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1 Traveling fronts in a homogeneous medium

We will consider reaction-diffusion equations of the form

∂T

∂t
+ u(x) · ∇T =

∂

∂xn

(
anm(x)

∂T

∂xm

)
+ f(T ).

The function f(T ), called the reaction rate, will always be Lipschitz, and satisfy

f(T ) ≥ 0 for 0 ≤ T ≤ 1, f(T ) = 0 for T /∈ (0, 1). (1.1)

We will distinguish two types of the reaction rate: we say that f is of the KPP-type if

f(T ) > 0 for 0 < T < 1 (1.2)
f(T ) ≤ f ′(0)T (1.3)

while f is of the ignition type if

∃θ0 ∈ (0, 1) so that f(T ) = 0 for 0 ≤ T ≤ θ0 and f(T ) > 0 for T ∈ (θ0, 1). (1.4)

1.1 Existence of fronts in the KPP case: an ODE proof

Following the historical order of development we begin with showing that traveling wave solutions
of a reaction-diffusion equation

Tt = ∆T +
1
4
f(T ) (1.5)

exist when the nonlinearity f(T ) is of the KPP type. Here the factor 1/4 is a simple normalization.
We also assume that f is normalized so that f ′(0) = 1, which, in particular, implies that f(T ) ≤ T
because of (1.3).

Traveling waves are solutions of (1.5) of the form T (t, x) = U(x− ct) with the positive function
U(x) satisfying the boundary conditions

U(x)→ 1 as x→ −∞, U(x)→ 0 as x→ +∞, U(x) > 0 for all x ∈ R. (1.6)

The function U(x) satisfies an ODE

−cU ′ = U ′′ +
1
4
f(U), U(−∞) = 1, U(+∞) = 0. (1.7)
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We introduce V = −U ′ so that (1.7) becomes a system

dU

dx
= −V (1.8)

dV

dx
= −cV +

1
4
f(U).

This system has two equilibria: (U, V ) = (0, 0) and (U, V ) = (1, 0). A traveling wave with the
boundary conditions (1.6) corresponds to a heteroclinic orbit of (1.8) that connects the second
equilibrium (1, 0) as x→ −∞ to the first, (0, 0), as x→ +∞, with U > 0 along the trajectory. This
means that (0, 0) has to be a stable equilibrium point, and, in addition, trajectories can not spiral
around (0, 0) since U > 0 along the heteroclinic orbit. Therefore, both eigenvalues of the linearized
problem at (0, 0)

d

dx

(
U
V

)
= A0

(
U
V

)
, A0 =

(
0 −1

1
4f
′(0) −c

)
have to be negative. The eigenvalues of the matrix A0 satisfy

λ2 + cλ+
1
4
f ′(0) = 0

and are given by

λ1,2 =
−c±

√
c2 − 1

2
.

They are negative if and only if c ≥ 1. The linearization around (1, 0) gives

d

dx

(
Ũ

Ṽ

)
= A1

(
Ũ

Ṽ

)
, A1 =

(
0 −1

1
4f
′(1) −c

)
.

The eigenvalues of A1 satisfy

λ2 + cλ+
1
4
f ′(1) = 0

so that they have a different sign: λ1 > 0, λ2 < 0. Thus, the point (1, 0) is a saddle. Note that the
unstable direction (1,−λ1) corresponding to λ1 > 0 lies in the second and fourth quadrants.

Let us look at the the triangle D formed by the lines l1 = {V = γU}, l2 = {V = α(1 − U)}
and the interval l3 = {[0, 1]} on the U -axis. We check that with an appropriate choice of γ and α
all trajectories of (1.8) point into D on the boundary ∂D if c ≥ 1. That means that the unstable
manifold of (1, 0) has to end at (0, 0) since it may not cross the boundary of the triangle. That
is, U and V stay positive along a heteroclinic orbit that starts at (1, 0) and ends at (0, 0) – this
is a monotonic positive traveling wave we want to exist (it is monotonic since V > 0 along the
trajectory). In particular that will show that traveling waves exist for all c ≥ c∗ = 1.

Now, we show that, indeed, all trajectories point into D on the boundary ∂D. Along the segment
l3 we have V = 0 and

dU

dx
= 0,

dV

dx
=

1
4
f(U) > 0

so that trajectories point upward, that is, into D. Along l1 we have
dU

dx
= −V < 0 and

dV

dU
= c− f(U)

4V
= c− f(U)

4γU
.
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That means that the trajectory points into D if the slope
dV

dU
≥ γ along l1. This is true if

c− f(U)
4γU

≥ γ

for all U ∈ [0, 1]. This is equivalent to

cγ − γ2 ≥ f(U)
4U

. (1.9)

We have
f(U)
U
≤ 1 and hence (1.9) holds provided that

cγ − γ2 ≥ 1
4
. (1.10)

Such γ > 0 exists if c ≥ 1. Let us check that with this choice of c and γ all trajectories point into

D also along the segment l2. Indeed we have along l2:
dU

dx
= −V < 0 and

dV

dU
= c− f(U)

4V
= c− f(U)

4α(1− U)
.

That means that the trajectory points into D if the slope
dV

dU
≥ −α along l1. This is true if

c− f(U)
4α(1− U)

≥ −α

for all U ∈ [0, 1], or

cα+ α2 ≥ f(U)
4(1− U)

.

This is true, for instance, if α ≥ inf
0≤U≤1

f(U)
4(1− U)

.

Therefore a traveling front exists provided that c ≥ 1. However, we have also shown that no
traveling front exists for c < 1 because the eigenvalues of the linearized problem at (0, 0) are no
longer real, meaning that the heteroclinic orbit would have to pass into the region U < 0. Thus we
have proved the following theorem.

Theorem 1.1 A traveling front solution of (1.7) with a KPP-type nonlinearity exists for all c ≥ 1,
and no traveling front can exist for c < 1.

Remark 1.2 We note that the traveling waves that propagate with the speeds c > c∗ = 1 are in
a sense not ”reaction-diffusion” waves. More precisely, their existence is unrelated to diffusion: let
U0(x) be solution of

dU0

dx
= −1

4
f(U0), U0(0) = 1/2. (1.11)

Such solution exists and satisfies the boundary conditions

U0(x)→ 1 as x→ −∞ and U0(x)→ 0 as x→ +∞. (1.12)

Then given any c > 0 the function T (t, x) = U0

(x
c
− t
)

is a traveling wave solution of

∂T

∂t
= 0 · ∂

2T

∂x2
+

1
4
f(T ).

Thus these traveling waves exist even at zero diffusion coefficient and are therefore not quite
”reaction-diffusion” waves.
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1.2 Traveling waves in the ignition case

The phenomenon of having a family of traveling waves with various speeds is absent in the case of
an ignition nonlinearity.

Theorem 1.3 Let f(T ) be of ignition type, that is, it satisfies (1.4). Then there exists a unique
c = c∗ so that a traveling wave solution of

Tt = Txx + f(T ), (1.13)

of the form T (t, x) = U(x− ct), with U(x) > 0 satisfying the boundary conditions

U(−∞) = 1, U(+∞) = 0. (1.14)

exists. The traveling front is unique up to translation: given any two traveling waves U1(x), U2(x)
there exists ξ ∈ R so that U1(x) = U2(x+ ξ) for all x ∈ R.

One may prove this result using the ODE methods similar to those in the KPP case – this is left as
an exercise for the reader. We present below a different, ”PDE-like” proof that, while quite a bit
longer and less elementary, can be generalized to many other problems, in particular, those involving
inhomogeneous coefficients and higher dimensions.

Before we present the proof we note that in the ignition case waves at zero diffusivity do not exist:
solutions of (1.11) do not satisfy the boundary conditions (1.12) if f is an ignition-type nonlinearity
because then U(x) → θ0 as x → +∞. This explains qualitatively uniqueness of the traveling front
speed. We also remark that if we fix the traveling wave by the normalization U(0) = θ0 then the
traveling wave is given by U(x) = θ0 exp(−cx) for x ≥ 0. Hence we have to find c so that in the
variables (U, V = −U ′) the stable manifold of the point (1, 0) in (1.8) would pass through the point
(θ0, cθ0). Not surprisingly such c is unique.

Proof of Theorem 1.3: existence

We will prove existence of traveling waves following a method introduced in [3]. Consider a family
of traveling wave problems on a (large) finite interval (−a, a):

−cU ′a = U ′′a + τf(Ua), (1.15)

supplemented by the boundary conditions

Ua(−a) = 1, Ua(a) = 0. (1.16)

Here τ ∈ [0, 1] is a parameter such that at τ = 1 we have the problem we are interested in, and at
τ = 0 we have a simple problem we can solve. The basic procedure would be to construct solutions
of (1.15)-(1.16) for τ = 1 on the finite interval (−a, a) and then pass to the limit a → +∞ hoping
that we may choose a subsequence an → +∞ so that the limit

U(x) = lim
n→+∞

Uan(x) (1.17)

exists and satisfies the traveling wave problem

−cU ′ = U ′′ + f(U), (1.18)
U(−∞) = 1, U(+∞) = 0.
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There are several difficulties here: first, we need to construct a solution to (1.18), next we should
show that the limit (1.17), indeed, exists, and finally, that it satisfies the boundary conditions in
(1.18). Even assuming for the moment that (1.18) has a solution, if we were to try solving (1.15)
with some arbitrary c ∈ R we would likely obtain a solution Ua that would either stay very close to
1 all the way between x = −a and some x1 close to a, and then transition to 0 close to x = a, or
would stay very close to 0 between x = a and some x2 close to x = −a and then transition to 1 close
to x = −a. In both cases, if we were to pass to the limit a → +∞ we would violate the boundary
conditions: in the former case we would obtain the limit U ≡ 1, and in the latter U ≡ 0. To avoid
either of these scenarios, we must find solutions of (1.15) that have the transition from ”U close to
1” to ”U close to 0” in a region on the x-axis that is, roughly, fixed, independent of a. In order
to accomplish this, we allow the speed c in (1.15) to depend on a also, and add a normalization
condition

max
x≥0

Ua(x) = θ0. (1.19)

Now the unknowns of the problem are both the function Ua and the speed ca. It follows from (1.19)
that f(Ua) ≡ 0 for x ≥ 0, whence an application of the maximum principle implies that (1.19) can
be rephrased as

Ua(0) = θ0, Ua(x) < θ0 for all x > 0. (1.20)

As the speed ca now varies with a we need to ensure that, in addition to (1.17), the limit

c∗ = lim
an→+∞

can

exists, along some subsequence an → +∞. This is yet another technical difficulty.

A priori bounds on the speed

In order to establish existence of solutions to the system (1.15)-(1.19) we need to prove a priori
bounds on the solution (assuming first that it exists). We begin with bounds on the speed ca that
will, in particular, be necessary to be able to pass to the limit a→ +∞.

Lemma 1.4 Let (ca, Ua) be a solution of

−caU ′a = U ′′a + τf(Ua), − a < x < a, (1.21)
Ua(−a) = 1, Ua(a) = 0,
max
x≥0

Ua(x) = θ0.

(1.22)

There exist a constant C and a0 > 0 so that |ca| ≤ C for all a > a0 and all τ ∈ [0, 1].

Proof. The proof uses the sliding method. First, choose m > 0 so that f(u) ≤ mu for all u > 0.
Next, consider a function

v(x) = Ae−x,

with A > 0. We would like to ensure that v(x) is a super-solution to (1.21):

−cavx ≥ vxx + τf(v), (1.23)

which would, indeed, hold, if
−cavx ≥ vxx +mv. (1.24)
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The latter inequality holds provided that

ca ≥ 1 +m. (1.25)

Assume that (1.25) holds and set Ā = 2ea. Then for all x we have

Ua(x) ≤ 1 < Āe−a ≤ v(x; Ā).

Let us now decrease A (this is the idea of the sliding method) until there exists a point x0 so that
v(x0) = Ua(x0). More precisely, we set

A0 = sup{A ≤ Ā : there exists x ∈ [−a, a] such that v(x;A) = Ua(x)}.

Since both v(x) and Ua(x) are continuous, there exists x0 such that v(x0;A0) = Ua(x0) and
v(x;A0) ≥ Ua(x) for all x ∈ [−a, a]. We claim that x0 = −a. Assume this is false. It is im-
possible that x0 = a since v(a) > 0 and Ua(a) = 0, thus x0 is an interior point of (−a, a) where the
difference z(x) = v(x)− Ua(x) attains a local minimum z(x0) = 0. However, z(x) satisfies

−cazx − zxx ≥ mv(x)− τf(Ua) ≥ mUa − f(Ua) ≥ 0 for all x ∈ [−a, a].

Therefore, z(x) can not attain an interior minimum on [−a, a]. This is a contradiction that shows
that x0 = −a. In that case, however, we have

A0e
a = 1,

hence A0 = e−a. As a consequence, Ua(0) ≤ v(0) = e−a. This, however, contradicts the normaliza-
tion condition Ua(0) = θ0, provided that a > ln(1/θ0). Therefore, ca satisfies

ca < 1 +m, (1.26)

for all τ ∈ [0, 1]. Next, we prove a lower bound for ca. the idea is very similar except that now we
consider a sub-solution of the form

w(x) = 1−Aex.

In order for it to be a sub-solution it suffices to require that

−cawx − wxx ≤ 0, (1.27)

which is equivalent to ca < −1. Let us assume that ca < −1 and, once again, choose Ā = 2a. Then
we have

w(x, Ā) ≤ w(−a, Ā) < 0 < Ua(x), for all x ∈ [−a, a].

We start decreasing A until we get to the first A1 so that w(x;A1) = Ua(x) at some x ∈ [−a, a]:

A1 = sup{A < Ā : there exists x ∈ [−a, a] such that w(x;A) = Ua(x)}.

We proceed now as in the proof of the upper bound for ca: there exists x1 such that w(x1;A1) =
Ua(x1) and w(x;A0) ≥ Ua(x) for all x ∈ [−a, a]. Now, we claim that x0 = a. If this is false, it is
impossible that x0 = −a since w(−a) < 1 and Ua(−a) = 1. Hence, x1 must be an interior point of
(−a, a) where the difference p(x) = Ua(x)−w(x) attains a local minimum p(x0) = 0. However, p(x)
satisfies

−capx − pxx ≥ τf(Ua) ≥ 0 for all x ∈ [−a, a].
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Therefore, p(x) can not attain an interior minimum on [−a, a]. This is a contradiction that shows
that x0 = −a. In that case, however, we have

A0e
a = 1,

hence A0 = e−a. As a consequence, Ua(0) ≥ v(0) = 1 − e−a. This, however, contradicts the
normalization condition Ua(0) = θ0, provided that a > ln(1/θ0). This contradiction shows that
ca > −1, whence we have shown that

−1 < ca < 1 +m, (1.28)

and Lemma 1.4 is proved. �

A priori bounds on the solution

Next, we prove a priori bounds for Ua.

Lemma 1.5 Let (ca, Ua) be a solution of

−caU ′a = U ′′a + τf(Ua), − a < x < a, (1.29)
Ua(−a) = 1, Ua(a) = 0,
max
x≥0

Ua(x) = θ0.

Then we have
0 < Ua(x) < 1 for all x ∈ (−a, a). (1.30)

In addition, there exists a constant C > 0 that depends only on the function f but nothing else, and
a0 > 0 so that we have the following bound:

τ

∫ a

−a
f(Ua(x))dx+

∫ a

−a
|Ua,x(x)|2dx ≤ C, for all a > a0 and all τ ∈ [0, 1]. (1.31)

Informally, the bound on the integral of f(Ua) says that Ua can not stay strictly inside the interval
(θ0, 1) for too long as that would violate the bound. This indicates that Ua will have to approach 1
not just as x→ −a but rather in a finite region. The L2-bound on Ua,x, roughly, shows that Ua can
not oscillate to much. These two bounds will be very useful in identifying the limit a→ +∞.
Proof. The first statement, (1.30) follows immediately from the maximum principle and the fact
that f(u) = 0 outside of the interval u ∈ (0, 1). Hence, we only need to prove (1.31). Let us integrate
(1.29):

ca = U ′a(a)− U ′a(−a) + τ

∫ a

−a
f(Ua(x))dx. (1.32)

The uniform bounds on ca that we have obtained in Lemma 1.4 and the parabolic regularity up to
the boundary imply that, as 0 ≤ Ua ≤ 1 there exists a constant K > 0 such that

|U ′a(x)| ≤ K for all x ∈ (−a, a). (1.33)

It follows now from (1.32) that

τ

∫ a

−a
f(Ua(x))dx ≤ 1 +m+ 2K. (1.34)
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Similarly, if we multiply (1.29) by Ua and integrate, we obtain

ca
2

+
∫ a

−a
|Ua,x(x)|2 = −U ′a(−a) + τ

∫ a

−a
f(Ua(x))Ua(x)dx. (1.35)

Since we have bounded already all terms in (1.32) except for the L2-norm of Ua,x, and 0 ≤ Ua ≤ 1,
the bound on this term also follows:∫ a

−a
|Ua,x|2dx ≤

1
2

+K + 1 +m+ 2K.

The proof of Lemma 1.5 is now complete. �

Monotonicity of Ua

In order to see that Ua(x) is monotonic in x, let us recall that f(u) ≥ 0 for u ∈ (0, 1). Therefore,
the function Ua(x) can not attain a local minimum at any point inside the interval (−a, a). As it
attains its maximum at x = −a, in order for Ua to attain a local maximum at a point x ∈ (−a, a),
it should have also to attain a local minimum on the interval (−a, x), which is impossible. Hence,
it can attain neither a local minimum nor a local maximum on (−a, a), and it follows that Ua(x) is
monotonically decreasing.

Existence of a solution

With the a priori bounds we can now prove existence of the solution to the system (1.15)-(1.19).
Consider a family of maps Kτ , of the space R× C1,α(R) onto itself defined by

Kτ (c, v) = (rτ , Zτ ).

Here the function Zτ (x) is the solution of the linear boundary value problem

−cZ ′τ = Z ′′τ + τf(v), − a < x < a,

with the boundary condition
Zτ (−a) = 1, Zτ (a) = 0,

and the number
rτ = θ0 −max

x≥0
Z(x) + c.

Note that the (c, U) = Kτ (c, U) for some τ ∈ [0, 1] if and only if U satisfies the system (1.15)-(1.19).
The standard elliptic regularity estimates imply that the family Kτ is continuous in τ and each

Kτ is a compact map of the Banach space X = R × C1,α(R) onto itself that leaves the convex
set S0 = {0 ≤ v(x) ≤ 1} invariant. Lemmas 1.4 and 1.5 imply any fixed point of Kτ that lies in
S0 satisfies an a priori estimate ‖(c, v)‖X ≤ R with a constant R that is independent of τ ∈ [0, 1].
Moreover, the range of K0 consists of one point in S0, that is, K0 is a constant map: it is the solution
of

−cZ ′0 − Z ′′0 = 0,
Z(−a) = 1, Z(0) = θ0, Z(a) = 0,

and is given explicitly by

Zc0(x) =
e−cx − e−ca

eca − e−ca
.
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The speed c here is the unique solution of

1− e−ca = θ0(eca − e−ca),

or
eca =

1
θ0
− 1.

Now, the Leray-Schauder fixed point theorem implies that K1 has a fixed point, and such fixed point
(ca, Ua) is a solution of the system (1.15)-(1.19) by the definition of Kτ .

Passing to the limit a→ +∞

The a priori bounds on ca and Ua in Lemmas 1.4 and 1.5 allow us to find a sequence an → +∞ such
that the limits

c∗ = lim
n→+∞

can

and
U(x) = lim

n→+∞
Uan(x) (1.36)

exist. Convergence in (1.36) is locally uniform, and, due to parabolic regularity estimates, we also
have convergence of Uan(x) to U(x) in C2,α

loc (R). Therefore, the limit satisfies

−c∗Ux = Uxx + f(U), (1.37)

and, in addition, the normalization

U(0) = θ0, U(x) ≤ θ0 for all x > 0, (1.38)

as well as the a priori bounds
0 ≤ U(x) ≤ 1,

and ∫ ∞
−∞

f(U(x))dx ≤ C,
∫ ∞
−∞
|Ux|2dx ≤ C. (1.39)

It remains to show that U(x) satisfies the correct boundary conditions at infinity: a particularly
obvious danger to have in mind is that it could conceivably happen that U(x) ≡ θ0. As Ua(x) are
monotonically decreasing, so is U(x). Therefore, the limits

ul = lim
x→−∞

U(x), ur = lim
x→+∞

U(x),

exist, and ul ≥ θ0 ≥ ur. The first integral bound in (1.42) implies that f(ul) = f(ur) = 0, hence
ul = 1 or ul = θ0, and ur ∈ [0, θ0]. The key to the boundary conditions is positivity of the speed.

Lemma 1.6 We have c∗ > 0.

Proof. Let us go back to (1.32):

ca = U ′a(a)− U ′a(−a) +
∫ a

−a
f(Ua(x))dx ≥ U ′a(a) +

∫ a

−a
f(Ua(x))dx. (1.40)

We used monotonicity of Ua in the last step above. The last term in the right side above is bounded
from below; there exists a constant C > 0 so that∫ a

−a
f(Ua(x))dx ≥ C. (1.41)
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This can be seen as follows: let x1 and x2 be two points such that x1 < x2, and

Ua(x1) =
3
4

+
θ0

4
, Ua(x2) =

1
4

+
3
4
θ0, and Ua(x2) ≤ Ua(x) ≤ Ua(x1) for all x ∈ (x1, x2).

Then f(Ua(x)) ≥ c0 for all x ∈ (x1, x2), with some constant c0 > 0. We also have, using Lemma 1.5:

θ0

2
=
∫ x2

x1

Ua,x(x)dx ≤ |x2 − x1|1/2
(∫ a

−a
|Ua,x|2dx

)1/2

≤ C|x2 − x1|1/2.

Therefore, |x1 − x2| ≥ c′0 for some constant c′0. As the function f(Ua(x)) is uniformly positive on
this interval, (1.41) follows.

Next, we show that there exists a sequence an → +∞ such that

Uan,x(an)→ 0 as n→ +∞. (1.42)

This is accomplished by a different family of shifts: consider

Φa(x) = Ua(a+ x), x ∈ (−2a, 0).

Then for the same reason as for Uan we can choose a subsequence an → +∞ such that the limit

Φ(x) = lim
n→+∞

Φan(x)

exists for all x < 0. As f(Ua) = 0 for all x ∈ (0, a), the function Φ satisfies the linear problem

−c∗Φx = Φxx, Φ(0) = 0.

As, in addition, we know that 0 ≤ Φ(x) ≤ 1, it follows that Φ(x) ≡ 0, which, in turn, implies (1.42).
Returning to (1.40) we may now conclude that c∗ > 0. �

We will now deduce from Lemma 1.6 that ur = 0. The functions Ua(x) are explicit on the
interval (0, a):

Ua(x) = θ0e
−cax, for x > 0.

Lemma 1.6 implies that Ua(x) ≤ θ0e
−Cx for all x > 0, with a fixed constant C > 0. Therefore, the

limit U(x) obeys the same upper bound, hence ur = 0. It remains only to rule out the possibility
that ul = θ0. We have, however,

c∗ul =
∫ ∞
−∞

f(U(x))dx,

hence f(U(x)) 6≡ 0. On the other hand, if ul = θ0 then we would have 0 < U(x) < θ0 which would
imply f(U(x)) ≡ 0. Hence, ul = θ0 is impossible, and thus ul = 1. This finishes the existence part
of Theorem 1.3.

Uniqueness of traveling waves

Uniqueness of the traveling front speed c∗ follows from Theorem 1.7 below (this result is independent
of the uniqueness of the speed, as will be seen from the proof of Theorem 1.7!). On the other hand,
if c∗ is unique, uniqueness of the traveling wave profile is simple. We shift the wave so that the
normalization

max
x≥0

U(x) = θ0

holds. Then the wave has an explicit expression U(x) = θ0e
−c∗x for x > 0. The uniqueness of the

profile for x < 0 follows immediately since both U(0) and U ′(0) are now prescribed.
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1.3 The front-like initial data

We look now at the behavior of solutions of the Cauchy problem

Tt = Txx + fT ), (1.43)

with general initial data T0(x) = T (0, x) such that T0(x) = 1 for x ≤ x0, T0(x) = 0 for x ≥ x1

and 0 ≤ T0(x) ≤ 1. The main result is that such initial data propagates with the speed c∗ = 1 of
the slowest traveling front in the KPP case and with the speed of the unique traveling wave in the
ignition case. More precisely, we have the following.

Theorem 1.7 Let T (t, x) be solution of (1.43) with the initial data T0(x) as above. Then given any
x ∈ R we have

lim
t→∞

T (t, x+ ct) =
{

0, if c > c∗,
1, if c < c∗.

(1.44)

Here c∗ = 1 is the minimal speed in the KPP case and the unique traveling front speed in the ignition
case.

This means qualitatively that T moves with the speed c∗. More precise statements on the convergence
to a traveling front in the ignition case may be obtained by spectral methods, or in the KPP case
as in the original paper [5], but we will not go into details – see [7] for detailed references.

We will prove (1.44) only in the ignition case. The idea is to use the traveling wave solution
U(x− ct) to construct a super-solution and a sub-solution. Let U(x) be the traveling wave, solution
of

−c∗U ′ = U ′′ + f(U), U(0) = θ0.

We look for a sub-solution for T of the form of a ”slightly corrected shift of a traveling wave”

ψl(t, x) = U(x− c∗t+ x1 + ξ1(t))− q1(t, x).

The functions ξ1(t) and q1(t, x, z) are to be chosen so as to make ψl be a sub-solution. The shift x1 and
the ”downward shift” q1(0, x) will be then used to make sure that initially we have ψl(0, x) ≤ T0(x).
In order for ψl to be a sub-solution we need

G[ψl] =
∂ψl
∂t
− ∂2ψl
∂x2

− f(ψl) ≤ 0.

We have

G[ψl] = ξ̇1U
′ − ∂q1

∂t
+
∂2q1

∂x2
+ f(U)− f(U − q1).

With an appropriate choice of x1, that is, by shifting U sufficiently to the left we may ensure that
T0(x) ≥ U(x)−q10(x) with 0 ≤ q10(x) ≤ (1−θ0)/2 and q10(x) ∈ L1(R). This is because the traveling
wave profile U(x) approaches its limits as x→ ±∞ exponentially fast.

First, we choose q1(t, x) to be the solution of

∂q1

∂t
=
∂2q1

∂x2
, q1(0, x) = q10(x) (1.45)

so that we have
‖q1(t)‖∞ ≤

C√
t
‖q10‖L1(R) (1.46)

for t ≥ 1. This makes
G[ψl] = ξ̇1U

′ + f(U)− f(U − q1).
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We may find δ > 0 so that if U ∈ (1 − δ, 1) and q1 ∈ (0, (1 − θ0)/2) then f(U) ≤ f(U − q1).
Hence we have in this range of U :

G[ψl] ≤ ξ̇1U
′ ≤ 0 (1.47)

provided that ξ̇1 ≥ 0. Furthermore, if δ is sufficiently small and U ∈ (0, δ) then f(U) = f(U −δ) = 0
and hence in this range of U we have (1.47) with the equality sign on the left. Finally, if U ∈ (δ, 1−δ)
then |f(U) − f(U − q1)| ≤ K|q1| and U ′ ≤ −β with positive constants K and β that depend on
δ > 0. Therefore, in this region we have

G[ψl] = ξ̇1U
′ + f(U)− f(U − q1) ≤ −βξ̇1 +K‖q1(t)‖∞.

Hence, we have G[ψl] ≤ 0 everywhere provided that

ξ̇1(t) ≥ K‖q1(t)‖∞
β

. (1.48)

Thus we may choose
ξ1(t) = C

√
t. (1.49)

Therefore we obtain a lower bound for T :

T (t, x) ≥ U(x− c∗t+ C
√
t)− q1(t, x, z). (1.50)

In order to obtain an upper bound we set ψu = U(x− c∗t− x2 − ξ2(t)) + q2(t, x) and look for ξ2(t)
and q2(t, x) so that G[ψu] ≥ 0. The constant x2 is chosen so that

T0(x) ≤ U(x− x2) + q2(0, x)

with q2(0, x) ∈ L1(R) and 0 ≤ q2(0, x) ≤ θ0/2, as with q1(0, x). The function q2(t, x) is then chosen
to satisfy the same heat equation (1.45) as q1. Hence it obeys the same time decay bounds as q1.
With the above choice of q2 we have

G(ψu) = −ξ̇2U
′ + f(U)− f(U + q2).

Once again, we consider three regions of values for U . First, if 1 − δ ≤ U ≤ 1 with a sufficiently
small δ > 0 then f(U) − f(U + q2) ≥ 0, as q2 ≥ 0. Hence G[ψu] ≥ 0 in this region provided that
ξ̇2 ≥ 0. Second, as q2 ≤ θ0/2 we have f(U) = f(U + q2) = 0 if 0 ≤ U ≤ δ with a sufficiently small
δ > 0. Hence G[ψu] ≥ 0 in that region under the same condition ξ̇2 ≥ 0. Finally, if U ∈ (δ, 1 − δ)
then U ′ ≤ −β with β > 0 and |f(U) − f(U + q2)| ≤ K‖q2‖∞. That means that G[ψu] ≥ 0 if we
choose ξ2 so that

ξ̇2 ≥
K‖q2‖∞

β
.

Therefore we may choose
ξ2(t) = C

√
t,

as with ξ1(t). Thus we obtain upper and lower bounds

U(x− c∗t+ ξ1(t) + x1)− q1(t, x) ≤ T (t, x) ≤ U(x− c∗t− ξ2(t)− x2) + q2(t, x) (1.51)

that imply in particular that

U(x− c∗t+ C0[1 +
√
t])− C0√

t
≤ T (t, x) ≤ U(x− c∗t− C0[1 +

√
t]) +

C0√
t

(1.52)
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with a constant C0 determined by the initial conditions. Now, if we take x = x0 + ct with c < c∗
and use the lower bound in (1.52) we get T (t, x0 + ct)→ 1 as t→∞. On the other hand, if we take
x = x0 + ct with c > c∗ and use the upper bound we obtain T (t, x0 + ct)→ 0 as t→∞.

One may obtain the KPP result from the ignition case by cutting of a KPP-type f(T ) at a point
θ0 > 0 and then letting θ0 → 0. We omit the details. �

We confess that a better effort using the spectral methods and functional analysis shows that in
the ignition case solution actually converges to a traveling wave exponentially fast in time. However,
this requires a different technique that we do not go into here.

1.4 Generalizations of the notion of a traveling front

There are many generalizations of the notion of a traveling front. For example, one can define
non-planar fronts in a shear flow as follows. Consider the problem

Tt + u(y)Tx = Txx + f(T ). (1.53)

This problem is posed in a cylinder x ∈ R, y ∈ Ω, where Ω is a bounded set, with the Neumann
boundary condition at ∂Ω:

∂T

∂n
= 0 on R× ∂Ω. (1.54)

Of course, this problem can not admit solutions of the form U(x−ct) simply because the coefficients
depend on the transverse variable y. We can, however, define a non-planar traveling front as a
solution of (1.53)-(1.54) of the form T (t, x, y) = U(x− ct, y), with the function U(x, y) that has the
limits at infinity:

lim
x→−∞

U(x, y) = 1, lim
x→+∞

U(x, y) = 0,

uniformly in y. Their existence can be proved nearly exactly as in the homogeneous case: see [4] for
details. The result is also very similar to the homogeneous case: in the KPP case non-planar fronts
exist for all speeds c ≥ c0 with some c0 that now appears from an eigenvalue problem. On the other
hand, non-planar front is unique in the case of an ignition nonlinearity.

Another generalization is possible for the periodic media: consider a reaction-diffusion equation
of the form

Tt + u(x) · ∇T = ∇ · (a(x)∇T ) + f(x, T ), x ∈ Rd, (1.55)

with the functions u(x), a(x) and f(x, T ) periodic in x:

u(x+ Ljej) = u(x), a(x+ Ljej) = a(x), f(x+ Ljej , u) = f(x, u).

Here Lj is the period in the direction ej , j = 1, . . . , d. Then we can define a pulsating traveling front
in a direction ej as a solution of (1.55) of the form T (t, x) = U(xj − ct, x) with a function U(ξ, x),
ξ ∈ R, x ∈ Rd that is periodic in the second variable, and satisfies

lim
ξ→−∞

U(ξ, x) = 1, lim
ξ→+∞

U(ξ, x) = 0,

uniformly in x. A basic reference for the existence of the pulsating traveling fronts is [1] where other
references can be found.
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2 Spreading in advection-diffusion problems

2.1 The method of characteristics for the first order equations

Let us first recall the method of characteristics for a linear first order equation

∂φ

∂t
+ u(x) · ∇φ = 0, x ∈ Rd, (2.1)

where u(x) is a prescribed vector field. We also prescribe the initial data φ(0, x) = φ0(x). Define
the characteristic curves as the trajectories of

dX

dt
= u(X(t)), X(0) = x, (2.2)

and consider the function U(t) = φ(t,X(t)). Let us differentiate U(t) with respect to t:

dU

dt
=
∂φ(t,X(t)

∂t
+∇φ(t,X(t)) · dX

dt
= 0. (2.3)

Therefore, we have U(t) = U(0) for all t, hence φ(t,X(t)) = φ0(x). Alternatively, we can express
this as φ(t, x) = φ0(Y (t;x)), where Y (t;x) is the point such that if we start the trajectory of (2.2)
at the point X(0) = Y (t;x) then X(t) = x.

2.2 Random walks and the method of characteristics for elliptic and parabolic
equations

2.2.1 The Laplace equation

How can we generalize the method of characteristics to second order problems?
A simple way to understand this is in terms of discrete equations. Consider the finite difference

analog of the Laplace equation: let U be a domain of the two-dimensional square lattice Z2, and let
u(x) solve the difference equation

u(x+ 1, y) + u(x− 1, y) + u(x, y + 1) + u(x, y − 1)− 4u(x, y) = 0, (2.4)

with the boundary condition u(x, y) = g(x, y) on the boundary ∂U . Here g(x, y) is a prescribed
non-negative function, which is positive somewhere. We claim that the solution of this problem
has the following probabilistic interpretation. Let (X(t), Y (t)) be the standard random walk on the
lattice Z2 – a particle starts at a position (X(0), Y (0)) = (x, y) and the probability for it to go up
down, left of right is equal to 1/4. At a new site it decides again to go to one of the neighboring sites
with equal probabilities. Let (x̄, ȳ) be the first point where (X(t), Y (t)) reaches the boundary ∂U of
the domain. The point (x̄, ȳ) is, of course, random. The beautiful observation is that the function
v(x, y) = E(g(x̄, ȳ) gives a solution of (2.4), connecting this discrete problem to the random walk.
Why? First, it is immediate that if (x, y) is on the boundary then, of course, x̄ = x and ȳ = y with
probability one, so v(x, y) = g(x, y) in that case. On the other hand, if (x, y) is inside U then

v(x, y) =
1
4

(v(x+ 1, y) + v(x− 1, y) + v(x, y + 1) + v(x, y − 1))

simply from the definition of the random walk, the definition of v(x, y) and the Markov property of
the random walk. The latter means that the jump at each site is independent of the past.
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Now, if we let the mesh size be not 1 but h > 0 and let h ↓ 0, the discrete equation (2.4) becomes
the Laplace equation, while the random walk becomes the Brownian motion. More precisely, for a
bounded domain Ω ⊂ Rd, solution of a boundary value problem

∆u = 0 in Ω, u = g on ∂Ω, (2.5)

has the following probabilistic interpretation: let U be a domain in Rn and let g(x) be a continuous
function on the boundary ∂U . Consider a Brownian motion B(t;x) that starts at a point x ∈ U and
let x̄ be a (random) point where B(t;x) hits the boundary ∂U for the first time. Then solution of
(2.5) is u(x) = E(g(x̄)). Now, if g(x) is positive at some point x0 ∈ ∂U (and thus in a neighborhood of
x0 as well) then with a positive probability we have g(x̄) > 0, which means that u(x) = E(g(x̄)) > 0
as well.

This gives a simple ”physical” explanation of the maximum principle: it is easy to see that
E(g(x̄)) ≤ supz∈∂U g(z) – expected value of a function can not exceed its maximum.

2.2.2 The heat equation

We will now consider the heat (or diffusion) equation

∂u

∂t
−∆u = 0. (2.6)

Usually it is obtained from a balance of heat or concentration that assumes that the flux of heat is
F = −∇u, where u is the temperature – heat flows from hot to cold. Here, we derive it informally
starting with a probabilistic model.

Consider a lattice on the real line of mesh size h: xn = nh. Let X(t) be a random walk on this
lattice that starts at some point x, and after a delay τ jumps to the left or right with probability
1/2: P (X(τ) = x+ h) = P (X(τ) = x− h) = 1/2. Then it waits again for time τ , and again jumps
to the left or right with probability 1/2, and so on. Let S be a subset of the real line and define
u(t, x) = P (X(t) ∈ S|X(0) = x) – this is the probability that at a time t > 0 the particle is inside
the set S given that it started at the point x at time t = 0.

Let us derive an equation for u(t, x). Since the process ”starts anew” after every jump we have
the relation

P (X(t) ∈ S|X(0) = x) =
1
2

(X(t− τ) ∈ S|X(0) = x+ h) +
1
2

(X(t− τ) ∈ S|X(0) = x− h),

which is
u(t, x) =

1
2
u(t− τ, x+ h) +

1
2
u(t− τ, x− h). (2.7)

Let use assume that τ and h are small and use Taylor’s formula in the right side above. Then (2.7)
becomes:

u(t, x) =
1
2

[
u(t, x)− τ ∂u(t, x)

∂t
+ h

∂u(t, x)
∂x

+
h2

2
∂2u

∂x2
+
τ2

2
∂2u(t, x)
∂t2

− τh∂
2u(t, x)
∂x∂t

]
+

1
2

[
u(t, x)− τ ∂u(t, x)

∂t
− h∂u(t, x)

∂x
+
h2

2
∂2u

∂x2
+
τ2

2
∂2u(t, x)
∂t2

+ τh
∂2u(t, x)
∂x∂t

]
+ . . . ,

which is

τ
∂u

∂t
=
h2

2
∂2u

∂x2
+
τ2

2
∂2u(t, x)
∂t2

+ . . .
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In order to get a non-trivial balance we set τ = h2. Then the term involving utt in the right side is
smaller than the rest and in the leading order we obtain

∂u

∂t
=

1
2
∂2u

∂x2
, (2.8)

which is the diffusion equation (we could get rid of the factor of 1/2 if we took τ = h2/2 but
probabilists do not like that). It is supplemented by the initial condition

u(0, x) =
{

1, if x ∈ S
0 if x /∈ S.

More generally, we can take a bounded function f(x) defined on the real line and set

v(t, x) = E{f(X(t))| X(0) = x}.

Essentially an identical argument shows that if τ = h2 then in the limit h→ 0 we get the following
Cauchy problem for v(t, x):

∂v

∂t
=

1
2
∂2v

∂x2
(2.9)

v(0, x) = f(x).

What should we expect for the solutions of the Cauchy problem given this informal probabilistic
representation? First, it should preserve positivity: if f(x) ≥ 0 for all x ∈ R, we should have
u(t, x) ≥ 0 for all t > 0 and x ∈ R. Second, the maximum principle should hold: if f(x) ≤ M for
all x ∈ R, then we should have u(t, x) ≤ M for all t > 0 and x ∈ R because the expected value of
a quantity can not exceed its maximum. We should also expect maxx∈R v(t, x) to decay in time, at
least if f(x) is compactly supported – this is because the random walk will tend to spread around
and at large times the probability to find it on the set where f(x) does not vanish, is small.

2.3 Advection-diffusion equations

More generally, solutions of an advection-diffusion problem

φt + u(x) · ∇φ =
σ

2
∆φ, φ(0, x) = φ0(x), (2.10)

can be represented in terms of solutions of stochastic differential equations as follows. Let X(t) be
the solution of the stochastic differential equation

dX = −u(X)dt+
√
σdB, X(0) = x. (2.11)

Here B(t) is the standard Brownian motion, and (2.11) may be written in the integral form as

X(t) = x+
∫ t

0
u(X(s))ds+B(t). (2.12)

Then solution of (2.10) is given by

φ(t, x) = E(φ0(X(t)). (2.13)

This is the direct generalization of the random walks expression for the heat equation that we have
obtained before, combined with the method of characteristics for the first order equations.

The trajectories of the solutions of (2.12) depend very strongly on the geometric character of
the vector field u(x). We would like to translate these properties into the properties of the solutions
of PDEs (2.10), and develop analytical techniques for this. Contrary to intuition, probabilistic
techniques, while very efficient in many such problems, do not always provide an easier approach
than the analytical methods.
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3 The spreading rate in a shear flow: the KPP case

The simplest flow (other than a constant drift) that we can analyze in the context of reaction-
diffusion equations. A shear flow in Rn is a unidirectional flow of the form u = (u(x), 0). Here we
have decomposed x = (x, y), x ∈ Rn−1, and u(y) is a scalar function. A reaction-diffusion-advection
equation in such a flow has the form

∂T

∂t
+ u(y)

∂T

∂x
= ∆T + f(T ). (3.1)

We will consider this problem in a cylinder D = Rx × Ωy, where Ω is a nice bounded domain. We
will assume that ∫

Ω
u(y)dy = 0, (3.2)

this is simply a normalization condition. The boundary conditions along ∂Ω are homogeneous
Neumann (”adiabatic” in the physical language):

∂T

∂n
= 0 on R× ∂Ω. (3.3)

The nonlinearity f(T ) will be usually taken of KPP type, though many results are applicable to the
ignition nonlinearity as well. Hence we will assume that

f(T ) > 0 for 0 < T < 1, f(0) = f(1) = 0, f(T ) ≤ f ′(0)T .

We first recall the no-flow case when solutions propagate with the minimal speed c∗ = 2
√
f ′(0). A

quick formal way to see why this happens is through an observation that the behavior of the KPP
solutions is determined by the linearization at small T . More precisely, if we start with

∂T

∂t
= ∆T + f(T ) (3.4)

and linearize around T = 0 we get
∂q

∂t
= ∆q + f ′(0)q.

Let us look for the solutions of this equation of the form

q(t, x) = e−λ(x−ct) (3.5)

with λ > 0. A direct calculation shows that c and λ are related by

λ2 − λc+ f ′(0) = 0. (3.6)

A middle-school algebra leads to the conclusion that such a λ > 0 exists if and only if c ≥ c∗ =
2
√
f ′(0). This is exactly the correct range of speeds for the one-dimensional KPP equation.
The above naive idea of linearization actually applies in the presence of a shear and other flows.

However, the ansatz (3.5) should be modified (depending on the flow type). In the shear case the
correct ansatz is

q(t, x) = e−λ(x−ct)ψ(y) (3.7)

with λ > 0 and ψ > 0. We insert this ansatz into the linearization

∂q

∂t
+ u(y)

∂q

∂x
= ∆q + f ′(0)q (3.8)
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and obtain an eigenvalue problem for ψ in Ω:

−∆ψ − λu(y)ψ = (λ2 − cλ+ f ′(0))ψ in Ω (3.9)
∂ψ

∂n
= 0 on ∂Ω.

As the quadratic equation (3.6) in the homogeneous case, the eigenvalue problem (3.9) is the key
point to understanding the propagation phenomena. In order to understand for which c an eigenvalue
λ > 0 exists we consider an auxiliary problem

−∆ψ − λu(y)ψ = µ(λ)ψ in Ω (3.10)
∂ψ

∂n
= 0 on ∂Ω,

‖ψ‖L∞(Ω) = 1.

Here µ(λ) is the leading eigenvalue that corresponds to a positive eigenfunction ψ. Its existence is
guaranteed by the general Sturm-Liouville theory. The direct analog of (3.6) is

λ2 − cλ+ f ′(0) = µ(λ). (3.11)

Proposition 3.1 There exists a unique c∗ so that (3.11) has two real solutions λ1,2 for c > c∗, no
real solutions for c < c∗ and one solution for c = c∗.

Not surprisingly, c∗ will turn out to be the minimal speed of a non-planar traveling front solution of
(3.1): a non-planar traveling front is a solution of (3.1) of the form U(x− ct, y) with the Neumann
boundary conditions at Rx × ∂Ωy that satisfies

U(x, y)→ 1 as x→ −∞, U(x, y)→ 0 as x→ +∞, both uniformly in Ω. (3.12)

It turns out that such fronts exist for all c ≥ c∗ so that c∗ is the minimal front speed.

Theorem 3.2 Non-planar traveling front solutions of (3.1) exist for all c ≥ c∗ and do not exist for
all c < c∗.

We will not present the proof here. Let us just mention that the proof for c = c∗ follows very
closely the ”PDE” proof of existence of the traveling waves for an ignition nonlinearity that we have
presented above. Existence of traveling waves for c > c∗ uses some appropriately chosen sub- and
super-solutions, that guarantee that a non-trivial traveling wave has to exist.

Proof of Proposition 3.1. First, we observe that µ(λ) has a variational characterization:

µ(λ) = inf
∫
|∇φ|2 − λ

∫
u(y)φ2(y)∫

φ2
.

Thus µ(t) is concave as a minimum of a family of affine functions of λ. Furthermore, µ(0) = 0 (and
ψ|λ=0 = const), and we may compute formally

−∆ψ′ − λu(y)ψ′ − u(y)ψ = µ′(λ)ψ + µ(λ)ψ′. (3.13)

Here prime denotes derivative with respect to λ and ψ is normalized so that
∫

Ω ψ
2 = 1. Multiplying

(3.13) by ψ and integrating, using the normalization of ψ, we obtain

µ′(λ) = −
∫
u(y)ψ2(y)dy. (3.14)
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In particular ψ = 1 at λ = 0 so that (3.2) implies that µ′(0) = 0. Let us now justify our formal
differentiation with respect to λ. Let ψλ(x) be the principal eigenfunction of (3.10). Note that
ψλ(x)→ 1 as λ→ 0. Integrating (3.10) over Ω we obtain

−λ
∫
u(y)ψλ(y)dy = µ(λ)

∫
ψλ(y)dy.

Therefore, as µ(0) = 0, we have

µ(λ)− µ(0)
λ

= −
∫
u(y)ψλ(y)dy∫
ψλ(y)dy

→
∫
u(y)dy = 0 as λ→ 0.

Now the conclusion of Proposition 3.1 follows from (3.11) and the facts that µ(λ) is concave,
µ(0) = 0 and µ′(0) = 0. Indeed,

µ(λ) = λ2 − cλ+ f ′(0).

Thus

c =
λ2 − µ(λ) + f ′(0)

λ
.

Since µ(λ) is concave we have that λ2−µ(λ)+f ′(0) is convex. Moreover (λ2−µ(λ)+f ′(0))/λ→ +∞
as λ→ 0 and λ→ +∞. We conclude that there exists

c∗ = min
λ

λ2 − µ(λ) + f ′(0)
λ

,

and for any c > c∗ we can find t1 and t2 such that

c =
λ2

1 − µ(λ1) + f ′(0)
λ1

, c =
λ2

2 − µ(λ2) + f ′(0)
λ2

.

This finishes the proof of Proposition 3.1. �
We now show that the speed c∗ defined above defines the asymptotic speed of spreading.

Theorem 3.3 Let the initial data T0(x) for (3.1) be continuous and satisfy T0(x, y) = 0 for |x| > x1

and T0(x, y) > 0 on an open set. Then we have T (t, x+ct, y)→ 0 as t→ +∞, uniformly on compact
sets, provided that c > c∗. On the other hand, if 0 ≤ c < c∗ then T (t, x + ct, y) → 1 as t → +∞,
uniformly on compact sets.

Proof. First we consider the case c′ > c∗ which is much easier. We simply introduce the function

q(t, x, y) = Ae−λ(x−ct)ψ(y)

with λ, c and ψ as in (3.9), and with c∗ < c < c′. Then q satisfies

∂q

∂t
+ u(y)

∂q

∂x
= ∆q + f ′(0)q ≥ ∆q + f(q).

Moreover, q(0, x, y) ≥ T0(x, y) provided that the factor A is large enough. Hence the comparison
principle implies that

T (t, x, y) ≤ q(t, x, y)

and thus T (t, x+ c′t, y)→ 0 as t→ +∞.
The second part of the theorem that deals with the case 0 ≤ c < c∗ is more difficult. The

argument we present is from a paper by Mallordy and Roquejoffre [6]. The idea is to construct a
function described in the following lemma.
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Lemma 3.4 Given c < c∗ but sufficiently close to c∗, and a real number θ > 0 there exists a
non-negative function φ(x, y) ≤ θ that has compact support, is everywhere less than θ, satisfies the
Neumann boundary conditions at ∂Ω, and satisfies

−c∂φ
∂x

+ u(y)
∂φ

∂x
= ∆φ+ (f ′(0)− δ)φ ≤ ∆φ+ f(φ) on supp φ.

Moreover, the number θ is independent of the support of φ. The constant δ > 0 above is chosen so
that f(T ) ≥ (f ′(0)− δ)T for 0 ≤ T ≤ θ.

We refer to [6] for the proof of this lemma (that is quite a bit more technical than one would expect)
and finish the proof of Theorem 3.3.

Given a function φ as in Lemma 3.4 with c < c∗ but close to c∗, we consider the function
Φ(t, x, y) that solves (3.1) with the initial data Φ(t, x, y) = φ(x, y). Then, the function Ψ(t, x, y) =
Φ(t, x+ ct, y) is monotonic in t and thus has a limit Ψ∞. It has to satisfy

−c∂Ψ∞
∂x

+ u(y)
∂Ψ∞
∂x

= ∆Ψ∞ + f(Ψ∞)

with the Neumann boundary conditions. One then argues that Ψ∞ has to converge to a constant as
x→ ±∞, that is, either to 0 or 1. However, as 0 < c < c∗, the left and right limits have to coincide.
Thus Ψ∞ = 0 or 1 everywhere. However, Ψ∞ > 0 where φ > 0 so that Ψ∞ = 1.

To finish the proof of Theorem 3.3 we observe that given the initial data T0 that is positive
somewhere, T (t = 1) > 0 everywhere. Hence we may choose θ > 0 small and a corresponding φ(x, y)
so that T (t = 1) > φ. Then T (t, x, y) ≥ Φ(t, x, y) and thus T (t, x, y)→ 1 uniformly on compact set
in the reference frame moving with the speed c to the right, that is, T (t, x+ ct, y)→ 1. Thus we are
done for the case when c < c∗ is close to c∗. Similarly we show that T (t, x− ct, y)→ 1 for c < −c∗
but close to −c∗.

The above facts imply that T (t, x + ct, y) → 1 for all −cl∗ < c < c∗. Indeed, let −cl∗ < c < c∗
and choose X1(t) = −c1t, X2(t) = c2t with c1 close to cl∗ and c2 close to c∗. Choose a time t0 so
that T (t,X1(t), z) > 1 − ε, T (t,X1(t), z) > 1 − ε for all t ≥ t0. Define D(t) = [X1(t), X2(t)] × Ω
and let h0 = infD(t0) T (t0, x, y). Consider the function h(t) that solves ḣ = fε(h) with with fε(h) =
mh(1 − 2ε − h). Here the constant m is chosen so that f(h) > fε(h). The initial data for h(t) is
given by h(t0) = h0 so that T (t0, x, y) ≥ h0 in D(t0). The funcion h(t) is then a sub-solution for
T (t, x, y) in D(t) for t ≥ t0, that is, T (t, x, y) ≥ h(t) for all (x, y) ∈ D(t). Thus, T (t, x, y) ≥ 1 − 3ε
for a sufficiently large t in all of D(t). �

4 The fast shear flow asymptotics: the KPP case

Let us now consider a chemical reaction occurring in a fast shear flow, that is, we consider

∂T

∂t
+Au(y)

∂T

∂x
= ∆T + f(T ) (4.1)

with a large flow amplitude A � 1. We are interested in the behavior of the spreading rate c∗(A)
as A → ∞. The mean-zero condition (3.2) is still kept so that any increase in c∗(A) would not be
due to the simple translation of the front by a large mean flow. Rather, the speed up should be
due to front wrinkling: as A increase the front gets more and more curved (wrinkled) that results
in the increase of the area of interaction of the hot and cold material. As a result the cold material
is converted into hot at a faster rate and the spreading rate increases. The purpose of the next
proposition is to quantify this phenomenon.
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Theorem 4.1 Assume u(y) 6≡ 0 satisfies (3.2). Then the spreading rate c∗(A) satisfies the following
properties: (i) c∗(A) is increasing A, (ii) c∗(A)/A is decreasing in A, and (iii) c∗(A)/A converges
as A→∞ to a positive limit ρ > 0.

Proof. The eigenvalue problem (3.10) with u(y) replaced by Au(y) takes the form

−∆ψ −Aλu(y)ψ = µA(At)ψ in Ω (4.2)
∂ψ

∂n
= 0 on ∂Ω.

Hence µA(t) = µ(At), and (compare to (3.11)) the spreading rate c∗(A) is the smallest number c so
that the equation

λ2 − cλ+ f ′(0) = µ(Aλ) (4.3)

has a real non-negative solution λ. Geometrically, c = c∗(A) is such that the graph of the convex
function g(λ) = λ2 − cλ+ f ′(0) is tangent to the graph of the function sA(λ) = µ(Aλ). Recall (see
the proof of Proposition 3.1) that the function µ(t) is concave, µ(0) = 0 and µ′(0) = 0. This implies
that c∗(A) is an increasing function of A.

On the other hand, introducing t = Aλ we see that α∗(A) = c∗(A)/A may be characterized as
the number α so that equation

µ(t) =
t2

A2
+ f ′(0)− αt

has a unique solution. That means that the graphs of µ(t) and g̃(t) = t2

A2 +f ′(0)−α(A)t are tangent
to each other. It is geometrically clear that α(A) is a decreasing function of A and that α(A) tends
to the slope ρ of the tangent line to the graph of µ(t) that passes through the point (0, f ′(0)). �

5 Fast shear flow asymptotics: the ignition case

We now obtain the estimates for the traveling front speed in a fast shear flow in the ignition case.

Theorem 5.1 Let (cA, UA) be the traveling wave solution of

−cA∂U
A

∂x
+Au(y)

∂UA

∂x
= ∆UA + f(UA), (5.1)

∂UA

∂n
= 0, on ∂Ω,

UA(−∞, y) = 1, UA(+∞, y) = 0

in a cylinder D = {x ∈ R, y ∈ ×Ω}. The nonlinearity f(s) is either of the KPP or of the iginition
type. Then there exist two constants C1,2 that depend on the flow profile u(y) and the nonlinearity
f so that

C1A ≤ cA ≤ C2A. (5.2)

Proof. We present the proof due to S. Heinze. The upper bound in (5.2) follows from the results
on the spreading rate of general solutions to

∂T

∂t
+Au(y)

∂T

∂x
= ∆T + f(T ) (5.3)

with rapidly decaying initial data. We observe that the function ψ(t, x) = e−λ(x−ct) is a super-
solution of (5.3) provided that

c = λ+
M

λ
+A‖u‖L∞ .
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The constant M is chosen so that f(T ) ≤MT . Hence solutions may not propagate faster than the
above speed and the upper bound in (5.2) follows.

The lower bound is slightly more intricate. Let

F (s) =
∫ s

0
f(ξ)dξ

be the antiderivative of f . Define the corrector χ(y) as

∆χ = u(y),
∂χ

∂n
= 0 on ∂Ω,

∫
Ω
χ(y)dy = 0. (5.4)

First, we integrate (5.1) over the cylinder D = R× Ω to obtain

cA =
∫
f(UA)dxdy. (5.5)

Next, we multiply (5.1) by UA and integrate to obtain

cA

2
+
∫
|∇UA|2 =

∫
UAf(UA) ≤

∫
f(UA) = cA.

Hence we have ∫
|∇UA|2 ≤ cA

2
. (5.6)

Multiply (5.1) by f(UA)χ(y) and integrate over the whole cylinder to obtain

−cA
∫
f(UA)χ(y)UAx +A

∫
u(y)χ(y)f(UA)UAx

= −
∫
f ′(UA)χ(y)|∇UA|2 −

∫
f(UA)

∂χ

∂y
UAy +

∫
χ(y)f2(UA).

The first integral on the left side is equal to (after evaluating the integral in x) F (1)
∫
χ(y)dy and

hence vanishes. Combining the other terms we obtain

−F (1)A
∫
u(y)χ(y)dy = −

∫
f ′(UA)χ(y)|∇UA|2 −

∫
f(UA)

∂χ

∂y

∂UA

∂y
+ χ

∫
f2(UA).

Now, using the definition (5.4) of the function χ, and the fact that the function f is bounded, we
obtain

F (1)A
∫
|∇χ|2dy ≤ C

∫
|∇UA|2 + C

√∫
f2(UA)

√∫
|∇UA|2 + C

∫
f2(UA).

This inequality together with the bounds (5.5) and (5.6) imply that

CA ≤ cA.

Hence the lower bound in (5.2) holds. �
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6 Strong flow asymptotics for the principal Dirichlet eigenvalue

We consider the Dirichlet eigenvalue problem

−∆φ+Au · ∇φ = λ(A)φ x ∈ Ω, (6.1)
φ = 0 on ∂Ω.

Here u(x) is a smooth incompresible flow, and Ω is a bounded domain. We assume that u · n = 0
on the boundary ∂Ω.

Theorem 6.1 ([2]) Let φ(x) > 0 be the principal eigenfunction of (6.1) and λ(A) the corresponding
principal eigenvalue, then

lim inf
A→+∞

λ(A) = +∞ (6.2)

if and only if there exists not function ψ ∈ H1
0 (Ω) such that

u · ∇ψ = 0 a.e. in Ω. (6.3)

Moreover, if such ψ exists then

lim
A→+∞

λ(A) = inf
ψ

∫
Ω
|∇ψ|2dx, (6.4)

with infimum taken over all functions ψ such that (6.3) holds and ‖ψ‖L2(Ω) = 1.

Proof. First, assume that
lim inf
A→+∞

λ(A) < +∞. (6.5)

Let φA be the corresponding eigenfunctions normalized so that ‖φ‖A = 1. Then, as∫
Ω
|∇φA|2dx = λ(A), (6.6)

there exists a sequence An →∞ so that the corresponding sequence φn := φAn is uniformly bounded
in H1

0 (Ω). Therefore, after possibly passing to a subsequence, the sequence φn converges weakly to
a limit φ̄ ∈ H1

0 (Ω). It also converges strongly to φ̄ in L2(Ω), whence ‖φ̄‖2 = 1. Then, dividing (6.1)
by A and letting A→ +∞ we obtain

u · ∇φ̄ = 0,

in the weak sense, that is, (6.3) holds. Therefore, if the flow u has no first integrals in H1
0 (Ω) in the

sense of (6.3) then (6.2) holds. In addition, passing to the limit in (6.6) we obtain

lim inf
A→+∞

λ(A) ≥
∫

Ω
|∇φ̄|2dx. (6.7)

Now, let us assume that u does have some first integrals in H1
0 (Ω). Given any test function

w ∈ H1
0 (D), and a number α > 0, we multiply (6.1) by w2/(ϕ+ α) and integrate over D to obtain

λ

∫
D

w2ϕ

ϕ+ α
= −

∫
D

w2∆ϕ
ϕ+ α

+A

∫
D

w2

ϕ+ α
v · ∇ϕ. (6.8)
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For the first term on the right, we have

−
∫
D

w2∆ϕ
ϕ+ α

=
∫
D
∇ϕ ·

(
2w(ϕ+ α)∇w − w2∇ϕ

(ϕ+ α)2

)
=
∫
D
|∇w|2 −

∫
D

|w∇ϕ| − (ϕ+ α)∇w2

(ϕ+ α)2
≤
∫
D
|∇w|2.

For the second term on the right of (6.8) we have, since u is incompressible,∫
D

w2

ϕ+ α
v · ∇ϕ =

∫
D
w2v · ∇ ln(ϕ+ α) = −2

∫
D

ln(ϕ+ α)w(v · ∇w).

Hence, equation (6.8) reduces to

λ

∫
D

w2ϕ

ϕ+ α
≤
∫
D
|∇w|2 − 2A

∫
D

ln(ϕ+ α)w(v · ∇w). (6.9)

Now, choose w to be any H1
0 (D) first integral of v (that is, v ·∇w = 0 a.e.). Then, equation (6.9)

reduces to

λ

∫
D

w2ϕ

ϕ+ α
≤
∫
D
|∇w|2.

Upon sending α→ 0, the Monotone Convergence Theorem shows

λ

∫
D
w2 ≤

∫
D
|∇w|2

for any H1
0 (D) first integral of v.
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