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Abstract

We consider a model for the propagation of a subsonic detonation wave through a porous
medium introduced by Sivashinsky [8]. We show that it admits travelling wave solutions that
converge in the limit of zero temperature diffusivity to the travelling fronts of a reduced system
constructed in [6].

1 Introduction

The deflagration to detonation transition remains one of the most intriguing problems in combustion.
A simple model for this phenomenon in a highly resistible porous medium has been recently proposed
in [2]:

Tt − (1− γ−1)Pt = εTxx + Y Ω(T ),
Pt − Tt = Pxx, (1.1)

Yt = εLe−1Yxx − γY Ω(T ).

Here T , P and Y are the appropriately normalized temperature, pressure and concentration of the
deficient reactant, γ > 1 is the specific heat ratio, Y Ω(T ) is the normalized reaction rate, and ε
is the ratio of thermal and pressure diffusivities. The first and the last equation in (1.1) represent
the partially linearized conservation equations for energy and deficient reactant, while the second
follows from the linearized continuity equation, and equations of state and momentum. We recall
briefly the derivation of (1.1) in the appendix.

We are interested in the existence of travelling wave solutions of (1.1) of the form T (x − ct),
P (x − ct), Y (x − ct), where c is the a priori unknown front speed. Substituting this form of the
solutions into (1.1) we obtain a reduced system of ODE’s

−cT ′ + c(1− γ−1)P ′ = εT ′′ + Y Ω(T ) (1.2)

P ′′ = c(T ′ − P ′) (1.3)

cY ′ + εY ′′ = γY Ω(T ) (1.4)

with the front-like boundary conditions:

P (−∞) = 1, T (−∞) = 1, Y (−∞) = 0 (1.5)

T (+∞) = 0, P (+∞) = 0, Y (+∞) = 1. (1.6)
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We have set Le = 1 in (1.4) for simplicity. Note that unlike the situation in some other thermo-
diffusive systems, a Lewis number not equal to one would not change the results of this paper.
We assume that the function Ω(T ) is of the Arrhenius type with an ignition cut-off, that is, Ω(T )
vanishes on an interval [0, θ] and is positive for T > θ:

Ω(T ) = 0 for 0 ≤ T < θ < 1. (1.7)

Moreover, Ω(T ) is an increasing Lipschitz continuous function, except for a possible discontinuity at
the ignition temperature T = θ.

There has been a number of physical and mathematical studies of the system (1.2)-(1.6) as well
as of its dynamical version (1.1): see a recent review [8] for references. Nevertheless, to the best of
our knowledge, the rigorous results have only been obtained for the simplified version of the system
(1.2)-(1.6) where ε is formally set equal to zero. This simplification is crucial as then T , Y and P
are linearly dependent, which allows to reduce the original problem to a system of two ODE’s. This
degenerate case is well studied. In particular, it is known that the traveling wave solution exists and
is unique [3],[6].

The most important case for the applications is when ε is small (ε ∼ 10−3− 10−5). Thus setting
ε = 0, that is, ignoring the thermal diffusivity, is very attractive and is believed to reflect the correct
phenomena on the physical grounds. The goal of the present paper is to understand how singular the
limit ε → 0 actually is. We show that the full system (1.2)-(1.6) admits travelling wave solutions and
that in the limit ε → 0 they converge to that of (1.2)-(1.6) with ε = 0. Existence of the travelling
waves with ε > 0 is established in Theorem 2.1 in Section 2 and the limit ε → 0 is considered in
Theorem 3.2 in Section 3. Finally, the appendix contains a sketch of the physical derivation of (1.1).

Acknowledgment. This research was supported in part by the ASC Flash center at the Uni-
versity of Chicago under DOE contract B341495. PG was partially supported by the NSF grant
DMS-0405252, LR by NSF grant DMS-0203537, ONR grant N00014-02-1-0089 and an Alfred P.
Sloan Fellowship.

2 Existence of the traveling waves

In this section we establish the existence of a traveling wave solution to the problem (1.2)-(1.6). Let
us introduce λ as the positive solution of γ(1− λ)(1 + ελ) = 1 and decompose

T (x) = λP (x) + (1− λ)R(x), (2.1)

with an auxiliary function R(x) defined by (2.1). Note that 0 < λ < 1 and in the case when ε < 1,
that is of the most interest for us,

λ =
1− ε

2ε

(√
1 +

4ε(1− γ−1)
(1− ε)2

− 1

)
= 1− γ−1 + O(ε) (2.2)

The following theorem holds.

Theorem 2.1 The problem (1.2)-(1.6) has a travelling front solution (c, T, P, Y ) with the following
properties: c > 0, R,P, T, Y ∈ W 2,∞(R), 0 ≤ R,P, T, Y ≤ 1 and

− c

εγ(1− λ)
< R′ < 0, − c(1− λ) < P ′ < 0, 0 < Y ′ <

c

ε
, (2.3)

where R(x) is defined in (2.1) and λ in (2.2).
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Proof. The proof of Theorem 2.1 follows the general blueprint of [1] with necessary modifications
and is based on the construction of a solution on a bounded interval and subsequent passage to the
limit of the whole real line. Let us consider the system (1.2)-(1.4) on an interval [−a, a]

−cT ′ + c(1− γ−1)P ′ = εT ′′ + Y Ω(T ) (2.4)

P ′′ = c(T ′ − P ′) (2.5)

cY ′ + εY ′′ = γY Ω(T ) (2.6)

with the boundary conditions

P (−a) = 1, T (−a) = 1, Y (−a) = 0 (2.7)

and

−cT (a) + c(1− γ−1)P (a) = εT ′(a), P ′(a) = cT (a)− cP (a), cY (a) + εY ′(a) = c. (2.8)

We also impose the normalization condition:

T (0) = θ, (2.9)

where θ is the ignition temperature, as in (1.7).
In the variables (T,R, P, Y ) the system (2.4)-(2.8) becomes

cR′ + εγ(1− λ)R′′ = −γY Ω(T ) (2.10)
P ′ = c(1− λ)(R− P ) (2.11)
cY ′ + εY ′′ = γY Ω(T ) (2.12)
T (x) = λP (x) + (1− λ)R(x). (2.13)

The boundary conditions for (2.10)-(2.13) are

R(−a) = 1, P (−a) = 1, Y (−a) = 0 (2.14)

and
cR(a) + εγ(1− λ)R′(a) = 0, cY (a) + εY ′(a) = c. (2.15)

Our goal now is to show that there exists a0 ≥ 0 so that solutions of (2.10)-(2.15) exist for all a > a0

and converge as a → +∞ to solutions of (2.10)-(2.13) on the whole real line with the boundary
conditions

R(−∞) = P (−∞) = T (−∞) = 1, Y (−∞) = 0, R(+∞) = P (+∞) = T (+∞) = 0, Y (+∞) = 1.
(2.16)

This immediately implies convergence of solutions of the system (2.4)-(2.8) to solutions of (1.2)-(1.6)
as a → +∞ since the two systems (1.2)-(1.6) and (2.10)-(2.13) are related by a linear transformation.

In order to obtain the convergence results as a → +∞ we have to obtain uniform bounds on the
solution (c, T,R, P, Y ) of (2.10)-(2.15), independent of a. We begin with the following proposition.

Proposition 2.2 Any solution (c, T, P, R, Y ) of the problem (2.9)-(2.15) with c ≥ 0, has the follow-
ing properties:

c > 0 (2.17)

0 ≤ R ≤ 1, 0 ≤ Y ≤ 1, 0 ≤ P ≤ 1, 0 ≤ T ≤ 1 on [−a, a] (2.18)

− c

εγ(1− λ)
≤ R′ ≤ 0, 0 ≤ Y ′ ≤ c

ε
, −c(1− λ) ≤ P ′ ≤ 0 on [−a, a]. (2.19)

Moreover, we have
R(x) ≤ P (x). (2.20)
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Proof. A. Let us show first that c = 0 is impossible. Assume that c = 0, then the system
(2.10)-(2.12) becomes:

εR′′ = −(1− λ)−1Y Ω(T ) (2.21)
P ′ = 0 (2.22)
εY ′′ = γY Ω(T ) (2.23)

and the boundary conditions (2.14), (2.15) become

R(−a) = 1, P (−a) = 1, Y (−a) = 0, R′(a) = 0, Y ′(a) = 0. (2.24)

Equation (2.22) and the boundary condition (2.24) imply P (x) = 1 on (−a, a). Therefore, we have
T (x) = λ + (1− λ)R(x). Combining (2.21) and (2.23) we have:

(1− λ)γR′′ + Y ′′ = 0.

Integrating this equation between x and a, and taking into account the boundary conditions (2.24)
we obtain:

(1− λ)γR′ + Y ′ = 0.

Integration from −a to x together with (2.24) yields

Y = (1− λ)γ(1−R).

Thus, equation (2.21) takes the form:

εR′′ = −γ(1−R)Ω(λ + (1− λ)R). (2.25)

We claim that R ≤ 1 on [−a, a]. Indeed, assume that this is false. Then either R attains an internal
maximum at a point x0 ∈ (−a, a), or R(a) > 1. In the latter case (2.25) implies that R(x) is convex
near x = a and hence can not attain its maximum at x = a as R′(a) = 0, thus in both cases it has
to have an internal maximum x0 where R(x0) > 1. Then R′(x0) = 0, R(x0) = max

−a<x<a
R(x) > 1 and

R′′ ≤ 0. However, this contradicts (2.25) as

Ω(λ + (1− λ)R(x0)) ≥ Ω(1) > 0.

It follows that R ≤ 1 everywhere on [−a, a].
Next, integrating (2.25) between x and a we get

εR′ = γ

∫ a

x
(1−R(ξ))Ω(λ + (1− λ)R(ξ))dξ ≥ 0.

Hence, R is a nondecreasing function on (−a, a). In particular, R(0) ≥ R(−a) = 1. Thus, we have
T (0) = λ + (1 − λ)R(0) ≥ 1 which is in contradiction to (2.9). Therefore, c = 0 is impossible and
(2.17) holds.
B. Y is positive. The proof is identical to the one presented in [1] for the thermo-diffusive system
(Proposition 8.1.B).
C. Let us prove (2.18). First, we introduce a new variable W = εY ′ + cY . Then (2.12) becomes

W ′ = γY Ω(T ). (2.26)

The boundary conditions (2.14), (2.15) imply W (−a) = εY ′(−a), W (a) = c. Note that Y ′(−a) ≥ 0
as Y (x) ≥ 0 and Y (−a) = 0. Hence, W is a monotonic function on (−a, a) that increases from
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W (−a) = εY ′(−a) ≥ 0 to W (a) = c. Thus, in particular, 0 ≤ W ≤ c. We may now rewrite the
system (2.10)-(2.12) as a system of first order ODE’s. Indeed, substituting (2.26) into (2.10)-(2.12)
and integrating between x and a we obtain:

R′ =
c(1−R)−W

εγ(1− λ)
(2.27)

P ′ = c(1− λ)(R− P ) (2.28)

Y ′ =
W − cY

ε
. (2.29)

Integrating equations (2.27)-(2.29) between −a and x we get

R(x) = e
− c(a+x)

εγ(1−λ) +
∫ x

−a

c−W (ξ)
εγ(1− λ)

e
c(ξ−x)

εγ(1−λ) dξ (2.30)

Y (x) =
∫ x

−a

W (ξ)
ε

e
c(ξ−x)

ε dξ (2.31)

P (x) = e−c(1−λ)(a+x) +
∫ x

−a
c(1− λ)R(ξ)ec(1−λ)(ξ−x)dξ. (2.32)

Since 0 ≤ W ≤ c on [−a, a], we conclude from (2.30), (2.31) that 0 ≤ R(x) ≤ 1 and 0 ≤ Y (x) ≤ 1.
This estimate on R and (2.32) immediately imply that 0 ≤ P (x) ≤ 1 and, as a consequence,
0 ≤ T (x) ≤ 1. This proves (2.18).
D. It remains only to prove (2.19). The function R satisfies

cR′ + εγ(1− λ)R′′ = −γY Ω(T ) ≤ 0.

Therefore, we have (R′ecx/εγ(1−λ))′ ≤ 0. Integrating this expression between −a and x we obtain

R′(x)ecx/εγ(1−λ) ≤ R′(−a)e−ca/εγ(1−λ). (2.33)

Combining (2.10) and (2.12) and integrating between −a and a we get

γ(1− λ)R′(−a) + Y ′(−a) = 0.

Since Y ′(−a) ≥ 0, it follows that R′(−a) ≤ 0 and so R′(x) ≤ 0, as follows from (2.33). In a similar
way, Y satisfies

cY ′ + εY ′′ = γY Ω(T ) ≥ 0,

hence (Y ′ecx/ε)′ ≥ 0. Integrating this expression between −a and x leads to

Y ′(x)ecx/ε ≥ Y ′(−a)e−ca/ε.

This observation together with the fact that Y ′(−a) ≥ 0 allows us to conclude that Y ′(x) ≥ 0. Next,
differentiating (2.11) we see that

P ′′ + c(1− λ)P ′ = c(1− λ)R′ ≤ 0,

hence (P ′ec(1−λ)x)′ ≤ 0. Integrating between −a and x we obtain

P ′(x)ec(1−λ)x ≤ P ′(−a)e−c(1−λ)a.

However, we also have P ′(−a) = 0 due to (2.11) and boundary conditions (2.14). It follows that
P ′(x) ≤ 0. Finally, the previous estimates together with (2.1) imply that T ′(x) ≤ 0. Furthermore,
substituting the bounds on W , P , Y , R into (2.27)-(2.29), we immediately obtain the bounds on
|R′|, |P ′| and |Y ′| in (2.19). We also observe that (2.20) follows immediately from (2.11) and the
fact that P ′ ≤ 0. �
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Remark 2.3 Since T is a monotone function on [−a, a] and T (0) = θ, the nonlinear term Y Ω(T )
in (2.10)-(2.12) is equal identically to zero for all x > 0. Thus, (2.10)-(2.12) for x > 0 is a linear
system of ODE’s which can be solved analytically:

R(x) = R(0)e−
cx

εγ(1−λ) (2.34)
Y (x) = 1− (1− Y (0))e−

cx
ε (2.35)

P (x) = P (0)e−c(1−λ)x +
εγ(1− λ)2R(0)
1− εγ(1− λ)2

(e−c(1−λ)x − e
− cx

εγ(1−λ) ). (2.36)

Here 0 < R(0) ≤ θ – as follows from (2.9) and (2.20), 0 < Y (0) < 1 and 0 < P (0) ≤ θ/λ.

Proposition 2.4 Any solution (c, T,R, P, Y ) of the problem (2.9)-(2.12) on [−a, a] with the bound-
ary conditions (2.14), (2.15) satisfies the following bounds:

|Y (x) + R(x)− 1| ≤ (1− γ(1− λ))(1−R(x)) (2.37)

|Y (x) + R(x)− 1| ≤ 1− γ(1− λ)
γ(1− λ)

Y (x) (2.38)

|Y (x) + γ(1− λ)(R(x)− 1)| ≤ (1− γ(1− λ))(1−R(x)) (2.39)
|Y (x) + γ(1− λ)(R(x)− 1)| ≤ (1− γ(1− λ))Y (x). (2.40)

In particular, we have
γ(1− λ)(1−R(x)) ≤ Y (x) ≤ (1−R(x)). (2.41)

Proof. First we add (2.10) and (2.12) and integrate between x and a taking into account the
boundary conditions (2.15). We obtain

γ(1− λ)R′ + Y ′ +
c

ε
(R + Y − 1) = 0. (2.42)

We introduce then new variable z = R + Y − 1. Due to the boundary conditions (2.14) we have
z(−a) = 0. Equation (2.42) in terms of z can be re-written as follows:

z′ +
c

ε
z = (1− γ(1− λ))R′. (2.43)

Integrating (2.43) we get

z(x)ecx/ε = (1− γ(1− λ))
∫ x

−a
R′(ξ)ecξ/εdξ.

Since R′ ≤ 0 on [−a, a] we have

|z(x)|ecx/ε ≤ (1− γ(1− λ))ecx/ε

∫ x

−a
(−R′(ξ))dξ

which immediately implies (2.37).
In order to prove (2.38) we observe that z also satisfies

γ(1− λ)z′ +
c

ε
z = (γ(1− λ)− 1)Y ′.

Integrating this equation we have

z(x)ecx/εγ(1−λ) =
(γ(1− λ)− 1)

γ(1− λ)

∫ x

−a
Y ′(ξ))ecξ/εγ(1−λ)dξ.
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Using the fact that Y ′ ≥ 0 on [−a, a] we then obtain

|z(x)|ecx/εγ(1−λ) ≤ (1− γ(1− λ))
γ(1− λ)

ecx/εγ(1−λ)

∫ x

−a
Y ′(ξ)dξ

which implies (2.38).
In order to prove (2.39),(2.40) we observe that the variable y = Y + γ(1− λ)(R− 1) satisfies

y′ +
c

ε
y =

c

ε
(1− γ(1− λ))(1−R) (2.44)

γ(1− λ)y′ +
c

ε
y =

c

ε
(1− γ(1− λ))Y (2.45)

with y(−a) = 0. Integrating (2.44) between −a and x we see that

y(x)ecx/ε =
c

ε
(1− γ(1− λ))

∫ x

−a
(1−R(ξ))ecξ/εdξ.

Since R is a non-increasing function we conclude that

|y(x)| ≤ (1− γ(1− λ))(1−R(x))

which proves (2.39). Similarly, integrating (2.45) between −a and x, and using the fact that Y is a
nondecreasing function we obtain (2.40). Finally, we note that (2.41) follows from (2.37)-(2.40). �

Proposition 2.5 Let G =
∫ 1

θ
(1− s)Ω(s)ds < ∞, then for any solution (c,R, Y, P ) of the problem

(2.9)-(2.15) with c ≥ 0, the speed c obeys a lower bound

c ≥ (2εγG)1/2γ(1− λ) (2.46)

Proof. First, let us prove the following estimate∫ 0

−a
(R′)2 ≤ c(1−R2(0))

2εγ(1− λ)
(2.47)

We have already proved that T is a monotone function, thus (2.9) implies that T (x) ≤ θ for x ∈ [0, a]
and therefore Y (x)Ω(T (x)) = 0 on [0, a]. It follows that

R′(0) = − c

εγ(1− λ)
R(0). (2.48)

Next, we multiply (2.10) by R and integrate between −a and 0. Taking into account the boundary
condition (2.14) and (2.48) we get

c

2
(1 + R2(0)) + εγ(1− λ)R′(−a) + εγ(1− λ)

∫ 0

−a
(R′)2 = γ

∫ 0

−a
Y Ω(T )R. (2.49)

The right side of (2.49) is bounded from above by γ

∫ 0

−a
Y Ω(T ), as 0 ≤ R ≤ 1 and Y Ω(T ) ≥ 0. The

integration of (2.10) between −a and 0 gives

γ

∫ 0

−a
Y Ω(T ) = c + εγ(1− λ)R′(−a).

7



This, together with (2.49) proves (2.47).
Next, we multiply (2.10) by R′ and integrate it between −a and 0. This leads to

c

∫ 0

−a
(R′)2 +

εγ(1− λ)
2

(R′2(0)−R′2(−a)) = −γ

∫ 0

−a
Y Ω(T )R′. (2.50)

Since R is a monotone function, we make a change of variables and consider Y and T as a function
of R. Moreover, we have P ≥ R (see (2.11) and P ′ < 0 (see (2.19)). As a result, T ≥ R, and in
particular T (0) = θ ≥ R(0). In addition we have Y (x) ≥ γ(1 − λ)(1 − R) (see (2.41)). This allows
us to write

−
∫ 0

−a
Y Ω(T )R′dx =

∫ 1

R(0)
Y Ω(T )dR ≥ γ(1− λ)

∫ 1

θ
(1−R)Ω(R)dR = γ(1− λ)G. (2.51)

Combining (2.48), (2.50) and (2.51) we then have

c

∫ 0

−a
(R′)2 +

c2R2(0)
2εγ(1− λ)

≥ γ2(1− λ)G.

This expression together with the estimate (2.47) implies (2.46). �

Proposition 2.6 There exist a0 > 0 and D0(ε) so that given a > a0, every solution (c, T,R, P, Y )
of the problem (2.9)-(2.15) with c ≥ 0 obeys an upper bound on the speed c:

c ≤ D0(ε). (2.52)

Proof. The proof is based on the comparison principle [4] and a construction of a super-solution
for (2.4). First, using the fact that T is a linear combination of P and R we rewrite (2.4) as

−cκT ′ − εT ′′ = Y Ω(T ) + c(1− γ−1)(λ−1 − 1)R′.

It follows from Proposition 2.2 that R′(x) ≤ 0 for x ∈ [−a, a] and 0 ≤ Y ≤ 1. Therefore, we have a
differential inequality

−cκT ′ − εT ′′ ≤ MT,

where M = sup0≤s≤1 Ω(s)/s. Moreover, at the left end we have T (−a) = 1. In order to estimate
T (a) we use (2.20), (2.34) and (2.36) to obtain:

T (x) ≤ P (x) ≤ P (0)e−c(1−λ)x + εγ(1− λ)2R(0)e−c(1−λ)x ≤ P (0)
(
1 + εγ(1− λ)2

)
e−c(1−λ)x

≤ θ

λ

(
1 +

ε

γ

)
e−c(1−λ)x

for x ≥ 0. In particular, we have

T (a) ≤ Be−ca(1−λ), B =
θ

λ

(
1 +

ε

γ

)
.

Consider now a function T̄A = A exp(−α(x + a)) with α > 0 chosen so that

c ≥ M

κα
+

εα

κ
, c ≥ 2α

1− λ
. (2.53)
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Then a direct calculation using the first condition in (2.53) shows that given any A ≥ 0, the function
T̄A satisfies a differential inequality

−cκT̄ ′A − εT̄ ′′A ≥ MT̄A.

We claim that
T (x) ≤ T̄A(x) for all A ≥ 1. (2.54)

Indeed, this is clearly true if A is so large that TA(x) ≥ 2 for all x ∈ [−a, a]. Let us now assume
that there exists A1 > 1 so that T̄A1(x0) ≤ T (x0) for some x0 ∈ [−a, a] and define

A0 = sup{A : there exists x ∈ [−a, a] so that T̄A(x) ≤ T (x).}

Then there exists x0 ∈ [−a, a] so that T̄A0(x0) = T (x0) and, moreover, T̄A0(x) ≥ T (x) for all
x ∈ [−a, a]. However, the function φ = T̄A0(x)− T (x) satisfies

−cκφ′ − φ′′ ≥ Mφ.

Hence, the maximum principle implies that it can not attain its minimum equal to zero inside the
open interval (−a, a). However, we have at the end points:

T̄A0(−a) = A0 > A1 > 1 = T (−a)

and
T̄A0(a) = A0e

−2αa ≥ e−2αa ≥ Be−c(1−λ)a

if a is sufficiently large and α satisfies the second inequality in (2.53). Therefore, the function φ may
not be zero at the endpoints of the interval either. This contradiction shows that A0 = 1 and (2.54)
holds.

On the other hand, (2.54) implies that for α > log(θ−1)/a we have T (0) ≤ T̄1(0) < θ. This,
however, contradicts the normalization condition (2.9). Thus, no α satisfying (2.53) may exist, and
therefore c is uniformly bounded from above as in (2.52) with a constant D0 that may depend on ε
but not on a. �

Proposition 2.7 There exists a constant a0 > 0 so that for any a > a0 there exists a solution
(c, T,R, P, Y ) of (2.9)-(2.15) on [−a, a].

Proof. Given the a priori bounds in Propositions 2.2 and 2.5 and 2.6, the proof is standard [1].
Consider the space C = [C1,α([−a, a])]3 × R. For each τ ∈ [0, 1] we define a map Kτ : C → C,
Kτ (R̄, Ȳ , P̄ , c) = (R, Y, P, θτ ) as follows. Let (R̄, Ȳ , P̄ ) ∈ C and let c ∈ R. Then the functions
(R, Y, P ) are the solutions of the linear forced system

cR′ + εγ(1− λ)R′′ = −τγȲ Ω(T̄ ), T̄ = λP̄ + (1− λ)R̄ (2.55)
P ′ + c(1− λ)P = cτ(1− λ)R̄ (2.56)
cY ′ + εY ′′ = τγȲ Ω(T̄ ) (2.57)

with the boundary conditions

R(−a) = 1, P (−a) = 1, Y (−a) = 0 (2.58)
cR(a) + εγ(1− λ)R′(a) = 0, cY (a) + εY ′(a) = c. (2.59)
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The number θτ is then defined by

θτ = θ −max
x≥0

T (x) + c,

where T = λP + (1− λ)R and θ is the ignition temperature. The operator Kτ is a mapping of the
Banach space C, equipped with the norm

‖(R, Y, P, c)‖C = max(‖R‖C1,α([−a,a]), ‖Y ‖C1,α([−a,a])), ‖P‖C1,α([−a,a]), |c|)

onto itself. A solution q = (R, Y, P, c) of (2.9)-(2.15) is a fixed point of K1 and satisfies K1q = q,
and vice versa: a fixed point of K1 provides a solution to (2.9)-(2.15). Hence, in order to show
that (2.10)-(2.12) has a traveling front solution it suffices to show that the kernel of the operator
F1 = Id−K1 is not trivial. The standard elliptic regularity results, as well as the explicit formulas
for the solutions of (2.55)-(2.59) imply that the operators Kτ are compact and depend continuously
on the parameter τ ∈ [0, 1]. Thus the Leray-Schauder topological degree theory can be applied. Let
us introduce the set BM = {‖(R, Y, P, c)‖C ≤ M} ∩ {c > M−1}. Then Propositions 2.2, 2.5 and
2.6 show that the operator Fτ does not vanish on the boundary ∂BM with M sufficiently large for
any τ ∈ [0, 1]. It remains only to show that the degree deg(F1, BM , 0) in B̄M is not zero. However,
the homotopy invariance property of the degree implies that deg(Fτ , BM , 0) = deg(F0, BM , 0) for all
τ ∈ [0, 1]. Moreover, the degree at τ = 0 can be computed explicitly as the operator F0 is given by

F0(R, P, Y, c) = (R−Rc
0, P − P c

0 , Y − Y c
0 ,max

x≥0
[λP + (1− λ)R− θ0]).

Here the functions Rc
0(x), P c

0 (x) and Y c
0 (x) solve

c
dRc

0

dx
+ εγ(1− λ)

Rc
0

dx2
= 0, R0(−a) = 1, cRc

0(a) + εγ(1− λ)
dRc

0

dx
(a) = 0

dP c
0

dx
+ c(1− λ)P c

0 = 0, P c
0 (−a) = 1

c
Y c

0

dx
+ ε

d2Y c
0

dx2
= 0, Y c

0 (−a) = 0, cY c
0 (a) + ε

Y c
0

dx
(a) = c,

and are given by

Rc
0(x) =

e−cx/(εγ(1−λ))

eca/(εγ(1−λ))
, P c

0 =
e−c(1−λ)x

eca(1−λ)
, Y c

0 = 1− e−cx/ε

eca/ε
.

The mapping F0 is homotopic to

Φ(R,P, Y, c) = (R−Rc
0, P − P c

0 , Y − Y c
0 ,max

x≥0
[λP c

0 (x) + (1− λ)Rc
0(x)]− θ)

that in turn is homotopic to

Φ̃(R, P, Y, c) = (R−Rc∗
0 , P − P c∗

0 , Y − Y c∗
0 , λP c

0 (0) + (1− λ)Rc
0(0)− θ),

where c0
∗ is the unique number so that

T c∗
0 (0) = λP c∗

0 (0) + (1− λ)Rc∗
0 (0) = θ.

The degree of the mapping Φ̃ is the product of the degrees of each component. The first three have
degree equal to one, and the last to −1, as the function T c

0 (0) is decreasing in c. Thus degF0 = −1
and hence degF1 = −1 so that the kernel of Id − K1 is not empty. This finishes the proof of
Proposition 2.7. �

The last step in the proof of Theorem 2.1 is the passage to the limit a →∞.
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Proposition 2.8 There exists an increasing subsequence {an}n∈N with an > a0, limn→∞ an = ∞
such that solution (Ran , Pan , Tan , Yan , can) of (2.10)- (2.15) converges in the topology of C1

loc(R) ×
C1

loc(R) × C1
loc(R) × C1

loc(R) × R to the solution of (2.10)-(2.13) on the whole real line with the
boundary conditions (2.16). Moreover:

0 ≤ R, P, T, Y ≤ 1 on R (2.60)

R,P, T, Y ∈ W 2,∞(R) (2.61)

−c/εγ(1− λ) < R′ < 0, − c(1− λ) < P ′ < 0, T ′ = λP ′ + (1− λ)R′, 0 < Y ′ < c/ε (2.62)

0 < c ≤ c ≤ c̄ < ∞. (2.63)

Proof. Consider solutions (Ra, Pa, Ta, Ya, ca) of (2.10)-(2.15). By Propositions 2.5 and 2.6 there
exist two constants 0 < c < c̄ < ∞ independent of a such that c ≤ ca ≤ c̄. Using Proposition 2.2 we
have 0 ≤ Ra, Pa, Ta, Ya ≤ 1 and

−c/εγ(1− λ) < R′
a < 0, − c(1− λ) < P ′

a < 0,

and
T ′a = λP ′

a + (1− λ)R′
a, 0 < Y ′ < c/ε.

Moreover 0 ≤ Ω(s) ≤ M for all 0 ≤ s ≤ 1. We then deduce that

R′′
a = (−caR

′
a − γYaΩ(Ta))/εγ(1− λ)

and
P ′′

a = ca(1− λ)(R′
a − P ′

a), Y ′′
a = (−caY

′
a + γYaΩ(Ta))/ε

are bounded independently of a, hence so is T ′′a which is a linear combination of R′′
a and P ′′

a . There-
fore, Ra, Pa, Ta, Ya are bounded independently of a in W 2,∞(−a, a). As a consequence we obtain
the convergence in the topology of C1

loc(R) × C1
loc(R) × C1

loc(R) × C1
loc(R) × R of a sub-sequence

(Ran , Pan , Tan , Yan , can) to a limit (R,P, T, Y, c). The latter satisfies the system

cR′ + εγ(1− λ)R′′ = −γY Ω(T ) (2.64)
P ′ = c(1− λ)(R− P ) (2.65)
cY ′ + εY ′′ = γY Ω(T ) (2.66)
T (x) = λP (x) + (1− λ)R(x) (2.67)

on the whole real line. Properties (2.60)-(2.63) are clearly satisfied as well. Remark 2.3 implies
that we have R(+∞) = P (+∞) = T (+∞) = 0, Y (+∞) = 1. Moreover, T (0) = θ since Ta(0) = θ
for all a > 0. Monotonicity and boundedness of the functions T , R, P and Y imply that the
limits (T−, R−, P−, Y −) = limx→−∞(T,R, P, Y )(x) exist. Moreover, Y ′(−∞) = 0 and similarly
Y ′′(−∞) = 0. The function Y also satisfies (2.66) and thus Y −Ω(T−)(−∞) = 0, but T− > θ since
T is strictly decreasing and therefore Ω(T−)(−∞) 6= 0. Thus Y − = 0. This fact together with
inequality (2.41) of Proposition 2.2 implies R− = 1. Finally, as P ′(−∞) = 0, we use (2.65) to
conclude that P− = 1, and as a consequence T− = 1. �
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3 The singular limit

In this section we show that solutions of the problem (1.2)-(1.6) that we have constructed in the
previous section converge to the unique travelling front solution of the limiting problem (that is the
problem (1.2)-(1.6) with ε = 0) as ε → 0: see Theorem 3.2.

As in the previous section we will re-write the system (2.10)-(2.15) in an equivalent form

ω =
ε

c
Y ′ + Y (3.1)

ω′ = c−1γY Ω(T ), T = λP + (1− λ)R, (3.2)

R′ = c
1−R− ω

εγ(1− λ)
(3.3)

P ′ = c(1− λ)(R− P ) (3.4)

Y ′ = c
ω − Y

ε
. (3.5)

The boundary conditions are:

R(+∞) = P (+∞) = T (+∞) = 0, Y (+∞) = ω(+∞) = 1,

R(−∞) = P (−∞) = T (−∞) = 1, Y (−∞) = ω(−∞) = 0. (3.6)

In the sequel we will work with the system (3.1)-(3.6).
As we have mentioned, our goal is to show that for small ε solutions of the system converges to

the solutions of the limiting problem

ω′0 = c−1
0 γω0Ω(T0) (3.7)

P ′
0 = c0γ

−1(1− ω0 − P0) (3.8)
Y0 = ω0, R0 = 1− ω0, T0 = (1− γ−1)P0 + γ−1(1− ω0) (3.9)

with the boundary conditions

P0(+∞) = 0, ω0(+∞) = 1, P0(−∞) = 1, ω0(−∞) = 0 (3.10)

This problem is obtained from (3.1)-(3.6) by setting ε = 0. The system (3.7)-(3.10) is well under-
stood. In particular, the following result has been established in [6].

Theorem 3.1 [6] A travelling front solution (c0, ω0, P0) of (3.7)-(3.10) exists if and only if

θ < 1− γ−1. (3.11)

Moreover, in that case the travelling front solution is unique and satisfies

dω0

dP0
=

γ2ω0Ω((1− γ−1)P0 + γ−1(1− ω0))
c2
0(1− ω0 − P0)

, ω0(1) = 0, ω0

(
θ

1− γ−1

)
= 1 for x < 0, (3.12)

ω0(x) = 1, P0(x) =
θ

1− γ−1
e−c0γ−1x for x > 0, (3.13)

and

T0(x) = (1− γ−1)P0(x) + γ−1(1− ω0(x)), R0(x) = 1− ω0(x), Y0(x) = ω0(x). (3.14)

for all x ∈ R.
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In accordance to this theorem we will assume below that (3.11) holds. Note that this implies, in
particular, that

θ < λε (3.15)

for a sufficiently small ε, as follows from (2.2). We have the following result.

Theorem 3.2 Solutions of the problem (3.1)- (3.6) converge as ε → 0 uniformly to the unique
travelling front solution of the limiting problem (3.12)-(3.14).

Proof. Most of the estimates on the travelling front solutions for ε > 0, that we have obtained
in the previous section, were sufficient to establish the existence of a travelling front for ε > 0 but
diverge as ε → 0. On the other hand, as a first step in the passage to the limit ε → 0 we need
uniform estimates on the travelling front speed cε. Therefore in order to investigate the limit ε → 0
we need to obtain better estimates for cε. The following two propositions show that cε is bounded
from above and below independent of ε ∈ (0, 1).

Proposition 3.3 Assume that ε is sufficiently small, so that (3.15) holds, then

c ≥ γ√
λ

√∫ λ

θ
Ω(s)ds (3.16)

Proof. Consider (3.2) and (3.4) with the boundary conditions (3.6). Since all functions T , P , R
and ω are monotonic we can map the system (3.2), (3.4) onto the phase plane

dω

dP
= − γY Ω(T )

c2(1− λ)(P −R)
, ω(1) = 0, ω(P0) = ω0, (3.17)

where ω = ω(P ) and P0 = P (0), ω0 = ω(0). Therefore, we have

c2 =
γ

ω0(1− λ)

∫ 1

P0

Y Ω(T )
(P −R)

dP. (3.18)

As we know from Proposition 2.2 P > R, and P < 1. It follows that P − R < 1 − R. We also
have T ≥ λP , and, furthermore, Y ≥ γ(1 − λ)(1 − R) – see (2.41). Moreover, we have ω0 < 1 and
P0 ≤ θ/λ. Thus, we get a lower bound for c:

c2 ≥ γ2

∫ 1

θ/λ
Ω(λP )dP =

γ2

λ

∫ λ

θ
Ω(s)ds. (3.19)

This proves (3.16). �

Proposition 3.4 The speed c obeys the following upper bound:

c ≤

√
2γ(1 + εγ(1− λ)2)(1 + ε)

(1 + ε)(1− λ)θ2

∫ 1

θ
Ω(s)ds. (3.20)

Proof. It is convenient now to use directly the system (1.2)-(1.4). First, we multiply (1.3) by P ′

and integrate: ∫ ∞

−∞
T ′P ′ =

∫ ∞

−∞
P ′2. (3.21)

Next, we multiply (1.2) by P ′ and integrate between −∞ and +∞:

−c

∫ ∞

−∞
T ′P ′ + c(1− γ−1)

∫ ∞

−∞
P ′2 = ε

∫ ∞

−∞
T ′′P ′ +

∫ ∞

−∞
Y Ω(T )P ′. (3.22)
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Using (3.21) and the fact that P ′ = c(T − P ), we have

−cγ−1

∫ ∞

−∞
P ′2 = cε

∫ ∞

−∞
T ′′(T −P )+

∫ ∞

−∞
Y Ω(T )P ′ = −cε

∫ ∞

−∞
T ′2 + cε

∫ ∞

−∞
T ′P ′+

∫ ∞

−∞
Y Ω(T )P ′.

Since P is a monotonic function we also have∫ ∞

−∞
Y Ω(T )P ′ = −

∫ 1

P0

Y Ω(T )dP

so that, using (3.21) again, we get

−cγ−1

∫ ∞

−∞
P ′2 = −cε

∫ ∞

−∞
T ′2 + cε

∫ ∞

−∞
P ′2 −

∫ 1

0
Y Ω(T )dP (3.23)

and, finally,

c(γ−1 + ε)
∫ ∞

−∞
P ′2 =

∫ 1

0
Y Ω(T )dP + cε

∫ ∞

−∞
T ′2. (3.24)

Similarly, we multiply (1.2) by T ′ and integrate to obtain

−c

∫ ∞

−∞
T ′2 + c(1− γ−1)

∫ ∞

−∞
P ′T ′ =

ε

2

∫ ∞

−∞
(T ′2)′ +

∫ ∞

−∞
Y Ω(T )T ′. (3.25)

Again, we use (3.21) and the fact that T is monotonic:

c

∫ ∞

−∞
T ′2 = c(1− γ−1)

∫ ∞

−∞
P ′2 +

∫ 1

0
Y Ω(T )dT. (3.26)

Combining (3.24) and (3.26) we obtain

cγ−1(1 + ε)
∫ ∞

−∞
P ′2 =

∫ 1

0
Y Ω(T )dP + ε

∫ 1

0
Y Ω(T )dT ≤ (1 + ε)

∫ 1

0
Ω(s)ds, (3.27)

as (2.20) implies that T ≤ P and hence Ω(T ) ≤ Ω(P ). Now, we multiply the equation

P ′′ = c(1− λ)(R′ − P ′)

by P ′ and integrate to get ∫ ∞

−∞
P ′2 =

∫ ∞

−∞
P ′R′. (3.28)

Then, since P ′ = c(1− λ)(R− P ), we have∫ ∞

−∞
P ′2 ≥

∫ ∞

0
P ′2 = c(1− λ)

∫ ∞

0
(RP ′ − PP ′) =

c(1− λ)
2

P 2(0) + c(1− λ)
∫ ∞

0
RP ′. (3.29)

On the other hand, R is monotonic and the nonlinearity Y Ω(T ) = 0 for all x > 0. Thus, for x > 0
we have, using (2.10), cR = −εγ(1− λ)R′. Moreover, P (0) ≥ θ so that∫ ∞

−∞
P ′2 ≥ c(1− λ)

2
θ2 − εγ(1− λ)2

∫ ∞

0
R′P ′. (3.30)

However, we have ∫ ∞

0
R′P ′ ≤

∫ ∞

−∞
R′P ′ =

∫ ∞

−∞
P ′2.

14



Thus, we obtain

(1 + εγ(1− λ)2)
∫ ∞

−∞
P ′2 ≥ c(1− λ)

2
θ2 (3.31)

and therefore ∫ ∞

−∞
P ′2 ≥ c(1− λ)

2(1 + εγ(1− λ)2)
θ2. (3.32)

Now, we combine (3.27) and (3.32):

c2 ≤ 2γ(1 + εγ(1− λ)2)
(1− λ)θ2

∫ 1

θ
Ω(T )dT. (3.33)

This proves (3.20). �

Proposition 3.5 If (c, ω,R, P, Y ) is a solution of (3.2)-(3.6) then

||1−R− ω||Lp ≤ Cε, ||ω − Y ||Lp ≤ Cε, for all 1 ≤ p ≤ ∞. (3.34)

Proof. Let us consider (3.3) and (3.5). First, due to Proposition 2.2 we have Y ′ ≥ 0 and R′ ≤ 0 for
all x. Therefore, we have ω ≥ Y and∫ ∞

−∞
ω − Y =

∫ ∞

−∞
|ω − Y | = ε/c (3.35)

and similarly ∫ ∞

−∞
|1−R− ω| = εγ(1− λ)/c. (3.36)

As we have already proved that c is bounded above and below by two positive constants that are
independent of ε, it follows that

||ω − Y ||L1 ≤ Cε, ||1−R− ω||L1 ≤ Cε. (3.37)

Next, we note that (3.5) can be rewritten as:

Y (x) =
c

ε

∫ x

−∞
ω(ξ)ec(ξ−x)/εdξ. (3.38)

Therefore, we have

|Y (x)− ω(x)| ≤ c

ε

∫ x

−∞
|ω(ξ)− ω(x)|ec(ξ−x)/εdξ ≤ ‖ω′‖L∞

c

ε

∫ x

−∞
(x− ξ)ec(ξ−x)/εdξ ≤ Bε‖ω′‖L∞

c
.

Observing that c and ω′ are bounded for all ε we conclude that

||Y (x)− ω(x)||L∞ ≤ Cε. (3.39)

Similar manipulations with (3.3) imply that

||1−R− ω||L∞ ≤ Cε. (3.40)

Inequalities (3.37), (3.39) and (3.40) imply (3.34). �
Propositions 3.3, 3.4 and 3.5 together with (3.2)-(3.6) and Proposition 2.2 imply that the func-

tions Pε, ωε, Yε, Tε and Rε are all uniformly bounded together with the first derivatives, independent
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of ε > 0. It also follows from (3.2)-(3.6) that the same estimates hold for the second derivatives
ω′′ε and P ′′

ε , except possibly at the point x = 0 where Ω(T ) may have a jump if the function Ω is
discontinuous at T = θ. Therefore, the functions ωε, Tε, Rε, Pε and Yε converge point-wise, along
a subsequence εk → 0, to the respective limits ω̄, T̄ , R̄, P̄ and Ȳ . Moreover, the derivatives of ωε

and Pε also converge to the corresponding limits: ω′ε → ω̄′ and P ′
ε → P̄ ′, and the limits satisfy the

algebraic relations:
R̄ + ω̄ = 1, Ȳ = ω̄, T̄ = λ0P̄ + (1− λ0)(1− ω̄) (3.41)

with λ0 = 1− γ−1. After passing once again to a subsequence, the speed cεk
converges to a limit c̄.

The above arguments imply that the limits satisfy the system

c̄ω̄′ = γω̄Ω((1− γ−1)P̄ + γ−1(1− ω̄)) (3.42)
P̄ ′ = c̄γ−1(1− ω̄ − P̄ ) (3.43)

for x < 0 and

ω̄′ = 0
P̄ ′ = c̄γ−1(1− ω̄ − P̄ )

for x > 0. Moreover, it follows from Remark 2.3 that R̄ = 0 and Ȳ = 1 for x > 0. Therefore, (3.41)
implies that ω̄ = Ȳ = 1 for x > 0. The continuity of ω̄ at x = 0 implies that ω̄(0) = 1, hence
R̄(0) = 0 and

P̄ (0) =
T̄ (0)
λ0

=
θ

1− γ−1
.

The monotonicity of Pε and Yε imply that the limits P̄ and Ȳ are also monotonic and hence so is
ω̄ = Ȳ . Therefore, as 0 ≤ ω̄, P̄ ≤ 1, the limits

P− = lim
x→−∞

P̄ (x), ω− = lim
x→−∞

ω̄(x)

exist. It follows from (3.42) and the fact that Ω(T̄ ) > 0 for x < 0 that ω− = 0. Then (3.43) implies
that P− = 1. This shows that (c̄, P̄ , ω̄) satisfy the limiting problem (3.12)-(3.14) with the correct
boundary conditions. As such travelling front is unique, the conclusion of Theorem 3.2 follows. �

Remark 3.6 It has been pointed out to us by J.-M. Roquejoffre that Theorem 3.2 can apparently
be proved using geometric singular perturbation theory similar to one in [5].

Remark 3.7 It is important to note that Theorem 4.1 does not provide any information about
uniqueness of the solution even for small ε. There is still a possibility of non-uniqueness even in the
neighborhood of ε = 0. It would be interesting to perform a bifurcation analysis around this point.

A Derivation of the model

In this section, following [2], we briefly sketch a derivation of the model (1.2)- (1.6). Consider a
porous medium filled with combustible gas. Assume that the relaxation time of pressure is much
larger than that of temperature. Then the system can be described in the framework of the single
temperature model. We will also assume that the solid phase (skeleton) has a small specific heat and
low volumetric fraction. Thus the effective features of the reactive gas-porous medium system are
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controlled exclusively by its gaseous phase subjected to the resistance of the porous media matrix.
In this setting the system of governing equations reads as follows

cpρ(Θτ + uΘξ)− (Πτ + uΠξ) = qW + (cpρDthΘξ)ξ Energy
ρ(Cτ + uCξ) = −W + (T−1Dmol(ρΘC)ξ)ξ Concentration

W = ZρC exp(−E/RT ) Chemical kinetics
ρτ + (ρu)ξ = 0 Continuity (A.1)

ρu = −Kν−1Πξ Momentum (Darcy’s law)
ρ = Π/(cp − cv)Θ State

The system is written in the frame of reference attached to the skeleton. Here u is the gas velocity
relative to the skeleton, C is the concentration of the deficient reactant, ρ, Π, and Θ are density,
pressure and temperature of the gas-solid system, W is the chemical reaction rate, ν is the kinematic
viscosity, Dth,Dmol are thermal and molecular diffusivities, K is the permeability of the porous
medium, Z is a frequency factor, E is the activation energy, R is the universal gas constant, and q
is the heat release.

In order to simplify the system we will adopt the small heat release approximation [7] where
the variations of pressure temperature density and gas velocity are regarded as small and hence the
nonlinear effects are ignored everywhere but in the reaction term that is generally highly sensitive
to temperature changes. Under this assumption the system (A.1) after some simple manipulations
can be reduced to the following

cpρ0Θτ −Πτ = cpρ0DthΘξξ + qW,

1
Θ0

Πτ −
Π0

Θ2
0

Θτ =
K(cp − cv)

ν
Πξξ, (A.2)

ρ0Ct = ρ0DmolCξξ −W.

The first and third equations are the partially linearized equations for conservation of energy and
deficient reactant, the second equation is the linearized continuity equation taking into account
equations of the state and momentum.

We set

T =
Θ−Θ0

Θ∞ −Θ0
, P =

Π−Π0

Π∞ −Π0
, Y = C/C0 (A.3)

where Θ0, Π0 and C0 are temperature pressure and concentration at τ = 0 while Θ∞ = Θ0(1 +
qCo/cvT0), Π∞ = Π0(1 + qC0/cvT0) and C∞ = 0 are temperature pressure and concentration at
τ → ∞ in case of the homogeneous explosion. Introducing appropriate scaling of space and time
coordinates t = τ/τ̄ , x = ξ/ξ̄ with τ̄ = Z−1β exp(E/RT∞) and ξ̄ =

√
Dbτ̄ we have

Tt − (1− γ−1)Pt = εTxx + Y Ω(T ),
Pt − Tt = Pxx, (A.4)

Yt = εLe−1Yxx − Y Ω(T )
Ω(T ) = βγ−1 exp(β(T − 1)/(σ + (1− σ)T )),

where Db = KT∞cv(γ − 1)/ν, β = (1 − σ)E/RT∞, Le = Dth/Dmol are (pressure) barodiffusivity,
Zeldovich and Lewis numbers and σ = T0/T∞, γ = cp/cv, ε = Dth/Db.
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