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Abstract

We consider the weakly dissipative and weakly dispersive Burgers-Hopf-Korteweg-de-Vries equa-
tion with the diffusion coefficient ε and the dispersion rate δ in the range δ/ε → 0. We study the
travelling wave connecting u(−∞) = 1 to u(+∞) = 0 and show that it converges strongly to the
entropic shock profile as ε, δ → 0.
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1 Introduction

This paper is concerned with the hyperbolic conservation laws approximated by a weakly dissipative
and weakly dispersive equation, that is, we are interested in the limit as ε → 0, δ → 0 of the solutions
of the following problem

∂u

∂t
+

∂

∂x
(A(u)) = ε

∂2u

∂x2
− δ

∂3u

∂x3
, (1)

u(t, 0) = u0(x).

It is well known that when the parameter ε vanishes too fast compared to δ, the dispersive effects
dominate and produce oscillations. In that case the (weak) limit is not a weak solution to the con-
servation law with ε = δ = 0 ([7]). Therefore several authors have considered the weak dispersion
case δ = αε2, with 0 < α < ∞ fixed, showing the solutions of (1)converge strongly ([10, 6]) to weak
solution to the equation with ε = δ = 0. Such limits may lead to non-entropic solutions ([10, 6, 5, 1, 8])
for non-convex fluxes A(u). However, for strictly convex fluxes and in this weak dispersion regime
δ = αε2 with α > 0 fixed, one expects that the (strong) limits always satisfy the family of Kruzkov
entropies; this is proved in [8] for instance for travelling waves. For general solutions to the initial
value problem in the weak dispersion regime, it is easy to prove that the square entropy satisfies the
entropy inequality but there is no direct derivation of the full family of entropy inequalities. However
an indirect argument due to R. DiPerna indicates that for convex fluxes a single entropy inequality
implies all the others; the original argument uses the BV regularity of solutions (such a bound is not
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available here) and this regularity assumption has been removed recently in [3, 9]. But we are not
aware of any related result in the moderate dispersion regime, i.e. a priori strong limits.

The purpose of this paper is to further investigate the case of convex fluxes, on the simple example
of the Burgers-Hopf equation

∂u

∂t
+

∂

∂x

(

u2

2

)

= ε
∂2u

∂x2
− δ

∂3u

∂x3
. (2)

Then we sustain, by means of the study of travelling waves, the idea that the entropy inequalities are
reached in the more general limit

δ

ε
→ 0 (moderate dispersion), (3)

and that the condition δ = O(ε2) is perhaps too stringent. More precisely we prove the

Theorem 1.1 There exists a (unique up to translation) travelling wave solution u(t, x) = Sε,δ(x−t/2)
of (2) connecting the states u(−∞) = 1 to u(+∞) = 0 which converges strongly, as ε, δ → 0, together
with (3), to the entropic shock profile ū(t, x) = S̄(x − t/2) with

S̄(x) =

{

1, for x < 0,
0, for x > 0.

The proof of this theorem is given in the next section. We first recall several facts on travelling
waves and rescale the problem to settle a clearer asymptotic problem. Then, we study the limiting case
c = 0 which serves as a basis for the expansions performed in the study of the general travelling wave.
Our analysis indicates that when δ = αε with α > 0 fixed then the travelling wave Sε,δ converges only
weakly and convergence to the entropic shock breaks down at this level. In that sense, the result of
Theorem 1.1 is sharp.

Acknowledgment. LR was supported in part by NSF grant DMS-0604687.

2 Convergence of Burgers-KdV travelling wave solutions

2.1 Rescaled travelling waves

We now look for travelling wave solutions of the Burgers-KdV equation

ut + uux = εuxx − δuxxx (4)

that connect u = 1 as x → −∞ and u = 0 as x → +∞, and move with the correct speed c0 = 1/2
(the fact that this is the only possible speed for a travelling wave connecting these two states follows
immediately from the Rankin-Hugoniot condition), as it stands for an entropic shock of the Burgers
equation. Such solutions have the form u(t, x) = Sε,δ(x − t/2) with the function Sε,δ(x) which solves

−1

2
S′

ε,δ + Sε,δS
′
ε,δ = εS′′

ε,δ − δS′′′
ε,δ, Sε,δ(−∞) = 1, Sε,δ(+∞) = 0. (5)

Integrating between −∞ and x we obtain

−1

2
Sε,δ +

S2
ε,δ

2
= εS′

ε,δ − δS′′
ε,δ, Sε,δ(−∞) = 1, Sε,δ(+∞) = 0. (6)
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We also rescale and reverse the direction: t = −x/
√

δ and arrive at

Sε,δ(x) = Sc(−x/
√

δ) with c = ε/
√

δ, (7)

and

−1

2
Sc +

S2
c

2
= −cS′

c − S′′
c , Sc(−∞) = 0, Sc(+∞) = 1. (8)

Note that the function φ(t) = 1 − Sc(t) satisfies the familiar Fisher-KPP equation

−cφ′ = φ′′ +
1

2
φ(1 − φ), φ(−∞) = 1, φ(+∞) = 0. (9)

It follows that there are three regimes for the travelling front solutions of (2).
• The first one arises when c ≥ c∗ =

√
2, the minimal KPP speed. Then equation (9) admits monotonic

travelling wave solutions. In terms of (4) this means that such solutions exist for ε2/δ ≥ 2. After
rescaling as in (7) and normalizing Sc(0) = 1/2 we observe that Sε,δ(x) converges pointwise to the
entropic shock profile

S̄(x) =

{

1, for x < 0
0, for x > 0.

(10)

This regime has been widely studied, see [4] and the references therein.
• The second regime, when 0 < c < c∗, is different – a travelling wave still exists for all ε > 0, δ > 0,
that is, for all c > 0 but it is no longer monotonic in x. Nevertheless, as long as we keep ε/

√
δ ≥ co

for any fixed co > 0 and let ε, δ → 0, the wave Sε,δ converges to the shock (10), and here again an
additional normalization is needed to fix the location of the travelling wave:

S′
c(x) > 0 for x < 0 and S′

c(0) = 0, (11)

a normalization we will used throughout the paper. This has been shown in [2], see also [6, 5, 8] for the
same conclusions on the initial value problem. In terms of (9) this means that the speed c is bounded
away from zero: c ≥ co > 0.
• Here we are interested in what happens in the third regime, when c becomes small but so that δ/ε
vanishes. We would like to show that the wave Sε,δ(x) picture is as follows (arguing backward from
+∞ to −∞: for x > 0 solution decays to zero on the length scale λ =

√
δ/c, this region is followed

by an interval of a comparable length where solution oscillates between u = 0 and u = 3/2, which is
finally followed by a region where solution oscillates on the length scale λ1 =

√
δ and approaches the

value u = 1 at the exponential rate k = 1/λ. This means that the travelling wave converges pointwise
to a shock profile as ε, δ → 0, as long as λ → 0. In terms of the parameters ε and δ this translates
into δ/ε → 0 as opposed to the case δ ≤ c2

oε
2 studied previously in [2]. The main difference compared

to the latter regime is that there is a region inside the “viscous shock” where oscillations are strong.

In terms of the wave Sc(t) we have to show the following: (i) In the first zone (the monotonicity
region), t < 0, we have S′

c(t) > 0 and there exists constant B > 0, independent of c > 0 so that
0 < Sc(t) ≤ Bet/B ; (ii) In the second zone (the transient oscillations region), between x = 0 and
x = O(1/c), the wave Sc(t) oscillates between the values 0 and 3/2 with the period O(c−1/4); (iii)
In the third zone (the exponential damping region), x > B/c, we have |1 − Sc(x)| ≤ Be−c(x−B/c)

but Sc is still an oscillatory function with the period equal to O(1) – and these bounds should hold
with a constant B independent of c > 0. A profile of Sc(x) with c = .05 is depicted in Figure 2 with
translated abscissae.
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Figure 1: The potential energy, the function G(w).

For this purpose, it is convenient to introduce the phase space variables w = Sc and v = −S′
c to

re-write (8)–(11) as























w′ = −v

v′ = −cv − 1
2w(1 − w)

w(−∞) = v(−∞) = 0, v(0) = 0, w(+∞) = 1, v(+∞) = 0.

(12)

This system has an energy

H(v,w) =
v2

2
+ G(w),

d

dt
H(v(t), w(t)) = −cv(t)2, (13)

with G′(w) = −w(1 − w)/2. We choose the normalization so that minG = G(1) = 0 which means
that

G(w) =
w3

6
− w2

4
+

1

12
=

(1 − w)2(1 + 2w)

12
.

This function is plotted in Figure 1.

2.2 The periodic solutions for c = 0

In order to study the problem with c > 0 we first recall the basic properties of the periodic solutions
that exist when c = 0. Then, the system (12) becomes







w′ = −v,

v′ = −1
2w(1 − w),

(14)

and the energy is conserved. The energy level, 0 ≤ H = H(0, w(0)) = G(w(0)) < 1/12 = G(0),
characterizes the solution.
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Figure 2: Solid line: a profile of Sc(x) with c = .05, w(0) = 5 ·10−5. Dashed line: the derivative S′
c(x).

The period. There exists a global solution (corresponding to T = ∞) with the maximal energy
H = 1/12 and w > 0, which corresponds to a homoclinic orbit of (14) that connects (0, 0) to itself.
Other solutions with energies 0 ≤ H < 1/12 are periodic, with the period T given in terms of the
energy H by

T = 2

∫ w2(H)

w1(H)

dw
√

2
(

H − G(w)
)

. (15)

Here w1(H) < w2(H) are the two solutions of G(w1,2(H)) = H, that is, the minimum and maximum
values of the function w(t) on the trajectory. We have two limiting cases: (maximal energy) w1(1/12) =
0 and w2(1/12) = 3/2, (minimal energy) w1(0) = w2(0) = 1.
Large energies, H . 1/12. Such a periodic solution, with w(0) = 5 · 10−5, is depicted in Figure 3.
The periodic solutions with H close to H = 1/12 spend most of the time close to the minimal value
w1(H) ≈ 0 as can be seen from Figure 3 – the reason is that they “follow” the bound state for a long
time. However, the time they spend between w = 1/2 and w = w2(H) ≈ 3/2 is uniformly (in H)
bounded from above. Indeed, assume that H > H(1/2, 0) = 1/24, w(t1) = 1/2 with v(t1) > 0 and t2
is the first time larger than t1 such that w(t2) = w2(H). Then we have

t2 − t1 = 2

∫ w2(H)

1/2

dw
√

2(H − G(w))
≤ C,

since G′(w2(H)) is bounded away from zero for H ≥ 1/24. On the other hand, as G′(0) = 0, the
period T (H) for H ≥ 1/24 is bounded from below:

T (H) = 2

∫ w2(H)

w1(H)

dw
√

2(H − G(w))
≥ 1√

2

∫ 1/2

w1(H)

dw
√

2
(

H − G(w)
)

≥ T0 > 0.

Moreover, as H → 1/12 we have

T (H) = 2

∫ w2(H)

w1(H)

dw
√

2(H − G(w))
→ +∞.
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Figure 3: Large energy periodic solution. Solid line: a profile of Sc(x) with c = 0, w(0) = 5 · 10−5.
Dashed line: the derivative S′

c(x).

For H . 1/12, one can also prove that

w1(H) = 2

√

1

12
− H +

4

3

(

1

12
− H

)

+ O((
1

12
− H)3/2), w2(H) =

8

3

(

1

12
− H

)

+ O((
1

12
− H)2),

T (H) = −2
√

2 ln(w1(H)) + O(1). (16)

Indeed, we have, by a simple Taylor expansion, w1(H) = O(
√

1
12 − H). Then we obtain from the

expression (15) for the period that

T (H) = 2

∫ ·

w1

dw
√

2
(

H − 1
12 + w2

4 − w3

6

)

= 2

∫ ·

0

ds
√

s(w1 − w2
1) + s2(1

2 − w1) − s3

3

= 2

∫ ·/w1

0

du
√

u(1 − w1) + u2(1
2 − w1) − u3

3 w1

≈ 2

∫ ·/w1

0

du
√

u + u2

2

≈ −2
√

2 ln w1.

Small energies, H & 0. The situation is different for small energies: the period is bounded both
from below and from above. Indeed, note that G(w) is convex for w ≥ 1/2 so that

H − G(w) ≤ −G′(w1(H))(w − w1) for w1(H) ≤ w ≤ 1,

H − G(w) ≤ G′(w2(H))(w2 − w) for 1 ≤ w ≤ w2(H).

Using these bounds we obtain by an elementary calculation

T = 2

∫ w2(H)

w1(H)

dw
√

2(H − G(w))
≥ C

(

1
√

w1(H)
+

1
√

w2(H)

)

≥ T1 > 0.
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Figure 4: Small energy periodic solution. Solid line: a profile of Sc(x)−1 with c = 0, w(0) = 1−0.005.
Dashed line: the derivative S′

c(x).

On the other hand, we have an upper bound for G(w):

G(w) ≤ H − H

1 − w1(H)
(w − w1(H)) for w1(H) ≤ w ≤ 1,

and

G(w) ≤ H +
H

w2(H) − 1
(w − w2(H)) for 1 ≤ w ≤ w2(H).

It follows with the help of another elementary computation that

T = 2

∫ w2(H)

w1(H)

dw
√

2(H − G(w))
≤ C

(

1 − w1√
H

+
w2 − 1√

H

)

≤ T2 < +∞.

In fact, the asymptotic behavior for small energy is clear. The solution approaches the harmonic
oscillator 1 − w(x) ≈ (1 − w(0))cos(2πt).

2.3 Travelling waves for a small c > 0

As we have mentioned, existence of travelling wave solutions for all 0 < c < c∗ =
√

2 has been
established in [2]. It has been shown that they look as follows: In the first zone Sc(t) is increasing
for t < 0 and has its first maximum at x0 = 0. Then, Sc(t) oscillates with a decreasing amplitude
in the following sense: there exists infinite sequences of maxima 0 = x0 < x1 < · · · < xn < . . . and
minima 0 < y1 < y2 < · · · < yn < . . . with xn−1 < yn < xn so that 1 < Sc(xn+1) < Sc(xn) < 3/2
and 0 < Sc(yn) < Sc(yn+1) < 1 – see Figure 2 for a typical profile (with translated abscissae). Our
task is to estimate the differences of Sc at successive maxima and minima as well as the distances
Ln = xn+1−xn and ln = yn+1−yn as well as the energy drop Hc(xn+1)−Hc(xn) where Hc(t) denotes
the energy of Sc as introduced in (13). We do that in distinguishing two additional zones (transitory
oscillations and exponential damping).
Transitory oscillations. Here, we wish to prove the
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Lemma 2.1 For c > 0 small enough, and as long as 1
24 ≤ H(yn) < 1

12 , for some constant K, we have

yn+1 − yn ≤ an :=
K

(cn)1/4
, H(yn+1) − H(yn) ≤ −Kc.

Proof. We denote by K a universal constant independent of c throughout the proof. We need a pre-
liminary and straightforward estimate on solutions (wc(t), vc(t)) with c > 0 by those (w0(t0; t), v0(t0; t))
obtained with c = 0 and the same initial data at t = t0, (wc(t0), vc(t0)) = (w0(t0; t0), v0(t0; t0)). This
estimate is

|vc(t) − v0(t0; t)| + |wc(t) − w0(t0; t)| ≤ c CT sup
|s−t0|≤T

|vc(s)|, for all |t − t0| ≤ T . (17)

It is a consequence of Gronwall lemma applied to the system (12) where the term −cv is considered
as a source.

Next, we can consider the energy drop between −∞ and x0 = 0. It is estimated as

1

12
− Hc(0) = c

∫ 0

−∞
v2
c (t)dt.

We claim that Hc(0) ≤ 1/12 − cM with a constant M independent of 0 < c < c0, for some c0 small
enough. Indeed, we have for −1 ≤ t ≤ 0:

|vc(t) − v0(0; t)| + |wc(t) − w0(0; t)| ≤ Kc sup
−1≤s≤0

|vc(s)| ≤ K ′c, for all −1 ≤ t ≤ 0.

This means that
∫ 0

−∞
v2
c (t)dt ≥

∫ 0

−1
v2
c (t)dt ≥

∫ 0

−1
v2
0(0; t)dt − Kc ≥ K,

and thus

Hc(0) ≤
1

12
− Kc. (18)

We also have the following fact: if Hc(xn) ≥ 1/24 then xn − xn−1 ≥ T0 with T0 independent of n. On
the other hand, we have

Hc(xn−1) − Hc(xn) = c

∫ xn

xn−1

v2
c (t)dt. (19)

By the same argument as above we deduce that

Hc(xn) ≤ Hc(xn−1) − Kc if Hc(xn) ≥ 1/24.

This means that

Hc(xn) ≤ 1

12
− Kcn if Hc(xn) ≥ 1/24.

As a consequence, we have wc ≥ K
√

cn for xn−1 ≤ t ≤ xn and, in particular, wc(yn) ≥ K
√

cn.

Let zn ∈ (yn, xn) be the first point to the right of yn where wc = 3/4. In order to estimate |xn − yn|
we will now first estimate the distance between yn and zn. On the interval between yn and zn the
function wc satisfies

−w′′
c = cw′

c −
1

2
wc(1 − wc),
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and wc ≥ K
√

cn. Therefore, on this interval we have

w′′
c + cw′

c ≥ K
√

cn, wc(yn) ≥ K
√

nc, w′
c(yn) = 0, w′

c ≥ 0 for yn ≤ t ≤ zn.

It follows that

w′
c(t) ≥

K
√

n√
c

(

1 − e−c(t−yn)
)

for yn ≤ t ≤ zn. (20)

Therefore, as long as (20) holds and t ≤ yn + 1
100c we get

wc ≥ K
√

cn +
K
√

n√
c

(t − yn) − K
√

n

c
√

c

(

1 − e−c(t−yn)
)

≥ K
√

cn +
K
√

n√
c

(t − yn) − K
√

n

c
√

c

(

1 − 1 + c(t − yn) − c2

4
(t − yn)2

)

= K
√

cn(1 + (t − yn)2).

It follows that

zn − yn ≤ K

(cn)1/4
.

On the other hand, it is straightforward to compute that |zn − xn+1| ≤ T0 with T0 uniform in the
energies. We see that

xn − yn−1 ≤ K

(cn)1/4
.

A similar computation shows that

yn − xn ≤ K

(cn)1/4
,

so that

yn − yn−1 ≤ an =
K

(cn)1/4
,

provided that H(yn) ≥ 1/24.

We can now conclude the analysis of the transitory zone. Because, we have seen that energy drops by
Kc between yn and yn+1, we conclude that the number N of oscillations before the energy H = 1/24
is reached is bounded by Nc = K/c. Then the total time it takes to reach this energy level is bounded
by

L =

N=K/c
∑

n=1

an =

N=K/c
∑

n=1

K

(cn)1/4
≤ K

c1/4

(

K

c

)3/4

≤ K

c
.

Exponential damping. The third zone is when the energy Hc(t) is smaller than 1/24. There, using
the inequality

H ′
c(t) = −cv2 ≥ −cH(t),

we deduce the lower bound
H(t) ≥ H(t0)e

−c(t−t0).

Our purpose is to prove the reverse inequality.
We begin by arguing as before for (17)

|vc(t) − v0(t0; t)| + |wc(t) − w0(t0; t)| ≤ c
√

Hc(t0)e
M(t−t0). (21)
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This proves, again by continuity as c → 0 on the rescaled quantities vc(t)/
√

Hc(xn), wc(t)/
√

Hc(xn),
that

xn+1 − xn = O(1), and yn+1 − yn = O(1). (22)

Finally, with the similar argument and using again (19), we have a bound for energy drop over each
oscillation:

Hc(xn) ≤ (1 − Kc)Hc(xn−1).

This means that, in this third zone, energy decays exponentially at the rate cK:

Hc(xn) ≤ Ke−Kc(xn−K/c),

in other words wc(t) → 1 exponentially as we have claimed. This finishes the proof of Theorem 1.1.

2.4 The general nonlinearities

Our results may be generalized to any strictly convex flux f(u) and boundary conditions u(−∞) = ul

and u(+∞) = ur:

ut + (f(u))x = εuxx − δuxxx, u(−∞) = ul, u(+∞) = ur. (23)

We look for a travelling wave that moves with the speed s = (f(ur) − f(ul))/(ur − ul):

−sS′
ε,δ + [f(Sε,δ)]

′ = εS′′
ε,δ − δS′′′

ε,δ.

Integrating between −∞ and x we get

−sSε,δ + sul + f(Sε,δ) − f(ul) = εS′
ε,δ − δS′′

ε,δ.

Again, after rescaling x by
√

δ and setting c = ε/
√

δ we arrive at

cS′
c − S′′

c = F (Sc), Sc(−∞) = ul, Sc(+∞) = ur.

The nonlinearity F has the form

F (φ) = −sφ + sul + f(φ) − f(ul). (24)

Note that F (ul) = F (ur) = 0 – this follows from the Rankin-Hugoniot condition on the speed s.
Moreover, for φ between ul and ur we have

F (φ) = f(φ) − f(ul) −
f(ur) − f(ul)

ur − ul
(φ − ul) ≤ 0,

since f is convex. Thus, the situation is again reduced to the KPP since the nonlinearity F (φ) is
convex in φ.

The situation is, of course, completely different in the non-convex case as travelling waves may not
exist even if δ = 0 – that is, in the absence of dispersion. Indeed, if we look for a travelling wave
solution of (23) with δ = 0 we arrive simply at

cS′
c = F (Sc), Sc(−∞) = ul, Sc(+∞) = ur,

with F given by (24). This equation may not have a solution if there exists a point φ between ul and
ur such that F (φ) = 0, that is, if the line joining (ul, f(ul)) and (ur, f(ur)) intersects the graph of
f(u) between ul and ur. For that to happen the function f has to be non-convex.
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Conclusion

We have studied the oscillatory travelling waves for the dissipative-dispersive Burgers-Hopf equation
and estimated precisely the periods and damping rate. From this study, we deduce that when δ/ε
vanishes, the travelling wave converges to an entropic shock. We conjecture that the entropic solutions
should be reached in this regime even for the initial value problem.

It is therefore natural to ask the question of the regime δ = ε (or may be larger). It is easy to get
convinced that the corresponding travelling wave converges only weakly and thus does not reach the
entropic shock in the limit. Indeed, in the third region of our analysis, the oscillation length of Sc is
of length 0(1) with a damping rate to 1 is e−ct. Once rescaled to the actual travelling wave Sε,δ is
oscillates period of order

√
δ and the damping rate to 1 is now e−x. In other words in the third region,

Sε,δ converges weakly to 1. It is plausible that the second region remains of size O(1) and a smooth
transition is generated in the weak limit.
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