
Lecture notes for Introduction to SPDE, Spring 2016

Lenya Ryzhik∗

May 6, 2016

Nothing found here is original except for a few mistakes and misprints here and there.
These notes are simply a record of what I cover in class, to spare the students the necessity
of taking the lecture notes. The readers should consult the original books for a better pre-
sentation and context. We plan to follow the lecture notes by Davar Khoshnevisan and the
book by John Walsh.

1 The white noise

We would like to be able to make sense of the solutions of equations with rough forces, such
as the heat equation

∂u

∂t
= ∆u+ F (t, x), (1.1)

or the wave equation
1

c2
∂2u

∂t2
= ∆u+ F (t, x), (1.2)

with a highly irregular function F (t, x), as well as nonlinear versions of these equations.
However, if F is ”very rough” then, presumably, the solution u(t, x) will not be very smooth
either, hence one would not be able to differentiate it in time or space, and the sense in
which u(t, x) solves the corresponding equation is not quite clear. It is natural to think
of u(t, x) as a weak solution of the PDE as that would not require differentiation – but if the
PDE (unlike the examples above) is nonlinear we would still need to know that u(t, x) is a
function, which is not a priori obvious if the force F (t, x) is too irregular. As we will see, it
is often the case that u(t, x) is actually not a function.

Another obvious issue is to understand what we would mean by a ”rough force”. If,
say, (1.1) were posed on the lattice Zd, and ∆ were a discrete Laplacian, then (1.1) would be
an infinite system of SDE’s at each lattice site, with F (t, x) independent for each site x ∈ Zd.
This makes clear sense, as long as x is discrete. In order to define this in Rd, we need to
develop some basics. A natural way to generalize independence at each site is to require
that F (t, x) is a stationary in time and space mean-zero process such that the two-point
correlation function is

E[F (t, x)F (t′, x′)] =

{
1 if t = t′ and x = x′,
0 otherwise.

(1.3)
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Such random field, however, does not exist, and the next best choice would be a random field
with a correlation function

E[F (t, x)F (t′, x′)] = δ(t− t′)δ(x− x′). (1.4)

The first order of business would be to make this rigorous.

When is the solution a function?

Disregarding the question of a careful definition of such random process, let us see what we
can expect about the solutions of, say, the heat equation (1.1) with such force. The Duhamel
formula says that if u(0, x) = 0, then the solution of (1.1) in Rd is

u(t, x) =

ˆ t

0

ˆ
Rd

G(t− s, x− y)F (s, y)dsdy. (1.5)

Here,

G(t, x) =
1

(4πt)d/2
e−|x|

2/(4t) (1.6)

is the standard heat kernel. The function u(t, x) is a stationary field in x, hence we can not
possibly expect any decay in x but we may still ask how large it should be. Let us compute
its point-wise second moment:

E
[
|u(t, x)|2

]
=

ˆ t

0

ˆ t

0

ˆ
R2d

G(t− s, x− y)G(t− s′, x− y′)E[F (s, y)F (s′, y′)]dsds′dydy′

=

ˆ t

0

ˆ
Rd

|G(t− s, x− y)|2dsdy =

ˆ t

0

ˆ
Rd

|G(s, y)|2dsdy =
1

(4π)d

ˆ t

0

ˆ
Rd

e−|y|
2/(2s)dyds

sd

= Cd

ˆ t

0

ds

sd/2
. (1.7)

We see that u(t, x) has a point-wise second moment if and only if d = 1 – therefore, it is only
in one dimension that we may expect the solution of a typical SPDE be a function.

Is the solution a distribution?

Since u(t, x) does not seem to be a function in d > 1, let us see if the field given by (1.5)
at least makes sense as a distribution in x, pointwise in time. We multiply (1.5) by a test
function φ ∈ C∞c (Rd):

Φ(t) = 〈u(t), φ〉 =

ˆ t

0

ˆ
Rd

ˆ
Rd

G(t− s, x− y)F (s, y)φ(x)dsdydx,

and compute the second moment of Φ(t):

E
[
|Φ(t)|2

]
=

ˆ t

0

ˆ t

0

ˆ
R4d

G(t− s, x− y)G(t− s′, x′ − y′)E[F (s, y)F (s′, y′)] (1.8)

×φ(x)φ(x′)dsds′dydy′dxdx′ =

ˆ t

0

ˆ
R3d

G(t− s, x− y)G(t− s, x′ − y)φ(x)φ(x′)dsdydxdx′
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=

ˆ t

0

ˆ
Rd

( ˆ
Rd

G(t− s, y − x)φ(x)dx
)(ˆ

Rd

G(t− s, y − x′)φ(x′)dx′
)
ds

=

ˆ t

0

ˆ
Rd

v2(t− s, y)dyds =

ˆ t

0

ˆ
Rd

v2(s, y)dyds.

Here, the function v(s, y) is the solution of the heat equation

∂v

∂t
= ∆v, (1.9)

with the initial condition v(0, y) = φ(y). As φ ∈ C∞c (Rd), the function v(t, x) is most
beautifully smooth and rapidly decaying. It follows that Φ(t) has a finite second moment,
meaning that it is likely one can make sense of (1.5) to make sense as a distribution in any
dimension. Thus, in dimensions d ≥ 2 one, generally, would expect solutions of SPDEs to be
distributions and not functions.

This is a problem as we will often be interested in solutions of nonlinear SPDEs, and we
do not know how to take nonlinear functions of distributions. In particular, SPDEs often
arise as limit descriptions of the densities of systems of N particles. It is typical that in such
models the particle density converges to the solution of a deterministic PDE as N → +∞,
such as, in the simplest case, the heat equation:

∂u

∂t
= ∆u. (1.10)

Accounting for a large but finite number of particles often leads to an SPDE that is a per-
turbation of the limiting deterministic problem, such as

∂u

∂t
= ∆u+ Noise. (1.11)

In that setting, the noise term typically has variance proportional, locally, to the total number
of particles, that is, to u(t, x) – this is a version of the central limit theorem Thus, the equation
would have the form

∂u

∂t
= ∆u+

√
u · Noise. (1.12)

Hence, we would need to deal not only with nonlinearities but also with non-Lipschitz non-
linearities.

The randomly forced wave equation

Let us, as a next example, informally, consider the wave equation

∂2v

∂t2
− ∂2v

∂x2
= F (t, x), (1.13)

with the initial condition

v(0, x) =
∂v(0, x)

∂t
= 0.
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Its solution is

v(t, x) =
1

2

ˆ t

0

ˆ x+(t−s)

x−(t−s)
F (s, y)dyds. (1.14)

Let us now assume that F (s, y) is a white noise, as i the heat equation example. Then, the
solution v(t, x) is the value of the white noise as a distribution on the characteristic function
of the triangle, which is the domain of integration in (1.14) – therefore, we arrive at the same
need to understand the white noise F (t, x) as a distribution. In higher dimensions, similar
expressions for the solution of the forced wave equation can be obtained via spherical means.

Gaussian processes

We now start being more careful than in the above informal discussion. A stochastic pro-
cess G(t), t ∈ T , indexed by a set T is a Gaussian random field if for every finite col-
lection t1, . . . , tk ∈ T , the vector (G(t1), . . . , G(tk)) is a Gaussian random vector. The
Kolmogorov consistency theorem implies that the finite-dimensional distributions of G are
uniquely determined by the mean:

µ(t) = E(G(t)),

and the covariance
C(s, t) = E[(G(s)− µ(s))(G(t)− µ(t))].

The covariance function is non-negative definite in the following sense: for any t1, . . . , tk
and z1, . . . , zk ∈ C, we have

k∑
j,m=1

C(tj, tm)zj z̄m ≥ 0. (1.15)

This is because

0 ≤ E
∣∣∣ k∑
j=1

(G(tj)− µ(tj))zj

∣∣∣2 =
k∑

j,m=1

C(tj, tm)zj z̄m.

A classical result of Kolmogorov is that given any function µ(t) and a nonnegative-definite
function C(s, t) one can construct a Gaussian random field G(t) with mean µ(t) and covari-
ance C(s, t).

Example 1: the Brownian motion. One of the most basic examples of a Gaussian
process is the Brownian motion. In that case, T = [0,+∞), µ(t) ≡ 0, and C(s, t) = min(s, t).
Let us check that this covariance is nonnegative-definite:

k∑
j,m=1

zj z̄m min(tj, tm) =
k∑

j,m=1

zj z̄m

ˆ +∞

0

χ[0,tj ](s)χ[0,tm](s)ds =

ˆ +∞

0

∣∣∣ k∑
j=1

zjχ[0,tj ](t)
∣∣∣2dt ≥ 0.

Of course, the Brownian motion can be constructed in many other ways, without invoking
general abstract theorems.

Example 2: the Brownian bridge. The Brownian bridge b(t) is a process on the
interval T = [0, 1], with mean-zero: µ(t) = 0, and the covariance

C(s, t) = E(b(s)b(t)) = s ∧ t− st. (1.16)
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A remarkable property of the Brownian bridge is that

E(b(0)2) = E(b(1)2) = 0. (1.17)

That is, the process b(s) starts at b(0) = 0 and ends at b(1) = 0, almost surely. Instead of
verifying directly that the function C(s, t) in (1.16) is nonnegative-definite, we observe that
if B(t) is a Brownian motion, then

b(t) = B(t)− tB(1) (1.18)

is a Brownian bridge. Indeed, it clearly has mean-zero, and for any 0 ≤ s.t ≤ 1, we have

E(b(s)b(t)) = E[(B(s)− sB(1))(B(t)− tB(1))] = s ∧ t− st− ts+ st = s ∧ t− st.

Example 3: the Ornstein-Uhlenbeck process. The Brownian motion does not have
a finite invariant measure – it typically runs away to infinity. In order to confine it, let us
define the process

X(t) = e−t/2B(et), (1.19)

for t ≥ 0. The process X(t) is mean-zero, and has the covariance for 0 ≤ t ≤ s:

C(s, t) = e−(s+t)/2 min
(
es, et

)
= e(t−s)/2. (1.20)

In other words, we have, for all t ≥ 0 and s ≥ 0:

C(s, t) = e−|t−s|/2. (1.21)

In particular, C(s, t) depends only on |t− s| – such processes are called stationary Gaussian
processes. We also have

E(X2(t)) = 1, (1.22)

for all t ≥ 0, which indicates that X(t) is, indeed, confined in some sense.
Example 4: a general white noise. In general, we define a white noise as follows.

Let E be a set endowed with a measure ν and a collection M of measurable sets. Then a
white noise is a random function on the sets A ∈M of a finite ν-measure such that Ẇ (A) is
a mean-zero Gaussian random variable with

E(Ẇ (A)2) = ν(A),

and if A ∩B = ∅, then Ẇ (A) and Ẇ (B) are independent, with

Ẇ (A ∪B) = Ẇ (A) + Ẇ (B).

Then the covariance of Ẇ is

E(Ẇ (A)Ẇ (B))= E[(Ẇ (A∩B)+Ẇ (A\B))(Ẇ (A∩B)+Ẇ (B\A))]= E[Ẇ (A∩B)2]= ν(A∩B).
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This function is nonnegative-definite because

k∑
i,j=1

ziz̄jC(Ai, Aj) =
k∑

i,j=1

ziz̄jν(Ai ∩ Aj) =
k∑

i,j=1

ˆ
E

ziz̄jχAi
(x)χAj

(x)dν(x)

=

ˆ
E

∣∣∣ k∑
j=1

zjχAj
(x)
∣∣∣2dν(x) ≥ 0.

Example 5: a Brownian sheet. The Brownian motion W (t) can now be alternatively
defined as follows. Take E = R+, and ν the Lebesgue measure on R, and set W (t) = Ẇ ([0, t]).
This gives E(W (t)) = 0, and

E(W (t)2) = |[0, t] ∩ [0, s]| = s ∧ t.

A Brownian sheet W (t), with t ∈ Rn
+, can be defined as above, taking E = Rn

+, and ν the
Lebesgue measure on Rn. For t = (t1, . . . , tn) ∈ Rn, we set

[0, t] = [0, t1]× . . .× [0, tn],

and define the Brownian sheet as

W (t) = Ẇ ([0, t]).

Exercise. Consider n = 2 and denote t = (t1, t2).
(i) Show that if t1 is fixed, then Wt1,t is a Brownian motion.
(ii) Show that on the hyperbole t1t2 = 1 we have that

Xt = Wet,e−t

is an Ornstein-Uhlenbeck process.
(iii) Show that on the diagonal the process Wt,t is a martingale, has independent increments
but is not a Brownian motion.

The white noise does not have a bounded total variation

Let us note that Ẇ does not have a bounded total variation almost surely. The proof is very
much as what we do in the proof of the Ito formula. To see this, we first show that

lim
n→∞

2n−1∑
j=0

∣∣∣Ẇ([ j
2n
,
j + 1

2n

])∣∣∣2 = 1, (1.23)

almost surely. Indeed, let us set

Sn =
2n−1∑
j=0

∣∣∣Ẇ([ j
2n
,
j + 1

2n

])∣∣∣2,
then

ESn =
2n−1∑
j=0

∣∣∣[ j
2n
,
j + 1

2n

]∣∣∣ = 1,
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and

E(Sn − 1)2 = E
( 2n−1∑

j=0

[∣∣∣Ẇ([ j
2n
,
j + 1

2n

])∣∣∣2 − ∣∣∣[ j
2n
,
j + 1

2n

]∣∣∣])2
=

2n−1∑
j,m=0

E
{[∣∣∣Ẇ([ j

2n
,
j + 1

2n

])∣∣∣2 − ∣∣∣[ j
2n
,
j + 1

2n

]∣∣∣][∣∣∣Ẇ([m
2n
,
m+ 1

2n

])∣∣∣2 − ∣∣∣[m
2n
,
m+ 1

2n

]∣∣∣]}
=

2n−1∑
j=0

E
{[∣∣∣Ẇ([ j

2n
,
j + 1

2n

])∣∣∣2 − ∣∣∣[ j
2n
,
j + 1

2n

]∣∣∣]2} = 2nE
{[∣∣∣Ẇ([0, 1

2n

])∣∣∣2 − ∣∣∣[0, 1

2n

]∣∣∣]2}
= 2n

(
3 · 1

22n
− 2

22n
+

1

22n

)
=

1

2n−1
.

We used the stationarity of the white noise in the next to last step above, and the fact that
for a Gaussian random variable X we have

E(X4) = 3(E(X2))2

in the last step. It follows that

P(|Sn − 1| > ε) ≤ 1

2n−1ε2
.

The Borel-Cantelli lemma implies that for every ε > 0 the event {|Sn − 1| > ε} occurs only
for finitely many n, almost surely. Thus, Sn → 1 almost surely, or (1.23) holds.
Exercise. Use (1.23) to obtain

lim
n→∞

2n−1∑
j=0

∣∣∣Ẇ([ j
2n
,
j + 1

2n

])∣∣∣ = +∞, (1.24)

also almost surely. It follows that Ẇ does not have a bounded total variation almost surely.

2 Regularity of random processes

We will now prove the Kolmogorov theorem that reduces the question of continuity of a
stochastic process to a computation of some moments. Recall that a process X ′(t), t ∈ T, is
a modification of a process X(t), t ∈ T if

P [X ′(t) = X(t)] = 1 for all t ∈ T.

Exercise. Construct an example where X ′ is a modification of X but

P [X ′(t) = X(t) for all t ∈ T] = 0.
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Modulus of continuity from an integral inequality

We first prove a real-analytic result that allows to translate an integral bound on a function
into a point-wise modulus of continuity. We need some notation. In the theorem below, the
functions ψ(x) and p(x), x ∈ R, are even, p(x) is increasing for x > 0, with p(0) = 0, and ψ(x)
is convex. We denote by R1 the unit cube in Rd.

Theorem 2.1 Let f be a measurable function on R1 ⊂ Rd such that

B :=

ˆ
R1

ˆ
R1

ψ
( f(y)− f(x)

p(|y − x|/
√
d)

)
dxdy < +∞, (2.1)

then there is a set K of measure zero such that if x, y ∈ R1 \K, then

|f(y)− f(x)| ≤ 8

ˆ |y−x|
0

ψ−1
( B
u2d

)
dp(u). (2.2)

If f is continuous, then (2.2) holds for all x and y.

Proof. We denote the side of a cube Q in R1 by e(Q). Note that

if x, y ∈ Q, then |y − x| ≤
√
de(Q). (2.3)

The functions p and ψ are increasing for positive arguments, hence (2.1) and (2.3) imply

ˆ
Q

ˆ
Q

ψ
(f(y)− f(x)

p(e(Q))

)
dxdy ≤ B, (2.4)

for any cube Q in R1. Next, take a nested sequence of cubes Q0 ⊇ Q1 ⊇ Q2 ⊇ . . . such that

p(e(Qj)) =
1

2
p(e(Qj−1)), (2.5)

and denote

fj =
1

|Qj|

ˆ
Qj

fdx, rj = e(Qj).

It follows from (2.5) that rj → 0, and the cubes converge down to a point. As the function ψ
is convex, we have

ψ
(fj − fj−1
p(rj−1)

)
≤ 1

|Qj−1|

ˆ
Qj−1

ψ
(fj − f(x)

p(rj−1)

)
dx

≤ 1

|Qj−1||Qj|

ˆ
Qj−1

ˆ
Qj

ψ
(f(y)− f(x)

p(rj−1)

)
dxdy

≤ 1

|Qj−1||Qj|

ˆ
Qj−1

ˆ
Qj−1

ψ
(f(y)− f(x)

p(rj−1)

)
dxdy ≤ B

|Qj−1||Qj|
,

by (2.4). We conclude that

|fj − fj−1| ≤ p(rj−1)ψ
−1
( B

|Qj−1||Qj|

)
. (2.6)
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This starts to look like a modulus of continuity estimate but the two terms in the right side
still compete – one is small, the other is large. We now re-write it to make it look like the
right side of (2.2). The definition (2.5) of Qj means that

p(rj−1) = 4|p(rj+1)− p(rj)|.

hence we may write

|fj − fj−1| ≤ 4ψ−1
( B

|Qj−1||Qj|

)
|p(rj+1)− p(rj)|. (2.7)

Next, note that for rj+1 ≤ u ≤ rj, we have |Qj−1||Qj| ≥ u2d, hence

|fj − fj−1| ≤ 4ψ−1
( B
u2d

)
|p(rj+1)− p(rj)|, for all rj+1 ≤ u ≤ rj. (2.8)

We deduce that

|fj − fj−1| ≤ 4

ˆ rj

rj+1

ψ−1
( B
u2d

)
dp(u). (2.9)

Summing over j gives

lim sup
j→+∞

|fj − f0| ≤ 4

ˆ r0

0

ψ−1
( B
u2d

)
dp(u). (2.10)

Now, by the Lebesgue theorem, except for x in an exceptional set K of measure zero, the
sequence fj converges to f(x) for any sequence of cubes Qj decreasing to the point x. If x
and y are not in K, and Q0 is the smallest cube containing both x and y, then, as r0 ≤ |x−y|,
we have both

|f(x)− f0| ≤ 4

ˆ |x−y|
0

ψ−1
( B
u2d

)
dp(u), (2.11)

and

|f(y)− f0| ≤ 4

ˆ |x−y|
0

ψ−1
( B
u2d

)
dp(u), (2.12)

proving (2.2). 2

The Kolmogorov theorem

We may now apply Theorem 2.1 to various stochastic processes. We begin with the Kol-
mogorov theorem.

Theorem 2.2 Let Xt, t ∈ T = [a1, b1]× . . . , [ad, bd] ⊂ Rd be a real-valued stochastic process.
Suppose there are constants k > 1, C > 0 and ε > 0 so that for all s, t ∈ T, we have

E(|X(t)−X(s)|k) ≤ C|t− s|d+ε. (2.13)

Then X(t) has a continuous modification X̄(t). Moreover, X(t) has the following modulus of
continuity:

|X(t)−X(s)| ≤ Y |t− s|ε/k
(

log
c1
|t− s|

)2/k
, (2.14)
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with a deterministic constant c1 > 0, and a random variable Y such that E(Y k) ≤ C ′. Finally,
if E(|Xt|k) < +∞ for some t, then

E( sup
t∈T
|Xt|k) < +∞.

Proof. Without loss of generality we will assume that T is the unit cube Q1. We will use
Theorem 2.1 with ψ(x) = |x|k, and

p(x) = |x|(2d+ε)/k
(

log
c1
|x|

)2/k
.

This function is increasing on [0,
√
d] with an appropriately large choice of c1. The function f

in Theorem 2.1 is taken to be X(t;ω), for a fixed realization ω. This gives

B(ω) =

ˆ
Q1

ˆ
Q1

|X(t;ω)−X(s;ω)|k

[p(|t− s|/
√
d)]k

dtds = C

ˆ
Q1

ˆ
Q1

|X(t;ω)−X(s;ω)|k

|t− s|2d+ε log2(c1/|t− s|)
dtds.

Taking the expectation, and using (2.13), we obtain

E(B) ≤ C

ˆ
Q1

ˆ
Q1

E|X(t;ω)−X(s;ω)|k

|t− s|2d+ε log2(c1/|t− s||)
dtds ≤ C

ˆ
Q1

ˆ
Q1

1

|t− s|d log2(c1/|t− s|)
dtds.

(2.15)
The integral in the right, for a fixed t. and when c1 is sufficiently large, behaves asˆ 1/2

0

rn−1

rn log2 r
dr =

ˆ ∞
log 2

dr

r2
< +∞.

Therefore, E(B) <∞, and B is finite almost surely. Going back to (2.2) we get

|X(t)−X(s)| ≤ 8B1/k

ˆ |t−s|
0

1

u2d/k
p′(u)du. (2.16)

It is now a calculus an exercise to check that (2.14) holds with Y = CB1/k. The last statement
in the theorem is an immediate consequence of the modulus of continuity estimate (2.14) and
the moment bound on Y . 2

Regularity of a Gaussian process

Theorem 2.3 Let Xt, t ∈ Q1 ⊂ Rd be a mean zero Gaussian process, and set

p(u) = max
|s−t|≤|u|/

√
d
E{|Xt −Xs|2}1/2. (2.17)

If ˆ 1

0

(
log

1

u

)1/2
dp(u) < +∞,

then X has a continuous version with the modulus of continuity

m(δ) ≤ C

ˆ δ

0

(
log

1

u

)1/2
dp(u) + Y p(δ), (2.18)

with a universal constant C > 0 and a random variable Y such that E(exp(c1Y
2)) < +∞ for

a sufficiently small universal constant c1 > 0.
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Proof. We will use Theorem 2.1 with ψ(x) = e|x|
2/4, and p(u) as in (2.17). The function p(u)

has to satisfy the assumption of the aforementioned theorem – otherwise, the modulus of
continuity (2.18) becomes vacuous. Note that (2.17) implies that

Dst =
Xs −Xt

p(|t− s|/
√
d)

is a mean zero Gaussian variable with variance σst ≤ 1. It follows that

E(B) =

ˆ
Q1

ˆ
Q1

E(exp(D2
st/4))dsdt ≤ C < +∞.

Therefore, B < +∞ a.s., and the rest is a direct application of Theorem 2.1 and integration
by parts, as in the proof of Theorem 2.2. Note that in our case, for u ∈ (0, 1) we have

ψ−1(u) = 2
√

log(1/u),

which explains the modulus of continuity in (2.18). The same computation shows that the
random variable Y can be taken as Y = C

√
| logB|. 2

A useful example is when p(u) = |u|ε, that is, if we assume that a Gaussian process satisfies

E{|Xt −Xs|2} ≤ C|t− s|2ε.

Then (2.18) says that X(t) is Hölder continuous for any exponent smaller than ε.

3 Stochastic Integrals

In order to talk about the weak solutions of the stochastic partial differential equations, we
need to define carefully stochastic integration with respect to white noises.

The Ito integral

Before talking about stochastic integrals with respect to space-time white noises Ẇ (t, x), let
us very briefly recollect the steps done in the definition of the Ito integration, which is what
we will generalize to higher dimensions. When we define the Ito integral with respect the
Brownian motion ˆ t

0

f(s, ω)dBs,

this is first done for elementary functions of the form

f(t, ω) = X(ω)χ[a,b](t).

Here, X(ω) is an Fa-measurable function – recall that this innocent sounding assumption is
absolutely essential for the Ito integral (as opposed to the Stratonovich and other stochastic
integrals) to be a martingale, with a finite second moment:

E[X2] < +∞.
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For such elementary functions we define the Ito integral as

ˆ t

0

f(s, ω)dBs =

 0, if 0 < t < a,
X(ω)(Bt −Ba), if a < t < b,
X(ω)(Bb −Ba), if b < t.

(3.1)

This may be written more succinctly as

ˆ t

0

f(s, ω)dBs = X(ω)[Bt∧b −Bt∧a]. (3.2)

This expression can be immediately generalized to simple functions – these are linear combi-
nations of elementary functions fj

f(t, ω) =
n∑
j=1

cjfj(t, ω),

with deterministic constants cj. The main observation that allows to go further and define
the Ito integral for more general functions is the Ito isometry: it is easy to check from the
above definition that for a simple function f(t, ω) we have

E
(ˆ t

0

f(s, ω)dBs

)2
= E(X2(ω))(t ∧ b− t ∧ a) =

ˆ t

0

E(f 2(s, ω))ds. (3.3)

Then one can verify that simple functions are dense in L2(Ω× [0, T ]) and define the stochastic
integral for all such functions as an object in L2(Ω). This is also where we will construct the
stochastic integral with respect to space-time white noises.

Another important aspect of the Ito integral is that, as it is defined for Ft-adapted func-
tions f , the integral

It =

ˆ t

0

f(s, ω)dBs

is a martingale. Its quadratic variation is

〈I, I〉t =

ˆ t

0

f 2(s, ω)ds.

This follows from the Ito formula:

d(I2t ) = f 2(t, ω)dt+ 2Itf(t, ω)dBt.

Martingale measures

In order to construct the stochastic integral with respect to a white noise, we need the notion
of a σ-finite L2-valued measure. This is defined as follows. Let E be a subset of Rd, and B
be an algebra of measurable sets. Typically, unless specified otherwise, we will take E as Rd

and B as the collection of the Borel sets. Let U be a real-valued random set function on B.
We denote by

‖U(A)‖2 = (E(U2(A))1/2.

12



Assume there exists an increasing sequence of measurable sets En such that

E =
⋃
n

En,

and
sup{‖U(A)‖2 : A ⊂ En} < +∞, for all n.

Then we say that the function U is σ-finite. It is countably additive if, for each n, given
that Aj ⊂ En and Aj is a decreasing sequence of sets with an empty intersection, then

lim
j→+∞

U(Aj) = 0.

Then we say that U is a σ-finite L2-valued measure. It is easy to see that the white noise is
an example of an L2-valued σ-finite measure, as

‖Ẇ (A)‖2 = |A|1/2.

We will now split one variable in the noise, and call it t ≥ 0, while keeping all other
variables as ”spatial variables”. A process Mt(A), A ∈ B is a martingale measure if

(i) M0(A) = 0 a.s., for all A ∈ B.

(ii) For t > 0 fixed, Mt(A) is a σ-finite L2-valued measure.

(iii) For all A ∈ B fixed, Mt(A) is a mean-zero martingale.

Let us check that the white noise process Wt(A) = Ẇ ([0, t]×A) is a martingale measure.
First, we have W0(A) = 0 a.s. because

E[Wt(A)]2 = t|A|.

This also implies that Wt(A) is a σ-finite L2-valued measure. Finally, to see that Wt(A) is a
martingale for each A ∈ B fixed, we observe that for all t ≥ s ≥ u ≥ 0 we have

E[(Wt(A)−Ws(A))Wu(A)] = E[(Ẇ ([0, t]× A)− Ẇ ([0, s]× A))Ẇ ([0, u]× A)]

= u|A| − u|A| = 0.

It follows that the increment Wt(A) −Ws(A) is independent of Fs, the σ-algebra generated
by Wr(A), with 0 ≤ r ≤ s, A ∈ B. Hence, we have

E(Wt(A)|Fs) = E(Wt(A)−Ws(A)|Fs) +Ws(A) = E(Wt(A)−Ws(A)) +Ws(A) = Ws(A),

and Wt(A) is a martingale.
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The stochastic integral for simple functions

In order to define the stochastic integration we begin with the simple functions, as for the Ito
integral. We say that a function f(t, x, ω) is elementary if it has the form

f(t, x, ω) = X(ω)1(a,b](t)1A(x). (3.4)

Here, A is a Borel set, and the random variable X is bounded and Fa-measurable – the
latter condition is very important, as it was for the Ito integral. A simple function is a linear
combination of finitely many elementary functions (with deterministic coefficients). We will
denote by P the σ-algebra generated by all simple functions. It is called the predictable σ-
algebra.

Given an elementary function f , we define the stochastic-integral process of f as

(f ·M)t(B)(ω) = X(ω)[Mt∧b(A ∩B)−Mt∧a(A ∩B)](ω). (3.5)

On the informal level, this agrees withˆ t

0

ˆ
B

fdM(s, x) = X(ω)

ˆ t

0

ˆ
B

χ(a,b](s)χA(x)dM(s, x)

=

 0, if 0 < t < a < b,
X(ω)[Mt(A ∩B)−Ma(A ∩B)], if 0 < a < t < b,
X(ω)[Mb(A ∩B)−Ma(A ∩B)], if 0 < a < b < t,

This is a direct generalization of (3.1)-(3.2) for the Ito integral. We can extend the defini-
tion (3.5) to simple functions in a straightforward way as linear combinations. Note that if f
is a simple function and Mt(A) is a martingale measure then f ·Mt is a martingale measure
as well.

Let us now compute the second moment of the stochastic integral process of an elementary
function (3.4). We take a Borel set B and find

E
[
((f ·Mt)(B))2

]
= E

[
X2[Mt∧b(A ∩B)−Mt∧a(A ∩B)]2

]
(3.6)

= E[X2M2
t∧b(A ∩B)] + E[X2M2

t∧a(A ∩B)]− 2E[X2Mt∧b(A ∩B)Mt∧a(A ∩B)].

Let us recall that X is Fa-measurable. Hence, by the definition of the quadratic variation we
have

E
[
X2(M2

t∧b(A ∩B)− 〈M(A ∩B),M(A ∩B)〉t∧b)
]

(3.7)

= E
[
X2(M2

t∧a(A ∩B)− 〈M(A ∩B),M(A ∩B)〉t∧a)
]
,

and, since Mt is martingale measure, we also have

E
[
X2(Mt∧b(A ∩B)Mt∧a(A ∩B) = E

[
X2(M2

t∧a(A ∩B))
]
. (3.8)

Using this in (3.6) gives

E
[
((f ·Mt)(B))2

]
= E

[
X2(M2

t∧a(A ∩B)− 〈M(A ∩B),M(A ∩B)〉t∧a)
]

(3.9)

+E
[
X2〈M(A ∩B),M(A ∩B)〉t∧b)

]
+ E[X2M2

t∧a(A ∩B)]− 2E
[
X2(M2

t∧a(A ∩B))
]

= E
[
X2(〈M(A ∩B),M(A ∩B)〉t∧b − 〈M(A ∩B),M(A ∩B)〉t∧a)

]
. (3.10)
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Let us define the covariance functional of a martingale measure Mt as

Q̄t(A,B) = 〈M(A),M(B)〉t. (3.11)

Note that Q̄t(A,B) is symmetric in A and B:

Q̄t(A,B) = Q̄t(B,A).

Moreover, if B and C are disjoint sets, then

Q̄t(A,B ∪ C) = 〈M(A),M(B ∪ C)〉t = 〈M(A),M(B) +M(C)〉t
= 〈M(A),M(B)〉t + 〈M(A),M(C)〉t = Q̄t(A,B) + Q̄t(A,C).

Finally, it satisfies the Cauchy inequality:

|Q̄t(A,B)|2 ≤ Q̄t(A,A)Q̄t(B,B).

With this notation, going back to (3.9), we can write

E
[
((f ·Mt)(B))2

]
= E

(
X2[Qt∧b(A ∩B,A ∩B)−Qt∧b(A ∩B,A ∩B)]

)
. (3.12)

In other words, for simple function we have

E
[ ˆ t

0

ˆ
B

fdM(s, x)
]2

= E
[ ˆ t

0

ˆ
B×B

f(s, x)f(s, y)Q(dxdyds)
]
. (3.13)

Here, we have defined

Q([s, t]× A×B) = Q̄t(A,B)− Q̄s(A, b). (3.14)

Hence, the potential majorizer for the L2-estimate on the stochastic integral is Q(dxdyds).
As the quadratic variation has bounded total variation, it is a good integrator. For the
white noise we may compute the quadratic variation explicitly: take a set A ∈ B, and
set Wt(A) = Ẇ ([0, t]× A). We claim that in this case

Q̄t(A,B) = t|A ∩B|. (3.15)

Indeed, let X(ω) be Fs measurable, and consider, for t > s:

E((Wt(A)2 − t|A|)X) = E[((Ws(A))2 − s|A|)X] + E[((Wt(A)−Ws(A))2 − (t− s)|A|)X]

+2E[Ws(A)(Wt(A)−Ws(A))X)] = E[((Ws(A))2 − s|A|)X],

hence
Q̄t(A,A) = t|A|. (3.16)

On the other hand, for disjoint A and B, we know that

Q̄t(A,B) = 0, (3.17)
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since Mt(A) and Mt(B) are martingales that have increments independent of each other, so
that Mt(A)Mt(B) is also a martingale. It follows that for a general pair of sets A and B we
may write

Q̄t(A,B) = 〈M(A),M(B)〉t = 〈(M(A \B) +M(A ∩B)), (M(B \ A) +M(A ∩B)〉t
= 〈M(A ∩B),M(A ∩B)〉t = t|A ∩B|,

which is (3.15). The measure (3.14) that corresponds to the white noise is, therefore, simply

Q([s, t]× A×B) = |t− s||A ∩B|. (3.18)

This may be written formally as

Q(dxdydt) = δ(x− y)dxdydt, (3.19)

that was our intent from the very beginning!
The general construction of a stochastic integral proceeds for the so-called worthy mea-

sures. These are the measures such that Q(dxdydt) defined via (3.14) can be majorized
by a positive-definite signed measure K(dxdydt). We will for simplicity of notation restrict
ourselves the stochastic integral with respect to the white noise.

The stochastic integral for predictable functions

Let us recall that we denote by P the σ-algebra generated by the simple functions. A function
is predictable if it is P-measurable. We can define the norm for predictable functions (keep
in mind that we are only considering the white noise case here) as

‖f‖2 = E
( ˆ T

0

ˆ
Rd

|f(t, x, ω)|2dxdt
)
. (3.20)

We will denote by P2 the space of predictable function of a finite norm (3.20). It is an exercise
to verify that P2 is a Banach space. Another exercise shows that the simple functions are
dense in P2. Let us go back to (3.13), which for the white noise takes the form

E
[ ˆ t

0

ˆ
B

f(s, x, ω)W (ds, dx)
]2

= E
[ ˆ t

0

ˆ
B×B
|f(s, x, ω)|2dxds

]
. (3.21)

Here, f is a simple function but this allows us to generalize the notion of the stochastic integral
to functions in P2. Indeed, if fn is a Cauchy sequence of simple functions in P2, then (3.21)
shows that the sequence ˆ t

0

ˆ
B

f(s, x, ω)W (ds, dx) (3.22)

is Cauchy in L2(P ). Hence, for any function f ∈ P2 we may define the stochastic integral (3.22)
as the limit in L2(P ) of the ˆ t

0

ˆ
B

fn(s, x, ω)W (ds, dx), (3.23)

where fn is a sequence of simple functions in P2 that converges to f in P2. This is essentially
the same procedure as in the definition of the usual Ito integral.
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4 The stochastic heat equation with a Lipschitz nonlin-

earity: the basic theory

We now consider a very basic example of a parabolic SPDE

∂u

∂t
=
∂2u

∂x2
+ f(u)Ẇ , (4.1)

posed on R, with the initial condition u(0, x) = u0(x). The function u0(x) is deterministic
and compactly supported. The nonlinearity f(u) is globally Lipschitz:

|f(u1)− f(u2)| ≤ K|u1 − u2|. (4.2)

This assumption is extremely important both for u small and u large: the ”interesting cases”
are what happens when f(u) ∼

√
u for small u – this will lead to compactly supported

solutions, and when f(u) ∼ u2 for u large – this may lead to blow-up of solutions in a
finite time. For now, we deliberately avoid both, and stay within the realm of Lipschitz
nonlinearities for simplicity, but will come back to them later. It is sometimes helpful to
assume that f is, in addition, bounded but we will avoid this for the moment, as we would
like to include the standard stochastic heat equation

∂u

∂t
=
∂2u

∂x2
+ uẆ (t, x). (4.3)

On an intuitive level, the noise acts as a huge and very irregular force in the heat equation,
making even very familiar properties of the solutions of the heat equation somewhat non-
obvious. For example, since Ẇ can be ”huge and positive” – may that bring about growth
at infinity that would knock the solution out of the Lp(R) space? On the other hand, as
the noise can be very negative, a priori it is by no means obvious that the strong maximum
principle would hold: given that u0(x) ≥ 0, do we know that u(t, x) > 0? As the reader will
see, getting the answers even to these questions will require some non-trivial arguments. We
should also stress that the restriction to one spatial dimension is not technical or accidental,
as the solutions have a very different nature in dimension d > 1.

The mild solutions: existence and uniqueness

Let us first make precise which notion of a solution we will use. The Duhamel formula tells
us that if the noise were smooth, the solution of (4.1) would have the form

u(t, x) =

ˆ
R
G(t, x− y)u0(y)dy +

ˆ t

0

ˆ
R
G(t− s, x− y)f(u(s, y))dW (s, y), (4.4)

and this will be our starting point. That is, a solution of (4.1) is a solution of (4.4) that is
adapted to the σ-algebra Ft generated by the white noise Ẇ . Here, G(t, x) is the standard
heat kernel:

G(t, x) =
1

(4πt)1/2
e−|x|

2/(4t). (4.5)

These are also known as mild solutions.
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Theorem 4.1 The stochastic heat equation (4.1) with a globally Lipschitz nonlinearity f(u)
and a compactly supported initial condition u0(x) has a unique solution u(t, x) such that for
all T > 0 we have

sup
x∈R

sup
0≤t≤T

E(|u(t, x)|2) < +∞. (4.6)

In other words, solutions exist and are unique in the space P2,∞[0, T ] with the norm

‖u‖2P2,∞ = sup
x∈R

sup
0≤t≤T

E(|u(t, x)|2). (4.7)

Note that the stochastic integral in the right side of (4.4) makes sense for all functions
in P2,∞[0, T ].

The proof of uniqueness

We first prove uniqueness. Suppose that u and v are two mild solutions of (4.1) – or, equiva-
lently, of (4.4) in P2,∞[0, T ]. We will show that v is a modification of u. Set

z(t, x) = u(t, x)− v(t, x),

and write

z(t, x) =

ˆ t

0

ˆ
R
G(t− s, x, y)[f(u(s, y))− f(v(s, y))]W (dyds). (4.8)

The Ito isometry implies that

E(|z(t, x)|2) =

ˆ t

0

ˆ
R
G2(t− s, x, y)E

[
|f(u(s, y))− f(v(s, y))|2

]
dxds (4.9)

≤ K

ˆ t

0

ˆ
R
G2(t− s, x, y)E

[
|u(s, y)− v(s, y)|2

]
dxds

= K

ˆ t

0

ˆ
R
G2(t− s, x, y)E

[
|z(s, y)|2

]
dxds.

We set
H(t) = sup

0≤s≤t
sup
x∈R

E(|z(s, x)|2),

and get

H(t) ≤ K

ˆ t

0

ˆ
R
G2(t− s, x, y)H(s)dxds. (4.10)

Note that ˆ
R
G2(s, y)dy =

C

s

ˆ
R
e−|y|

2/(4s)ds =
C ′√
s
.

It follows from (4.10) that

H(t) ≤ K ′
ˆ t

0

H(s)

|t− s|1/2
ds. (4.11)
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Hölder’s inequality with any p ∈ (1, 2) and

1

p
+

1

q
= 1, (4.12)

implies that

H(t)q ≤ K ′′
ˆ t

0

H(s)qds. (4.13)

Grownwall’s inequality implies now that H(t) = 0 for almost all s, hence u and v are modifi-
cations of each other.

The existence proof

The proof is via the usual Picard iteration scheme. We let u0(t, x) = u0(x) and define
iteratively

un+1(t, x) =

ˆ
R
G(t, x− y)u0(y)dy +

ˆ t

0

ˆ
R
G(t− s, x− y)f(un(s, y))dW (s, y). (4.14)

It is easy to verify that all un are in P2,∞[0, T ]. The increment

qn(t, x) = un+1(t, x)− un(t, x)

satisfies

qn(t, x) =

ˆ t

0

ˆ
R
G(t− s, x− y)(f(un(s, y))− f(un−1(s, y))dW (s, y). (4.15)

As f is Lipschitz, it follows that

E(|qn(t, x)|2) =

ˆ t

0

ˆ
R
G2(t− s, x− y)E(f(un(s, y))− f(un−1(s, y))2dyds (4.16)

≤ K2

ˆ t

0

ˆ
R
G2(t− s, x− y)E|qn−1(s, y)|2dyds.

Hence, the function
Zn(t) = sup

x∈R
sup
0≤s≤t

E|qn(s, x)|2

satisfies

Zn(t) ≤ K2

ˆ t

0

ˆ
R
G2(t− s, x− y)Zn−1(s)dyds, (4.17)

and thus

Zn(t) ≤ C

ˆ t

0

Zn−1(s)

|t− s|1/2
ds. (4.18)
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Once again, with p ∈ (1, 2) and q as in (4.12) we get

Zn(t)q ≤ C

ˆ t

0

Zn−1(s)
qds. (4.19)

Hence, Gronwall’s lemma implies that

Zn(t)q ≤ C1
(Ct)n−1

(n− 1)!
.

As a consequence, we get
∞∑
n=0

Z1/2
n (t) < +∞.

It follows that the sequence un(t, x) converges in P2,∞[0, T ] to a limit u(t, x). The same
argument based on the Ito isometry and the global Lipschitz bound on the function f implies
that
ˆ t

0

ˆ
R
G(t− s, x− y)f(un(s, y))dW (s, y)→

ˆ t

0

ˆ
R
G(t− s, x− y)f(u(s, y))dW (s, y),

also in P2,∞[0, T ]. We conclude that u(t, x) is a solution to

u(t, x) =

ˆ
R
G(t, x− y)u0(y)dy +

ˆ t

0

ˆ
R
G(t− s, x− y)f(u(s, y))dW (s, y), (4.20)

finishing the existence proof. 2

Higher moments of the solutions

One may ask if the solutions of the stochastic heat equation (3.16) that we have constructed
lie in better spaces, such as Ps,∞ with the norm

‖u‖sPs,∞ = sup
x∈R,

sup
0≤t≤T

E(|u(t, x)|s), (4.21)

and s > 2. We will not prove existence and uniqueness of the solution in Ps,∞ with s > 2 but
rather estimate its norm in this space. The solution can be constructed as a combination of
the Picard iteration and very similar arguments. We will need Burkholder’s inequality.

Theorem 4.2 [Burkholder’s inequality] Let Nt be a continuous martingale such that N0 = 0,
then for each p ≥ 2 we have

E|Nt|p ≤ cpE(〈N,N〉t)p/2, (4.22)

with a constant cp > 0 that depends only on p.

As a consequence of Burkholder’s inequality, for any predictable function f we have

E
[ ˆ t

0

ˆ
Rd

f(s, x)dW (s, x)
]p
≤ cpE

[ ˆ t

0

ˆ
Rd

|f(s, x)|2dsdx
]p/2

. (4.23)
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Thus, the moments of the solution of the stochastic heat equation

u(t, x) =

ˆ
R
G(t, x− y)u0(y)dy +

ˆ t

0

ˆ
R
G(t− s, x− y)f(u(s, y))dW (s, y) (4.24)

can be estimated as

Ms(t, x) := E|u(t, x)|s ≤ C0 + CE
[ ˆ t

0

ˆ
R
G2(t− s, x− y)f 2(u(s, y))dsdy

]s/2
(4.25)

≤ C0 + CE
[ ˆ t

0

ˆ
R
G2(t− s, x− y)u2(s, y)dsdy

]s/2
.

Here we have used the Lipschitz property of f . Let us assume for simplicity that s = 4, then
we can write

M4(t, x) ≤ C0 + CE
[ ˆ t

0

ˆ
R
G2(t− s, x− y)u2(s, y)dsdy

]2
(4.26)

= C0 + C

ˆ t

0

ˆ t

0

ˆ
R

ˆ
R
G2(t− s, x− y)G2(t− s′, x− y′)E[u2(s, y)u2(s′, y′)]dsdyds′dy′.

Set
M̄4(t) = sup

x∈R
M4(t, x),

then we have, using the Cauchy inequality

M̄4(t) ≤ C0 + C

ˆ t

0

ˆ t

0

ˆ
R

ˆ
R
G2(t− s, y)G2(t− s′, y′)M̄1/2

4 (s)M̄
1/2
4 (s′)dsdyds′dy′

≤ C0 + C
( ˆ t

0

M̄4(s)
1/2ds

|t− s|1/2
)2
≤ C0 + C

( ˆ t

0

M̄
q/2
4 (s)ds

)2/q
, (4.27)

with any q > 2. Gronwall’s lemma implies now that

sup
0≤t≤T

M̄4(t) ≤ CT . (4.28)

This argument can be generalized to all even integers s and from there to all s < +∞. It is
straightforward to adapt it to show the existence of the solutions in Ps,∞[0, T ] via Picard’s
iteration. Uniqueness of the solutions in Ps,∞[0, T ] follows immediately from the uniqueness
result in P2,∞[0, T ] that we have already proved.

Exercise 4.3 With a little more careful analysis one may show the following bound: there
exists a constant C > 0 that depends only the Lipschitz consant of f and ‖u0‖L∞ so that

sup
x∈R

E(|u(t, x)|k) ≤ CkeCk
3t. (4.29)
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The spatial L2-bound

Let us now consider the unique P2,∞[0, T ]-solution to

u(t, x) =

ˆ
R
G(t, x− y)u0(y)dy +

ˆ t

0

ˆ
R
G(t− s, x− y)f(u(s, y))dW (s, y), (4.30)

and ask if we may expect the L2-norm in space of u(t, x) to remain bounded – recall that we
assumed that u0(x) is compactly supported (though this assumption can be easily weakened
to u0 ∈ L1(R) in the existence and uniqueness proofs). Clearly, this is not true just under the
assumption that f(u) is Lipschitz: if we take f ≡ 1 and consider the solutions of

∂u

∂t
=
∂2u

∂x2
+ Ẇ (t, x),

then there is no reason to expect that the solution has any spatial decay whatsoever. Let us,
therefore, assume that, in addition to being globally Lipschitz, f(u) satisfies f(0) = 0, so that

|f(u)| ≤ K|u|. (4.31)

The first integral in the right side of (4.30) is obviously in any Lp(R), 1 ≤ p ≤ +∞, hence we
only look at

U(t, x) =

ˆ t

0

ˆ
R
G(t− s, x− y)f(u(s, y))dW (s, y),

and compute

E
ˆ
R
u2(t, x)dx ≤ 2

ˆ
|u0(x)|2dx+ 2

ˆ
R

ˆ t

0

ˆ
R
G2(t− s, x− y)E[f 2(u(s, y))]dydsdx

≤ 2

ˆ
|u0(x)|2dx+ 2K

ˆ
R

ˆ t

0

ˆ
R
G2(t− s, x− y)E[|u(s, y)|2]dydsdx (4.32)

≤ 2‖u0‖22 + C

ˆ t

0

ˆ
R
E[|u(s, y)|2]dy ds

|t− s|1/2
.

Thus,

Z(t) = E
ˆ
R
|u(t, x)|2dx

satisfies

Z(t) ≤ 2Z(0) + C

ˆ t

0

Z(s)ds

|t− s|1/2
.

Hence, for any q ∈ (2,+∞) and 0 ≤ t ≤ T , we have

Zq(t) ≤ C0 + CT

ˆ t

0

Zq(s)ds.

Gronwall’s lemma implies that
sup

0≤t≤T
Z(t) ≤ C ′T ,
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and we conclude that for every T > 0 we have

sup
0≤t≤T

E
ˆ
R
|u(t, x)|2dx < +∞. (4.33)

In the special case of the stochastic heat equation

∂u

∂t
=
∂2u

∂x2
+ uẆ , (4.34)

with the initial condition u(0, x) = u0(x), we have

u(t, x) = v(t, x) +

ˆ t

0

ˆ
R
G(t− s, x− y)u(s, y)W (dsdy). (4.35)

It follows that
Z(t, x) = E|u(t, x)|2

satisfies a closed equation

Z(t, x) = v2(t, x) +

ˆ t

0

ˆ
R
G2(t− s, x− y)Z(s, y)dy. (4.36)

Here, the function v(t, x) is the solution of the heat equation

∂v

∂t
=
∂2v

∂x2
, (4.37)

with the initial condition v(0, x) = u0(x). Hence, the L2-norm of Z(t, x),

Z̄(t) = E
ˆ
R
|u(t, x)|2dx

satisfies

Z̄(t) = ‖v(t)‖2L2 + b

ˆ t

0

Z̄(s)√
t− s

ds, (4.38)

with an explicit constant b > 0. Let us define the function

Zγ(t) = e−γtZ̄(t),

with the constant γ > 0 to be chosen. Then Zγ(t) satisfies

Zγ(t) = a(t) +

ˆ t

0

g(t− s)Zγ(s)ds, (4.39)

with

a(t) = ‖v(t)‖2L2e−γt, g(t) =
be−γt√
t− s

.

Let us choose
γ = πb2, (4.40)

so that ˆ ∞
0

g(s)ds = 1. (4.41)

This is, clearly, a necessary condition for Zγ(t) to have a limit as t → +∞, since a(t) → 0
as t→ +∞.
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Exercise 4.4 Show that with this choice of γ and this a(t), the limit

Z̄γ = lim
t→+∞

Zγ(t) (4.42)

exists.

In order to find the limit, let us write

Zγ(t) = Z̄γ + β(t),

with β(t)→ 0 as t→ +∞:

Z̄γ + β(t) = a(t) + Z̄γ

ˆ t

0

g(t− s)ds+

ˆ t

0

g(t− s)β(s)dy, (4.43)

so that

β(t) = a(t)− Z̄γ
ˆ ∞
t

g(s)ds+

ˆ t

0

g(t− s)β(s)dy. (4.44)

Integrating (4.44) gives
ˆ t

0

β(s)ds =

ˆ t

0

a(s)ds− Z̄γ
ˆ t

0

ˆ ∞
s

g(s′)ds′ds+

ˆ t

0

ˆ s

0

g(s− s′)β(s′)ds′ds. (4.45)

The long time limit of the second integral in the right side can be computed as
ˆ t

0

ˆ ∞
s

g(s′)ds′ds =

ˆ t

0

s′g(s′)ds′ + t

ˆ ∞
t

g(s′)ds′ →
ˆ ∞
0

sg(s)ds, as t→ +∞, (4.46)

while for the last integral in the right side of (4.45) we have
ˆ t

0

ˆ s

0

g(s− s′)β(s′)ds′ds→
ˆ ∞
0

ˆ s

0

g(s− s′)β(s′)ds′ds (4.47)

=

ˆ ∞
0

β(s′)

ˆ ∞
s′

g(s− s′)dsds′ =
ˆ ∞
0

β(s)ds, as t→ +∞.

Going back to (4.45) we conclude that

Z̄γ =
( ˆ ∞

0

sg(s)ds
)−1 ˆ ∞

0

a(s)ds. (4.48)

Therefore, the solution of the stochastic heat equation (4.34) satisfies

E‖u(t)‖2L2 ∼ Z̄γe
γt, as t→ +∞, (4.49)

with γ > 0 given by (4.40).

Exercise 4.5 Generalize this argument to the solutions of equations of the form

∂u

∂t
=
∂2u

∂x2
+ f(u)Ẇ , (4.50)

with a nonlinearity f(u) such that c1|u| ≤ f(u) ≤ c2|u|. Obtain a lower and upper bound for
the L2-norm of the solutions as in (4.49).
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The exponential growth of the second moment in (4.49) should be contrasted with the simple
bound on the integral:

E
ˆ
R
u(t, x)dx =

ˆ
R
u0(x)dx. (4.51)

We will discuss this again when we talk about the intermittency of the solutions. Roughly,
the disparity of the L1 and L2 norms of the solutions indicates that there are small islands
where the solution is huge. We should also note that we will later show that u(t, x) > 0
if u0(x) ≥ 0 and u0 does not vanish identically. Hence, the integral in the left side of (4.51)
is the L1-norm of u.

The Hölder regularity of the solutions

In order to study the Hölder regularity of the solutions, let us first make a slightly simplifying
assumption that in addition to being Lipschitz, the function f(u) is globally bounded:

sup
u∈R
|f(u)| ≤ K. (4.52)

We will later explain how this assumption can be removed, using the Ps,∞[0, T ] bounds on
the solution with s ∈ (2,+∞), rather than just the bounds in P2,∞[0, T ] that we will use in
the proof.

Theorem 4.6 There exists a modification of the solution of (4.4) that is Hölder continuous
in x of any order less than 1/2 and in t of any order less than 1/4.

We will need in the proof a slight generalization of the Kolmogorov continuity criterion –
compare this to Theorem 2.2.

Theorem 4.7 Let Xt, t ∈ T = [a1, b1]× . . . , [ad, bd] ⊂ Rd be a real-valued stochastic process.
Suppose there are constants k > 1, C > 0 and αi > 0, i = 1, . . . , d, so that

q :=
d∑
i=1

1

αi
< 1,

and for all s, t ∈ T, we have

E(|X(t)−X(s)|k) ≤ C

d∑
i=1

|ti − si|αi . (4.53)

Then X(t) has a continuous modification X̄(t). Moreover, X̄(t) is Hölder continuous in each
variable ti with any exponent γ ∈ (0, αi(1− q)/k).

Note that when all αi = α, then the assumptions require α > d, and the process has the
Hölder exponent less than

α(1− d

α
)
1

k
=
α− d
k

,

which is exactly Theorem 2.2. We will leave the proof as an exercise.
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The proof of Theorem 4.6

Let us consider

U(t, x) =

ˆ t

0

ˆ
R
G(t− s, x− y)f(u(s, y))dW (s, y). (4.54)

We need to show that U(t, x) has the required Hölder continuous modification. For 0 ≤ t ≤ t′

we write

U(t′, x)− U(t, x) =

ˆ t

0

ˆ
R
[G(t′ − s, x− y)−G(t− s, x− y)]f(u(s, y))dW (s, y)

+

ˆ t′

t

ˆ
R
G(t′ − s, x− y)f(u(s, y))dW (s, y). (4.55)

Young’s and Burkholder’s inequalities imply that

E|U(t′, x)− U(t, x)|p ≤ CpE
[ ˆ t

0

ˆ
R
|G(t′ − s, x− y)−G(t− s, x− y)|2f 2(u(s, y))dyds

]p/2
+ CpE

[ ˆ t′

t

ˆ
R
G2(t′ − s, x− y)f 2(u(s, y))dyds

]p/2
= I + II. (4.56)

Using the assumption that |f(u)| ≤ K, the second term can be estimated as

II ≤ C
[ ˆ t′

t

ˆ
R
G2(t′ − s, x− y)dyds

]p/2
≤ C

[ ˆ t′

t

ds

|t′ − s|1/2
]p/2
≤ C|t′ − t|p/4. (4.57)

For the first term in the right side of (4.56) we write, using the Plancherel identityˆ
R
|G(t′ − s, x− y)−G(t− s, x− y)|2dy =

ˆ
R
|G(t′ − s, y)−G(t− s, y)|2dy (4.58)

= C

ˆ
R

∣∣∣e−(t′−s)|ξ|2 − e−(t−s)|ξ|2∣∣∣2dξ = C

ˆ
R
e−2(t−s)|ξ|

2
[
1− e−(t′−t)|ξ|2

]2
dξ.

It follows that the first integral in there right side of (4.56) can be bounded as

I2/p ≤ C

ˆ t

0

ˆ
R
e−2(t−s)|ξ|

2
[
1− e−(t′−t)|ξ|2

]2
dξds = C

ˆ
R

1

|ξ|2
(

1− e−2t|ξ|2
)[

1− e−(t′−t)|ξ|2
]2
dξ.

(4.59)
Now, we use the following two elementary estimates: first, there exists CT > 0 so that for
all 0 ≤ t ≤ T and all ξ ∈ R we have

1

|ξ|2
(

1− e−2t|ξ|2
)
≤ CT

1 + |ξ|2
,

and, second,
1− e−(t′−t)|ξ|2 ≤ 2 min[(t′ − t)|ξ|2, 1].

Using these estimates in (4.59) gives

I2/p ≤ C

ˆ
R

1

1 + |ξ|2
min[(t′ − t)|ξ|2, 1]dξ

= CT

ˆ |t′−t|−1/2

0

(t′ − t)|ξ|2

1 + |ξ|2
dξ + CT

ˆ
|t′−t|−1/2

dξ

1 + |ξ|2
≤ CT |t′ − t|1/2.
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We conclude that
E|U(t′, x)− U(t, x)|p ≤ CT |t′ − t|p/4. (4.60)

Exercise 4.8 Show that

E|U(t, x)− U(t, x′)|p ≤ Cp

(ˆ t

0

ˆ
R
|G(t− s, y)−G(t− s, x− x′ − y)|2dyds

)p/2
, (4.61)

and then use a similar computation to what we have done to show that

E|U(t, x)− U(t, x′)|p ≤ CT |x− x′|p/2. (4.62)

Summarizing, we have

E|U(t′, x′)− U(t, x)|p ≤ CT

(
|t′ − t|p/4 + |x− x′|p/2

)
. (4.63)

Now, we use Theorem 4.7 with k = p, αx = p/2 and αt = p/4, so that

q =
1

αx
+

1

αt
=

2

p
+

4

p
=

6

p
,

so we get Hölder continuity in t with any exponent smaller than

γ̄t =
αt(1− q)

p
=

1

4

(
1− 6

p

)
,

and in x with any exponent smaller than

γ̄t =
αx(1− q)

p
=

1

2

(
1− 6

p

)
.

As p > 2 is arbitrary, it follows that u(t, x) is Hölder continuous in x with any exponent
smaller than 1/2 and in t with any exponent smaller than 1/4.

Exercise 4.9 Use the bounds on the higher moments E|u(t, x)|p to improve the argument
above to show that the almost sure Hölder regularity of u(t, x) with the same exponents holds
under the (weaker) assumption that the function f(u) is Lipschitz rather than bounded,
removing assumption (4.52).

The comparison principle

It is well known if a function f(u) is Lipschitz and f(0) = 0, then the parabolic equations of
the form

∂u

∂t
= ∆u+ f(u), (4.64)

satisfy the comparison principle. That is, if u(t, x) and v(t, x) are two solutions of (4.64)
and u(0, x) ≤ v(0, x) for all x ∈ R then u(t, x) ≤ v(t, x) for all t ≥ 0 and x ∈ R. Moreover,
the strong comparison principle says that actually u(t, x) < v(t, x) for all t > 0 and x ∈ R
provided that u(0, x) 6≡ v(0, x). These results are easily generalized to equations of the form

∂u

∂t
= ∆u+ g(t, x)f(u), (4.65)
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with a regular function g(t, x).
Here, we prove the following comparison theorem for the solutions of the stochastic heat

equation
∂u

∂t
=
∂2u

∂x2
+ f(u)Ẇ , (4.66)

with a Lipschitz nonlinearity f(u). The difference with the classical PDE results is that the
noise Ẇ is highly irregular. The ”canonical” PDE proof with a bounded function g(t, x) relies
on the fact that the Hessian of a function at a minimum is non-negative definite matrix. Here,
we can not use this strategy since the solutions are merely Hölder with exponent less than 1/2
in space.

Theorem 4.10 Let u(t, x) and v(t, x) be two solutions of (4.66) such that u(0, x) ≥ v(0, x).
Then, almost surely, we have u(t, x) ≥ v(t, x) for all t ≥ 0 and x ∈ R.

Note that we do not yet claim the strong comparison principle, which says that u(t, x) > v(t, x)
for all t > 0 and x ∈ R unless u0(x) ≡ v0(x). This will be done slightly later.

The idea of the proof of Theorem 4.10 is to use numerical analysis. We construct approx-
imate solutions un(t, x) and vn(t, x) such that almost surely we have un(t, x) ≥ vn(t, x) for
all t ≥ 0 and x ∈ R and then pass to the limit n → +∞. The approximation is done by
time-splitting in time and discretizing space. This is also an alternative way to construct the
solutions of the original SPDE.

The time splitting schemes

Solution of a linear equation of the form

du

dt
= (A+B)u, (4.67)

is given by
u(t) = e(A+B)tu0. (4.68)

If the linear operators A and B commute then we have

u(t) = eAtv(t), v(t) = eBtu0. (4.69)

This means that we can solve first

dv

dt
= Bv, v(0) = u0, 0 ≤ t ≤ T,

followed by
du

dt
= Au, u(0) = v(T ), 0 ≤ t ≤ T,

and obtain the correct u(T ). When the operators A and B do not commute, one relies on the
Trotter formula

e(A+B)t = lim
n→+∞

(eA/neB/n)n. (4.70)
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The corresponding time-splitting scheme proceeds as follows. We divide the time axis t > 0
into intervals of the form

Tnj =
{ j

n2
≤ t <

j + 1

n2

}
. (4.71)

On each time interval Tnj we first solve

∂v

∂t
= Bv, v(

j

n2
) = u(

j

n2
),

j

n2
≤ t ≤ j + 1

n2
, (4.72)

followed by
∂u

∂t
= Av, u(

j

n2
) = v(

j + 1

n2
),

j

n2
≤ t ≤ j + 1

n2
, (4.73)

which gives us u((j + 1)/n2), and we can solve (4.72) on the time interval Tn,j+1, and so
on. Convergence of u(t) to the solution of (4.67) is guaranteed by the Trotter formula under
certain assumptions on A and B.

The spatial discretization and time splitting for the stochastic heat equation

For the stochastic heat equation

∂u

∂t
=
∂2u

∂x2
+ f(u)Ẇ , (4.74)

we would like to consider the following time-splitting scheme: the first step is solving a point-
wise SDE

∂un,j+1/2

∂t
= f(un,j+1/2)Ẇ ,

j

n2
≤ t <

j + 1

n2
, (4.75)

with the initial condition

un,j+1/2(
j

n2
, x) = un,j(

j

n2
, x),

followed by the heat equation

∂un,j+1

∂t
=
∂2un,j+1

∂x2
,

j

n2
≤ t <

j + 1

n2
, (4.76)

with the initial condition

un,j+1(
j

n2
, x) = un,j+1/2(

j + 1

n2
, x).

This would give us the initial condition un,j+1((j + 1)/n2, x) for the next SDE step (4.75) on
the time interval Tn,j+1, and we would be able to re-start.

One difficulty is making sense of (4.75) as it is neither an SDE nor an SPDE. Hence, in
addition to the time-splitting, we will discretize in space. We will consider functions unj(t, x)
that are piecewise constant on the spatial intervals

Ink =
{k
n
− 1

2n
≤ x <

k

n
+

1

2n

}
.
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Each unj is defined on the time interval Tnj. Given unj(j/n
2, x), in order to define un,j+1/2

and un,j+1, we first solve a family of SDEs

un,j+1/2(t,
k

n
) = unj(

j

n2
,
k

n
) + n

ˆ t

j/n2

ˆ
Ink

f(un,j+1/2(s,
k

n
))W (dsdy). (4.77)

In other words, on the time interval Tnj, the piece-wise constant in space function un,j+1/2(t, x)
satisfies the SDE

dun(t,
k

n
) = f(un(t,

k

n
))dBk, (4.78)

where

Bk(t) = n

ˆ t

0

ˆ
Ink

W (dsdy)

is the standard Brownian motion.
In order to incorporate the heat equation step, we consider the discrete Laplacian

∆nu(
k

n
) = n2

[
u(
k + 1

n
) + u(

k − 1

n
)− 2u(

k

n
)
]
.

The function un,j+1(t, x), also defined on the time interval Tnj is the solution of

∂un,j+1

∂t
= ∆nun,j+1, t ∈ Tnj, (4.79)

with the initial condition un,j+1(j/n
2, x) = un,j+1/2((j + 1)/n2, x).

It is convenient to re-write the above scheme in terms of the Green’s function Gn(t, x, y)
of the discrete Laplacian. It is defined for the lattice points of the form x = k/n, y = m/n,
and is the solution of

∂Gn

∂t
= ∆nGn, (4.80)

with the initial condition

Gn(0,
k

n
,
m

n
) =

{
n, if k = m,
0, otherwise.

We extend Gn(t, x, y) to x, y ∈ R as

Gn(t, x, y) = Gn(t,
k

n
,
m

n
), if

k

n
− 1

2n
≤ x <

k

n
+

1

2n
and

m

n
− 1

2n
≤ y <

m

n
+

1

2n
,

Let us now verify that the approximation unj(t, x) that we have defined above via the
time-splitting scheme is the solution of (dropping sub-script j)

un(t, x) =

ˆ
R
Ḡn(t, 0, x, y)un(0, y)dy +

ˆ t

0

ˆ
R
Ḡn(t, s, x, y)f(un(s, y))W (dsdy), (4.81)

with the initial condition

un(0, x) = n

ˆ k+1/(2n)

k−1/(2n)
u(0, y)dy, for

k

n
− 1

2n
≤ x <

k

n
+

2

2n
,
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and Ḡ(t, s, x, y) defined as

Ḡn(t, s, x, y) = Gn

( [n2t]− [n2s]

n2
, x, y

)
,

for all t ≥ s.
Indeed, given t ∈ Tnj we have [n2t] = j, thus Ḡn(t, 0, x, y) = Gn(j/n2, x, y). In addition,

for 0 ≤ s ≤ j/n2 we have Ḡ(t, s, x, y) = Ḡ(j/n2, s, x, y). Hence we may re-write (4.81) as

un(t, x) = un(
j

n2
, x) +

ˆ t

j/n2

ˆ
R
Ḡn(t, s, x, y)f(un(s, y))W (dsdy). (4.82)

Next, for x ∈ Ink, t ∈ Tnj, and j/n2 ≤ s ≤ t, we have

Ḡn(t, s, x, y) = Gn(0,
k

n
, y) = n1Ink

(y).

Hence, (4.82) says

un(t, x) = un(
j

n2
, x) + n

ˆ t

j/n2

ˆ
Ink

f(un(s,
k

n
))W (dsdy). (4.83)

Therefore, on the time interval Tnj, the piece-wise constant (in space) function un(t, x) satisfies
the SDE (4.78). At the time t = (j + 1)/n2 the function un(t, x) experiences a jump. To
describe it, we go back to (4.81): the solution after the jump is given by

un(
j + 1

n2
+, x) =

ˆ
R
Ḡn(

j + 1

n2
, 0, x, y)un(0, y)dy (4.84)

+

ˆ (j+1)/n2

0

ˆ
R
Ḡn(

j + 1

n2
, s, x, y)f(un(s, y))W (dsdy),

while just before the jump we have

un(
j + 1

n2
−, x) =

ˆ
R
Ḡn(

j

n2
, 0, x, y)un(0, y)dy (4.85)

+

ˆ (j+1)/n2

0

ˆ

R

Ḡn(
j

n2
, s, x, y)f(un(s, y))W (dsdy).

The semi-group property for (4.80) implies that

Gn(t,
k

n
,
p

n
) =

1

n

∑
m

G(t− s, k
n
,
m

n
)G(s,

m

n
,
p

n
), (4.86)

for all 0 ≤ s ≤ t, k and p. The continuous version of (4.86) is

Gn(t, x, y) =

ˆ
R
Gn(t− s, x, z)Gn(s, z, y)dz. (4.87)
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It follows from (4.87) that for s < (j + 1)/n2 we have

Ḡn(
j + 1

n2
, s, x, y) = Gn(

j − [n2s]

n2
+

1

n2
, x, y) =

ˆ
R
Gn(

1

n2
, x, z)Ḡn(

j

n2
, s, z, y)dz.

Using this in (4.84), together with the semi-group property gives

un(
j + 1

n2
+, x) =

ˆ
R

ˆ
R
Gn(

1

n2
, x, z)Ḡn(

j

n2
, z, y)un(0, y)dydz (4.88)

+

ˆ (j+1)/n2

0

ˆ
R

ˆ
R
Gn(

1

n2
, x, z)Ḡn(

j

n2
, s, z, y)f(un(s, y))W (dsdy)dz

=

ˆ
R
Gn(

1

n2
, x, z)un(

j + 1

n2
−, z)dz.

We see that, indeed, the passage from un at the time t = (j+1)/n2− to un at t = (j+1)/n2+
is exactly via solving the discrete heat equation (4.79).

Convergence of the approximation

We will need the result of the following exercise, verified by a lengthy computation found
in [4].

Exercise 4.11 Show that the following two bounds hold: first,

ˆ t

0

ˆ
R
[Ḡn(t, s, x, y)−G(t− s, x− y)]2dsdy ≤ c

n
, (4.89)

and, second,

sup
0≤s≤t

sup
x∈R

[ ˆ
R
[Ḡn(t, s, x, y)−G(t− s, x− y)]u(0, y)dy

]2
→ 0 as n→ +∞. (4.90)

We now show that

M(t) := sup
0≤s≤t

sup
x∈R

E|un(s, x)− u(s, x)|2 → 0 as n→ +∞. (4.91)

To see this, let us recall that

u(t, x) =

ˆ
R
G(t, x− y)u(0, y)dy +

ˆ t

0

ˆ
R
G(t− s, x− y)f(u(s, y))W (dsy),

and

un(t, x) =

ˆ
R
Ḡn(t, 0, x, y)un(0, y)dy +

ˆ t

0

ˆ
R
Ḡn(t, s, x, y)f(un(s, y))W (dsdy),

Subtracting, we get

M̄(s, x) = E|un(s, x)− u(s, x)|2 ≤ C(I + II), (4.92)
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with

I =
∣∣∣ˆ

R
G(t, x− y)u(0, y)dy −

ˆ
R
Ḡn(t, 0, x, y)un(0, y)dy

∣∣∣2 → 0, as n→ +∞,

because of (4.90) and the fact that un(0, y) converges to u(0, y) in every Lp-norm. The other
term is

II =

ˆ t

0

ˆ
R
E|G(t− s, x− y)f(u(s, y))− Ḡn(t, s, x, y)f(un(s, y))|2dsdy,

and can be bounded as

II ≤ C

ˆ t

0

ˆ
R
E|(G(t− s, x− y)− Ḡn(t, s, x, y))f(un(s, y))|2dsdy

+ C

ˆ t

0

ˆ
R
E|G(t− s, x− y)(f(u(s, y))− f(un(s, y)))|2dsdy = II1 + II2. (4.93)

It is straightforward to verify that there exists CT so that

sup
0≤s≤T

sup
x∈R

E|un(s, x)|2 ≤ CT . (4.94)

This, together with (4.89) and the Lipschitz bond on f means that

II1 ≤
CT
n
. (4.95)

The last term in right side of (4.93) is bounded as

II2 ≤ C

ˆ t

0

M(s)ds√
t− s

. (4.96)

Therefore, we have an estimate for M(s):

M(t) ≤ α(n) +

ˆ t

0

M(s)ds√
t− s

, (4.97)

with α(n)→ 0 as n→ +∞. We conclude that

M(t)→ 0 as n→ +∞. (4.98)

Back to the comparison principle

We have shown that u(t, x) and v(t, x) can be obtained via the time-splitting approximation
scheme. The approximations un(t, x) and vn(t, x) satisfy un(t, x) ≥ vn(t, x) if u(0, x) ≥ v(0, x)
for all x ∈ R. This is because each of the steps in the time splitting scheme preserves the
order. Indeed, the heat equation has the comparison principle, while an SDE

du = f(u)dBt
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also preserves the order because if u and v are two solutions, the difference z = u− v satisfies

dz = g(t)zdBt,

with the function

g(t) =
f(u(t))− f(v(t))

u(t)− v(t)
.

It is easy to verify that z(t) ≥ 0 for all t > 0 if z(0) ≥ 0. This completes the proof of
Theorem 4.10.

The strong maximum principle

The heat equation
∂u

∂t
= ∆u, (4.99)

in addition to the comparison principle, has the strong maximum principle: if u0(x) ≥ 0
and u0(x) 6≡ 0 everywhere, then u(t, x) > 0 for all t > 0 and all x ∈ Rd. In other words,
solutions with compactly supported nonnegative initial data become positive everywhere in-
stantaneously. On the other hand, the heat equation with a non-Lipschitz nonlinearity

∂u

∂t
= ∆u−

√
u, (4.100)

does not satisfy the strong maximum principle: solutions have compact support at t > 0
if u0(x) is compactly supported. One can think of (4.100) as

∂u

∂t
= ∆u− g(t, x)u, (4.101)

with g(t, x) = 1/
√
u that is large when u is small. Thus, a ”large” g(t, x) can prevent u(t, x)

from having non-compact support, and, of course, white noise is a pretty large force. Nev-
ertheless, solutions of the stochastic heat equation have non-compact support. We formu-
late the result for the linear equation but it holds for any Lipschitz nonlinearity f(u) such
that f(0) = 0.

Theorem 4.12 Let u(t, x) be the solution of

∂u

∂t
=
∂2u

∂x2
+ uẆ , (4.102)

with the initial condition u0(x) ≥ 0 for all x ∈ R. If u0(x) 6≡ 0, and u0(x) is continuous,
then, almost surely, for each t > 0, we have u(t, x) > 0 for all x ∈ R.

Taking f(u) = u in (4.102) is not necessary, and is made purely to simplify some steps in the
proof. On the other hand, the Lipschitz assumption on f is crucial: the conclusion is false
if f(u) =

√
u.

Let us assume without loss of generality that t = 1, and take some R > 2. Because of
an application of the large deviations principle in the proof, it will be convenient to restrict
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the problem to a finite interval. Consider the solution of the stochastic heat equation (4.101)
with the Dirichlet boundary conditions at x = ±2R:

∂v

∂t
=
∂2v

∂x2
+ uẆ , t > 0, |x| < 2R, (4.103)

v(t,−2R) = v(t, 2R) = 0,

and the initial condition v(0, x) = u0(x). The solution is, once again, understood in the mild
sense:

v(t, x) =

ˆ
|y|≤2R

GR(t, x, y)u0(y)dy +

ˆ t

0

ˆ
|y|≤2R

GR(t− s, x, y)f(u(s, y))W (dyds). (4.104)

Here, GR(t, x, y) is Green’s function for the Dirichlet problem:

∂GR

∂t
=
∂2GR(t, x, y)

∂x2
, t > 0, |x| < 2R, (4.105)

GR(t,−2R, y) = GR(t, 2R, y) = 0,

GR(0, x, y) = δ(x− y).

Exercise 4.13 Use the time-splitting argument used in the proof of the comparison principle
to show that u(t, x) ≥ v(t, x) for all t ≥ 0 and |x| ≤ 2R.

As R is arbitrary, it suffices to show that with probability one

v(t = 1, x) > 0 for all |x| ≤ R. (4.106)

We may assume without loss of generality that

u0(x) ≥ δ01[−1,1](x),

for some δ0 > 0. We will proceed ”step-by-step”. Fix N > 0 and set tk = k/N . Let Ak be
the event that there exists some δk > 0 so that

v(tk, x) ≥ δkIk(x), for all x ∈ R,

where

Ik(x) = 1

(
− 1− Rk

N
≤ x ≤ 1 +

Rk

N

)
.

As v(tk, x) is almost surely Hölder continuous in x, the event Ak is simply that v(tk, x) is
strictly positive on Ik. The support of Ik grows with k, or ”in time”, and at the last moment
we have

IN(x) > 1[−R,R](x).

We will show that for all ε > 0 we may choose Nε so large that for all k = 1, . . . , Nε we have

P
(
Ack+1

∣∣∣A1 ∩ . . . ∩ Ak
)
<

ε

Nε

. (4.107)
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This estimate shows that support of v has to grow with a large probability – in the end we
will show that the support of v is all of [−2R, 2R] but we are not there yet. With (4.107) in
hand, we would have

P(AcNε
) ≤

Nε−1∑
k=0

P
(
Ack+1

∣∣∣A1 ∩ . . . ∩ Ak
)
< ε. (4.108)

However, we have then, for any ε > 0

P(v(t = 1, x) > 0 for all x ∈ [−R,R]) ≥ P(ANε) ≥ 1− ε. (4.109)

As ε > 0 is arbitrary, we would have

P(v(t = 1, x) > 0 for all x ∈ [−R,R]) = 1, (4.110)

finishing the proof. Thus, it suffices to verify (4.107) to finish the proof of Theorem 4.12.
To prove (4.107), let us assume that Ak occurs, so that v(tk, x) ≥ δkIk(x). By the

comparison principle, it is enough then to show that

P
[
there exists δk+1 > 0 so that v(tk+1, x) ≥ δk+1Ik+1(x) for all |x| ≤ 2R

]
≥ 1− ε

N
. (4.111)

Here, v(t, x) is the solution of

∂v

∂t
=
∂2v

∂x2
+ vẆ , t > tk, |x| < 2R, (4.112)

v(t,−2R) = v(t, 2R) = 0,

v(tk, x) = Ik(x).

Let us then write

v(tk+1, x) =

ˆ 2R

−2R
GR(tk+1 − tk, x, y)Ik(y)dy (4.113)

+

ˆ tk+1

tk

ˆ 2R

−2R
GR(tk+1 − s, x, y)v(s, y)W (dsdy) = v1(tk+1, x) + v2(tk+1, x).

Exercise 4.14 Verify that if N is sufficiently large then v1(tk+1, x) > 1/10 on the inter-
val Ik+1. This is because the distance between the edges of Ik and Ik+1 is R/N while the time
increment is tk+1−tk = 1/N . Thus the solution would spread over the distance N−1/2 � R/N
during this time, and the region where v1(tk+1, x) > 1/10 would cover Ik+1.

Thus, to prove (4.107) we need to show that

P
[

sup
|x|≤2R

|v2(tk+1, x)| ≥ 1

20

]
<

ε

N
. (4.114)

This is reasonable to expect – when N is large, the time interval [tk, tk+1] is not long enough
to let v2(tk+1, x) become large with an overwhelming probability. We will need an exponential
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moment estimate on w2 for this. More precisely, we will show that a stochastic integral of the
form

N(t, x) =

ˆ t

0

ˆ 2R

−2R
G(t− s, x, y)g(s, y)W (dsdy)

with |g(s, y)| ≤ K almost surely, satisfies a large deviations estimate:

P
[

sup
0≤t≤T

sup
|x|≤2R

|N(t, x)| > λ
]
≤ CR exp

(
− λ2

CRT 1/2K2

)
. (4.115)

A minor difficulty is that a priori we do not know that v(s, y) is bounded almost surely, which
is what we need to apply (4.115) to v2. To deal with this, we can consider instead the solution
of a modified equation

∂ṽ

∂t
=
∂2ṽ

∂x2
+ χ(ṽ)ṽẆ , t > tk, x ∈ [−2R, 2R] (4.116)

ṽ(t,−2R) = ṽ(t, 2R) = 0,

ṽ(tk, x) = Ik(x).

The smooth cut-off function χ(v) is such that χ(v) = 1 for 0 ≤ v ≤ 5 and χ(v) = 0 for v > 10.
Note that v(t, x) = ṽ(t, x) until a stopping time τ :

τ = inf{t > tk : sup
|x|≤2R

ṽ(t, x) = 5.}

In addition, we know that |ṽ(t, x)| ≤ 10 almost surely. We claim that τ > tk+1 = tk + 1/N
with a very large probability. Indeed, setting

Ñ(t, x) =

ˆ t

tk

ˆ 2R

−2R
GR(tk+1 − s, x, y)ṽ(s, y)W (dsdy)

we can use use (4.115) for ṽ(t, x) to see that

P(τ < 1/N)) = P
[

sup
tk≤t≤tk+1

sup
|x|≤2R

ṽ(t, x) > 5
]
≤ C exp

(
− C · 25

(1/N)1/2102

)
≤ C exp(−CN1/2).

(4.117)
It is in this estimate on the stopping time that it is helpful from the very beginning to restrict
to the Dirichlet problem on a finite interval [−2R, 2R]. We also have, from (4.115)

P
[

sup
tk≤t≤tk+1

sup
|x|≤2R

|Ñ(t, x)| > 1

20

]
≤ C exp

(
− CN1/2

)
. (4.118)

Therefore, we can estimate

P
[

sup
|x|≤2R

|v2(tk+1, x)| ≥ 1

20

]
≤ P(τ < 1/N) + P

[
sup

0≤t≤T
sup
|x|≤2R

|Ñ(t, x)| > 1

20

]
≤ C exp(−CN1/2). (4.119)

This proves (4.114), hence (4.107), finishing the proof of Theorem 4.12 except for the large
deviations estimate (4.115).
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Exercise 4.15 Explain why this proof fails and can not be generalized to the equation

∂u

∂t
=
∂2u

∂x2
+
√
uẆ ,

with a compactly supported initial condition u0(x) ≥ 0. Do not worry about the existence
and uniqueness issues.

Large deviations for stochastic integrals

Let us now explain where (4.115) comes from. We will work on the whole line for simplicity,
and consider

N(t, x) =

ˆ t

0

ˆ
R
G(t− s, x− y)u(s, y)W (dsdy),

under the assumption |u(s, y)| ≤ K almost surely. We will show the analog of (4.115):

P
[

sup
0≤t≤T

sup
|x|≤R

|N(t, x)| > λ
]
≤ CR exp

(
− λ2

CRT 1/2K2

)
. (4.120)

Exercise 4.16 Use the scaling of both G(t, x) and of the white noise to verify that it suffices
to prove (4.120) for T = 1.

Let us freeze the t variable inside the integral and set

N̄t(s, x) =

ˆ s

0

ˆ
R
G(t− r, x− y)u(r, y)W (drdy),

so that N̄t(t, x) = N(t, x). This makes N̄t(s, x) a martingale in s (with t fixed), by virtue of
being a stochastic integral, as the integrand does not depend on s. Consider

Ms = N̄t(s, x)− N̄t(s, y),

so that Mt = N(t, x) − N(t, y). As Ms is a martingale, it is a random time change of a
Brownian motion, that is,

Ms = B〈M〉s ,

and, in particular, we have

Mt = N(t, x)−N(t, y) = B〈M〉t .

We may estimate the quadratic variation:

〈M〉s =

ˆ s

0

ˆ
R
[G(t− r, x− z)−G(t− r, y − z)]u2(r, z)dzdr,

and

〈M〉t =

ˆ t

0

ˆ
R
[G(t− r, x− z)−G(t− r, y − z)]2u2(r, z)dzdr ≤ CK2|x− y|,
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for all 0 ≤ t ≤ 1. We deduce that

P(N(t, x)−N(t, y) > λ) = P(B〈M〉t > λ) ≤ CP(BCK2|x−y| > λ) ≤ Ce−cλ
2/K2|x−y|.

Switching x and y gives

P(|N(t, x)−N(t, y)| > λ) = P(B〈M〉t > λ) ≤ CP(BCK2|x−y| > λ) ≤ Ce−cλ
2/K2|x−y|. (4.121)

In a similar vein, we can write, for t > s and x ∈ R fixed:

N(t, x)−N(s, x) =

ˆ t

0

ˆ
R
G(t− r, x− z)u(r, z)W (drdy)

−
ˆ s

0

ˆ
R
G(s− r, x− z)u(r, z)W (drdy)

=

ˆ s

0

ˆ
R
[G(t− r, x− z)−G(s− r, x− z)]u(r, z)W (drdy)

+

ˆ t

s

ˆ
R
G(t− r, x− z)u(r, z)W (drdy).

We set

Aτ =

ˆ τ

0

ˆ
R
[G(t− r, x− z)−G(s− r, x− z)]u(r, z)W (drdy)

and

Bτ =

ˆ s+τ

s

ˆ
R
G(t− r, x− z)u(r, z)W (drdy).

These are both martingales in τ and

N(t, x)−N(s, x) = As +Bt−s.

A simple computation shows that their quadratic variations are bounded by

〈A〉s ≤ K2

ˆ s

0

ˆ
R
|G(t− r, x− z)−G(s− r, x− z)|2drdz ≤ CK2|t− s|1/2,

and

〈B〉t−s ≤ K2

ˆ t

s

ˆ
R
G2(t− r, x− z)|2dzdr ≤ CK2|t− s|1/2.

Therefore, we have

P(As +Bt−s > λ) ≤ P(As > λ/2) + P(Bt−s > λ/2) ≤ Ce−cλ
2/K2|t−s|1/2 .

We conclude that

P(|N(t, x)−N(s, x)| > λ) ≤ Ce−cλ
2/K2|t−s|1/2 . (4.122)

Now, the proof of (4.115):

P
[

sup
0≤t≤T

sup
|x|≤R

|N(t, x)| > λ
]
≤ CR exp

(
− λ2

CRT 1/2K2

)
(4.123)

becomes a real analysis exercise. One connects the point (t, x) to (0, 0) on a grid of dyadic
points in the (t, x)-plane. Then one estimates the increments between the nearest neighbors
using (4.121) and (4.122). Summing up all the differences leads to (4.123).

Exercise 4.17 Fill in the details in the last step in the proof.
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5 Spreading in the stochastic heat equation

Spreading in the deterministic equation

Before discussing spreading for the solutions of the stochastic heat equation, let us recall some
very basic facts about the solutions of the heat equation with a deterministic linear forcing

∂u

∂t
=
∂2u

∂x2
+ u, (5.1)

and an initial condition u0(x) ≥ 0 decaying at infinity. We say that u(t, x) spreads with a
speed c if for any c′ > c we have

lim sup
t→+∞

sup
|x|≥c′t

u(t, x) = 0, (5.2)

while for any 0 ≤ c′ < c we have

lim inf
t→+∞

inf
|x|≤c′t

u(t, x) = 0, (5.3)

Of course, this definition can be applied to other problems than (5.1).

Solutions with compactly supported initial conditions

Solutions of (5.1) with a compactly supported initial condition u0(x) ≥ 0 spread with the
speed c∗ = 2. In order to see this, let us assume that u0(x) = 1[−1,1](x) and write

u(t, x) = et
ˆ 1

−1
e−|x−y|

2/(4t)dy. (5.4)

Then, for c > 2 we have an upper bound

u(t, ct) ≤ et
ˆ 1

−1
e−|ct−1|

2/(4t)dy = 2 exp
{

(1− c2

4
)t+

c

2
− 1

4t

}
→ 0 as t→ +∞. (5.5)

On the other hand, for c ∈ (0, 2) we have

u(t, x) ≥ 2et
ˆ 1

−1
e−|ct+1|2/(4t)dy = 2 exp

{
(1− c2

4
)t− c

2
− 1

4t

}
, (5.6)

hence (5.3) holds. Thus, the front of the solution is located around x = 2t, in the sense that
the solution is exponentially large at x� 2t and it is exponentially small at x� 2t.

In order to understand what happens around x = 2t, let us just look at the heat kernel:

u(t, x) =
1√
4πt

et−|x|
2/(4t).

Let us write x = 2t+ ξ, then

u(t, 2t+ ξ) =
1√
4πt

et−|(2t+ξ)|
2/(4t) =

1√
4πt

e−ξ−ξ
2/(4t).
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A general solution with a compactly supported initial condition u0(x) has an asymptotics

u(t, x) ∼ M0√
4πt

et−|x|
2/(4t), M0 =

ˆ
R
u0(x)dx.

Hence, it can be written as

u(t, 2t+ ξ) ∼ M0√
4πt

e−ξ−ξ
2/(4t) ∼ exp

[
− ξ − |ξ|

2

4t
− 1

2
log t+ logM0 −

1

2
log(4π)

]
.

Therefore, we have an approximation

u(t, 2t− 1

2
log t+ x0 + ξ)→ exp(−ξ), (5.7)

with the shift x0 that depends on the initial condition. In other words, the ”front” of the
solution (the location where u(t, x) = 1) is located at

X(t) = 2t− 1

2
log t+ x0, (5.8)

and the solution around this point converges to an exponential ū(ξ) = e−ξ. The profile around
the front is not Gaussian – it is an exponential function. Another remarkable point is that
the function

ũ(t, x) = ū(x−X(t)) = e−(x−X(t))

is not an exact solution of (5.1): it satisfies an approximate equation

∂ũ

∂t
+

1

2t

∂ũ

∂x
=
∂2ũ

∂x2
+ ũ. (5.9)

This is quite typical – the limiting profiles need not be exact solutions of the original problem,
the can solve an approximate problem instead.

The exponential solutions and pulled propagation

There is another simple way to guess the spreading speed c∗ = 2 for the solutions of (5.1) with
compactly supported initial conditions. Let us look for exponential solutions of this equation
of the form

u(t, x) = exp{−λ(x− ct)}.

Inserting this into (5.1) gives
cλ = λ2 + 1. (5.10)

This equation has a positive solution λ > 0 exists for all c ≥ c∗ = 2. This identifies the
spreading speed correctly.

This very simple idea of using the exponential solutions is very useful in all sorts of ”pulled
front” deterministic reaction-diffusion problems. A simple evidence that the propagation is
pulled is the sensitivity of the spreading rate to the precise rate of decay of the initial condition.
Let us assume that

u0(x) ∼ Ce−λx, as x→ +∞, (5.11)
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with a decay rate λ < 1. In other words, there exists x0 > 0 and two constants C1,2 > 0 such
that

C1e
−λx ≤ u0(x) ≤ C2e

−λx, for all x > x0. (5.12)

On the other hand, we assume that u0(x) is compactly supported on the left: there exists x1
such that u0(x) = 0 for all x < x1. Then we can find exponential sub- and super-solutions
for u(t, x) spreading with the speed c given by (5.10). For the super-solution, we find C so
that

u0(x) ≤ Ce−λx,

for all x ∈ R. Then we have, from the maximum principle

u(t, x) ≤ C0e
−λ(x−ct), (5.13)

hence u(t, x) spreads at most with the speed c. On the other hand, given λ < 1 we can find c
from (5.10) but also λ′ = 1/λ > 1 that satisfies the same quadratic equation. Then we can
find C and C ′ such that

u0(x) ≥ ũ0(x) = Ce−λx − C ′e−λ′x,

and there is some interval (a, b) such that ũ0(y) > 0 for all y ∈ (a, b). It follows that

u(t, x) ≥ Ce−λ(x−ct) − C ′e−λ′(x−ct), for all t > 0 and x ∈ R. (5.14)

In particular, we have

u(t, ct+ y) > α0 for all t > 0 and y ∈ (a, b). (5.15)

Exercise 5.1 Use (5.15) to show that (5.3) holds for all c′ ∈ [0, c).

Hence, solutions with an initial condition that has an exponential decay as in (5.11) with λ < 1
propagate with the speed c > 2 given by (5.10).

Exercise 5.2 Show that if the initial condition has an exponential decay with a rate faster
than λ∗ = 1, that is, if (5.11) holds with λ > 1, then the solution spreads with the speed c∗ = 2,
”as if it were compactly supported”.

Spreading in the nonlinear case

As the heat equation fronts are pulled, we have the following phenomenon. Consider the
solutions of the nonlinear heat equation

∂u

∂t
=
∂2u

∂x2
+ f(u), (5.16)

and an initial condition u0(x) ≥ 0 decaying at infinity. We can interpret the function

r(u) =
f(u)

u

as the rate of growth of u.
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Exercise 5.3 Assume that the function r(u) is decreasing for u > 0, and that u0(x) is either
compactly supported or is exponentially decaying as in (5.12). Show that the spreading rate
of the solutions of (5.1) is the same as for the solutions of

∂v

∂t
=
∂2v

∂x2
+ f ′(0)v, (5.17)

with v(0, x) = u0(x).

Spreading in the stochastic case

Let us now consider solutions of the stochastic heat equation

∂u

∂t
= ν

∂2u

∂x2
+ f(u)Ẇ , (5.18)

with a continuous compactly supported initial condition u0(x) ≥ 0 such that u0(x) 6≡ 0. The
nonlinearity f(u) is Lipschitz:

|f(u)− f(v)| ≤ L̄|u− v|, (5.19)

and f(0) = 0. In addition, we will assume that

f(u) ≥ βu for all u ≥ 0. (5.20)

As the forcing in the stochastic heat equation has mean zero, there is no a priori reason
to expect that the solution will spread at a linear speed – one may also expect a diffusive
behavior, as in the standard heat equation. And, indeed, since

E
ˆ
R
u(t, x)dx =

ˆ
R
u0(x)dx

is conserved in time, there can not be ”growth everywhere” we have seen in the deterministic
equation

∂u

∂t
=
∂2u

∂x2
+ u.

Rather, we should be tracking ”propagation of the non-trivial behavior”. That is, there is a
certain spatial scale L(t) such that for x� L(t) ”nothing happens yet” – the solution is still
very small, while for |x| � L(t) we should observe a ”non-trivial” behavior, whatever that
means.

Spreading of the moments

In order to make this precise, we will judge the non-triviality of the behavior by the size of
the second moment. By a vague analogy with the deterministic case and the exponential
solutions, we may expect that

E|u(t, x)|2 ∼ exp(−λ∗(x− c∗t), for x > 0. (5.21)
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Then we would call c∗ the spreading speed of the solutions. According to these expectations,
let us define

S̄(c) = lim sup
t→+∞

1

t
sup
|x|>ct

logE(|u(t, x)|2),

and

S(c) = lim inf
t→+∞

1

t
sup
|x|<ct

logE(|u(t, x)|2).

That is, if S̄(c) < 0, there can be no peaks in u(t, x) for x > ct with a large probability. On
the other hand, if S(c) > 0, there must be peaks in u(t, x) for |x| < ct with a large probability.
Hence, it makes sense to consider

c̄2 = inf{c > 0 : S̄(c) < 0}, (5.22)

and
c2 = inf{c > 0 : S(c) > 0}. (5.23)

If
c̄2 = c2, (5.24)

it is natural to call c∗ = c̄2 the speed of propagation – the solution is small for x � c∗t and
there are large peaks at positions |x| � c∗t. Note that these large peaks still occur with a
very small probability – the first moment of the solution is not growing. Hence, the spreading
of the second moment does not reflect a typical behavior at a given point. Nevertheless, these
are interesting objects to study.

Recall that in the deterministic case (5.1) we know that c̄2 = c2 = 2
√
ν. In the stochastic

case, it is known that (5.24) holds in the special case f(u) = βu – see the recent paper by
Chen and Dalang [1]. However, to the best of my knowledge, this question is open for more
general nonlinearities f(u) even under our extra assumption (5.20).

The choice of the second moment as a measuring stick is subjective. One could define

S̄p(c) = lim sup
t→+∞

1

t
sup
|x|>ct

logE(|u(t, x)|p),

and

Sp(c) = lim inf
t→+∞

1

t
sup
|x|<ct

logE(|u(t, x)|p),

and the corresponding speeds c̄p and cp. It has been recently shown in a paper by Nualart [3]
that c̄p > c̄2, and c̄p = cp for p > 2 when f(u) = βu. Hence, the legitimacy of taking c̄2 even
if c̄2 = c2 as the speed is not obvious.

We will prove the following result of Conus and Khoshnevisan [2].

Theorem 5.4 There exists c0 so that S(c) > 0 for all c ∈ (0, c0). On the other hand, for any
speed c > c∗ = L̄2/2 we have S̄(c) < 0.
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