φ̄(x) which is only
possible if M̄ = 0. Therefore, M̄ = 0, and

u(t, x)→ 0 as t→ +∞, uniformly in x ∈ Rn,

also when λ1 = 0.
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Existence of the periodic steady solutions when λ1 < 0

We now turn to the most interesting case λ1 < 0. We need to show that then a non-trivial
steady solution p(x) of (2.1) exists, and, moreover, solution of the parabolic problem converges
to it as t→ +∞, locally uniformly in x. The crucial idea throughout will be to use compactly
supported sub-solutions to the Fisher-KPP equation that come from eigenfunctions of the
linearized problem with either the periodic boundary conditions (in the existence part of the
proof) or the Dirichlet boundary condition on sufficiently large balls (in the uniqueness part
of the proof).

Let φ(x) be the positive periodic eigenfunction of

−∆φ− µ(x)φ = λ1φ. (2.26)

Consider the function φε(x) = εφ(x). A simple but very important observation is that for
ε > 0 sufficiently small we have

−∆φε − µ(x)φε = λ1φε ≤ −φ2
ε, (2.27)

that is, φε(x) is a sub-solution for the steady nonlinear problem. More precisely, this inequality
holds as soon as

ε < − λ1

maxx∈Tn φ(x)
, (2.28)

and it is here that we need the assumption λ1 < 0. On the other hand, the constant function
w(x) ≡M satisfies

−∆w − µ(x)w = −µ(x)M ≥ −M2, (2.29)

as soon as
M ≥ max

x∈Tn
µ(x). (2.30)

Therefore, we have both a sub-solution φε(x) (with an ε that satisfies (2.28)) and a super-
solution w(x) (with M that satisfies (2.30)) for the steady problem (2.1). With these in hand,
a true solution of (2.1) can be constructed using a standard iteration scheme. First, choose a
number N > −2λ1 and restate (2.1) as

−∆p(x)− µ(x)p(x) +Np(x) = Np(x)− p2. (2.31)

The reason to add the term Np(x) on the left is to make sure that all eigenvalues of the
periodic problem

−∆φ− µ(x)φ+Nφ(x) = λφ, (2.32)

are strictly positive. In this case, the inhomogeneous elliptic problem

−∆φ− µ(x)φ+Nφ(x) = f(x) (2.33)

has a unique periodic solution p(x) for any bounded periodic function f(x). Moreover, if
f(x) > 0 for all x ∈ Tn then the solution of (2.33) is also positive.
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We set up the iteration scheme as follows: let p0 = φε(x) and for k ≥ 1 let pk(x) be the
periodic solution of

−∆pk − µ(x)pk +Npk(x) = Npk−1(x)− p2
k−1(x). (2.34)

We claim that the sequence pk(x) is increasing pointwise in x:

pk+1(x) ≥ pk(x), for all k ≥ 0 and all x ∈ Tn, (2.35)

and satisfies

pk(x) ≤ N

2
for all k ≥ 0 and all x ∈ Tn. (2.36)

In order to prove the upper bound (2.36) we observe that p0(x) ≤ N/2 if ε is sufficiently
small, and then use induction: define wk(x) = N/2 − pk(x), assume that pk−1(x) ≤ N/2 for
all x ∈ Tn, and write, with µ̄ = supx∈Tn µ(x):

−∆wk − µ(x)wk +Nwk = −µ(x)
N

2
+
N2

2
+ ∆pk + µ(x)pk −Npk

= −µ(x)
N

2
+
N2

2
−Npk−1 + p2

k−1 ≥ −µ̄
N

2
+
N2

2
− N2

4
> 0,

as long as N > 2µ̄. This proves that wk(x) > 0, hence (2.36) holds. The reason for the
pointwise monotonicity of the sequence pk(x) is that p0 is a sub-solution for (2.32). The proof
is by induction: set

zk(x) = pk(x)− pk−1(x), k ≥ 1,

then z1 satisfies

−∆z1 − µ(x)z1 +Nz1 = −∆p1 − µ(x)p1 +Np1 + ∆p0 + µ(x)p0 −Np0 (2.37)

= Np0 − p2
0 − λ1p0 −Np0 = −λ1p0 − p2

0 > 0.

The last inequality above holds by virtue of (2.28), and, once again, requires that λ1 < 0. It
follows that z1 ≥ 0 – as discussed above, just below (2.33). Next, assume that zj(x) ≥ 0 for
all x ∈ Tn and all j = 1, . . . , k. The function zk+1(x) satisfies

−∆zk+1 − µ(x)zk+1 +Nzk+1 = −∆pk+1 − µ(x)pk+1 +Npk+1 + ∆pk + µ(x)pk −Npk
= Npk − p2

k −Npk−1 + p2
k−1 = Nzk − (pk−1 + pk)zk > 0. (2.38)

We used the induction assumption zk ≥ 0 and the upper bound (2.36) for pk in the last step.
Once again, we conclude that zk+1(x) ≥ 0 for all x ∈ Tn. Thus, the sequence pk(x) is, indeed,
increasing. Therefore, it converges pointwise in x to a limit profile p(x) that satisfies

φε(x) ≤ p(x) ≤ N

2
, (2.39)

and

−∆p− µ(x)p+Np = Np− p2, (2.40)

which is nothing but (2.1). Condition (2.39) is very important – it ensures that p(x) 6≡ 0,
and also prevents p(x) from blowing up. We have, thus, established that when λ1 < 0 this
equation has a non-trivial steady periodic solution, finishing the proof of the existence part
of Theorem 2.1.
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Uniqueness of a bounded solution when λ1 < 0

Next, we show that the periodic solution of (2.1) that we have just constructed is unique in
the class of bounded solutions. That is, if s(x) is another bounded (not necessarily periodic)
solution of

−∆s = µ(x)s− s2 (2.41)

s(x) is bounded, and s(x) > 0 for all x ∈ Rn,

then s(x) coincides with the periodic solution p(x) that we have constructed above. The proof
follows [2] with some modifications from [20]. The crucial part in the proof of uniqueness is
played by the following lemma.

Lemma 2.3 Any solution of (2.41) is bounded from below by a positive constant:

inf
x∈Rn

s(x) > 0. (2.42)

Let us first explain why uniqueness of the solution of (2.41) follows from this lemma. Let
p(x) and s(x) be two solutions. As s(x) is bounded, and

inf
x∈Rn

p(x) > 0,

we may define r0 as the smallest r such that s(x) ≤ rp(x):

r0 = inf{r : s(x) ≤ rp(x), for all x ∈ Rn}.

We claim that r0 ≤ 1. Indeed, the difference

v(x) = r0p(x)− s(x)

satisfies
−∆v − µ(x)v = −r0p

2 + s2,

and a simple computation shows that

−∆v + (−µ(x) + r0p(x) + s(x))v = r0pv + sv − r0p
2 + s2

= r0p(r0p− s) + s(r0p− s)− r0p
2 + s2 = r0(r0 − 1)p2(x).

Therefore, if r0 > 1 the function v(x) satisfies

−∆v + (−µ(x) + r0p(x) + s(x))v = r0(r0 − 1)p2(x) > c0 = r0(r0 − 1) inf
x∈Rn

p2(x) > 0,

v(x) ≥ 0 for all x ∈ Rn. (2.43)

As v(x) ≥ 0, the strong maximum principle implies that v(x) > 0 for all x ∈ Rn. Furthermore,
if there is a sequence xk such that |xk| → +∞, and

lim
k→∞

v(xk) = 0,

13



this is also a contradiction to the strong maximum principle. Indeed, as we have seen several
times before, the elliptic regularity theory implies that we may extract a subsequence nk →
+∞ so that the shifted functions vk(x) = v(xk + x), pk(x) = p(x + xk), sk(x) = s(x + xk),
and µk(x) = µ(x+xk) converge to the respective limits v̄(x), p̄(x), s̄(x) and µ̄(x) as k → +∞
that satisfy

−∆v̄ + (−µ̄(x) + r0p̄(x) + s̄(x))v̄ > c0 > 0,

v(x) ≥ 0 for all x ∈ Rn, (2.44)

with v̄(0) = 0, which is impossible. Hence, if r0 > 1 we must have

inf
x∈Rn

v(x) > 0,

which contradicts the minimality of r0: as p(x) is bounded from above, there will then exist
r′ < r0 such that

s(x) ≤ r′p(x) for all x ∈ Rn.

We conclude that r0 ≤ 1, meaning that s(x) ≤ p(x). The only property of the solution p(x)
we have used above is that there exist two constants c1,2 > 0 so that

0 < c1 < p(x) < c2 < +∞ for all x ∈ Rn.

Lemma 2.3 asserts that “the other” solution s(x) obeys the same bounds (with different
constants c1,2). Hence, an identical argument implies that p(x) ≤ s(x), and it follows that
p(x) = s(x) establishing uniqueness of the solutions of (2.41).

The uniform lower bound: the proof of Lemma 2.3

We now prove Lemma 2.3, the last ingredient in the proof of Theorem 2.1. An immediate
trivial observation is that if s(x) is a periodic solution of

−∆s = µ(x)s− s2 (2.45)

s(x) is bounded and s(x) > 0 for all x ∈ Rn,

then, of course,
inf
x∈Rn

s(x) > 0. (2.46)

The main difficulty is, therefore, in dealing with general bounded solutions, that need not
be periodic. To this end, we would like to get a nice subsolution for (2.45) that we would
be able to put under s(x) to give a lower bound for s(x). As in the proof of existence of a
solution to (2.45), a good candidate is φε(x) = εφ(x), where φ(x) is the principal periodic
eigenfunction of

−∆φ− µ(x)φ = λ1φ, (2.47)

φ(x) > 0 for all x ∈ Tn.

Recall that the function φε(x) satisfies

−∆φε − µ(x)φε + φ2
ε = λ1φε + φ2

ε < 0, (2.48)
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provided that (compare to (2.28))

ε < − λ1

maxx∈Tn φ(x)
. (2.49)

The difficulty in using this subsolution is that it is periodic – how can we put it under s(x)
unless we already know that s(x) is uniformly positive? Instead, we are going to use the
principal Dirichlet eigenfunction in a ball B(m,R) where m ∈ Zd is an integer point, and
R is sufficiently large. Its advantage is that this eigenfunction is compactly supported so
that a sufficiently small multiple of it can be put under any positive function. Let λR be the
principal Dirichlet eigenvalue in such ball. It does not depend on m since the coefficient µ(x)
is periodic, hence we set m = 0 for the moment:

−∆ψR(x)− µ(x)ψR = λRψR(x), |x| < R, (2.50)

ψR(x) > 0 for |x| < R,

ψR(x) = 0 on {|x| = R}.

We have the following result, instructive in its own right.

Proposition 2.4 Let λ1 be the principal periodic eigenvalue of the problem (2.47), and λR
be the principal Dirichlet eigenvalue of the problem (2.50), then

lim
R→+∞

λR = λ1. (2.51)

This means that for such eigenvalue problems the periodic microstructure dominates and
there is no averaging effect in the following sense: consider the rescaled eigenvalue problem
with y = x/R, posed in the unit ball, for the function ζR(y) = φR(Ry), and with λ′R = R2λR:

−∆ζR(y)−R2µ(Ry)ζR(y) = λ′RζR(y), |y| < 1, (2.52)

ζR(x) > 0 for |y| < 1,

ζR(x) = 0 on {|y| = 1}.

The potential R2µ(Ry) in (2.52) has two competing effects: it is oscillatory that often leads
to some averaging but it is also very strong. If the oscillatory nature of the potential would
dominate over its strength, the principal eigenfunction for (2.52) would vary on the scale O(1),
and would not vary much on the scale of the period, which is 1/R in (2.52). Proposition 2.4
says that this is not the case, and the strength of the potential dominates over its oscillatory
nature – this leads to a large eigenvalue λ′(R) ≈ R2λ1, and the oscillations in the eigenfunction
ζR(y) ≈ φ(Ry). This is what we mean by the dominance of the microstructure and lack of
homogenization.

Here is how we use the above proposition. Let ψR be the eigenfunction of (2.50) normalized
so that

sup
|x|≤R

ψR(x) = 1.

Set φε,R = εψR(x), then, as in (2.48) we have

−∆φε,R − µ(x)φε,R + φ2
ε,R < 0, (2.53)
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as long as
ε < −λR. (2.54)

Proposition 2.4 implies that there exists R so that for all R′ > R we have λR′ < −λ1/2.
Therefore, the function φε,R is a sub-solution to (2.48) on the ball B(0, R) for any ε < −λ1/2.
In addition, we know that for ε sufficiently small we have φε,R < p(x) for all x ∈ B(0, R)
simply because p(x) is smooth and p(x) > 0 for all x ∈ Rn. Let us now start increasing ε
until p(x) and φε,R touch:

ε0 = sup{ε > 0 : p(x) ≥ εφR(x) for all x ∈ B(0, R)}.

We claim that ε0 ≥ −λR. Indeed, otherwise φε,R is a sub-solution and p(x) is a solution, hence
they can not touch without violating the maximum principle. Thus, we have ε0 ≥ −λR, that
is, ε0 is sufficiently large so that φε0,R is no longer a sub-solution. Therefore, we have shown
that

p(x) ≥
(
−λ1

2

)
φR(x) for all x ∈ B(0, R). (2.55)

By considering a shifted ball B(m,R) we see that, actually, we have a generalization of (2.55):

p(x) ≥
(
−λ1

2

)
φR(x−m) for all x ∈ B(m,R), and all m ∈ Zn. (2.56)

It follows immediately that there exists a constant c0 > 0 so that p(x) > c0 for all x ∈ Rn. Note
that we may only shift φR by an integer m – otherwise it would cease being a subsolution since
µ(x) is not a constant. The proof of Lemma 2.3 is complete, as well as that of Theorem 2.1.

Proof of Proposition 2.4

Let us first recall the variational principles for the principal periodic and Dirichlet eigenvalues
λ1 and λR:

λ1 = inf
v∈H1(Tn)

∫
Tn

(|∇v|2 − µ(x)v2)dx∫
Tn
|v|2dx

(2.57)

and

λR = inf
v∈H1

0 (B(0,R))

∫
Tn

(|∇v|2 − µ(x)v2)dx∫
Tn
|v|2dx

(2.58)

The difference between the two expressions is in the collection of test functions: 1-periodic
H1 functions in the case of λ1 and H1

0 (B(0, R)) functions in the case of λR. Uniqueness of
the principal eigenvalue shows that λ1 is also the principal periodic eigenvalue on the larger
torus Tm = [0,m]n, hence λ1 can be written as

λ1 = inf
v∈H1(Tm)

∫
Tm

(|∇v|2 − µ(x)v2)dx∫
Tm

|v|2dx
. (2.59)
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That is, the infimum can be also taken over all m-periodic functions, for any positive integer
m ∈ N. Let us then take m > 2R, set the vector e = (1, 1, . . . , 1), and consider an m-
periodic function vR,m (defined in the period cell [0,m]n) that equals φR(x − (m/2)e) in the
ball B(me/2, R), and to zero everywhere else in Tm = [0,m]n. Note that B(me/2, R) ⊂ Tm.
The Rayleigh quotient of vR,m is exactly λR, hence

λ1 ≤ λR. (2.60)

In order to establish the opposite bound, let φ1 be the 1-periodic eigenfunction and set

wR(x) = χR(x)φ1(x),

where χR(x) is a smooth cut-off function such that 0 ≤ χR(x) ≤ 1, χR(x) = 1 for |x| ≤ R−1,
and χR(x) = 0 for |x| ≥ R. We may assume that ‖χR‖C2 ≤ K with a constant K that does
not depend on R. The L2-norm of the gradient of wR is∫

B(0,R)

|∇wR(x)|2dx =

∫
B(0,R)

|∇χR(x)φ1(x) + χR(x)∇φ1(x)|2dx

=

∫
B(0,R)

(|∇χR|2|φ1(x)|2 + 2(φ1(x)χR(x)∇χR(x) · ∇φ1(x))dx+

∫
B(0,R)

|χR(x)|2|∇φ1(x)|2dx.

As ∇χR(x) = 0 for x outside the annulus R − 1 ≤ |x| ≤ R, the first term in the last line
above is bounded by CRn−1, and we have∫

B(0,R)

|∇wR(x)|2dx =

∫
B(0,R)

|∇φ1(x)|2dx+O(Rn−1).

Furthermore, we can estimate, using the same idea:∫
B(0,R)

µ(x)|wR(x)|2dx =

∫
B(0,R)

µ(x)|φ1(x)|2dx+O(Rn−1).

The notation above means that the integrals in the left and right side differ by expressions
that can be bounded by CRn−1. And, finally, we have, in the same way:∫

B(0,R)

|wR(x)|2dx =

∫
B(0,R)

|φ1(x)|2dx+O(Rn−1).

The last observation is that, for instance,∫
B(0,R)

|φ1(x)|2dx = NR

∫
[0,1]n
|φ1(x)|2dx+O(Rn−1),

and similarly for the other integrals appearing in the Rayleigh quotient for wR. Here NR is
the number of disjoint [0, 1]n cubes that fit into the ball B(0, R). We deduce that

λR ≤

∫
BR

|(|∇wR(x)|2 − µ(x)|wR(x)|2)dx∫
BR

|wR(x)|2dx
=

∫
[0,1]n
|(|∇φ1(x)|2 − µ(x)|φ1(x)|2)dx∫

[0,1]n
|φ1(x)|2dx

+O(R−1)

= λ1 +O(R−1). (2.61)
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This estimate, together with (2.60) shows that

lim
R→+∞

λR = λ1, (2.62)

and the proof of Poposition 2.4 is complete.

Convergence of the solutions of the Cauchy problem

We now prove Theorem 2.2. Recall that we need to prove that if λ1 < 0 then solutions of the
Cauchy problem

∂u

∂t
= ∆u+ µ(x)u− u2, t > 0, x ∈ Rn, (2.63)

u(0, x) = u0(x),

with a bounded non-negative function u0(x) such that u0(x) 6≡ 0, have the long time limit

u(t, x)→ p(x) as t→ +∞, (2.64)

uniformly on compact sets K ⊂ Rn. Here, as before, p(x) is the unique bounded positive
solution of the steady problem

−∆p = µ(x)p− p2, x ∈ Rn.

Recall that we have already shown that if λ1 ≥ 0 then

u(t, x)→ 0 as t→ +∞, (2.65)

uniformly in Rn.
Let us first show that

lim inf
t→+∞

u(t, x) ≥ p(x). (2.66)

To this end, we will use the sub-solution εφR(x) we used in the proof of Lemma 2.3. First,
we wait until time t = 1 to make sure that u(t = 1, x) > 0 in Rn. Then, we may find ε > 0
sufficiently small, and R sufficiently large, so that φε(x) = εφR(x) is a sub-solution:

−∆φε ≤ µ(x)φε − φ2
ε,

and φε(x) < p(x) for all x ∈ Rn (we extend φε(x) = 0 outside the ball B(0, R)). We also
take ε so small that u(t = 1, x) > φε(x) for all x ∈ Rn. Let now v(t, x) be the solution of the
Cauchy problem

∂v

∂t
= ∆v + µ(x)v − v2, t > 1, x ∈ Rn, (2.67)

v(t = 1, x) = φε(x).

The parabolic comparison principle implies immediately that v(t, x) ≤ u(t, x) for all t > 1.

Exercise 2.5 Use the fact that φε(x) (which is the initial data for v(t, x)), is a sub-solution,
to show that v(t, x) ≥ φε(x) for all t ≥ 1 and x ∈ Rn.
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Exercise 2.6 Use the result of the previous exercise to show that v(t, x) is strictly increasing
in time. Hint: set, for all h > 0,

vh(t, x) = v(t+ h, x)− v(t, x),

and verify that vh(t, x) satisfies

∂vh
∂t

= ∆vh + µ(x)vh − (v(t+ h, x) + v(t, x))vh,

with vh(t = 1, x) ≥ 0 for all x ∈ Rn. Use the parabolic comparison principle to deduce that
vh(t, x) ≥ 0 for all t ≥ 1, that is, the function v(t, x) is monotonically increasing in t.

Exercise 2.7 Use the fact that p(x) is a solution, while φε(x) is a sub-solution to show that
v(t, x) ≤ p(x) for all t ≥ 1, if ε > 0 is sufficiently small.

A consequence of the above observations is that the limit

s(x) = lim
t→+∞

v(t, x)

exists and is a positive bounded steady solution:

−∆s = µ(x)s− s2.

Uniqueness of such solutions implies that s(x) = p(x), and thus

lim inf
t→+∞

u(t, x) ≥ lim
t→+∞

v(t, x) = p(x), (2.68)

as we have claimed. Moreover, if

u0(x) ≤ p(x) for all x ∈ Rn, (2.69)

then by the same token we have u(t, x) ≤ p(x) for all t ≥ 0, meaning that

lim
t→+∞

u(t, x) = p(x).

Let us finally see what happens if (2.69) does not hold. If we multiply p(x) by a number
M > 1 and set pM(x) = Mp(x), we get a super-solution:

−∆pM − µ(x)pM + p2
M = −M∆p−Mµ(x)p+M2p2 = −Mp2 +M2p2 > 0, (2.70)

as M > 1. If we choose M > 1 sufficiently large so that u0(x) ≤ pM(x) then u(t, x) ≤ w(t, x),
solution of

∂w

∂t
= ∆w + µ(x)w − w2, t > 0, x ∈ Rn, (2.71)

w(t, x) = Mp(x).

As pM(x) is a super-solution, the argument we used to show that v(t, x) was increasing in
time, shows that w(t, x) is monotonically decreasing in time. In addition, as M > 1, we
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know from the comparison principle that w(t, x) ≥ p(x) for all t > 0. Its point-wise limit (as
t→ +∞) is therefore a non-trivial steady solution of our problem and thus equals to p(x):

lim
t→+∞

w(t, x) = p(x).

As a consequence, we obtain
lim sup
t→+∞

u(t, x) ≤ p(x). (2.72)

This, together with (2.68) proves that

lim
t→+∞

u(t, x) = p(x),

and the proof of Theorem 2.2 is complete.

3 The speed of invasion

We now turn to the heart of these lectures: finding the speed of invasion of the stable steady
state p(x) – in this section we assume that µ(x) is such that λ1 < 0 so that the steady state
does exist.

3.1 The homogeneous case

We first consider the uniform case µ(x) ≡ 1, where the proof is much simpler, especially if we
replace the nonlinearity u− u2 by a function f(u) which is linear close to zero:

f(u) =

{
u if u ≤ θ,

u− u2 if u is close to 1.
(3.1)

We also assume that f(u) is smooth, and f(u) ≤ u for all u ∈ [0, 1] – this is the crucial
Fisher-KPP assumption. Thus, we momentarily consider the problem

ut = uxx + f(u), t > 0, x ∈ R, (3.2)

with a nonnegative initial condition u(0, x) = u0(x) 6≡ 0, and f(u) as above. We assume
that u0(x) is compactly supported – this is a very important assumption as a sufficiently
slow decay at infinity may change the propagation speed, and even lead to fronts propagating
super-linearly in time, an interesting subject outside of the scope of the present lectures. The
unique stable steady state is p(x) ≡ 1, and we are interested in how fast it invades the areas
where u is small.

An upper bound for the spreading speed

The function u(t, x) satisfies the inequality

ut − uxx ≤ u. (3.3)
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Let us look for exponential super-solutions to (3.2) of the form

ū(t, x) = e−λ(x−ct).

Because of (3.3), the function ū(t, x) is a super-solution if

λ2 − cλ+ 1 = 0. (3.4)

As we need the supersolution ū(t, x) to be real and positive, λ has to be real, and (3.4) means
that we have to take c ≥ 2. In particular, for c = 2 we can take λ = 1. We conclude that if
the initial data u0(x) satisfies

u0(x) ≤Me−|x|, (3.5)

then u(t, x) satisfies
u(t, x) ≤M min

(
e−(x−2t), ex+2t

)
, (3.6)

whence
lim
t→+∞

sup
|x|≥ct

u(t, x) = 0, (3.7)

for all c > 2. Therefore, the steady state u ≡ 1 can not invade with a speed larger than c∗ = 2.

A lower bound for the spreading speed

Next, we show that the state u ≡ 1 invades with the speed at least equal to c∗ = 2 (or,
rather, faster than any speed smaller than c∗), matching the upper bound for the invasion
speed. It is here that the assumption that f(u) = u for small u helps. It will be slightly
easier to devise the lower bound in a moving frame. Let us take some 0 < c < 2 and write
v(t, x) = u(t, x+ ct), so that

vt − cvy = vyy + f(v). (3.8)

Because of the simplifying assumption (3.1) on the nonlinearity, any function u(t, x) such that

ut − cuy ≤ uyy + u, (3.9)

and such that u(t, y) ≤ θ for all t > 0 and x ∈ R is a sub-solution to (3.8). We consider a
time-independent exponential sub-solution

u(y) = e−λy,

but, as we take c < 2, the number λ, which satisfies (3.4), will have to be complex. In order
to keep the sub-solution real, we set, for t > 1:

u(y) =

{
m exp{−Re λx} cos(Im λy) if |y| ≤ π/(2Im λ),

0 otherwise.
(3.10)

The constant m > 0 is chosen so that u(y) ≤ θ, and, in addition, u(y) ≤ u0(y) – we assume
here that u0(y) > 0 on the interval [−π/(2Im λ), π/(2Im λ)], otherwise we may simply wait
until time t = 1, when v(t = 1, y) > 0 for all y ∈ R, and put a small multiple of u(y) below
v(t = 1, y). We conclude that v(t, y) ≥ u(y), for all t > 0. As a consequence, we immediately
obtain that

lim sup
t→+∞

u(t, ct) ≥ α0 > 0, for all 0 ≤ c < 2, (3.11)

with some α0 > 0.
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Exercise 3.1 Use the function u(y) as the initial data for the Cauchy problem in the moving
frame to bootstrap the above argument to

lim inf
t→+∞

u(t, ct) = 1, (3.12)

for all 0 ≤ c < 2. Hint: such solution will be monotonically increasing in time.

The main point above is that if c < 2, we can find a compactly supported subsolution in
the moving frame. This is the essence of the argument in the general periodic case as well –
compactly supported subsolutions can be constructed in a moving frame that moves “not too
fast”. The physical reason for that is quite clear: consider the linear problem

ut − ce · ∇u = ∆u+ u, (3.13)

in a frame moving in a direction e ∈ Sn−1 with a speed c ≥ 0, with the Dirichlet boundary
condition u = 0 on the boundary of an (also moving) ball B(y0, R). There is a competition
between the linear growth term in the right side and the Dirichlet boundary conditions that
promote decay. If c = 0 then the growth term always wins for a ball of a sufficiently large
radius R. On the other hand, a large speed c promotes a sweeping effect – the ball moves so
fast that it spends too little time at any given point in the original frame for the growth to
take place. In other words, for every R > 0 fixed, there exists c∗(R) so that for all c > c∗(R)
solution of (3.13) tends to zero as t→ +∞. Moreover, c∗(R) is increasing in R, and the true
propagation speed in the whole space may be guessed to be

lim
R→+∞

c∗(R).

We will leave the reader, for the moment, without the answer whether this guess is correct but
nevertheless the above arguments, hopefully, convince that with a little bit of simplification,
the speed of invasion in a homogeneous medium can be found very easily. In the remainder
of this section we will drop the simplifying assumptions about the nonlinearity that we have
used here, as well as consider a periodic reaction rate µ(x) – that will create some technical
difficulties but not change the moral of the story.

3.2 The exponential solutions

As in the homogeneous case considered above, exponential solutions of the linearized problem
play a crucial role in the general periodic case but their existence for a given speed c ≥ 0 is
a much more amusing problem than the simple quadratic equation (3.4). These are solutions
of the equation

vt = ∆v + µ(x)v, x ∈ Rn, (3.14)

of the form
v(t, x) = e−λ(x·e−ct)η(x), (3.15)

with a fixed unit vector e ∈ Rn, |e| = 1, and a 1-periodic (in all directions) function η(x).
As we will use v(t, x) as a super-solution, we will require that η(x) > 0 – this condition will
produce a restriction on the range of speeds c for which an exponential solution with a real
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λ can exist. It will be convenient to factor η(x) = φ(x)Φ(x). Here, φ(x) is the principal
(positive) periodic eigenfunction of the problem we have encountered before:

−∆φ− µ(x)φ = λ1φ (3.16)

φ(x) is 1-periodic,

φ(x) > 0 for all x ∈ Rn.

Recall that our main assumption in this section is that λ1 < 0. For v to satisfy (3.14), the
function Φ(x) has to be the solution of the eigenvalue problem

L̃λΦ = −(λ1 + cλ)Φ (3.17)

Φ(x) is 1-periodic,

Φ(x) > 0 for all x ∈ Rn,

with the operator L̃λ (that depends parametrically on λ) given by

L̃λΦ = −eλx·e
[
∆(e−λx·eΦ)− 2

∇φ
φ
· ∇(e−λx·eΦ)

]
. (3.18)

Therefore, the speed c ∈ R of an exponential solution and its decay rate λ are related by the
equation

cλ = −λ1 − µper1 (L̃λ). (3.19)

Here, µper1 (L̃λ) is the principal periodic eigenvalue of the operator L̃λ, and, as such, is a
function of λ. Equation (3.19) is the relation between the speed c and the exponential rate λ,
which is the generalization to the periodic case of the quadratic equation (3.4) – the question
is for which c ≥ 0 can we find λ > 0 satisfying (3.19)?

Theorem 3.2 For every e ∈ Rn, with |e| = 1 there exists c∗(e) > 0 so that (i) if c < c∗(e),
equation (3.19) has no solution λ > 0, (ii) if c > c∗(e), equation (3.19) has two solutions
λ > 0, and (iii) if c = c∗(e), equation (3.19) has exactly one solution λ > 0.

The key step in the proof of Theorem 3.2 is the next observation.

Lemma 3.3 The function µper1 (L̃λ) is concave in λ.

Let us step back and see what this result means in dimension n = 1 and when µ(x) ≡ 1. Then
λ1 = −1, and both φ(x) ≡ 1 and Φ(x) ≡ 1, while µ1(L̃λ) = −λ2, so that (3.19) is simply

cλ = 1 + λ2.

We see that in this special case the claim of Theorem 3.2 is true with c∗ = 2, and that
µ1(L̃λ) = −λ2 is, indeed, concave in λ. In the general case, the key to the proof of Lemma 3.3
is the following observation: set

Eλ = {ψ ∈ C2(Rn) : eλx·eψ(x) is 1-periodic, ψ(x) > 0 for all x ∈ Rn}, (3.20)

then µper1 (L̃λ) has the min-max characterization

k(λ) := µper1 (L̃λ) = max
ψ∈Eλ

inf
x∈Rn

Lψ(x)

ψ(x)
. (3.21)
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We have denoted

Lψ = −∆ψ − 2
∇φ
φ
· ∇ψ.

With the above notation, we need to prove that for any t ∈ [0, 1] we have

tk(λ1) + (1− t)k(λ2) ≤ k(tλ1 + (1− t)λ2), (3.22)

for all λ1, λ2 > 0. Let φ1 and φ2 be the principal eigenfunctions of the operators L̃λ1 and L̃λ2 ,
respectively, and set

ψi(x) = e−λix·eφi(x), i = 1, 2, ψ(x) = ψt1(x)ψ1−t
2 (x).

Note that ψ ∈ Eλ, with λ = tλ1 + (1 − t)λ2, and thus can be used as a test function in the
max-min principle for k(λ). We compute:

∇ψ
ψ

= t
∇ψ1

ψ1

+ (1− t)∇ψ2

ψ2

,

and
∆ψ

ψ
= t

∆ψ1

ψ1

+ (1− t)∆ψ2

ψ2

+ t(t− 1)

(
∇ψ1

ψ1

− ∇φ2

φ2

)2

.

It follows that

Lψ(x)

ψ(x)
= −∆ψ(x)

ψ(x)
− 2
∇φ
φ
· ∇ψ
ψ

= t
Lψ1(x)

ψ1(x)
+ (1− t)Lψ2(x)

ψ2(x)
− t(t− 1)

(
∇ψ1

ψ1

− ∇φ2

φ2

)2

≥ t
Lψ1(x)

ψ1(x)
+ (1− t)Lψ2(x)

ψ2(x)
,

and thus

inf
x∈Rn

Lψ(x)

ψ(x)
≥ t inf

x∈Rn
Lψ1(x)

ψ1(x)
+ (1− t) inf

x∈Rn
Lψ2(x)

ψ2(x)
,

We deduce that

sup
ψ∈Eλ

inf
x∈Rn

Lψ(x)

ψ(x)
≥ t sup

ψ1∈Eλ1
inf
x∈Rn

Lψ1(x)

ψ1(x)
+ (1− t) sup

ψ2∈Eλ2
inf
x∈Rn

Lψ2(x)

ψ2(x)
,

which is nothing but (3.22). Hence, the function µper1 (λ) is, indeed, concave in λ.
Now, we can prove Theorem 3.2. Let us first summarize some basic properties of the

function
s(λ) = −λ1 − µper1 (L̃λ).

We have just shown that it is convex and, in addition, by assumption we have s(0) = −λ1 > 0.

Exercise 3.4 Show that

lim
λ→+∞

µper1 (L̃λ)

λ2
= −1
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This exercise implies that the function s(λ) is super-linear at infinity:

lim
λ→+∞

s(λ)

λ
= +∞. (3.23)

Exercise 3.5 Use finite differences to show that the function k(λ) = µper1 (L̃λ) and the corre-
sponding eigenfunction φλ of L̃λ are differentiable in λ (in fact, analytic).

The last property of s(λ) that we will need is

s′(0) = k′(0) = 0. (3.24)

To see this, recall that

−∆φλ + 2λ(e · ∇φλ)− (λ2 +
2λ

φ
(e · ∇φ))φλ +

2∇φ
φ
· ∇φλ = k(λ)φλ, (3.25)

hence (with φ0 = φλ=0),

−∆φ0 +
2∇φ
φ
· ∇φ0 = k(0)φ0. (3.26)

It follows that
k(0) = 0 and φ0 = 1. (3.27)

Differentiating (3.25) in λ, we obtain, at λ = 0:

−∆ψ0 +
2∇φ
φ
· ∇ψ0 −

2

φ
(e · ∇φ)φ0 + 2(e · ∇φ0) = k(0)ψ0 + k′(0)φ0,

with the function

ψ0 =
dφλ
dλ
|λ=0.

Taking (3.27) into account, this simplifies to

−∆ψ0 +
2∇φ
φ
· ∇ψ0 −

2

φ
(e · ∇φ) = k′(0). (3.28)

The adjoint equation to (3.26) is

−∆φ∗0 − 2∇ ·
(
∇φ
φ
φ∗0

)
= 0, (3.29)

or

−∇ ·
(
∇φ∗0 +

2∇φ
φ

φ∗0

)
= 0.

It is satisfied by φ∗0(x) = 1/φ2(x). Multiplying then (3.28) by φ−2(x) and integrating over the
period cell gives

k′(0)

∫
Tn

dx

φ2
1(x)

= −2

∫
Tn

e · ∇φ
φ3

dx = 0,

hence k′(0) = 0.
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Let us summarize the above observations about the function s(λ): we know that s(λ) is
convex, super-linear at infinity, s(0) > 0 and s′(0) = 0. It follows that there exists a threshold
c∗(e) so that the equation

s(λ) = cλ, (3.30)

has no solutions for 0 < c < c∗(e), one solution for c = c∗(e) and two solutions for c > c∗(e)
– this proves Theorem 3.2.

We will denote below by λ∗(e) the unique solution of (3.30) at c = c∗(e), and by λe(c) the
smaller of the two positive solutions for c > c∗(e).

3.3 The Freidlin-Gärtner formula

With the exponential solutions in hand, we look at the invasion speed of the solutions of the
Cauchy problem. As we have discussed above, in the introduction to this chapter, the speed
of invasion in a direction e ∈ Sn−1 is given not by c∗(e) (as may be naively expected) but
by (1.8):

w∗(e) = inf
|e′|=1,(e·e′)>0

c∗(e
′)

(e · e′)
. (3.31)

The geometric reason for this modification is that we have to account for the interaction
between propagation in various directions – going fast or slow in a different direction e′ has
implications for the propagation in the direction e, thus the invasion speed is w∗(e) and
not c∗(e). We will make a (slightly) simplifying assumption that

µ(x) > 0, for all x ∈ Tn. (3.32)

This assumption is not necessary – our usual hypothesis λ1 < 0 (implied by (3.32)) is sufficient,
and we will point out specifically when we use it.

Theorem 3.6 Let u(t, x) be the solution of the Cauchy problem

ut = ∆u+ µ(x)u− u2, (3.33)

with bounded and non-negative compactly supported initial data u0(x) 6≡ 0. Then for every
e ∈ Sn−1 and all x ∈ Rn we have

lim
t→+∞

u(t, x+ cte) = 0 if c > w∗(e), (3.34)

and
lim
t→+∞

|u(t, x+ cte)− p(x+ cte)| = 0 if 0 ≤ c < w∗(e). (3.35)

As in the homogeneous case, the asymptotics of u(t, x) close to x = w∗(e)t is a more delicate
question, and we will not discuss it here [12]. We should also stress again that if the initial data
u0(x) is not compactly supported, and decays sufficiently slowly at infinity, the propagation
speed is faster than that given by the Freidlin-Gärtner formula, and for initial data decaying
algebraically at infinity, solutions may propagate super-linearly in time.
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In order to understand quantitatively why the propagation speed is given by (3.31) and
not by c∗(e), recall that for any e ∈ Sn−1 the exponential solution

ve(t, x) = e−λ∗(e)(x·e−c∗(e)t)φe(x),

with φe(x) = φλ∗(e)(x), is a super-solution to the Cauchy problem:

vt ≥ ∆v + µ(x)v − v2. (3.36)

Therefore, the function
v̄(t, x) = inf

|e|=1
e−λ∗(e)(x·e−c∗(e)t)φe(x)

is also a super-solution. Hence, any solution of the Cauchy problem

ut = ∆u+ µ(x)u− u2, (3.37)

with a compactly supported function u0(x), lies below a large multiple of v̄(t, x). In order to
see how small v̄(t, x) is far away in a fixed direction e ∈ Sn−1, we look at when

v̄(t, cte) = inf
|e′|=1

e−λ∗(e
′)(ct(e·e′)−c∗(e′)t)φe′(cte)

is exponentially small. Note that

sup
e′∈Sn−1,x∈Tn

φe′(x) < +∞,

thus v̄(t, cte) is small as t→ +∞, if there exists some e′ ∈ Sn−1 such that

c(e · e′)� c∗(e
′),

that is, for c > w∗(e). This is where the formula (3.31) for w∗(e) comes from. More precisely,
the above argument shows that if we take any c > w∗(e), then we have, for all x ∈ Rn fixed:

lim
t→+∞

u(t, x+ cte) = 0. (3.38)

The next (and harder) step is to prove that for each c ∈ (0, w∗(e)) we have

lim
t→+∞

|u(t, x+ cte)− p(x+ cte)| = 0. (3.39)

Here, p(x) is the unique positive bounded steady solution to (3.33). We take c < w∗(e), and
go into the moving frame: set v(t, y) = u(t, y + cte):

vt − ce · ∇v = ∆v + µ(y + cte)v − v2. (3.40)

As in the homogeneous case, the proof of (3.39) boils down to finding a compactly supported
sub-solution to (3.40) that does not vanish as t → +∞. The first (and the most difficult)
step is to show that solution is strictly positive at distances of the order ct in the direction e,
with c < w∗(e).
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Proposition 3.7 Given e ∈ Sn−1, and R > 0, solution of the Cauchy problem in the moving
frame:

∂v

∂t
− ce · ∇v = ∆v + µ(y + cte)v − v2, (3.41)

with a compactly supported initial data v0(x), satisfies

lim inf
t→+∞

inf
|y|≤R

v(t, y) > 0. (3.42)

We leave the second step as an exercise.

Exercise 3.8 Show that the Freidlin-Gärtner formula follows from Proposition 3.7.

In order to prove Proposition 3.7 we will establish the following result for rational angles,
that is, vectors e ∈ Sn−1 that have all rational components.

Proposition 3.9 Let e ∈ Sn−1 be rational, and 0 ≤ c < w∗(e). There exists R0 > 0 suffi-
ciently large, γ > 0, and a positive bounded function se(t, y) that satisfies

∂se
∂t
− ce · ∇se = ∆se + µ(y + cte)se − γse, t ∈ R, |y| ≤ R0, (3.43)

with the Dirichlet boundary condition se(t, y) = 0 for |y| = R0, and such that

lim inf
t→+∞

inf
|x|≤R0/2

se(t, y) > 0. (3.44)

Note that when c = 0, we can take γ = −λR, the principal eigenvalue of the Dirichlet
problem in a large ball, and Proposition 2.4 implies γ > 0 under the assumption λ1 < 0.
Proposition 3.9 shows that this negativity extends up to the speed w∗(e).

Let us explain how the conclusion of Proposition 3.7 for rational directions follows. If
e ∈ Sn−1 is rational, the function sε(t, x) = εse(t, x) with se(t, x) as is in Proposition 3.9, is a
sub-solution to (3.41), provided that ε > 0 is sufficiently small:

∂sε
∂t
− ce · ∇s−∆sε − µ(y + cte)sε + s2

ε = −γεse + ε2s2
e < 0.

This implies that there exists β > 0 sufficiently small so that v(t, x) > βsε(t, x) (choosing β
so that this inequality holds at t = 1). Now, (3.42) follows from (3.44) if e ∈ Sn−1 is a rational
direction by putting a small multiple of s0(0, x) under v0(x) at t = 0 and using the maximum
principle.

The proof of Proposition 3.7 for irrational directions is by a density argument. As we will
use various directions, it is easier to work in the original frame:

ut = ∆u+ µ(x)u− u2, (3.45)

and we need to show that
lim inf
t→+∞

inf
|y|≤R

u(t, cte+ y) > 0. (3.46)

The Harnack inequality implies that it actually suffices to show that

lim inf
t→+∞

u(t, cte) > 0. (3.47)

Here (and only here), we will use the simplifying assumption (3.32).
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Exercise 3.10 It follows from (3.32) that the solution propagates in all directions at least
at the speed 2

√
m := c. That is, for any 0 ≤ c < c we have the following: for any δ > 0 there

exists α > 0 such that if u(τ, y) > δ for all y ∈ B(x, 1) and some τ > 0, then for all t > τ + 1
we have

inf
y∈B(x,c(t−τ))

u(t, y) > α. (3.48)

Given c < w∗(e), we take ε > 0 sufficiently small, and consider a rational direction eε at
distance at most ε2 from e (rational points are dense on the unit sphere):

|e− eε| ≤ ε2.

In addition, we require that eε is so close to e that

|w∗(e)− w∗(eε)| ≤ ε2,

and
cε = c(1 + ε) < w∗(eε).

Consider now a large time T > 0 and the corresponding positions along the two rays:

X = cεTe and Xε = cεTeε.

As cε < w∗(eε), if T is sufficiently large (possibly depending on ε), then, by what we have
shown for the propagation in a rational direction, the function u(T, x) is larger than some δ > 0
in a ball centered at Xε. Therefore, as follows from Exercise 3.10, at the time T ′ = T + εT , u
will be larger than α > 0 in a ball of radius at least cεT , centered at Xε. However, for small
ε, the point X is in this ball:

|X −Xε| ≤ cεε
2T ≤ cεT.

It follows that for all T sufficiently large we have

u(T (1 + ε), c(1 + ε)Te) ≥ δ,

which implies that
lim inf
t→+∞

u(t, cte) > 0.

Thus, the proof of the Freidlin-Gärtner formula hinges on Proposition 3.9.

The proof of Proposition 3.9

The proof relies on an alternative characterization of w∗(e) in terms of compactly supported
sub-solutions. Thus, while w∗(e) was originally defined in terms of the exponential solutions
which are super-solutions to the Fisher-KPP problem, it can also be characterized in terms of
sub-solutions, which leads to the tight propagation bounds in the Freidlin-Gärtner formula.

We assume that e ∈ Qn is a “rational direction”, that is, all components of e are rationally
dependent. Then the coefficient

a(t, y) = µ(y + cte)

29



is 1-periodic in y and is also periodic in time, with the period Tc = M/c. Here, M is the
smallest number so that all Mej are integers. A key role in the characterization of w∗(e) in
terms of sub-solutions is played by the principal Dirichlet eigenfunction for the problem

zt −∆z − ce · ∇z − a(t, y)z = λ1(c, R)z, t ∈ R, y ∈ BR = {|y| ≤ R}, (3.49)

z(t, y) > 0 is Tc-periodic in t,

z(t, y) = 0 for |y| = R.

This is the problem we have discussed before – the drift term ce · ∇z is the sweeping effect
that enhances the effect of the boundary and “wants” to make λ1(c, R) positive, while the
growth term a(t, y)z on the left tries to make λ1(c, R) negative. We will be interested in the
balance between these two effects. To simplify slightly the notation, we do not show explicitly
the dependence of λ1(c, R) on e.

Lemma 3.11 There exists R1 so that for all R > R1 we can find c∗(R) such that

λ1(c∗(R), R) = 0.

The principal periodic eigenvalue λ1 of the operator

−∆− µ(x)

is negative when c = 0 – this is our main assumption. Proposition 2.4 tells us that then the
principal Dirichlet eigenvalue λ1(R) on the ball BR of the same operator is also negative – in
other words, in our curent notation, λ1(0, R) < 0 for R sufficiently large – this sets R1. The
function λ1(c, R) is analytic in c, thus λ1(c, R) < 0 for all c > 0 sufficiently small and R large
enough. On the other hand, for all c > 0 sufficiently large we have λ1(c, R) > 0. To see that,
set

z(t, x) = e−c(x·e)/2z̃(t, x).

The function z̃(t, x) satisfies

z̃t −∆z̃ +
c2

4
z̃ − a(t, y)z̃ = λ1(c, R)z̃, (3.50)

with the periodic boundary conditions in T and the Dirichlet boundary conditions on ∂BR.

Exercise 3.12 Show that λ1(c, R) > 0 if

c >
√

1 + 4‖a‖∞. (3.51)

Thus, there exist c(R) > 0 so that λ1(c(R), R) = 0 and we will denote by c∗(R) the smallest
such c > 0 (once again, c∗(R) depens also on e but we do not indicate this dependence
explicitly in our notation). Note that c∗(R) is bounded from above because of (3.51).

Exercise 3.13 Show that c∗(R) is uniformly bounded from below as R → +∞ (also uni-
formly in e ∈ Sn−1).

Here is the key lemma, connecting sub-solutions to the invasion speed w∗(e).
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Lemma 3.14 We have, for all e ∈ Rn with |e| = 1,

lim inf
R→+∞

c∗(R) ≥ w∗(e). (3.52)

Let zR(t, x) be the Dirichlet eigenfunction at c = c∗(R):

∂zR
∂t
−∆zR − c∗(R)e · ∇zR − a(t, y)zR = 0, t ∈ R, y ∈ BR (3.53)

zR(t, y) > 0 is T∗(R)-periodic in t,

zR(t, y) = 0 for |y| = R,

normalized so that zR(0, 0) = 1. We denote

T∗(R) = Tc∗(R) = M/c∗(R).

Because of the uniform bounds on c∗(R), we can extract a sub-sequence Rn → +∞ so that
c∗(Rn)→ c̄ and the periods T∗(Rn) = M/c∗(R)→M/c̄, and, moreover the functions zRn(t, x)
converge (after possibly extracting another subsequence) locally uniformly to a positive T -
periodic function q(t, x) that solves

qt −∆q − c̄e · ∇q − a(t, y)q = 0, t ∈ R, y ∈ Rn, (3.54)

and satisfies q(0, 0) = 1. If q(t, y) were an exponential solution we would immediately con-
clude that c̄ > c∗(e) ≥ w∗(e). However, we do not know that, and instead of showing that
q(t, y) is itself an exponential solution, we will use q(t, y) to construct an exponential solution
to (3.54) that will possibly move in a different direction e′ ∈ Sn−1. This will lead to the lower
bound (3.52).

The construction proceeds as follows. Let ê1 be the first coordinate vector. The Harnack
inequality implies that there exists a constant m so that

mq(t, y + ê1) ≤ q(t+ T, y), (3.55)

for all y ∈ R and t ∈ R. As the function q(t, y) is T -periodic, we conclude that there exist
m,M > 0 so that

mq(t, y + ê1) ≤ q(t, y) ≤Mq(t, y + ê1), (3.56)

Let M1 be the smallest M so that this inequality holds. If there exists t0, y0 so that

q(t0, y0) = M1q(t0, y0 + ê1),

and q(t, y) ≤ M1q(t, y + ê1) for all t ∈ R and y ∈ Rn, 1-periodicity of a(t, y) in y1, and the
maximum principle would imply that

q(t, y) = Mq(t, y + ê1), for all t ∈ R and y ∈ Rn. (3.57)

On the other hand, if there exists a sequence of points tn, yn such that

q(tn, yn) ≥ (M1 −
1

n
)q(tn, yn + ê1),
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then by considering the shifted functions qm(t, y) = q(t+ tm, y+[ym]) and passing to the limit
n→ +∞ we would construct a solution q̄(t, x) of (3.54) such that

q̄(0, ȳ) = M1q̄(0, ȳ + ê1),

with some ȳ ∈ [0, 1]n, and q̄(t, y) ≤ M1q̄(t, y + ê1) for all t ∈ R and y ∈ Rn. The maximum
principle would, once again, imply that q̄(t, x) satisfies (3.57). In other words, in either case
q̄(t, y) is a solution of

q̄t −∆q̄ − c̄e · ∇q̄ − a(t, y)q̄ = 0, (3.58)

which, in addition, satisfies (with λ1 = logM1)

q̄(t, y) = e−λ1y1Ψ1(t, y), (3.59)

with a function Ψ1(t, y) which is 1-periodic in y1 and T -periodic in t. Iterating this process
we will construct a solution of (3.58) that is of the form

q̄(t, y) = e−
∑n
i=1 λiyiΨ(t, y). (3.60)

Here, the function Ψ(t, y) is T -periodic in t and 1-periodic in all yi. In the original variables
this corresponds to a solution of

rt = ∆r + µ(x)r (3.61)

of the form
r(t, x) = e−

∑n
i=1 λi(xi−c̄eit)Φ(t, x). (3.62)

As T = M/c̄, the function Φ(t, x) = Ψ(t, x − c̄te) is T -periodic in time, 1-periodic in all xi,
and satisfies an autonomous equation

Φt + c̄(e · λ)Φ = ∆Φ− 2λ · ∇Φ + |λ|2Φ + µ(x)Φ.

Exercise 3.15 Use the Krein-Rutman theorem to show that the function Φ(t, x) does not
depend on t.

Finally, we set e′i = λi/|λ| and write

n∑
i=1

λi(xi − c̄eit) = |λ|
n∑
i=1

(xie
′
i − c̄te′iei) = |λ|[(x · e′)− c̄′t],

with c̄′ = c̄(e · e′). Therefore, r(t, x) is an exponential solution in the direction e′ moving with
the speed c̄′. It follows that c̄′ ≥ c∗(e

′), hence

c̄ ≥ c∗(e
′)

(e · e′)
≥ w∗(e),

and the proof of Lemma 3.14 is complete.
Returning to the proof of Proposition 3.9, we conclude that for any c < w∗(e), we can find

R sufficiently large so that λ1(R) < 0. Taking the corresponding eigenfunction for (3.49) on
BR as the function se(t, x) in (3.43), and γ as the corresponding eigenvalue (with the minus
sign), we deduce the claim of that proposition.
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