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1 Examples of relaxation enhancement

In these notes, we will discuss convergence to an equilibrium for solutions of partial differential
equations. In this introductory part, we will focus on the situation when the equilibrium is
simply φ(t, x) ≡ 0, so the interest is in the decay rate of the solution to zero, and what
can make this decay to be faster than naively expected. Generally, we will look at evolution
problems of the form

∂φ

∂t
= Lφ− Γφ, t ≥ 0, (1.1)

with an initial condition φ(0) = φ0 ∈ H, where H is some Hilbert space, L is a skew-symmetric
operator, and Γ is a symmetric operator on H. Typically, we will take H = L2(Rd) but
sometimes we will think of more abstract settings. We will usually assume that Γ is strictly
dissipative (coercive) there exists c0 > 0 so that

〈Γφ, φ〉 ≥ c0‖φ‖2. (1.2)

It is immediate to see from (1.2) that the solution to (1.1) satisfies the exponential decay
estimate:

1

2

d

dt
(‖φ(t)‖2) = −〈Γφ, φ〉 ≤ −c0‖φ‖2, (1.3)

so that
‖φ(t)‖ ≤ ‖φ0‖ exp(−c0t). (1.4)

This estimate does not depend on L at all, as long as L is skew-symmetric, and holds, in
particular, if L = 0.

On the other hand, since L is skew-symmetric, solutions to the Γ-less equation

∂ψ

∂t
= Lψ, ψ(0) = ψ0, (1.5)

do not decay at all:
1

2

d

dt
(‖ψ(t)‖2) = 〈Lψ, ψ〉 = 0, (1.6)
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so that
‖ψ(t)‖ = ‖ψ0‖. (1.7)

The question we are interested in is if the presence of L can make the decay of the solutions
in (1.1) much faster than the trivial bound (1.4) even though solutions to the ”purely L”-
equation (1.6) have no decay whatsoever. This phenomenon is informally known as relaxation
enhancement.

The basic mechanism behind relaxation enhancement is very simple. Let us assume that
the operator Γ is self-adjoint and has a discrete spectrum with eigenvalues

0 < λ0 ≤ λ1 ≤ · · · ≤ λn ≤ . . . ,

with
λn → +∞ as n→ +∞, (1.8)

with the corresponding eigenspaces

Xk = {φ ∈ H : Γφ = λkφ}.
Then solutions to the ”L-less” equation

∂φ

∂t
= −Γφ, (1.9)

with an initial condition φ0 ∈ Xk will decay as

‖φ(t)‖ = ‖φ0‖ exp(−λkt). (1.10)

Therefore, the decay estimate

‖φ(t)‖ ≤ ‖φ0‖ exp(−λ0t) (1.11)

is optimal, as φ0 generically has a non-trivial component in the eigenspace X0.
Consider now what may happen if L 6= 0, and to emphasize the effect, let us put a large

coefficient in front of L:
∂φ

∂t
=

1

ε
Lφ− Γφ, (1.12)

with φ0 ∈ Xk, and with ε � 1. Then, for short times, solutions to (1.12) can be well
approximated by

∂φa
∂t

=
1

ε
Lφa, (1.13)

with φa(0) = φ0. This is equivalent to a time-rescaling of

∂ψ

∂t
= Lψ, ψ(0) = φ0, (1.14)

in the sense that φa(t) = ψ(t/ε). If L and Γ do not commute, then there is no reason why φa(t)
would have a large component in the eigenspaces Xk corresponding to ”small” k. We expect
that φa(t) will populate all eigenspaces of Γ. Moreover, φa(t) should not concentrate in the
low eigenspaces of Γ, and the bulk of the solution will be in the high eigenmodes of Γ. But for
such φa(t) the operator Γ may dominate ε−1L in (1.12) if, say, λk � ε−1 and solutions to the
full problem (1.12) should decay rapidly because it has been moved into the high eigenmodes
of Γ by the approximate evolution (1.14) that only involves L. This is the basic scenario
behind relaxation enhancement. Turning this into a theorem is not always simple but the
mechanism is almost always the same.
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A newborn toy example

Let us see how this works on the example of 2× 2 matrices. We take

Γ =

(
1 0
0 λ

)
, L =

(
0 1
−1 0

)
, (1.15)

with λ� 1, so that LΓ 6= ΓL, and Γ has a small eigenvalue 1 and a large eigenvalue λ. The
evolution by Γ alone:

dφ

dt
= −Γφ, (1.16)

only has the a priori decay
‖φ(t)‖ ≤ ‖φ(0)‖e−t, (1.17)

unless the initial condition is of the form φ(0) = (0, α0), so that the decay for the L-less
equation (1.16) is governed by the small eigenvalue 1. On the other hand, the eigenvalues of
the matrix

nL− Γ =

(
−1 n
−n −λ

)
are the solutions to

(µ+ 1)(µ+ λ) + n2 = 0,

µ1,2 =
−1− λ±

√
(1 + λ)2 − 4(n2 + λ)

2
. (1.18)

Then, for n� λ we have

Re(µ1,2) = −1 + λ

2
. (1.19)

In other words, if n is sufficiently large, then both eigenvalues µ1,2 of the matrix nL − Γ
have a very large negative real part and the ”small” eigenvalue 1 of the matrix Γ disappears.
Therefore, solutions to

dφ

dt
= (nL− Γ)φ, φ(0) = φ0, (1.20)

obey the decay estimate
‖φ(t)‖ ≤ C0e

−(1+λ)t/2, (1.21)

that is much better than (1.17) as λ� 1.
Let us look in a bit more detail at the solution to (1.20). Let z(t) be the solution to

dz

dt
= Lz, z(0) = φ0 = (φ10, φ20), (1.22)

so that

z(t) = φ10

(
cos t
− sin t

)
+ φ20

(
sin t
cos t

)
, (1.23)

and write

φ(t) = a(t)z(nt) +
1

n
ψ(t),
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with a scalar function a(t) and a vector-valued function ψ(t) to be chosen. This gives

da

dt
z(nt) +

1

n

dψ

dt
= Lψ(t)− a(t)Γz(nt)− 1

n
Γψ(t). (1.24)

The function z(t) is periodic with a period 2π and Lz(t) has mean zero because of (1.22). In
addition, we have ‖z(t)‖ = ‖φ0‖ for all t ≥ 0. Taking the inner product with z(nt), averaging
over the period T = 2π and recklessly dropping the terms we expect to be small, we arrive at

da

dt
= −γa(t), (1.25)

with

γ =
1

T‖φ0‖2

∫ T

0

〈Γz(t), z(t)〉dt =
1

T‖φ0‖2

∫ T

0

(z2
1(t) + λz2

2(t))dt =
1 + λ

2
. (1.26)

We used the explicit formula (1.23) above. This explains the precise expression γ = (+1λ)/2
for the limit of the eigenvalues.

Exercise 1.1 The above argument on the behavior of the solutions to (1.20) is a simple
case of the general averaging theory for ODE with periodic oscillatory coefficients. Make it
rigorous.

Note that one key feature of this very simple dynamics is that the solution to the ”pure L”
equation (1.22) spends a sufficient time in the eigenspace of the largest eigenvalue of Γ to allow
for the decay to kick in. This is very important for the ”combined Γ and L ”decay mechanism.

The Dirichlet eigenvalues for Laplacian with a drift

We now investigate the same phenomenon for the Laplacian operator with a strong incom-
pressible drift.

The eigenvalues of the Laplacian

Before we explain how relaxation enhancement for the Laplacian operator with a drift comes
about, let us first recall some very basic facts about the principal Dirichlet eigenvalues for
the Laplacian on a bounded domain [11]. For any smooth bounded domain Ω there exists
an eigenvalue λ1 (called the principal eigenvalue) that corresponds to a positive eigenfunc-
tion φ1 > 0 in Ω:

−∆φ1 = λ1φ1, x ∈ Ω, (1.27)

φ1 = 0 on ∂Ω.

Moreover, λ1 is the smallest of all eigenvalues of the Dirichlet Laplacian on Ω, λ1 is a simple
eigenvalue and all other eigenfunctions of the Laplacian change sign in Ω. For example, if Ω
is an interval (0, 1), the eigenvalues of the operator Lu = −u′′ with the Dirichlet boundary
conditions u(0) = u(1) = 0 are λn = n2π2, and the corresponding eigenfunctions are

un(x) = sin(nπx).
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In this case, the principal eigenvalue is λ1 = π2.
In general, the principal eigenvalue of the Laplacian is given by the variational formula:

λ1 = inf
ψ∈H1

0(Ω)

‖ψ‖2=1

∫
Ω

|∇ψ|2dx. (1.28)

The principal eigenvalue determines the long time decay of solutions of the parabolic initial
value problem in the following way. Consider the initial value problem

ψt = ∆ψ, t > 0, x ∈ Ω, (1.29)

ψ(t, x) = 0 on ∂Ω,

ψ(0, x) = ψ0(x).

As φ1(x) > 0 in Ω, and, as follows from the Hopf lemma, ∂φ1/∂ν < 0 on ∂Ω, we can find
a constant C > 0 so that |ψ(t = 1, x)| ≤ Cφ1(x) – we can not quite have such estimate
at t = 0 since the initial condition ψ0(x) may not satisfy the Dirichlet boundary conditions.
The maximum principle implies that

ψ(t, x) ≤ Ce−λ1(t−1)φ1(x), (1.30)

for t > 1, and, similarly,
− ψ(t, x) ≤ Ce−λ1(t−1)φ1(x), (1.31)

so that
|ψ(t, x)| ≤ Ce−λ1(t−1)φ1(x), t ≥ 1. (1.32)

Therefore, all solutions of the Cauchy problem decay at the exponential rate determined by λ1

as t→ +∞.

The Dirichlet eigenvalues with a drift

Let us now consider the Dirichlet principal eigenvalue problem in a smooth bounded domain Ω,
for a diffusion with a strong incompressible flow:

−∆φ+
1

ε
u · ∇φ = λ1(ε)φ, φ(x) > 0 in Ω, (1.33)

φ = 0 on ∂Ω.

This is an example of a problem like (1.12), with Γ = −∆, and L = u · ∇. We assume that u
is an incompressible flow: ∇ · u = 0, and that it does not penetrate the boundary:

u · ν = 0 on ∂Ω. (1.34)

This makes the operator L = u · ∇ skew-symmetric:

〈Lψ, ψ〉 =

∫
Ω

(u · ∇ψ)ψdx = 0, (1.35)

by the divergence theorem, as the boundary term vanishes, due to (1.34).
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The operator in (1.33) is not self-adjoint (so that its eigenvalues are not necessarily real),
and its eigenvalues do not obey an integral variational principle such as (1.28). Nevertheless,
the Krein-Rutman theory for positive operators (see Chapter VIII of [8]) implies that it has
a unique eigenvalue λ1(ε) that corresponds to a positive eigenfunction φ1(x). This eigenvalue
is real and simple, has the smallest real part of all eigenvalues, and is called the principal
eigenvalue. As for the Laplacian, the maximum principle implies that the principal eigenvalue
determines the long time decay of the solutions of the corresponding Cauchy problem:

ψt +
1

ε
u · ∇ψ = ∆ψ, t > 0, x ∈ Ω, (1.36)

ψ(t, x) = 0 on ∂Ω,

ψ(0, x) = ψ0(x),

that is,
ψ(t, x) ∼ e−λ1(ε)tφ1(x), as t→ +∞. (1.37)

Note that when u = 0 (or, in our general terminology, L = 0) the exponential rate of decay
for the solutions of (1.36) is simply the principal eigenvalue of the Laplacian. On the other
hand, solutions of the Laplacian-less problem

ψt +
1

ε
u · ∇ψ = 0 (1.38)

do not decay at all – their L2 norm is preserved, as are all Lp-norms for p ≥ 1. This is because
the flow u is incompressible and parallel to ∂Ω on the boundary.

Let us now understand whether it is possible that solutions of the ”combined” Cauchy
problem (1.36) decay much faster in time than when u = 0 despite the fact that solutions
of (1.38) have no decay whatsoever. To quantify this questions, let us ask if it is possible that

λ1(ε)→ +∞ as ε→ 0. (1.39)

The above considerations make it clear that such phenomenon may only come from an inter-
action of the drift and the Laplacian.

Let us recall the probabilistic interpretation of the solutions of the Cauchy problem (1.36).
Consider the stochastic differential equation

dXt = −1

ε
u(Xt)dt+

√
2dWt, X0 = x, (1.40)

starting at a point x ∈ Ω, and let τ be the first time that the process Xt hits the boundary ∂Ω.
Then solution of the Cauchy problem (1.36) can be expressed in terms of the diffusion Xt as

ψ(t, x) = Ex[g(Xmin(t,τ))], (1.41)

with the convention that
g(Xτ ) = 0. (1.42)

When would we expect ψ(t, x) to be small as ε→ 0? As one sees from (1.42), this would be
true if, with a high probability we have τ < t – the particle hits the boundary before a given
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time t. Intuitively, if the trajectories of the incompressible flow are “sufficiently mixing”,
then, for any starting point x0 in the interior of Ω, the trajectory of (1.40) that starts at x0

eventually comes close to the boundary ∂Ω. Therefore, such flow, when sufficiently fast, will
force solutions of (1.41) very quickly to pass very close to ∂Ω, and at that time diffusion term
in (1.40) will force Xt to exit Ω with a very high probability. Hence, when ε > 0 is sufficiently
small, the exit time τ of the solutions of (1.40) should be smaller than a given time t > 0
with a high probability. As we have mentioned, this makes ψ(t, x) given by (1.41) very
small because of (1.42). Physically, this means that a sufficiently mixing flow, together with
diffusion, should dramatically increase the cooling of the interior by the boundary. A natural
questions is what ”mixing” means in this context, and how one can quantify such property.
Usually, the mixing properties of a flow are defined in terms of the dynamic properties of
the ODE

Ẋ = u(X),

behave. Here, we are asking a PDE question – hence, the first problem is to define what
“mixing” means for us. This is quantified by the following beautiful result due to Berestycki,
Hamel and Nadirashvili [3]. We denote by I0 the set of all first integrals of u, solutions of

u · ∇φ = 0 a.e. in Ω, (1.43)

in the space H1
0 (Ω).

Theorem 1.2 The principal eigenvalue λ1(ε) of (1.33) tends to +∞ as ε→ 0 if and only if
the flow u has no first integral in H1

0 (Ω). Moreover, if u has a first integral in H1
0 (Ω), then

λ1(ε)→ λ̄ := min
w∈I0

∫
Ω
|∇w|2dx∫

Ω
|w|2dx

as ε→ 0, (1.44)

and the minimum in the right side is achieved.

A couple of comments are in order. First, notice that the only information about the Laplacian
operator in (1.33) that survives in the statement of the theorem is in the condition that the
first integral lies in H1

0 (Ω). This regularity requirement comes exactly from the presence of the
Laplacian in (1.33), as irregular first integrals do not prevent strong decay of the solutions
of the Cauchy problem. Second, the strong flow essentially forces the eigenfunction to be
close to a first integral, and then the variational principle (1.29) for the Laplacian operator is
replaced by essentially the same expression (1.44) except that the set of allowed test functions
is restricted to the first integrals.

Proof of Theorem 1.2

The proof of this Theorem is nicely short. First, we claim that if u has a non-zero first
integral w in H1

0 (Ω), normalized so that

‖w‖L2 = 1,

then we have

0 ≤ λ1(ε) ≤
∫

Ω

|∇w(x)|2dx, (1.45)
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for any ε ∈ R. In order to show that (1.45) holds, we take any w ∈ I0, and multiply (1.33)
by w2/(φ+ δ) with δ > 0 fixed:

−
∫

Ω

w2∆φ

φ+ δ
dx+

∫
Ω

w2

φ+ δ
(u · ∇φ)dx = λ1(ε)

∫
Ω

w2φ

φ+ δ
dx. (1.46)

Integrating by parts in the first term gives

−
∫

Ω

w2∆φ

φ+ δ
dx =

∫
Ω

∇φ · ∇
(

w2

φ+ δ

)
dx =

∫
Ω

2w(φ+ δ)∇φ · ∇w − w2|∇φ|2

(φ+ δ)2
dx

≤
∫

Ω

|∇w|2dx.

The second term in the left side of (1.46) vanishes because ∇ · u = 0 and w is a first integral:∫
Ω

w2

φ+ δ
(u · ∇φ) dx =

∫
Ω

w2(u · ∇(log(φ+ δ))) dx = −
∫

Ω

2w log(φ+ δ)(u · ∇w)dx = 0.

The boundary terms above vanish since w ∈ H1
0 (Ω) (it vanishes on the boundary). We

conclude that

λ1(ε)

∫
Ω

w2φ

φ+ δ
dx ≤

∫
Ω

|∇w|2dx, (1.47)

for any w ∈ I0. Passing to the limit δ → 0 in the left side gives (1.45). Thus, existence of a
first integral implies that λ1(ε) are uniformly bounded for all ε ∈ R.

On the other hand, if there exists a sequence εn → 0 such that λ1(εn) are bounded, then∫
Ω

|∇φn(x)|2dx = λ1(εn)

∫
Ω

|φn(x)|2dx = λ1(εn). (1.48)

Here, φn(x) are the associated positive eigenfunctions φn(x) normalized so that ‖φn‖L2(Ω) = 1.
As λ1(εn) are uniformly bounded, it follows from (1.48) that there is a subsequence φnk
that converges weakly in H1

0 (Ω) and strongly in L2(Ω) to a function w̄(x) ∈ H1
0 (Ω). Next,

multiplying (1.33) by εnk and passing to the limit k → +∞ gives

εnk

∫
Ω

(−∆φnk)ηdx = εnk

∫
Ω

(∇φnk) · ∇η)dx→ 0, (1.49)

for any test function η ∈ H1
0 (Ω), because of (1.48). We also have

εnkλnk

∫
Ω

φnkηdx→ 0, (1.50)

because ‖φnk‖L2 = 1 and λ1(εnk) is bounded. It follows that

u · ∇w̄ = 0, weakly in H1
0 (Ω),

which is the same as
u · ∇w̄ = 0, a.e. in Ω,
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and
‖w̄‖L2(Ω) = 1. (1.51)

Hence, w̄ is a first integral of u in H1
0 (Ω). Thus, the non-existence of the first integral in H1

0 (Ω)
implies that

lim
ε→0

λ1(ε) = +∞. (1.52)

Finally, to show that (1.44) holds if there is a first integral in H1
0 (Ω), let us assume, once

again, that there exists a sequence εn → 0 such that λ1(εn) are bounded. As the convergence
of the subsequence φnk to the first integral w̄ is strong in L2(Ω) and weak in H1

0 (Ω), it follows
from (1.48), (1.51) and Fatou’s lemma that

lim inf
n→+∞

λ1(εn) ≥
∫

Ω

|∇w̄(x)|2dx. (1.53)

It remains to notice that (1.53) and (1.45) together imply the Rayleigh quotient formula (1.44),
and that the minimum is achieved at w̄(x), finishing the proof of Theorem 1.2.

Directions we are not going to take

Let us finish this introductory section mentioning two directions that are important for the
interaction of fast flow and diffusion but that we will not discuss. First, there is a large liter-
ature on estimating the effective diffusion in random and periodic flows, and its dependence
on the fluid flow strength. Second, there is a very beautiful theory by Freidlin and Wentzell
on weakly perturbed two-dimensional Hamiltonian flows.

2 Relaxation enhancement in time

As we have discussed, one interpretation of the eigenvalue enhancement estimate in Theo-
rem 1.2 is in terms of the long time decay rate of the solution to the Cauchy problem

ψt +
1

ε
u · ∇ψ = ∆ψ, t > 0, x ∈ Ω, (2.1)

ψ(t, x) = 0 on ∂Ω,

ψ(0, x) = g(x),

in Ω with the Dirichlet boundary condition. Its solution has the long time asymptotics

ψ(t, x) ∼ e−λ1(ε)tφ(x) (2.2)

for t� 1. Here, φ(x) is the principal eigenfunction of the operator

−∆φ+
1

ε
u · ∇φ = λ1(ε)φ, (2.3)

with the Dirichlet boundary conditions. We have seen in Theorem 1.2 that the principal
eigenvalue, or the exponential rate of decay in (2.2), satisfies

λ1(ε)→ +∞ as ε→ 0 (2.4)
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if and only if the flow u has no first integrals in H1
0 (Ω).

The ”eigenvalue approach” to improved mixing by an interaction of a fluid flow and
diffusion gets much more complicated if we pose the Neumann boundary conditions on ∂Ω, or
if Ω is a manifold without boundary, such as a torus. In that case, the principal eigenfunction
is a constant, and the principal eigenvalue vanishes: λ0 = 0, regardless of what the flow u(x)
is. One may instead study the second eigenvalue but that is not simple since we do not
even know a priori that the second eigenvalue is real, or simple, and finding estimates for the
real part of a complex eigenvalue that corresponds to an eigenfunction that also need not be
real would not be an easy task. Moreover, even if the spectral gap estimate were available,
generally it only provides a long time dynamical information, and how fast the long time limit
is achieved may depend on ε, since the operator in the left side of (2.3) is neither self-adjoint
nor normal: it does not commute with its formal adjoint operator

L∗φ = −∆φ− 1

ε
∇ · (uφ).

This means that the long time behavior may depend not just on the spectrum of L but also
on its pseudo-spectrum: the set of λ for which (L−λI)−1 exists but is large in an appropriate
norm. It is a rather typical situation that the dynamical information is not quite easy to
deduce from the spectrum alone.

On the other hand, our general interest is in the speed of convergence of the solution to an
equilibrium, the relaxation speed, and there are other ways to measure this, not in terms of
the spectrum. Therefore, rather than try to address the spectral behavior, we will reformulate
our questions purely in terms of the Cauchy problem. On the other hand, the information
we will obtain will not translate into non-trivial quantitative properties of the spectrum in a
straightforward way.

Relaxation enhancement in shear flows and hypoellipticity

A reasonable way to approach the relaxation speed for a parabolic equation of the form

ψεt +
1

ε
u · ∇ψε = ∆ψε, ψε(0, x) = ψ0(x), (2.5)

posed in an unbounded domain is in terms of the L1 − L∞ decay of the solutions. We will
always assume that u(x) is incompressible:

∇ · u = 0, (2.6)

so that the flow map for the ODE

dX

dt
= u(X), X(0) = x, (2.7)

is measure preserving, and the total mass is preserved by (2.5):∫
Rn
ψε(t, x)dx =

∫
Rn
ψ0(x)dx. (2.8)
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As the total mass of ψε(t, x) is conserved, we can measure the additional mixing by u(x) in
terms of the decay of the L∞-norm of ψε(t, x): the smaller ‖ψε(t, ·)‖L∞ is, the more evenly the
mass of ψε(t, x) is spread around. One can rephrase this in terms of the decay of any Lp-norm
with p > 1 but the L∞-norm gives the most intuitive picture. Let us stress that we always
talk about the decay of ‖ψε(t, ·)‖L∞ at a fixed time t > 0 when ε � 1 is sufficiently small,
and not as t→ +∞. The reader may think simply of the L∞-norm of ψε(t, x) at t = 1.

One can get a simple estimate on the L1−L∞ decay multiplying (2.5) by u and integrating
by parts. Using incompressibility of u, gives

1

2

d

dt

∫
Rn
|ψε|2dx = −

∫
Rn
|∇ψε|2dx. (2.9)

Exercise 2.1 Use the Nash inequality, conservation of the total mass, and (2.9) to show that
there exists a constant C > 0 so that for all incompressible u(x) and ε > 0 we have

|ψε(t, x)| ≤ C

tn/2
‖ψ0‖L1 . (2.10)

The fact that the constant C > 0 does not depend on u or ε > 0 in (2.9) shows that no
incompressible flow can have too little mixing. The next exercise shows that this universal
decay also incorporates the incompressibility of u(x) so it does take into account some of the
mixing properties.

Exercise 2.2 Show that no such estimate (2.10) may hold with the same constant C > 0 for
all u(x) without the incompressibility assumption (2.6).

However, the estimate (2.10) does not show in any way an improvement of mixing by the
flow u(x). In general, this is quite difficult, so let us first look at a simple special case when
everything can be done more or less explicitly: the shear flows considered in [4]. These
are unidirectional flows of the form u = (v(y), 0), with a scalar-valued function v(y). Here,
we have introduced the coordinates x = (x1, y) on Rn, with x1 ∈ R and y ∈ Rn−1. Such
flows automatically satisfy the incompressibility condition: ∇ · u = 0. For simplicity, we will
consider (2.5) in the cylinder Ω = R × Tn−1, so that both v(y) and the solution to (2.5)
are 1-periodic in the yk-variables, k = 1, . . . , n− 1.

Let ψ(t, x1, y) be 1-periodic in y ∈ Tn−1 and satisfy

ψt +
1

ε
v(y)

∂ψ

∂x1

= ∆x1,yψ, (2.11)

with the initial condition ψ(0, x1, y) = φ0(x1, y). It is clear that if v(y) ≡ v̄ is a constant flow,
then the L1−L∞ decay of ψ(t, x, y) is exactly the same as for the equation with v(y) ≡ 0, as v̄
simply translates the solution in the x1-direction. Another clear obstacle to a faster L1−L∞
is the existence of a plateau in the profile v(y): if v(y) ≡ v̄ for all y ∈ D, where D is some
open set. Indeed, in that case we may bound ψ(t, x, y) from below by the solution to

ψ̃t +
1

ε
v̄
∂ψ̃

∂x1

= ∆x1,yψ̃, (x1, y) ∈ R×D, (2.12)
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with the Dirichlet boundary condition on ∂D. This is a translate of the solution to

φt = ∆x1,yφ, (x1, y) ∈ R×D, (2.13)

so that
ψ(t, x1, y) ≥ ψ̃(t, x1, y) = φ(t, x1 − v̄t, y), (x1, y) ∈ R×D. (2.14)

This means that there is no speed-up of the L1−L∞ decay for ψε(t, x, y) due to the flow v(y)
if v(y) has a plateau – the rate of the decay, for a fixed t > 0, is constrained by the principal
Dirichlet eigenvalue of the domain D.

Let us now assume that v(y) does not have a plateau to see if ”no plateau” is a sufficient
condition for an improved L1−L∞ decay. A very simple observation is that ψ(t, x, y) can be
written as

ψ(t, x1, y) =

∫ ∞
−∞

G(t, x1 − z)Ψ(t, z, y)dz (2.15)

with the function Ψ(t, x, y) satisfying the degenerate parabolic equation

Ψt +
1

ε
v(y)

∂Ψ

∂x1

= ∆yΨ, (2.16)

with the initial condition Ψ(0, x1, y) = ψ0(x1, y) and the one-dimensional heat kernel

G(t, x1) =
1√
4πt

exp

(
−x

2
1

4t

)
.

Indeed, if Ψ(t, x1, y) is a solution to (2.16), then ψ(t, x1, y) defined by (2.15) satisfies

ψt +
1

ε
v(y)

∂ψ

∂x1

=

∫ ∞
−∞

[∆x1G(t, x1 − z)]Ψ(t, z, y)dz

+

∫ ∞
−∞

G(t, x1 − z)
[
∆yΨ(t, z, y)− 1

ε
v(y)

∂Ψ(t, z, y)

∂z

]
dz

+
1

ε

∫ ∞
−∞

v(y)
∂G(t, x1 − z)

∂x1

Ψ(t, z, y)dz

=

∫ ∞
−∞

[∆x1G(t, x1 − z)Ψ(t, z, y) +G(t, x1 − z)∆yΨ(t, z, y)]dz = ∆x1,yψ(t, x, y),

(2.17)

so that, indeed, ψ(t, x1, y) satisfies (2.11).
The operator

LεΨ = −∆yΨ +
1

ε
v(y)

∂Ψ

∂x1

(2.18)

that appears in (2.16) is not uniformly elliptic: it lacks the Laplacian in the x1-direction. It is,
however, hypoelliptic [19] if there is no point y ∈ Tn−1, where all derivatives of v(y) vanish.
We will call this the H-condition. Indeed, the Lie algebra generated by the operators ∇y

and v(y)∂x consists of vector fields of the form

∇y, v(y)
∂

∂x
,
∂v(y)

∂yk

∂

∂x
,
∂2v(y)

∂yk∂ym

∂

∂x
, . . . , v(n)(y)

∂

∂x
, . . . (2.19)
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which span Rn if v(y) satisfies the H-condition. The study of existence of smooth fundamental
solutions for such degenerate operators was initiated by Kolmogorov [24]. Kolmogorov’s work
with v(y) = y served in part as a motivation for the fundamental result on characterization
of hypoelliptic operators of Hörmander [19]. The ”no plateau” condition for v(y) is not
equivalent to the H-condition but is reasonably close to it.

If v(y) satisfies the H-condition, then the theory of Hörmander [19], and the results
of Ichihara and Kunita [18] imply that there exists a smooth transition probability den-
sity pε(t, x1, y, y

′) such that

Ψ(t, x1, y) =

∫
R

H∫
0

pε (t, x1 − x′, y, y′)ψ0(x′, y′)dy′dx. (2.20)

In particular, the function pε(t) is uniformly bounded from above for any t > 0 [18]. Then we
have

‖ψ(t)‖L∞
x1,y
≤ ‖Ψ(t)‖L∞

x1,y
≤ ‖pε(t)‖L∞

x1,y
‖ψ0‖L1

x1,y
. (2.21)

It is straightforward to observe that pε has a simple scaling property

pε(t, x1, y, y
′) = εp0(t, εx, y, y′) (2.22)

with p0 being the transition probability density for (2.16) with ε = 1. That is, p0 satisfies

∂p0

∂t
+ v(y)

∂p0

∂x1

= ∆yp0, (2.23)

with the initial condition p0(0, x, y, y′) = δ(x)δ(y − y′). Therefore, we obtain

‖ψ(t)‖L∞ ≤ ε‖p0(t)‖L∞
x,y
‖ψ0‖L1

x,y
≤ Cε‖ψ0‖L1

x,y
. (2.24)

This is a version of the relaxation enhancement in the whole space that we were looking for:
the L1 − L∞ decay at a fixed time t > 0 is faster as ε→ 0.

As a side remark, we note that this very simple example also shows a connection between
relaxation enhancement and hypoellipticity.

Relaxation enhancing flows on a torus

Let us now consider relaxation enhancement on the n-dimensional torus. The discussion below
applies verbatim to the case of a smooth compact n-dimensional Riemannian manifold Ω, and
generalizations are very straightforwad, so we do not discuss them – see [5] for some of the
full cornucopia. We consider solutions to the passive scalar equation

φεt +
1

ε
u(x) · ∇φε −∆φε = 0, φε(0, x) = φ0(x), (2.25)

on Ω = Tn, supplemented by periodic boundary conditions. As always, we assume that u is
incompressible: ∇ · u = 0. The solution φε(t, x) tends to its average,

φ(t) ≡ 1

|Ω|

∫
Ω

φε(t, x) dµ =
1

|Ω|

∫
Ω

φ0(x) dx, (2.26)
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as t → +∞. Here |Ω| is the volume of Ω. To see that, first, integrating (2.25) over M and
using incompressibility of u(x) gives

d

dt

∫
Ω

φ(t, x)dx = 0,

hence φ̄(t) = φ̄(0) is preserved in time. Next, multiplying (2.25) by φε(t, x) − φ̄, and again
using incompressibility of u(x), we have

1

2

d

dt

∫
Ω

|φ(t, x)− φ̄|2dx = −
∫

Ω

|∇φε(t, x)|2dx. (2.27)

The Poincaré inequality implies that

1

2

d

dt

∫
Ω

|φ(t, x)− φ̄|2dx ≤ −Cp
∫

Ω

|φε(t, x)− φ̄|2dx, (2.28)

whence
‖φ(t, ·)− φ̄‖L2(Ω) ≤ e−Cpt‖φ0 − φ̄‖L2(Ω). (2.29)

Exercise 2.3 Strengthen this result to show that

‖φ(t, ·)− φ̄‖L∞(Ω) → 0 as t→ +∞. (2.30)

Note that the decay rate in (2.29) holds for all incompressible flows u(x), with the same
constant Cp – this is the analog of the universal L1 − L∞ decay estimate (2.10) that holds in
the whole space for all incompressible flows u(x). The same is true for (2.30) – the rate of
convergence is uniform in incompressible flows.

We would like to understand how the speed of convergence to the average in (2.30) depends
on the properties of the flow and determine which flows are particularly efficient in enhancing
the relaxation process. We will use the following ”fixed time” (no long time limit!) definition
as a measure of the flow efficiency in improving the relaxation of the solution to a uniform
state.

Definition 2.4 An incompressible flow u is relaxation enhancing if for all τ > 0 and δ > 0,
there exists ε(τ, δ) such that for any ε < ε(τ, δ) and any φ0 ∈ L2(Ω), with ‖φ0‖L2(Ω) = 1, we
have

‖φε(τ, ·)− φ‖L2(Ω) < δ, (2.31)

where φε(t, x) is the solution of (2.25) and φ the average of φ0.

Exercise 2.5 Show that the choice of the L2 norm in the definition is not essential and
can be replaced by any Lp-norm with 1 ≤ p ≤ ∞, without changing the class of relaxation
enhancing flows.
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Let us mention that there are various results on Gaussian and other estimates on the heat
kernel corresponding to the incompressible drift and diffusion on manifolds such as in the work
of Norris [27] and Franke [17], but these estimates lead to upper bounds on the convergence
rate to the equilibrium which essentially do not improve as ε → 0, and thus do not quite
address the effect of a strong flow. Such general estimates often deteriorate as the flow gets
stronger, which is exactly the opposite of what interests us. Surprisingly, there seems to be
no general method to incorporate the ”helpful” affects of the advection into the proofs of the
heat kernel estimates.

The original motivation for this definition came from the work of Fannjiang, Nonnemacher
and Wolowski [12, 13, 14], where relaxation enhancement was studied in the discrete setting
(see also [21] for related earlier references). In these papers, a unitary evolution step (a
certain measure preserving map on the torus) alternates with a dissipation step, which, for
example, acts simply by multiplying the Fourier coefficients by damping factors. The absence
of sufficiently regular eigenfunctions appears as a key for the enhanced relaxation in this
particular class of dynamical systems. In [12, 13, 14], the authors also provide finer estimates
of the dissipation time for particular classes of toral automorphisms – they estimate how many
steps are needed to reduce the L2 norm of the solution by a factor of two if the dissipation
strength is ε.

To understand why and when we expect relaxation enhancement, let us first look at the
time-splitting approximation for (2.25), in the spirit of [12, 13, 14]. Assume that ψ(t, x) solves
the advection equation

ψt +
2

ε
u · ∇ψ = 0, nτ ≤ t ≤ (n+ 1/2)τ, (2.32)

followed by the heat equation

ψt = 2∆ψ, (n+ 1/2)τ ≤ nτ, (2.33)

and then again (2.32) followed by (2.33), and so on. As the time step τ → 0, the solution
of this time-splitting scheme converges to the solution of (2.32). However, the smallness of τ
that is required to make the error small depends on ε in a way that is very difficult to control
efficiently. If we, in a cavalier fashion, instead fix the size of τ that is independent of ε, then
solution of the very first step is

ψ(τ/2, x) = φ0(X(τ/ε, x)), (2.34)

where X(t, x) is the trajectory

Ẋ(t) = −u(X), X(0) = x. (2.35)

If the flow of (2.35) is sufficiently complex and ε is sufficiently small, the points X(τ/ε, x)
and X(τ/ε, x′) may be very far apart, even if x and x′ are very close. This would make
the difference ψ(τ/2, x) − ψ(τ/2, x′) large, so that the function ψ(τ/2, x) given by (2.34)
would have a large gradient. This means that the initial condition for the second step in the
time-splitting scheme

ψt = 2∆ψ, τ/2 ≤ τ, (2.36)
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has a very large gradient. On the other hand, the dissipation identity for (2.36)

1

2

d

dt

∫
Ω

|ψ − ψ̄|2 = −2

∫
Ω

|∇ψ|2dx (2.37)

tells us that solutions with a large gradient and zero average decay very fast. Therefore, we
would deduce that for ”sufficiently mixing” flows u(x) solutions of this time splitting scheme
converge to their average very fast if ε is small. The problem with making this argument
rigorous is that, as we have mentioned, for the convergence of the time-splitting scheme to
the true solution we would need to take τ not fixed but τ � ε, making the interaction of
advection and diffusion non-trivial and very difficult to account for carefully. Nevertheless,
this intuition is correct. Here is the main result of this section.

Theorem 2.6 ([5]) A Lipschitz continuous incompressible flow u ∈ Lip(Ω) is relaxation
enhancing if and only if the operator u · ∇ has no eigenfunctions in H1(Ω), other than the
constant function.

As in the Berestycki-Hamel-Nadiarshvili theorem, the only information about the Laplacian
is in the requirement that the eigenfunction lies in the space H1(Ω): rough eigenfunctions
do not preclude relaxation enhancement. We will explain below how flows with such rough
eigenfunctions can be constructed, more or less explicitly.

The ”sufficiently mixing” property of u is encoded in this theorem in the same requirement
that it does not have an eigenfunction in H1(Ω). The reason for that condition can also be
seen from the approximation by the time-splitting scheme (2.34)-(2.36). The operator u · ∇
is skew-symmetric when u is divergence free:∫

Ω

(u · ∇η(x))η(x)dx = 0, (2.38)

for all η ∈ H1(Ω). Therefore, all eigenvalues λ = iω of u · ∇ are purely imaginary, and
if φ ∈ H1(Ω) is an eigenfunction:

u · ∇φ = iωφ, (2.39)

then solution of (2.34)

ψt +
2

ε
u · ∇ψ = 0, 0 ≤ t ≤ τ/2 (2.40)

with the initial condition ψ(0, x) = φ(x) satisfies

ψ(t, x) = e2iωt/εφ(x).

Therefore, the H1-norm of ψ(t, x) does not increase:

‖ψ(τ/2, x)‖H1(Ω) = ‖φ‖H1(Ω),

hence the advection step does not prepare an irregular initial condition for the heat equation
in the second step of the time-splitting scheme, and there is no intuitive reason to expect
relaxation enhancement when ε→ 0.

The discrepancy between Theorems 1.2 and 2.6 may seem surprising – after all, on the
physical level, the conditions for the relaxation enhancement and eigenvalue enhancement need
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not be very different but the eigenvalue enhancement (with the Dirichlet boundary conditions)
requires that the operator u · ∇ does not have first integrals while relaxation enhancement
(with the periodic or Neumann boundary conditions) requires that this operator does not
have eigenfunctions in H1(Ω) with any eigenvalue (the first integral corresponds to a zero
eigenvalue). This issue is resolved by the following

Proposition 2.7 Let u ∈ Lip(Ω). If φ ∈ H1(Ω) is an eigenfunction of the operator u · ∇
corresponding to an eigenvalue iω, ω ∈ R, then |φ| ∈ H1(Ω) and it is the first integral of u,
that is, u · ∇|φ| = 0.

Proof. The fact that |φ| ∈ H1 follows from the well-known properties of Sobolev functions
(see, for example, [11]). If φ(x) satisfies

u · ∇φ = iωφ

then
u · ∇|φ|2 = u · ∇(φφ̄) = φ(u · ∇φ̄) + φ̄(u · ∇φ) = −iωφφ̄+ iωφφ̄ = 0,

hence u · ∇|φ| = 0. �
Therefore, in the case of the Dirichlet boundary conditions, if φ ∈ H1

0 (Ω) is an eigenfunc-
tion of the operator u·∇ then |φ| is its first integral. Naturally, |φ| can not be equal identically
to a constant since φ satisfies the Dirichlet boundary conditions, as it lies in H1

0 (Ω), and φ 6≡ 0.
Moreover, if φ ∈ H1

0 (Ω) is a first integral: u ·∇φ = 0 then it is an eigenfunction corresponding
to eigenvalue λ = 0. Hence, for the Dirichlet boundary conditions the requirement that u · ∇
does not have a first integral in H1

0 (Ω) is equivalent to the condition that it does not have
eigenfunctions in H1

0 (Ω).
On the other hand, existence of mean zero H1(Ω) eigenfunctions, without imposing the

Dirichlet boundary condition, need not guarantee the existence of a mean zero first integral,
as can be seen from the following well-known example. Let α ∈ Rn be a constant vector gen-
erating an irrational rotation on the n-dimensional torus Ω, in the sense that the components
of α are independent over the rationals. The operator α · ∇ has eigenvalues 2πi(α · k), with
any k ∈ Zn. The corresponding eigenfunctions are

wk(x) = e2πik·x.

Their absolute value is 1, which is a first integral of α · ∇ but there are no non-constant first
integrals since α is irrational. Indeed, if there exists a function ψ ∈ L1(Ω) such that

ψ(x+ αt) = ψ(x), for all x ∈ Ω and all t ∈ R,

then the Fourier coefficients of the function ψ, defined by

ψ(x) =
∑
k∈Zn

e2πik·xψ̂k, ψ̂k =

∫
Ω

e−2πik·yψ(y)dy,

should satisfy
ψ̂k = e2πik·αtψ̂k, for all k ∈ Zn, and all t ∈ R.
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Therefore, either all ψ̂k = 0 for k 6= 0, or there exists k 6= 0 such that

k · α = 0.

The latter, however, is impossible since α is irrational. Hence, ψ̂k = 0 for all k 6= 0, and
the only first integrals of α · ∇ for an irrational α are constant functions. Thus, this flow is
not relaxation enhancing, since it has eigenfunctions in H1(Ω), even though it has no first
integrals other than a constant function.

Examples of relaxation enhancing flows

We now present some examples of relaxation enhancing flows on a torus, to assure the reader
that this class is not empty. We first describe flows with very rough eigenfunctions, none of
which lie in H1(Ω), and then flows that have no eigenfunctions – they are weakly mixing. In
both cases, the construction is based on a simple modification of a shear flow.

Flows with rough eigenfunctions

Here, we describe a smooth incompressible flow u(x, y), ∇ · u = 0, on a torus T2 that has
a purely discrete spectrum but none of the eigenfunctions are in H1(T2). The idea of the
construction goes back to Kolmogorov [24]. We present some but not all of the full technical
details of the construction [2, 20]. We denote by U t the flow on L2(T2) generated by u:

U tf(x) = f(X(t;x)),

where X(t, x) is the trajectory of

dX

dt
= −u(X), X(0;x) = x.

If ∇·u = 0, so that u(x) is incompressible, then U t is a map on C∞(T2) that preserves the L2-
norm. Hence, it can be extended to a unitary map on L2(T2). When we talk of the spectrum
of u · ∇, we mean the spectrum of the map U t: a function f ∈ L2(Ω) is an eigenfunction of
the flow u if for any t ∈ R there exists c(t) so that

U tf(x) = c(t)f(x). (2.41)

This definition is equivalent to the condition that

u · ∇f = λf. (2.42)

Indeed, the function g(t, x) = U tf(x) satisfies the advection equation

gt + u · ∇g = 0, g(0, x) = f(x). (2.43)

therefore, if (2.42) holds then
f(X(t, x)) = eλtf(x),
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so that (2.41) holds with c(t) = eλt. On the other hand, if (2.41) holds then the solution
to (2.43) has the form

g(t, x) = c(t)f(x).

Inserting this expression into (2.43) gives

ċ(t)f(x) + c(t)u(x) · ∇f(x) = 0.

Separation of variables now implies that there exists λ ∈ C such that (note that c(0) = 1
automatically)

c(t) = e−λt,

and
u(x) · ∇f(x) = λf(x).

Moreover, as the map x → X(t;x) is measure preserving for all t ∈ R, |c(t)| = 1 for all t,
whence λ is purely imaginary: λ = iω with a real number ω.

Exercise 2.8 The above argument made an implicit assumption that f ∈ C1(T2). Explain
what needs to be done to get rid of this assumption.

Here is the key result of this section.

Proposition 2.9 There exists a smooth incompressible (with respect to the Lebesgue measure)
flow u(x, y) on a two-dimensional torus T2 so that the corresponding unitary evolution U t has
a discrete spectrum on L2(T2) but none of the eigenfunctions of U t are in H1(T2).

Proof. The basic idea behind the construction is quite simple: we want to create a unidirec-
tional flow such that the speed with which the particles move along various lines is sufficiently
mismatched to create large gradients. If the speed were constant along each straight line tra-
jectory, that would be a shear flow. We will see that it is impossible so we will need the
speed to vary along the trajectory. This is incompatible with incompressibility but the flow
will preserve another measure that has a non-constant density with respect to the Lebesgue
measure. An appropriate mapping of a flow constructed this way will lead to an incomopress-
ible flow. On a slightly more technical level, we will look for a flow that can be mapped to a
constant flow ū = (α, 1) by a measure preserving map S with very low regularity properties.
Since the eigenfunctions of the constant flow are explicitly computable, we can compute the
eigenfunctions of the original flow. Due to the roughness of S, these will be highly irregular.

As outlined above, we will look at a time change of the constant linear translation flow,
of the form

dx

dt
=

α

F (x, y)
,
dy

dt
=

1

F (x, y)
, x(0) = x0, y(0) = y0, (2.44)

with an appropriately chosen α ∈ R and F (x, y). The trajectories of (2.44) are straight lines:

x(t)− αy(t) = x0 − αy0, for all t ≥ 0, (2.45)

and the time it takes for the trajectory to go from a point (x, 0) at height y = 0 to the
point (x+ αy, y), when the trajectory reaches the height y is

T (x, y) =

∫ y

0

F (x+ αz, z)dz. (2.46)
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Hence, the function F (x, y) is simply the local time change of the flow.
It would be very convenient to take F (x, y) in the form

F (x, y) = Q(x− αy), (2.47)

so that F (x, y) would be constant on each trajectory of the flow (2.44), and (2.44) would
really be a shear flow in the direction (α, 1). However, for F (x, y) as in (2.47) to be 1-periodic
both in x and y, the function Q(x) has to be both 1-periodic and α-periodic. If α is irrational,
this is impossible unless Q(x) ≡ const.

Thus, instead of trying (2.47), we use cut-offs to modify (2.47), setting

F (x, y) = m+ ψ(y)(Q(x− αy)−m), 0 ≤ x, y ≤ 1. (2.48)

Here, Q(x, y) > 0 is a 1-periodic function Q(x) > 0 such that∫ 1

0

Q(ξ)dξ = 1. (2.49)

A smooth cut-off function ψ(y) ≥ 0 in (2.48) is such that∫ 1

0

ψ(y)dy = 1, (2.50)

and

ψ(y) = 0 for 0 ≤ y ≤ y0 and y1 ≤ y ≤ 1 with y0 close to zero and y1 close to one. (2.51)

The constant m in (2.48) is such that 0 < m < minQ(s). The choice of m ensures that the
function F (x, y) > 0 – this is needed both to interpret F (x, y) as a local time change, and to
be able to divide by F (x, y) in (2.44). Note that the function F (x, y) is already 1-periodic
in x because Q(x) is 1-periodic. As, in addition, F (x, y) ≡ m near y = 0 and y = 1, we can
extend F (x, y) to the whole plane so that it is also periodic in y. The smoothness of Q(x)
and (2.51) imply that the extension is smooth. In addition, because of (2.49) and (2.50), the
total mass of F (x, y) is ∫ 1

0

∫ 1

0

F (x, y)dxdy = 1. (2.52)

In order to map the flow (2.44) to a constant speed flow (α, 1) moving along the same
straight lines, it is natural to attempt to define the transformation S : (x, y)→ (X, Y ) as

X̃(x, y) = x+ α(Ỹ (x, y)− y), Ỹ (x, y) = T (x− αy, y), (2.53)

with T (x − αy, y) as in (2.46) – the time it takes for the particle starting at t = 0 at the
point (x − αy, 0) at height y = 0 to reach the point (x, y) at the height y. This means
that the flow speed in the Ỹ -direction would be identically equal to one. In addition, the
transformation (2.53) satisfies x−αy = X̃−αỸ , thus it preserves the flow trajectories, which
are straight lines in the direction (α, 1). Hence, the particle would move with a constant speed
along the straight lines in the new variables, the speed in the Ỹ -direction would equal to one,
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and in the X̃-direction it would equal to α. However, the map (2.53) is not well-defined on
the torus T2: it is easy to see that Ỹ (x, y) is not 1-periodic in y, even modulo 1, because

Ỹ (x, y + 1)T (x− αy − α, y + 1) 6= T (x− αy, y) = Ỹ (x, y) mod 1. (2.54)

However, we do know that the increment

Ỹ (x, y + 1)− Ỹ (x, y) = T (x− αy − α, y + 1)− T (x− αy, y)

=

∫ y+1

0

F (x− αy − α + αz, z)dz −
∫ y

0

F (x− αy + αz, z)dz

=

∫ 1

0

F (x− αy − α + αz, z)dz

+

∫ y+1

1

F (x− αy − α + αz, z)dz −
∫ y

0

F (x− αy + αz, z)dz

=

∫ y

0

F (x− αy + αz, z + 1)dz −
∫ y

0

F (x− αy + αz, z)dz

+

∫ 1

0

F (x− αy − α + αz, z)dz =

∫ 1

0

F (x− αy − α + αz, z)dz

(2.55)

is constant on each line x − αy = const. Thus, in order to make Y (x, y) be 1-periodic in y,
we modify (2.53) as [24, 30]

X(x, y) = x+ α(Y (x, y)− y), Y (x, y) = T (x− αy, y) +R(x− αy), (2.56)

adding a compensatory shift R(x− αy) that is constant on each trajectory.
We claim that if we choose the 1-periodic function R(x) that satisfies the homology equa-

tion [2]
R(ξ + α)−R(ξ) = Q(ξ)− 1, ξ ∈ S1, (2.57)

then the map (2.56) is well-defined on T2. Note that for (2.57) to have a measurable solution
the function Q(ξ) should satisfy the normalization (2.49). For the moment, we will not worry
about the existence of R(x) and its properties but will come back to this soon.

Let us now check that, indeed, if R is a solution to the homology equation, then (2.56)
defines a mapping of the torus onto itself. The shift in x is simple to understand: the
function T (x, y) is clearly 1-periodic in x since F (x, y) is periodic in x, thus

Y (x+ 1, y) = Y (x, y), (2.58)

while
X(x+ 1, y) = 1 +X(x, y) = X(x, y) mod 1. (2.59)

To verify what happens under the shift y → y+1, we first make some preliminary observations.
The normalization (2.50) implies that

T (x, 1) =

∫ 1

0

F (x+ αz, z)dz =

∫ 1

0

[m+ ψ(z)(Q(x)−m)]dz = Q(x). (2.60)
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Now, it follows that

T (x, y + 1) =

∫ y+1

0

F (x+ αz, z)dz =

∫ 1

0

F (x+ αz, z)dz +

∫ y+1

1

F (x+ αz, z)dz

= Q(x) +

∫ y

0

F (x+ α + αz, z + 1)dz = Q(x) +

∫ y

0

F (x+ α + αz, z)dz

= Q(x) + T (x+ α, y).

(2.61)

Using this identity, and the homology equation (2.57) for the function R gives

Y (x, y + 1) = T (x− αy − α, y + 1) +R(x− αy − α) (2.62)

= T (x− αy, y) +Q(x− αy − α) +R(x− αy)−Q(x− αy − α) + 1

= T (x− αy, y) +R(x− αy) + 1 = Y (x, y) + 1 = Y (x, y) mod 1.

This computation is the reason why we have chosen R(x) as the solution to the homology
equation.

Finally, for X(x, y) we have

X(x, y+1) = x+α(Y (x, y+1)−y−1) = x+α(Y (x, y)+1−y−1) = x+α(Y (x, y)−y) = X(x, y).
(2.63)

We conclude from (2.58), (2.59), (2.62) and (2.63) that S is a well-defined mapping of T2 to
itself.

A key observation is that solutions R(x) of the homology equation (2.57) can be very
rough even if the function Q ∈ C∞(S1) is smooth. To see that, let us go back to (2.57):

R(ξ + α)−R(ξ) = Q(ξ)− 1, ξ ∈ S1. (2.64)

Note that it can be solved explicitly using the Fourier transform:

R(ξ) =
∑
n∈Z

R̂ne
2πinξ, (2.65)

with the Fourier coefficients

R̂n =
Q̂n

exp(2πiαn)− 1
. (2.66)

The denominators in (2.66) can be dangerously small if αn can be very close to an integer,
that is, if α is a Liouvillean irrational number. Recall that an irrational number α ∈ R is
called β-Diophatine if there exists a constant C such that for each k ∈ Z \ {0} we have

inf
p∈Z
|αk + p| ≥ C

|k|β+1
.

The vector α is Liouvillean if it is not Diophantine for any β > 0. The Liouvillean numbers
(and vectors) are the ones which can be very well approximated by rationals. The following
Proposition is a particular case of Theorem 4.5 of [20].
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Proposition 2.10 Let α be a Liouvillean irrational number. There exists a C∞(S1) func-
tion Q(ξ) so that the homology equation (2.57) has a unique (up to an additive constant)
measurable solution R(ξ) : S1 → R such that for any λ ∈ R\{0}, the function Rλ(ξ) = eiλR(ξ)

is discontinuous everywhere.

We will not prove this proposition here.
Without loss of generality we may assume that Q(ξ) given by Proposition 2.10 is positive:

otherwise, we choose M so that Q(ξ) +M > 1 and consider a rescaled function

QM(ξ) = (M +Q(ξ))/(M + 1).

Then, the function

RM(ξ) =
R(ξ)

M + 1

is the solution to (2.57) with QM in the right side and, of course, RM(ξ) has the same set
discontinuities as R(ξ).

Let us see what happens to the flow (2.44) under the map (2.56):

dx

dt
=

α

F (x, y)
,
dy

dt
=

1

F (x, y)
, x(0) = x0, y(0) = y0. (2.67)

Note that
x(t)− y(t) = x0 − αy0,

hence Y (t) is given by

Y (t) = T (x(t)− αy(t), y(t)) +R(x(t)− αy(t)) = T (x0 − αy0, y(t)) +R(x0 − αy0), (2.68)

so that

dY

dt
=
∂T (x0 − αy0, y(t))

∂y
ẏ(t) = F (x0 − αy0 + αy(t), y(t))

1

F (x(t), y(t)
(2.69)

= F (x(t)− αy(t) + αy(t), y(t))
1

F (x(t), y(t)
= 1.

On the other hand, for X(t) we have

dX

dt
= ẋ(t) + α(Ẏ (t)− ẏ(t)) =

α

F (x(t), y(t)
+ α− α

F (x(t), y(t)
= α. (2.70)

Therefore, the image of the flow (2.44) under S is simply the uniform flow:

dX

dt
= α,

dY

dt
= 1, (2.71)

as we desired. We will denote ū = (α, 1).
Note that the map S is invertible with a measurable inverse. Indeed, we have

X − αY = x− αy, (2.72)
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so that
Y = T (X − αY, y) +R(X − αY ). (2.73)

As the function F is strictly positive, the function T (x, y) is strictly increasing in y, so
that (2.73) has a unique solution y(X, Y ), and then (2.72) defines x(X, Y ) uniquely.

In addition, S is measure preserving in the following sense:∫
[S∗f ](x, y)F (x, y)dxdy =

∫
f(S(x, y))F (x, y)dxdy =

∫
f(X, Y )dXdY (2.74)

for any function f ∈ C(T2). In order to see that, let us introduce intermediate changes of
variables: S = S3 ◦ S2 ◦ S1, with S1 : (x, y)→ (z, y1) with

z = x− αy, y1 = y,

followed by S2 : (z, y1)→ (Z, y2)

Z = z, y2 = T (z, y1) +R(z),

and finally S3 : (Z, y2)→ (X, Y ), with

X = Z + αy2, Y = y2.

The corresponding Jacobians are:

J1 = J3 = 1, J2 =
∂T

∂y1

(z, y1) = F (z + αy1, y1) = F (x, y).

Therefore, the Jacobian of S is, indeed,

J = J1J2J3 = F (x, y),

hence (2.74) holds and S is measure-preserving.
Hence, S∗ may be extended as an operator L2(dxdy) → L2(dµ) with the preservation of

the corresponding norms. It follows that the unitary evolutions U t
w and U t

unif generated by
the flow w given by (2.67) and the uniform flow ū, respectively, are conjugated by means of
the unitary transformation

S∗ : L2(T2, dXdY )→ L2(T2, dµ),

that is, we have
U t
unif = [S∗]−1U t

wS
∗.

Therefore, U t
w and U t

unif have the same spectrum:

λnl = 2πinα + 2πil, l, n ∈ Z.

It also follows that the eigenfunctions of the operator Uw may be written as

ψwnl(x, y) = e2πinX(x,y)+2πilY (x,y) = e2πin(x−αy+αY (x,y))+2πilY (x,y) (2.75)

= e2πin(x−αy)e(2πinα+2πil)(T (x−αy,y)+R(x−αy)) = ζ(x, y)e(2πinα+2πil)R(x−αy)
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with a smooth function ζ(x, y) ∈ C∞([0, 1]2). Note that the function

ζ(x, y) = e2πin(x−αy)e(2πinα+2πil)T (x−αy,y)

is not periodic in y, even though the function ψwnl(x, y) is periodic, but that plays no role. In
order to verify that ψwnl are not in H1(T2) it suffices to check that the function

Θλ(x, y) = eiλR(x−αy) = Rλ(x− αy)

is not in H1([0, 1]2) for any real λ 6= 0. Here, Rλ(s) is as defined in Proposition 2.10. Since
the function Θλ(x, y) is constant on the lines

x− αy = const,

if it were in H1([0, 1]2), it would force the function Rλ(s) to be in H1(S1) and hence continu-
ous. However, Rλ is discontinuous everywhere according to Proposition 2.10. Therefore, the
eigenfunctions ψwnl cannot be in H1(T2) unless n = l = 0.

Finally, to obtain an incompressible flow (with respect to the standard Lebesgue measure)
with rough eigenfunctions, we introduce a smooth transformation of the torus

S̄ : (x, y)→ (p, q)

by setting

p =

∫ x

0

F̄ (s)ds, q =
1

F̄ (x)

∫ y

0

F (x, z)dz, where F̄ (x) =

∫ 1

0

F (x, z)dz.

Note that F̄ (x) is periodic, and

p(x+ 1, y) =

∫ x+1

0

F̄ (s)ds = p(x, y) +

∫ 1

0

F̄ (s)ds = p(x, y) + 1.

We also have q(x+ 1, y) = q(x, y) and

q(x, y + 1) =
1

F̄ (x)

∫ y+1

0

F (x, z)dz = q(x, y) + 1.

Therefore, indeed, S̄ is a mapping of T2 to itself. Since F (x, y) is positive, S̄ is one-to-one.
It is immediate to verify that it maps the measure dµ onto the Lebesgue measure dpdq – the
Jacobian of S̄ is F (x, y). Hence, the evolution group generated by the image u(p, q) of the
flow w(x, y) will have the same discrete spectrum as Uw. In addition, the eigenfunctions ψwnl
of Uw are the images of the eigenfunctions ψunl of u under S̄∗:

ψwnl(x, y) = (S̄∗ψunl)(x, y) = ψunl(S̄(x, y)).

As the functions ψwnl are not in H1(T2) and the map S̄ is smooth, it follows that all the
eigenfunctions of the incompressible flow u(p, q) are not in H1(T2). This finishes the proof of
Proposition 2.9. �
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Mixing and weakly mixing flows

An important class of relaxation enhancing flows is given by mixing and weakly mixing flows.
Let us recall how they are defined. A flow is mixing if the following condition holds: for any
two functions f, h ∈ L2(Ω) we have

lim
t→+∞

∫
Ω

f(X(t;x))h(x)dx =

∫
Ω

f(x)dx

∫
Ω

h(x)dx. (2.76)

The mixing condition (2.76) can be interpreted as follows. Let us start the dynamics

dX

dt
= −u(X), X(0;x) = x, (2.77)

at a random point x, equally distributed over the set Ω. The Lebesgue measure on Ω is
invariant under (2.77) since u is incompressible: for any measurable set A we have

P(X(t) ∈ A) =

∫
Ω

χA(X(t;x))dx =

∫
Ω

χA(x)dx = |A|.

Consider two measurable sets A ⊂ Ω and B ⊂ Ω, and the corresponding characteristic
functions h(x) = χA(x) and f(x) = χB(x). Then (2.76) says that

P (X(t) ∈ B and X(0) ∈ A)− |A| · |B| → 0, as t→ +∞, (2.78)

that is, the events {X(0) ∈ A} and {X(t) ∈ B} become asymptotically (as t → +∞)
independent – the fact that you end up in B does not depend on where you start.

We say that a flow u is ergodic if its only first integrals are constant functions. Mixing
implies ergodicity: if U tf(x) = f(x) for all t ∈ R then∫

Ω

f(X(t;x))h(x)dx =

∫
Ω

f(x)h(x)dx, for all t > 0, (2.79)

for all h ∈ L2(Ω) which is incompatible with mixing unless f is a constant function.
An incompressible flow u is called weakly mixing if the corresponding operators U t have

only continuous spectrum, that is, the only eigenfunctions of U t are constants. An equivalent
definition is that (2.76) holds on average, that is:

lim
T→+∞

1

T

∫ T

0

∣∣∣∣∫
Ω

f(X(t;x))h(x)dx−
∫

Ω

f(x)dx

∫
Ω

h(x)dx

∣∣∣∣ dt = 0, (2.80)

and the convergence in (2.78) holds for a set of times of density one.
Weakly mixing flows are ergodic: first integrals are eigenfunctions with eigenvalue zero

but weakly mixing flows are not necessarily mixing (see, for instance, [6]). On the other
hand, mixing flows are weakly mixing: essentially for the same reason that mixing flows are
ergodic – if

U tf = c(t)f, for all t ∈ R,
then ∫

Ω

f(X(t;x))h(x)dx = c(t)

∫
Ω

f(x)h(x)dx, for all t > 0, (2.81)

for all h ∈ L2(Ω) which is also incompatible with mixing unless f is a constant function.
A direct consequence of Theorem 2.6 is the following Corollary.
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Corollary 2.11 Any weakly mixing incompressible flow u ∈ Lip(Ω) is relaxation enhancing.

There exist fairly explicit examples of weakly mixing flows [2, 15, 16, 24, 26, 29], some of
which we briefly describe below but delving into the detailed constructions would take us too
far outside of the PDE realm.

Weakly mixing incompressible flows on a torus

According to Theorem 2.6, a flow u ∈ Lip(Ω) is relaxation enhancing if and only if it has no
eigenfunctions in H1(Ω). A natural class satisfying this condition is weakly mixing flows –
they have no eigenfunctions in L2(Ω) at all. Examples of weakly mixing flows on T2 go back to
von Neumann [26] and Kolmogorov [24]. The flow in von Neumann’s example is continuous,
in the construction suggested by Kolmogorov the flow is smooth. The technical details of
Kolmogorov’s construction have been carried out in [29], a good review of these results is [20].
More recently, Fayad [15] generalized this example to show that weakly mixing flows are
generic. To describe the result of [15] in more detail, let us recall that a vector α ∈ Rn is
called β-Diophatine if there exists a constant C such that for each k ∈ Zn \ {0} we have

inf
p∈Z
|〈α, k〉+ p| ≥ C

|k|n+β
.

The vector α is Liouvillean if it is not Diophantine for any β > 0. The Liouvillean numbers
(and vectors) are the ones which can be very well approximated by rationals.

In order to construct a weakly mixing flow on a torus Tn+1 we again start with a very
simple unidrectional flow that is a local time change of a linear translation flow:

dX

dt
=

α

F (X, Y )
,
dY

dt
=

1

F (X, Y )
, X(0) = x, Y (0) = y, (2.82)

with a smooth positive function F (x, y), x ∈ Tn, y ∈ T. We have seen that such flows have a
unique invariant measure

dµ = F (x, y)dxdy.

Given a smooth function f(x, y) , set

g(t, x, y) = U tf(x, y) = f(X(t, x, y), Y (t, x, y)).

This function satisfies the first order advection equation

∂g

∂t
− α

F (x, y)
· ∇xg −

1

F (x, y)

∂g

∂y
= 0, g(0, x, y) = f(x, y). (2.83)

Let us denote by Cr
+(Td) the set of positive Cr functions on the torus. Fayad’s result is

Proposition 2.12 ([15]) Assume that the irrational vector α ∈ Rd is not β-Diophantine, for
some β > 0. Then, for a dense Gδ set of functions F in Cβ+n

+ (Tn+1) the flow (2.82) is weakly
mixing (for the unique invariant measure F (x, y)dxdy).

The flows given by this proposition have an invariant measure F (x, y)dxdy and not the
Lebesgue measure dxdy , but as in the Kolmogorov example of a flow with rough eigenfunc-
tions, it is easy to produce a flow that preserves the Lebesgue measure.
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An abstract criterion for relaxation enhancement

Theorem 2.6 follows from a rather general abstract criterion, which connects us back to
the abstract set-up of (1.1). We start with a self-adjoint, positive, unbounded operator Γ
with a discrete spectrum on a separable Hilbert space H. In the setting of Theorem 2.6, Γ
corresponds to −∆, with H the subspace of mean zero functions on L2(Ω). We denote by

0 < λ1 ≤ λ2 ≤ . . .

the eigenvalues of Γ, and by ej the corresponding orthonormal eigenvectors forming a basis
in H. The (homogenous) Sobolev space Hm(Γ) associated with Γ is formed by all vectors

ψ =
∑
j

cjej ∈ H,

such that
‖ψ‖2

Hm(Γ) ≡
∑
j

λmj |cj|2 <∞.

The crucial assumption is that λn → +∞ – this makes the set where the dissipation by Γ
is not too large a compact subset of H. Recall that part of the definition of the discrete
spectrum includes the assumption that each λj has a finite multiplicity

We will denote the norm in the Hilbert space H by ‖ · ‖, the inner product in H by 〈·, ·〉,
the Sobolev spaces Hm(Γ) simply by Hm and the norms in these Sobolev spaces by ‖ · ‖m.
Note that H2(Γ) is the domain D(Γ) of Γ.

The analog of the operator u · ∇ in Theorem 2.6 (or, to be precise, of the self-adjoint
operator generating the unitary evolution group U t which is equal to iu · ∇ on H1(Ω)) is a
self-adjoint operator L such that, for any ψ ∈ H1(Γ) and t > 0 we have

‖Lψ‖H ≤ C‖ψ‖H1(Γ) and ‖eiLtψ‖H1(Γ) ≤ B(t)‖ψ‖H1(Γ) (2.84)

with both the constant C and the function B(t) <∞ independent of ψ and B(t) ∈ L2
loc[0,∞).

Here, eiLt is the unitary evolution group generated by the self-adjoint operator L. It is easy
to see that (2.84) holds when L = iu(x) · ∇ and Γ = −∆ on the n-dimensional torus Tn, as
long as u(x) is Lipschitz.

Exercise 2.13 Show that neither of the two conditions in (2.84) implies the other.

Consider a solution φε(t) of the rescaled in time version of (1.1):

d

dt
φε(t) =

i

ε
Lφε(t)− Γφε(t), φε(0) = φ0. (2.85)

We have the following existence and uniqueness result.

Proposition 2.14 Assume that for any ψ ∈ H1, we have

‖Lψ‖ ≤ C‖ψ‖1. (2.86)
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Then for any T > 0, there exists a unique solution φ(t) of the equation

dφ(t)

dt
= (iL− Γ)φ(t), φ(0) = φ0 ∈ H1.

This solution satisfies

φ(t) ∈ L2([0, T ], H2) ∩ C([0, T ], H1), φ̇(t) ∈ L2([0, T ], H). (2.87)

Exercise 2.15 Proposition 2.14 can be proved by standard methods using Galerkin approx-
imations and then establishing uniqueness and regularity. Fill in the details of the argument.

The main result of this section is the following abstract criterion for relaxation enhance-
ment.

Theorem 2.16 Let Γ be a self-adjoint, positive, unbounded operator with a discrete spec-
trum, and let a self-adjoint operator L satisfy (2.84). Then the following two statements are
equivalent:

(i) For any τ, δ > 0 there exists ε0(τ, δ) such that for any 0 < ε < ε0(τ, δ) and any φ0 ∈ H
with ‖φ0‖H = 1, the solution φε(t) of (2.85) satisfies ‖φε(τ)‖2

H < δ.

(ii) The operator L has no eigenvectors in H1(Γ).

Theorem 2.16 provides an answer to the general question of when a combination of fast
unitary evolution and dissipation produces a significantly stronger dissipative effect than dissi-
pation alone. It can be useful in any model describing a physical situation which involves fast
unitary dynamics with dissipation (or, equivalently, unitary dynamics with weak dissipation).

The proof of Theorem 2.16

Eigenvectors in H1(Γ) preclude relaxation enhancement

One direction in the proof of Theorem 2.16 is much easier: existence of H1(Γ) eigenvectors of
the operator L ensures existence of τ0, δ0 > 0 and φ0 with ‖φ0‖ = 1 such that ‖φε(τ0)‖ > δ0

for all ε – that is, if such eigenvectors exist, then the operator L is not relaxation enhancing.
Assume that the initial condition φ0 ∈ H1 for

d

dt
φε(t) =

i

ε
Lφε(t)− Γφε(t), φε(0) = φ0 (2.88)

is an eigenvector of L corresponding to an eigenvalue E, normalized so that ‖φ0‖ = 1:

Lφ0 = Eφ0. (2.89)

Take the inner product of (2.88) with φ0. We arrive at

d

dt
〈φε(t), φ0〉 =

iE

ε
〈φε(t), φ0〉 − 〈Γφε(t), φ0〉.
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This and the assumption φ0 ∈ H1 lead to∣∣∣∣ ddt (e−iEt/ε〈φε(t), φ0〉
)∣∣∣∣ ≤ 1

2

(
‖φε(t)‖2

1 + ‖φ0‖2
1

)
. (2.90)

The H1-norm in the right side of (2.90) is estimated by the following standard dissipation
lemma.

Lemma 2.17 Assume that (2.86) holds, then for any initial condition φ0 ∈ H with ‖φ0‖ = 1,
the solution φε(t) of (2.88) satisfies ∫ ∞

0

‖φε(t)‖2
1dt ≤

1

2
. (2.91)

Proof. Recall that if φ ∈ H1(Γ), then Γφ ∈ H−1(Γ) and 〈Γφ, φ〉 = ‖φ‖2
1. The fact that L is

self-adjoint allows us to compute

d

dt
‖φε‖2 = 〈φε, φεt〉+ 〈φεt , φε〉 = −2‖φε‖2

1. (2.92)

Integrating in time and taking into account the normalization of φ0, we obtain (2.91). �
Going back to (2.90), integrating in time and using (2.91) gives

|〈φε(t), φ0〉| ≥ ‖φ0‖2 − t

2
‖φ0‖2

1 −
1

2

∫ ∞
0

‖φε(t)‖2
1dt ≥

1

2
for 0 ≤ t ≤ τ =

1

27
‖φ0‖2

1. (2.93)

Thus, we have ‖φε(τ)‖ ≥ 1/2, uniformly in ε.

Outline of the argument

Even though the proof of the other direction in Theorem 2.16 is slightly technical, the general
idea of the proof is completely straightforward and has two intuitive ingredients. As in
Lemma 2.17, the dissipation balance for (2.85) is

1

2

d

dt
(‖φε‖2

H) = −〈Γφε, φε〉 = −‖φε(t)‖2
H1(Γ). (2.94)

Therefore, if ‖φ‖H1(Γ) is large on a time interval [t1, t2] then ‖φε(t)‖H will drop significantly
over this time interval. On the other hand, we will show that if ‖φε(τ)‖H1(Γ) is small at some
time τ then, because L does not have H1(Γ)-eigenfunctions, the free evolution

dφ0

dt
=
i

ε
Lφ0, φ0(τ) = φε(τ), t ≥ τ, (2.95)

will make the H1(Γ)-norm of φ0 very large in a time so short that the free evolution is close
to the true evolution over this short time interval. This means that the H1(Γ)-norm of the
solution φε(t) to the true problem (2.85) will also be very large. Hence, even if the H1(Γ)-
norm of φε drops, it will go back up again very quickly, forcing the dissipation to be large
most of the time, and reducing ‖φε(t)‖H very efficiently. Making this argument careful will
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take us some time, no pun intended. A crucial role is played by the fact that the unit ball in
the H1(Γ)-norm is compact in H.

It will be more convenient, in terms of notation, to rescale the time back by the factor ε−1,
arriving at the equation

dφ̃ε(t)

dt
= (iL− εΓ)φ̃ε(t), φ̃ε(0) = φ0. (2.96)

The dissipation estimate in Lemma 2.17 translates into

ε

∫ ∞
0

‖φ̃ε(t)‖2
1dt ≤

1

2
. (2.97)

A slight generalization of (2.97) is the following simple estimate, that we state here as a
separate lemma for convenience. This quantifies the idea that if the H1-norm of φ̃ε(t) stays
large on a time interval [a, b], then the H-norm of φ̃ε drops on that interval.

Lemma 2.18 Suppose that for all times t ∈ (a, b) we have ‖φ̃ε(t)‖2
1 ≥ N‖φ̃ε(t)‖2. Then the

following decay estimate holds:

‖φ̃ε(b)‖2 ≤ e−2εN(b−a)‖φ̃ε(a)‖2.

Next we need an estimate on the growth of the difference between solutions corresponding
to ε > 0 and ε = 0 in the H-norm. This will be crucial when we show that if the H1-norm
of φ̃ε(t0) is small at some time t0, it will have to become large again quickly,

Lemma 2.19 Assume, in addition to (2.86), that for any ψ ∈ H1 and t > 0 we have

‖eiLtψ‖1 ≤ B(t)‖ψ‖1 (2.98)

for some B(t) ∈ L2
loc[0,∞). Let φ0(t), φε(t) be solutions of

dφ0(t)

dt
= iLφ0(t),

dφ̃ε(t)

dt
= (iL− εΓ)φ̃ε(t),

satisfying φ0(0) = φε(0) = φ0 ∈ H1. Then we have

d

dt
‖φ̃ε(t)− φ0(t)‖2 ≤ 1

2
ε‖φ0(t)‖2

1 ≤
1

2
εB2(t)‖φ0‖2

1. (2.99)

Proof. Note that φ0(t) = eiLtφ0 by definition. Assumption (2.98) says that this unitary evo-
lution is bounded in the H1(Γ) norm. The regularity guaranteed by conditions (2.86), (2.98)
and Proposition 2.14 allows us to multiply the equation

d

dt
(φ̃ε − φ0) = iL(φ̃ε − φ0)− εΓφ̃ε

by φ̃ε − φ0. We obtain

d

dt
‖φ̃ε − φ0‖2 ≤ 2ε(‖φ̃ε‖1‖φ0‖1 − ‖φ̃ε‖2

1) ≤ 1

2
ε‖φ0‖2

1,

which is the first inequality in (2.99). The second inequality follows simply from the assump-
tion (2.98). �
The following corollary is immediate.
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Corollary 2.20 Assume that (2.86) and (2.98) are satisfied, and the initial data φ0 ∈ H1.
Then the solutions φ̃ε(t) and φ0(t) defined in Lemma 2.19 satisfy

‖φ̃ε(t)− φ0(t)‖2 ≤ 1

2
ε‖φ0‖2

1

∫ τ

0

B2(s) ds

for any time t ≤ τ.

We will now switch to the equivalent formulation (2.96), and drop the tilde (hoping that
this will not cause any confusion).

The RAGE theorem and the time spent in high modes

Our first task is to get good control of the free evolution eiLt, and show that, the H1 norm of
the solution to the free evolution problem can not stay small for too long. The first ingredient
that we need to recall is the so-called RAGE theorem, first proved by Ruelle [28] and later
generalized by Amrein and Georgescu in [1], and by Enss in [10].

Theorem 2.21 (RAGE) Let L be a self-adjoint operator in a Hilbert space H. Let Pc be the
spectral projection on its continuous spectral subspace, and C be any compact operator. Then
for any φ0 ∈ H, we have

lim
T→∞

1

T

T∫
0

‖CeiLtPcφ0‖2 dt = 0. (2.100)

The proof of the RAGE theorem can be found, for example, in [7]. A very naive but not
altogether useless way to think about the RAGE theorem is to take C as a projection on a
finite-dimensional space K. In that case, if (2.100) fails, then the operator L approximately
leaves K invariant, as the vector eiLtψ0, with ψ0 = Pcφ0, has a non-trivial component in K
for a non-trivial fraction of time. Hence, it is plausible that one could find an eigenvector
in K as some sort of a limit of eiLtψ0, which is not quite compatible with the fact that the
initial condition ψ0 lives in the continuous spectrum part of L.

An analyst perspective is that the RAGE theorem is a generalization of the following
classical theorem by Wiener.

Theorem 2.22 Let dµ be a finite measure on R with the Fourier transform

F (t) =

∫
R
e−ixtdµ(x).

Then

lim
T→+∞

1

T

∫ T

0

|F (t)|2dt =
∑
x∈R

|µ({x})|2. (2.101)

Note that the sum in the right side of (2.101) is finite since µ is a finite measure.
A direct consequence of the RAGE theorem is the following lemma. Recall that we denote

by 0 < λ1 ≤ λ2 ≤ . . . the eigenvalues of the operator Γ and by e1, e2, . . . the corresponding
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orthonormal eigenvectors, and that each λj has a finite multiplicity. Let us denote by PN the
orthogonal projection on the subspace spanned by the first N eigenvectors e1, . . . , eN and by

S = {φ ∈ H : ‖φ‖ = 1}

the unit sphere in H. The following lemma shows that if the initial condition lies in the
continuous spectrum of L, then the L-evolution will spend most of time in the higher modes
of Γ.

Lemma 2.23 Let K ⊂ S be a compact set. For any N, σ > 0, there exists Tc(N, σ,K) such
that for all T ≥ Tc(N, σ,K) and any φ ∈ K, we have

1

T

T∫
0

‖PNeiLtPcφ‖2 dt ≤ σ. (2.102)

The key observation of Lemma 2.23 is that the time Tc(N, σ,K) is uniform for all φ ∈ K.
Proof. Since PN is compact, RAGE theorem implies that for any vector φ ∈ S, there exists

a time Tc(N, σ, φ) that depends on the function φ such that (2.102) holds for T > Tc(N, σ, φ).
To prove the uniformity in φ, note that the function

f(T, φ) =
1

T

T∫
0

‖PNeiLtPcφ‖2 dt

is uniformly continuous on S for all T (with constants independent of T ):

|f(T, φ)− f(T, ψ)| ≤ 1

T

T∫
0

∣∣‖PNeiLtPcφ‖ − ‖PNeiLtPcψ‖∣∣ (‖PNeiLtPcφ‖+ ‖PNeiLtPcψ‖
)
dt

≤ (‖φ‖+ ‖ψ‖) 1

T

T∫
0

‖PNeiLtPc(φ− ψ)‖dt ≤ 2‖φ− ψ‖.

Now, existence of a uniform Tc(N, σ,K) follows from compactness of K by standard argu-
ments. �

The H1-norm of free solutions with rough eigenfunctions

We also need a lemma which controls from below the growth of the H1 norm of free solutions
corresponding to rough eigenfunctions. We denote by Pp the spectral projection on the pure
point spectrum of the operator L.

Lemma 2.24 Assume that no eigenvectors of the operator L belong to H1(Γ). Let K ⊂ S be
a compact set, and K1 = {φ ∈ K : ‖Ppφ‖ ≥ 1/2}. Then for any B > 0 we can find Np(B,K)
and Tp(B,K) such that for any N ≥ Np(B,K), any T ≥ Tp(B,K) and any φ ∈ K1, we have

1

T

T∫
0

‖PNeiLtPpφ‖2
1 dt ≥ B. (2.103)
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Note that unlike in (2.102), we have the H1 norm in (2.103).
Proof. The set K1 may be empty, in which case there is nothing to prove. Otherwise, let

us denote by Ej the eigenvalues of L (distinct, without repetitions) and by Qj the orthogonal
projection on the space spanned by the eigenfunctions corresponding to Ej. First, let us show
that for any B > 0 there is N(B,K) such that for any φ ∈ K1 we have∑

j

‖PNQjφ‖2
1 ≥ 2B (2.104)

if N ≥ N(B,K). It is clear that for each fixed φ with Ppφ 6= 0 we can find N(B, φ) so
that (2.104) holds, since by assumption Qjφ does not belong to H1 whenever Qjφ 6= 0.
Assume that N(B, φ) cannot be chosen uniformly for φ ∈ K1. This means that for any n,
there exists φn ∈ K1 such that ∑

j

‖PnQjφn‖2
1 < 2B.

Since K1 is compact, we can find a subsequence nl such that φnl converges to φ̄ ∈ K1 in H
as nl →∞. For any N and any nl1 > N we have∑

j

‖PNQjφ̄‖2
1 ≤

∑
j

‖Pnl1Qjφ̄‖2
1 ≤ lim inf

l→∞

∑
j

‖Pnl1Qjφnl‖2
1. (2.105)

The last inequality follows by Fatou’s Lemma from the convergence of φnl to φ̄ in H and the
fact that

‖Pnl1Qjψ‖1 = λ1/2
nl1
‖Qjψ‖ ≤ λ1/2

nl1
‖ψ‖,

for any nl1 . The expression in the right hand side of (2.105) is less than or equal to

lim inf
l→∞

∑
j

‖PnlQjφnl‖2
1 ≤ 2B.

Thus, we have ∑
j

‖PNQjφ̄‖2
1 ≤ 2B for any N,

a contradiction since φ̄ ∈ K1. As a consequence, there exists N(B,K) so that (2.104) holds
for all N ≥ N(B,K) and all φ ∈ K1.

Next, take φ ∈ K1 and consider

1

T

T∫
0

‖PNeiLtPpφ‖2
1 dt =

∑
j,l

ei(Ej−El)T − 1

i(Ej − El)T
〈ΓPNQjφ, PNQlφ〉. (2.106)

In (2.106), we set
ei(Ej−El)T − 1

i(Ej − El)T
≡ 1 if j = l.

Notice that the sum in (2.106) converges absolutely. Indeed,

PNQjφ =
N∑
i=1

〈Qjφ, ei〉ei,
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and 〈Γei, ek〉 = λiδik, therefore

〈ΓPNQjφ, PNQlφ〉 =
N∑
i=1

λi〈Qjφ, ei〉〈Qlφ, ei〉.

Hence, the sum in the right side of (2.106) does not exceed

N∑
i=1

λi
∑
j,l

|〈Qjφ, ei〉〈Qlφ, ei〉| ≤ λN

N∑
i=1

∑
j,l

‖Qjφ‖‖Qlφ‖|〈Qjφ/‖Qjφ‖, ei〉〈Qlφ/‖Qlφ‖, ei〉|

≤ λN

N∑
i=1

∑
j,l

‖Qlφ‖2|〈Qjφ/‖Qjφ‖, ei〉|2 ≤ λNN. (2.107)

The second step above is obtained using the Cauchy-Schwartz inequality, and the third
since ‖φ‖ = ‖ei‖ = 1. Then for each fixed N, it follows from the dominated convergence
theorem that the expression in (2.106) converges to∑

j

‖Γ1/2PNQjφ‖2 =
∑
j

‖PNQjφ‖2
1

as T →∞.
Now assume N ≥ Np(B,K) ≡ N(B,K), so that (2.104) holds. We claim that we can

choose Tp(B,K) so that for any T ≥ Tp(B,K) we have∣∣∣∣∣ 1

T

∫ T

0

‖PNeiLtPpφ‖2
1 dt−

∑
j

‖PNQjφ‖2
1

∣∣∣∣∣ =

∣∣∣∣∣∑
l 6=j

ei(Ej−El)T − 1

i(Ej − El)T
〈ΓPNQjφ, PNQlφ〉

∣∣∣∣∣ ≤ B

(2.108)
for all φ ∈ K1. Indeed, this follows from convergence to zero for each individual φ as T →∞,
compactness of K1, and uniform continuity of the expression in the middle of (2.108) in φ for
each T (with constants independent of T ). The latter is proved by estimating the difference
of these expressions for φ, ψ ∈ K1 and any T by∑

l 6=j

|〈ΓPNQjφ, PNQl(φ− ψ)〉|+ |〈ΓPNQj(φ− ψ), PNQlψ〉|,

which is then bounded by 2λNN‖φ − ψ‖ using the trick from (2.107). Combining (2.104)
and (2.108) proves the lemma. �

The end of the proof of Theorem 2.16

We can now complete the proof of Theorem 2.16. Recall that given any τ, δ > 0, we need to
show the existence of ε0 > 0 such that if ε < ε0, then solution of the rescaled problem

dφε(t)

dt
= (iL− εΓ)φε(t), φ̃ε(0) = φ0. (2.109)

satisfies ‖φε(τ/ε)‖ < δ for any initial condition φ0 ∈ H, ‖φ0‖ = 1. Let us recall again the
idea of the proof. Lemma 2.18 tells us that if the H1 norm of the solution φε(t) is large,
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relaxation is happening quickly. If, on the other hand, ‖φε(τ0)‖2
1 ≤ λM‖φε(τ0)‖2, where M is

to be chosen depending on τ and δ, then the set of all unit vectors satisfying this inequality
is compact, and so we can apply Lemma 2.23 and Lemma 2.24. Using these lemmas, we will
show that even if the H1 norm is small at some moment of time τ0, it will be large on average
in some time interval after τ0. Enhanced relaxation will follow.

We now provide the details. Since Γ is an unbounded positive operator with a discrete
spectrum, we know that its eigenvalues λn → ∞ as n → ∞. Let us choose M large enough,
so that

e−λM τ/80 < δ.

Define the sets
K = {φ ∈ S : ‖φ‖2

1 ≤ λM} ⊂ S,

and as before,
K1 = {φ ∈ K : ‖Ppφ‖ ≥ 1/2}.

It is easy to see that K is compact. Choose N so that N ≥ M and N ≥ Np(5λM , K) from
Lemma 2.24. Define

τ1 ≡ max
{
Tp(5λM , K), Tc(N,

λM
20λN

, K)
}
,

with Tp from Lemma 2.24, and Tc from Lemma 2.23. Finally, choose ε0 > 0 so that τ1 < τ/2ε0,
and

ε0

τ1∫
0

B2(t) dt ≤ 1

20λN
, (2.110)

where B(t) is the function from condition (2.98).
Take any ε < ε0. If we have

‖φε(s)‖2
1 ≥ λM‖φε(s)‖2

for all s ∈ [0, τ/ε], then Lemma 2.18 implies that

‖φε(τ/ε)‖ ≤ e−2λM τ ≤ δ,

by the choice of M and we are done. Otherwise, let τ0 be a time in the interval [0, τ/ε] such
that

‖φε(τ0)‖2
1 ≤ λM‖φε(τ0)‖2. (2.111)

It may be that τ0 = 0, of course. Here is a key lemma that reflects the idea that the H1-
norm of the solution can not stay small for too long: even if it is small at a time τ0 then the
dissipation on the the time interval [τ0, τ0 + τ1] will not be small.

Lemma 2.25 If (2.111) holds at τ0, then

‖φε(τ0 + τ1)‖2 ≤ e−λMετ1/20‖φε(τ0)‖2. (2.112)

Before we prove Lemma 2.25, we explain how it implies the conclusion of Theorem 2.16 for
the case when L has no eigenfunctions in H1(Γ). First, if (2.111) holds then we have (2.112).
On the other hand, for any interval I = [a, b] such that

‖φε(t)‖2
1 ≥ λM‖φε(t)‖2 for all a ≤ t ≤ b,
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we have by Lemma 2.18 that

‖φε(b)‖2 ≤ e−2λMε(b−a)‖φε(a)‖2. (2.113)

Combining the decay factors gained from (2.112) and (2.113), and since τ1 < τ/(2ε), we find
that there is τ2 ∈ [τ/(2ε), τ/ε] such that

‖φε(τ2)‖2 ≤ e−λM τ/40 < δ2

by our choice of M. Then (2.92) gives ‖φε(τ/ε)‖ ≤ ‖φε(τ2)‖ < δ, finishing the proof of
Theorem 2.16, except for the proof of Lemma 2.25. �

The proof of Lemma 2.25: tracking the full dynamics with free evolution

For the sake of simplicity, we will denote φε(τ0) = φ0. On the interval [τ0, τ0 + τ1], consider
the function φ0(t) satisfying

d

dt
φ0(t) = iLφ0(t), φ0(τ0) = φ0.

Note that by the choice of ε0, (2.110), (2.111), and Corollary 2.20, we have

‖φε(t)− φ0(t)‖2 ≤ λM
40λN

‖φ0‖2 (2.114)

for all t ∈ [τ0, τ0 + τ1]. Split
φ0(t) = φc(t) + φp(t),

where φc and φp also solve the free equation

d

dt
φc,p(t) = iLφc,p(t),

but with initial conditions Pcφ0 and Ppφ0 at t = τ0, respectively. We will now consider two
cases.

Case I. Assume that

‖Pcφ0‖2 ≥ 3

4
‖φ0‖2,

or, equivalently, ‖Ppφ0‖2 ≤ (1/4)‖φ0‖2. Note that since φ0/‖φ0‖ ∈ K by the definition of τ0,
we can apply Lemma 2.23. Our choice of τ1 implies that

1

τ1

τ0+τ1∫
τ0

‖PNφc(t)‖2 dt ≤ λM
20λN

‖φ0‖2. (2.115)

By elementary considerations, we obtain

‖(I−PN)φ0(t)‖2 ≥ 1

2
‖(I−PN)φc(t)‖2−‖(I−PN)φp(t)‖2 ≥ 1

2
‖φc(t)‖2−1

2
‖PNφc(t)‖2−‖φp(t)‖2.
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Taking into account the fact that the free evolution eiLt is unitary, λN ≥ λM , our assumptions
on ‖Pc,pφ0‖ and (2.115), we obtain

1

τ1

τ0+τ1∫
τ0

‖(I − PN)φ0(t)‖2 dt ≥ 1

10
‖φ0‖2. (2.116)

Using (2.114), we conclude that

1

τ1

τ0+τ1∫
τ0

‖(I − PN)φε(t)‖2 dt ≥ 1

40
‖φ0‖2. (2.117)

This estimate implies that
τ0+τ1∫
τ0

‖φε(t)‖2
1 dt ≥

λNτ1

40
‖φ0‖2. (2.118)

Combining (2.118) with (2.92) yields

‖φε(τ0 + τ1)‖2 ≤
(

1− λNετ1

20

)
‖φε(τ0)‖2 ≤ e−λNετ1/20‖φε(τ0)‖2. (2.119)

This finishes the proof of (2.112) in the first case since λN ≥ λM .
Case II. Now suppose that ‖Ppφ0‖2 ≥ (1/4)‖φ0‖2. In this case φ0/‖φ0‖ ∈ K1, and we can

apply Lemma 2.24. In particular, by the choice of N and τ1, we have

1

τ1

τ0+τ1∫
τ0

‖PNφp(t)‖2
1 dt ≥ 5λM‖φ0‖2. (2.120)

Since (2.115) still holds because of our choice of τ0 and τ1, it follows that

1

τ1

τ0+τ1∫
τ0

‖PNφc(t)‖2
1 dt ≤

λM
20
‖φ0‖2. (2.121)

Note that the H-norm in (2.115) has been replaced in (2.121) by the H1-norm at the expense
of the factor of λN . Together, (2.120) and (2.121) imply

1

τ1

τ0+τ1∫
τ0

‖PNφ0(t)‖2
1 dt ≥ 2λM‖φ0‖2. (2.122)

Finally, (2.122) and (2.114) give

τ0+τ1∫
τ0

‖PNφε(t)‖2
1 dt ≥

λMτ1

2
‖φ0‖2 (2.123)

since ‖PNφε − PNφ0‖2
1 ≤ λN‖φε − φ0‖2. As before, (2.123) implies

‖φε(τ0 + τ1)‖2 ≤ e−λMετ1‖φε(τ0)‖2, (2.124)

finishing the proof of (2.112) in the second case.
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3 The Fokker-Planck equations

We now start mostly following Villani’s book [31]. The reader should consult this book as
the primary source, both for a better presentation and to see more details and more general
results. We will also occasionally make stronger assumptions than in [31], to take some small
short-cuts. Finally, the reader should be warned that misprints and mistakes have likely
creeped in occasionally. These are not Villani’s, nor are some of the speculative comments.

The spatial Fokker-Planck equation

The Fokker-Planck equations describe the evolution of a particle in an external potential field.
They can be posed either in the physical space, only accounting for the particle position, or
in the phase space, keeping track of the particle density both in terms of its position in the
physical space and its momentum, or velocity.

The spatial Fokker-Planck equation describes a particle that performs a Brownian motion
in addition to following the gradient of an external potential field V (x). Then the forward
and backward Kolmogorov equations are, respectively:

φt = ∆φ−∇V (x) · ∇φ, φ(0, x) = φ0(x), (3.1)

and
ρt = ∆ρ+∇ · (ρ∇V (x)), ρ(0, x) = ρ0(x). (3.2)

Equation (3.2) conserves the total mass of the particle density ρ(t, x):∫
ρ(t, x)dx =

∫
ρ0(x)dx. (3.3)

To see the corresponding conservation law for φ(t, x), it is convenient to re-write (3.1) in the
form

φt = eV (x)∇ · (e−V (x)∇φ) (3.4)

which makes it clear that ∫
φ(t, x)e−V (x)dx =

∫
φ0(x)e−V (x)dx. (3.5)

The physical reason for (3.5) is that, as it is easy to see, the function

ρ∞(x) = e−V (x) (3.6)

is an equilibrium solution to the density equation (3.2). Thus, (3.5) simply says that the ex-
pectation of the observable φ0(X(t)) with respect to the invariant measure ρ∞(x) is preserved
by the evolution. Furthermore, if the potential V (x) is sufficiently confining, in the sense that
it grows sufficiently rapidly at infinity, and

Z =

∫
e−V (x)dx, (3.7)
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is finite, then ρ∞(x) can be normalized to make it be a probability density:

ρ̄∞(x) =
e−V (x)

Z
, Z =

∫
e−V (x)dx. (3.8)

The invariant density encodes the confinement effect of the potential: because of the diffusion,
the particle does not just concentrate at the minimum of V (x) but it is more likely to be in
the region where V (x) is not too large.

A fundamental question for the dynamics is the convergence, and the rate of convergence,
of the solution ρ(t, x) with the initial condition ρ0 ∈ L1(Rd) to the corresponding multiple
of the equilibrium solution ρ̄∞(x). This is very much related in spirit to the question of
relaxation to the mean we have considered in the previous sections.

Let us also mention another reason behind (3.5): if φ(t, x) solves (3.1), then a straightfor-
ward calculation shows that

ρ(t, x) = e−V (x)φ(t, x) (3.9)

is a solution to (3.2), so that (3.3) and (3.5) are equivalent. This connection between the
solutions to the forward and backward Kolmogorov equations is a very convenient tool. One
should always keep in mind that the function exp(V (x)) blows up at infinity very fast, which
limits some of the information that can be inferred from (3.9) but it is still often useful.

The kinetic Fokker-Planck equation

The kinetic version of the Fokker-Planck equation considers evolution of the particles not just
in terms of their physical position but in the phase space: particles are described by their
position x ∈ Rd and velocity v ∈ Rd. If everything is uniform in the physical space, and there
is no external potential, then the forward and backward Kolmogorov equations purely in the
space of velocities are, respectively:

ht = ∆vh− v · ∇vh, (3.10)

and
ft = ∆vf +∇v · (vf). (3.11)

It is easy to see that the Maxwellian

M(v) =
1

(2π)n/2
e−|v|

2/2 (3.12)

is a stationary solution to (3.11) and, as in (3.9), a slightly lengthy but straightforward
computation shows that if h(t, v) is a solution to (3.10), then

f(t, v) = M(v)h(t, v) (3.13)

is a solution to (3.11). This relation is completely analogous to (3.9) that holds for the spatial
Fokker-Planck equation, now with the confining potential V0(v) = |v|2, and the Maxwellian
being the corresponding invariant density. This model, with the Maxwellian serving as an
equilibrium, is motivated by the standard notion of temperature and kinetic energy in the
theory of gases.
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In the presence of an external potential V (x), the problem is no longer spatially homoge-
neous, and the forward and backward Kolmogorov equations become

ht + v · ∇xh−∇xV (x) · ∇vh = ∆vh− v · ∇vh, (3.14)

and
ft + v · ∇xf −∇xV (x) · ∇vf = ∆vf +∇v · (vf). (3.15)

Note that there is no diffusion in the spatial variable, the particle simply has velocity v
in the x-variable. Equations (3.14) and (3.15) are no longer a gradient flow as the spatial
Fokker-Planck equation: without the right side, their left side alone gives

ft + v · ∇xf −∇xV (x) · ∇vf = 0, (3.16)

which is the Liouville equation corresponding to the classical Hamiltonian

E(x, v) =
|v|2

2
+ V (x). (3.17)

In particular, any function of the form

f(x, v) = G(E(x, v)), (3.18)

with a smooth function G(E) is a steady solution to (3.17). In a sense, the role of the diffusion
operator in the right side of (3.15) is precisely to choose one specific invariant measure out of
the inifinitely many possibilities.

Our goal will be to understand the long time behavior of the solutions to (3.14) and (3.15),
and for that we need to look first at the equilibrium solutions. The steady solutions to (3.14)
are simply constants: h∞(t, x) ≡ 1 and its multiples. The equilibrium solution for (3.15) is no
longer the Maxwellian M(v) but the product of the Maxwellian and the equilibrium density
that appears in (3.6):

f∞(x, v) = M(v) exp{−V (x)}, (3.19)

or its normalized version

f̄∞(x, v) =
M(v)

Z
exp{−V (x)}, Z =

∫
exp{−V (x)}dx. (3.20)

Once again, if h(t, x) is a solution to (3.14), then

f(t, x) = f∞(x, v)h(t, x) (3.21)

is a solution to (3.20), an analog to (3.9). Interestingly, f∞(x, v) is in the kernel of both sides
of (3.15):

∆vf∞ +∇v · (vf∞) = 0, (3.22)

and
v · ∇xf∞ −∇xV (x) · ∇vf∞ = 0. (3.23)

In particular, one can write f̄∞(x, v) as

f̄∞(x, v) =
1

(2π)n/2Z
e−E(x,v), (3.24)
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to see that it is of the form (3.18). Another small observation is that the marginal distribution
of f̄∞(x, v) in v is ρ̄∞(x), defined in (3.8):

ρ∞(x) =
1

Z
e−V (x) =

∫
f̄∞(x, v)dv. (3.25)

This is a direct connection of the gradient flow of the spatial Fokker-Planck equation, and
the randomly perturbed Hamiltonian flow described by the kinetic Fokker-Planck equation.

To see the analogs of the self-adjoint form (3.4) and conservation law (3.5) we re-write (3.14)
as

ht +∇vE(x, v) · ∇xh−∇xE(x, v) · ∇vh = eE(x,v)∇v · (e−E(x,v)∇vh), (3.26)

or, equivalently, as

∂t
(
e−E(x,v)h

)
−∇v ·

(
e−E(x,v)∇xh

)
+∇x ·

(
e−E(x,v)∇vh

)
= ∇v · (e−E(x,v)∇vh). (3.27)

It follows immediately that we have the conservation law∫
h(t, x)dµ =

∫
h0(x)dµ. (3.28)

Here, we have introduced the probability measure

dµ = f̄∞(x, v)dxdv, (3.29)

with f̄∞(x, v) as in (3.20). As a consequence of (3.28) and the fact that the steady solutions
to (3.14) are constants, it is natural to conjecture that

h(t, x)→ h̄ =

∫
h0(x, v)dµ as t→ +∞. (3.30)

The goal of this section is to prove this convergence. Before we start, let us note that such
result can only come about from the interaction between the diffusive behavior in v in the
right side of (3.14), and the transport part in its left side. In particular, the transport part
by itself is a first order operator and does not induce any regularization effect that would be
necessary to obtain convergence to a constant. This is a hypoelliptic effect: a combination of
a diffusion in the velocity variable and transport in the spatial variable leads to regularization
in space and long time convergence to the invariant measure.

To state the convergence theorem, we will denote by H1(µ) the Sobolev space:

‖h‖2
H1(µ) =

∫
(|∇xh(x, v)|2 + |∇vh(x, v)|2)µ(dxdv). (3.31)

We will assume that the potential V (x) is in C2(Rd) and grows faster than linearly at infinity,
in the sense that

|∇V (x)| → +∞ as |x| → +∞. (3.32)

A growth condition of some kind is needed to make sure that V (x) is sufficiently confining.
In addition, we assume that there exists C > 0 so that

|D2V (x)| ≤ C(1 + |∇V (x)|) for all x ∈ Rd. (3.33)
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These conditions are not optimal but sufficiently general to make things interesting. Roughly
speaking, they mean that V (x) grows super-linearly but not faster than exponentially at
infinity. The reader may think of algebraically growing V (x) ∼ |x|α with α > 1 as |x| → +∞.
We will show the following result on the long time behavior of the solutions to (3.14).

Theorem 3.1 There exist C > 0 and λ > 0 so that for all h0 ∈ H1(dµ), we have

‖h(t, x)− h̄‖H1(µ) ≤ Ce−λt‖h0‖H1(µ). (3.34)

The hypocoercivity structure of the kinetic Fokker-Planck equaiton

As we have mentioned, the main difficulty in the proof of Theorem 3.1, and especially in
obtaining an exponential rate of convergence to the equilibrium, is the lack of ellipticity:
there is no diffusion in x in (3.14), but only in v. An elegant way to deal with this issue is
given by the hypocoercivity tools developed by Villani and collaborators. This approach will
utilize a special structure of (3.14):

ht + v · ∇xh−∇xV (x) · ∇vh = ∆vh− v · ∇vh. (3.35)

We will write (3.35) as
∂h

∂t
+ Lh = 0, (3.36)

with the operator

Lh = −∆vh+ v · ∇vh+ v · ∇xh−∇xV (x) · ∇vh. (3.37)

To see this structure, we will need some preliminary computations. Note that the preceding
discussion shows that the natural setting for this problem is in the weighted Lp(µ) spaces, and
not in Lp(Rd). Accordingly, let us compute the adjoint of the operator Ak = ∂vk on L2(µ):

〈Akf, g〉L2(µ) =

∫
(∂vkf(x, v))g(x, v)f̄∞(x, v)dxdv

= −
∫
f(x, v)(∂vkg(x, v))f̄∞(x, v)dxdv −

∫
f(x, v)g(x, v)∂vk f̄∞(x, v)dxdv

= −〈f, Akg〉L2(µ) + 〈f, vkg〉L2(µ),

(3.38)

so that
A∗kg = −∂vkg + vkg, (3.39)

and
A∗kAkg = (−∂vk + vk)∂vkg = −∆vg + v · ∇vg. (3.40)

Here, and below we use the summation convention – the repeated indices are summed over,
unless specified otherwise. Hence, we may write the operator L as

Lg = A∗kAkg +Bg, (3.41)

with
Bg(x) = v · ∇xg −∇xV (x) · ∇vg. (3.42)
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As in (3.27) we may re-write B as

Bg(x) = v · ∇xg −∇xV (x) · ∇vg = ∇vE(x, v) · ∇xg −∇xE(x, v) · ∇vg

= eE(x,v)
[
−∇v · (e−E(x,v)∇xg) +∇x · (e−E(x,v)∇vg)

]
=

1

ρ̄∞(x, v)

[
−∇v · (ρ̄∞(x, v)∇xg) +∇x · (ρ̄∞(x, v)∇vg)

]
.

(3.43)

As a consequence, we have

〈Bg, f〉L2(µ) =

∫ [
−∇v · (ρ̄∞(x, v)∇xg) +∇x · (ρ̄∞(x, v)∇vg)

]
f(x, v)dxdv

=

∫ [
−∇x · (ρ̄∞(x, v)∇vf) +∇v · (ρ̄∞(x, v)∇xf)

]
g(x, v)dxdv

= −〈g,Bf〉L2(µ),

(3.44)

so that the operator B is anti-symmetric: B∗ = −B. Thus, the operator L has the form (3.41)
with an anti-symmetric operator B. This general structure will be our starting point but it
will be useful first to get some other algebraic properties.

It is natural to understand the hypoellipticity of the operator L first, before discussing
the long time behavior. For that we need to compute the commutators of Ak and B. First,
note that, with ∂k = ∂vk , we have

[Ak, Am] = [∂k, ∂m] = 0, (3.45)

and

[Ak, A
∗
m]g = (AkA

∗
m − A∗mAk)g = ∂k(−∂m + vm)g − (−∂m + vm)∂kg = δmkg, (3.46)

so that
[Ak, A

∗
m] = δmkI. (3.47)

Next, we compute, with summation over the repeated indices, the commutator

Ckg = [Ak, B]g = (AkB −BAk)g
= ∂vk(vm∂xmg − [∂xmV ]∂vmg)− (vm∂xm − [∂xmV ]∂vm)∂vkg = δmk∂xmg = ∂xkg,

(3.48)

hence
Ck = [Ak, B] = ∂xk . (3.49)

The commutator Ck is essential here: it brings the differentiation in x that is missing in Ak.
This will be absolutely crucial in what follows.

The last pair of commutators we need are

[Ak, Cm] = 0, [A∗k, Cm] = 0, (3.50)

and, also with summation over the repeated indices:

[B,Ck]g = (BCk − CkB)g = (vm∂xm − [∂xmV ]∂vm)∂xkg − ∂xk(vm∂xm − [∂xmV ]∂vm)g

= [∂2
xkxm

V (x)]∂vmg,
(3.51)
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so that
[B,Ck] = [∂2

xkxm
V (x)]∂vm . (3.52)

We will see that assumption (3.33) on the Hessian of V (x) is forced to accommodate this last
commutator.

Now, we are in a set-up vaguely reminiscent of the abstract relaxation enhancement situ-
ation: equation (3.35) has the form

∂h

∂t
+
(
A∗kAk +B

)
h = 0, (3.53)

with a skew-symmetric operator B. The hypoellipticity of the operator

L = A∗kAk +B (3.54)

comes from the operator B as it produces the commutator Ck with the differentiation in x.
However, the simple-minded dissipation estimate for (3.53):

1

2

d

dt

(
‖h(t)‖2

L2(µ)

)
= −

n∑
k=1

‖Akh‖2
L2(µ) (3.55)

does not see the operator B directly at all. Hence, the relaxation to the equilibrium has to
account for the presence of B in a more subtle way. The key property will come from the
strict ellipticity of the operator

L̃ = A∗kAk + C∗kCk. (3.56)

This property is essentially automatic for the kinetic Fokker-Planck equation because

〈L̃g, g〉L2(µ) =
n∑
k=1

[
‖Akg‖2

L2(µ) + ‖Ckg‖2
L2(µ)

]
=

∫
(|∇xg(x, v)|2 + |∇vg(x, v)|2)f̄∞(x, v)dxdv,

(3.57)
so that L̃ is, indeed, strictly elliptic. The connection between the strict ellipticity of L̃ and the
role of B in the time evolution (3.53) will be the subject of the next section on hypocoercivity.

A hypocoercivity estimate

Motivated by our observations for the kinetic Fokker-Planck equation, we now consider a more
general setup where the techniques of hypocoercivity developed by Villani and collaborators
can be used. We will consider the operators of the form

L = A∗kAk +B, (3.58)

with the summation convention, as usually, an anti-symmetric operator B, and unbounded
operators Ak, defined on a Hilbert space H. One may think of H as a weighted L2-space,
and of both Ak and B as differential operators of the first order but that is not necessary.
We will denote by 〈, 〉 the inner product on H and for simplicity will assume that H is a real
Hilbert space, the corresponding results for complex Hilbert spaces can be obtained simply
by putting the real part wherever clearly necessary.
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We will always assume that L generates a continuous semigroup exp(−tL) on H, so that
the evolution equation

dh

dt
+ Lh = 0, h(0) = h0 (3.59)

has a unique solution for all t ≥ 0. This means that existence and uniqueness of the solutions
to (3.59) is always assumed.

Obviously, if h0 ∈ K then h(t) ≡ h0 ∈ K for all t ≥ 0, hence (3.59) leaves K invariant.
Slightly less trivially, while the operators of the form (3.58) are not self-adjoint, they share an
important property with self-adjoint operators: the evolution equation (3.59) preserves the
orthogonal complement K⊥ to K. That is, if h0 ∈ K⊥ then h(t) ∈ K⊥ for all t > 0. The
reason is the following simple observation.

Proposition 3.2 If h ∈ K, so that
Lh = 0, (3.60)

then Akh = 0 for all 1 ≤ k ≤ n, and Bh = 0.

Proof. Indeed, if h ∈ K, then, as B is anti-symmetric, we have

0 = 〈Lh, h〉 =
n∑
k=1

‖Akh‖2, (3.61)

thus
Akh = 0 for all k. (3.62)

As Lh = 0, it follows that Bh = 0 as well. �
It follows that if g ∈ K, then

L∗g =
n∑
k=1

A∗kAkg −Bg = 0,

and thus
d

dt
〈h(t), g〉 = 〈Lh(t), g〉 = 0.

As a consequence, if h0 ∈ K⊥, then h(t) ∈ K⊥ for all t ≥ 0. Therefore, it makes sense to
consider the evolution (3.59) restricted to K⊥, and that is what we will do.

A standard example one may think of is that L is the Laplacian operator on the torus Tn,
the kernel K of L in H = L2(Tn), is the one-dimensional subspace that consists of constants,
and its orthogonal complement K⊥ is the sub-space of mean-zero functions on Tn.

Coercivity and hypocoercivity

Let us now recall the usual notion of coercivity, which is essentially strict ellipticity, together
with a Poincaré inequality. We say that the operator L is coercive on H̃ = H/K if there
exists λ > 0 so that for all h ∈ H̃ ∩D(L) we have

〈Lh, h〉 ≥ λ‖h‖2. (3.63)
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If we think of L as the standard Laplacian, this means that in addition to the strict ellipticity
of L, we also assume a version of the Poincare inequality on H/K, so that the norm in the
right side of (3.63) is in L2 and not in the homogeneous Sobolev space Ḣ1, that would come
up in the definition of strict ellipticity. Villani allows H̃ to be a dense subspace of K in [31],
with a different norm, but we will simply assume that H̃ = H/K.

Exercise 3.3 The coercivity property can be reformulated as follows. Let h0 ∈ H̃ and h(t)
be the solution to

ht = −Lh, h(0) = h0. (3.64)

Show that L is coercive if and only if we have, for all t ≥ 0 and h0 ∈ H̃ that

‖h(t)‖ ≤ e−λt‖h0‖. (3.65)

The hypocoercivity property ignores (3.63) and generalizes (3.65) instead. In the above
setting, we say that the operator L is hypocoercive on H̃ if there exists λ > 0 and C > 0 so
that for all h0 ∈ H̃ we have

‖h(t)‖ ≤ Ce−λt‖h0‖. (3.66)

Thus, the only difference with the definition of coercivity is that we allow C > 1 in (3.66) but
not in (3.65) where we must have C = 1. This gives us an interesting flexibility: if the Hilbert
space H̃ has two equivalent norms induced by different inner products 〈f, g〉1 and 〈f, g〉2 and
the operator L is coercive in one of the norms, it may be only hypocoercive in the other.
Thus, we may look for an alternative norm that would be equivalent to ‖ · ‖H̃ in which L
would be actually coercive. That would imply hypocoercivity in the original norm.

A new inner product

Let us now explain which alternative inner product one may look for. Given an operator of
the form

L = A∗kAk +B, (3.67)

with an anti-symmetric operator B, and with the summation convention over the repeated
indices, we set

Ck = [Ak, B]. (3.68)

The key assumption is that the operator

L̃ = A∗kAk + C∗kCk (3.69)

is coercive. This is exactly the set-up we have seen for the kinetic Fokker-Planck equation.
Coercivity of L̃ motivates defining the H1 space with the norm

‖h‖2
H1 = 〈h, h〉+ 〈L̃h, h〉 = ‖h‖2 +

n∑
k=1

(
‖Akh‖2 + ‖Ckh‖2

)
. (3.70)

In the kinetic Fokker-Planck case this norm coincides with the standard H1(µ)-norm, as seen
from (3.57). We also define Ḣ1 = H1/K, which is simply K⊥ with the homogeneous H1-norm

‖h‖2
Ḣ1 =

n∑
k=1

(
‖Akh‖2 + ‖Ckh‖2

)
, (3.71)
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and H̃ = H/K. Coercivity of L̃ means that there exists κ > 0 so that the Poincaré inequality
holds

‖h‖H ≤ κ‖h‖Ḣ1 for all h ∈ Ḣ1. (3.72)

Villani considers in [31] a more general situation when higher order commutators of the
form

C(k+1)
m = [C(k)

m , B]

are also used to obtain a coercive operator, with C
(0)
m = Am. We will not consider it here,

to focus on the simplest possible setting. This is the setting for Theorem 18 in [31] that is
needed for the kinetic Fokker-Planck case, and we leave out further generalizations.

As we have mentioned, an important step is to construct another inner product that would
lead to a different but equivalent norm, in which L itself would be actually coercive. Consider
the quadratic form

‖h‖2
∗ = (h · h) = ‖h‖2 + a

n∑
k=1

‖Akh‖2 + 2b
n∑
k=1

〈C∗kAkh, h〉+ c
n∑
k=1

‖Ckh‖2, (3.73)

with the constants a, b and c be specified soon, so that

0 < c < b < a < 1, b <
√
ac. (3.74)

One should think of these parameters as satisfying

0 < c� b� a� 1, (3.75)

so that ‖h‖∗ is a small perturbation of ‖h‖ that nevertheless incorporates the H1-norm. We
will need further constraints below on a, b and c that would guarantee the coercivity of L in
the ‖·‖∗ norm. The second condition in (3.74) ensures that ‖·‖∗ is actually a norm, and there
exists c0 > 0 that depends on a, b and c such that the norms ‖ · ‖∗ and ‖ · ‖H1 are equivalent:

c−1
0 ‖h‖H1 ≤ ‖h‖∗ ≤ c0‖h‖H1 , for all h ∈ H1. (3.76)

The corresponding inner product on H1 is defined by the polarization identity:

(h · g) =
1

4

(
‖h+ g‖2

∗ − ‖h− g‖2
∗) = 〈h, g〉+ a

n∑
k=1

〈Akh,Akg〉

+ b

n∑
k=1

〈(C∗kAk + A∗kCk)h, g〉+ c
n∑
k=1

〈Ckh,Ckg〉.
(3.77)

It is sometimes helpful to consider the corresponding homogeneous versions:

‖h‖2
• = (h · h)• = a

n∑
k=1

‖Akh‖2 + 2b
n∑
k=1

〈C∗kAkh, h〉+ c

n∑
k=1

‖Ckh‖2, (3.78)

and

(h · g)• = a

n∑
k=1

〈Akh,Akg〉+ b

n∑
k=1

〈(C∗kAk + A∗kCk)h, g〉+ c

n∑
k=1

〈Ckh,Ckg〉. (3.79)

48



This norm is equivalent to the homogeneous Ḣ1-norm:

c−1
0 ‖h‖Ḣ1 ≤ ‖h‖• ≤ c0‖h‖Ḣ1 , for all h ∈ Ḣ1. (3.80)

Hence, the Poincaré inequality (3.72) can be written in the form

‖h‖H ≤ C1‖h‖Ḣ1 ≤ C2‖h‖• ≤ C2‖h‖∗, for all h ∈ Ḣ1. (3.81)

The last observation in this section is that the orthogonal complement K⊥ of K is the
same in all three inner products. Recall that if h ∈ K, so that

Lh = 0, (3.82)

then Akh = Bh = 0, so that Ckh = 0 for all 1 ≤ k ≤ n as well. Therefore, if h ∈ K, then for
any g ∈ H1 we have

〈h, g〉 = 〈h, g〉H1 = (h · g), (3.83)

so that the orthogonal complement K⊥, indeed, does not depend on which of the three inner
products we use.

The coercivity in the new inner product

The reason we have introduced the new inner product is that L is actually coercive with
respect to it, under mild assumptions on the operators Ak and B. We will assume that all Ak
commute with all Am, and both Ak and A∗k commute with all Cm:

[Ak, Am] = 0, [Ak, Cm] = 0, [A∗k, Cm] = 0. (3.84)

In the kinetic Fokker-Planck case, these are properties (3.45) and (3.50) that we have verified.
We will also need to assume the following, in addition to (3.84) and coercivity of L̃. First, we
assume that, as in (3.47), we have

[Ak, A
∗
m] = δkmI. (3.85)

This assumption is not all necessary, and is not made in the proof of Theorem 18 of [31],
which is the main result of this section. The corresponding assumption on this commutator
there is that there exists a constant α > 0 so that we have

n∑
k,m=1

‖[Ak, A∗m]f‖2 ≤ α2‖f‖2 + α2

n∑
j=1

‖Ajf‖2, (3.86)

for all f in the domain of all Aj. However, (3.85) does simplify slightly some algebra in the
proof of Proposition 3.4 below, and holds in the kinetic Fokker-Planck case, so we will make
this assumption solely for the sake of convenience.

We also assume that there exists a constant β > 0 so that( n∑
k=1

‖[Ck, B]f‖2
)1/2

≤ β
( n∑
k=1

‖Akf‖2
)1/2

+ β
( n∑
k=1

‖Ckf‖2
)1/2

+ β
( n∑
k,m=1

‖AkAmf‖2
)1/2

+ β
( n∑
k,m=1

‖CkAmf‖2
)1/2

.

(3.87)

This assumption is made mostly for technical convenience in the proof though some version
of this bound seems to be necessary. Here is the key proposition.
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Proposition 3.4 Assume that the commutation relations (3.84) hold, and there exist α > 0
and β > 0 so that the bounds (3.86) and (3.87) hold. Then, there exist a, b, c that satisfy (3.74)
and such that there exists κ > 0 so that for all h ∈ H1 we have

(Lh · h) ≥ κ
n∑
k=1

(
‖Akh‖2 + ‖Ckh‖2

)
. (3.88)

Proof. We also remind that repeated indices are summed over throughout the proof. Let us
write

(Lh · h) = 〈Lh, h〉+ a
n∑
k=1

〈AkLh,Akh〉+ b
n∑
k=1

〈(C∗kAk + AkC
∗
k)Lh, h〉

+ c
n∑
k=1

〈CkLh,Ckh〉 =
n∑
k=1

‖Akh‖2 +
n∑
k=1

(aIk + bIIk + cIIIk).

(3.89)

We will now look at each of the many individual terms separately. The first term can be
further decomposed as

I =
n∑
k=1

Ik = 〈AkLh,Akh〉 = 〈AkA∗jAjh,Akh〉+ 〈AkBh,Akh〉 = I(A) + I(B). (3.90)

The last term can be bounded from below, using anti-symmetry of B and the definition of Ck,
as

I(B) = 〈AkBh,Akh〉 = 〈(AkB −BAk)h,Akh〉+ 〈BAkh,Akh〉 = 〈Ckh,Akh〉 ≥ −‖Akh‖‖Ckh‖.
(3.91)

For the first term in the right side of (3.90) we write

I(A) = 〈AkA∗jAjh,Akh〉 = 〈Ajh,AjA∗kAkh〉 = 〈Ajh,A∗kAjAkh〉+ 〈Ajh, (AjA∗k − A∗kAj)Akh〉

= 〈AkAjh,AjAkh〉+ 〈Ajh, [Aj, A∗k]Akh〉 =
n∑

k,j=1

‖AkAjh‖2 +
n∑
k=1

‖Akh‖2.

(3.92)
We used in the last step above the fact that Ak and Aj commute, see assumption (3.84),
together with our extra simplifying assumption (3.85). Thus, we have

I ≥
n∑

k,j=1

‖AkAjh‖2 +
n∑
k=1

‖Akh‖2 −
n∑
k=1

‖Akh‖‖Ckh‖. (3.93)

As in (3.90), we split the second term in the right side of (3.89) as

II =
n∑
k=1

IIk = 〈C∗kAkLh, h〉+ 〈A∗kCkLh, h〉 = 〈C∗kAkA∗mAmh, h〉+ 〈A∗kCkA∗mAmh, h〉

+ 〈C∗kAkBh, h〉+ 〈A∗kCkBh, h〉 = II(A) + II(B).
(3.94)
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For the first term we write, using the fact that Am and A∗m commute with Ck, see (3.84), as
well as the extra simplifying assumption (3.85), and, again, that Ak and Am commute:

II(A) = 〈C∗kAkA∗mAmh, h〉+ 〈A∗kCkA∗mAmh, h〉
= 〈AkA∗mAmh,Ckh〉+ 〈AmCkh,AmAkh〉
= 〈(A∗mAk + δkmI)Amh,Ckh〉+ 〈AmCkh,AmAkh〉
= 〈AkAmh,AmCkh〉+ 〈Akh,Ckh〉+ 〈AmAkh,AmCkh〉

≥ −2
n∑

k,m=1

‖AkAmh‖‖AmCkh‖ −
n∑
k=1

‖Akh‖‖Ckh‖.

(3.95)

For the second term in (3.94), we have, using the commutators in (3.84) and anti-symmetry
of B:

II(B) = 〈C∗kAkBh, h〉+ 〈A∗kCkBh, h〉 = 〈AkBh,Ckh〉+ 〈CkBh,Akh〉
= 〈AkBh,Ckh〉+ 〈(BCk + [Ck, B])h,Akh〉 = 〈AkBh,Ckh〉 − 〈Ckh,BAkh〉
+ 〈[Ck, B]h,Akh〉 = 〈[Ak, B]h,Ckh〉+ 〈[Ck, B]h,Akh〉

=
n∑
k=1

(
‖Ckh‖2 − ‖Akh‖‖[Ck, B]h‖

)
.

(3.96)

Thus, for the second term we have a lower bound

II ≥
n∑
k=1

(
‖Ckh‖2 − ‖Akh‖‖[Ck, B]h‖ − ‖Akh‖‖Ckh‖

)
− 2

n∑
k,m=1

‖AkAmh‖‖AmCkh‖. (3.97)

For the third term in (3.89) we write

III =
n∑
k=1

Ik = 〈CkLh,Ckh〉 = 〈CkA∗jAjh,Ckh〉+ 〈CkBh,Ckh〉 = III(A) + III(B). (3.98)

As Ck commutes both with Aj and A∗j , the first term is simply

III(A) = 〈CkA∗jAjh,Ckh〉 = 〈CkAjh,CkAjh〉 =
n∑

j,k=1

‖CkAjh‖2. (3.99)

The second term in (3.98) cab be estimated using the anti-symmetry of B as

III(B) = 〈CkBh,Ckh〉 = 〈(BCk + [Ck, B])h,Ckh〉 = 〈[Ck, B]h,Ckh〉 ≥ −‖[Ck, B]h‖‖Ckh‖.
(3.100)

Putting all three terms together, we obtain

(Lh · h) ≥
n∑
k=1

‖Akh‖2 + a
n∑

k,j=1

‖AkAjh‖2 + a
n∑
k=1

‖Akh‖2 − a
n∑
k=1

‖Akh‖‖Ckh‖

+ b
n∑
k=1

(
‖Ckh‖2 − ‖Akh‖‖[Ck, B]h‖ − ‖Akh‖‖Ckh‖

)
− 2b

n∑
k,m=1

‖AkAmh‖‖AmCkh‖+ c

n∑
j,k=1

‖CkAjh‖2 − c
n∑
k=1

‖[Ck, B]h‖‖Ckh‖.

(3.101)
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Let us introduce ξ1,2,3,4 > 0 by

ξ2
1 =

n∑
k=1

‖Akh‖2, ξ2
2 =

n∑
k,j=1

‖AkAjh‖2, ξ2
3 =

n∑
k=1

‖Ckh‖2, ξ2
4 =

n∑
j,k=1

‖CkAjh‖2, (3.102)

and rewrite assumption (3.87) as( n∑
k=1

‖[Ck, B]h‖2
)1/2

≤ β(ξ1 + ξ2 + ξ3 + ξ4). (3.103)

With this notation, and using (3.103), gives

(Lh · h) ≥ (1 + a)ξ2
1 + aξ2

2 + bξ2
3 + cξ2

4 − aξ1ξ3 − bβξ1(ξ1 + ξ2 + ξ3 + ξ4)− bξ1ξ3

− 2bξ2ξ4 − cβξ3(ξ1 + ξ2 + ξ3 + ξ4) = (Qξ, ξ),
(3.104)

with the matrix

Q =


1 + a −bβ/2 −a− (b+ c)β/2 −bβ/2
−bβ/2 a −cβ/2 −b

−a− (b+ c)β/2 −cβ/2 b −cβ/2
−bβ/2 −b −cβ/2 c

 . (3.105)

Taking M = 1 + β/2, we get
(Lh · h) ≥ (QMξ, ξ), (3.106)

with the matrix

QM =


1 + a −Mb −a−M(b+ c) −bM
−bM a −cM −bM

−a− (b+ c)M −cM b −cM
−bM −bM −cM c

 . (3.107)

Assuming that, in addition to (3.74), we have, for example,

4c ≤ 2b ≤ a ≤ 1, (3.108)

we have the inequality, in the sense of quadratic forms

QM ≥ Q̄ =


1 −Ma −2Ma −Mb
−Ma a −Mb −Mb
−2Ma −bM b −cM
−Mb −Mb −Mc c

 . (3.109)

Note that if for all i 6= j we have

|Q̄ij| ≤
1

4

√
Q̄iiQ̄jj, (3.110)
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then

(Q̄ξ, ξ) =
4∑

i,j=1

Q̄ijξiξj =
4∑
i=1

Q̄iiξ
2
i −

∑
i 6=j

Q̄ijξiξj ≥
4∑
i=1

Q̄iiξ
2
i −

1

4

∑
i 6=j

√
Q̄iiQ̄jjξiξj

=
4∑
i=1

Q̄iiξ
2
i −

1

8

∑
i 6=j

(Q̄iiξ
2
i + Q̄jjξ

2
j ) =

4∑
i=1

Q̄iiξ
2
i −

3

4

4∑
i=1

Q̄iiξ
2
i

=
1

4

4∑
i=1

Q̄iiξ
2
i ≥

c

4
(ξ2

1 + ξ2
2 + ξ2

3 + ξ2
4).

(3.111)

To arrange (3.110) for elements in the first row in Q̄, we need to have

Ma ≤ 1

4

√
a, 2Ma ≤ 1

4

√
b, Mb ≤ 1

4

√
c, (3.112)

for the second row we need to add the conditions

Mb ≤ 1

4

√
ab, Mb ≤ 1

4

√
ac, (3.113)

and for the third row we need the condition

Mc ≤ 1

4

√
bc. (3.114)

Hence, we need the following:

a ≤ 1

16M2
, 64M2a2 ≤ b ≤ a

16M2
, 16M2b2 ≤ c ≤ b

16M2
, (3.115)

and also that
b2 ≤ ac

16M2
. (3.116)

To achieve this, we first take a < 1/(16M2) sufficiently small, and set

b = 64M2a2, c =
b

16M2
. (3.117)

The three inequalities in (3.115) then hold automatically. To see that (3.116) holds if a > 0
is sufficiently small, note that b2 ∼ a4, and ac ∼ a3.

We conclude that there exists a choice of a, b and c, and a very small constant κ > 0 so
that

(Lh · h) ≥ (QMξ, ξ) ≥ (Q̄ξ, ξ) ≥ κ(ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4) ≥ κ(ξ2
1 + ξ2

3) = κ

n∑
k=1

(‖Akh‖2 + ‖Ckh‖2),

(3.118)
finishing the proof of Proposition 3.4. �
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The convergence theorem

Let us now look at the convergence to an equilibrium of the solution to the evolution problem

∂h

∂t
+ Lh = 0, h(0) = h0, (3.119)

with h0 ∈ K⊥. Recall that then h(t) ∈ K⊥ for all t ≥ 0. Multiplying (3.119) with the (h · h)
inner product, we obtain

1

2

d

dt
‖h(t)‖2

∗ = −(Lh · h). (3.120)

Using Proposition 3.4 gives then

1

2

d

dt
‖h(t)‖2

∗ ≤ −κ‖h(t)‖2
Ḣ1 . (3.121)

So far, we have not used the Poincaré inequality (3.81) – the conclusion of Proposition 3.4
does not assume it. Now we will use it and the fact that h(t) ∈ K⊥ to deduce from (3.121)
that

1

2

d

dt
‖h(t)‖2

∗ ≤ −C‖h(t)‖2
∗, (3.122)

so that
‖h(t)‖∗ ≤ ‖h0‖∗e−Ct, for all h ∈ Ḣ1. (3.123)

Using (3.81) gives the following convergence theorem.

Theorem 3.5 Let the operator L be of the form L = A∗kAk+B with an anti-symmetric oper-
ator B. Assume that the operators Ak, B and Ck = [Ak, B] satisfy the following assumptions:
(i) The operator L̃ = A∗kAk + C∗kCk is coercive, so that the Poincaré inequality (3.72) holds.
(ii) The commutation relations (3.84) hold.
(iii) There exist α > 0 and β > 0 so that the bounds (3.86) and (3.87) hold.
Then, there exist C1,2 > 0 and λ > 0 so that for all h0 ∈ K⊥ the solution to (3.119) satisfies

‖h(t)‖H ≤ C1‖h(t)‖Ḣ1 ≤ C2e
−λt‖h0‖Ḣ1 . (3.124)

The L2 −H1 regularization

Theorem 3.5 provides a long time H1-decay, but does not capture the regularizing effect of
the dynamics as it sees no improvement of regularity of h(t) relative to h0. Regularization
is a short time effect, typically instant, and says that if the initial condition h0 ∈ K⊥ then
for any t > 0 the solution h(t) is in H1, seemingly a very different phenomenon from the
long time convergence in the above theorem. In addition, regularization is a local in space
effect and should not depend at all on the validity of the Poincaré inequality, unlike the long
time behavior that is global in space. Surprisingly, this question is answered by the same
technique.

Let us explain the idea on the very simple example of the heat equation in Rn:

ht = κ∆h, h(0, x) = h0(x), x ∈ Rn. (3.125)
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The standard dissipation balance is

1

2

d

dt
‖h‖2

L2 = −κ‖∇h‖2
L2 , (3.126)

which gives us a time-averaged bound

κ

∫ ∞
0

∫
|∇h(t, x)|2dxdt <

∫
|h0(x)|2dx, (3.127)

but not pointwise in time. To get a pointwise in time bound, consider the quadratic form

F (t, h) = ‖h‖2
L2 + εt‖∇h‖2

L2 , (3.128)

and compute

dF (t, h(t))

dt
= −2κ

∫
|∇h(t, x)|2dx+ 2εt

∫
(∇h(t, x) · ∇ht(t, x))dx+ ε

∫
|∇h(t, x)|2dx

= −2(κ− ε)
∫
|∇h(t, x)|2dx− 2εt

∫
(∆h(t, x))ht(t, x))dx

= −2(κ− ε)
∫
|∇h(t, x)|2dx− 2εκt

∫
|∆h(t, x)|2dx < 0,

(3.129)
if 0 < ε ≤ κ. It follows that F (t, h(t)) is decreasing in time, so that

‖h(t)‖2
L2 + εt‖∇h(t)‖2

L2 ≤ ‖h0‖2
L2 . (3.130)

In particular, we see that if h0 ∈ L2(Rn), then h(t) ∈ H1(Rn) for any t > 0, and, taking ε = κ
we get an estimate

‖∇h(t)‖2
L2 ≤

1

κt
‖h0‖2

L2 . (3.131)

This very simple argument can be incorporated very nicely into the hypocoercivity strat-
egy. Let us go back to the norm and inner product defined in (3.73) and (3.77):

‖h‖2
∗ = ‖h‖2 + a

n∑
k=1

‖Akh‖2 + 2b
n∑
k=1

〈C∗kAkh, h〉+ c

n∑
k=1

‖Ckh‖2, (3.132)

and

(h · g) = 〈h, g〉+ a
n∑
k=1

〈Akh,Akg〉+ b

n∑
k=1

〈(C∗kAk + A∗kCk)h, g〉+ c

n∑
k=1

〈Ckh,Ckg〉. (3.133)

Going through the proof of Proposition 3.4, in particular, looking at (3.111) before the very
last inequality, we have actually proved the following: if we choose a, b and c so that (3.115)
and (3.116) hold (we denote here m1 = 16M2 that appears in (3.115) and (3.116)):

a ≤ 1

m1

, 4m1a
2 ≤ b ≤ a

m1

, m1b
2 ≤ c ≤ b

m1

, b2 ≤ ac

m1

, (3.134)
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then there exists κ > 0 that does not depend on a, b and c so that for all h ∈ H1 we have

(Lh · h) ≥ κ
n∑
k=1

‖Akh‖2 + κa
∑
j,m

‖AjAmh‖2 + κb
n∑
k=1

‖Ckh‖2 + κc

n∑
k,m=1

‖CkAmh‖2. (3.135)

One choice to ensure that all conditiosn in (3.134) hold is to take a < 1/m1 sufficiently small,
and choose b and c as in (3.117). Another possibility is to take a < 1/m1 sufficiently small,
set

b = 4m1a
2, (3.136)

and choose
c = αa3 (3.137)

with α > α0(m1) sufficiently large. Then the two-sided inequality for c in (3.134) holds
since b ∼ a2 and c ∼ a3, and a is sufficiently small, and the last inequality in (3.134) holds
because both sides are of the order a4 and α > α0(m1) is large enough. Note that α0(m1)
depends only on m1 and not on how small a is.

The idea is then to take a, b and c time-dependent, generalizing (3.128): consider the
quadratic form

F (h, g; t) = 〈h, g〉+ āt
n∑
k=1

〈Akh,Akg〉+ b̄t2
n∑
k=1

〈(C∗kAk + A∗kCk)h, g〉+ c̄t3
n∑
k=1

〈Ckh,Ckg〉,

(3.138)
and

F(h; t) = ‖h‖2 + āt
n∑
k=1

‖Akh‖2 + 2b̄t2
n∑
k=1

〈C∗kAkh, h〉+ c̄t3
n∑
k=1

‖Ckh‖2. (3.139)

The previous discussion shows that if we choose ā sufficiently small, and α > 0 sufficiently
large, and then set b̄ = 4m1ā

2 and c̄ = αā3, then there exists t0 > 0 so that for 0 < t < t0 we
have

F (Lh, h; t) ≥ κ
n∑
k=1

‖Akh‖2 + κāt
∑
j,m

‖AjAmh‖2 + κb̄t2
n∑
k=1

‖Ckh‖2 + κc̄t3
n∑

k,m=1

‖CkAmh‖2.

(3.140)
Consider now the evolution problem

∂h

∂t
+ Lh = 0, h(0) = h0 ∈ K⊥. (3.141)

As in (3.120), we have

1

2

dF(h; t)

dt
= −F (Lh, h; t) + ā

n∑
k=1

‖Akh‖2 + 4b̄t
n∑
k=1

〈C∗kAkh, h〉+ 3c̄t2
n∑
k=1

‖Ckh‖2. (3.142)

56



Using (3.140) and dropping the terms with AjAm and CkAm gives

1

2

dF(h, t)

dt
≤ −κ

n∑
k=1

‖Akh‖2 − κb̄t2
n∑
k=1

‖Ckh‖2 + ā
n∑
k=1

‖Akh‖2 + 4b̄t
n∑
k=1

〈C∗kAkh, h〉

+ 3c̄t2
n∑
k=1

‖Ckh‖2 ≤ (−κ+ ā+
2b̄t

γ
)

n∑
k=1

‖Akh‖2

+
(

(−κb̄+ 3c̄)t2 + 2b̄tγ
) n∑
k=1

‖Ckh‖2.

(3.143)

We used Young’s inequality in the last step. Taking γ = t/(4κ) to make the coefficient in
front of ‖Ckh‖2 be negative, and then choosing ā sufficiently small, so that the coefficient in
front of ‖Ak‖2 is also negative, shows that with this choice of ā, b̄ and c̄, we have

dF(h, t)

dt
< 0. (3.144)

It follows that

F(h, t) = ‖h‖2 + āt
n∑
k=1

‖Akh‖2 + 2b̄t2
n∑
k=1

〈C∗kAkh, h〉+ c̄t3
n∑
k=1

‖Ckh‖2 ≤ F(h, 0) = ‖h0‖2.

(3.145)
We have proved the following regularization theorem.

Theorem 3.6 Let the operator L be of the form L = A∗kAk+B with an anti-symmetric oper-
ator B. Assume that the operators Ak, B and Ck = [Ak, B] satisfy the following assumptions:
(i) The commutation relations (3.84) hold.
(ii) There exist α > 0 and β > 0 so that the bounds (3.86) and (3.87) hold.
Then, there exists t0 > 0, and c > 0 so that for any h0 ∈ K⊥, the solution to

∂h

∂t
+ Lh = 0, h(0) = h0 ∈ K⊥, (3.146)

satisfies the estimates( n∑
k=1

‖Akh‖2
)1/2

≤ c

t1/2
‖h0‖,

( n∑
k=1

‖Ckh‖2
)1/2

≤ c

t3/2
‖h0‖. (3.147)

As we have mentioned, Proposition 3.4 does not assume the Poincaré inequality, and neither
does Theorem 3.6. This is important – an instant regularization is a local effect, and morally
can not rely on the Poincaré inequality that is a global result. The regularization effect only
relies on the commutator structure of L.

An application to the kinetic Fokker-Planck equation

We now return to the proof of the long time convergence for the kinetic Fokker-Planck equa-
tion, Theorem 3.1, that was our motivation for the general hypocoercivity setup. Let us recall
the equation itself:

ht + v · ∇xh−∇xV (x) · ∇vh = ∆vh− v · ∇vh, h(0, x) = h0, (3.148)
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written as
∂h

∂t
+ Lh = 0, (3.149)

with the operator

Lh = −∆vh+ v · ∇vh+ v · ∇xh−∇xV (x) · ∇vh. (3.150)

The problem is posed in H = L2(µ), with

dµ =
1

Z(2π)n/2
exp

{
− v2

2
− V (x)

}
dxdv.

Let us recall Theorem 3.1.

Theorem 3.7 Assume that the potential V (·) ∈ C2(Rd) satisfies

|∇V (x)| → +∞ as |x| → +∞, (3.151)

and
|D2V (x)| ≤ C(1 + |∇V (x)|) for all x ∈ Rd. (3.152)

There exist C > 0 and λ > 0 so that for all h0 ∈ H1(dµ), we have

‖h(t, x)− h̄‖H1(µ) ≤ Ce−λt‖h0‖H1(µ), (3.153)

with

h̄ =

∫
h0(x, v)dµ(x, v). (3.154)

In addition, we have a regularizing effect: there exists c > 0 so that for all 0 < t < 1 we have

‖∇vh‖L2(µ) ≤
c

t1/2
‖h0 − h̄‖L2(µ), ‖∇xh‖L2(µ) ≤

c

t3/2
‖h0 − h̄‖L2(µ). (3.155)

We will apply Theorems 3.5 and Theorem 3.6, and need to verify that the kinetic Fokker-
Planck equation satisfies their assumptions. The operator L has the form

Lg = A∗kAkg +Bg, (3.156)

with Ak = ∂vk ,
A∗kg = −∂vkg + vkg, (3.157)

and
Bg(x) = v · ∇xg −∇xV (x) · ∇vg. (3.158)

The adjoint A∗k is with respect to the inner product in H = L2(µ), and B is anti-symmetric
in that inner product. We also recall that the first order commutators are

Ck = [Ak, B] = ∂xk . (3.159)

This is the general set-up is as in Theorem 3.5, but we need to verify assumptions (i)-(iii) of
that theorem. It is immediate to see that the commutation relations (3.84) hold:

[Ak, Am] = 0, [Ak, Cm] = 0, [A∗k, Cm] = 0. (3.160)
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The bound (3.86)
n∑

k,m=1

‖[Ak, A∗m]f‖2 ≤ C‖f‖2 + C
n∑
j=1

‖Ajf‖2, (3.161)

also holds trivially, because
[Ak, A

∗
m] = δkmI, (3.162)

as in (3.47).
To verify the bound (3.87), note that, for the kinetic Fokker-Planck equation, as in (3.52),

we have
[B,Ck] = [∂2

xkxm
V (x)]∂vm . (3.163)

Hence, to check (3.87) it suffices to prove that

n∑
k,m=1

∫
|∂2
xkxm

V |2|∂vkf |2µ(dxdv) ≤ C
n∑
k=1

∫
|∂vkf |2µ(dxdv)

+ C
n∑

k,m=1

∫
|∂2
vkxm

f |2µ(dxdv).

(3.164)

This inequality uses only the terms involving Ak and CkAm in the right side of (3.87), disre-
garding those with AkAm and Ck as those would not be needed here. Fixing 1 ≤ k ≤ n and
setting g(x, v) = ∂vkf and using assumption (3.152), we see that (3.164) would follow from
the following lemma.

Lemma 3.8 Let V (·) ∈ C2(Rd) satisfy (3.151) and (3.152), then there exists C > 0 so that
for all g ∈ H1(µ) we have∫

|∇V |2|g(x, v)|2µ(dxdv) ≤ C

∫
(|g(x, v)|2 + |∇xg(x, v)|2)µ(dxdv). (3.165)

Proof. It suffices to show that for a function g(x) that does not depend on v, we have∫
|∇V (x)|2g2(x)e−V (x)dx ≤ C

∫
(g2(x) + |∇g(x)|2)e−V (x)dx. (3.166)

To get (3.165) for a function g(x, v), we would then simply write (3.166) for each v and
integrate in v, with the weight M(v)dv. To prove (3.166), let us write∫

|∇V (x)|2g2(x)e−V (x)dx = −
∫
g2(x)∇V (x) · ∇(e−V (x))dx

=

∫
∇ · (g2(x)∇V (x))e−V (x)dx =

∫
g2(x)(∆V (x))e−V (x)dx

+ 2

∫
g(x)(∇g(x) · ∇V (x))e−V (x)dx = I + II.

(3.167)

We bound the first term above using assumption (3.152) and Young’s inequality

I ≤ C

∫
g2(x)(1 + |∇V (x)|)e−V (x)dx ≤ C

∫
g2(x)e−V (x)dx+

1

10

∫
g2(x)|∇V (x)|2e−V (x)dx.

(3.168)
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For the second term in the right side of (3.167) we simply use Young’s inequality:

II ≤ C

∫
|∇g(x)|2e−V (x)dx+

1

10

∫
g2(x)|∇V (x)|2e−V (x)dx. (3.169)

Putting (3.167), (3.168) and (3.169) together gives (3.166). �
We conclude that (3.164) holds. The last step is to check assumption (i) in Theorem 3.5:

the operator
L̃ = A∗kAk + C∗kCk

is coercive. In our case, this means verifying the following Poincaré inequality:∫
(|∇xg(x, v)|2 + |∇vg(x, v)|2)dµ ≥ κ

∫
(g(x, v)− ḡ)2dµ, (3.170)

with

ḡ =

∫
g(x, v)dµ. (3.171)

Let us denote y = (x, v),

E(y) =
|v|2

2
+ V (x)− logZ, (3.172)

so that
µ(dy) = e−E(y)dy (3.173)

is a probability density. Let us note that the Hamiltonian E(y) satisfies the property

w(y) =
|∇yE|2

2
−∆E(y)→ +∞ as |y| → +∞. (3.174)

This follows from assumptions (3.151) and (3.152) on V (x).

Lemma 3.9 Let E(y) ∈ C2(Rn) be such that µ(dy) given by (3.173) is a probability measure,
and (3.174) holds. Then the Poincaré inequality holds for all g ∈ H1(µ):∫

|∇g(y)|2dµ(y) ≥ κ

∫
(g(y)− ḡ)2dµ(y), (3.175)

with

ḡ =

∫
g(y)dµ(y). (3.176)

Proof. Let g be a smooth compactly supported function and write

g(y) = h(y)eE(y)/2, ∇g =
[
∇h+

h

2
∇E

]
eE(y)/2,

so that∫
|∇g(y)|2dµ(y) =

∫
|∇g(y)|2e−E(y)dy ≥ 1

4

∫
h2|∇E|2dy +

∫
h(y)(∇h(y) · ∇E(y))dy

=
1

2

∫
h2(y)

[ |∇E(y)|2

2
−∆E(y)

]
dy =

1

2

∫
g2(y)w(y)e−E(y)dy

=
1

2

∫
g2(y)w(y)dµ(y),

(3.177)
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with w(y) defined in (3.174). Let us take R0 > 0 sufficiently large, so that w(y) > 1 if |y| > R0,
and note that (3.174) implies that

ε(R) =
1

min(w(y) : |y| ≥ R)
→ 0 as R→ +∞. (3.178)

Using (3.177) we can write

2

∫
|∇g(y)|2dµ(y) ≥ ε−1

R

∫
|y|≥R

g2(y)dµ(y)−M
∫
|y|≤R

g2(y)dµ(y), (3.179)

with
M = max

y∈R
[w(y)]−.

It follows that ∫
|y|≥R

g2(y)dµ(y) ≤ 2εR

∫
|∇g(y)|2dµ(y) + εRM

∫
g2(y)dµ(y). (3.180)

Next, let assume, in addition, that

ḡ =

∫
g(y)dµ(y) = 0. (3.181)

Let also µR = (1/µ(BR))µ be the the restriction of µ to the ball BR = B(0;R), normalized
to be a probability measure, set

ḡR =

∫
g(y)dµR(y) =

1

µ(BR)

∫
|y|≤R

g(y)dµ(y),

and let pR be the Poincaré constant for µR. Note that pR is finite because µR is compactly
supported. We will show that the whole space Poincaré inequality (3.175) holds with a
constant κ that is close to pR if R is large enough.

To see this, note that, as µR is a probability measure, the µR-Poincaré inequality∫
(g(y)− ḡR)2dµR ≤ pR

∫
|∇g(y)|2dµR, (3.182)

can be written as ∫
g2(y)dµR ≤ pR

∫
|∇g(y)|2dµR + ḡ2

R. (3.183)

Using the definition of µR, this is simply

1

µ(BR)

∫
|y|≤R

g2(y)dµ ≤ pR
µ(BR)

∫
|y|≤R

|∇g(y)|2dµ+
1

µ(BR)2

(∫
|y|≤R

g(y)dµ(y)
)2

. (3.184)

Taking R sufficiently large, so that µ(BR) > 1/2, we obtain∫
|y|≤R

g2(y)dµ ≤ pR

∫
|y|≤R

|∇g(y)|2dµ+ 2
(∫
|y|≤R

g(y)dµ(y)
)2

. (3.185)
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Recalling (3.181), we see that(∫
|y|≤R

g(y)dµ(y)
)2

=
(∫
|y|≥R

g(y)dµ(y)
)2

≤
∫
|y|≥R

g2(y)dµ(y). (3.186)

Using this in (3.185) gives∫
g2(y)dµ ≤ pR

∫
|y|≤R

|∇g(y)|2dµ+ 3

∫
|y|≥R

g2(y)dµ(y). (3.187)

Inserting this into (3.180), we obtain∫
g2(y)dµ ≤ pR

∫
|y|≤R

|∇g(y)|2dµ+ 6εR

∫
|∇g(y)|2dµ(y) + εRM

∫
g2(y)dµ(y). (3.188)

Taking R sufficiently large so that εR < 1/(2M), we arrive at∫
g2(y)dµ ≤ (pR + 6εR)

1− εRM

∫
|∇g(y)|2dµ, (3.189)

finishing the proof. �
We have now verified all assumptions of Theorem 3.5 for the kinetic Fokker-Planck equa-

tions, and the proof of Theorem 3.7 is also complete.

The maximum principle and spatial Fokker-Planck transport

We now describe a simple alternative way [22], based on the maximum principle, to see that
the solution to the spatial Fokker-Planck equation (3.1)

φt = ∆φ− γ∇V (x) · ∇φ, φ(0, x) = φ0(x), (3.190)

”spreads its mass around”, and a corresponding result for the dual equation

ρt = ∆ρ+ γ∇ · (ρ∇V (x)), ρ(0, x) = ρ0(x), (3.191)

Here, the constant γ measures the strength of the potential. This method does not prove
convergence of the solution to (3.190) to a constant steady state, or that of (3.191) to the
invariant measure, but gives an idea behind the mixing mechanism and how it improves
for large γ � 1. We will take a continuously differentiable radially symmetric increasing
potential V (x) such that there exists δ0 > 0 so that

V ′(r) ≥ c0

1 + r
, for all r > δ0, (3.192)

so that V (r) has at least logarithmic growth as r → +∞. This condition is much weaker than
our previous assumptions for the kinetic Fokker-Planck equation. Note that if we take γ > 0
sufficiently large, then we still have ∫

Rn
e−γV (x)dx < +∞. (3.193)
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Our goal will be to show by very simple methods that solutions to (3.190) spread fast if γ
is sufficiently large, without concerning ourselves with the much more precise question of the
convergence to an equilibrium.

Let us assume for the moment that the initial condition φ0(x) is smooth, radially sym-
metric, and non-increasing in the radial direction, so that φ(t, x) remains radially symmetric.
In the radial coordinates (3.190) takes the form

φt = φ′′ +
n− 1

r
φ′ − γV ′(r)φ′. (3.194)

Differentiating this equation and using the maximum principle we conclude that φ′(t, r) ≤ 0
for all t > 0 and r > 0 if φ0(r) is decreasing in the radial direction.

Recall that (3.190) preserves the weighted mass:∫
φ(t, x)e−γV (x)dx =

∫
φ0(x)e−γV (x)dx. (3.195)

In addition, for any r > 0 we have

d

dt

∫
Br

φ(t, x)e−γV (x)dx =

∫
Br

∇ ·
(
e−γV (x)∇φ(t, x)

)
dx = |∂Br|e−γV (|x|)φ′(t, r) < 0, (3.196)

so that the weighted mass inside each ball centered at the origin is decreasing in time, which
is a very primitive indicator of spreading.

We will prove the following spreading estimate.

Theorem 3.10 Assume that
φ0(x) ≥ 1Br1

(x), (3.197)

with some r1 > 2δ0. Then there exist c = c(r1) > 0 and γ0(r1) such that for all γ > γ0 we
have

φ(t, x) ≥ c1B√
cγt

(x) (3.198)

for all t ≥ 0.

Proof. It follows from the maximum principle that it suffices to prove this result for

φ0(x) = 1Br1
(x), (3.199)

and this is what we will assume. Note that then φ(t, x) is radially symmetric and satis-
fies (3.194). The first step is the following bound.

Lemma 3.11 There exists γ0(r1) so that if γ > γ0(r1) then

φ(t, x) ≥ 1

2
for all |x| = r1/2 and t > 0. (3.200)
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Proof of Lemma 3.11. We set r0 = r1/2 > δ0. Observe that, as φ(t, x) is radially symmetric
and decreasing in the radial direction, we have, for all x with |x| = r0:

φ(t, x)

∫
Rn\Br0

e−γV (y)dy ≥
∫
Rn\Br0

φ(t, y)e−γV (y)dy

=

∫
Rn
φ(t, y)e−γV (y)dy −

∫
Br0

φ(t, y)e−γV (y)dy =

∫
Rn
φ0(y)e−γV (y)dy −

∫
Br0

φ(t, y)e−γV (y)dy

≥
∫
Rn
φ0(y)e−γV (y)dy −

∫
Bd0

φ0(y)e−γV (y)dy =

∫
Rn\Br0

φ0(y)e−γV (y)dy

=

∫
Rn\Br0

1Br1
(y)e−γV (y)dy =

∫
Br1\Br0

e−γV (y) dy.

(3.201)
In the first step we used monotonicity of φ(t, x) in the radial variable, in the third step the
conservation law (3.195), in the fourth step we used (3.196), and in the next to last step we
used assumption (3.197) on the initial condition φ0(x).

We claim that there exists γ0(r0) so that∫
Rn\Br0

e−γV (x) dx ≤ 2

∫
Br1\Br0

e−γV (x) dx, (3.202)

for all γ > γ0(r0). To this end, note from (3.192) that there exists c1 that depends on r0 so
that

|∇V (x)| = ∂rV ≥ c1|x|−1, if |x| ≥ r0, (3.203)

so that for all z2 > z1 ≥ r0 we have

V (z2)− V (z1) ≥ c1 log
(z2

z1

)
.

Multiplying by γ, exponentiating and taking z1 = r, z2 = 2r gives

eγ(2r)−γV (r) ≥ 2c1γ,

so that

e−γV (2r) ≤ 1

2c1γ
e−γV (r), for all r ≥ r0, (3.204)

and

e−γV (2kr) ≤ 1

2c1γk
e−γV (r), for all r ≥ r0, (3.205)

Then we have∫
Rn\Br0

e−γV (x)dx =
∞∑
k=0

∫
B

2k+1r0
\B

2kr0

e−γV (x)dx =
∞∑
k=0

2kn
∫
Br1\Br0

e−γV (2kx)dx

≤
∞∑
k=0

2kn

2c1γk

∫
Br1\Br0

e−γV (x)dx ≤ 2

∫
Br1\Br0

e−γV (x)dx,

(3.206)
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so that (3.202) holds, if γ > (n+ 1)/c1, Using (3.201) and (3.202), we conclude that

φ(t, x) ≥ 1/2 for all |x| = r0 and t > 0, (3.207)

and the proof of Lemma 3.11 is complete. �
Next, we construct a sub-solution for φ(t, x). Take a convex and strictly decreasing func-

tion ω(r) defined for r > r0, such that ω(r0) = 1/2 and ω(r1) = 0, and ω(r) > 0 for r ∈ (r0, r1).
We look for a sub-solution to φ(t, x) in the form

ξ(t, x) = ω(r0 + s(t)(|x| − r0)), (3.208)

with a decreasing function s(t) such that s(0) = 1. Note that at t = 0 we have

φ(0, x) = 1Br1
(x) ≥ ξ(0, x) = ω(|x|). (3.209)

We now compute, with z = r0 + s(t)(|x| − r0):

ξt −∆ξ + γ∇V (x) · ∇ξ = s′(t)(r − r0)ω′(z)− s2(t)ω′′(z)− (n− 1)s(t)

r
ω′(z)

+ γs(t)V ′(r)ω′(z) ≤ s′(t)(r − r0)ω′(z)− (n− 1)s(t)

r
ω′(z) +

c2γs(t)

r
ω′(z).

(3.210)

In the last step we used the fact that ω is convex and decreasing, and also that (3.192) implies
that there exists c2(r0) such that for all r > r0 we have

V ′(r) ≥ c2

r
.

In order for ξ(t, x) to be a sub-solution for φ(t, x), it suffices that the right side of (3.210) is
negative or, equivalently,

s′(t)(r − r0)− (n− 1)s(t)

r
+
c2γs(t)

r
≥ 0, (3.211)

just in the region where ξ(t, x) > 0, that is, for z < r1, or

r < r0 +
r1 − r0

s(t)
≤ r1

s(t)
. (3.212)

We used the assumption that s(t) ≤ 1 above. As s′(t) ≤ 0, it is sufficient to check that (3.211)
holds at r = r1/s(t), which is true if

s′(t)
r1

s(t)
+

[c2γ + 1− n]s2(t)

r1

≥ 0, (3.213)

or
s′(t)

s3(t)
+ c3γ ≥ 0, (3.214)

with c3 that depends on r1 and n, provided that γ is sufficiently large. Hence, we may take

s(t) =
1√

1 + c4γt
, (3.215)
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with a sufficiently small c4. Thus, we have shown that ξ(t, x) is a sub-solution for φ(t, x) and
we have

φ(t, x) ≥ ω
(
r0 +

|x| − r0√
1 + c4γt

)
. (3.216)

The conclusion of Theorem 3.10 now follows. �
To get the corresponding result for the density equation (3.191), let φ(t, x) and ρ(t, x) be

the solutions to the backward and forward spatial Fokker-Planck equaitons

φt = ∆φ− γ∇V (x) · ∇φ, φ(0, x) = φ0(x), (3.217)

and
ρt = ∆ρ+ γ∇ · (ρ∇V (x)), ρ(0, x) = ρ0(x). (3.218)

By the duality of these two equations, we have

d

ds

∫
Rn
ρ(t− s, x)φ(s, x)dx = 0, (3.219)

so that ∫
Rn
ρ(t, x)φ0(x)dx =

∫
Rn
ρ0(x)φ(t, x)dx. (3.220)

The following corollary says that if the initial mass ρ0(x) is located within distance L from
the origin, a non-trivial fraction of the total mass will enter the unit ball by a time of the
order t ∼ L2/γ.

Corollary 3.12 Let ρ(t, x) satisfy (3.218) with an initial condition ρ0 that satisfies ρ0(x) ≥ 0
and ∫

1≤|x|≤L
ρ0(x) dx = M0.

Then there exist γ0 and c so that for all γ > γ0 and t ≥ L2/(cγ), we have∫
B1

ρ(x, t) dx ≥ cM0. (3.221)

Proof. Let φ(t, x) satisfy (3.217) with the initial condition φ0(x) = 1B1(x). Theorem 3.10
and (3.220) imply that∫

B1

ρ(t, x)dx =

∫
Rn
ρ0(x)φ(t, x)dx ≥

∫
1≤|x|≤L

ρ0(x)φ(t, x)dx ≥ c

∫
1≤|x|≤L

ρ0(x)dx = cM0,

(3.222)
for all t such that

√
cγt > L, if γ > γ0. Here, c and γ0 are the constants in Theorem 3.10

corresponding to r1 = 1. �
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[9] D. Dürr, S. Goldstein and J. Lebowitz, Asymptotic motion of a classical particle in a
random potential in two dimensions: Landau model, Comm. Math. Phys., 113, 1987,
209–230.

[10] V. Enss, Asymptotic completeness for quantum mechanical potential scattering. I. Short
range potentials. Comm. Math. Phys. 61, 1978, 285–291. 32

[11] L.C. Evans, Partial Differential Equations, Second Edition, AMS, 2010. 4, 17

[12] A. Fannjiang and L. Wo?owski, Noise induced dissipation in Lebesgue-measure preserving
maps on d-dimensional torus. J. Statist. Phys. 113, 2003, 335–378. 15
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