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1 Some preliminary basic questions

We would like to be able to make sense of the solutions to equations with rough forces, such
as the additive heat equation

∂u

∂t
= ∆u+ F (t, x), (1.1)

or the wave equation
1

c2
∂2u

∂t2
= ∆u+ F (t, x), (1.2)

with a highly irregular function F (t, x), as well as nonlinear versions of these equations.
However, if F is ”very rough” then, presumably, the solution u(t, x) will not be very smooth
either. Hence, one would not be able to differentiate it in time or space, and the sense in
which u(t, x) solves the corresponding equation is not quite clear. It would be natural to
think of u(t, x) as a weak solution to the PDE as that would not require differentiation – but
if the PDE (unlike the examples above) is nonlinear we would still typically need to know
that u(t, x) is a function to consider it as a weak solution, which is not a priori obvious if
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the force F (t, x) is too irregular. As we will see, it is often the case that u(t, x) is actually
not a function but only a distribution and so is F (t, x). Then how should we interpret a
function f(u(t, x))? The same problem comes up even in linear equations when one deals
with products of the form u(t, x)F (t, x). If both u and F are distributions, then what kind
of meaning can we assign to their product? This issue arises, of course, already in the theory
of stochastic ordinary differential equations but is much more severe for stochastic partial
differential equations.

Another obvious issue is to understand what we would mean by a ”rough force” and what
kind of rough forces we can allow. If, say, (1.1) were posed on the lattice Zd, and ∆ were a
discrete Laplacian, then (1.1) could be viewed as an infinite system of SDE’s at each lattice
site, with F (t, x) independent for each site x ∈ Zd. This makes clear sense, as long as x is
discrete. In order to define such noises in Rd, we need to develop some basics. A natural way
to generalize independence at each site is to require that F (t, x) is a stationary in time and
space mean-zero process such that the two-point correlation function is

E[F (t, x)F (t′, x′)] =
{
1 if t = t′ and x = x′,
0 otherwise.

(1.3)

Such random field, however, does not exist, and the next choice would be a random field with
the two-point correlation function

E[F (t, x)F (t′, x′)] = δ(t− t′)δ(x− x′). (1.4)

This, however, would presumably require that F (t, x) is a distribution bringing up all the
issues we have discussed above.

1.1 Separation of scales between the noise and the solution

In order to explain how the correlation function (1.4) comes about naturally and why allowing
such noises is helpful, let us consider the forced linear heat equation

ut = ∆u+Ng(t, x). (1.5)

Here, we assume that g(t, x) is a smooth space-time stationary mean-zero random field with
a correlation function R(t, x):

E(g(t, x)) = 0, for all t ∈ R, x ∈ Rd, (1.6)

and
E(g(s, y)g(t, x)) = R(t− s, x− y), for all t, s ∈ R and x, y ∈ Rd. (1.7)

The parameter N measures the strength of the noise.
The main assumption that quantifies the idea that g(t, x) is a ”small-scale noise” is that

the initial condition for (1.5) varies on a scale much larger than that of g(t, x). To formalize
this, we introduce a small parameter ε ≪ 1 that measures the ratio of these two scales and
consider an initial condition for (1.5) of the form

u(0, x) = u0(εx). (1.8)
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Then, setting

uε(t, x) = u
( t

ε2
,
x

ε

)
, (1.9)

we obtain the following equation for the function uε(t, x):

ut = ∆uε +
N

ε2
g
( t

ε2
,
x

ε

)
,

u(0, x) = u0(x).
(1.10)

Now, the noise

gε(t, x) =
N

ε2
g
( t

ε2
,
x

ε

)
(1.11)

varies on a small scale both in time and in space and is, therefore, some form of a rough
forcing. Its correlation function is

Rε(t, x) = E(gε(s, y)gε(s+ t, y + x)) =
N2

ε4
R
( t

ε2
,
x

ε

)
. (1.12)

Observe that if we take εN so that
N2

ε4N
=

1

εd+2
N

, (1.13)

then
Rε(t, x) → δ(t, x), as ε→ 0, (1.14)

recovering the δ-correlation in space and time in (1.4). In other words, if the length scale Lε

of the initial condition and the strength N of the noise are related by

Lε = ε−1 = N2/(d−2), (1.15)

then we would expect that uε(t, x) converges, as ε→ 0, to a solution of the forced linear heat
equation (1.1):

∂u

∂t
= ∆u+ F (t, x), (1.16)

with the δ-correlated noise F (t, x). Moreover, such δ-correlated noise essentially has to appear
in any reasonable situation where we expect to have a scale separation between the solution
and the noise, as in the above example.

Let us make a comment on the dependence of the above simple analysis on the spatial
dimension. We write (1.15) as an expression of the ”critical” noise strength in terms of the
scale separation parameter ε≪ 1:

Nd = ε−(d−2)/2, (1.17)

and note that
Nd ≪ 1, d = 1,

Nd = O(1), d = 2,

Nd ≫ 1, d = 3.

(1.18)

In other words, in one dimension, even a weak microscopic noise leads to a non-trivial effect,
in two dimensions the microscopic noise has to have strength of order one lead to the delta-
correlated noise, and in dimensions three and higher the microscopic noise needs to be strong
to get the delta-correlated noise in the limit. This distinction between different dimensions is
very typical in stochastic partial differential equations.
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1.2 Is the solution a function?

Disregarding the question of a careful definition of such δ-correlated noise, let us see what we
can expect about the solutions of, say, the heat equation (1.1) with such force. The Duhamel
formula says that if u(0, x) = 0, then the solution to (1.1) in Rd is

u(t, x) =

ˆ t

0

ˆ
Rd

G(t− s, x− y)F (s, y)dsdy. (1.19)

Here,

G(t, x) =
1

(4πt)d/2
e−|x|2/(4t) (1.20)

is the standard heat kernel. Once again, we do not for the moment define what exactly we
mean by the integral in (1.20) but rather suppose that F (t, x) is a a random field with the
delta-correlation function given by (1.4).

The ”function” u(t, x) given by (1.19) has to be a stationary field in x. This can be seen
immediately simply from the translation invariance of the heat equation and the space-time
stationarity of the forcing F (t, x). Alternatively, one may deduce that directly from (1.19) and
the space-time stationarity of F (t, x) if we knew exactly what the integral in (1.19) means.
Hence, we can not possibly expect any decay of u(t, x) as |x| → +∞ but we may still ask
how large u(t, x) should be. Let us formally compute its point-wise second moment, using
the assumption (1.4) about the two-point correlation function of the field F (t, x):

E
[
|u(t, x)|2

]
=

ˆ t

0

ˆ t

0

ˆ
R2d

G(t− s, x− y)G(t− s′, x− y′)E[F (s, y)F (s′, y′)]dsds′dydy′

=

ˆ t

0

ˆ
Rd

|G(t− s, x− y)|2dsdy =

ˆ t

0

ˆ
Rd

|G(s, y)|2dsdy

=
1

(4π)d

ˆ t

0

ˆ
Rd

e−|y|2/(2s)dyds

sd
= Cd

ˆ t

0

ds

sd/2
.

(1.21)
We see that u(t, x) has a point-wise second moment if and only if d = 1 – therefore, it is only
in one dimension that we may expect the solution of a typical SPDE be a function. This is
related to the comments made at the end of last section: spatial dimension plays a crucial
role in all such considerations.

1.3 Is the solution a distribution?

Since u(t, x) does not seem to be a function in d > 1, let us see if the field given by (1.19) at
least could potentially make sense as a distribution in x, pointwise in time. We multiply (1.19)
by a test function ϕ ∈ C∞

c (Rd) and integrate:

Φ(t) = ⟨u(t), ϕ⟩ =
ˆ t

0

ˆ
Rd

ˆ
Rd

G(t− s, x− y)F (s, y)ϕ(x)dsdydx.

Next, we compute the second moment of Φ(t), once again using the assumption (1.4) about
the two-point correlation function of the field F (t, x):
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E
[
|Φ(t)|2

]
=

ˆ t

0

ˆ t

0

ˆ
R4d

G(t− s, x− y)G(t− s′, x′ − y′)E[F (s, y)F (s′, y′)]

× ϕ(x)ϕ(x′)dsds′dydy′dxdx′

=

ˆ t

0

ˆ
R3d

G(t− s, x− y)G(t− s, x′ − y)ϕ(x)ϕ(x′)dsdydxdx′

=

ˆ t

0

ˆ
Rd

( ˆ
Rd

G(t− s, y − x)ϕ(x)dx
)(ˆ

Rd

G(t− s, y − x′)ϕ(x′)dx′
)
dyds

=

ˆ t

0

ˆ
Rd

v2(t− s, y)dyds =

ˆ t

0

ˆ
Rd

v2(s, y)dyds.

(1.22)

Here, the function v(s, y) is the solution of the heat equation

∂v

∂t
= ∆v, (1.23)

with the initial condition v(0, y) = ϕ(y). As ϕ ∈ C∞
c (Rd), the function v(t, x) is most

beautifully smooth and rapidly decaying. It follows that Φ(t) has a finite second moment,
meaning that it is likely that one can make sense of u(t, x) given by (1.19) as a distribution
in x ∈ Rd, for a fixed time t ≥ 0, in any spatial dimension. Thus, in dimensions d ≥ 2 one,
generally, would expect solutions of SPDEs to be distributions and not functions.

This phenomenon is a serious obstacle, as one is often interested in solutions to nonlinear
SPDEs, and we do not know how to take nonlinear functions of distributions. In particular,
SPDEs often arise as limit descriptions of the densities of systems of N particles. It is typical
that in such models the particle density converges to a solution to a deterministic PDE
as N → +∞, such as, in the simplest case, the heat equation:

∂u

∂t
= ∆u. (1.24)

Accounting for a large but finite number of particles often leads to an SPDE that is a per-
turbation of the limiting deterministic problem, such as

∂u

∂t
= ∆u+Noise. (1.25)

In that setting, the noise term typically has variance proportional, locally, to the total number
of particles, that is, to u(t, x) – this is a version of the central limit theorem. Thus, the equation
would have the form

∂u

∂t
= ∆u+

√
u · Noise. (1.26)

Hence, we would need to understand not only how to deal with nonlinearities but also how
to treat non-Lipschitz nonlinearities.
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1.4 The randomly forced wave equation

Let us, as a next example, informally, consider the wave equation

∂2v

∂t2
− ∂2v

∂x2
= F (t, x), (1.27)

in one dimension, and with the initial condition

v(0, x) =
∂v(0, x)

∂t
= 0.

Its solution is given by the d’Alembert formula

v(t, x) =
1

2

ˆ t

0

ˆ x+(t−s)

x−(t−s)

F (s, y)dyds. (1.28)

Let us now assume that F (s, y) is a white noise with the two-point correlation function (1.4),
as in the heat equation example. Then, the solution v(t, x) is the value of the white noise as a
distribution on the characteristic function of the triangle, which is the domain of integration
in (1.28). Therefore, we arrive at the same need to understand the white noise F (t, x) as
a distribution. In higher dimensions, similar expressions for the solution to the forced wave
equation can be obtained via spherical means, leading to similar issues.

2 The white noise and the Wiener integral

2.1 Gaussian processes

We now start being more careful than in the above informal discussion. A stochastic pro-
cess G(t), t ∈ T , indexed by a set T , is a Gaussian random field if for every finite collec-
tion t1, . . . , tk ∈ T , the vector (G(t1), . . . , G(tk)) is a Gaussian random vector. If G is a
Gaussian random field, the finite-dimensional distributions of G are uniquely determined by
the mean:

µ(t) = E(G(t)),
and the covariance

C(s, t) = E[(G(s)− µ(s))(G(t)− µ(t))].

The covariance function of any such process is non-negative definite in the following sense:
for any t1, . . . , tk and z1, . . . , zk ∈ R, we have

k∑
j,m=1

C(tj, tm)zjzm ≥ 0. (2.1)

This is because

0 ≤ E
∣∣∣ k∑
j=1

(G(tj)− µ(tj))zj

∣∣∣2 = k∑
m,j=1

E
[
(G(tj)− µ(tj))(G(tm)− µ(tm))

]
zjzm

=
k∑

j,m=1

C(tj, tm)zjzm.

(2.2)
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A classical result of Kolmogorov is that given any function µ(t) and a nonnegative-definite
function C(s, t) one can construct a Gaussian random field G(t) with mean µ(t) and covari-
ance C(s, t).

Example 1: the Brownian motion. One of the classical examples of a Gaussian
process is the Brownian motion. In that case, the index set is T = [0,+∞), the mean
is µ(t) ≡ 0, and two-point correlation function is C(s, t) = min(s, t). Let us check that
this covariance is nonnegative-definite: given any t1, . . . , tk ∈ [0,+∞) and z1, . . . , zk ∈ R, we
compute

k∑
j,m=1

C(tj, tm)zjzm =
k∑

j,m=1

zjzm min(tj, tm) =
k∑

j,m=1

zjzm

ˆ +∞

0

1[0,tj ](s)1[0,tm](s)ds

=

ˆ +∞

0

∣∣∣ k∑
j=1

zj1[0,tj ](t)
∣∣∣2dt ≥ 0.

(2.3)

Of course, the Brownian motion can be constructed in many other ways, without invoking
general abstract theorems.

Example 2: the Brownian bridge. The Brownian bridge b(t) is a process on the
interval T = [0, 1], with mean-zero: µ(t) = 0, and the covariance

C(s, t) = E(b(s)b(t)) = s ∧ t− st. (2.4)

To check that this function is positive-definite, given any t1, . . . , tk ∈ [0, 1] and z1, . . . , zk ∈ R,
we set

φ(t) =
k∑

j=1

zk1[0,tj ](t), (2.5)

and observe that

k∑
j,m=1

C(tj, tm)zjzm =
k∑

j,m=1

zjzm
(
min(tj, tm)− tjtm

)
=

k∑
j,m=1

zjzm

( ˆ 1

0

1[0,tj ](s)1[0,tm](s)ds−
ˆ 1

0

ˆ 1

0

1[0,tj ](s)1[0,tm](s
′)dsds′

)
=

ˆ 1

0

φ2(s)ds−
( ˆ 1

0

φ(s)ds
)2

≥ 0,

(2.6)
by the Cauchy-Schwartz inequality.

A remarkable property of the Brownian bridge is that

E(b(0)2) = E(b(1)2) = 0, (2.7)

as follows immediately from (2.4). That is, the process b(s) starts at b(0) = 0 and ends
at b(1) = 0, almost surely. Let us also observe that if B(t) is a Brownian motion, then

b(t) = B(t)− tB(1) (2.8)
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is a Brownian bridge. Indeed, it clearly has mean-zero, and for any 0 ≤ s, t ≤ 1, we have

E(b(s)b(t)) = E
[
(B(s)− sB(1))(B(t)− tB(1))

]
= s ∧ t− st− ts+ st = s ∧ t− st.

Example 3: the Ornstein-Uhlenbeck process. The Brownian motion does not have
a finite invariant measure – it typically runs away to infinity. In order to confine it, let us
consider the process

X(t) = e−t/2B(et), (2.9)

for t ≥ 0. The process X(t) is mean-zero, and has the covariance for 0 ≤ t ≤ s:

C(s, t) = e−(s+t)/2min
(
es, et

)
= e(t−s)/2. (2.10)

In other words, we have, for all t ≥ 0 and s ≥ 0:

C(s, t) = e−|t−s|/2. (2.11)

In particular, C(s, t) depends only on |t− s| – such processes are called stationary Gaussian
processes. We also have

E(X2(t)) = 1, (2.12)

for all t ≥ 0, which indicates that X(t) is, indeed, confined in some sense.

2.2 The white noise

2.2.1 Definition of the white noise

We define a white noise as follows. Let E be a set endowed with a measure ν and a collec-
tion M of measurable sets. Then a white noise is a random function on the sets A ∈ M of a
finite ν-measure with the following two properties:
(1) For any collection of measurable sets A1, . . . , Ak the random vector (Ẇ (A1), . . . , Ẇ (Ak))
is mean-zero Gaussian with

E(Ẇ (A)2) = ν(A),

and
(2) If A ∩B = ∅, then Ẇ (A) and Ẇ (B) are independent, with

Ẇ (A ∪B) = Ẇ (A) + Ẇ (B).

Under these two assumptions, we can compute the covariance of Ẇ : for any two measurable
sets A and B we have

E(Ẇ (A)Ẇ (B)) = E
[
(Ẇ (A ∩B) + Ẇ (A \B))(Ẇ (A ∩B) + Ẇ (B \ A))

]
= E[Ẇ (A ∩B)2] = ν(A ∩B).

(2.13)

Alternatively, we could have defined the white noise as a mean-zero Gaussian random field
on M with the covariance

C(A,B) = E(Ẇ (A)Ẇ (B)) = ν(A ∩B). (2.14)
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Once again, we recall that according to the Kolmogorov extension theorem, the only require-
ment needed to make sure that the white noise is well-defined is that the covariance function
given by (2.14) is nonnegative-definite. Indeed, for any finite collection A1, . . . , Ak ∈ M of
measurable sets and any z1, . . . , zk ∈ R, we have

k∑
i,j=1

zizjC(Ai, Aj) =
k∑

i,j=1

zizjν(Ai ∩ Aj) =
k∑

i,j=1

ˆ
E

zizj1Ai
(x)1Aj

(x)dν(x)

=

ˆ
E

∣∣∣ k∑
j=1

zj1Aj
(x)

∣∣∣2dν(x) ≥ 0.

(2.15)

The Brownian motion can be constructed from white noise as follows. Let Ẇ be a white
noise on R and define Bt = Ẇ ([0, t]). We claim that Bt is a Brownian motion. Indeed, for
any t1, . . . , tk ≥ 0, the vector (Bt1 , . . . , Btk) is Gaussian by the definition of white-noise, and
we have E(Bt) = 0 for all t ≥ 0. The corresponding covariance function is

E(BtBs) = E(Ẇ ([0, t])Ẇ ([0, s])) = |[0, t] ∩ [0, s]| = t ∧ s. (2.16)

Thus, Bt is a Brownian motion.
A Brownian sheet W (t), with t ∈ Rn

+, can be defined as above, taking E = Rn
+, and ν the

Lebesgue measure on Rn. For t = (t1, . . . , tn) ∈ Rn, we set

[0, t] = [0, t1]× · · · × [0, tn],

and define the Brownian sheet as

W (t) = Ẇ ([0, t]).

This definition can be naturally extended to t having some negative components by define
the rectangle Rt as the n-dimensional rectangle with the extreme vertices 0 and t and setting

W (t) = Ẇ (Rt).

Exercise 2.1 Consider n = 2 and denote t = (t1, t2).
(i) Show that if t1 is fixed, then Wt1,t is a Brownian motion.
(ii) Show that on the hyperbole t1t2 = 1 we have that

Xt = Wet,e−t

is an Ornstein-Uhlenbeck process.
(iii) Show that on the diagonal the process Wt,t is a martingale, has independent increments
but is not a Brownian motion.
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2.2.2 White-noise as an L2-valued measure

In order to construct the stochastic integral with respect to a white noise, we need the notion
of a σ-finite L2-valued measure. This is defined as follows. In general, we may start with a
subset E of Rd and a σ-finite measure ν defined on the algebra B of ν-measurable subsets
of E. We will restrict ourselves to the situation when the set E = Rd, the measure ν is the
Lebesgue measure on Rd, and B is the σ-algebra of the Borel sets on Rd.

Let Φ be a real-valued random set function on B such that Φ(A) is an L2(Ω) random
variable for each A ∈ B. Here and below we will denote by Ω the underlying probability
space. We denote by

∥Φ(A)∥2 = (E(Φ2(A))1/2.

Assume also that there exists an increasing sequence of measurable sets En such that

Rd =
⋃
n

En,

and
sup{∥Φ(A)∥2 : A ⊂ En} < +∞, for all n.

Then we say that the function Φ is σ-finite. It is finitely additive if for any finite collection
of pairwise disjoint measurable sets A1, . . . , Ak, we have

Φ
( k⋃

j=1

Ak

)
=

k∑
j=1

Φ(Aj). (2.17)

The function Φ is countably additive if, for each n, given that Aj ⊂ En and Aj is a decreasing
sequence of sets of a finite Lebesgue measure with an empty intersection, then

lim
j→+∞

Φ(Aj) = 0. (2.18)

Then we say that Φ is a σ-finite L2-valued measure. The equalities in (2.17) and (2.18) should
hold in L2(Ω).

Lemma 2.2 The white noise Ẇ is an L2(Ω)-valued countably additive measure on B.

Proof. Let A1 and A2 be a pair of disjoint measurable sets. Then, we have

E
(∣∣Ẇ (A1 ∪ A2)− Ẇ (A1)− Ẇ (A2)

∣∣2)
= E

((
Ẇ (A1 ∪ A2)− Ẇ (A1)− Ẇ (A2)

)(
Ẇ (A1 ∪ A2)− Ẇ (A1)− Ẇ (A2)

))
= |A1 ∪ A2| − |A1| − |A2| − |A1|+ |A1| − |A2|+ |A2| = 0.

(2.19)

It follows that
Ẇ (A1 ∪ A2) = Ẇ (A1) + Ẇ (A2), a.s. (2.20)

More generally, if A1, . . . , Ak is a collection of pairwise disjoint measurable sets, an induction
argument shows that

Ẇ
( k⋃

j=1

Aj

)
=

k∑
j=1

Ẇ (Aj), a.s. (2.21)
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To finish the proof, we need to show that if B1 ⊇ B2 ⊇ · · · ⊇ Bk ⊇ . . . is a countable
collection of nested measurable sets of a finite measure, such that

∞⋂
j=1

Bj = ∅,

then
lim

n→+∞
E(Ẇ (Bn))

2 = 0. (2.22)

To see that (2.22) holds, we simply observe that

E(Ẇ (Bn))
2 = |Bn| → 0,

by the nested sets property of the Lebesgue measure. 2

2.2.3 The white noise does not have a bounded total variation

Let us now show that Ẇ does not have a bounded total variation almost surely. The proof
is very much as what one does in the standard proof of the Ito formula. Consider the square
increments sum

Sn =
2n−1∑
j=0

∣∣∣Ẇ([ j
2n
,
j + 1

2n

])∣∣∣2.
Note first that

ESn =
2n−1∑
j=0

∣∣∣[ j
2n
,
j + 1

2n

]∣∣∣ = 1. (2.23)

Next, we claim that
lim
n→∞

Sn = 1, a.s. (2.24)

Indeed, on one hand we have (2.23), and on the other, we may compute the variance, using
the independence of Ẇ (A) and Ẇ (B) for disjoint sets A and B:

E(Sn − 1)2 = E
( 2n−1∑

j=0

[∣∣∣Ẇ([ j
2n
,
j + 1

2n

])∣∣∣2 − ∣∣∣[ j
2n
,
j + 1

2n

]∣∣∣])2

=
2n−1∑
j,m=0

E
{[∣∣∣Ẇ([ j

2n
,
j + 1

2n

])∣∣∣2 − ∣∣∣[ j
2n
,
j + 1

2n

]∣∣∣][∣∣∣Ẇ([m
2n
,
m+ 1

2n

])∣∣∣2 − ∣∣∣[m
2n
,
m+ 1

2n

]∣∣∣]}
=

2n−1∑
j=0

E
{[∣∣∣Ẇ([ j

2n
,
j + 1

2n

])∣∣∣2 − ∣∣∣[ j
2n
,
j + 1

2n

]∣∣∣]2} = 2nE
{[∣∣∣Ẇ([

0,
1

2n

])∣∣∣2 − ∣∣∣[0, 1
2n

]∣∣∣]2}
= 2n

(
3 · 1

22n
− 2

22n
+

1

22n

)
=

1

2n−1
.

(2.25)
We used the stationarity of the white noise in the next to last step above, and the fact that
for a mean-zero Gaussian random variable X we have

E(X4) = 3(E(X2))2
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in the last step. It follows from (2.25) that

P(|Sn − 1| > ε) ≤ 1

2n−1ε2
.

The Borel-Cantelli lemma implies that for every ε > 0 the event {|Sn − 1| > ε} occurs only
for finitely many n, almost surely. Thus, Sn → 1 almost surely, so that (2.24) holds.

Exercise 2.3 Use (2.24) to obtain

lim
n→∞

2n−1∑
j=0

∣∣∣Ẇ([ j
2n
,
j + 1

2n

])∣∣∣ = +∞, (2.26)

also almost surely.

It follows that Ẇ does not have a bounded total variation almost surely.

2.3 The Wiener integral

We have seen that the white noise does not have a bounded variation a.s. On the other hand,
we also know that it is an L2(Ω)-valued measure, so that one can still hope that one can
define integration with respect to it in an L2(Ω) sense. This is what we do next.

2.3.1 Definition of the Wiener integral

We first define the Wiener integral for simple functions of the form

h(x) =
N∑
k=1

ck1(x ∈ Ak).

Here, we assume that Ak ⊆ Rd are Borel sets such that |Ak| < +∞ for all k = 1, . . . , N ,
and Aj ∩ Ak = ∅ for j ̸= k. Then, the Wiener integral of h(x) is defined as

ˆ
Rd

h(x)Ẇ (dx) =
N∑
k=1

ckẆ (Ak). (2.27)

This definition has the following properties: first, for any two simple functions h1(x) and h2(x)
and any a1, a2 ∈ R we haveˆ

(a1h1(x) + a2h2(x))Ẇ (dx) = a1

ˆ
h1(x)Ẇ (dx) +

ˆ
h2(x)Ẇ (dx). (2.28)

Second, the random variables ˆ
h(x)Ẇ (dx) (2.29)

form a mean-zero Gaussian random field over the collection H(Rd) of all simple Lebesgue
measurable functions, with the covariance

E
(ˆ

h1Ẇ (dx)

ˆ
h2(x)Ẇ (dx)

)
=

ˆ
h1(x)h2(x)dx. (2.30)
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To check the covariance formula (2.30), we take two simple functions

h1(x) =
N∑
k=1

ck1(x ∈ Ak), h2(x) =
M∑
k=1

dk1(x ∈ Bk)

and compute

E
( ˆ

h1Ẇ (dx)

ˆ
h2(x)Ẇ (dx)

)
=

N∑
j=1

M∑
k=1

cjdmE
(
Ẇ (Aj)Ẇ (Bk)

)
=

N∑
j=1

M∑
k=1

cjdm|Aj ∩Bk| =
N∑
j=1

M∑
k=1

cjdm

ˆ
1(x ∈ Aj)1(x ∈ Bk)dx =

ˆ
h1(x)h2(x)dx,

(2.31)
which is (2.30).

It follows from (2.30) that given two simple functions h, g ∈ H(Rd) and the corresponding
integrals

Ih(ω) =

ˆ
h(x)Ẇ (dx), Ig(ω) =

ˆ
g(x)Ẇ (dx), ω ∈ Ω,

we have the isometry

E|Ih − Ig|2 =
ˆ

(h2(x) + g2(x)− 2h(x)g(x))dx = ∥h− g∥L2(Rd). (2.32)

This is the direct analog of the Ito isometry for the Ito integral in the special case of deter-
ministic integrands.

Now, with (2.32) in hand, given any function h ∈ L2(Rd), we can find a sequence of simple
functions hn ∈ H(Rd) that converges to h in L2(Rd). Then, the sequence

Ihn =

ˆ
hn(x)Ẇ (dx) (2.33)

is Cauchy in L2(Ω), by the Ito isometry property (2.32). Thus, there exists the limit

I(h) := lim
n→+∞

Ihn , in L2(Ω), (2.34)

that we define to be the Wiener integral

I(h) =

ˆ
h(x)Ẇ (x). (2.35)

This integral inherits the mean-zero property:

E
(ˆ

f(x)Ẇ (dx)
)
= 0, for any f ∈ L2(Rd), (2.36)

as well as the Ito isometry (2.32): we have

E
(ˆ

f1(x)Ẇ (dx)−
ˆ
f2(x)Ẇ (dx)

)2

=

ˆ
|f(x)− g(x)|2dx, for any f1, f2 ∈ L2(Rd).

(2.37)
Let us emphasize that the Wiener integral was defined above only for non-random functions.
We will later extend this definition to integrals of random functions as well but for now we
leave this extension open.
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2.3.2 Integration by parts formula for the Wiener integral

The Wiener integral can be re-phrased using the following integration by parts formula.

Proposition 2.4 Let B(x) be the d-dimensional Brownian sheet constructed from a white
noise Ẇ (x). Then, for all ϕ ∈ C∞

c (Rd) we have

ˆ
ϕ(x)Ẇ (x)dx = (−1)d

ˆ
∂dϕ(x)

∂x1 . . . ∂xd
B(x)dx, a.s. (2.38)

Proof. We will only consider the case d = 1 for simplicity of notation. In that case, the
one-dimensional Brownian sheet B(x) = Ẇ [0, x] is a two-sided Brownian motion. We need
to show that ˆ

ϕ(x)Ẇ (dx) = −
ˆ
ϕ′(x)B(x)dx, a.s., (2.39)

for any ϕ ∈ C∞
c (R). Let us assume without loss of generality that ϕ(x) is supported inside

the interval [0, 1]. We denote by ϕn(x) the piece-wise constant approximation of ϕ(x):

ϕn(x) = ϕ
( j
n

)
, for x ∈

[ j
n
,
j + 1

n

)
. (2.40)

Then, we have, by the definition of the Brownian motion as the one-dimensional Brownian
sheet,

ˆ
ϕn(x)Ẇ (dx) =

n−1∑
j=0

ϕ
( j
n

)
Ẇ

([ j
n
,
j + 1

n

))
=

n−1∑
j=0

ϕ
( j
n

)(
B
(j + 1

n

)
−B

( j
n

))
= −

n∑
j=1

B
( j
n

)[
ϕ
( j
n

)
− ϕ

(j − 1

n

)]
.

(2.41)

The left side above converges in L2(Ω), as n→ +∞, to

ˆ
ϕ(x)Ẇ (dx).

The right side of (2.41) converges as n→ +∞, almost surely, to the Riemann integral

−
ˆ
ϕ′(t)B(t)dt.

Now, (2.38) follows. 2
Let us comment that we used the continuity of the Brownian motion in the very last step

above. It will follow from the Kolmogorov criterion that we will prove in Theorem 3.4 below.
The same comment applies to the Brownian sheet in dimensions d > 1.
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2.3.3 A Fubini theorem for stochastic convolutions

Given f ∈ L2(Rd), we define its stochastic convolution with white noise as

(f ⋆ Ẇ )(x) =

ˆ
f(x− y)Ẇ (dy). (2.42)

By the Ito isometry, f ⋆ Ẇ (x) is an L2(Ω) random variable for each x ∈ Rd fixed, with

E|f ⋆ Ẇ (x)|2 =
ˆ

|f(x− y)|2dy = ∥f∥2L2 . (2.43)

Let us comment on the joint measurability of (f ⋆ w)(x, ω) in x ∈ Rd and ω ∈ Ω. First,
if f ∈ C∞

c (Rd) is infinitely differentiable then by the Ito isometry we have

E
(
|f ⋆ Ẇ (x)− f ⋆ Ẇ (y)|2

)
=

ˆ
Rd

|f(x− z)− f(y − z)|2dz ≤ Cf∥x− y∥2. (2.44)

It follows from the Kolmogorov criterion in Theorem 3.4 below that f ⋆Ẇ (x) has a continuous
modification. Hence, in particular, it is measurable in x and ω. The general case of f ∈ L2(Rd)
follows by the density of C∞

c (Rd) in L2(Rd) and the Ito isometry of the Wiener integral.
We will extensively use the following Fubini type theorem for stochastic convolutions.

Proposition 2.5 If f ∈ L2(Rd) and µ is a finite Borel measure on Rd then

ˆ
(f ⋆ Ẇ )(x)µ(dx) =

ˆ
(f̃ ⋆ µ)(x)Ẇ (dx), a.s. (2.45)

Here, we have set f̃(y) = f(−y).

Proof. First, suppose that f ∈ C∞
c (Rd). In that case, it follows from the integration by parts

formula in Proposition 2.4 that

ˆ
(f ⋆ Ẇ )(x)µ(dx) = (−1)d

ˆ (ˆ ∂df(x− y)

∂y1 . . . ∂yd
B(y)dy

)
µ(dx), a.s. (2.46)

As B(y) is continuous, we can use the standard Fubini theorem to obtain

ˆ
(f ⋆ Ẇ )(x)µ(dx) = (−1)d

ˆ ( ˆ ∂df(x− y)

∂y1 . . . ∂yd
µ(dx)

)
B(y)dy

= (−1)d
ˆ

∂d

∂y1 . . . ∂yd

(ˆ
f(x− y)µ(dx)

)
B(y)dy

= (−1)d
ˆ

∂d

∂y1 . . . ∂yd
(f̃ ⋆ µ)(y)B(y)dy =

ˆ
(f̃ ⋆ µ)(y)Ẇ (dy),

(2.47)

which is (2.45). The general case of f ∈ L2(Rd) can be done by approximations of f(x) by
smooth functions. 2
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3 Regularity of random processes

We will now prove the Kolmogorov theorem that reduces the question of continuity of a
stochastic process to a computation of some moments.

3.1 Modulus of continuity from an integral inequality

We first prove a real-analytic result that allows to translate an integral bound on the incre-
ments of a function into a point-wise modulus of continuity. In the theorem below, we assume
that the functions ψ(x) and p(x), x ∈ R, are even, p(x) is increasing for x > 0, with p(0) = 0,
and ψ(x) is convex. We denote by R1 the unit cube in Rd.

Theorem 3.1 Let f be a measurable function on R1 ⊂ Rd such that

B :=

ˆ
R1

ˆ
R1

ψ
( f(y)− f(x)

p(|y − x|/
√
d)

)
dxdy < +∞. (3.1)

Then, there is a set K of measure zero such that if x, y ∈ R1 \K, then

|f(y)− f(x)| ≤ 8

ˆ |y−x|

0

ψ−1
( B

u2d

)
dp(u). (3.2)

If f is continuous, then (3.2) holds for all x and y.

Proof. We denote the side of a cube Q in R1 by e(Q). Note that

if x, y ∈ Q, then |y − x| ≤
√
de(Q). (3.3)

The functions p and ψ are increasing for positive arguments and ψ is even. Hence, (3.1)
and (3.3) imply ˆ

Q

ˆ
Q

ψ
(f(y)− f(x)

p(e(Q))

)
dxdy ≤ B, (3.4)

for any cube Q in R1. Next, take a nested sequence of cubes Q0 ⊇ Q1 ⊇ Q2 ⊇ . . . such that

p(e(Qj)) =
1

2
p(e(Qj−1)), (3.5)

and denote

fj =
1

|Qj|

ˆ
Qj

f(x)dx, rj = e(Qj).

Since p(0) = 0 and p(r) > 0 for r > 0, it follows from (3.5) that rj → 0, and the cubes
converge down to a point. As the function ψ is convex, we have, by Jensen’s inequality

ψ
(fj − fj−1

p(rj−1)

)
≤ 1

|Qj−1|

ˆ
Qj−1

ψ
(fj − f(x)

p(rj−1)

)
dx

≤ 1

|Qj−1||Qj|

ˆ
Qj−1

ˆ
Qj

ψ
(f(y)− f(x)

p(rj−1)

)
dxdy

≤ 1

|Qj−1||Qj|

ˆ
Qj−1

ˆ
Qj−1

ψ
(f(y)− f(x)

p(rj−1)

)
dxdy ≤ B

|Qj−1||Qj|
,
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by (3.4). We conclude that

|fj − fj−1| ≤ p(rj−1)ψ
−1
( B

|Qj−1||Qj|

)
. (3.6)

This starts to look like a modulus of continuity estimate but the two terms in the right side
still compete – one is small, the other is large. We now re-write it to make it look like the
right side of (3.2). The definition (3.5) of Qj means that

p(rj−1) = 4|p(rj+1)− p(rj)|.

hence we may write

|fj − fj−1| ≤ 4ψ−1
( B

|Qj−1||Qj|

)
|p(rj+1)− p(rj)|. (3.7)

Next, note that for rj+1 ≤ u ≤ rj, we have |Qj−1||Qj| ≥ u2d, hence

|fj − fj−1| ≤ 4ψ−1
( B

u2d

)
|p(rj+1)− p(rj)|, for all rj+1 ≤ u ≤ rj. (3.8)

We deduce that

|fj − fj−1| ≤ 4

ˆ rj

rj+1

ψ−1
( B

u2d

)
dp(u). (3.9)

Summing over j gives

lim sup
j→+∞

|fj − f0| ≤ 4

ˆ r0

0

ψ−1
( B

u2d

)
dp(u). (3.10)

Now, by the Lebesgue theorem, except for x in an exceptional set K of measure zero, the
sequence fj converges to f(x) for any sequence of cubes Qj decreasing to the point x. If x
and y are not in K, and Q0 is the smallest cube containing both x and y, then, as r0 ≤ |x−y|,
we have both

|f(x)− f0| ≤ 4

ˆ |x−y|

0

ψ−1
( B

u2d

)
dp(u), (3.11)

and

|f(y)− f0| ≤ 4

ˆ |x−y|

0

ψ−1
( B

u2d

)
dp(u), (3.12)

proving (3.2). 2

3.2 The Kolmogorov theorem

We may now apply Theorem 3.1 to various stochastic processes. We begin with the Kol-
mogorov theorem. Recall that a random field X ′(t), t ∈ T, is a modification of a random
field X(t), t ∈ T if

P [X ′(t) = X(t)] = 1 for all t ∈ T.
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Exercise 3.2 Construct an example where X ′ is a modification of X but

P [X ′(t) = X(t) for all t ∈ T] = 0.

Theorem 3.3 Let X(t), t ∈ T = [a1, b1] × . . . , [ad, bd] ⊂ Rd be a real-valued random field.
Suppose there are constants k > 1, C > 0 and ε > 0 so that for all s, t ∈ T, we have

E
(
|X(t)−X(s)|k

)
≤ C|t− s|d+ε. (3.13)

Then X(t) has a continuous modification X̄(t). Moreover, X(t) has the following modulus of
continuity:

|X(t)−X(s)| ≤ Y |t− s|ε/k
(
log

c1
|t− s|

)2/k

, (3.14)

with a deterministic constant c1 > 0, and a random variable Y such that E(Y k) ≤ C ′.

Proof. Without loss of generality we will assume that T is the unit cube Q1. We will use
Theorem 3.1 with ψ(x) = |x|k, and

p(x) = |x|(2d+ε)/k
(
log

c1
|x|

)2/k

.

This function is increasing on [0,
√
d] with an appropriately large choice of c1. The function f

in Theorem 3.1 is taken to be X(t;ω), for a fixed realization ω. This gives

B(ω) =

ˆ
R1

ˆ
R1

ψ
( f(y)− f(x)

p(|y − x|/
√
d)

)
dxdy =

ˆ
Q1

ˆ
Q1

|X(t;ω)−X(s;ω)|k

[p(|t− s|/
√
d)]k

dtds

= C

ˆ
Q1

ˆ
Q1

|X(t;ω)−X(s;ω)|k

|t− s|2d+ε log2(c1/|t− s|)
dtds.

(3.15)

Taking the expectation, and using (3.13), we obtain

E(B) ≤ C

ˆ
Q1

ˆ
Q1

E|X(t;ω)−X(s;ω)|k

|t− s|2d+ε log2(c1/|t− s||)
dtds ≤ C

ˆ
Q1

ˆ
Q1

1

|t− s|d log2(c1/|t− s|)
dtds.

(3.16)
The integral in the right, for a fixed t and when c1 is sufficiently large, behaves as

ˆ 1/2

0

rd−1

rd log2 r
dr =

ˆ ∞

log 2

dr

r2
< +∞.

Therefore,
E(B) <∞, (3.17)

and B(ω) is finite almost surely. Going back to (3.2) we get

|X(t;ω)−X(s;ω)| ≤ 8B1/k(ω)

ˆ |t−s|

0

1

u2d/k
p′(u)du. (3.18)

It is now a calculus an exercise to check that (3.14) holds with Y = CB1/k. The moment
estimate on Y follows immediately from (3.17). 2
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3.3 Regularity of a Gaussian process

For Gaussian processes we have an improvement of the modulus of continuity estimate in
Theorem 3.3.

Theorem 3.4 Let X(t), t ∈ Q1 ⊂ Rd be a mean zero Gaussian process, and assume that

E|X(t)−X(s)|2 ≤ C|t− s|m. (3.19)

Then X(t) has a version that is α-Hölder continuous for any α < m/2.

Proof. For any p ∈ N there exists a constant Cp so that a Gaussian random variable Z
satisfies

E(Z2p) ≤ Cp[E(Z2)]p. (3.20)

It follows from (3.19) and (3.20) that for any integer p ≥ 1 we have

E|X(t)−X(s)|2p ≤ C|t− s|mp. (3.21)

Choosing p sufficiently large so that mp > d, we may apply Theorem 3.3 and use (3.14)
with k = 2p and ε = mp − d. We deduce that there exists a random variable Yp(ω) such
that E(Y 2p

p ) < +∞ and

|X(t, ω)−X(s, ω)| ≤ Y (ω)|t− s|(mp−d)/(2p)
(
log

c1
|t− s|

)1/p

. (3.22)

Now, given any α < m/2, we may take p > 1 sufficiently large so that (mp− d)/(2p) > α. 2

4 The additive heat equation

One setting where the Wiener integral is sufficient to produce interesting results about a
stochastic PDE is the additive linear heat equation that can be formally written as

∂u

∂t
=
∂2u

∂x2
+ Ẇ (t, x). (4.1)

In this section, we will focus on that equation in one spatial dimension, so that x ∈ R.

4.1 Heat equation forced by a measure

Before considering the random case, let us start with the heat equation forced by a determin-
istic σ-finite signed measure ν(dt, dx), in any spatial dimension d ≥ 1:

∂u

∂t
= ∆u+ ν(dt, dx). (4.2)

We will assume that the initial condition for (4.2) is u(0, x) = 0. Then, we expect the weak
solution to (4.2) to be given by the Duhamel formula:

u(t, x) =

ˆ
[0,t]×Rd

G(t− s, x− y)ν(ds, dy). (4.3)
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Here,

G(t, x) =
1

(4πt)d/2
e−|x|2/(4t) (4.4)

is the standard heat kernel. The validity of this guess is confirmed by the following exercise.

Exercise 4.1 Show that u(t, x) given by (4.3) is a weak solution to (4.2) if the following
Fubini-type condition holds for the measure ν: for any ψ ∈ C∞

c ((0,+∞)× Rd) we have

ˆ
R+×Rd

(ˆ
[0,t]×Rd

G(t− s, x− y)ν(ds, dy)
)
ψ(t, x)dxdt

=

ˆ
R+×Rd

( ˆ
[s,+∞)×Rd

G(t− s, x− y)ψ(t, x)dtdx
)
ν(dsdy).

(4.5)

Note that condition (4.5) holds for finite measures ν(dtdx) by the standard Fubini theorem
because ˆ

R+×Rd

(ˆ
[s,+∞)×Rn

|G(t− s, x− y)ψ(t, x)|dtdx
)
|ν|(dsdy)

≤ |ν|(R+ × Rd)

ˆ ∞

0

∥ψ(t, ·)∥L∞dt.

(4.6)

As far as the white noise forcing in (4.3) is concerned, going back to Proposition 2.5,
and taking f(t, x) = G(t, x) and µ(dtdx) = ψ(t, x)dtdx in the Fubini formula (2.45) gives,
since G(t,−x) = G(t, x):

ˆ ( ˆ
G(t−s, x−y)Ẇ (dsdy)

)
ψ(t, x)dtdx =

ˆ ( ˆ
G(t−s, x−y)ψ(t, x)dxdt

)
Ẇ (dsdy), a.s.

(4.7)
This is exactly (4.5). Therefore, a weak solution to

∂u

∂t
= ∆u+ Ẇ (dt, dx). (4.8)

with the initial condition u(0, x) = 0 is given by

u(t, x) =

ˆ t

0

ˆ
Rd

G(t− s, x− y)Ẇ (ds, dy). (4.9)

One very small caveat in this construction is that the test functions that we can use to verify
that u(t, x) given by (4.9) is a weak solution have to be deterministic and not random. Such
solutions are known as mild solutions.

4.2 Temporal regularity of the solution in one dimension

4.2.1 A naive scaling argument

In this section we will look at the mild solution to

∂Z

∂t
=
∂2Z

∂x2
+ Ẇ (dt, dx), t > 0, x ∈ R, (4.10)
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in dimension d = 1, with the initial condition Z(0, x) = 0. It is given by the stochastic
convolution

Z(t, x) =

ˆ t

0

ˆ
R
G(t− s, x− y)Ẇ (ds, dy). (4.11)

Observe that, as in (1.21) but now in a justified way, for each t > 0 and x ∈ R fixed, we may
compute the variance of Z(t, x) as

E
[
Z2(t, x)

]
=

ˆ t

0

ˆ
R
|G(t− s, x− y)|2dsdy =

ˆ t

0

ˆ
R
|G(s, y)|2dsdy

=
1

4π

ˆ t

0

ˆ
R
e−|y|2/(2s)dyds

s
=

1√
8π

ˆ t

0

ˆ
R

1√
4πs

e−|y|2/(4s)dy
ds√
s

=
1√
2π

ˆ t

0

ds

2
√
s
=

√
t√
2π
.

(4.12)

Therefore, for each t > 0 and x ∈ R fixed, Z(t, x) is a mean-zero Gaussian random variable
with variance

E
[
Z2(t, x)

]
=

√
t√
2π
. (4.13)

The goal of this section is not to look at Z(t, x) pointwise but to consider it separately as a
function of t, with x ∈ R fixed, and also as a function of x, with t > 0 fixed.

Our goal will be to show the following two decompositions. First, for each x ∈ Rd fixed,
we will show that we can decompose Z(t, x) as a sum

Z(t, x) = X(t) +R(t), (4.14)

where X(t) is a fractional Brownian motion with the Hurst exponent H = 1/4, and R(t) is a
mean-zero Gaussian process that is almost surely infinitely differentiable, with R(0) = 0 a.s.

Next, we will show that for each t ≥ 0 fixed, we can decompose Z(t, x) as

Z(t, x) = Z(t, 0) +B(x) +Q(x), (4.15)

where B(x) is a two-sided Brownian motion in x, and Q(x) is a mean-zero Gaussian process
that is almost surely infinitely differentiable, with B(0) = 0 and Q(0) = 0 a.s.

In other words, the time trace of Z(t, x) for x ∈ R fixed is a smooth perturbation of
a fractional Brownian motion X(t), and the spatial trace of Z(t, x) for t > 0 fixed is a
smooth perturbation of a standard two-sided Brownian motion B(x). We will also see that
the variance of the increments of the correctors R(t) and Q(x) decays as t→ +∞.

Let us first explain why this regularity of Z(t, x) in the t and x variables can be expected.
In one spatial dimension, an approximation to white noise Ẇ (dxdt) is given by a random field
of the form

Fε(t, x) =
1

ε3/2
F
( t

ε2
,
x

ε

)
, t ∈ R, x ∈ R, (4.16)

with a mean-zero Gaussian random field F (t, x) with the covariance

E(F (t, x)F (t′, x′)) = R(t− t′, x− x′), (4.17)

with a rapidly decaying correlation function R(t, x) ≥ 0 such that ∥R∥L1 = 1. For example,
we can take R(t, x) to be a Gaussian in t and x.
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Exercise 4.2 Show that a function R(t, x) is positive-definite if and only if its Fourier trans-
form R̂(ω, ξ) ≥ 0 for all ω ∈ R and ξR.

This convergence can be seen by showing that the Gaussian random variableˆ
Fε(t, x)ϕ(t, x)dxdt (4.18)

converges in law to the Gaussian random variableˆ
ϕ(t, x)Ẇ (dtdx), (4.19)

for any test function ϕ ∈ C∞
c (R× R).

Let us then approximate Z(t, x) by the solution uε(t, x) to the heat equation with the
forcing Fε(t, x):

∂uε
∂t

=
∂2uε
∂x2

+ Fε(t, x). (4.20)

Then, uε(t, x) can be written as

uε(t, x) = ε1/2u
( t

ε2
,
x

ε

)
. (4.21)

Here, u(t, x) is the solution to the unscaled problem

∂u

∂t
=
∂2u

∂x2
+ F (t, x). (4.22)

If the field F (t, x) is sufficiently regular then the function u(t, x) is smooth and, of course, has
no dependence on ε ∈ (0, 1). Looking at the scaling for uε(t, x) in (4.21), we may, therefore,
expect the function uε(t, x) given by (4.21) to obey the uniform bounds

|∂1/4t uε(t, x)| ≤ C, |∂1/2x uε(t, x)| ≤ C, (4.23)

with a constant C > 0 that does not depend on ε ∈ (0, 1). This is not quite correct because
of certain logarithmic factors but nevertheless, this argument indicates that we should expect
close to 1/4-Hölder regularity for Z(t, x) in the t variable, and close to 1/2-Hölder regularity
for Z(t, x) in the x variable. This is what is behind the decompositions (4.14) and (4.15).

Exercise 4.3 Consider the solution to the additive heat equation

∂u

∂t
=
∂2u

∂x2
+ ∂xF (t, x), (4.24)

forced by the derivative of a space-time stationary random field F (t, x) as above. For
which m ∈ R do you expect that the rescaled solution

uε(t, x) = εmu
( t

ε2
,
x

ε

)
, (4.25)

would have a reasonable weak limit as t → +∞? What kind of behavior do you expect for
the solution to (4.24)? One way to look at this is to consider this equation with the initial
condition uT (−T, x) = 0 for some T > 1 and then let T → +∞. Compare what happens
when this is done for the solutions to (4.22) and (4.24).
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4.2.2 The fractional Brownian motion

Let us first make a brief detour to recall that a fractional Brownian motion (fBm) with a
Hurst exponent H ∈ (0, 1) is a mean-zero Gaussian process X(t), t ≥ 0, such that

X(0) = 0, E(|X(t1)−X(t2)|2) = |t1 − t2|2H , for all t1, t2 ≥ 0. (4.26)

In other words, X(t) is a mean-zero Gaussian process on [0,+∞) with the covariance

E(X(t1)X(t2)) =
1

2

(
E(X2(t1)) + E(X2(t2))− E(|X(t2)−X(t1)|2)

)
=

1

2

(
t2H1 + t2H2 − |t1 − t2|2H

)
.

(4.27)

Instead of checking directly that this covariance function is positive-definite, let us define

fH(t, s) = (t− s)
H−1/2
+ − (−s)H−1/2

+ =


0, s > t,

(t− s)H−1/2, 0 ≤ s ≤ t,
(t− s)H−1/2 − (−s)H−1/2, s < 0.

(4.28)

Then, for 0 < t1 < t2 we have

fH(t2, s)− fH(t1, s) = (t2 − s)
H−1/2
+ − (t1 − s)

H−1/2
+ , for all s ∈ R. (4.29)

A key observation is that for 0 < t1 < t2 we have the following representation for the second
moment of the increment of a fractional Brownian motion:

(t2 − t1)
2H =

1

CH

ˆ
R
|fH(t1, s)− fH(t2, s)|2ds, (4.30)

with

CH =

ˆ 1

0

s2H−1ds+

ˆ ∞

0

[
(1 + s)H−1/2 − sH−1/2

]2
ds. (4.31)

Note that CH is finite precisely when both 2H− 1 > −1, so that the first integral in the right
side above is finite near s = 1, and 2(H − 3/2) < −1, so that the second integral is finite
as s → +∞. That is, we need to have H ∈ (0, 1). The representation (4.30) is verified as
follows:ˆ

R
|fH(t1, s)− fH(t2, s)|2ds =

ˆ t1

−∞

[
(t2 − s)H−1/2 − (t1 − s)H−1/2

]2
ds+

ˆ t2

t1

(t2 − s)2H−1ds

=

ˆ t2−t1

0

(t2 − t1 − s)H−1/2ds+

ˆ ∞

0

[
(t2 − t1 + s)H−1/2 − sH−1/2

]2
ds = CH(t2 − t1)

2H ,

(4.32)
Next, for each t > 0 consider the Wiener integral

X(t) = C
−1/2
H

ˆ
R
fH(t, s)Ẇ (ds). (4.33)

This integral is well defined because for each t > 0 fixed, we have
ˆ
R
|fH(t, s)|2ds =

ˆ t

0

|t− s|2H−1ds+

ˆ ∞

0

[
(t+ s)H−1/2 − sH−1/2]2ds < +∞, (4.34)
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for all H ∈ (0, 1) for reasons discussed below (4.31).
Then, we can compute the variance of the increments of X(t) using the Ito isometry

and (4.30):

E(|X(t1)−X(t2)|2) = C−1
H

ˆ
R
[fH(t1, s)− fH(t2, s)]

2ds = |t2 − t1|2H . (4.35)

Therefore, X(t) given by (4.33) does have the correct mean and covariance and is a fractional
Brownian motion.

One may be tempted to define the fractional Brownian motion via the Wiener integral,
as in (4.33), but with the function fH(t, s) replaced by (t − s)H−1/2, as the contribution of
the term (−s)H−1/2 to the Wiener integral in (4.33) seems to be “t-independent” and thus
irrelevant for the process X(t). This would formally lead to the same covariance as in (4.35).
However, the function (t−s)H−1/2 is not square integrable as s→ +∞, and the additional term
introduced in the definition (4.28) of fH(t, s) is used precisely to ensure the L2-integrability
in (4.34). This will be a recurring theme in various definitions of Gaussian fields in this
section.

The Kolmogorov Theorem 3.4 for Gaussian processes implies that a fractional Brownian
motion with a Hurst exponent H ∈ (0, 1) is α-Hölder continuous for any α < H. This can be
improved to the law of iterated logarithm regularity property of an fBm.

Proposition 4.4 Let X(t) be an fBm with a Hurst exponent H ∈ (0, 1), then for every t ≥ 0
we have

lim
ε↓0

X(t+ ε)−X(t)

εH
√

2 log log(ε−1)
= 1, a.s. (4.36)

We will not prove this result here. However, we do mention that it implies that fractional
Brownian motion is almost surely not Hölder continuous with any exponent α ≥ H.

4.3 The temporal evolution of the solution at a fixed spatial point

In this section, we characterize the process Z(t, x) for x ∈ R fixed.

4.3.1 The temporal corrector at a fixed spatial point

A key observation is that Z(t, x) at a fixed x ∈ R can be decomposed as a sum of a frac-
tional Brownian motion X(t) with the Hurst exponent H = 1/4 and a corrector R(t) that is
defined as follows. Let Ẇ1(dx) be a spatial white noise, independent of the space-time white
noise Ẇ (dtdx) and set

R(t) =
1√
4π

ˆ ∞

−∞

1

z

(
1− e−tz2

)
Ẇ1(dz). (4.37)

This is a well-defined L2(Ω) random field, for each t ≥ 0 fixed, because

E(R2(t)) =
1

4π

ˆ
R

1

z2

(
1− e−tz2

)2

dz < +∞. (4.38)
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The role of the first term in the parentheses in (4.37) is precisely to keep the L2-norm in (4.38)
from blowing up near z = 0. It also guarantees that R(0) = 0 almost surely.

The main observation is that the corrector process is actually smooth in t, as shown by
the following.

Proposition 4.5 The random process R(t) is a mean-zero Gaussian process with a version
that is continuous on [0,+∞) and infinitely differentiable on (0,+∞) such that R(0) = 0. Its
variance is

E(R2(t)) =
2−

√
2√

4π
t1/2. (4.39)

Proof. The basic reason for this regularity is simply that R(t) is a Wiener integral that
depends on t as a parameter, and the integrand is a deterministic function of t that has
very strong decay properties in the variable of integration z when t > 0. This will allow us
essentially to differentiate under the integral sign in (4.37).

First, we verify that R(t) is continuous, using the Kolmogorov criterion for the continuity
of Gaussian processes in Theorem 3.4. Observe that for t ≥ s ≥ 0 we have

E(|R(t)−R(s)|2) = 1

4π

ˆ ∞

−∞

1

z2

(
e−sz2 − e−tz2

)2

dz ≤ 1

4π

ˆ ∞

−∞

1

z2

(
1− e−(t−s)z2

)2

dz

=
(t− s)1/2

4π

ˆ ∞

−∞

1

z2

(
1− e−z2

)2

dz.

(4.40)

It follows from the aforementioned theorem that R(t) is almost surely α-Hölder continuous
with any exponent α ∈ (0, 1/4).

We will only show that R(t) is differentiable as higher order differentiability is proved in
an identical fashion. Consider the Wiener integral

D(t) =
1√
4π

ˆ ∞

−∞

1

z
∂t

(
1− e−tz2

)
Ẇ1(dz) =

1√
4π

ˆ ∞

−∞
ze−tz2Ẇ1(dz). (4.41)

We will show that
D(t) = ∂tR(t) a.s. (4.42)

First, we estimate the second moment of the increments of D(t) for t ≥ s > 0 as

E(|D(t)−D(s)|2) = 1

4π

ˆ ∞

−∞
z2
(
e−sz2 − e−tz2

)2

dz =
1

4π

ˆ ∞

−∞
z2e−2sz2

(
1− e−(t−s)z2

)2

dz

≤ (t− s)2

4π

ˆ ∞

−∞
z4e−2sz2dz.

(4.43)
It follows thatD(t) is continuous on (0,+∞) a.s. Next, to prove (4.42), let ϕ(t) ∈ C∞

c (0,+∞),
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then by the stochastic Fubini theorem (Proposition 2.5) we haveˆ ∞

0

D(t)ϕ(t)dt =
1√
4π

ˆ ∞

0

ϕ(t)
( ˆ

R

1

z
∂t

(
1− e−tz2

)
Ẇ1(dz)

)
dt

=
1√
4π

ˆ
R

1

z

(ˆ +∞

0

ϕ(t)∂t

(
1− e−tz2

)
dt
)
Ẇ1(dz)

= − 1√
4π

ˆ
R

1

z

(ˆ +∞

0

(
1− e−tz2

)
∂tϕ(t)dt

)
Ẇ1(dz)

= − 1√
4π

ˆ +∞

0

(∂tϕ(t))
( ˆ

R

1

z

(
1− e−tz2

)
Ẇ1(dz)

)
dt = −

ˆ +∞

0

R(t)∂tϕ(t)dt.

(4.44)

Therefore, D(t) is the weak derivative of R(t). Since D(t) is actually continuous, it follows
that it is the ordinary derivative of R(t).

It remains to compute the variance of R(t). As in (4.40), we have

E(|R(t)|2) = 1

4π

ˆ ∞

−∞

1

z2

(
1− e−tz2

)2

dz =
t1/2

2π

ˆ ∞

0

1

z2

(
1− e−z2

)2

dz. (4.45)

We may now use the change of variable z =
√
s to re-write the integral in the right side asˆ ∞

0

(
1− e−z2

)2dz

z2
=

1

2

ˆ ∞

0

(1− e−s)2

s3/2
ds =

1

2

ˆ ∞

0

1− e−s

s3/2
ds− 1

2

ˆ ∞

0

e−s − e−2s

s3/2
ds.

(4.46)
Observe that ˆ ∞

0

1− e−s

s3/2
ds =

ˆ ∞

0

1√
s

ˆ 1

0

e−rsdr =

ˆ 1

0

ˆ ∞

0

1√
s
e−rsdsdr

=

ˆ 1

0

1√
r

ˆ ∞

0

1√
s
e−sdsdr = 2Γ(1/2),

(4.47)

and similarly we can compute
ˆ ∞

0

e−s − e−2s

s3/2
ds =

ˆ ∞

0

1√
s

ˆ 2

1

e−rsdr =

ˆ 2

1

ˆ ∞

0

1√
s
e−rsdsdr

=

ˆ 2

1

1√
r

ˆ ∞

0

1√
s
e−sdsdr = 2(

√
2− 1)Γ(1/2).

(4.48)

As Γ(1/2) =
√
π, we obtainˆ ∞

0

(
1− e−z2

)2dz

z2
=

1

2

√
π[2− 2(

√
2− 1)] = (2−

√
2)
√
π. (4.49)

Using this identity in (4.45), we conclude that

E(R2(t)) =
(2−

√
2)
√
πt1/2

2π
=

2−
√
2√

4π
t1/2, (4.50)

which is (4.39). 2

The main reason for the introduction of the corrector R(t) is the specific form of the
variance of its increments.

27



Proposition 4.6 Given any t > 0 and ε > 0 variance of the increment R(t+ ε)−R(t) is

E
[
(R(t+ ε)−R(t))2

]
=

ˆ ∞

t

ˆ
R
|G(s+ ε, y)−G(s, y)|2dyds. (4.51)

Proof. Let us compute

E
[
(R(t+ ε)−R(t))2

]
=

1

4π

ˆ ∞

−∞

1

z2

(
e−tz2 − e−(t+ε)z2

)2

dz =
1

4π

ˆ ∞

−∞

1

z2
e−2tz2

(
1− e−εz2

)2

dz

=
1

2π

ˆ ∞

t

ˆ ∞

−∞
e−2sz2

(
1− e−εz2

)2

dzds =
1

2π

ˆ ∞

t

ˆ ∞

−∞

(
e−sz2 − e−(s+ε)z2

)2

dzds.

(4.52)
The integral in the very right side above can be computed by noting that the Fourier transform
of the heat kernel is

Ĝ(t, ξ) =

ˆ
R
G(t, y)e−2πiyξdy = e−4π2|ξ|2t, (4.53)

and using the Plancherel identity to write

1

2π

ˆ
R

∣∣∣e−(s+ε)z2 − e−sz2
∣∣∣2dz = ˆ

R

∣∣∣e−4π2|ξ|2(s+ε) − e−4π2|ξ|2s
∣∣∣2dξ

=

ˆ
R
|Ĝ(s+ ε, ξ)− Ĝ(s, ξ)|2dξ =

ˆ
R
[G(s+ ε, y)−G(s, y)]2dy.

(4.54)

Using this identity in (4.52), we arrive at

E
[
(R(t+ ε)−R(t))2

]
=

ˆ ∞

t

ˆ
R
|G(s+ ε, y)−G(s, y)|2dyds, (4.55)

which is (4.51). 2

4.3.2 The decomposition into a fractional Brownian motion and the corrector

We now prove the following decomposition originally proved in a paper by Lei and Nualart
in 2009.

Theorem 4.7 Let R(t) be defined by (4.37). For every x ∈ R fixed there exists a fractional
Brownian motion X(t), t ≥ 0, with the Hurst exponent H = 1/4 such that

Z(t, x) = π−1/4X(t) +R(t), t > 0. (4.56)

In particular, the non-differentiable component of the time trace of Z(t, x) is a fractional
Brownian motion.

We also note that at the level of variances the constant π−1/4 is correct because Z(t, x)
and R(t) are independent and recalling (4.13) and (4.39) we have

E
[
Z2(t, x)

]
+ E

[
R2(t)

]
=

1√
2π
t1/2 +

2−
√
2√

4π
t1/2 =

√
t√
π
. (4.57)
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This agrees with the idea that Z(t, x)−R(t) could be the corresponding multiple of a fractional
Brownian motion with the Hurst exponent H = 1/4.

Proof. Let us take t ≥ 0, ε > 0 and x ∈ R. We know that the corresponding increment

Z(t+ ε, x)− Z(t, x)

is a mean-zero Gaussian. To prove the claim of Theorem 4.7 we need to understand the
variance of such increments. More precisely, as Z(t, x) and R(t) are independent mean-zero
Gaussian fields with

Z(0, x) = R(0) = 0, a.s. (4.58)

it suffices to show that for any t > 0, ε > 0 and x ∈ R we have

E(|Z(t+ ε, x)− Z(t, x)|2) + E(|R(t+ ε)−R(t)|2) =
√
ε√
π
, (4.59)

as this, together with (4.58), would imply that

π1/4(Z(t, x)−R(t)) (4.60)

is a fractional Brownian motion with the Hurst exponent H = 1/4. According to Proposi-
tion 4.6, identity (4.59) is equivalent to

E(|Z(t+ ε, x)− Z(t, x)|2) =
√
ε√
π
−
ˆ ∞

t

ˆ
R
[G(s+ ε, y)−G(s, y)]2dsdy. (4.61)

To prove (4.61), let us split the increment of Z(t, x) as

Z(t+ ε, x)− Z(t, x) = J1(t, x) + J2(t, x), (4.62)

with

J1(t, t+ ε, x) =

ˆ t

0

[G(t+ ε− s, x− y)−G(t− s, x− y)]Ẇ (dsdy),

J2(t, t+ ε, x) =

ˆ t+ε

t

G(t+ ε− s, x− y)Ẇ (dsdy).

(4.63)

Then, J1(t, t+ ε, x) and J2(t, t+ ε, x) are independent mean-zero Gaussians, and the variance
of an increment of Z(t, x) has the form

E(|Z(t+ ε, x)− Z(t, x)|2) = E(J2
1 (t, t+ ε, x)) + E(J2

2 (t, t+ ε, x)). (4.64)

By the Ito isometry and the semi-group property of the heat kernel, we have

E(J2
2 (t, t+ ε, x)) =

ˆ t+ε

t

ˆ
R
G2(t+ ε− s, x− y)dyds =

ˆ ε

0

ˆ
R
G2(s, y)dyds

=

ˆ ε

0

ˆ
R
G(s, 0− y)G(s, y)dyds =

ˆ ε

0

G(2s, 0)ds =

ˆ ε

0

ds√
8πs

=

√
ε

2π
.

(4.65)
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The computation of the variance of J1(t, t+ ε, x) is a bit longer. By the Ito isometry we have

E
(
J2
1 (t, t+ ε, x)

)
=

ˆ t

0

ˆ
R
[G(t+ ε− s, x− y)−G(t− s, x− y)]2dsdy

=

ˆ t

0

ˆ
R
[G(s+ ε, y)−G(s, y)]2dsdy =

ˆ ∞

0

ˆ
R
[G(s+ ε, y)−G(s, y)]2dsdy

−
ˆ ∞

t

ˆ
R
[G(s+ ε, y)−G(s, y)]2dsdy.

(4.66)

The second integral in the very right side above is precisely the integral that appears in the
right side of (4.61). The first integral in the very right side above can be computed by noting
that the Fourier transform of the heat kernel is

Ĝ(t, ξ) =

ˆ
R
G(t, y)e−2πiyξdy = e−4π2|ξ|2t, (4.67)

and using the Plancherel identity to writeˆ
R
[G(s+ ε, y)−G(s, y)]2dy =

ˆ
R
|Ĝ(s+ ε, ξ)− Ĝ(s, ξ)|2dξ

=

ˆ
R

∣∣∣e−4π2|ξ|2(s+ε) − e−4π2|ξ|2s
∣∣∣2dξ = ˆ

R
e−8π2|ξ|2s

∣∣∣e−4π2ε|ξ|2 − 1
∣∣∣2dξ. (4.68)

We deduce thatˆ ∞

0

ˆ
R
[G(s+ ε, y)−G(s, y)]2dsdy =

ˆ
R

∣∣∣e−4π2ε|ξ|2 − 1
∣∣∣2( ˆ ∞

0

e−8π2|ξ|2sds
)
dξ

=

ˆ
R

1

8π2|ξ|2
∣∣∣e−4π2ε|ξ|2 − 1

∣∣∣2dξ = √
4π2ε

8π2

ˆ
R

1

|z|2
∣∣∣e−|z|2 − 1

∣∣∣2dz
=

√
ε

2π

ˆ ∞

0

1

z2

∣∣∣e−z2/2 − 1
∣∣∣2dz.

(4.69)

We used above the change of variable z =
√
4π2εξ. We may now recall (4.49):ˆ ∞

0

(
1− e−z2

)2dz

z2
= (2−

√
2)
√
π. (4.70)

We obtain ˆ ∞

0

ˆ
R
[G(s+ ε, y)−G(s, y)]2dsdy =

√
ε

2π

√
π[2−

√
2]. (4.71)

Going back to (4.66), we obtain

E
(
J2
1 (t, t+ ε, x)

)
=

√
ε(2−

√
2)√

4π
−
ˆ ∞

t

ˆ
R
[G(s+ ε, y)−G(s, y)]2dsdy. (4.72)

Using (4.65) and (4.72) in (4.64) gives

E(|Z(t+ ε, x)− Z(t, x)|2) =
√
ε√
π
−
ˆ ∞

t

ˆ
R
[G(s+ ε, y)−G(s, y)]2dsdy, (4.73)

which is (4.61). 2
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4.4 The spatial variation of the solution at a fixed time

We now view the process

Z(t, x) =

ˆ t

0

ˆ
R
G(t− s, x− y)Ẇ (ds, dy). (4.74)

as a function of x ∈ R with some t > 0 fixed.

4.4.1 The spatial corrector at a fixed time

We first construct a spatial corrector at a fixed time t > 0. Let us take a space-time white-
noise Ẇ1(dtdx) that is independent of the space-time white noise Ẇ (dtdx) that appears in
the definition (4.74) of Z(t, x), and define the process

S(t, x) = Z(t, 0) +

ˆ
[t,+∞)×R

[G(s, y − x)−G(s, y)]Ẇ1(dsdy). (4.75)

Here, we view t > 0 as simply a parameter and consider S(t, x) as a Gaussian random process
in x.

First, note that, due to the term G(s, y) inside the parentheses in (4.75), we have

S(t, 0) = Z(t, 0) a.s., for any t ≥ 0 fixed. (4.76)

This term also ensures the square integrability of the kernel that appears in (4.75) that is
needed to make sure that the Wiener integral in the definition of S(t, x) is well-defined. Let
us verify that property. The Fourier transform of the function G(s, · − x) is
ˆ
e−2πiξyG(s, y − x)dy =

ˆ
e−2πiξ(x+y)G(s, y)dy = e−2πiξxĜ(s, ξ) = e−2πiξx−4π2|ξ|2s. (4.77)

The Plancherel identity implies that

ˆ +∞

t

ˆ
R
|G(s, y − x)−G(s, y)|2dyds =

ˆ ∞

t

ˆ
R
|Ĝ(s, ξ)|2|1− e−2πiξx|2dξds

=

ˆ ∞

t

ˆ
R
e−8π2|ξ|2s

(
(1− cos(2πξx))2 + sin2(2πξx)

)
dξds

= 2

ˆ ∞

t

ˆ
R
e−8π2|ξ|2s(1− cos(2πξx)

)
dξds =

1

4π2

ˆ
R

1

|ξ|2
e−8π2|ξ|2t(1− cos(2πξx)

)
dξ < +∞,

(4.78)
for all t ≥ 0 and x ∈ R. As a consequence, we have

E(S2(t, x)) = E(Z2(t, 0)) +

ˆ +∞

t

ˆ
R
|G(s, y − x)−G(s, y)|2dyds (4.79)

We have the following analog of Proposition 4.5.

Proposition 4.8 For each t > 0 fixed, the random process S(t, x) is a mean-zero Gaus-
sian process in x with a version that is continuous on [0,+∞) and infinitely differentiable
on (0,+∞).
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Proof, Let us first check the continuity of S(t, x) in x. Given any x ∈ R and ε > 0, we have,
by the Ito isometry formula and (4.78):

E(|S(t, x+ ε)− S(t, x)|2) =
ˆ ∞

t

ˆ
R
|G(s, y − x− ε)−G(s, y − x)|2dsdx

=

ˆ ∞

t

ˆ
R
|G(s, y + ε)−G(s, y)|2dyds = 1

4π2

ˆ
R

1

|ξ|2
e−8π2|ξ|2t(1− cos(2πξε)

)
dξ.

(4.80)

Making a change of variable ξ = ζ/(2πε) gives

E(|S(t, x+ ε)− S(t, x)|2) = 1

4π2

ˆ
R

1

|ξ|2
e−8π2|ξ|2t(1− cos(2πξε)

)
dξ

=
ε

2π

ˆ
R

1

|ζ|2
e−2|ζ|2t/ε2(1− cos(ζ)

)
dζ ≤ ε

2π

ˆ
R

1

|ζ|2
(
1− cos(ζ)

)
dζ =

ε

2
.

(4.81)

We used above the remarkable fact thatˆ ∞

−∞
(1− cos ζ)

dζ

ζ2
= 2

ˆ ∞

0

(1− cos ζ)
dζ

ζ2
= 2

ˆ ∞

0

sin ζ

ζ
dζ = π, (4.82)

as can be easily computed by the method of residues. Theorem 3.4 and (4.81) imply that the
random process S(x) is almost surely α-Hölder continuous with any exponent α ∈ (0, 1/2).

Differentiability can be verified exactly as for the process R(t) in Proposition 4.5, by
showing that

∂xS(t, x) =

ˆ
[t,+∞)×R

∂x[G(s, y − x)]Ẇ1(dsdy) a.s. (4.83)

The details are essentially identical to that proof and we omit the details. 2

4.4.2 The decomposition into a spatial Brownian motion and a corrector at a
fixed time

The next theorem characterizes the process Z(t, x) for t ≥ 0 fixed. It comes from a paper by
Foondun, Khoshnevisan and Mahboubi in 2015.

Theorem 4.9 Fix t ≥ 0, and let S(t, x) be defined by (4.75). There exists a standard two-
sided Brownian motion B(x), x ∈ R, such that

Z(t, x) =
1√
2
B(x) + S(t, x), t > 0. (4.84)

Proof. Note that

B(x) =
√
2(Z(t, x)− S(t, x)) =

√
2(Z(t, x)− Z(t, 0)) +

√
2(Z(t, 0)− S(t, x)). (4.85)

is a mean-zero Gaussian field in x such that B(0) = 0 a.s. The two terms in the right side
of (4.85) are independent. Hence, the variance of the increments of B(x) is

E
[
(B(x+ ε)−B(x))2

]
= 2E

[
(Z(t, x+ ε)− Z(t, x))2

]
+ 2E

[
(S(t, x+ ε)− S(t, x))2

]
. (4.86)
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We have already computed the variance of the increments of the second term in the right side
above in (4.81). Thus, we only need to compute the variance of the increments of

Z(t, x) =

ˆ t

0

ˆ
R
G(t− s, x− y)Ẇ (ds, dy), (4.87)

in order to show that
E
[
(B(x+ ε)−B(x))2

]
= ε. (4.88)

We proceed as in (4.77)-(4.78):

E|Z(t, x+ ε)− Z(t, x)|2 =
ˆ t

0

ˆ
R
|G(t− s, x+ ε− y)−G(t− s, x− y)|2dyds

=

ˆ t

0

ˆ
R
|G(s, y + ε)−G(s, y)|2dyds.

(4.89)

The Fourier transform of the function G(s, ·+ ε) is

ˆ
e−2πiξxG(s, x+ ε)dx = e2πiεξĜ(s, ξ) = e2πiεξ−4π2|ξ|2s.

The Plancherel identity implies that

E|Z(t, x+ ε)− Z(t, x)|2 =
ˆ t

0

ˆ
R
|Ĝ(s, ξ)|2|1− e2πiεξ|2dξds

=

ˆ t

0

ˆ
R
e−8π2|ξ|2s

(
(1− cos(2πεξ))2 + sin2(2πεξ)

)
dξds

= 2

ˆ t

0

ˆ
R
e−8π2|ξ|2s(1− cos(2πεξ)

)
dξds =

1

4π2

ˆ
R

1

|ξ|2
(
1− e−8π2|ξ|2t

)(
1− cos(2πεξ)

)
dξ

=
ε

2π

ˆ
R

1

|ξ|2
(
1− e−2|ξ|2t/ε2

)(
1− cos ξ

)
dξ.

(4.90)
Using (4.82) in (4.90) gives

E|Z(t, x+ ε)− Z(t, x)|2 = ε

2
− ε

2π

ˆ
R

1

|ξ|2
e−2|ξ|2t/ε2(1− cos ξ

)
dξ. (4.91)

Recalling the last expression in (4.81) for the variance of S(t, x+ ε)− S(t, x) we deduce that

E|Z(t, x+ ε)− Z(t, x)|2 + E|S(t, x+ ε)− S(t, x)|2 = ε

2
. (4.92)

This gives (4.88). As we already know that B(0) = 0 a.s. and B(x) is a Gaussian random
field, we conclude that B(x) is a standard Brownian motion. 2
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4.4.3 Flattening of the correctors as t→ +∞

Let us now discuss what happens to the correctors that we have constructed above, in the
long time limit t→ +∞.

First, Theorem 4.7 says that for any x ∈ R fixed, we may decompose the solution

Z(t, x) =

ˆ t

0

ˆ
R
G(t− s, x− y)Ẇ (dsdy), (4.93)

to the additive heat equation
∂Z

∂t
=
∂2Z

∂x2
+ Ẇ (t, x), (4.94)

as

Z(t, x) =
1

π1/4
X(t) +R(t). (4.95)

Here, X(t) is a fractional Brownian motion with the Hurst exponent H = 1/4. The variance
of the increments of the corrector R(t) are given by (4.52):

E
[
(R(t2)−R(t1))

2
]
=

1

2π

ˆ ∞

0

1

z2
e−2t1z2

(
1− e−(t2−t1)z2

)2

dz

≤ C(t2 − t1)
2

ˆ ∞

0

z2e−2t1z2dz ≤ C(t2 − t1)
2

t
3/2
1

.
(4.96)

Thus, at large times the increments of Z(t, x) are well approximated by those of a fractional
Brownian motion with the exponent H = 1/4. The corrector R(t) does not become small as
it variance is of the order O(

√
t, as seen from (4.39). However, the variance of the increments

of R(t) becomes small: the corrector is “nearly flat”.
A similar phenomenon happens with the spatial corrector. Theorem 4.9 says that at each

time t > 0 the solution Z(t, x) can be decomposed as

Z(t, x) =
1√
2
B(x) + S(t, x). (4.97)

Here, B(x) is a two-sided Brownian motion while S(t, x) is defined by (4.75)

S(t, x) = Z(t, 0) +

ˆ
[t,+∞)×R

[G(s, y − x)−G(s, y)]Ẇ1(dsdy). (4.98)

The corrector itself does not become small as t → +∞ because of the term Z(t, 0) whose
variance, once again, grows as O(

√
t) due to (4.13). However, for any x1 ∈ R and x2R fixed

the increment
IS(t, x1, x2) := S(t, x1)− S(t, x2), (4.99)

has variance that decreases to 0 as t→ +∞: according to (4.81), for any x1, x2 ∈ R we have

E|S(t, x1)− S(t, x2)|2 =
|x1 − x2|

2π

ˆ
R

1

|ζ|2
e−2|ζ|2t/|x1−x2|2

(
1− cos(ζ)

)
dζ → 0, as t→ +∞.

(4.100)
Thus, the spatial increments of Z(t, x) look more and more like the increments of the Brownian
motion as t→ +∞.
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5 Stochastic Integrals

5.1 The Ito integral in one dimension

Before talking about stochastic integrals with respect to space-time white noises Ẇ (t, x), let
us very briefly recall the steps done in the definition of the Ito integration, which is what
we will generalize to higher dimensions. When we define the Ito integral with respect the
Brownian motion ˆ t

0

f(s, ω)dBs,

this is first done for elementary functions of the form

f(t, ω) = X(ω)1[a,b](t),

with some b > a. Here, X(ω) needs to be an Fa-measurable function – recall that this
innocent sounding assumption is absolutely essential for the Ito integral (as opposed to the
Stratonovich and other stochastic integrals) to be a martingale, with a finite second moment:

E[X2] < +∞.

For such elementary functions we define the Ito integral as

ˆ t

0

f(s, ω)dBs =


0, if 0 < t < a,

X(ω)(Bt −Ba), if a < t < b,
X(ω)(Bb −Ba), if b < t.

(5.1)

This may be written more succinctly as

ˆ t

0

f(s, ω)dBs = X(ω)[Bt∧b −Bt∧a]. (5.2)

This expression can be immediately generalized to simple functions – these are linear combi-
nations of elementary functions fj

f(t, ω) =
n∑

j=1

cjfj(t, ω), (5.3)

with deterministic constants cj. The main observation that allows to go further and define
the Ito integral for more general functions is the Ito isometry: it is easy to check from the
above definition that for an elementary function f(t, ω) we have

E
(ˆ t

0

f(s, ω)dBs

)2

= E(X2(ω))(t ∧ b− t ∧ a) =
ˆ t

0

E(f 2(s, ω))ds. (5.4)

The same identity holds for simple functions of the form (5.3).
Then one can verify that simple functions are dense in L2(Ω × [0, T ]) and define the

stochastic integral for all such functions as an object in L2(Ω). This is also how we will
construct the stochastic integral with respect to space-time white noises.
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Another important aspect of the Ito integral is that, the integral

It =

ˆ t

0

f(s, ω)dBs

is a martingale. This is easy to see for simple functions, and then for a general Ft-adapted
function f(t, ω), this follows from the Ito isometry and density of simple functions in L2(Ω).
The quadratic variation of It is

⟨I, I⟩t =
ˆ t

0

f 2(s, ω)ds.

This follows from the Ito formula:

d(I2t ) = f 2(t, ω)dt+ 2Itf(t, ω)dBt,

which shows that

I2t −
ˆ t

0

f 2(s, ω)ds (5.5)

is a martingale.

5.2 Space-time white noise as a martingale measure

In order to construct the stochastic integral with respect to a white noise, we split out one
variable in the noise, and call it t ≥ 0, while keeping all other variables as ”spatial variables”.
Let B be the collection of the Borel sets on Rd. A process Mt(A), A ∈ B is a martingale
measure if

(i) M0(A) = 0 a.s., for all A ∈ B.

(ii) For t > 0 fixed, Mt(A) is a σ-finite L
2-valued measure.

(iii) For all A ∈ B fixed, Mt(A) is a mean-zero martingale.

Let us check that the white noise process

Wt(A) = Ẇ ([0, t]× A), (5.6)

is a martingale measure. First, we have W0(A) = 0 a.s. because

E[Wt(A)]
2 = t|A|.

This also implies thatWt(A) is a σ-finite L
2-valued measure. To see thatWt(A) is a martingale

for each A ∈ B fixed, we observe that for all t ≥ s ≥ u ≥ 0 we have

E[(Wt(A)−Ws(A))Wu(A)] = E[(Ẇ ([0, t]× A)− Ẇ ([0, s]× A))Ẇ ([0, u]× A)]

= |([0, t]× A) ∩ ([0, u]× A)| − |([0, t]× A) ∩ ([0, u]× A)|
= |([0, u]× A)| − |([0, u]× A)| = 0.

(5.7)
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It follows that the increment Wt(A) −Ws(A) is independent of Fs, the σ-algebra generated
by Wr(A), with 0 ≤ r ≤ s, A ∈ B. Hence, we have

E(Wt(A)|Fs) = E(Wt(A)−Ws(A)|Fs) +Ws(A) = E(Wt(A)−Ws(A)) +Ws(A) = Ws(A),

and Wt(A) is a martingale.
We now compute the quadratic variation of the martingale Wt(A), for a given Borel

set A ∈ B. Let us recall that for a martingale Nt its quadratic variation ⟨N⟩t is an increasing
process such that

N2
t − ⟨N⟩t (5.8)

is a martingale. Similarly, if Nt and Mt are martingales, their covariance is

⟨N,M⟩t =
1

4

[
⟨N +M,N +M⟩t − ⟨N −M,N −M⟩t

]
. (5.9)

Note that
NtMt − ⟨N,M⟩t (5.10)

is a martingale.
We claim that given two Borel sets A,B ∈ B, the white noise covariance is

Qt(A,B) := ⟨W (A),W (B)⟩t = t|A ∩B|. (5.11)

Indeed, let X(ω) be Fs measurable. As the increment Wt(A) −Ws(A) is independent of Fs

for t > s, we can compute

E((W 2
t (A)− t|A|)X) = E[(W 2

s (A)− s|A|)X] + E[((Wt(A)−Ws(A))
2 − (t− s)|A|)X]

+ 2E[Ws(A)(Wt(A)−Ws(A))X)] = E[(W 2
s (A)− s|A|)X].

(5.12)
It follows that W 2

t (A)− t|A| is a martingale and hence

Qt(A,A) = t|A|. (5.13)

On the other hand, for disjoint A and B, we know that

Qt(A,B) = 0, (5.14)

since Wt(A) and Wt(B) are martingales that have increments independent of each other, so
that Wt(A)Wt(B) is also a martingale. It follows that for a general pair of sets A and B we
may write

Qt(A,B) = ⟨W (A),W (B)⟩t = ⟨(W (A \B) +W (A ∩B)), (W (B \ A) +W (A ∩B)⟩t
= ⟨W (A ∩B),W (A ∩B)⟩t = t|A ∩B|,

(5.15)

which is (5.11).

37



5.3 The stochastic integral for simple functions

In order to define the stochastic integration we begin with the simple functions, as for the Ito
integral. We say that a function f(t, x, ω) is elementary if it has the form

f(t, x, ω) = X(ω)1(a,b](t)1A(x). (5.16)

Here, A is a Borel set, and the random variable X is bounded and Fa-measurable – the
latter condition is very important, as it was for the Ito integral. A simple function is a linear
combination of finitely many elementary functions (with deterministic coefficients). We will
denote by P the σ-algebra generated by all simple functions. It is called the predictable σ-
algebra.

Given an elementary function f of the form (5.16), we define the stochastic-integral process
of f , with respect to the martingale measure Wt defined in (5.6), as

(f ·W )t(B)(ω) = X(ω)[Wt∧b(A ∩B)−Wt∧a(A ∩B)](ω), for B ∈ B. (5.17)

On the informal level, this agrees with

ˆ t

0

ˆ
B

f(s, x, ω)Ẇ (dsdx) = X(ω)

ˆ t

0

ˆ
B

1(a,b](s)1A(x)Ẇ (dsdx)

=


0, if 0 < t < a < b,

X(ω)[Wt(A ∩B)−Wa(A ∩B)], if 0 < a < t < b,
X(ω)[Wb(A ∩B)−Wa(A ∩B)], if 0 < a < b < t.

(5.18)

This is a direct generalization of (5.1)-(5.2) for the Ito integral. We can extend the defini-
tion (5.17) to simple functions in a straightforward way as linear combinations. Note that
if f is a simple function then f ·Wt defined by (5.17) is a martingale measure as well.

Let us now compute the second moment of the stochastic integral process of an elementary
function f(t, x, ω) of the form (5.16). We take a Borel set B and find

E
[[
(f ·Wt)(B)

]2]
= E

[
X2[Wt∧b(A ∩B)−Wt∧a(A ∩B)]2

]
= E[X2W 2

t∧b(A ∩B)] + E[X2W 2
t∧a(A ∩B)]− 2E[X2Wt∧b(A ∩B)Wt∧a(A ∩B)].

(5.19)

Let us recall that X is Fa-measurable. Hence, by the definition of the quadratic variation of
the martingale Wt(A ∩B), we have

E
[
X2

(
W 2

t∧b(A ∩B)− ⟨W (A ∩B),W (A ∩B)⟩t∧b
)]

= E
[
X2

(
W 2

t∧a(A ∩B)− ⟨W (A ∩B),W (A ∩B)⟩t∧a
)]
,

(5.20)

and, since Wt(A ∩B) is a martingale, we also have

E
[
X2Wt∧b(A ∩B)Wt∧a(A ∩B)

]
= E

[
X2W 2

t∧a(A ∩B))
]
. (5.21)
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Using this in (5.19) gives

E
[
((f ·Wt)(B))2

]
= E

[
X2

(
W 2

t∧a(A ∩B)− ⟨W (A ∩B),W (A ∩B)⟩t∧a
)]

+ E
[
X2⟨W (A ∩B),W (A ∩B)⟩t∧b)

]
+ E

[
X2W 2

t∧a(A ∩B)
]
− 2E

[
X2(W 2

t∧a(A ∩B))
]

= E
[
X2(⟨W (A ∩B),W (A ∩B)⟩t∧b − ⟨W (A ∩B),W (A ∩B)⟩t∧a)

]
.

(5.22)
Recalling expression (5.11) for the quadratic variation of the white noise, we obtain

E
[
((f ·Wt)(B))2

]
= E(X2)

[
t ∧ b− t ∧ a]|A ∩B|. (5.23)

In other words, for an elementary function we have

E
[ ˆ t

0

ˆ
B

f(s, x, ω)Ẇ (dsdx)
]2

= E
[ ˆ t

0

ˆ
B

f 2(s, x, ω)dsdx
]
. (5.24)

It is a straightforward exercise to extend the Ito isometry (5.24) to simple functions, using
the independence of the increments of the white noise.

5.4 The stochastic integral for predictable functions

Let us recall that we denote by P the σ-algebra generated by the simple functions. A function
is predictable if it is P-measurable. We can define the norm for predictable functions as

∥f∥2 = E
( ˆ T

0

ˆ
Rd

|f(t, x, ω)|2dxdt
)
. (5.25)

We will denote by P2 the space of predictable function of a finite norm (5.25). It is an exercise
to verify that P2 is a Banach space. Another exercise shows that the simple functions are
dense in P2.

Let us go back to the Ito isometry (5.24)

E
[ ˆ t

0

ˆ
B

f(s, x, ω)W (ds, dx)
]2

= E
[ ˆ t

0

ˆ
B×B

|f(s, x, ω)|2dxds
]
. (5.26)

Here, f is a simple function but this allows us to generalize the notion of the stochastic integral
to functions in P2. Indeed, if fn is a Cauchy sequence of simple functions in P2, then (5.26)
shows that the sequence ˆ t

0

ˆ
B

f(s, x, ω)W (ds, dx) (5.27)

is Cauchy in L2(P ). Hence, for any function f ∈ P2 we may define the stochastic integral (5.27)
as the limit in L2(P ) of the ˆ t

0

ˆ
B

fn(s, x, ω)W (ds, dx), (5.28)

where fn is a sequence of simple functions in P2 that converges to f in P2. This is essentially
the same procedure as in the definition of the usual Ito integral.
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6 The stochastic heat equation with a Lipschitz nonlin-

earity: the basic theory

We now consider a very basic example of a parabolic SPDE

∂u

∂t
=
∂2u

∂x2
+ f(u)Ẇ , (6.1)

posed on R, with the initial condition u(0, x) = u0(x). The function u0(x) is deterministic
and compactly supported. The nonlinearity f(u) is globally Lipschitz:

|f(u1)− f(u2)| ≤ K|u1 − u2|. (6.2)

This assumption is extremely important both for u small and u large: the ”interesting cases”
are what happens when f(u) ∼

√
u for small u – this will lead to compactly supported

solutions, and when f(u) ∼ u2 for u large – this may lead to blow-up of solutions in a
finite time. For now, we deliberately avoid both, and stay within the realm of Lipschitz
nonlinearities for simplicity, but will come back to them later. It is sometimes helpful to
assume that f is, in addition, bounded. We will avoid this last assumption for the moment,
as we would like to include the standard stochastic heat equation

∂u

∂t
=
∂2u

∂x2
+ uẆ (t, x). (6.3)

On an intuitive level, the noise acts as a huge and very irregular force in the heat equation,
making even very familiar properties of the solutions of the heat equation somewhat non-
obvious. For example, since Ẇ can be ”huge and positive” – may that bring about growth
at infinity that would knock the solution out of the Lp(R) space? On the other hand, as
the noise can be very negative, a priori it is by no means obvious that the strong maximum
principle would hold: given that u0(x) ≥ 0, do we know that u(t, x) > 0? As the reader will
see, getting the answers even to these questions will require some non-trivial arguments. We
should also stress that the restriction to one spatial dimension is not technical or accidental,
as the solutions have a very different nature in dimension d > 1.

6.1 The mild solutions: existence and uniqueness

Let us first make precise which notion of a solution we will use. The Duhamel formula tells
us that if the noise were smooth, the solution of (6.1) would have the form

u(t, x) =

ˆ
R
G(t, x− y)u0(y)dy +

ˆ t

0

ˆ
R
G(t− s, x− y)f(u(s, y))Ẇ (dsdy), (6.4)

and this will be our starting point. That is, a solution to (6.1) is a solution to (6.4) that is
adapted to the σ-algebra Ft generated by the white noise Ẇ . Here, G(t, x) is the standard
heat kernel:

G(t, x) =
1

(4πt)1/2
e−|x|2/(4t). (6.5)

These are also known as mild solutions.
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Theorem 6.1 The stochastic heat equation (6.1) with a globally Lipschitz nonlinearity f(u)
and a compactly supported initial condition u0(x) has a unique solution u(t, x) such that for
all T > 0 we have

sup
x∈R

sup
0≤t≤T

E(|u(t, x)|2) < +∞. (6.6)

In other words, solutions exist and are unique in the space P2,∞[0, T ] with the norm

∥u∥2P2,∞ = sup
x∈R

sup
0≤t≤T

E(|u(t, x)|2). (6.7)

Note that the stochastic integral in the right side of (6.4) makes sense for all functions
in P2,∞[0, T ].

6.1.1 Uniqueness of the solution

We first prove uniqueness. Suppose that u and v are two mild solutions of (6.1) – or, equiva-
lently, of (6.4) in P2,∞[0, T ]. We will show that v is a modification of u. Set

z(t, x) = u(t, x)− v(t, x),

and write

z(t, x) =

ˆ t

0

ˆ
R
G(t− s, x− y)[f(u(s, y))− f(v(s, y))]Ẇ (dyds). (6.8)

The Ito isometry and the Lipschitz property of f(u) implies that

E(|z(t, x)|2) =
ˆ t

0

ˆ
R
G2(t− s, x− y)E

[
|f(u(s, y))− f(v(s, y))|2

]
dxds

≤ K

ˆ t

0

ˆ
R
G2(t− s, x− y)E

[
|u(s, y)− v(s, y)|2

]
dxds

= K

ˆ t

0

ˆ
R
G2(t− s, x− y)E

[
|z(s, y)|2

]
dxds.

(6.9)

We set
H(t) = sup

0≤s≤t
sup
x∈R

E(|z(s, x)|2),

and get from (6.9) that

H(t) ≤ K

ˆ t

0

ˆ
R
G2(t− s, x− y)H(s)dxds. (6.10)

Note that ˆ
R
G2(s, y)dy =

C

s

ˆ
R
e−|y|2/(4s)ds =

C ′
√
s
.

It follows from (6.10) that

H(t) ≤ K ′
ˆ t

0

H(s)

|t− s|1/2
ds. (6.11)
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Hölder’s inequality with any p ∈ (1, 2) and

1

p
+

1

q
= 1, (6.12)

implies that

H(t)q ≤ K ′′
ˆ t

0

H(s)qds. (6.13)

Grownwall’s inequality implies now that H(t) = 0 for almost all s, hence u and v are modifi-
cations of each other.

6.1.2 Existence of a mild solution

The proof is via the usual Picard iteration scheme. We let u0(t, x) = u0(x) and define
iteratively

un+1(t, x) =

ˆ
R
G(t, x− y)u0(y)dy +

ˆ t

0

ˆ
R
G(t− s, x− y)f(un(s, y))Ẇ (dsdy). (6.14)

It is easy to verify that all un are in P2,∞[0, T ]. The increment

qn(t, x) = un+1(t, x)− un(t, x)

satisfies

qn(t, x) =

ˆ t

0

ˆ
R
G(t− s, x− y)(f(un(s, y))− f(un−1(s, y))Ẇ (dsdy). (6.15)

As f is Lipschitz, it follows that

E(|qn(t, x)|2) =
ˆ t

0

ˆ
R
G2(t− s, x− y)E(f(un(s, y))− f(un−1(s, y))

2dyds

≤ K2

ˆ t

0

ˆ
R
G2(t− s, x− y)E|qn−1(s, y)|2dyds.

(6.16)

Hence, the function
Zn(t) = sup

x∈R
sup
0≤s≤t

E|qn(s, x)|2

satisfies

Zn(t) ≤ K2

ˆ t

0

ˆ
R
G2(t− s, x− y)Zn−1(s)dyds, (6.17)

and thus

Zn(t) ≤ C

ˆ t

0

Zn−1(s)

|t− s|1/2
ds. (6.18)
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Once again, with p ∈ (1, 2) and q as in (6.12) we get

Zn(t)
q ≤ C

ˆ t

0

Zn−1(s)
qds. (6.19)

Hence, Gronwall’s lemma implies that

Zn(t)
q ≤ C1

(Ct)n−1

(n− 1)!
.

As a consequence, we get
∞∑
n=0

Z1/2
n (t) < +∞.

It follows that the sequence un(t, x) converges in P2,∞[0, T ] to a limit u(t, x). The same
argument based on the Ito isometry and the global Lipschitz bound on the function f implies
that
ˆ t

0

ˆ
R
G(t− s, x− y)f(un(s, y))Ẇ (dsdy) →

ˆ t

0

ˆ
R
G(t− s, x− y)f(u(s, y))Ẇ (dsdy),

also in P2,∞[0, T ]. We conclude that u(t, x) is a solution to

u(t, x) =

ˆ
R
G(t, x− y)u0(y)dy +

ˆ t

0

ˆ
R
G(t− s, x− y)f(u(s, y))Ẇ (dsdy), (6.20)

finishing the existence proof. 2

6.2 Higher moments of the solutions

One may ask if the solutions of the stochastic heat equation (6.1) that we have constructed
lie in better spaces, such as Ps,∞ with the norm

∥u∥sPs,∞ = sup
x∈R,

sup
0≤t≤T

E(|u(t, x)|s), (6.21)

and s > 2. We will not prove existence and uniqueness of the solution in Ps,∞ with s > 2 but
rather estimate its norm in this space. The solution can be constructed as a combination of
the Picard iteration and very similar arguments. We will need Burkholder’s inequality.

Theorem 6.2 [Burkholder’s inequality] Let Nt be a continuous martingale such that N0 = 0,
then for each p ≥ 2 we have

E|Nt|p ≤ cpE(⟨N,N⟩t)p/2, (6.22)

with a constant cp > 0 that depends only on p.

As a consequence of Burkholder’s inequality, for any predictable function f we have

E
[ ˆ t

0

ˆ
Rd

f(s, x)Ẇ (dsdx)
]p

≤ cpE
[ ˆ t

0

ˆ
Rd

|f(s, x)|2dsdx
]p/2

. (6.23)
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Thus, the moments of the solution of the stochastic heat equation

u(t, x) =

ˆ
R
G(t, x− y)u0(y)dy +

ˆ t

0

ˆ
R
G(t− s, x− y)f(u(s, y))dW (s, y) (6.24)

can be estimated as

Ms(t, x) := E|u(t, x)|s ≤ C0 + CE
[ ˆ t

0

ˆ
R
G2(t− s, x− y)f 2(u(s, y))dsdy

]s/2
(6.25)

≤ C0 + CE
[ ˆ t

0

ˆ
R
G2(t− s, x− y)u2(s, y)dsdy

]s/2
.

Here we have used the Lipschitz property of f . Let us assume for simplicity that s = 4, then
we can write

M4(t, x) ≤ C0 + CE
[ ˆ t

0

ˆ
R
G2(t− s, x− y)u2(s, y)dsdy

]2
(6.26)

= C0 + C

ˆ t

0

ˆ t

0

ˆ
R

ˆ
R
G2(t− s, x− y)G2(t− s′, x− y′)E

[
u2(s, y)u2(s′, y′)

]
dsdyds′dy′.

Set
M̄4(t) = sup

x∈R
M4(t, x),

then we have, using the Cauchy inequality

M̄4(t) ≤ C0 + C

ˆ t

0

ˆ t

0

ˆ
R

ˆ
R
G2(t− s, y)G2(t− s′, y′)M̄

1/2
4 (s)M̄

1/2
4 (s′)dsdyds′dy′

≤ C0 + C
( ˆ t

0

M̄4(s)
1/2ds

|t− s|1/2
)2

≤ C0 + C
( ˆ t

0

M̄
q/2
4 (s)ds

)2/q

, (6.27)

with any q > 2. Gronwall’s lemma implies now that

sup
0≤t≤T

M̄4(t) ≤ CT . (6.28)

This argument can be generalized to all even integers s and from there to all s < +∞. It is
straightforward to adapt it to show the existence of the solutions in Ps,∞[0, T ] via Picard’s
iteration. Uniqueness of the solutions in Ps,∞[0, T ] follows immediately from the uniqueness
result in P2,∞[0, T ] that we have already proved.

Exercise 6.3 With a little more careful analysis one may show the following bound: there
exists a constant C > 0 that depends only the Lipschitz consant of f and ∥u0∥L∞ so that

sup
x∈R

E(|u(t, x)|k) ≤ CkeCk3t. (6.29)
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6.3 The spatial L2-bound

Let us now consider the unique P2,∞[0, T ]-solution to

u(t, x) =

ˆ
R
G(t, x− y)u0(y)dy +

ˆ t

0

ˆ
R
G(t− s, x− y)f(u(s, y))dW (s, y), (6.30)

and ask if we may expect the L2-norm in space of u(t, x) to remain bounded – recall that we
assumed that u0(x) is compactly supported (though this assumption can be easily weakened
to u0 ∈ L1(R) in the existence and uniqueness proofs). Clearly, this is not true just under the
assumption that f(u) is Lipschitz: if we take f ≡ 1 and consider the solutions of

∂u

∂t
=
∂2u

∂x2
+ Ẇ (t, x),

then there is no reason to expect that the solution has any spatial decay whatsoever. Let us,
therefore, assume that, in addition to being globally Lipschitz, f(u) satisfies f(0) = 0, so that

|f(u)| ≤ K|u|. (6.31)

The first integral in the right side of (6.30) is obviously in any Lp(R), 1 ≤ p ≤ +∞, hence we
only look at

U(t, x) =

ˆ t

0

ˆ
R
G(t− s, x− y)f(u(s, y))dW (s, y),

and compute

E
ˆ
R
u2(t, x)dx ≤ 2

ˆ
|u0(x)|2dx+ 2

ˆ
R

ˆ t

0

ˆ
R
G2(t− s, x− y)E[f 2(u(s, y))]dydsdx

≤ 2

ˆ
|u0(x)|2dx+ 2K

ˆ
R

ˆ t

0

ˆ
R
G2(t− s, x− y)E[|u(s, y)|2]dydsdx (6.32)

≤ 2∥u0∥22 + C

ˆ t

0

ˆ
R
E[|u(s, y)|2]dy ds

|t− s|1/2
.

Thus,

Z(t) = E
ˆ
R
|u(t, x)|2dx

satisfies

Z(t) ≤ 2Z(0) + C

ˆ t

0

Z(s)ds

|t− s|1/2
.

Hence, for any q ∈ (2,+∞) and 0 ≤ t ≤ T , we have

Zq(t) ≤ C0 + CT

ˆ t

0

Zq(s)ds.

Gronwall’s lemma implies that
sup

0≤t≤T
Z(t) ≤ C ′

T ,
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and we conclude that for every T > 0 we have

sup
0≤t≤T

E
ˆ
R
|u(t, x)|2dx < +∞. (6.33)

In the special case of the stochastic heat equation

∂u

∂t
=
∂2u

∂x2
+ uẆ , (6.34)

with the initial condition u(0, x) = u0(x), we have

u(t, x) = v(t, x) +

ˆ t

0

ˆ
R
G(t− s, x− y)u(s, y)W (dsdy). (6.35)

It follows that
Z(t, x) = E|u(t, x)|2

satisfies a closed equation

Z(t, x) = v2(t, x) +

ˆ t

0

ˆ
R
G2(t− s, x− y)Z(s, y)dy. (6.36)

Here, the function v(t, x) is the solution of the heat equation

∂v

∂t
=
∂2v

∂x2
, (6.37)

with the initial condition v(0, x) = u0(x). Hence, the L
2-norm of Z(t, x),

Z̄(t) = E
ˆ
R
|u(t, x)|2dx

satisfies

Z̄(t) = ∥v(t)∥2L2 + b

ˆ t

0

Z̄(s)√
t− s

ds, (6.38)

with an explicit constant b > 0. Let us define the function

Zγ(t) = e−γtZ̄(t),

with the constant γ > 0 to be chosen. Then Zγ(t) satisfies

Zγ(t) = a(t) +

ˆ t

0

g(t− s)Zγ(s)ds, (6.39)

with

a(t) = ∥v(t)∥2L2e−γt, g(t) =
be−γt

√
t− s

.

Let us choose
γ = πb2, (6.40)

so that ˆ ∞

0

g(s)ds = 1. (6.41)

This is, clearly, a necessary condition for Zγ(t) to have a limit as t → +∞, since a(t) → 0
as t→ +∞.
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Exercise 6.4 Show that with this choice of γ and this a(t), the limit

Z̄γ = lim
t→+∞

Zγ(t) (6.42)

exists.

In order to find the limit, let us write

Zγ(t) = Z̄γ + β(t),

with β(t) → 0 as t→ +∞:

Z̄γ + β(t) = a(t) + Z̄γ

ˆ t

0

g(t− s)ds+

ˆ t

0

g(t− s)β(s)dy, (6.43)

so that

β(t) = a(t)− Z̄γ

ˆ ∞

t

g(s)ds+

ˆ t

0

g(t− s)β(s)dy. (6.44)

Integrating (6.44) gives
ˆ t

0

β(s)ds =

ˆ t

0

a(s)ds− Z̄γ

ˆ t

0

ˆ ∞

s

g(s′)ds′ds+

ˆ t

0

ˆ s

0

g(s− s′)β(s′)ds′ds. (6.45)

The long time limit of the second integral in the right side can be computed as
ˆ t

0

ˆ ∞

s

g(s′)ds′ds =

ˆ t

0

s′g(s′)ds′ + t

ˆ ∞

t

g(s′)ds′ →
ˆ ∞

0

sg(s)ds, as t→ +∞, (6.46)

while for the last integral in the right side of (6.45) we have
ˆ t

0

ˆ s

0

g(s− s′)β(s′)ds′ds→
ˆ ∞

0

ˆ s

0

g(s− s′)β(s′)ds′ds (6.47)

=

ˆ ∞

0

β(s′)

ˆ ∞

s′
g(s− s′)dsds′ =

ˆ ∞

0

β(s)ds, as t→ +∞.

Going back to (6.45) we conclude that

Z̄γ =
( ˆ ∞

0

sg(s)ds
)−1
ˆ ∞

0

a(s)ds. (6.48)

Therefore, the solution of the stochastic heat equation (6.34) satisfies

E∥u(t)∥2L2 ∼ Z̄γe
γt, as t→ +∞, (6.49)

with γ > 0 given by (6.40).

Exercise 6.5 Generalize this argument to the solutions of equations of the form

∂u

∂t
=
∂2u

∂x2
+ f(u)Ẇ , (6.50)

with a nonlinearity f(u) such that c1|u| ≤ f(u) ≤ c2|u|. Obtain a lower and upper bound for
the L2-norm of the solutions as in (6.49).
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The exponential growth of the second moment in (6.49) should be contrasted with the simple
bound on the integral:

E
ˆ
R
u(t, x)dx =

ˆ
R
u0(x)dx. (6.51)

We will discuss this again when we talk about the intermittency of the solutions. Roughly,
the disparity of the L1 and L2 norms of the solutions indicates that there are small islands
where the solution is huge. We should also note that we will later show that u(t, x) > 0
if u0(x) ≥ 0 and u0 does not vanish identically. Hence, the integral in the left side of (6.51)
is the L1-norm of u.

The Hölder regularity of the solutions

In order to study the Hölder regularity of the solutions, let us first make a slightly simplifying
assumption that in addition to being Lipschitz, the function f(u) is globally bounded:

sup
u∈R

|f(u)| ≤ K. (6.52)

We will later explain how this assumption can be removed, using the Ps,∞[0, T ] bounds on
the solution with s ∈ (2,+∞), rather than just the bounds in P2,∞[0, T ] that we will use in
the proof.

Theorem 6.6 There exists a modification of the solution of (6.4) that is Hölder continuous
in x of any order less than 1/2 and in t of any order less than 1/4.

We will need in the proof a slight generalization of the Kolmogorov continuity criterion –
compare this to Theorem 3.3.

Theorem 6.7 Let Xt, t ∈ T = [a1, b1]× . . . , [ad, bd] ⊂ Rd be a real-valued stochastic process.
Suppose there are constants k > 1, C > 0 and αi > 0, i = 1, . . . , d, so that

q :=
d∑

i=1

1

αi

< 1,

and for all s, t ∈ T, we have

E
(
|X(t)−X(s)|k

)
≤ C

d∑
i=1

|ti − si|αi . (6.53)

Then X(t) has a continuous modification X̄(t). Moreover, X̄(t) is Hölder continuous in each
variable ti with any exponent γ ∈ (0, αi(1− q)/k).

Note that when all αi = α, then the assumptions require α > d, and the process has the
Hölder exponent less than

α(1− d

α
)
1

k
=
α− d

k
,

which is exactly Theorem 3.3. We will leave the proof as an exercise.
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The proof of Theorem 6.6

Let us consider

U(t, x) =

ˆ t

0

ˆ
R
G(t− s, x− y)f(u(s, y))dW (s, y). (6.54)

We need to show that U(t, x) has the required Hölder continuous modification. For 0 ≤ t ≤ t′

we write

U(t′, x)− U(t, x) =

ˆ t

0

ˆ
R
[G(t′ − s, x− y)−G(t− s, x− y)]f(u(s, y))dW (s, y)

+

ˆ t′

t

ˆ
R
G(t′ − s, x− y)f(u(s, y))dW (s, y). (6.55)

Young’s and Burkholder’s inequalities imply that

E|U(t′, x)− U(t, x)|p ≤ CpE
[ ˆ t

0

ˆ
R
|G(t′ − s, x− y)−G(t− s, x− y)|2f 2(u(s, y))dyds

]p/2
+ CpE

[ ˆ t′

t

ˆ
R
G2(t′ − s, x− y)f 2(u(s, y))dyds

]p/2
= I + II. (6.56)

Using the assumption that |f(u)| ≤ K, the second term can be estimated as

II ≤ C
[ ˆ t′

t

ˆ
R
G2(t′ − s, x− y)dyds

]p/2
≤ C

[ ˆ t′

t

ds

|t′ − s|1/2
]p/2

≤ C|t′ − t|p/4. (6.57)

For the first term in the right side of (6.56) we write, using the Plancherel identityˆ
R
|G(t′ − s, x− y)−G(t− s, x− y)|2dy =

ˆ
R
|G(t′ − s, y)−G(t− s, y)|2dy (6.58)

= C

ˆ
R

∣∣∣e−(t′−s)|ξ|2 − e−(t−s)|ξ|2
∣∣∣2dξ = C

ˆ
R
e−2(t−s)|ξ|2

[
1− e−(t′−t)|ξ|2

]2
dξ.

It follows that the first integral in there right side of (6.56) can be bounded as

I2/p ≤ C

ˆ t

0

ˆ
R
e−2(t−s)|ξ|2

[
1− e−(t′−t)|ξ|2

]2
dξds = C

ˆ
R

1

|ξ|2
(
1− e−2t|ξ|2

)[
1− e−(t′−t)|ξ|2

]2
dξ.

(6.59)
Now, we use the following two elementary estimates: first, there exists CT > 0 so that for
all 0 ≤ t ≤ T and all ξ ∈ R we have

1

|ξ|2
(
1− e−2t|ξ|2

)
≤ CT

1 + |ξ|2
,

and, second,
1− e−(t′−t)|ξ|2 ≤ 2min[(t′ − t)|ξ|2, 1].

Using these estimates in (6.59) gives

I2/p ≤ C

ˆ
R

1

1 + |ξ|2
min[(t′ − t)|ξ|2, 1]dξ

= CT

ˆ |t′−t|−1/2

0

(t′ − t)|ξ|2

1 + |ξ|2
dξ + CT

ˆ
|t′−t|−1/2

dξ

1 + |ξ|2
≤ CT |t′ − t|1/2.
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We conclude that
E|U(t′, x)− U(t, x)|p ≤ CT |t′ − t|p/4. (6.60)

Exercise 6.8 Show that

E|U(t, x)− U(t, x′)|p ≤ Cp

(ˆ t

0

ˆ
R
|G(t− s, y)−G(t− s, x− x′ − y)|2dyds

)p/2

, (6.61)

and then use a similar computation to what we have done to show that

E|U(t, x)− U(t, x′)|p ≤ CT |x− x′|p/2. (6.62)

Summarizing, we have

E|U(t′, x′)− U(t, x)|p ≤ CT

(
|t′ − t|p/4 + |x− x′|p/2

)
. (6.63)

Now, we use Theorem 6.7 with k = p, αx = p/2 and αt = p/4, so that

q =
1

αx

+
1

αt

=
2

p
+

4

p
=

6

p
,

so we get Hölder continuity in t with any exponent smaller than

γ̄t =
αt(1− q)

p
=

1

4

(
1− 6

p

)
,

and in x with any exponent smaller than

γ̄t =
αx(1− q)

p
=

1

2

(
1− 6

p

)
.

As p > 2 is arbitrary, it follows that u(t, x) is Hölder continuous in x with any exponent
smaller than 1/2 and in t with any exponent smaller than 1/4.

Exercise 6.9 Use the bounds on the higher moments E|u(t, x)|p to improve the argument
above to show that the almost sure Hölder regularity of u(t, x) with the same exponents holds
under the (weaker) assumption that the function f(u) is Lipschitz rather than bounded,
removing assumption (6.52).

The comparison principle

It is well known if a function f(u) is Lipschitz and f(0) = 0, then the parabolic equations of
the form

∂u

∂t
= ∆u+ f(u), (6.64)

satisfy the comparison principle. That is, if u(t, x) and v(t, x) are two solutions of (6.64)
and u(0, x) ≤ v(0, x) for all x ∈ R then u(t, x) ≤ v(t, x) for all t ≥ 0 and x ∈ R. Moreover,
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the strong comparison principle says that actually u(t, x) < v(t, x) for all t > 0 and x ∈ R
provided that u(0, x) ̸≡ v(0, x). These results are easily generalized to equations of the form

∂u

∂t
= ∆u+ g(t, x)f(u), (6.65)

with a regular function g(t, x).
Here, we prove the following comparison theorem for the solutions of the stochastic heat

equation
∂u

∂t
=
∂2u

∂x2
+ f(u)Ẇ , (6.66)

with a Lipschitz nonlinearity f(u). The difference with the classical PDE results is that the
noise Ẇ is highly irregular. The ”canonical” PDE proof with a bounded function g(t, x) relies
on the fact that the Hessian of a function at a minimum is non-negative definite matrix. Here,
we can not use this strategy since the solutions are merely Hölder with exponent less than 1/2
in space.

Theorem 6.10 Let u(t, x) and v(t, x) be two solutions of (6.66) such that u(0, x) ≥ v(0, x).
Then, almost surely, we have u(t, x) ≥ v(t, x) for all t ≥ 0 and x ∈ R.

Note that we do not yet claim the strong comparison principle, which says that u(t, x) > v(t, x)
for all t > 0 and x ∈ R unless u0(x) ≡ v0(x). This will be done slightly later.

The idea of the proof of Theorem 6.10 is to use numerical analysis. We construct approx-
imate solutions un(t, x) and vn(t, x) such that almost surely we have un(t, x) ≥ vn(t, x) for
all t ≥ 0 and x ∈ R and then pass to the limit n → +∞. The approximation is done by
time-splitting in time and discretizing space. This is also an alternative way to construct the
solutions of the original SPDE.

The time splitting schemes

Solution of a linear equation of the form

du

dt
= (A+B)u, (6.67)

is given by
u(t) = e(A+B)tu0. (6.68)

If the linear operators A and B commute then we have

u(t) = eAtv(t), v(t) = eBtu0. (6.69)

This means that we can solve first

dv

dt
= Bv, v(0) = u0, 0 ≤ t ≤ T,

followed by
du

dt
= Au, u(0) = v(T ), 0 ≤ t ≤ T,
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and obtain the correct u(T ). When the operators A and B do not commute, one relies on the
Trotter formula

e(A+B)t = lim
n→+∞

(eA/neB/n)n. (6.70)

The corresponding time-splitting scheme proceeds as follows. We divide the time axis t > 0
into intervals of the form

Tnj =
{ j

n2
≤ t <

j + 1

n2

}
. (6.71)

On each time interval Tnj we first solve

∂v

∂t
= Bv, v(

j

n2
) = u(

j

n2
),

j

n2
≤ t ≤ j + 1

n2
, (6.72)

followed by
∂u

∂t
= Av, u(

j

n2
) = v(

j + 1

n2
),

j

n2
≤ t ≤ j + 1

n2
, (6.73)

which gives us u((j + 1)/n2), and we can solve (6.72) on the time interval Tn,j+1, and so
on. Convergence of u(t) to the solution of (6.67) is guaranteed by the Trotter formula under
certain assumptions on A and B.

The spatial discretization and time splitting for the stochastic heat equation

For the stochastic heat equation

∂u

∂t
=
∂2u

∂x2
+ f(u)Ẇ , (6.74)

we would like to consider the following time-splitting scheme: the first step is solving a point-
wise SDE

∂un,j+1/2

∂t
= f(un,j+1/2)Ẇ ,

j

n2
≤ t <

j + 1

n2
, (6.75)

with the initial condition

un,j+1/2(
j

n2
, x) = un,j(

j

n2
, x),

followed by the heat equation

∂un,j+1

∂t
=
∂2un,j+1

∂x2
,

j

n2
≤ t <

j + 1

n2
, (6.76)

with the initial condition

un,j+1(
j

n2
, x) = un,j+1/2(

j + 1

n2
, x).

This would give us the initial condition un,j+1((j + 1)/n2, x) for the next SDE step (6.75) on
the time interval Tn,j+1, and we would be able to re-start.

One difficulty is making sense of (6.75) as it is neither an SDE nor an SPDE. Hence, in
addition to the time-splitting, we will discretize in space. We will consider functions unj(t, x)
that are piecewise constant on the spatial intervals

Ink =
{k
n
− 1

2n
≤ x <

k

n
+

1

2n

}
.
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Each unj is defined on the time interval Tnj. Given unj(j/n
2, x), in order to define un,j+1/2

and un,j+1, we first solve a family of SDEs

un,j+1/2(t,
k

n
) = unj(

j

n2
,
k

n
) + n

ˆ t

j/n2

ˆ
Ink

f(un,j+1/2(s,
k

n
))W (dsdy). (6.77)

In other words, on the time interval Tnj, the piece-wise constant in space function un,j+1/2(t, x)
satisfies the SDE

dun(t,
k

n
) = f(un(t,

k

n
))dBk, (6.78)

where

Bk(t) = n

ˆ t

0

ˆ
Ink

W (dsdy)

is the standard Brownian motion.
In order to incorporate the heat equation step, we consider the discrete Laplacian

∆nu(
k

n
) = n2

[
u(
k + 1

n
) + u(

k − 1

n

)
− 2u(

k

n
)
]
.

The function un,j+1(t, x), also defined on the time interval Tnj is the solution of

∂un,j+1

∂t
= ∆nun,j+1, t ∈ Tnj, (6.79)

with the initial condition un,j+1(j/n
2, x) = un,j+1/2((j + 1)/n2, x).

It is convenient to re-write the above scheme in terms of the Green’s function Gn(t, x, y)
of the discrete Laplacian. It is defined for the lattice points of the form x = k/n, y = m/n,
and is the solution of

∂Gn

∂t
= ∆nGn, (6.80)

with the initial condition

Gn(0,
k

n
,
m

n
) =

{
n, if k = m,
0, otherwise.

We extend Gn(t, x, y) to x, y ∈ R as

Gn(t, x, y) = Gn(t,
k

n
,
m

n
), if

k

n
− 1

2n
≤ x <

k

n
+

1

2n
and

m

n
− 1

2n
≤ y <

m

n
+

1

2n
,

Let us now verify that the approximation unj(t, x) that we have defined above via the
time-splitting scheme is the solution of (dropping sub-script j)

un(t, x) =

ˆ
R
Ḡn(t, 0, x, y)un(0, y)dy +

ˆ t

0

ˆ
R
Ḡn(t, s, x, y)f(un(s, y))W (dsdy), (6.81)

with the initial condition

un(0, x) = n

ˆ k+1/(2n)

k−1/(2n)

u(0, y)dy, for
k

n
− 1

2n
≤ x <

k

n
+

2

2n
,
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and Ḡ(t, s, x, y) defined as

Ḡn(t, s, x, y) = Gn

( [n2t]− [n2s]

n2
, x, y

)
,

for all t ≥ s.
Indeed, given t ∈ Tnj we have [n2t] = j, thus Ḡn(t, 0, x, y) = Gn(j/n

2, x, y). In addition,
for 0 ≤ s ≤ j/n2 we have Ḡ(t, s, x, y) = Ḡ(j/n2, s, x, y). Hence we may re-write (6.81) as

un(t, x) = un(
j

n2
, x) +

ˆ t

j/n2

ˆ
R
Ḡn(t, s, x, y)f(un(s, y))W (dsdy). (6.82)

Next, for x ∈ Ink, t ∈ Tnj, and j/n
2 ≤ s ≤ t, we have

Ḡn(t, s, x, y) = Gn(0,
k

n
, y) = n1Ink

(y).

Hence, (6.82) says

un(t, x) = un(
j

n2
, x) + n

ˆ t

j/n2

ˆ
Ink

f(un(s,
k

n
))W (dsdy). (6.83)

Therefore, on the time interval Tnj, the piece-wise constant (in space) function un(t, x) satisfies
the SDE (6.78). At the time t = (j + 1)/n2 the function un(t, x) experiences a jump. To
describe it, we go back to (6.81): the solution after the jump is given by

un(
j + 1

n2
+, x) =

ˆ
R
Ḡn(

j + 1

n2
, 0, x, y)un(0, y)dy (6.84)

+

ˆ (j+1)/n2

0

ˆ
R
Ḡn(

j + 1

n2
, s, x, y)f(un(s, y))W (dsdy),

while just before the jump we have

un(
j + 1

n2
−, x) =

ˆ
R
Ḡn(

j

n2
, 0, x, y)un(0, y)dy (6.85)

+

ˆ (j+1)/n2

0

ˆ

R

Ḡn(
j

n2
, s, x, y)f(un(s, y))W (dsdy).

The semi-group property for (6.80) implies that

Gn(t,
k

n
,
p

n
) =

1

n

∑
m

G(t− s,
k

n
,
m

n
)G(s,

m

n
,
p

n
), (6.86)

for all 0 ≤ s ≤ t, k and p. The continuous version of (6.86) is

Gn(t, x, y) =

ˆ
R
Gn(t− s, x, z)Gn(s, z, y)dz. (6.87)
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It follows from (6.87) that for s < (j + 1)/n2 we have

Ḡn(
j + 1

n2
, s, x, y) = Gn(

j − [n2s]

n2
+

1

n2
, x, y) =

ˆ
R
Gn(

1

n2
, x, z)Ḡn(

j

n2
, s, z, y)dz.

Using this in (6.84), together with the semi-group property gives

un(
j + 1

n2
+, x) =

ˆ
R

ˆ
R
Gn(

1

n2
, x, z)Ḡn(

j

n2
, z, y)un(0, y)dydz (6.88)

+

ˆ (j+1)/n2

0

ˆ
R

ˆ
R
Gn(

1

n2
, x, z)Ḡn(

j

n2
, s, z, y)f(un(s, y))W (dsdy)dz

=

ˆ
R
Gn(

1

n2
, x, z)un(

j + 1

n2
−, z)dz.

We see that, indeed, the passage from un at the time t = (j+1)/n2− to un at t = (j+1)/n2+
is exactly via solving the discrete heat equation (6.79).

Convergence of the approximation

We will need the result of the following exercise, verified by a lengthy computation found
in [4].

Exercise 6.11 Show that the following two bounds hold: first,

ˆ t

0

ˆ
R
[Ḡn(t, s, x, y)−G(t− s, x− y)]2dsdy ≤ c

n
, (6.89)

and, second,

sup
0≤s≤t

sup
x∈R

[ ˆ
R
[Ḡn(t, s, x, y)−G(t− s, x− y)]u(0, y)dy

]2
→ 0 as n→ +∞. (6.90)

We now show that

M(t) := sup
0≤s≤t

sup
x∈R

E|un(s, x)− u(s, x)|2 → 0 as n→ +∞. (6.91)

To see this, let us recall that

u(t, x) =

ˆ
R
G(t, x− y)u(0, y)dy +

ˆ t

0

ˆ
R
G(t− s, x− y)f(u(s, y))W (dsy),

and

un(t, x) =

ˆ
R
Ḡn(t, 0, x, y)un(0, y)dy +

ˆ t

0

ˆ
R
Ḡn(t, s, x, y)f(un(s, y))W (dsdy),

Subtracting, we get

M̄(s, x) = E|un(s, x)− u(s, x)|2 ≤ C(I + II), (6.92)
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with

I =
∣∣∣ˆ

R
G(t, x− y)u(0, y)dy −

ˆ
R
Ḡn(t, 0, x, y)un(0, y)dy

∣∣∣2 → 0, as n→ +∞,

because of (6.90) and the fact that un(0, y) converges to u(0, y) in every Lp-norm. The other
term is

II =

ˆ t

0

ˆ
R
E
∣∣G(t− s, x− y)f(u(s, y))− Ḡn(t, s, x, y)f(un(s, y))

∣∣2dsdy,
and can be bounded as

II ≤ C

ˆ t

0

ˆ
R
E
∣∣(G(t− s, x− y)− Ḡn(t, s, x, y))f(un(s, y))

∣∣2dsdy
+ C

ˆ t

0

ˆ
R
E
∣∣G(t− s, x− y)(f(u(s, y))− f(un(s, y)))

∣∣2dsdy = II1 + II2. (6.93)

It is straightforward to verify that there exists CT so that

sup
0≤s≤T

sup
x∈R

E|un(s, x)|2 ≤ CT . (6.94)

This, together with (6.89) and the Lipschitz bond on f means that

II1 ≤
CT

n
. (6.95)

The last term in right side of (6.93) is bounded as

II2 ≤ C

ˆ t

0

M(s)ds√
t− s

. (6.96)

Therefore, we have an estimate for M(s):

M(t) ≤ α(n) +

ˆ t

0

M(s)ds√
t− s

, (6.97)

with α(n) → 0 as n→ +∞. We conclude that

M(t) → 0 as n→ +∞. (6.98)

Back to the comparison principle

We have shown that u(t, x) and v(t, x) can be obtained via the time-splitting approximation
scheme. The approximations un(t, x) and vn(t, x) satisfy un(t, x) ≥ vn(t, x) if u(0, x) ≥ v(0, x)
for all x ∈ R. This is because each of the steps in the time splitting scheme preserves the
order. Indeed, the heat equation has the comparison principle, while an SDE

du = f(u)dBt
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also preserves the order because if u and v are two solutions, the difference z = u− v satisfies

dz = g(t)zdBt,

with the function

g(t) =
f(u(t))− f(v(t))

u(t)− v(t)
.

It is easy to verify that z(t) ≥ 0 for all t > 0 if z(0) ≥ 0. This completes the proof of
Theorem 6.10.

The strong maximum principle

The heat equation
∂u

∂t
= ∆u, (6.99)

in addition to the comparison principle, has the strong maximum principle: if u0(x) ≥ 0
and u0(x) ̸≡ 0 everywhere, then u(t, x) > 0 for all t > 0 and all x ∈ Rd. In other words,
solutions with compactly supported nonnegative initial data become positive everywhere in-
stantaneously. On the other hand, the heat equation with a non-Lipschitz nonlinearity

∂u

∂t
= ∆u−

√
u, (6.100)

does not satisfy the strong maximum principle: solutions have compact support at t > 0
if u0(x) is compactly supported. One can think of (6.100) as

∂u

∂t
= ∆u− g(t, x)u, (6.101)

with g(t, x) = 1/
√
u that is large when u is small. Thus, a ”large” g(t, x) can prevent u(t, x)

from having non-compact support, and, of course, white noise is a pretty large force. Nev-
ertheless, solutions of the stochastic heat equation have non-compact support. We formu-
late the result for the linear equation but it holds for any Lipschitz nonlinearity f(u) such
that f(0) = 0.

Theorem 6.12 Let u(t, x) be the solution of

∂u

∂t
=
∂2u

∂x2
+ uẆ , (6.102)

with the initial condition u0(x) ≥ 0 for all x ∈ R. If u0(x) ̸≡ 0, and u0(x) is continuous,
then, almost surely, for each t > 0, we have u(t, x) > 0 for all x ∈ R.

Taking f(u) = u in (6.102) is not necessary, and is made purely to simplify some steps in the
proof. On the other hand, the Lipschitz assumption on f is crucial: the conclusion is false
if f(u) =

√
u.

Let us assume without loss of generality that t = 1, and take some R > 2. Because of
an application of the large deviations principle in the proof, it will be convenient to restrict
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the problem to a finite interval. Consider the solution of the stochastic heat equation (6.101)
with the Dirichlet boundary conditions at x = ±2R:

∂v

∂t
=
∂2v

∂x2
+ uẆ , t > 0, |x| < 2R, (6.103)

v(t,−2R) = v(t, 2R) = 0,

and the initial condition v(0, x) = u0(x). The solution is, once again, understood in the mild
sense:

v(t, x) =

ˆ
|y|≤2R

GR(t, x, y)u0(y)dy +

ˆ t

0

ˆ
|y|≤2R

GR(t− s, x, y)f(u(s, y))W (dyds). (6.104)

Here, GR(t, x, y) is Green’s function for the Dirichlet problem:

∂GR

∂t
=
∂2GR(t, x, y)

∂x2
, t > 0, |x| < 2R, (6.105)

GR(t,−2R, y) = GR(t, 2R, y) = 0,

GR(0, x, y) = δ(x− y).

Exercise 6.13 Use the time-splitting argument used in the proof of the comparison principle
to show that u(t, x) ≥ v(t, x) for all t ≥ 0 and |x| ≤ 2R.

As R is arbitrary, it suffices to show that with probability one

v(t = 1, x) > 0 for all |x| ≤ R. (6.106)

We may assume without loss of generality that

u0(x) ≥ δ01[−1,1](x),

for some δ0 > 0. We will proceed ”step-by-step”. Fix N > 0 and set tk = k/N . Let Ak be
the event that there exists some δk > 0 so that

v(tk, x) ≥ δkIk(x), for all x ∈ R,

where

Ik(x) = 1

(
− 1− Rk

N
≤ x ≤ 1 +

Rk

N

)
.

As v(tk, x) is almost surely Hölder continuous in x, the event Ak is simply that v(tk, x) is
strictly positive on Ik. The support of Ik grows with k, or ”in time”, and at the last moment
we have

IN(x) > 1[−R,R](x).

We will show that for all ε > 0 we may choose Nε so large that for all k = 1, . . . , Nε we have

P
(
Ac

k+1

∣∣∣A1 ∩ · · · ∩ Ak

)
<

ε

Nε

. (6.107)
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This estimate shows that support of v has to grow with a large probability – in the end we
will show that the support of v is all of [−2R, 2R] but we are not there yet. With (6.107) in
hand, we would have

P(Ac
Nε
) ≤

Nε−1∑
k=0

P
(
Ac

k+1

∣∣∣A1 ∩ · · · ∩ Ak

)
< ε. (6.108)

However, we have then, for any ε > 0

P(v(t = 1, x) > 0 for all x ∈ [−R,R]) ≥ P(ANε) ≥ 1− ε. (6.109)

As ε > 0 is arbitrary, we would have

P(v(t = 1, x) > 0 for all x ∈ [−R,R]) = 1, (6.110)

finishing the proof. Thus, it suffices to verify (6.107) to finish the proof of Theorem 6.12.
To prove (6.107), let us assume that Ak occurs, so that v(tk, x) ≥ δkIk(x). By the

comparison principle, it is enough then to show that

P
[
there exists δk+1 > 0 so that v(tk+1, x) ≥ δk+1Ik+1(x) for all |x| ≤ 2R

]
≥ 1− ε

N
. (6.111)

Here, v(t, x) is the solution of

∂v

∂t
=
∂2v

∂x2
+ vẆ , t > tk, |x| < 2R, (6.112)

v(t,−2R) = v(t, 2R) = 0,

v(tk, x) = Ik(x).

Let us then write

v(tk+1, x) =

ˆ 2R

−2R

GR(tk+1 − tk, x, y)Ik(y)dy (6.113)

+

ˆ tk+1

tk

ˆ 2R

−2R

GR(tk+1 − s, x, y)v(s, y)W (dsdy) = v1(tk+1, x) + v2(tk+1, x).

Exercise 6.14 Verify that if N is sufficiently large then v1(tk+1, x) > 1/10 on the inter-
val Ik+1. This is because the distance between the edges of Ik and Ik+1 is R/N while the time
increment is tk+1−tk = 1/N . Thus the solution would spread over the distance N−1/2 ≫ R/N
during this time, and the region where v1(tk+1, x) > 1/10 would cover Ik+1.

Thus, to prove (6.107) we need to show that

P
[

sup
|x|≤2R

|v2(tk+1, x)| ≥
1

20

]
<

ε

N
. (6.114)

This is reasonable to expect – when N is large, the time interval [tk, tk+1] is not long enough
to let v2(tk+1, x) become large with an overwhelming probability. We will need an exponential
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moment estimate on w2 for this. More precisely, we will show that a stochastic integral of the
form

N(t, x) =

ˆ t

0

ˆ 2R

−2R

G(t− s, x, y)g(s, y)W (dsdy)

with |g(s, y)| ≤ K almost surely, satisfies a large deviations estimate:

P
[

sup
0≤t≤T

sup
|x|≤2R

|N(t, x)| > λ
]
≤ CR exp

(
− λ2

CRT 1/2K2

)
. (6.115)

A minor difficulty is that a priori we do not know that v(s, y) is bounded almost surely, which
is what we need to apply (6.115) to v2. To deal with this, we can consider instead the solution
of a modified equation

∂ṽ

∂t
=
∂2ṽ

∂x2
+ χ(ṽ)ṽẆ , t > tk, x ∈ [−2R, 2R] (6.116)

ṽ(t,−2R) = ṽ(t, 2R) = 0,

ṽ(tk, x) = Ik(x).

The smooth cut-off function χ(v) is such that χ(v) = 1 for 0 ≤ v ≤ 5 and χ(v) = 0 for v > 10.
Note that v(t, x) = ṽ(t, x) until a stopping time τ :

τ = inf{t > tk : sup
|x|≤2R

ṽ(t, x) = 5.}

In addition, we know that |ṽ(t, x)| ≤ 10 almost surely. We claim that τ > tk+1 = tk + 1/N
with a very large probability. Indeed, setting

Ñ(t, x) =

ˆ t

tk

ˆ 2R

−2R

GR(tk+1 − s, x, y)ṽ(s, y)W (dsdy)

we can use use (6.115) for ṽ(t, x) to see that

P(τ < 1/N)) = P
[

sup
tk≤t≤tk+1

sup
|x|≤2R

ṽ(t, x) > 5
]
≤ C exp

(
− C · 25

(1/N)1/2102

)
≤ C exp(−CN1/2).

(6.117)
It is in this estimate on the stopping time that it is helpful from the very beginning to restrict
to the Dirichlet problem on a finite interval [−2R, 2R]. We also have, from (6.115)

P
[

sup
tk≤t≤tk+1

sup
|x|≤2R

|Ñ(t, x)| > 1

20

]
≤ C exp

(
− CN1/2

)
. (6.118)

Therefore, we can estimate

P
[

sup
|x|≤2R

|v2(tk+1, x)| ≥
1

20

]
≤ P(τ < 1/N) + P

[
sup

0≤t≤T
sup

|x|≤2R

|Ñ(t, x)| > 1

20

]
≤ C exp(−CN1/2). (6.119)

This proves (6.114), hence (6.107), finishing the proof of Theorem 6.12 except for the large
deviations estimate (6.115).
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Exercise 6.15 Explain why this proof fails and can not be generalized to the equation

∂u

∂t
=
∂2u

∂x2
+
√
uẆ ,

with a compactly supported initial condition u0(x) ≥ 0. Do not worry about the existence
and uniqueness issues.

Large deviations for stochastic integrals

Let us now explain where (6.115) comes from. We will work on the whole line for simplicity,
and consider

N(t, x) =

ˆ t

0

ˆ
R
G(t− s, x− y)u(s, y)W (dsdy),

under the assumption |u(s, y)| ≤ K almost surely. We will show the analog of (6.115):

P
[

sup
0≤t≤T

sup
|x|≤R

|N(t, x)| > λ
]
≤ CR exp

(
− λ2

CRT 1/2K2

)
. (6.120)

Exercise 6.16 Use the scaling of both G(t, x) and of the white noise to verify that it suffices
to prove (6.120) for T = 1.

Let us freeze the t variable inside the integral and set

N̄t(s, x) =

ˆ s

0

ˆ
R
G(t− r, x− y)u(r, y)W (drdy),

so that N̄t(t, x) = N(t, x). This makes N̄t(s, x) a martingale in s (with t fixed), by virtue of
being a stochastic integral, as the integrand does not depend on s. Consider

Ms = N̄t(s, x)− N̄t(s, y),

so that Mt = N(t, x) − N(t, y). As Ms is a martingale, it is a random time change of a
Brownian motion, that is,

Ms = B⟨M⟩s ,

and, in particular, we have

Mt = N(t, x)−N(t, y) = B⟨M⟩t .

We may estimate the quadratic variation:

⟨M⟩s =
ˆ s

0

ˆ
R
[G(t− r, x− z)−G(t− r, y − z)]u2(r, z)dzdr,

and

⟨M⟩t =
ˆ t

0

ˆ
R
[G(t− r, x− z)−G(t− r, y − z)]2u2(r, z)dzdr ≤ CK2|x− y|,
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for all 0 ≤ t ≤ 1. We deduce that

P(N(t, x)−N(t, y) > λ) = P(B⟨M⟩t > λ) ≤ CP(BCK2|x−y| > λ) ≤ Ce−cλ2/K2|x−y|.

Switching x and y gives

P(|N(t, x)−N(t, y)| > λ) = P(B⟨M⟩t > λ) ≤ CP(BCK2|x−y| > λ) ≤ Ce−cλ2/K2|x−y|. (6.121)

In a similar vein, we can write, for t > s and x ∈ R fixed:

N(t, x)−N(s, x) =

ˆ t

0

ˆ
R
G(t− r, x− z)u(r, z)W (drdy)

−
ˆ s

0

ˆ
R
G(s− r, x− z)u(r, z)W (drdy)

=

ˆ s

0

ˆ
R
[G(t− r, x− z)−G(s− r, x− z)]u(r, z)W (drdy)

+

ˆ t

s

ˆ
R
G(t− r, x− z)u(r, z)W (drdy).

We set

Aτ =

ˆ τ

0

ˆ
R
[G(t− r, x− z)−G(s− r, x− z)]u(r, z)W (drdy)

and

Bτ =

ˆ s+τ

s

ˆ
R
G(t− r, x− z)u(r, z)W (drdy).

These are both martingales in τ and

N(t, x)−N(s, x) = As +Bt−s.

A simple computation shows that their quadratic variations are bounded by

⟨A⟩s ≤ K2

ˆ s

0

ˆ
R
|G(t− r, x− z)−G(s− r, x− z)|2drdz ≤ CK2|t− s|1/2,

and

⟨B⟩t−s ≤ K2

ˆ t

s

ˆ
R
G2(t− r, x− z)|2dzdr ≤ CK2|t− s|1/2.

Therefore, we have

P(As +Bt−s > λ) ≤ P(As > λ/2) + P(Bt−s > λ/2) ≤ Ce−cλ2/K2|t−s|1/2 .

We conclude that

P(|N(t, x)−N(s, x)| > λ) ≤ Ce−cλ2/K2|t−s|1/2 . (6.122)

Now, the proof of (6.115):

P
[

sup
0≤t≤T

sup
|x|≤R

|N(t, x)| > λ
]
≤ CR exp

(
− λ2

CRT 1/2K2

)
(6.123)

becomes a real analysis exercise. One connects the point (t, x) to (0, 0) on a grid of dyadic
points in the (t, x)-plane. Then one estimates the increments between the nearest neighbors
using (6.121) and (6.122). Summing up all the differences leads to (6.123).

Exercise 6.17 Fill in the details in the last step in the proof.
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7 Spreading in the stochastic heat equation

Spreading in the deterministic equation

Before discussing spreading for the solutions of the stochastic heat equation, let us recall some
very basic facts about the solutions of the heat equation with a deterministic linear forcing

∂u

∂t
=
∂2u

∂x2
+ u, (7.1)

and an initial condition u0(x) ≥ 0 decaying at infinity. We say that u(t, x) spreads with a
speed c if for any c′ > c we have

lim sup
t→+∞

sup
|x|≥c′t

u(t, x) = 0, (7.2)

while for any 0 ≤ c′ < c we have

lim inf
t→+∞

inf
|x|≤c′t

u(t, x) = 0, (7.3)

Of course, this definition can be applied to other problems than (7.1).

Solutions with compactly supported initial conditions

Solutions of (7.1) with a compactly supported initial condition u0(x) ≥ 0 spread with the
speed c∗ = 2. In order to see this, let us assume that u0(x) = 1[−1,1](x) and write

u(t, x) = et
ˆ 1

−1

e−|x−y|2/(4t)dy. (7.4)

Then, for c > 2 we have an upper bound

u(t, ct) ≤ et
ˆ 1

−1

e−|ct−1|2/(4t)dy = 2 exp
{
(1− c2

4
)t+

c

2
− 1

4t

}
→ 0 as t→ +∞. (7.5)

On the other hand, for c ∈ (0, 2) we have

u(t, x) ≥ 2et
ˆ 1

−1

e−|ct+1|2/(4t)dy = 2 exp
{
(1− c2

4
)t− c

2
− 1

4t

}
, (7.6)

hence (7.3) holds. Thus, the front of the solution is located around x = 2t, in the sense that
the solution is exponentially large at x≫ 2t and it is exponentially small at x≫ 2t.

In order to understand what happens around x = 2t, let us just look at the heat kernel:

u(t, x) =
1√
4πt

et−|x|2/(4t).

Let us write x = 2t+ ξ, then

u(t, 2t+ ξ) =
1√
4πt

et−|(2t+ξ)|2/(4t) =
1√
4πt

e−ξ−ξ2/(4t).
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A general solution with a compactly supported initial condition u0(x) has an asymptotics

u(t, x) ∼ M0√
4πt

et−|x|2/(4t), M0 =

ˆ
R
u0(x)dx.

Hence, it can be written as

u(t, 2t+ ξ) ∼ M0√
4πt

e−ξ−ξ2/(4t) ∼ exp
[
− ξ − |ξ|2

4t
− 1

2
log t+ logM0 −

1

2
log(4π)

]
.

Therefore, we have an approximation

u(t, 2t− 1

2
log t+ x0 + ξ) → exp(−ξ), (7.7)

with the shift x0 that depends on the initial condition. In other words, the ”front” of the
solution (the location where u(t, x) = 1) is located at

X(t) = 2t− 1

2
log t+ x0, (7.8)

and the solution around this point converges to an exponential ū(ξ) = e−ξ. The profile around
the front is not Gaussian – it is an exponential function. Another remarkable point is that
the function

ũ(t, x) = ū(x−X(t)) = e−(x−X(t))

is not an exact solution of (7.1): it satisfies an approximate equation

∂ũ

∂t
+

1

2t

∂ũ

∂x
=
∂2ũ

∂x2
+ ũ. (7.9)

This is quite typical – the limiting profiles need not be exact solutions of the original problem,
the can solve an approximate problem instead.

The exponential solutions and pulled propagation

There is another simple way to guess the spreading speed c∗ = 2 for the solutions of (7.1) with
compactly supported initial conditions. Let us look for exponential solutions of this equation
of the form

u(t, x) = exp{−λ(x− ct)}.

Inserting this into (7.1) gives
cλ = λ2 + 1. (7.10)

This equation has a positive solution λ > 0 exists for all c ≥ c∗ = 2. This identifies the
spreading speed correctly.

This very simple idea of using the exponential solutions is very useful in all sorts of ”pulled
front” deterministic reaction-diffusion problems. A simple evidence that the propagation is
pulled is the sensitivity of the spreading rate to the precise rate of decay of the initial condition.
Let us assume that

u0(x) ∼ Ce−λx, as x→ +∞, (7.11)
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with a decay rate λ < 1. In other words, there exists x0 > 0 and two constants C1,2 > 0 such
that

C1e
−λx ≤ u0(x) ≤ C2e

−λx, for all x > x0. (7.12)

On the other hand, we assume that u0(x) is compactly supported on the left: there exists x1
such that u0(x) = 0 for all x < x1. Then we can find exponential sub- and super-solutions
for u(t, x) spreading with the speed c given by (7.10). For the super-solution, we find C so
that

u0(x) ≤ Ce−λx,

for all x ∈ R. Then we have, from the maximum principle

u(t, x) ≤ C0e
−λ(x−ct), (7.13)

hence u(t, x) spreads at most with the speed c. On the other hand, given λ < 1 we can find c
from (7.10) but also λ′ = 1/λ > 1 that satisfies the same quadratic equation. Then we can
find C and C ′ such that

u0(x) ≥ ũ0(x) = Ce−λx − C ′e−λ′x,

and there is some interval (a, b) such that ũ0(y) > 0 for all y ∈ (a, b). It follows that

u(t, x) ≥ Ce−λ(x−ct) − C ′e−λ′(x−ct), for all t > 0 and x ∈ R. (7.14)

In particular, we have

u(t, ct+ y) > α0 for all t > 0 and y ∈ (a, b). (7.15)

Exercise 7.1 Use (7.15) to show that (7.3) holds for all c′ ∈ [0, c).

Hence, solutions with an initial condition that has an exponential decay as in (7.11) with λ < 1
propagate with the speed c > 2 given by (7.10).

Exercise 7.2 Show that if the initial condition has an exponential decay with a rate faster
than λ∗ = 1, that is, if (7.11) holds with λ > 1, then the solution spreads with the speed c∗ = 2,
”as if it were compactly supported”.

Spreading in the nonlinear case

As the heat equation fronts are pulled, we have the following phenomenon. Consider the
solutions of the nonlinear heat equation

∂u

∂t
=
∂2u

∂x2
+ f(u), (7.16)

and an initial condition u0(x) ≥ 0 decaying at infinity. We can interpret the function

r(u) =
f(u)

u

as the rate of growth of u.
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Exercise 7.3 Assume that the function r(u) is decreasing for u > 0, and that u0(x) is either
compactly supported or is exponentially decaying as in (7.12). Show that the spreading rate
of the solutions of (7.1) is the same as for the solutions of

∂v

∂t
=
∂2v

∂x2
+ f ′(0)v, (7.17)

with v(0, x) = u0(x).

Spreading in the stochastic case

Let us now consider solutions of the stochastic heat equation

∂u

∂t
= ν

∂2u

∂x2
+ f(u)Ẇ , (7.18)

with a continuous compactly supported initial condition u0(x) ≥ 0 such that u0(x) ̸≡ 0. The
nonlinearity f(u) is Lipschitz:

|f(u)− f(v)| ≤ L̄|u− v|, (7.19)

and f(0) = 0. In addition, we will assume that

f(u) ≥ βu for all u ≥ 0. (7.20)

As the forcing in the stochastic heat equation has mean zero, there is no a priori reason
to expect that the solution will spread at a linear speed – one may also expect a diffusive
behavior, as in the standard heat equation. And, indeed, since

E
ˆ
R
u(t, x)dx =

ˆ
R
u0(x)dx

is conserved in time, there can not be ”growth everywhere” we have seen in the deterministic
equation

∂u

∂t
=
∂2u

∂x2
+ u.

Rather, we should be tracking ”propagation of the non-trivial behavior”. That is, there is a
certain spatial scale L(t) such that for x≫ L(t) ”nothing happens yet” – the solution is still
very small, while for |x| ≪ L(t) we should observe a ”non-trivial” behavior, whatever that
means.

Spreading of the moments

In order to make this precise, we will judge the non-triviality of the behavior by the size of
the second moment. By a vague analogy with the deterministic case and the exponential
solutions, we may expect that

E|u(t, x)|2 ∼ exp(−λ∗(x− c∗t), for x > 0. (7.21)
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Then we would call c∗ the spreading speed of the solutions. According to these expectations,
let us define

S̄(c) = lim sup
t→+∞

1

t
sup
|x|>ct

logE(|u(t, x)|2),

and

S(c) = lim inf
t→+∞

1

t
sup
|x|<ct

logE(|u(t, x)|2).

That is, if S̄(c) < 0, there can be no peaks in u(t, x) for x > ct with a large probability. On
the other hand, if S(c) > 0, there must be peaks in u(t, x) for |x| < ct with a large probability.
Hence, it makes sense to consider

c̄2 = inf{c > 0 : S̄(c) < 0}, (7.22)

and
c2 = inf{c > 0 : S(c) > 0}. (7.23)

If
c̄2 = c2, (7.24)

it is natural to call c∗ = c̄2 the speed of propagation – the solution is small for x ≫ c∗t and
there are large peaks at positions |x| ≪ c∗t. Note that these large peaks still occur with a
very small probability – the first moment of the solution is not growing. Hence, the spreading
of the second moment does not reflect a typical behavior at a given point. Nevertheless, these
are interesting objects to study.

Recall that in the deterministic case (7.1) we know that c̄2 = c2 = 2
√
ν. In the stochastic

case, it is known that (7.24) holds in the special case f(u) = βu – see the recent paper by
Chen and Dalang [1]. However, to the best of my knowledge, this question is open for more
general nonlinearities f(u) even under our extra assumption (7.20).

The choice of the second moment as a measuring stick is subjective. One could define

S̄p(c) = lim sup
t→+∞

1

t
sup
|x|>ct

logE(|u(t, x)|p),

and

Sp(c) = lim inf
t→+∞

1

t
sup
|x|<ct

logE(|u(t, x)|p),

and the corresponding speeds c̄p and cp. It has been recently shown in a paper by Nualart [3]
that c̄p > c̄2, and c̄p = cp for p > 2 when f(u) = βu. Hence, the legitimacy of taking c̄2 even
if c̄2 = c2 as the speed is not obvious.

We will prove the following result of Conus and Khoshnevisan [2].

Theorem 7.4 There exists c0 so that S(c) > 0 for all c ∈ (0, c0). On the other hand, for any
speed c > c∗ = L̄2/2 we have S̄(c) < 0.

There is a natural open question whether c0 = c∗. As we have mentioned, this has been
resolved recently affirmatively in [1] in the case f(u) = u. We will not address it at the
moment.
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Unlike in the deterministic equation

∂u

∂t
= ν

∂2u

∂x2
+ u,

where the propagation speed is c∗ = 2
√
ν, the speed c∗ = L̄2/2 in the stochastic case does

not depend on the diffusivity ν – this is very natural since ν can be scaled out by the trans-
formation

u(t, x) = v(
t

ν
,
x

ν
). (7.25)

The function v(s, y) satisfies

∂v

∂s
=
∂2v

∂y2
+ f(v(s, y))νẆ (νs, νy).

The white noise (in one spatial dimension) has the scaling (with the equality in law)

Ẇ (εt, εx) =
1

ε
Ẇ (t, x).

Hence, we have
∂v

∂s
=
∂2v

∂y2
+ f(v(s, y))Ẇ (s, y), (7.26)

which is nothing but (7.18) with ν = 1. The change of variable (7.25) does not change the
speed of propagation since time and space are scaled identically, and the speed of propagation
in (7.26) has no memory of ν. This is not immediately obvious since the initial condition
for (7.26) is v(s, x) = u0(νx) and does apparently depend on ν. However, it is natural to
expect that the speed of propagation is universal and does not depend on the initial condition,
making it independent of ν. Hence, we will set ν = 1 with no fear, and our starting point will
be

∂u

∂t
=
∂2u

∂x2
+ f(u)Ẇ . (7.27)

The exponential solutions and guessing the speed

Let us now use a generalized version of the exponential solutions to try to guess the value
of the minimal speed c∗ = L̄2/2 in Theorem 7.4. We will assume L̄ = 1 and f(u) = L̄u, so
that u(t, x) satisfies

u(t, x) =

ˆ
R
G(t, x− y)u0(y)dy +

ˆ t

0

ˆ
R
G(t− s, x− y)u(s, y)W (dsdy). (7.28)

However, one also look for global in time solutions, defined also for t < 0. To do this, one
would consider a sequence of initial value problems starting at t = −n:

un(t, x) =

ˆ
R
G(t+n, x−y)u0,n(y)dy+

ˆ t

−n

ˆ
R
G(t−s, x−y)un(s, y)W (dsdy), t > −n. (7.29)

Let us choose u0,n(x) as
u0,n = e−λ(x+λn),
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so that ˆ
R
G(t+ n, x− y)u0,n(y)dy = e−λ(x−λt),

for all t > −n and all n. Let us assume that the initial condition is taken at t = −∞ and is

u0(y) = e−λx,

so that
ū(t, x) = eλ

2t−λx.

We also introduce
vn(t, x) = e−λ2t+λxun(t, x),

and (7.29) becomes

vn(t, x) = 1 +

ˆ t

−n

ˆ
R
G(t− s, x− y)eλ(x−y)−λ2(t−s)vn(s, y)W (dsdy). (7.30)

Exercise 7.5 Show that for λ > 1/2, the sequence vn(t, x) converges, as n → +∞, to the
solution of

v(t, x) = 1 +

ˆ t

−∞

ˆ
R
G(t− s, x− y)eλ(x−y)−λ2(t−s)v(s, y)W (dsdy), (7.31)

and that (7.31) has a well-defined solution in P2,∞[(−∞,+∞)].

The function v(t, x) is stationary in time and space. Thus, for λ > 1/2, (7.28) has special
solutions of the form

u(t, x) = e−λ(x−λt)v(t, x), (7.32)

where v(t, x) is a space-time stationary field. Let us see for why the restriction λ > 1/2
appears. Let us denote

q = E|v(t, x)|2.

As v(t, x) is time-space stationary, q must be a positive constant. Starting with (7.30),
squaring and taking the expectation gives

q = 1 + q

ˆ ∞

0

ˆ
R
G2(s, y)e2λy−2λ2sdsdy. (7.33)

An explicit computation shows that

ˆ ∞

0

ˆ
R
G2(s, y)e2λy−2λ2sdsdy =

1

2λ
. (7.34)

Thus, for q > 0 to exist, we must have λ > 1/2. As λ serves both as the exponential decay
and the propagation speed in (7.32), the minimal propagation speed is c∗ = 1/2. While the
exponential solutions are special, they give a good indication of what one should expect.
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The upper bound

We now prove Theorem 7.4. The upper bound follows from the following lemma.

Lemma 7.6 If c > c∗ = L̄2/2 then u(t, x) satisfies

E(|u(t, x)|2) ≤ Ac exp
[
− c(|x| − ct)

]
, for all x ∈ R and t ≥ 0. (7.35)

The constant Ac depends only on c and u0.

This lemma immediately implies the upper bound in Theorem 7.4. Indeed, let us take any
speed c > L̄2/2, and write, for any c′ > 0:

S(c′) = lim sup
t→∞

1

t
sup
|x|≥c′t

logE(|u(t, x)|2) ≤ lim sup
t→∞

1

t

[
c2t− cc′t] = c(c− c′). (7.36)

Thus, for any c′ > L̄2/2, we can choose c = (c′+ L̄2/2)/2 > L̄2/2 and conclude that S(c′) < 0.
This proves the second statement in Theorem 7.4 modulo the proof of Lemma 7.6.

The proof of Lemma 7.6

We first need an auxiliary proposition. Given a function ϕ ∈ P2,∞[0,+∞), a positive num-
ber r > 0 and λ ∈ R, we set

Nλ,r(ϕ) = sup
t≥0

sup
x∈R

[
eλx−rtE(|ϕ(t, x)|2)

]1/2
.

A typical example to keep in mind is to take a function ϕ(t, x) such that

E(|ϕ(t, x)|2) ∼ e−ωx+γt
1[0,+∞)(x) = e−ω(x−(γ/ω)t)

1[0,+∞)(x)

In that case, we have

Nλ,r(ϕ) = sup
t≥0

sup
x∈R

[
eλx−rte−ωx+γt

1[0,+∞)(x)
]1/2

< +∞,

provided that λ < ω and r > γ. Thus, Nr,λ(ϕ) measures the rate of the exponential decay
of the function ϕ. The next proposition shows how the decay translates under the stochastic
heat kernel convolution.

Proposition 7.7 Let ϕ(t, x) ∈ P2,∞[0,+∞), and set

v(t, x) =

ˆ t

0

ˆ
R
G(t− s, x− y)ϕ(s, y)W (dsdy).

Then we have

Nλ,r(v) ≤
Nλ,r(ϕ)

(4(2r − λ2))1/4
, for all r >

λ2

2
. (7.37)
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Proof. The Ito isometry implies

eλx−rtE(|v(t, x)|2) = eλx−rt

ˆ t

0

ˆ
R
G2(t− s, x− y)E|ϕ(s, y)|2dyds

≤ [Nλ,r(ϕ)]
2

ˆ t

0

ˆ
R
G2(t− s, x− y)eλx−rte−λy+rsdyds

= [Nλ,r(ϕ)]
2

ˆ t

0

ˆ
R
G2(s, y)eλy−rsdyds.

It follows that

[Nλ,r(v)]
2 ≤ [Nλ,r(ϕ)]

2

ˆ ∞

0

ˆ
R
G2(s, y)eλy−rsdyds,

and (7.37) follows from the explicit computation of the integral in the right side. 2
We now prove Lemma 7.6. Writing

u(t, x) =

ˆ
G(t− s, x− y)u0(y)dy +

ˆ t

0

ˆ
G(t− s, x− y)f(u(s, y))W (dsdy),

we see that
Nλ,r(u) ≤ Nλ,r(u0) +Nλ,r(v), (7.38)

with

v(t, x) =

ˆ t

0

ˆ
G(t− s, x− y)f(u(s, y))W (dsdy).

Proposition 7.7 implies that

Nλ,r(v) ≤
Nλ,r(f(u))

(4(2r − λ2))1/4
,

for r > λ2/2. The Lipschitz bound on f implies that

Nλ,r(v) ≤ L̄
Nλ,r(u)

(4(2r − λ2))1/4
,

Using this in (7.38) gives

Nλ,r(u) ≤ Nλ,r(u0) + L̄
Nλ,r(u)

(4(2r − λ2))1/4
. (7.39)

Hence, Nλ,r(u) < +∞ provided that r > λ2/2 and

L̄4 < 4(2r − λ2). (7.40)

Hence, we may take r = c2 and λ = ±c, provided that c > L̄2/2, finishing the proof of
Lemma 7.6.
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The lower bound

We now prove the lower bound in Theorem 7.4. As f(u) ≥ βu, we have the following inequality
for m2(t, x) = E|u(t, x)|2:

m2(t, x) ≥ |ū(t, x)|2 + β2

ˆ t

0

ˆ
R
G2(t− s, x− y)m2(s, y)dyds. (7.41)

Here, ū(t, x) is the solution of the heat equation:

∂ū

∂t
=
∂2ū

∂x2
, (7.42)

ū(0, x) = u0(x).

Let us take α > 0 and set

Mα(t) =

ˆ ∞

αt

m2(t, x)dx.

Integrating (7.41) form x = αt to infinity gives

Mα(t) ≥
ˆ ∞

αt

|ū(t, x)|2 + β2 . (7.43)

Note that if x− y ≥ α(t− s) and y ≥ αs then x ≥ αt. It follows thatˆ ∞

αt

ˆ t

0

ˆ
R
G2(t− s, x− y)m2(s, y)dydsdx (7.44)

≥
ˆ t

0

ds

ˆ ∞

αs

dy

ˆ ∞

y+α(t−s)

dxG2(t− s, x− y)m2(s, y)

=

ˆ t

0

ds
(ˆ ∞

αs

m2(s, y)dy
)(ˆ ∞

α(t−s)

G2(t− s, x)dx
)
. (7.45)

Hence, the function Mα(t) satisfies the inequality

Mα(t) ≥
ˆ ∞

αt

|ū(t, x)|2dx+ β2

ˆ t

0

Qα(t− s)Mα(s)ds, (7.46)

with

Qα(t) =

ˆ ∞

αt

G2(t, x)dx.

An identical argument shows that the function

M ′
α(t) =

ˆ
−∞

−αtm2(t, x)dx

satisfies

M ′
α(t) ≥

ˆ αt

−∞
|ū(t, x)|2dx+ β2

ˆ t

0

Qα(t− s)M ′
α(s)ds, (7.47)

thus the sum

M̄α(t) =

ˆ
|x|>αt

m2(t, x)dx

obeys the inequality

M̄α(t) ≥
ˆ
|x|≥αt

|ū(t, x)|2dx+ β2

ˆ t

0

Qα(t− s)M̄α(s)ds. (7.48)
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