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Abstract

We consider a classical integro-differential equation that arises in various applications as a model
for cell-division or fragmentation. In biology, it describes the evolution of the density of cells that
grow and divide. We prove the existence of a stable steady dynamics (first positive eigenvector)
under general assumptions in the variable coefficients case. We also prove the exponential conver-
gence, for large times, of solutions toward such a steady state.

1 Introduction

This paper is concerned with the equation

∂
∂tn(t, x) + ∂

∂xn(t, x) + b(x) n(t, x) = 4b(2x) n(t, 2x), t > 0, x ≥ 0,

n(t, x = 0) = 0, t > 0,

n(0, x) = n0(x) ∈ L1(R+).

(1)

It arises in many applications, in particular as a basic model for size-structured populations: n(t, x)
denotes the population density of cells of size x at time t. The cells grow at a constant rate but also
divide into two cells of equal size at a rate b(x) when mitosis occurs (see [13] for a classical reference
on the subject and [3] for a more recent application to cell division). This model also appears in
physics to describe a fragmentation (degradation) phenomenon in polymers, droplets ([12], [9], [1] and
references therein) and in telecommunications systems to describe some internet protocols [2]. Several
variants of the model are possible and we refer to [4] for a probabilistic study of a model with the
same feature (competition between a ’growth process’ and a ’fragmentation process’.

Our first purpose is to study existence of the first eigenvector N(x)
∂
∂xN(x) + (λ+ b(x)) N(x) = 4b(2x) N(2x), x ≥ 0,

N(0) = 0, N(x) > 0 for x > 0,
∫∞
0 N(x)dx = 1,

(2)

with λ the first eigenvalue (sometimes called the Malthus parameter in biology). Then, and our second
purpose is to make this rigorous, one can expect that this density plays the role of a so-called stable
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steady dynamics, that is, after a time renormalization, all the solutions to (1) converge to a multiple
of N . To be more precise, we need to introduce the dual operator

∂
∂xψ(x)− (λ+ b(x)) ψ(x) = −2b(x) ψ(x

2 ), x ≥ 0,

ψ(x) > 0 for x ≥ 0,
∫∞
0 N(x)ψ(x)dx = 1.

(3)

It plays a fundamental role in the dynamics of (1) because its solution allows to define a conservation
law for the evolution equation for n(t, x):∫ ∞

0
n(t, x)e−λt ψ(x)dx =

∫ ∞

0
n0(x)ψ(x)dx := 〈n0〉. (4)

The construction of the eigenvalue λ and eigenfunctions N , ψ as well as the long time asymptotics
face some technical difficulties although the former is a variant of the Krein-Rutman theorem (see [7]
for instance for a recent presentation and different versions). First, we work on the half line that lacks
compactness, second, the regularizing effect (positivity) of the division term is very indirect and the
fact that all the derivatives N (p)(x = 0) vanish is a specific difficulty. Therefore, we base our results
on (i) original a priori estimates for the steady states N , ψ and (ii) a perturbation method around
the constant coefficient case which is simpler for the exponential convergence. Indeed, we have the
following

Theorem 1.1 Assume b(x) = B, then λ = B, ψ = 1 and there is a unique solution N ∈ S(R+) to
(2). Furthermore, all solutions to (1) satisfy

‖n(t, x)e−Bt − 〈n0〉N(x)‖L1(R+) ≤ e−Bt
[
‖n0(x)− 〈n0〉N(x)‖L1(R+) + 6B‖H0‖L1(R+)

]
, (5)

where 〈n0〉 =
∫ ∞

0
n0dx and

H0(x) =
∫ x

0
[n0(y)− 〈n0〉N(y)] dy → 0 as x→∞.

It remains unknown whether the L1 bound on the initial data H0 is necessary for the exponential
decay (it is not needed for the mere decay without rate, in any Lp space, see [14]).

Our purpose in this paper is to prove a similar result (Theorem 4.1) for variable functions b(x).
We would like to point out that proving exponential decay to steady states in transport equations
is still an active subject because no unifying tool can be used because of lack of symmetry and lack
of general spectral theory due to the hyperbolic nature of (2). We refer to [8, 17, 6, 16] for other
examples of recent studies on such problems. In a discrete setting and when the growth operator is
nonlinear (and then it involves quite specific method) a convergence result to steady state for the
fragmentation equation is available in [10]. We finally note that the existence of a unique solution
n ∈ C(R+;L1(R+)) to (1) follows from classical analysis of transport equations, while additional
integrability and L∞ bounds follow from the entropy structure of such models (see [14]).

This paper is organized as follows. In the second section we consider the case of a constant co-
efficient b(x) = B > 0 and prove Theorem 1.1. Next, we study the existence of eigenfunctions for
the problems (2), (3) with a general bounded function b(x). These are used in Section 4, where we
prove an explicit exponential decay rate. It relies on the knowledge of the large x behavior of ψ, a re-
sult we establish for functions b(x) that are equal to a constant outside of a compact set (Theorem 4.2).
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2 The constant coefficient case

In this section we prove Theorem 1.1 for the case of a constant division rate b(x) = B. Then the
equation reads 

∂
∂tn(t, x) + ∂

∂xn(t, x) +Bn(t, x) = 4Bn(t, 2x), t > 0, x ≥ 0,

n(t, x = 0) = 0, t > 0,

n(0, x) = n0(x) ∈ L1(R+).

(6)

and its eigenelements are known explicitly, but still the large time asymptotics and decay rates are
not known. This problem serves also as a model for the general case we treat later.

The construction of the first eigenvalue and adjoint eigenfunction for (2)-(3) is rather easy and we
readily check that

λ = B, ψ = 1.

This implies that we have∫ ∞

0
n(t, x)e−Btdx =

∫ ∞

0
n0(x)dx,

∫ ∞

0
|n(t, x)|e−Btdx ≤

∫ ∞

0
|n0(x)|dx. (7)

The first eigenvector, that is, the (smooth) solution N(x) to
∂
∂xN(x) + 2 B N(x) = 4B N(2x), x ≥ 0,

N(0) = 0, N(x) > 0 for x > 0,
∫∞
0 N(x)dx = 1,

(8)

is less explicit but is given by a series (see [2]) that converges absolutely and uniformly.

Lemma 2.1 Let α0 = 1, αn = 2
2n−1 αn−1, then the function

N(x) = N̄

∞∑
n=0

(−1)n αn e
−2n+1Bx, (9)

belongs to the Schwartz space S(R+) and is the unique solution to (8) with an appropriate normaliza-
tion constant N̄ > 0.

Proof. We first prove that the equation is satisfied. We have

N ′(x) = N̄

∞∑
n=0

(−1)nαn2n+1Be−2n+1Bx = −2BN + N̄

∞∑
n=0

(−1)nαn2(2n − 1)Be−2n+1Bx

= −2BN + 2N̄
∞∑

n=1

(−1)n2αn−1Be
−2nB2x = −2BN + 4BN(2x).
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Next, we prove that N(0) = 0. We have

αn =
2n

(2n − 1) . . . (21 − 1)

so that
α0 − α1 = 1− 2

2− 1
=

−1
2− 1

,

and

α0 − α1 + α2 =
−1

2− 1
+

22

(22 − 1)(21 − 1)
=

−1
(22 − 1)(21 − 1)

.

One readily checks by induction that

k∑
n=0

(−1)n αn =
(−1)k

(2k − 1) . . . (21 − 1)
,

which proves the result as k →∞.
The positivity of N(x) is a consequence of the equation itself. Multiplying (8) by sgn(N(x)) we

obtain
∂

∂x
|N(x)|+ 2B|N(x)| = 4BN(2x)sgn(N(x)).

After integration over the half line x ≥ 0, we find

2B
∫ ∞

0
|N(x)|dx = 4B

∫ ∞

0
N(2x)sgn(N(x))dx.

Thus, dividing by 2B and changing variable y = 2x in the second integral, we obtain∫ ∞

0
|N(x)|dx =

∫ ∞

0
N(y)sgn(N(

y

2
))dy.

This proves that sgn(N(y)) = sgn(N(y
2 )) for all y > 0. A bounded function with such a property

being constant we have obtained the result.
Notice that the above argument also proves the uniqueness of N . Indeed, if we had two solutions

with same integral, the difference would have a vanishing integral while the above argument implies
that it would have a constant sign. 2

We are now ready for the
Proof of Theorem 1.1. We set

h(t, x) = n(t, x)e−Bt − 〈n0〉N(x), H(t, x) =
∫ x

0
h(t, y)dy.

These functions satisfy
∂

∂t
h(t, x) +

∂

∂x
h(t, x) + 2Bh(t, x) = 4Bh(t, 2x), t > 0, x ≥ 0,

h(t, x = 0) = 0,
∫ ∞

0
h(t, x)dx = 0, ∀t > 0,

(10)
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and 
∂

∂t
H(t, x) +

∂

∂x
H(t, x) + 2BH(t, x) = 2BH(t, 2x), t > 0, x ≥ 0,

H(t, x = 0) = 0, H(t,∞) = 0, ∀t > 0.

(11)

As a first step, we begin with a study of H. We have

∂

∂t
[H(t, x)eBt] +

∂

∂x
[H(t, x)eBt] +B[H(t, x)eBt] = 2B[H(t, 2x)eBt],

and thus
∂

∂t
|H(t, x)eBt|+ ∂

∂x
|H(t, x)eBt|+B|H(t, x)eBt| ≤ 2B|H(t, 2x)eBt|.

We find after integration in x, using that H vanishes at infinity that

d

dt

∫ ∞

0
|H(t, x)eBt|dx ≤ 0,

∫ ∞

0
|H(t, x)|dx ≤ e−Bt

∫ ∞

0
|H0(x)|dx. (12)

In a second step we work on K(t, x) = ∂
∂tH(t, x). We have

∂

∂t
K(t, x) +

∂

∂x
K(t, x) + 2BK(t, x) = 2BK(t, 2x), t > 0, x ≥ 0,

K(t, x = 0) = 0, K(t,∞) = 0, ∀t > 0.

(13)

Therefore, as in the first step, we deduce, since

K0(x) = −h0(x)− 2BH0(x) + 2BH0(2x),

that∫ ∞

0
|K(t, x)|dx ≤ e−Bt

∫ ∞

0
|K0(x)|dx ≤ e−Bt

∫ ∞

0

[
|h0(x)|+ 2B|H0(x)|+ 2B|H0(2x))|

]
dx

= e−Bt

∫ ∞

0

[
|h0(x)|+ 3B|H0(x)|

]
dx.

(14)

In the third step, we deduce the time decay of h from this time decay property of H. Indeed, we
compute from (11)

h(t, x) =
∂

∂x
H = − ∂

∂t
H(t, x)− 2BH(t, x) + 2BH(t, 2x),

and thus∫ ∞

0
|h(t, x)|dx ≤

∫ ∞

0
|K(t, x)|dx+ 3B

∫ ∞

0
|H(t, x)|dx ≤ e−Bt

{∫ ∞

0

[
|h0(x)|+ 6B

∫ ∞

0
|H0(x)|dx

}
.

From this, we directly deduce the estimate of Theorem 1.1. 2

5



3 The variable coefficient case (eigenfunctions)

The purpose of this section is to prove the existence of a first eigenvalue and positive eigenvectors for
the problem (2) and (3). These are fundamental for studying the exponential decay. We prove the

Theorem 3.1 Assume that

b ∈ C(R+), 0 < bm := min b(x), BM := max b(x) <∞, (15)

then there is a unique solution (λ,N, ψ) to equations (2), (3) with ψ,N ∈ C1(R+). Moreover,∫ ∞

0
xpN(x)dx <∞ ∀p > 0,

and we have the bounds
bm ≤ λ ≤ BM ,

c

(1 + x)k
≤ ψ(x) ≤ C (1 + xk), (16)

with two positive constants c, C and k such that 2k bm > BM .

In order to prove this Theorem (in Section 3.2), we first consider the case of a bounded domain
x ∈ [0, L] and then pass to the limit. A related problem is also mentioned in Section 3.3, for the sake
of completeness.

3.1 Bounded domain

The problem on a bounded interval [0, L] is to find the first eigenvalue λL and (NL, ψL) such that
∂

∂x
NL(x) + (λL + b(x))NL(x) = 4b(2x)NL(2x) 1{2x≤L}, 0 ≤ x ≤ L,

NL(0) = 0, NL(x) > 0 for x > 0,
∫ L

0
NL(x)dx = 1,

(17)

and 

∂

∂x
ψL(x)− (λL + b(x)) ψL(x) = −2b(x) ψL(

x

2
), x ≥ 0,

ψL(L) = 0,

ψL(x) > 0 for x ≥ 0,
∫ L

0
NL(x)ψL(x)dx = 1.

(18)

Lemma 3.2 Assume (15) and let L > 0. Then there is a unique solution (λL, NL, ψL) to (17), (18)
such that NL is Lipschitz continuous and ψL ∈ C1.

Proof of Lemma 3.2. This Lemma can be derived from the Perron-Frobenius theorem after dis-
cretization on the equation with source, and λ large enough, as{ ni−ni−1

h + (λ+ bi)ni = 4b2in2i 1{2i≤L/h} + fi, 1 ≤ i ≤ L/h,

n0 = 0.
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The underlying matrix is an M-matrix (positive dominant diagonal for λ large enough, other coefficients
non-positive). Therefore there is a first positive eigenvalue associated with a positive eigenvector
(λdisc, Ndisc). The solution of this discrete model converges to a solution to (17) just by positivity and
uniform a priori Lipschitz bounds using the Ascoli theorem. Similar arguments are detailed below and
we do not insist on this standard limit here. Similar arguments also apply to the dual problem and
allow us to construct the dual eigenfunction ψL. 2

3.2 Limit L →∞

We begin with the existence of a limit as L → 0 of the eigenfunctions and eigenvalues constructed
above. We first establish some uniform bounds, then pass to the limit and prove uniqueness.

The first step. The limit of NL. We first prove the uniform bounds for NL with L ≥ 1.

Lemma 3.3 The solution to (17) satisfies

bm − 1
L
≤ λL ≤ BM . (19)

Moreover, the family NL is compact in L1(R+), bounded in L∞(R+) and
∫∞
0 xpNL(x)dx ≤ C(p)

independent of L .

Proof. The upper bound for λL in (19) follows from the positivity of NL ≥ 0 because, after integrating
(17) in x we have

λL ≤ NL(L) + λL

∫ L

0
NL(y)dy =

∫ L

0
b(y)NL(y)dy ≤ BM

∫ L

0
NL(y)dy = BM , (20)

Next, we multiply (17) by x and integrate in x. This gives

LNL(L)−
∫ L

0
NL(y)dy + λL

∫ L

0
yNL(y)dy = 0, (21)

so that using expression (20) for NL(L), we deduce

(L λL + 1)
∫ L

0
NL(y)dy = λL

∫ L

0
yNL(y)dy + L

∫ L

0
b(y)NL(y)dy ≥ Lbm

∫ L

0
NL(y)dy. (22)

Then the lower bound in (19) follows. The boundedness of NL in L∞(R+) also follows from these

bounds on λL because
∂

∂x
NL is a bounded measure.

Next, we show the compactness of the family NL in L1. It follows (see for instance [5]) from the
two bounds already proved ∫ L

0
yNL(y)dy ≤ 1

λL

∫ L

0
NL(y)dy ≤ 1

bm − 1
L

,

as implied by (21), and

∂

∂x
NL = 4b(2x)NL(2x)− (λL + b(x))NL(x) is bounded in L1(R+).
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Such estimates, pushed further in fact prove boundedness of
∫ ∞

0
xpNL(x)dx for all p > 0. 2

The second step. Positivity of N . Now, extracting convergent subsequences of λL and NL we
obtain an eigenvalue λ and an eigenfunction N ≥ 0 for (2) in C1(R+). The x-moment control shows

that
∫ ∞

0
Ndx = 1. It remains to prove the positivity of N . We use the method of characteristics. Let

us denote a = inf{x s.t. N(x) > 0}. Then, using the method of characteristics, we have

N(x) = 4e−J (x)

∫ x

0
b(2y)N(2y)eJ(y)dy, J ′(x) = λ+ b(x).

Therefore, for x > a/2, we deduce that N(x) > 0 since there is an open subset (N is continuous)
where N(2y) > 0 in this integral. Therefore a = 0 and N(x) > 0 for x > 0.

The third step. The limit of ψL. The proof of the existence of a positive limit of ψL (the
dual problem) also requires a specific analysis in order to obtain uniform in L upper and lower bounds
(for x close to 0 and to ∞). These turn out to be longer to establish. We use the notation

1 ≤ J(x) = exp{
∫ x

0
[λL + b(z)]dz} ≤ e[λL+BM ]x.

Lemma 3.4 The solution to (18) satisfies

NL(x)ψL(x) ≤ 2
x
, ψL(x) ≤ C(1 + xk), (23)

with a constant C independent of L, and k large enough so that 2k > BM
bm

.

Proof. We prove the first inequality. Using (17) and (18), we observe that the product NL ψL satisfies
∂

∂x
[NLψL] = 4b(2x)NL(2x)ψ(x) 1{2x≤L} − 2b(x)NL(x)ψL(

x

2
),

NLψL(0) = NLψL(L) = 0.

Therefore we have

NL(x)ψL(x) = 2
∫ inf(L,2x)

x
b(z)NL(z)ψL

(z
2

)
dz, (24)

and we obtain after integration in x, using the Fubini theorem

1 =
∫ L

0
NL(x) ψL(x)dx =

∫ L

z=0
zb(z)NL(z)ψL(

z

2
)dz. (25)

We can use this bound in the right side of (24) again (since z ≥ x here) and we obtain the first
inequality in (23).

Secondly, we prove an intermediate upper bound, namely

sup
0≤x≤A

ψL(x) ≤ C(A). (26)
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For this inequality we use again (18) and first derive, for y < z

ψL(
z

2
)J−1(

z

2
) ≤ ψL(

y

2
)J−1(

y

2
) ≤ ψL(

y

2
). (27)

We now insert this bound into the inequality (again deduced from (18))

ψL(y) ≤ ψL(xL) + 2
∫ xL

y
b(z)ψL(

z

2
)dz ≤ ψL(xL) + 2BMψL(

y

2
)
∫ xL

y
J(
z

2
)dz,

with y ≤ xL and xL chosen such that

2BMxLJ
(xL

2

)
= 1/2.

Note that xL is uniformly bounded: c ≤ xL ≤ C, as implied by the uniform bounds (19) on λL. We
obtain thus for all x < xL,

sup
0≤y≤x

ψL(y) ≤ ψL(xL) + 2BM [ sup
0≤y≤x

ψL(y)]xLJ(
xL

2
) ≤ ψL(xL) +

1
2

sup
0≤y≤x

ψL(y),

and hence the inequality (26) follows for A < xL. The bound (26) for A large follows from above and
the first inequality in (23).

Finally, we prove the polynomial growth. To do that we simply argue that the function v = C(1+xk)
is an upper solution for the equation on ψL when C and k large enough. Because this equation satisfies
the maximum principle as a backward equation, we give the argument when working on the variable
y = L− x and denoting by ψ

L
(y) = ψL(x), b(y) = b(x), v(y) = v(x). We have

∂

∂y
ψ

L
(y) + (λL + b)ψ

L
(y) = 2 b ψ

L
(
L+ y

2
).

On the other hand, we have v(y) = C(L− y)k satisfies

∂

∂y
v + (λL + b)v ≥ −Ck(L− y)k−1 + Cbm(L− y)k ≥ 2CBM

(L− y

2

)k

for 0 ≤ y ≤ L−A with the choice of k and for A large enough. For x ≤ A the second upper bound in
(23) is implied by (26). Hence we have ψL(y) ≤ v(y) for C large enough and thus ψL(x) ≤ v(x) for
all 0 ≤ x ≤ L. This concludes the proof of Lemma 3.4. 2

We conclude from Lemma 3.4 that ψL converges to a solution ψ to (3) (this is local strong conver-
gence) satisfying the same bounds as in the Lemma. Thanks to the uniform decay of NL at infinity
faster than any polynomial, we deduce that∫ ∞

0
ψ(x)N(x) = 1.

Thus the eigenfunction ψ does not vanish and from (27), we deduce that ψ does not vanish on some
interval [0, x0] with x0 > 0. Then we can deduce the lower bound on ψ in (16) because, arguing as
above in the variable y = L− x, w = c

(1+x)k − c
(1+L)k is a sub-solution to (3).
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The fourth step. Uniqueness of the limit. Given another solution λ̃, Ñ , we have

∂

∂x
(ψÑ) + (λ̃− λ)(ψÑ) = 4b(2x)ψÑ(2x)− 2b(x)ψ(

x

2
)Ñ(x),

after integration, we find

(λ̃− λ)
∫ ∞

0
ψ(x)Ñ(x) dx = 0,

which implies that λ̃ = λ. Next, we prove that N = Ñ . To do that we subtract the equations and
multiply by sgn(N − Ñ), we find

∂

∂x
|N − Ñ |+ (λ+ b(x))|N − Ñ | = 4b(2x)(N(2x)− Ñ(2x))sgn(N(x)− Ñ(x))

and after multiplication by ψ and integration, we obtain∫ ∞

0
b(x)|N(x)− Ñ(x)|ψ(

x

2
)dx =

∫ ∞

0
b(x)(N(x)− Ñ(x))sgn

(
N(

x

2
)− Ñ(

x

2
)
)
ψ(
x

2
)dx.

This means that sgn(N(x) − Ñ(x)) = sgn
(
N(x

2 ) − Ñ(x
2 )

)
, which means that this sign is constant,

that is, say, N ≥ Ñ . However, this contradicts the fact that both are probability measures. The same
argument proves that ψ = ψ̃. The proof of Theorem 3.1 is now complete. 2

3.3 A related problem

A related problem, that exhibits a similar structure and also arises in the context of cell dynamics, is
∂

∂x
M(x) + 2b(x)M(x) = 4b(2x)M(2x), x ≥ 0,

M(0) = 0, M(x) > 0 for x > 0,
∫ ∞

0
M(x)dx = 1.

(28)

We present its study as another application of the method developed above.
Note that the dual solution is trivial since Ψ = 1 solves

∂

∂x
Ψ(x) + 2b(x)Ψ(x) = 2b(x)Ψ(

x

2
), x ≥ 0,

Ψ(x) > 0 for x ≥ 0,
∫ ∞

0
Ψ(x)M(x)dx = 1.

(29)

We claim that the existence of a solution (in Schwartz space) to (28) may be obtained by the same
method and estimates. Again, this follows from the study of the problem set on a bounded domain.

∂

∂x
ML(x) + (2b(x)− µL)ML(x) = 4b(2x)ML(2x) 1{2x≤L}, 0 ≤ x ≤ L,

ML(0) = 0, ML(x) > 0 for 0 < x ≤ L,

∫ L

0
ML(x)dx = 1.
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We observe that this eigenvalue problem has a unique solution which satisfies the uniform estimates
(as L→∞):

0 ≤ µL ≤ bm
Lbm − 1

,

∫ L

0
xb(x)ML(x)dx ≤ 1.

Indeed, integration against the weights 1 and x gives now

ML(L) = µL,

and

LML(L)−
∫ L

0
ML(x)dx+

∫ L

0
xb(x)ML(x)dx = µL

∫ L

0
xML(x)dx.

The first equation above implies that µL ≥ 0. Combining these two equalities, we also deduce

LµL +
∫ L

0
xb(x)ML(x)dx = 1 + µL

∫ L

0
xML(x)dx ≤ 1 + LµL,

which proves the inequality
∫ L

0
xb(x)ML(x)dx ≤ 1. Then, we also write

LµL ≤ 1 + µL

∫ L

0
xML(x)dx ≤ 1 +

µL

bm

∫ L

0
xb(x)ML(x)dx ≤ 1 +

µL

bm
,

from which we derive the upper bound on µL: µL ≤ (L− b−1
m )−1 so that µL → 0 as L→∞ and µ = 0.

The uniform bounds on ML and uniqueness of the limit are shown as before.

4 The variable coefficient case: stability

We are now ready to state the main result of this paper. We define the renormalized division rate

b̃(x) = b(x)
ψ(x

2 )
ψ(x)

, (30)

where ψ is the eigenfunction of problem (3). We assume that

0 < b̃m ≤ b̃(x) ≤ B̃M <∞. (31)

This asymptotic behavior of b̃ is stronger than the mere upper and lower bounds on b in (15) and
we conjecture it does not hold true in general. Below, we prove (see Theorem 4.2) that it is satisfied
under the stronger requirement

b(x) = b∞ > 0 for x large enough. (32)

For the moment and as a motivation, we just mention, following the proof of Lemma 3.4, that ψ(x)
should behave at infinity exactly as xk0 in this case, with 2k0 = 2b∞

λ+b∞
(notice that k0 < 1). Indeed, a

formal expansion allows to recover a solution as a power series∑
k≥0

akx
(k0−k) with (k0 − k) ak = ak+1(λ+ b∞)(2(k+1) − 1).

This is justified in Theorem 4.2.
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Theorem 4.1 Assume that (15) and (31) hold and that there exists a constant B > 0 such that

γ := ‖b̃(x)−B‖L∞(R+) <
B

4(2 +B)
. (33)

Then the solution to (1) satisfies

‖(n(t, x)e−λt−〈n0〉N(x))ψ(x)‖L1(R+) ≤ e−µt
[
2‖(n0(x)−〈n0〉N(x))ψ(x)‖L1(R+)+4B‖H0‖L1(R+)

]
(34)

with a constant µ = B − 8γ − 4Bγ. Here 〈n0〉 is given by (4), the eigenfunctions N and ψ are the
solutions to (2) and (3), respectively, constructed in Section 3 and

H0(x) =
∫ x

0
[n0(y)− 〈n0〉N(y)]ψ(y)dy → 0 as x→∞.

We do not know at present whether the smallness condition (33) is optimal for exponential convergence
to the steady state but at least the condition bm > 0 is necessary. Indeed, in [11] periodic solutions
are built when b can vanish on a large enough set.

Proof. We introduce, mimicking the constant coefficient case in Section 2,

h(t, x) = n(t, x)e−λt − 〈n0〉N(x),

so that
〈h0〉 =

∫ ∞

0
h0(x)ψ(x)dx = 0,

and
H(t, x) =

∫ x

0
h(t, y) ψ(y) dy, H(t,∞) = 0.

The proof of Theorem 4.1 is then divided in two steps: first we establish a decay rate for the anti-
derivative of q(t, x) = ψ(x)h(t, x), and in the second step we conclude by means of a representation
formula based on characteristics.

The function h satisfies
∂

∂t
h(t, x) +

∂

∂x
h(t, x) + (b(x) + λ))h(t, x) = 4b(2x)h(t, 2x),

h(t, 0) = 0.

Multiplying this equation by ψ(x) and using the equation for ψ we obtain
∂

∂t
(ψ(x) h(t, x)) +

∂

∂x
(ψ(x)h(t, x)) + 2b(x) ψ(

x

2
) h(t, x) = 4b(2x)h(t, 2x)ψ(x),

h(t, 0) = 0.

This yields two fundamental equations on which we work:
∂

∂t
q(t, x) +

∂

∂x
q(t, x) + 2b̃(x)q(t, x) = 4b̃(2x)q(t, 2x),

q(t, 0) = 0,

(35)
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and 
∂

∂t
H(t, x) +

∂

∂x
H(x) + 2

∫ x

0
b̃(y)q(t, y)dy = 2

∫ 2x

0
b̃(y)q(t, y)dy,

H(t, 0) = H(t,∞) = 0.

(36)

The main difference here is that we have used the factor ψ which is hidden in the constant coefficient
case.

We now show that the equation on H exhibits a natural decay that we dig out by a method of
perturbation. We write

∂

∂t
H(t, x) +

∂

∂x
H(x) + 2BH(t, x)− 2BH(t, 2x) = 2

∫ 2x

x
[̃b(y)−B]q(t, y)dy,

and thus

∂

∂t
|H|(t, x) +

∂

∂x
|H|(x) + 2B|H|(t, x)− 2B |H|(t, 2x) ≤ 2

∫ 2x

x
|(̃b(y)−B)q(t, y)|dy,

which gives our first fundamental inequality (we use here explicitly the condition H(t,∞) = 0, that
is, the specific constant 〈n0〉)

∂

∂t
‖H‖L1(R+) +B‖H‖L1(R+) ≤ 2

∫ ∞

x=0

∫ 2x

y=x
|(̃b(y)−B)q(t, y)|dy ≤ γ‖q(t, ·)‖L1(R+)

and thus

‖H(t)‖L1(R+) ≤ e−Bt‖H0‖L1(R+) + γ

∫ t

0
e−B(t−s)‖q(s, ·)‖L1(R+)ds (37)

We cannot follow the constant coefficient case in the last step of the proof. Instead, we introduce
Φ(t, x) = q(t, x)e2Bt. This function satisfies

∂

∂t
Φ(t, x) +

∂

∂x
Φ(t, x) = 4BΦ(t, 2x) +R(t, x) (38)

with
R(t, x) = e2Bt

[
4(̃b(2x)−B)q(t, 2x)− 2(̃b(x)−B)q(t, x)

]
.

We integrate (38) along characteristics to find

Φ(t, x) = Φ0(x− t) + 4B
∫ t

0
Φ(t− s, 2x− 2s)ds+

∫ t

0
R(t− s, x− s)ds.

We use here the convention that all functions are extended by 0 for negative x arguments.
Next, we iterate the formula for Φ to find

Φ(t, x) = Φ0(x− t) +
∫ t

0
R(t− s, x− s)ds+ 4B

∫ t

0
Φ0(2x− t− s)ds

+4B
∫ t

s=0

∫ t−s

u=0
R(t− s− u, 2x− 2s− u)duds+ (4B)2

∫ t

s=0

∫ t−s

u=0
Φ(t− s− u, 4x− 4s− 2u)duds,
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and changing variables in the last two integrals (u→ s+ u = σ) we get

Φ(t, x) = Φ0(x− t) +
∫ t

0
R(t− s, x− s)ds+ 4B

∫ t

0
Φ0(2x− t− s)ds (39)

+ 4B
∫ t

σ=0

∫ σ

s=0
R(t− σ, 2x− σ − s)dsdσ + (4B)2

∫ t

σ=0

∫ σ

s=0
Φ(t− σ, 4x− 2s− 2σ)dsdσ.

In order to estimate the L1-norm of Φ we first observe, using the definition of H, the L1-norm of the
last term in (39) is bounded by

(4B)2
∫ ∞

0

∫ t

σ=0
e2B(t−σ)|H(t− σ, 4x− 2σ)−H(t− σ, 4x− 4σ)|dσdx ≤ 4B2

∫ t

σ=0
e2Bσ‖H(σ)‖L1(R+)dσ.

Furthermore, as all functions vanish for negative arguments of x we have a bound for the second term
in (39) ∫ t

0

∫ ∞

0
|R(t− s, x− s)|dsdx =

∫ t

s=0

∫ ∞

x=s
|R(t− s, x− s)|dxds =

∫ t

s=0

∫ ∞

0
|R(t− s, x)|dxds

=
∫ t

s=0

∫ ∞

0
|R(s, x)|dxds ≤ 4γ

∫ t

s=0
‖Φ(s, ·)‖L1(R+)ds.

The fourth term in (39) is bounded by

4B
∫ ∞

0

∫ t

σ=0

∫ σ

s=0
|R(t− σ, 2x− σ − s)|dsdσdx ≤ 2B

∫ t

σ=0

∫ ∞

x=0
σ|R(t− σ, x)|dxdsdσ

≤ 8Bγ
∫ t

σ=0
(t− σ)‖Φ(σ)‖L1(R+)dσ.

Therefore, we end up with the estimate

‖Φ(t)‖L1(R+) ≤ (1 + 2Bt)‖Φ0‖L1(R+) + 4γ
∫ t

s=0
‖Φ(s)‖L1(R+)ds+ 8Bγ

∫ t

0
(t− s)‖Φ(s)‖L1(R+)ds

+ 4B2

∫ t

0
e2Bσ‖H(σ)‖L1(R+)dσ

We may use the decay rate of H in (37) to obtain

‖Φ(t)‖L1(R+) ≤ (1 + 2Bt)‖Φ0‖L1(R+) + 4γ
∫ t

0
(1 + 2B(t− s))‖Φ(s)‖L1(R+)ds

+4B
(
eBt − 1

)
‖H0‖L1(R+) + 4Bγ

∫ t

0
eB(t−σ)‖Φ(σ)‖L1(R+)dσ

≤ (1 + 2Bt)‖Φ0‖L1(R+) + 4B
(
eBt − 1

)
‖H0‖L1(R+) + 4γ(2 +B)

∫ t

0
eB(t−σ)‖Φ(σ)‖L1(R+)dσ.

Therefore the function v(t) =
∫ t
0 e

−Bs‖Φ(s)‖L1(R+)ds satisfies

v̇(t) ≤ 2‖Φ0‖L1(R+) + 4B‖H0‖L1(R+) + 4(2 +B)γBv(t), v(0) = 0.
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The Gronwall lemma implies that

v(t) ≤ e4(2+B)γt

4(2 +B)γ
[
2‖Φ0‖L1(R+) + 4B‖H0‖L1(R+)

]
,

and
Φ(t) = eBtv̇(t) ≤

[
2‖Φ0‖L1(R+) + 4B‖H0‖L1(R+)

]
(1 + e4(2+B)γt)eBt.

We recall the definition of the function Φ and obtain that

‖h(t)ψ‖L1(R+) ≤
[
2‖Φ0‖L1(R+) + 4B‖H0‖L1(R+)

]
(1 + e4(2+B)γt)e−Bt.

Thus the statement of Theorem 4.1 is proved. 2

Theorem 4.2 Under the assumptions b(x) > 0 and (32) there are two constants such that

c(1 + xk0) ≤ ψ(x) ≤ C(1 + xk0),

with 2k0 = 2b∞
λ+b∞

.

Proof. Following the argument in section 3.2, we are going to build super and sub-solutions to the
problem ψL. Then, from the upper and lower a priori bounds for x close to 0 it is enough (and
necessary) to work for x ∈ (A,L) for a given A (large enough at least so that b(x) = b∞ for x ≥ A)
and the constants c, C serve to adjust the ”boundary values” at x ≤ A.

Super-solution. We claim that for all k0 < 1, the function xk0 − µx(k0−1) is a super-solution
for µ > k0/[λ + b∞ + k0−1

A ]. More precisely, with y = L − x the correct variable for comparison, the
function v̄(y) = (L− y)k0 − µ(L− y)(k0−1) satisfies

∂

∂y
v̄(y) + (λL + b∞)v̄(y)− 2b∞v̄(

L+ y

2
) ≥ 0,

for 0 ≤ y ≤ L−A. Indeed, the left hand side is, after dividing it by (L− y)(k0−1)

−k0 + µ
k0 − 1
L− y

+ µ(λ+ b∞) ≥ 0,

under the given condition on µ (and A large enough so that the condition implies µ > 0).

Sub-solution. Let us first consider the case k0 ≥ 0. A sub-solution has to satisfy the boundary
condition v(y = 0) = 0. This is why we introduce a truncation function and define

v(y) = (L− y)k0
y

L
.

We compute

∂
∂yv(y) +(λL + b∞)v(y)− 2b∞v(L+y

2 )

= −k0(L− y)k0−1 y
L + (L− y)k0 1

L + (λL + b∞)(L− y)k0 [( y
L)− (L+y

2L )].
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To see the sign, after dividing by (L− y)k0−1, we arrive at the condition (recall that k0 ≥ 0)

−k0
y

L
+
L− y

L
− (λL + b∞)(L− y)

L− y

2L
≤ z[1− L(λL + b∞)

z

2
] ≤ 0,

with z = L−y
L ∈ [1− A

L , 1]. This sign condition is satisfied iff

(λL + b∞)(L−A) ≥ 2.

This is indeed true for L large enough.
In the case k0 < 0, a sub-solution is

v(y) = [(L− y)k0 + µ(L− y)k0−1]
y

L
.

For µ and A large enough, and following the above computations which we do not repeat, we arrive
at the conclusion that it is a sub-solution on (A,L).

We conclude this proof by indicating why the truncation on the sub-solution is irrelevant for the
final comparison. From these sub-solutions, we conclude that ψL ≥ cxk0 L−x

L on (0, L). Therefore on
(0, L/2) we deduce that ψL ≥ c

2x
k0 , and the result is proved. 2
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