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Abstract

Nothing found here is original except for a few mistakes and misprints here and
there. These notes are simply a record of what I cover in class, to spare the students
the necessity of taking the lecture notes. The readers should consult the original books
for a better presentation and context. We plan to follow the material from the following
books: J. Bedrossian and V. Vicol ”The Mathematical Analysis of the Incompressible
Euler and Navier-Stokes Equations” C. Doering and J. Gibbon “Applied Analysis of
the Navier-Stokes Equations”, A. Majda and A. Bertozzi “Vorticity and Incompressible
Flow”, P. Constantin and C. Foias “The Navier-Stokes Equations”, as well as lecture
notes by Vladimir Sverak on the mathematical fluid dynamics that can be found on his
website.
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1 The derivation of the Navier-Stokes and Euler equa-

tions

The state of a fluid is characterized by its density ρ(t, x) and fluid velocity u(t, x), and our
first task is to derive the partial differential equations that govern their evolution. They will
come from the conservation of mass, Newton’s second law and, finally, an assumption on the
material properties of the fluid.

1.1 The continuity equation

Each fluid particle is following a trajectory governed by the fluid velocity u(t, x):

dX(t, α)

dt
= u(t,X(α, t)), X(0, α) = α. (1.1)
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Here, α is the starting position of the particle, and is sometimes called “the label”, and the
inverse map At : X(t, α) → α is called the “back-to-the-labels” map. If the flow u(t, x) is
sufficiently smooth so that the particles can not coalesce, and the particles are never removed,
the forward map α → X(t, α) should preserve the total mass.

Let us first assume that the fluid density ρ(t, x) = ρ0 is a constant, and see what can be
deduced from mass preservation – the fluid is neither created nor destroyed. In the constant
density case, mass preservation is equivalent to the conservation of the volume. That is,
if V0 ⊂ Rd, (d = 2, 3) is an initial volume of a parcel of the fluid, then the set

V (t) = {X(t, α) : α ∈ V0}

of where the particles that started in V0 at t = 0 ended up at a later time t > 0, should have
the same volume as V0. In order to quantify this property, let us define the Jacobian

J(t, α) = det(
∂Xi(t, α)

∂αj

).

The change of variables formula, for the coordinate transformation α → X(t, α), implies that
volume preservation means that J(t, α) ≡ 1. As J(0, α) ≡ 1, this condition is equivalent to

dJ

dt
≡ 0. (1.2)

Thus, our first task is to compute the time derivative dJ/dt for a general velocity field u(t, x).
It follows from (1.1) that the full derivative matrix

Hij(t, α) =
∂Xi(t, α)

∂αj

obeys the evolution equation
dHij

dt
=

n∑
k=1

∂ui
∂xk

∂Xk

∂αj

, (1.3)

which, in the matrix form, is

dH

dt
= (∇u)H, (∇u)ik =

∂ui
∂xk

. (1.4)

The matrix Hij is also known as the deformation tensor. For example, if u = ū is a constant
vector, so that

X(t, α) = α + ūt,

then H = Id is the identity matrix. In order to find dJ/dt, with J(t, α) = detH(t, α), we
consider a general n× n time-dependent matrix Aij(t) and decompose, for each i = 1, . . . , n
fixed:

detA =
n∑

j=1

(−1)i+jMijAij.

Note that the minors Mij, for all 1 ≤ j ≤ n, do not depend on the matrix element Aij, hence

∂

∂Aij

(detA) = (−1)i+jMij.
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We conclude that

d

dt
(detA) =

n∑
i,j=1

∂(detA)

∂Aij

dAij

dt
=

n∑
i,j=1

(−1)i+jMij
dAij

dt
. (1.5)

Recall also that
(A−1)ij = (1/ detA)(−1)i+jMji,

meaning that

(detA)δik = (detA)
n∑

j=1

Akj(A
−1)ji =

n∑
j=1

(−1)j+iMijAkj. (1.6)

We apply now (1.5)-(1.6) to the matrix Hij:

dJ

dt
=

n∑
i,j=1

(−1)i+jMij
dHij

dt
, (1.7)

and

Jδik =
n∑

j=1

(−1)j+iMijHkj (1.8)

Here, Mij are the minors of the matrix Hij. Using (1.3) and (1.8) in (1.7) gives

dJ

dt
=

n∑
i,j,k=1

(−1)i+jMij
∂ui
∂xk

Hkj =
n∑

i,k=1

∂ui
∂xk

Jδik = J(∇ · u). (1.9)

This is the equation for dJ/dt that we sought. Preservation of the volume means that J ≡ 1.
As H(0) = Id and J(0) = 1, this is equivalent to the incompressibility condition:

∇ · u = 0. (1.10)

Here, we use the notation

∇ · u = divu =
n∑

k=1

∂uk
∂xk

.

More generally, if the density is not constant, mass conservation would require that for
any initial volume V0 we would have (recall that ρ(t, x) is the fluid density)

d

dt

ˆ
V (t)

ρ(t, x)dx = 0, (1.11)

where
V (t) = {X(t, α) : α ∈ V0}.

Using the change of variables α → X(t, α) and writing

ˆ
V (t)

ρ(t, x)dx =

ˆ
V0

ρ(t,X(t, α))J(t, α)dα, (1.12)
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we see that mass conservation is equivalent to the condition

d

dt
(ρ(t,X(t, α))J(t, α)) = 0. (1.13)

Using (1.1) and (1.9) leads to

∂ρ

∂t
J + (u · ∇ρ)J + ρ(∇ · u)J = 0. (1.14)

Dividing by J we obtain the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0. (1.15)

We note briefly some basic properties of (1.15). First, the total mass over the whole space is
conserved: ˆ

Rd

ρ(t, x)dx =

ˆ
Rd

ρ(0, x)dx. (1.16)

This follows both from (1.15) after integration over Rd (assuming an appropriate decay at
infinity), and, independently, from our derivation of the continuity equation. If (1.15) is posed
in a bounded domain Ω then, in order to ensure mass preservation, one may assume that the
flow does not penetrate the boundary ∂Ω:

u · ν = 0 on ∂Ω. (1.17)

Here, ν is the outward normal to ∂Ω. Under this condition, we haveˆ
Ω

ρ(t, x)dx =

ˆ
Ω

ρ(0, x)dx. (1.18)

This may be verified directly from (1.15) but it also follows from our derivation of the con-
tinuity equation since (1.17) implies that Ω is an invariant region for the flow u: if α ∈ Ω
then X(t, α) ∈ Ω for all t > 0.

Furthermore, (1.15) preserves the positivity of the solution: if ρ(0, x) ≥ 0 then ρ(t, x) ≥ 0
for all t > 0 and x – this also follows from common sense: density can not become negative.

1.2 Newton’s second law in an inviscid fluid

The continuity equation for the evolution of the density ρ(t, x) should be supplemented by
an evolution equation for the fluid velocity u(t, x). This will come from Newton’s second law
of motion. Consider a fluid volume V . If the fluid is inviscid, so that there is no “internal
friction” in the fluid, the only force acting on this volume is due to the pressure:

F = −
ˆ
∂V

pνdS = −
ˆ
V

∇pdx, (1.19)

where ∂V is the boundary of V , and ν is the outside normal to ∂V . Taking V to be an
infinitesimal volume around a point X(t), which moves with the fluid, Newton’s second law
of motion leads to the balance

ρ(t,X(t))Ẍ(t) = −∇p(t,X(t)). (1.20)

6



We may compute Ẍ(t) from (1.1):

Ẍj(t) =
d

dt
(uj(t,X(t)) =

∂uj(t,X(t))

∂t
+
∑
k

Ẋk(t)
∂uj(t,X(t))

∂xk
(1.21)

=
∂uj(t,X(t))

∂t
+ u(t,X(t)) · ∇uj(t,X(t)).

Therefore, we have the following equation of motion:

ρ
(∂u
∂t

+ u · ∇u
)
+∇p = 0. (1.22)

Equations (1.15) and (1.22) do not form a closed system of equations by themselves –
they involve n+ 1 equations for n+ 2 unknowns (the density ρ(t, x), the pressure p(t, x) and
the fluid velocity u(t, x)). The missing equation should provide the connection between the
density and the pressure, and this comes from the physics of the problem, that goes into the
assumptions on the material properties of the fluid. In gas dynamics, it often takes the form
of a constitutive relation p = F (ρ), where F (ρ) is a given function, such as F (ρ) = Cργ with
some constant γ > 0. Then, the full system becomes

ρt +∇ · (ρu) = 0

ut + u · ∇u+ 1

ρ
∇p = 0, (1.23)

p = F (ρ).

The pressure may also depend on the temperature, and then the evolution of the local tem-
perature has to be included as well but we will not discuss this at the moment.

1.2.1 The linearized equations

The simplest solution of (1.23) is the constant density and pressure, zero fluid velocity state:

ρ = ρ0, p = p0 = F (ρ0) and u = 0. (1.24)

Let us consider a small perturbation around this state:

ρ = ρ0 + εη +O(ε2),

p = p0 + εF ′(ρ0)η +O(ε2) (1.25)

u = εv +O(ε2),

with ε≪ 1. Inserting these expansions into (1.23) gives, in the (leading) order O(ε):

ηt + ρ0∇ · v = 0

vt +
F ′(ρ0)

ρ0
∇η = 0. (1.26)

It is common to write this system in terms of v and the pressure perturbation p̃ = F ′(ρ0)η.
After dropping the tilde it becomes the linearized acoustic system

κ0pt +∇ · v = 0 (1.27)

ρ0vt +∇p = 0. (1.28)
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Here, κ0 = 1/(F ′(ρ0)ρ0) is the compressibility constant. Equations (1.27)-(1.28) form what
is known as the linearized acoustics system. Differentiating (1.27) in time and using (1.28)
leads to the wave equation for pressure:

1

c20
ptt −∆p = 0, (1.29)

with the sound speed

c0 =
1

√
ρ0κ0

=
√
F ′(ρ0). (1.30)

The linearized acoustics is what governs most of the “real-world” applications at “bearable”
sound levels.

1.2.2 Euler’s equations in incompressible fluids

A common approximation in the fluid dynamics is to assume that the fluid is incompressible,
that is, its density is constant: ρ(t, x) = ρ0, as the fluid can not be compressed. Using this
condition in (1.15), leads to another form of the incompressibility condition:

∇ · u = 0, (1.31)

that we have already seen before in (1.10) as the volume preservation condition for the flow.
That is natural: conservation of density means exactly that the volume of a fluid is preserved.

Equations (1.22) and (1.31) together form Euler’s equations for an incompressible fluid:

∂u

∂t
+ u · ∇u+ 1

ρ0
∇p = 0, (1.32)

∇ · u = 0. (1.33)

Unlike in the acoustics system, the pressure p(t, x) is not prescribed but is rather determined
by the fluid incompressibility condition. In other words, p(t, x) has to be chosen is such a
way that the solution to (1.32) remains divergence free. In order to find the pressure, we may
take the divergence of (1.32), leading to the Poisson equation for the pressure in terms of the
velocity field:

∆p = −ρ0∇ · (ut + u · ∇u) = −ρ0
n∑

i,j=1

∂

∂xj

(
uk
∂uj
∂xk

)
= −ρ0

n∑
i,j=1

∂uk
∂xj

∂uj
∂xk

. (1.34)

We used the incompressibility condition (1.33) in the second and third equalities above.
Equations (1.32)-(1.34) together may be thought of as a closed system of equations for the
velocity u(t, x) alone since p(t, x) is determined by u(t, x) via (1.34). An extremely important
point is that the Poisson equation (1.34) for the pressure means that p(t, x) is a non-local
function of the velocity. Hence the Euler equations are a non-local system of equations for
the fluid velocity – the pressure field at a given point depends on the velocity distribution in
the whole space.

When the problem is posed in a bounded domain, we need to prescribe the boundary
conditions for the fluid velocity and pressure. If the physical domain Ω is fixed and the fluid
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does not penetrate through its boundary, a natural physical condition for the fluid velocity is
that the normal component of the velocity vanishes at the boundary:

ν · u = 0 on ∂Ω, (1.35)

where ν is the outward normal to the boundary. It follows that

ν · ∂u
∂t

= 0 on ∂Ω, (1.36)

thus the pressure satisfies the Neumann boundary conditions

∂p

∂ν
= −ρ0ν · (u · ∇u) on ∂Ω. (1.37)

Often, as a simplification we will consider the Euler equations either in the whole space,
with the decaying boundary conditions at infinity, or with the periodic boundary conditions
on a two- or three-dimensional torus, as the boundaries bring extra (and, admittedly, very
interesting) difficulties into an already difficult problem.

1.3 The viscous stress and the Navier-Stokes equations

The previous discussion did not take into account the viscosity of a fluid, which comes from the
forces that resist the shearing motions because of the microscopic friction. The forces normal
to a given area element are associated to the pressure (which we did take into account), while
those acting in the plane of the area element are associated to the shear stress. In order to
derive the fluid motion equations, as a generalization of the force on a volume element V
coming from the pressure field:

F = −
ˆ
∂V

pνdS = −
ˆ
V

∇pdx, (1.38)

we may write, for the force that acts on an infinitesimal surface area dS of a volume element V :

dFj =
n∑

k=1

νkτkjdS, (1.39)

where ν is the outward normal to dS, and τ is the total stress tensor that includes both the
pressure and the shear stress. We will soon start making assumptions on the stress tensor
but for moment, we simply assume that the surface force has the form (1.39) with some
tensor τkj. Integrating this expression over the boundary ∂V leads to the total force acting
on the volume V :

Fj =
n∑

k=1

ˆ
∂V

νkτkjdS =
n∑

k=1

ˆ
V

∂τkj
∂xk

dx. (1.40)

We will use the notation ∇ · τ for the vector with the components

(∇ · τ)j =
n∑

k=1

∂τkj
∂xk

, (1.41)
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as well as denote

(ν · τ)j =
n∑

k=1

νkτkj. (1.42)

In addition to the surface forces, there may internal forces that act inside the volume V , that
need to be balanced with the surface forces. Let us assume for the moment that the fluid is
in equilibrium, and let f be the internal forces, τ be the stress tensor, and V be an arbitrary
volume element. Then the balance of forces says thatˆ

V

fdx+

ˆ
V

(∇ · τ)dx = 0, (1.43)

which means that in an equilibrium we have

f +∇ · τ = 0. (1.44)

The total angular momentum of the force should also vanish, meaning that (in three dimen-
sions) ˆ

V

(f × x)dx+

ˆ
∂V

((ν · τ)× x)dS = 0, (1.45)

for each volume element V . The surface integral above can be re-written as1ˆ
∂V

εijkνlτljxkdS =

ˆ
V

εijk
∂

∂xl
(τljxk)dx =

ˆ
V

εijk

(∂τlj
∂xl

xk + τkj

)
dx, for each i = 1, 2, 3.

(1.46)
Here, εink is the totally anti-symmetric tensor: (v × w)i = εijkvjwk, and εijk = 0 if any pair
of the indices i, j, k coincide, while if all i, j, k are different, then εijk = (−1)p+1, where p = 1
if (ijk) is an even permutation, and p = 0 if it is odd. Using (1.44) in (1.46), we get

ˆ
∂V

εijkνlτljxkdS =

ˆ
V

εijk

(
− fjxk + τkj

)
dx, for each i = 1, 2, 3. (1.47)

Returning to (1.45), and combing it with (1.47), we obtain

0 =

ˆ
V

εijkfjxkdx+

ˆ
V

εijk

(
− fjxk + τkj

)
dx =

ˆ
V

εijkτkjdx, for each i = 1, 2, 3. (1.48)

As a consequence,
εijkτjk = 0, for each i = 1, 2, 3, (1.49)

which means that the tensor τij has to be symmetric.
Exercise. Modify the above computation to show that the stress tensor is symmetric

even if the fluid is not in an equilibrium.
We may now go back to the derivation of the Euler equations and proceed as before, the

difference being that the force term in the Newton second law is not −∇p but ∇ · τ . This
will lead to the equation of motion

∂u

∂t
+ u · ∇u =

1

ρ
∇ · τ. (1.50)

1From now we will use the convention that the repeated indices are summed unless specified otherwise.
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As for the Euler equations, the evolution equation for the fluid velocity needs to be supple-
mented by the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0. (1.51)

Previously, we needed also to prescribe the equation of state – the relation between the
pressure and the density. Now, we need to postulate, or derive from physical considerations,
an expression for the stress tensor. We will decompose it as

τij = −pδij + σij. (1.52)

The first term comes from the pressure – it leads to a force acting on a surface element in the
direction normal to the surface element. The second term comes from the shear stress, and
comes from the friction inside the fluid. It is natural to assume that it depends locally on ∇u
– if the flow is uniform there is no shearing force. In order to understand this dependence,
recall that, given a flow

dX

dt
= u(t,X(t)), X(0) = α, (1.53)

the deformation tensor Hij = ∂Xi/∂αj obeys

dHij

dt
=

∂ui
∂xm

Hmj, Hij(0) = δij. (1.54)

Therefore, the skew-symmetric part of the matrix ∇u (locally in time and space) leads to a
rigid-body rotation and does not contribute to the shearing force. Hence, it is also natural to
assume that the shear stress σij depends only on the symmetric part of ∇u:

Dij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
. (1.55)

In a Newtonian fluid, the shear stress depends linearly on the deformation tensor Dij:

σ = L(D),

for some linear map L between symmetric matrices. The map L should not depend on the
point x and it should be isotropic: for each rotation matrix Q we should have

L(QDQ∗) = QL(D)Q∗. (1.56)

Exercise. Show that the above conditions imply that the map L has to have the form

[L(D)]ij = 2µDij + λδijTr(D), (1.57)

with some constants λ and µ. These constants are called the Lamé parameters in the context
of the elasticity theory.

For an incompressible fluid, we have

TrD = ∇ · u = 0, (1.58)
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hence the stress tensor has a simpler form

σij = 2µDij. (1.59)

We will make an additional assumption that µ and λ are constants that do not depend on
other physical parameters such as temperature, density or pressure. Then the force term
in (1.50) can be written as

[∇ · τ ]k =
∂τjk
∂xj

=
∂

∂xj

[
− pδjk + µ

(∂uj
∂xk

+
∂uk
∂xj

) + λ(∇ · u)δjk
]

(1.60)

= − ∂p

∂xk
+ µ∆uk + (µ+ λ)

∂

∂xk
(∇ · u).

This leads to the Navier-Stokes equations of compressible fluid dynamics

∂u

∂t
+ u · ∇u+ 1

ρ
∇p = µ

ρ
∆u+

(µ+ λ)

ρ
∇(∇ · u) (1.61)

∂ρ

∂t
+∇ · (ρu) = 0, (1.62)

p = F (ρ). (1.63)

As with the Euler equations, the equation of state may also involve the temperature, and
then the evolution equation for the temperature should also be prescribed.

The incompressibility constraint ∇ · u = 0, or, equivalently, the constant density ap-
proximation ρ = ρ0, simplifies the system (1.61)-(1.63) to the incompressible Navier-Stokes
equations

∂u

∂t
+ u · ∇u+ 1

ρ0
∇p = µ

ρ0
∆u (1.64)

∇ · u = 0. (1.65)

Note that Euler’s equations are formally recovered from the Navier-Stokes equations by setting
the viscosity µ = 0, or, equivalently, assuming that the shear stress vanishes.

From now on, unless specified otherwise, we will consider only the incompressible Euler
and Navier-Stokes equations.

1.3.1 Two-dimensional flows

We will sometimes consider the two-dimensional version of the Navier-Stokes equations, which
has exactly the same form as the three-dimensional equations (1.64)-(1.65) but with the fluid
velocity that has only two components: u = (u1, u2), and, in addition, the problem is posed
for x ∈ R2. These can be interpreted as the solutions of the three-dimensional Navier-Stokes
system of a special form u = (u1(x1, x2), u2(x1, x2), 0) with the pressure p = p(x1, x2) – that
is, they are independent of x3 and the third component of the fluid velocity vanishes. It is
straightforward to check that, indeed, they satisfy (1.64)-(1.65) provided that ũ = (u1, u2)
satisfies

∂ũ

∂t
+ ũ · ∇ũ+ 1

ρ0
∇p = µ

ρ0
∆ũ (1.66)

∇ · ũ = 0, (1.67)

posed in R2 and not in R3.
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2 The vorticity evolution

An important role in the theory of fluids is played by the fluid vorticity. It is defined in terms
of the fluid velocity u(t, x) as a vector

ω = curlu = ∇× u, ωi = εijk∂juk, in R3, (2.1)

in three dimensions, and as a scalar

ω =
∂u2
∂x1

− ∂u1
∂x2

, in R2, (2.2)

in two dimensions. Here, as before, εijk is the totally anti-symmetric tensor and we use the
summation convention for repeated indices. The two-dimensional vorticity can be understood
as the x3-component of the three-dimensional vorticity of the flow (u1(x1, x2), u2(x1, x2), 0) –
the other two components of the vorticity vanish for such flows. It is sometimes convenient
to write also in two dimensions the vorticity as

ω = εij∂iuj, (2.3)

with the antisymmetric tensor εij defined by ε11 = ε22 = 0, ε12 = 1, ε21 = −1.
Note that the vorticity vector field in three dimensions is always divergence free:

∇ · ω = εijk∂i∂juk = 0, in R3. (2.4)

2.1 Vorticity in two dimensions

2.1.1 Vorticity conservation in two dimensions

Let us now compute the evolution equation for the vorticity in two and three dimensions.
In the two-dimensional case, we start with the Navier-Stokes equations (we will set the den-
sity ρ0 = 1 for simplicity from now on, unless specified otherwise)

∂u

∂t
+ u · ∇u+∇p = ν∆u, (2.5)

and compute using (2.3):

∂ω

∂t
= εij∂i

(
ν∆uj −

∂p

∂xj
− uk

∂uj
∂xk

)
= ν∆(εijuj)− εij∂i∂jp− εij

∂uk
∂xi

∂uj
∂xk

− εijuk
∂2uj
∂xi∂xk

.

(2.6)
Now, we note that

εij∂i∂jp = 0, (2.7)

because the tensor εij is anti-symmetric, and also that

−εij
∂uk
∂xi

∂uj
∂xk

= −∂uk
∂x1

∂u2
∂xk

+
∂uk
∂x2

∂u2
∂xk

= −∂u1
∂x1

∂u2
∂x1

− ∂u2
∂x1

∂u2
∂x2

+
∂u1
∂x2

∂u1
∂x1

+
∂u2
∂x2

∂u1
∂x2

=
∂u1
∂x1

(∂u1
∂x2

− ∂u2
∂x1

)
+
∂u2
∂x2

(∂u1
∂x2

− ∂u2
∂x1

)
= −ω∇ · u = 0.

(2.8)
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Using these two identities in (2.6) gives

∂ω

∂t
= ν∆ω − u · ∇ω. (2.9)

The “miracle” is that in two dimensions the term we have calculated in (2.8), and which in
three dimensions will contribute to the vorticity growth, cancels out completely because of
the incompressibility condition. Thus, in two dimensions, the vorticity satisfies an advection-
diffusion equation

∂ω

∂t
+ u · ∇ω = ν∆ω. (2.10)

This is very remarkable, as (2.10) obeys the maximum principle: with appropriate decay
conditions at infinity if (2.10) is posed in the whole space R2, or in the periodic case, we can
immediately conclude that

∥ω(t, ·)∥L∞ ≤ ∥ω0∥L∞ , (2.11)

where ω0(x) = ω(0, x) is the initial condition for the vorticity, as long as u(t, x) satisfies some
very basic regularity assumptions.

Furthermore, in an inviscid fluid, when ν = 0 the vorticity is simply advected along the
flow lines; solution of

∂ω

∂t
+ u · ∇ω = 0 (2.12)

is simply
ω(t, x) = ω0(t, A(t, x)), (2.13)

where A(t, x) is the ”back-to-labels” map for (1.1). This will help us later to prove the
regularity of the solutions of the Euler and Navier-Stokes equations in two dimensions, though
it will not imply the regularity immediately.

2.1.2 The Biot-Savart law in two dimensions

Note also that the pressure term is nowhere to be seen in the vorticity equation (2.10). Thus,
in order to close the problem, we only need to supplement the evolution equation (2.10) for
vorticity by an expression for the fluid velocity u(t, x) in terms of the vorticity ω(t, x). To
this end, observe, that, as u(t, x) is divergence free, and the problem is posed in all of R2,
there exists a function ψ(t, x), called the stream function, so that u(t, x) has the form

u(t, x) = ∇⊥ψ(t, x) = (−ψx2(t, x), ψx1(t, x)). (2.14)

To see this, note that, because of the divergence-free condition for u(t, x), the flow

v(t, x) = (u2,−u1), (2.15)

satisfies
∂v1
∂x2

=
∂v2
∂x1

, (2.16)

hence there exists a function ψ(t, x) so that v(t, x) = ∇ψ(t, x), which is equivalent to (2.14).
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The vorticity can be expressed in terms of the stream function as

∆ψ = ω, (2.17)

or, more explicitly,

ψ(t, x) =
1

2π

ˆ
R2

log(|x− y|)ω(t, y)dy. (2.18)

Differentiating (2.18) formally, we obtain an expression for the fluid velocity in terms of its
vorticity

u(t, x) =

ˆ
R2

K2(x− y)ω(t, y)dy, (2.19)

with the vector-valued integral kernel

K2(x) =
1

2π

(
− x2

|x|2
,
x1
|x|2

)
. (2.20)

Thus, the Navier-Stokes equations in two dimensions can be formulated purely in terms of
vorticity as the advection-diffusion equation for the scalar vorticity

∂ω

∂t
+ u · ∇ω = ν∆ω, (2.21)

with the velocity u(t, x) given in terms of ω(t, x) by (2.19).
A potential danger is that the function K2(x) is singular, homogeneous of degree (−1)

in x. Thus, it is not obvious that (2.20) gives a sufficiently regular velocity field u(t, x) for
the coupled problem to have a smooth solution even if the initial conditin ω0(x) = ω(0, x) is
smooth and rapidly decaying at infinity. However, the ”1/x” singularity in two dimensions is
sufficiently mild: writing (2.19) in the polar coordinates gives (with x⊥ = (−x2, x1))

u(t, x) =
1

2π

ˆ
R2

(x− y)⊥

|x− y|2
ω(y)dy =

1

2π

ˆ ∞

0

ˆ 2π

0

(− sinϕ, cosϕ)ω(x1−r cosϕ, x2−r sinϕ)dϕdr,

There is no longer a singularity in (2.22), and the expression for the velocity “makes sense”.
The system (2.19), (2.20), (2.21) is an example of an active scalar – the vorticity ω(t, x) is

a solution of an advection-diffusion equation with the velocity coupled to the advected scalar
itself.

2.2 Vorticity evolution in three dimensions

2.2.1 Vorticity equation in three dimensions

The situation in three dimensions is very different. In order to compute the evolution equation
for the vorticity vector, first, note that the advection term in the Navier-Stokes equations can
be written as

(u · ∇u)i = uj
∂ui
∂xj

= uj
(∂ui
∂xj

− ∂uj
∂xi

)
+ uj

∂uj
∂xi

, (2.22)
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and that

(ω × u)i = εijkωjuk = εijkεjmn(∂mun)uk = (δinδkm − δimδkn)(∂mun)uk

= (∂kui)uk − (∂iuk)uk. (2.23)

We used above the identity
εjikεjmn = δimδkn − δinδkm (2.24)

and anti-symmetry of εijk. We see that

u · ∇u = ω × u+∇
( |u|2

2

)
. (2.25)

Therefore, the Navier-Stokes equations can be written as

ut + ω × u+∇
( |u|2

2
+ p
)
= ν∆u. (2.26)

The formula
curl(a× b) = −a · ∇b+ b · ∇a+ a(∇ · b)− b(∇ · a), (2.27)

together with the incompressibility condition ∇ · u = 0 and (2.4) helps us to take the curl
of (2.26), leading to the vorticity equation:

ωt + u · ∇ω = ν∆ω + V (t, x)ω, (2.28)

with

V (t, x)ω = ω · ∇u, Vij =
∂ui
∂xj

. (2.29)

We can decompose the matrix V into its symmetric and anti-symmetric parts:

V = D + Ω, D =
1

2
(V + V T ), Ω =

1

2
(V − V T ), (2.30)

and observe that, for any h ∈ R3

Ωijhj =
1

2
[∂jui − ∂iuj]hj =

1

2
∂muk[δikδjm − δimδjk]hj =

1

2
εlijεlkm(∂muk)hj

= −1

2
εlijεlmk(∂muk)hj = −1

2
εlijωlhj =

1

2
εiljωlhj =

1

2
[ω × h]i, (2.31)

that is,

Ωh =
1

2
ω × h. (2.32)

The matrix Ω has an explicit form

Ω =
1

2

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (2.33)
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As a consequence, we have Ωω = 0, thus V ω = Dω, and the vorticity equation has the form

ωt + u · ∇ω = ν∆ω +D(t, x)ω, (2.34)

with

Dij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
. (2.35)

The term Dω in the vorticity equation is known as the vortex stretching term, and it is maybe
the main reason why the solutions of the three- dimensional Navier-Stokes equations exhibit
such rich behavior and complexity. As we have done in two dimensions, it is possible to
express the velocity u(t, x) in terms of the vorticity – this relation is known as the Biot-Savart
law, leading to the “pure vorticity” formulation of the Navier-Stokes equations, but we will
postpone this computation until slightly later.

2.2.2 An analogy to the Burgers’ equation

The vorticity equation (2.34) has a quadratic term in ω in the right side. Such quadratic
nonlinearities may potentially lead to a blow up. This is easily seen on the simple ODE
example

ż = z2, z(0) = z0. (2.36)

Its explicit solution is

z(t) =
z0

1− z0t
. (2.37)

If z0 > 0, the solution becomes infinite at the time

tc =
1

z0
. (2.38)

At a slightly more sophisticated level, we can look at the familiar Burgers’ equation on
the line:

ut + uux = 0, u(0, x) = u0(x). (2.39)

Its solutions develop a finite time singularity if the initial condition u0(x) is decreasing on
some interval. Such discontinuities are known as shocks. In order to make a connection to
the vorticity equation, note that the function ω = −ux satisfies

ωt + uωx = ω2, ω(0, x) = ω0(x) = −u′0(x). (2.40)

This equation is analogous to the vorticity equation with ν = 0, except the nonlinearity has
a different form: D(ω)ω is replaced by ω2. As in the case of the quadratic ODE (2.36), the
function ω(t, x) becomes infinite in a finite time if there are points where ω0(x) > 0. One
should mention that there are two regularizations of the inviscid Burgers’ equation (2.39):
first, adding a diffusive (dissipative) term gives the viscous Burgers’ equation

ut + uux = νuxx, u(0, x) = u0(x), (2.41)
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which has global in time smooth solutions if u0(x) is smooth. A natural question which we
may revisit later is why is the uxx term sufficiently regularizing? More precisely, one may
consider equations of the form

ut + uux = Au, u(0, x) = u0(x), (2.42)

where A is a linear dissipative operator in the sense that

(Au, u) =

ˆ
R
(Au(x))u(x)dx ≤ 0. (2.43)

If A commutes with differentiation, the “vorticity” equation will have the form

ωt + uωx = Aω + ω2, ω(0, x) = ω0(x) = −u′0(x). (2.44)

Then, the dissipative effect of Aω will compete with the growth caused by ω2 in the right
side. The issue of when the dissipation will win is rather delicate – we will revisit it later if
we have time.

There is a different approach to the blow up in the Burgers’ equation that illustrates a
general strategy of trying to control some integral functionals of the solution rather than
solutions themselves. Let us consider, for simplicity, the solution of the Burgers’ equation on
the line with a periodic initial condition u0(x):

u0(x+ 2π) = u0(x).

Then the solution to
ut + uux = 0, u(0, x) = u0(x) (2.45)

will stay periodic for all t > 0 (as long as it exists):

u(t, x+ 2π) = u(t, x). (2.46)

If, in addition, the initial data is odd: u0(−x) = −u0(x), then the solution remains odd as
well: we have u(t, x) = −u(t, x) for all t > 0. This means that, as long as the solution remains
smooth, the functional

L(t) =

ˆ π

−π

u(t, x)

x
dx (2.47)

is well-defined and finite – the function u(t, x) vanishes at x = 0. Differentiating L(t) in time
gives

dL(t)

dt
=

ˆ π

−π

ut(t, x)

x
dx = −

ˆ π

−π

1

x
uuxdx = −1

2

ˆ π

−π

u2(t, x)

x2
dx. (2.48)

The Cauchy-Schwartz inequality implies that

L2(t) =

(ˆ π

−π

u(t, x)

x
dx

)2

≤ 2π

ˆ π

−π

u2(t, x)

x2
dx. (2.49)

Hence, the function L(t) satisfies a differential inequality

dL

dt
≤ − 1

4π
L2(t). (2.50)
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Integrating this inequality in time gives

1

L0

− 1

L(t)
≤ − t

4π
. (2.51)

Hence, we have

L(t) ≤ 4πL0

4π + L0t
. (2.52)

We conclude that if L0 < 0 then L(t) = −∞ at some time t < −4π/L0, thus solution may not
remain smooth past this time. The condition that L0 < 0 distinguishes between the initial
data that “look like” u0(x) = sinx and like u0(x) = − sinx. The latter is decreasing at x = 0,
hence the shock is expected to form there, thus it is reasonable to expect that L(t), which
has x in the denominator in the integrand, will blow-up. On the other hand, the former is
increasing at x = 0, thus the shock would not form there, and L(t) should not capture the
singularity formation. A different functional should be considered to capture the blow-up.

Another very interesting regularization of the inviscid Burgers’ equation is via dispersion:

ut + uux = µuxxx, u(0, x) = u0(x). (2.53)

This is the Kortweg-de Vries equation which describes a regime of the shallow water waves. Its
mathematics is incredibly rich and is connected by now with nearly every area of mathematics.
If we have time, we will go back to it as well. For now, we just mention that solutions of (2.53)
also remain smooth for all t > 0 provided that u0(x) is, say, a smooth rapidly decaying
function. However, the mechanism for regularity is not dissipative but rather dispersive – the
high frequencies spread faster, hence an oscillation will ”fly away towards infinity very fast”,
and there u is small, hence the nonlinearity does not play a big role there. On the other hand,
the balance between dispersion and nonlinearity leads to extremely interesting effects.

2.2.3 Flows with a spatially homogenous vorticity

As an example, we consider flows that have a spatially uniform vorticity ω(t). Let us choose
a symmetric matrix D(t) with TrD(t) = 0, and a vector-valued function ω(t) ̸= 0 such that

dω

dt
= D(t)ω(t), ω(0) = ω0. (2.54)

We also define the anti-symmetric matrix Ω(t) via (2.33), so that

Ω(t)h =
1

2
ω(t)× h, for any h ∈ R3, Ωij = εimjωm. (2.55)

A direct computation, using the symmetry of D, the assumption TrD = 0, and (2.33), gives

Ω̇ +DΩ + ΩD = 0. (2.56)

The observation is that the flow

u(t, x) =
1

2
ω(t)× x+D(t)x (2.57)
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gives an exact solution of the three-dimensional Euler and Navier-Stokes equations, with the
vorticity curlu = ω. Indeed, first, as the trace of D(t) vanishes, both components in (2.57)
are divergence-free:

∇ · u = ∂j(εjklωkxl) + ∂j(Djkxk) = εjklωkδjl +Djkδjk = 0. (2.58)

Moreover, the second term in (2.57) is the gradient of the function (1/2)(D(t)x · x), hence its
vorticity vanishes, while identity (2.27) means that

curlu =
1

2
curl(ω(t)× x) = −1

2
ω · ∇x+ 1

2
ω(∇ · x) = −1

2
ω +

3

2
ω = ω. (2.59)

Next, we compute

ut =
1

2
ω̇ × x+ Ḋx, (2.60)

and

∂juk =
1

2
∂j(εkmnωmxn) + ∂j(Dkmxm) =

1

2
εkmjωm +Dkj, (2.61)

so that

u · ∇uk = uj∂juk =
1

2
εkmjujωm + ujDkj =

1

2
ω × u+Du. (2.62)

Putting these equations together and using (2.55) leads to

ut + u · ∇u =
1

2
ω̇ × x+ Ḋx+

1

2
ω × u+Du =

1

2
ω̇ × x+ Ḋx (2.63)

+
1

2
ω ×

(1
2
ω × x+Dx

)
+D

(1
2
ω × x+Dx

)
= (Ḋ + Ω̇ + Ω2 +D2 +DΩ + ΩD)x = (Ḋ + Ω2 +D2)x = −∇p(t, x)

We have used (2.56) in the next to last equality above. The pressure is given explicitly by

p(t, x) = −1

2

(∂D
∂t

+D2 + Ω2
)
x · x. (2.64)

We conclude that, given any symmetric trace-less matrix D(t), we may construct a solution
of the Euler equations as above.
Example 1. A jet flow. As the first example of using the above construction, we may
take ω0 = 0, so that ω(t) = 0 and D(t) = diag(−γ1,−γ2, γ1 + γ2) with γ1, γ2 > 0. The flow is

u(t, x) = (−γ1x1,−γ2x2, (γ1 + γ2)x3). (2.65)

The particle trajectories are

X(t, α) = (e−γ1tα1, e
−γ2tα2, e

(γ1+γ2)tα3), (2.66)

and have the form of a jet, going toward the x3-axis, and up along this line for x3 > 0, and
down this direction for x3 < 0.
Example 2. A strain flow. Consider D = diag(−γ, γ, 0) with γ > 0, and, once again,
vorticity ω = 0, so that

u(t, x) = (−γx1, γx2, 0). (2.67)
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Then the particle trajectories are

X(t, α) = (e−γtα1, e
γtα2, α3). (2.68)

The particle trajectories stay in a fixed plane orthogonal to the x3-axis and are stretched in
this plane: nearby two particles starting near the x1-axis with α2 > 0 and α2 < 0 will separate
exponentially fast in time.

2.2.4 Shear layer solutions

Here, we will generalize the second example above: we will be looking at flows of the form
generalizing (2.67):

u(t, x) = (−γx1, γx2, w(t, x1)), (2.69)

that is, the third flow component depends only on x1 and t. Such flows satisfy the Navier-
Stokes equations with the pressure p(t, x) = γ(x21+x

2
2)/2, provided that the vertical component

of the flow w satisfies a linear advection-diffusion equation

∂w

∂t
− γx1

∂w

∂x1
= ν

∂2w

∂x12
. (2.70)

The vorticity is given by

ω(t, x) = (0,− ∂w

∂x1
, 0), (2.71)

and its second component ω̃ = −wx1 satisfies (after dropping the tilde)

∂ω

∂t
− γx1

∂ω

∂x1
= ν

∂2ω

∂x12
+ γω. (2.72)

Here, we see clearly the three competing effects in the vorticity evolution: the diffusive (dis-
sipative) term νωx1x1 , the convective term −γx1ωx1 and the vorticity growth term γω. It is
instructive to look at the three effects in this very simple setting.

First, let us note that when γ > 0, the vorticity equation (2.72) admits steady solutions:

−γx1ω̄′ = νω̄′′ + γω̄. (2.73)

Indeed, setting y = λx1 leads to

−γyω̄y = λ2νω̄yy + γω̄, (2.74)

thus, choosing λ =
√
γ/ν, we arrive at

−yω̄y = ω̄yy + ω̄. (2.75)

This equation has an explicit steady solution

ω̄(y) = e−y2/2, (2.76)

hence a steady solution of (2.73) is

ω̄(x1) = e−γx2
1/(2ν). (2.77)
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Such solutions do not exist when γ = 0 – they are sustained by the stretch, and are localized
in a layer of the width O(

√
ν/γ) around the plane {x1 = 0}. They may also not exist at zero

viscosity: if ν = 0 then (2.73) has no non-trivial bounded steady solutions – thus, they are a
result of a balance between the stretch and the friction.

Equation (2.72) can be solved explicitly. Fitst, writing

ω(t, x) = eγtz(t, x1) (2.78)

gives
∂z

∂t
− γx1

∂z

∂x1
= ν

∂2z

∂x12
. (2.79)

Next, making a change of variables:

z(t, x) = η(τ(t), eγtx1) (2.80)

with the function τ(t) to be determined, leads to

τ̇
∂η

∂τ
+ γeγtx1

∂η

∂ξ
− γx1e

γt∂η

∂ξ
= νe2γt

∂2η

∂ξ2
. (2.81)

Taking
τ̇ = νe2γt, (2.82)

or
τ(t) =

ν

2γ

(
e2γt − 1

)
, (2.83)

leads to the standard heat equation

∂η

∂τ
=
∂2η

∂ξ2
, τ > 0, ξ ∈ R, (2.84)

with the initial condition η(0, ξ) = ω0(ξ). Therefore, the vorticity is

ω(t, x1) = eγt
ˆ
G
( ν
2γ

(e2γt − 1), eγtx1 − y
)
ω0(y)dy, (2.85)

where G(t, x1) is the standard heat kernel:

G(t, x1) =
1√
4πt

e−|x1|2/(4t). (2.86)

Let us look at the long time behavior of vorticity:

ω(t, x1) = eγt
(4πν
2γ

(e2γt − 1)
)−1/2

ˆ
exp

{
− |eγtx1 − y|2

4ν
2γ
(e2γt − 1)

}
ω0(y)dy (2.87)

→ ω̄(x) =
( γ

2πν

)1/2
e−γ|x1|2/(2ν)

ˆ
ω0(y)dy,

provided that the initial vorticity ω0 ∈ L1(R). Thus, the vorticity is localized as t → +∞
around x1 = 0, in a layer of the width O(

√
ν/γ), and its long time limit is a multiple of the

steady solution (2.77).
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2.2.5 The Biot-Savart law in three dimensions

We now return to the vorticity equation in three dimensions

ωt + u · ∇ω = ν∆ω + ω · ∇u. (2.88)

Our goal is to derive an expression for the velocity u in terms of the vorticity ω, so as
to formulate the Euler and Navier-Stokes equations purely in terms of vorticity. In two
dimensions, this was done using the stream function, solution of

∆ψ = ω, (2.89)

with u given by
u = ∇⊥ψ = (−ψx2 , ψx1), (2.90)

or, equivalently,

u(t, x) =

ˆ
R2

K2(x− y)ω(y)dy, (2.91)

with the vector-valued integral kernel

K2(x) =
1

2π

(
− x2

|x|2
,
x1
|x|2

)
. (2.92)

In three dimensions, given a divergence-free vector field ω(x) we need to find a divergence-
free vector field u(t, x) so that

∇× u = ω, ∇ · u = 0. (2.93)

Attempting the same strategy as in two dimensions, we define the stream vector ψ via

∆ψ = ω, (2.94)

and
u(x) = −∇× ψ(x). (2.95)

Note that, as ∇ · ω = 0 by assumption, we have

∆(∇ · ψ) = 0. (2.96)

Hence, if we assume that ∇·ψ is bounded, then ∇·ψ = 0, and ψ is also divergence-free. The
flow u defined by (2.95) is divergence-free: ∇ · u = 0, and

[∇× u]i = εijk∂juk = −εijk∂jεkmn∂mψn = −εkijεkmn∂j∂mψn = −(δimδjn − δinδjm)∂j∂mψn

= −∂i∂jψj +∆ψi, (2.97)

that is, ω is the vorticity of u:

∇× u = −∇(∇ · ψ) + ∆ψ = ω. (2.98)
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We have an explicit expression for the stream-vector ψ(x) as the solution of the Poisson
equation (2.94):

ψ(x) = − 1

4π

ˆ
R3

1

|x− y|
ω(y)dy. (2.99)

The velocity is then given by

ui(x) =
1

4π

ˆ
R3

εijk∂j

( 1

|x− y|

)
ωk(y)dy = − 1

4π

ˆ
R3

εijk
xj − yj
|x− y|3

ωk(y)dy, (2.100)

so that

u(x) =
1

4π

ˆ
R3

K(x− y)× ω(y)dy, (2.101)

with

K(x) = − 1

4π

x

|x|3
. (2.102)

As in the two-dimensional case, the integral operator defining u(x) in terms of the vortic-
ity ω(x) is not “really singular” – the singularity of the 1/|x|2 type is cancelled in three
dimensions by the Jacobian if we pass to the spherical coordinates. However, unlike in two
dimensions, the vorticity equation in three dimensions

ωt + u · ∇ω = ν∆ω + ω · ∇u, (2.103)

involves not only u(x) but also the gradient ∇u. Formally differentiating (2.101) leads to
(this identity is not quite correct because of the singularity of the integrals involved)

∇u(x)” = ”

ˆ
R3

∇K(x− y)× ω(y)dy. (2.104)

The integral kernel ∇K(x) in (2.104) has the singularity of the type x/|x|4, which can not be
simply cancelled by the Jacobian in three dimensions if we pass to the spherical coordinates.
Integral operators with a singularity of this type are known as singular integral operators,
and we will deal with them in some detail later, leaving for now the vorticity equation on a
formal level.

3 The conserved quantities

We will now discuss the physical quantities conserved by the Euler and Navier-Stokes equa-
tions. They are important both from the physical and mathematical points of view – a system
that possesses sufficiently regular integrals of motion will not have irregular solutions if the
initial condition is smooth. As we will see, the integrals of motion for the fluid equations are
often insufficient to deduce the existence and regularity of solutions.
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3.1 Vortex lines

In three dimensions, we say that a smooth curve Γ is a vortex line at a time t ≥ 0 if its
tangent is everywhere parallel to the vorticity vector ω(t, x). Let us show that if

Γ0 = {γ(s), 0 ≤ s ≤ 1} (3.1)

is a vortex line at the time t = 0 then its push-forward

Γ(t) = {X(t, γ(s)), 0 ≤ s ≤ 1} (3.2)

is a vortex line at the time t > 0. For that, we have the following.

Lemma 3.1. Let ω(t, x) be the vorticity of a solution to the Euler equations in three dimen-
sions. Then, we have

ω(t,X(t, α)) = (∇αX)(t, α)ω0(α). (3.3)

Proof. Note that (3.3) holds at t = 0. Recall that the matrix

Hij(t,X(t, α)) =
∂Xi(t, α)

∂αj

, (3.4)

satisfies (1.4)
dH

dt
= (∇u)H, (3.5)

so that
d

dt
(∇αX)(t, α)ω0(α) = ∇uHω0. (3.6)

On the other hand, the Euler equations

ωt + u · ∇ω = ω · ∇u (3.7)

imply that
d

dt
ω(t,X(t, α)) = (∇xu(t,X(t, α))ω(t,X(t, α)) (3.8)

This finishes the proof.

3.2 Kelvin’s theorem

Consider a smooth, oriented, closed curve C0, and let C(t) be its image under a flow u(t, x):

C(t) = {X(t, α) : α ∈ C0}, (3.9)

with
dX

dt
= u(t,X), X(0, α) = α. (3.10)

The circulation around C(t) is

ΓC(t) =

˛
C(t)

u(t, x) · dℓ, (3.11)
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where dℓ is the length element along Γ(t). Recall that, generally, if a closed curve Γ is
parametrized as Γ = {γ(s), 0 ≤ s ≤ 1}, then the circulation of a vector w(x) over Γ is

˛
Γ

w · dℓ =
ˆ 1

0

w(γ(s)) · γ′(s)ds. (3.12)

Note that the right side does not depend on the paramettrization of the curve Γ.
Let us parametrize the initial and evolved curves as

C0 = {γ(s), 0 ≤ s ≤ 1}, C(t) = {X(t, γ(s)), 0 ≤ s ≤ 1}. (3.13)

The length element along the evolved curve has the components (prime denotes the derivative
with respect to the parametrization parameter s)

dXj(t, γ(s))

ds
=
∂Xj(t, γ(s))

∂γk
γk(s)

′ds = H(t,X(t, γ(s))γ′(s), (3.14)

with the matrix

Hij(t,X(t, α)) =
∂Xi(t, α)

∂αj

, (3.15)

which, as we recall, satisfies (1.4)
dH

dt
= (∇u)H. (3.16)

Now, we may compute, using the parametrization (3.13) of the curve C(t):

d

dt

˛
C(t)

u(t, x) · dℓ = d

dt

ˆ 1

0

u(t,X(t, γ(s)) · (Hγ′)ds =
ˆ 1

0

[(u̇ ·Hγ′) + (u · Ḣγ′)]ds

=

ˆ 1

0

[(ut + u · ∇u) ·Hγ′) + (u · (∇uH)γ′)]ds (3.17)

=

˛
C(t)

(ut + u · ∇u) · dℓ+
˛
C(t)

(∇u)tu · dℓ.

If u satisfies the Euler equations, the first term in the last line above can be written in terms
of the pressure as ˛

C(t)

(ut + u · ∇u) · dℓ = −
˛

∇p · dℓ = 0. (3.18)

The second term can be written as˛
C(t)

(∇u)tu · dℓ =
˛
C(t)

∂uk
∂xj

ukdℓj =

˛
C(t)

∇
( |u|2

2

)
· dℓ = 0. (3.19)

We see that

d

dt

˛
C(t)

u(t, x) · dℓ = 0. (3.20)

This is Kelvin’s theorem for the Euler equations: the circulation of the flow along a curve
that evolves with the flow is preserved in time.

26



3.3 Conservation of the integrals of velocity and vorticity

If u is a divergence-free velocity field, and q is a scalar function, and both of them decay
sufficiently fast at infinity, we have

ˆ
Rn

(u · ∇ϕ)dx = −
ˆ
(∇ · u)ϕdx = 0. (3.21)

Therefore, integrating either the Euler or the Navier-Stokes equations with solutions that
decay rapidly at infinity, we conclude that

d

dt

ˆ
Rn

udx = 0, (3.22)

both in two and three dimensions. The same identity implies that in two dimensions the total
vorticity is preserved: integrating (2.21), we obtain

d

dt

ˆ
R2

ωdx = −ν
ˆ
R2

∆ωdx−
ˆ
R2

(u · ∇ω)dx = 0. (3.23)

However, in that case we know more: any regular solution of (2.21) can be decomposed as

ω = ω+(t, x)− ω−(t, x),

where ω± are the solutions of (2.21) with the initial conditions ω±
0 (x), respectively. It follows

that ˆ
R2

|ω|dx ≤
ˆ
R2

ω+(t, x)dx+

ˆ
R2

ω−(t, x)dx =

ˆ
R2

|ω0|dx, (3.24)

that is, not only the integral of the vorticity is preserved but its L1-norm does not grow in
two dimensions.

In addition, for the solutions of the Euler equations in two dimensions, vorticity satisfies
the advection equation

ωt + u · ∇ω = 0. (3.25)

Therefore, not only the integral of the vorticity but all Lp-norms of ω are preserved, with
any 1 ≤ p ≤ ∞: ˆ

R2

|ω(t, x)|pdx =

ˆ
R2

|ω0(x)|pdx. (3.26)

In three dimensions, the vorticity vector satisfies (2.103). Integrating this equation leads
to

d

dt

ˆ
R3

ωidx =

ˆ
R3

(ω · ∇ui)dx = 0, (3.27)

since ω(t, x) is also a divergence-free field. Thus, the total integral of the vorticity is preserved
also in three dimensions. However, conservation of the Lp-norms does not follow, and vorticity
may grow.
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3.4 Evolution of energy, dissipation and enstrophy

The kinetic energy of the fluid is

E(t) =
1

2

ˆ
Rn

|u(t, x)|2dx. (3.28)

Differentiating in time, assuming that solutions are smooth, gives

dE

dt
=

ˆ
Rn

(u · ut)dx =

ˆ
Rn

(−ujuk
∂uj
∂xk

− u · ∇p+ νuj∆uj)dx

= −
ˆ
Rn

(u · ∇
( |u|2

2
+ p
)
− ν

ˆ
Rn

|∇u|2dx = −ν
ˆ
Rn

|∇u|2dx.
(3.29)

Therefore, the energy of the solutions of the Euler equations (ν = 0) is preserved in time:

E(t) = E(0), (3.30)

while the energy of the solutions of the Navier-Stokes equations is dissipating:

dE

dt
= −νD(t), (3.31)

where D(t) is the enstrophy

D(t) =

ˆ
Rn

|∇u|2dx. (3.32)

For incompressible flows, the enstrophy can be expressed purely in terms of vorticity using
the identity

|ω|2 = εijkεimn(∂juk)(∂mun) = (δjmδkn−δjnδkm)(∂juk)(∂mun) = |∇u|2−(∂juk)(∂kuj). (3.33)

Note that ˆ
Rn

(∂juk)(∂kuj)dx = −
ˆ
Rn

uk(∂k∂juj)dx = 0. (3.34)

We used the incompressibility condition on u in the last step. This implies that the enstrophy
for a divergence-free flow is

D(t) =

ˆ
Rn

|ω|2dx. (3.35)

Therefore, large vorticity leads to increased energy dissipation – this, however, does not
automatically lead to regularity.

An important comment is that the above computations assume that the solution u(t, x)
of the Navier-Stokes equations is sufficiently smooth. The possibility of energy dissipation as
the solutions potentially develop a singularity is an extremely important open question.
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3.5 Conservation of helicity

The helicity of a flow is

H =

ˆ
R3

(u · ω)dx. (3.36)

This definition is non-trivial only in three dimensions, as in two dimensions we have, for any
incompressible flow,

ˆ
R2

u1ωdx =

ˆ
R2

u1

(∂u2
∂x1

− ∂u1
∂x2

)
dx = −

ˆ
R2

(
u2
∂u1
∂x1

+
1

2

∂(u21)

∂x2

)
dx

=
1

2

ˆ
R2

∂

∂x2
(u22 − u21)dx = 0, (3.37)

with a similar computaiton for u2. Once again we used above incompressibility of u(t, x).
In three dimensions, however, helicity is a non-trivial quantity, and, for the solutions of

the Euler equations, we may compute

dH
dt

=

ˆ
R3

(ut · ω + u · ωt)dx. (3.38)

We have
ut · ω + (u · ∇u) · ω + ω · ∇p = 0, (3.39)

and
u · ωt + (u · ∇ω) · u = u · (ω · ∇u). (3.40)

The last term in (3.39) integrates to zero since ∇ · ω = 0:
ˆ
R3

(ω · ∇p)dx = 0. (3.41)

The other terms lead to

dH
dt

= −
ˆ
R3

(uk(∂kuj)ωj + ukuj∂jωk − ujωk∂kuj)dx =

= −
ˆ
R3

(−ukuj∂kωj + ukuj∂jωk +
1

2
|u|2∂kωk)dx = 0.

(3.42)

Here, we have integrated by parts in the first term in the right side and used incompressibility
of u to show that the first two terms in the right side cancel each other, while the last term
vanishes after integration by parts because ∇ · ω = 0. Thus, helicity is preserved for the
solutions of the Euler equations. In particular, the velocity field and the vorticity can not be
”too aligned” in any growth or blow-up scenario for the Euler equations.

4 The Constantin-Lax-Majda toy model

4.1 The formulation of the model

In order to appreciate the difficulties of the problem of the regularity for the solutions of the
Euler and the Navier-Stokes equations, and in particular, focus on the effect vortex stretching
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term, we consider here a toy model studied by Constantin, Lax and Majda in 1985. The
vortex stretching term in the three-dimensional vorticity equation for the Euler equation

ωt + u · ∇ω = ω · ∇u, (4.1)

has the form (2.104) – once again, it should not be taken too literally because of the singularity
in the integral,

∇u(x)” = ”

ˆ
R3

∇K(x− y)× ω(y)dy, (4.2)

with

K(x) = − 1

4π

x

|x|3
. (4.3)

The Constantin-Lax-Majda model aims to imitate three important properties of the right side
in the vorticity equation (4.1): first, it is quadratic in ω, second, its integral vanishes:

ˆ
R3

ω · ∇u dx = 0. (4.4)

The third feature is that the kernel ∇K(x) has the singularity of the type x/|x|4, which
is of the kind x/|x|n+1 in n dimensions that is ”barely non-integrable”. Integral operators
with such kernels are known as Calderon-Zygmund operators. Constantin, Lax and Majda
considered a one-dimensional model, with an analogous singularity in one dimension

∂ω(t, x)

∂t
= H[ω]ω, x ∈ R, (4.5)

with the initial condition ω(0, x) = ω0(x). Here, H(ω) is the Hilbert transform, a singular
integral operator in one dimension:

H[ω](x) =
1

π
P.V.

ˆ
R

ω(y)

x− y
dy. (4.6)

The principal value above is understood as

H[ω](x) =
1

π
lim
ε↓0

ˆ
|y|>ε

ω(x− y)

y
dy =

1

π

ˆ
|y|>1

ω(x− y)

y
dy +

1

π

ˆ 1

−1

ω(x− y)− ω(x)

y
dy. (4.7)

The singularity 1/x in the kernel of the one-dimensional Hilbert transform is analogous to
the singularity x/|x|4 in three dimensions that appears in the kernel ∇K in (4.2): both are
odd, and their size is 1/|x|n.

4.2 The toyest model of all

Before proceeding with the analysis of the Constantin-Lax-Majda model, let us pause and
see what would happen if we would consider the simplest model that would preserve only the
quadratic nature of the nonlinearity in the vorticity equation:

dω(t, x)

dt
= ω2(t, x), ω(0, x) = ω0(x), x ∈ R. (4.8)
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Its explicit solution is

ω(t, x) =
ω0(x)

1− tω0(x)
. (4.9)

If there exist x ∈ R so that ω0(x) > 0, this solution makes sense until the denominator
vanishes, that is, until the time

Tc = inf
[ 1

ω0(x)
: ω0(x) > 0

]
. (4.10)

Let us assume that the function ω0(x) attains its maximum at x = xm, so that Tc = 1/ω0(xm).
The function ω(t, x) at the time t = Tc has an asymptotic expansion near the point x = xm:

ω(Tc, x) =
ω0(x)

1− Tcω0(x)
≈ ω0(xm)

−(Tc/2)ω′′
0(xm)(x− xm)2

. (4.11)

Thus, the function ω(t, x) blows up at the point xm and the blow-up profile is O(x− xm)
−2.

As a consequence, all Lp-norms of ω(t, x) blow up as well:

ˆ
R
|ω(t, x)|pdx→ +∞ as t ↑ Tc, (4.12)

for all p ≥ 1. Moreover, if we define the “velocity” as the anti-derivative of vorticity:

v(t, x) =

ˆ x

−∞
ω(t, y)dy, (4.13)

then v(t, x) also blows-up at the time Tc and its blow-up profile is O(x − xm)
−1. Therefore,

the Lp-norms of the velocity blows up as well:
ˆ
R
|v(t, x)|pdx→ +∞ as t ↑ Tc, (4.14)

for all p ≥ 1. In particular, the kinetic energy blows up:
ˆ
R
|v(t, x)|2dx→ +∞ as t ↑ Tc. (4.15)

This is in contrast to the energy conservation in the true Euler equations. Thus, the toy
model (4.8) can not be even “toyishly” correct. This example is intended simply to show that
some models are too “toy” to be even considered!

4.3 The Hilbert transform

In order to understand the Constantin-Lax-Majda model, let us first recall some basic prop-
erties of the Hilbert transform and its alternative definition in terms of complex analysis.
Given a Schwartz class function f(x) ∈ S(R) define a function

u(x, y) =

ˆ
R
e−2πy|ξ|f̂(ξ)e2πixξdξ, y ≥ 0, x ∈ R.
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Here, the Fourier transform is defined as

f̂(ξ) =

ˆ
R
f(x)e−2πiξxdx, f(x) =

ˆ
R
f̂(ξ)e2πiξxdξ. (4.16)

The function u(x, y) is harmonic in the upper half plane:

∆x,yu = 0 in R2
+ = R× (0,+∞),

and satisfies the boundary condition on the line y = 0:

u(x, 0) = f(x), x ∈ R.

We can write u(x, y) as a convolution

u(x, y) = Py ⋆ f =

ˆ
Py(x− x′)f(x′)dx′,

with
P̂y(ξ) = e−2πy|ξ|,

and

Py(x) =

ˆ ∞

−∞
e−2πy|ξ|e2πiξxdξ =

1

2π(y − ix)
+

1

2π(y + ix)
=

y

π(x2 + y2)
.

Next, set z = x+ iy and write

u(z) =

ˆ
R
e−2πy|ξ|f̂(ξ)e2πixξdξ =

ˆ ∞

0

f̂(ξ)e2πizξdξ +

ˆ 0

−∞
f̂(ξ)e2πiz̄ξdξ.

Consider the function v(z) given by

iv(z) =

ˆ ∞

0

f̂(ξ)e2πizξdξ −
ˆ 0

−∞
f̂(ξ)e2πiz̄ξdξ.

Note that, as f(x) is real-valued, we have f̂(ξ) = f̂(−ξ), thus v(z) is real-valued:

iv̄(z) = −
ˆ ∞

0

f̂(ξ)e−2πiz̄ξdξ +

ˆ 0

−∞
f̂(ξ)e−2πizξdξ

= −
ˆ ∞

0

f̂(−ξ)e−2πiz̄ξdξ +

ˆ 0

−∞
f̂(−ξ)e−2πizξdξ =

ˆ ∞

0

f̂(ξ)e2πizξdξ −
ˆ 0

−∞
f̂(ξ)e2πiz̄ξdξ

= iv(z).
(4.17)

Moreover, as the function

u(z) + iv(z) =

ˆ ∞

0

f̂(ξ)e2πizξdξ
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is analytic in the upper half-plane {Imz > 0}, the function v is the harmonic conjugate of u.
It can be written as

v(z) =

ˆ
R
(−isgn(ξ))e−2πy|ξ|f̂(ξ)e2πixξdξ = Qy ⋆ f,

with
Q̂y(ξ) = −isgn(ξ)e−2πy|ξ|, (4.18)

and

Qy(x) = −i
ˆ ∞

−∞
sgn(ξ)e−2πy|ξ|e2πiξxdξ =

1

π

x

x2 + y2
.

The Poisson kernel and its conjugate are related by

Py(x) + iQy(x) =
i

π(x+ iy)
=

1

iπz
,

which is analytic in {Imz ≥ 0}.
In order to consider the limit of Qy as y → 0, we relate it to the principal value of 1/x

defined as in (4.7): it is an element of the space S ′(R) of the Schwartz distributions, defined
by

P.V.
1

x
(ϕ) = lim

ε→0

ˆ
|x|>ε

ϕ(x)

x
dx =

ˆ
|x|<1

ϕ(x)− ϕ(0)

x
dx+

ˆ
|x|>1

ϕ(x)

x
dx, ϕ ∈ S(R), (4.19)

which is well-defined for ϕ ∈ S(R). The conjugate Poisson kernel Qy and the principal value
of 1/x are related as follows.

Proposition 4.1. Let Qy =
1

π

x

x2 + y2
, then for any function ϕ ∈ S(R)

1

π
P.V.

1

x
(ϕ) = lim

y→0

ˆ
R
Qy(x)ϕ(x)dx.

Proof. Let

ψy(x) =
1

x
χy<|x|(x)

so that

P.V.
1

x
(ϕ) = lim

y→0

ˆ
R
ψy(x)ϕ(x)dx.

Note, however, that

ˆ
(πQy(x)− ψy(x))ϕ(x)dx =

ˆ
R

xϕ(x)

x2 + y2
dx−

ˆ
|x|>y

ϕ(x)

x
dx

=

ˆ
|x|<y

xϕ(x)

x2 + y2
dx+

ˆ
|x|>y

[
x

x2 + y2
− 1

x

]
ϕ(x)dx (4.20)

=

ˆ
|x|<1

xϕ(xy)

x2 + 1
dx−

ˆ
|x|>y

y2ϕ(x)

x(x2 + y2)
dx =

ˆ
|x|<1

xϕ(xy)

x2 + 1
dx−

ˆ
|x|>1

ϕ(xy)

x(x2 + 1)
dx.
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The dominated convergence theorem implies that both integrals on the utmost right side
above tend to zero as y → 0. 2

It is important to note that the computation in (4.20) worked only because the kernel 1/x
is odd – this produces the cancellation that saves the day. This would not happen, for instance,
for a kernel behaving as 1/|x| near x = 0.

Thus, the Hilbert transform defined as

Hf(x) =
1

π
lim
ε→0

ˆ
|y|>ε

f(x− y)

y
dy. (4.21)

can be also written as
Hf(x) = lim

y→0
Qy ⋆ f(x). (4.22)

In other words, we take the function f(x), extend it as a harmonic function u(x, y) to the
upper half-plane, and find the conjugate harmonic function v(x, y). Then, Hf(x) = v(x, 0),
the restriction of v(x, y) to the real axis. It follows from (4.18) that

Ĥf(ξ) = lim
t↓0

Q̂t(ξ)f̂(ξ) = −isgn(ξ)f̂(ξ). (4.23)

Therefore, the Hilbert transform may be extended to an isometry L2(R) → L2(R), with

∥Hf∥L2 = ∥f∥L2 , H(Hf) = −f, (4.24)

and ˆ
(Hf)(x)g(x)dx = −

ˆ
f(x)(Hg)(x)dx. (4.25)

4.4 Back to the Constantin-Lax-Majda model

Let us now return to the CLM model

ωt = H[ω]ω, ω(0, x) = ω0(x). (4.26)

The term H[ω]ω in the right side of (4.26) is similar to the vorticity stretching term Dω in
the true three-dimensional vorticity equation in the three aspects we have discussed above,
below (4.3). It is quadratic in ω, it follows from (4.25) that the operator H is skew-symmetric:

ˆ
R
H[ω](x)ω(x)dx = 0, (4.27)

so the right side of (4.26) integrates to zero, as in (4.4), and the kernel 1/x has the correct
singularity – it is odd and of the size 1/|x|n (where n is the dimension). It follows from (4.27)
that the integral of the solution of the toy model (4.26) is preserved:

d

dt

ˆ
R
ω(t, x)dx = 0. (4.28)
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Given a function ϕ, let us now use the “complex analysis” definition of ψ = H[ϕ], and
set u(x, y) and v(x, y) so that the function f = u+iv is analytic in {y > 0}, with the boundary
values u(x, 0) = ϕ(x), v(x, 0) = ψ(x). As we may write

−if 2 = 2uv + i(v2 − u2), (4.29)

it follows that the harmonic conjugate of uv is (v2 − u2)/2. Restricting this identity to the
real line gives

H(ϕH[ϕ]) =
1

2
(H[ϕ])2 − 1

2
ϕ2. (4.30)

Applying the Hilbert transform to the toy vorticity equation gives then

d

dt
H[ω] =

1

2
(H[ω])2 − ω2

2
. (4.31)

Therefore, the function
w(t, x) = H[ω](t, x) + iω(t, x) (4.32)

satisfies the simple quadratic ODE

dw

dt
=

1

2
(H[ω])2 − 1

2
ω2 + iH[ω]ω =

1

2
w2. (4.33)

Hence, the function w(t, x) is given explicitly by

w(t, x) =
w0(x)

1− 1
2
tw0(x)

. (4.34)

Taking the imaginary part of (4.34) gives an explicit formula for the solution of the toy
vorticity equation:

ω(t, x) = Im
w0(x)

1− 1
2
tw0(x)

= Im
2(H[ω0](x) + iω0(x))

2− t(H[ω0](x) + iω0(x))

= Im
2(H[ω0](x) + iω0(x))(2− tH[ω0](x) + itω0(x))

(2− tH[ω0](x))2 + t2(ω0(x))2

= 2
tω0(x)H[ω0](x) + ω0(x)(2− tH[ω0](x))

(2− tH[ω0](x))2 + t2(ω0(x))2
=

4ω0(x)

(2− tH[ω0](x))2 + t2(ω0(x))2
.

(4.35)

The explicit formula

ω(t, x) =
4ω0(x)

(2− tH[ω0](x))2 + t2(ω0(x))2
. (4.36)

gives an explicit criterion for the solution of the vorticity to exist for all times t > 0. Namely,
the solution ω(t, x) exists and remains smooth provided that there does not exist a point x ∈ R
so that both ω0(x) = 0 and H[ω0](x) > 0. The explicit breakdown time for a smooth solution
is then

Tc = inf
{ 2

H[ω0](x)
: ω0(x) = 0, H[ω0](x) > 0

}
. (4.37)
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As an example, consider ω0(x) = cos x, so that H[ω0](x) = sinx, and

ω(t, x) =
4 cosx

(2− t sinx)2 + t2 cos2 x
=

4 cosx

4 + t2 − 4t sinx
. (4.38)

The breakdown time Tc = 2, at the point x = π/2, and the corresponding “toy velocity” is

v(t, x) =

ˆ x

0

ω(t, y)dy =
1

t
log(1 +

t2

4
− t sinx). (4.39)

Therefore, ˆ π

−π

|ω(t, x)|pdx→ +∞ (4.40)

as t ↑ Tc, for any 1 ≤ p <∞. On the other hand, the Lp-norms of the velocity stay finite:

ˆ π

−π

|v(t, x)|pdx→Mp < +∞, (4.41)

for all 1 ≤ p < +∞, as t →↑ Tc. In particular, the kinetic energy does not blow-up at the
time Tc: ˆ π

−π

|v(t, x)|2dx→M2 < +∞, (4.42)

This is in contrast to what happens in the “most toyest” model (4.8), where, the kinetic
energy blows up at the blow-up time. Thus, while the Constantin-Lax-Majda model does
not necessarily capture the physics of the Euler equations, it provides a “reasonable” one-
dimensional playground.

5 The weak solutions to the Navier-Stokes equations

We will now start looking at the existence and regularity of the solutions of the Navier-Stokes
equations. In order to focus on the less technical points, we will consider the periodic solutions
to the Navier-Stokes equations:

ut + u · ∇u− ν∆u+∇p = f(t, x),

∇ · u = 0, (5.1)

u(0, x) = u0.

Here, f is the forcing term, and u0(x) is the initial condition. We assume both to be 1-periodic
in all directions: f(t, x+ ej) = f(t, x), u0(x+ ej) = u0(x), with j = 1, 2 in R2 and j = 1, 2, 3
in R3. We will look for periodic in x solutions to (5.1) in Rn, n = 2, 3.

Note first that, integrating (5.1) over Tn and using the incompressibility of u(t, x), we
deduce that the integral of u is conserved if f = 0:

⟨u⟩(t) =
ˆ
Tn

u(t, x)dx = 0. (5.2)
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Here, Tn = [0, 1]n is the unit torus. When f ̸= 0, (5.2) holds, provided that ⟨f⟩ = 0 for
all t ≥ 0.

Generally, we have a separate equation for ⟨u⟩:

d⟨u⟩
dt

= ⟨f⟩, (5.3)

hence ū(t) = ⟨u(t, ·)⟩ is explicit:

ū(t) = ū(0) +

ˆ t

0

⟨f(s, ·)⟩ds.

Then, we can set

X(t) =

ˆ t

0

ū(s)ds,

and observe that the man-zero flow

v(t, x) = u(t, x+X(t))− ū(t),

satisfies the forced Navier-Stokes equations

vt + v · ∇v − ν∆v +∇p = g(t, x),

∇ · v = 0, (5.4)

v(0, x) = v0,

with the force
g(t, x) = f(t, x+X(t))− ⟨f(t, ·)⟩.

With that change of variable, both the initial condition v0(x) and the force g(t, x) are still 1-
periodic in x, but, in addition, ⟨g(t, ·)⟩ = 0 for all t ≥ 0. Thus, we may assume without loss
of generality that ⟨f⟩ = 0, and (5.2) holds.

The two and three dimensional cases are very different. In two dimensions, we will eventu-
ally be able to show existence of regular solutions for all t > 0, provided that the forcing f(t, x)
and the initial condition u0(x) are sufficiently regular. On the other hand, in three dimensions,
we will only be able to show that there exists a time Tc > 0 that depends on the force f and
the initial condition u0 so that the solution of the Navier-Stokes equations remains regular
until the time Tc. However, if both the initial data and the forcing are sufficiently small (in a
sense to be made precise later), then solutions of the Navier-Stokes equations remain regular
for all times t > 0. This will be shown using the dominance of diffusion over the nonlinearity
for small data.

5.1 The definition of the weak solutions

The distinction between two and three dimensions is less dramatic if we talk about weak
solutions. As is usual in the theory of weak solutions of partial differential equations, the
definition of a weak solution of the Navier-Stokes equations (5.1) comes from multiplying the
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equation by a smooth test function and integrating by parts. First, we note that any test
vector field ψ can be decomposed as a sum of a gradient field and a divergence-free field:

ψ(x) = ϕ(x) +∇η(x), (5.5)

with ∇·ϕ(x) = 0. This is known as the Hodge decomposition. In the periodic case the Hodge
decomposition is quite explicit: write ψ(x) in terms of the Fourier transform

ψ(x) =
∑
k∈Zn

ψke
2πik·x, (5.6)

and consider the potential

η(x) =
∑

k∈Zn,k ̸=0

(ψk · k)
2πi|k|2

e2πik·x. (5.7)

Its gradient is

∇η(x) =
∑

k∈Zn,k ̸=0

(ψk · k)
|k|2

ke2πik·x. (5.8)

The Fourier coefficients of the difference

ϕ(x) = ψ(x)−∇η(x) =
∑

k∈Zn,k ̸=0

(
ψk −

(ψk · k)
|k|2

k
)
e2πik·x (5.9)

are

ϕk = ψk −
(ψk · k)
|k|2

k. (5.10)

They satisfy
ϕk · k = 0, (5.11)

which implies that the vector field ϕ(x) is divergence-free:

∇ · ϕ(x) = 0. (5.12)

Let now u(t, x) be a smooth solution of the Navier-Stokes equations

ut + u · ∇u+∇p = ν∆u+ g, (5.13)

∇ · u = 0. (5.14)

We will also use the Hodge decomposition of the forcing term

g = f +∇ζ with ∇ · f = 0. (5.15)

The first observation is that if we multiply (5.13) by ∇η(x) and integrate, then we simply
get the Poisson equation for the pressure. Indeed, if w is a smooth periodic vector field,
and ∇ · w = 0, then

ˆ
Tn

w(x) · ∇η(x)dx = −
ˆ
Tn

η(x)(∇ · w)(x)dx = 0. (5.16)
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It follows that ˆ
Tn

(ut · ∇η)dx =

ˆ
Tn

(∆u · ∇η)dx = 0. (5.17)

For the pressure we have: ˆ
Tn

(∇p · ∇η)dx = −
ˆ
Tn

p∆ηdx, (5.18)

while for the nonlinear term we get, after an integration by parts, using the divergence-free
condition on u:ˆ

Tn

((u · ∇u) · ∇η)dx =

ˆ
Tn

uj(∂juk)∂kηdx = −
ˆ
Tn

ujuk(∂j∂kη)dx. (5.19)

We deduce that, for any test function η(x), we have
ˆ
Tn

(p∆η + ujuk(∂j∂kη)dx =

ˆ
Tn

g · ∇η =

ˆ
Tn

∇ζ · ∇η. (5.20)

This is the weak form of the Poisson equation

−∆p = (∂juk)(∂kuj)−∆ζ. (5.21)

On the other hand, when we multiply (5.13) by a divergence-free smooth vector field w(x),
the pressure term disappears: ˆ

Tn

(w · ∇p)dx = 0, (5.22)

and the nonlinear term may be written as
ˆ
Tn

((u · ∇u) · w)dx =

ˆ
Tn

uj(∂juk)wkdx = −
ˆ
Tn

ujuk∂jwkdx. (5.23)

Thus, if w is a C∞(Tn) periodic divergence-free field, integration by parts gives
ˆ
Tn

[ut · w − ujuk∂jwk]dx = ν

ˆ
Tn

(u ·∆w)dx+
ˆ
Tn

(f · w)dx. (5.24)

For now, we say that u(t, x) is a weak solution of the Navier-Stokes equations if (5.24) holds
for all periodic smooth divergence-free vector fields w(x). A little later, we will make this
notion more precise, setting up the proper spaces in which the weak solutions live, and relaxing
the C∞ assumption on the test function. Note that this definition completes sidesteps the
issue of the pressure field.

5.2 The Galerkin approximation

In order to construct the weak solutions, we will consider the Galerkin approximation of
the Navier-Stokes equations. In the periodic case, this is equivalent to the projection of the
equations on the divergence-free Fourier modes with |k| ≤ m, where m > 0 is fixed. That is,
given a vector-field

ψ(x) =
∑
k∈Zn

ake
2πik·x, (5.25)
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we set

ψ(m)(x) = Pmψ(x) =
∑
|k|≤m

(
ak −

(ak · k)
|k|2

k
)
e2πik·x, (5.26)

so that, in particular,
∇ · ψ(m) = 0. (5.27)

Note that if ψ is a divergence-free vector field then ψ(m) is simply the projection on the Fourier
modes with |k| ≤ m.

The Galerkin approximation of the Navier-Stokes equations

ut + u · ∇u+∇p = ν∆u+ f, (5.28)

with u(0, x) = u0(x), and a divergence-free force f : ∇ · f = 0, is the system

∂u(m)

∂t
+ Pm(u

(m) · ∇u(m)) = ν∆u(m) + f (m), u(m)(0) = u
(m)
0 . (5.29)

This is a finite-dimensional constant coefficients system of quadratic ODE’s for the Fourier
coefficients um of the function u(x) with |k| ≤ m. If the function f is time-independent,
this system is autonomous. The goal is obtain bounds on the solution u(m) of the Galerkin
system that would allow us to pass to the limit m → +∞, leading to a weak solution of the
Navier-Stokes equations.

5.2.1 A bound on the energy and enstrophy for the Galerkin solutions

We fix an arbitrary time T > 0 throughout the analysis of the Galerkin system. As (5.29)
is a system of constant coefficient non-linear ODEs for the coefficients uk, |k| ≤ m, it has a

solution for a sufficiently small time t > 0 (which a priori may depend on the initial data u
(m)
0 ,

as well as on m). Unlike partial differential equations, such ODEs may lose solutions only via
the blow-up of the energy

∥u(m)∥22 =
∑
|k|≤m

|uk|2, (5.30)

and that, as we will now show, can not happen in a finite time for any finite m. Indeed, we
have ˆ

Tn

(Pm(u
(m) · ∇u(m)) · u(m))dx =

ˆ
Tn

((u(m) · ∇u(m)) · u(m))dx = 0. (5.31)

We used the definition of the projection Pm in the first identity, and the incompressibility
of u(m) in the second. Therefore, multiplying (5.29) by u(m) and integrating, we obtain

1

2

d

dt

ˆ
Tn

|u(m)|2dx = −ν
ˆ
Tn

|∇u(m)|2dx+
ˆ
Tn

(f (m) · u(m))dx. (5.32)

We will now use the Poincaré inequality

4π2

ˆ
Tn

|ϕ|2dx ≤
ˆ
Tn

|∇ϕ|2, (5.33)
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that holds for all mean-zero periodic functions ϕ. With its help, identity (5.32) implies
that E(t) = ∥u(m)∥22 satisfies

1

2

dE

dt
≤ −4π2νE(t) + ∥f (m)∥2

√
E(t) ≤ −4π2νE(t) + 2π2νE(t) +

1

8π2ν
∥f∥22

≤ −2π2νE(t) +
1

8π2ν
∥f∥22. (5.34)

Therefore, we have the inequality

d

dt

(
E(t)e4π

2νt
)
≤ 1

4π2ν
∥f∥22e4π

2νt. (5.35)

Integrating in time leads to an estimate

E(t) ≤ E(0)e−4π2νt +
1

4π2ν

ˆ t

0

e−4π2ν(t−s)∥f(s)∥22ds. (5.36)

The estimate (5.36) relies only on the finiteness of the L2-norm of the forcing f . Another
way to estimate the right side in (5.32), relying only on the finiteness of a weaker norm of f ,
is to use the inequality∣∣∣∣ˆ

Tn

(f · g)dx
∣∣∣∣ =

∣∣∣∣∣∑
k∈Zn

fkgk

∣∣∣∣∣ ≤
(∑

k∈Zn

4π2k2|gk|2
)1/2(∑

k∈Zn

|fk|2

4π2k2

)1/2

= ∥∇g∥2∥f∥H−1 ,

(5.37)
with the H−1-norm defined as in the above inequality. Using this inequality in (5.32) gives

1

2

dE

dt
≤ −ν∥∇u(m)∥22 + ∥∇u(m)∥2∥f∥H−1 ≤ −ν∥∇u(m)∥22 +

ν

2
∥∇u(m)∥22 +

1

2ν
∥f∥2H−1

= −ν
2
∥∇u(m)∥22 +

1

2ν
∥f∥2H−1 . (5.38)

Now, we use the Poincaré inequality to obtain:

dE

dt
≤ −C1νE +

C2

ν
∥f∥2H−1 , (5.39)

with universal constants C1 and C2. Integrating this differential inequality in time leads to
another estimate for E(t), which involves only ∥f∥H−1 and not ∥f∥2:

E(t) ≤ E(0)e−C1νt +
C ′

2

ν

ˆ t

0

e−C1ν(t−s)∥f(s)∥2H−1ds. (5.40)

The same argument provides a time-averaged bound on the enstrophy D(t) = ∥∇u(t)∥22.
Indeed, integrating inequality (5.38) in time leads to

1

2
∥u(m)(T )∥22 +

ν

2

ˆ T

0

ˆ
Tn

|∇u(m)(s, x)|2dxds ≤ 1

2
∥u(m)

0 ∥22 +
1

2ν

ˆ T

0

∥f (m)(s)∥2H−1ds. (5.41)

41



5.2.2 The function spaces and an intermediate summary

Now, we need to introduce certain spaces. We denote by H the space of all mean-zero vector-
valued functions u in the space [L2(Tn)]n, with zero divergence (in the sense of distributions):

H = {u ∈ L2(Tn) : ∇ · u = 0, ⟨u⟩ = 0}, (5.42)

with the inner product

(f, g) =

ˆ
Tn

(f · g)dx. (5.43)

In other words, a vector field u ∈ H if its Fourier coefficients in the expansion

u(x) =
∑
k∈Zn

uke
2πik·x (5.44)

satisfy u0 = 0, k · uk = 0 for all k ∈ Zn
∗ = Zn \ {0}, and

∥u∥2H =
∑
k∈Zn

∗

|uk|2 < +∞. (5.45)

We also denote by V the space of divergence-free functions in the Sobolev space H1(Tn):

V = {u ∈ H1(Tn) : ∇ · u = 0, ⟨u⟩ = 0}, (5.46)

with the inner product

⟨f, g⟩ =
ˆ
Ω

(
∂u

∂xi
· ∂g
∂xi

)dx, (5.47)

for two vector-valued functions f and g. That is, u ∈ V if its Fourier coefficients satisfy u0 = 0,
as well as k · uk = 0 for all k, and

∥u∥2V =
∑
k∈Zn

∗

|k|2|uk|2 < +∞. (5.48)

The dual space to V consists of all distributions with the Fourier coefficients that satisfy

∥u∥2V ′ =
∑
k∈Zn

∗

|uk|2

|k|2
< +∞, u0 = 0 and k · uk = 0. (5.49)

We will occasionally use the Sobolev spaces Hs, s ∈ R, of divergence-free functions: we say
that u ∈ Hs(Tn) if its Fourier coefficients uk satisfy

u0 = 0, k · uk = 0 and ∥u∥Hs =

∑
k∈Zn

∗

|k|2s|uk|2
1/2

< +∞. (5.50)

We have, with this notation V = H1 and V ′ = H−1. The spaces L2(0, T ;H) and L2(0, T ;V )
have the respective norms

∥u∥2L2(0,T ;H) =

ˆ T

0

∥u(t)∥2Hdt, ∥u∥2L2(0,T ;V ) =

ˆ T

0

∥u(t)∥2V dt. (5.51)

Summarizing our analysis of the Galerkin system so far, and rephrasing the results in terms
of the spaces H, V and V ′, we have proved the following.
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Proposition 5.1. Assume that f ∈ L∞(0, T ;H). Then, the Galerkin system (5.29) has a
unique solution u(m) ∈ L2(0, T ;V ) ∩ L∞(0, T ;H). More precisely, there exist two universal
constants C1 > 0 and C2 > 0 so that

∥u(m)(t)∥2H ≤ ∥u0∥2He−4π2νt +
1

4π2ν

ˆ t

0

e−4π2ν(t−s)∥f(s)∥2Hds, (5.52)

∥u(m)(t)∥2H ≤ ∥u0∥2He−C1νt +
C2

ν

ˆ t

0

e−C1ν(t−s)∥f(s)∥2V ′ds (5.53)

ν

ˆ T

0

∥u(m)(s)∥2V ds ≤ ∥u0∥22 +
1

2ν

ˆ T

0

∥f(s)∥2V ′ds. (5.54)

5.3 The Galerkin approximation: bounds on the time derivative

5.3.1 The time derivative estimate

The next step is obtain bounds on the time derivative of u(m). They will be needed in the
passage to the limit m → +∞, to ensure that the limit is weakly continuous in time. Let us
write the Galerkin approximation of the Navier-Stokes equaitons as

∂u(m)

∂t
= ν∆u(m) − Pm(u

(m) · ∇u(m)) + f (m), u(m)(0) = u
(m)
0 . (5.55)

We will aim to obtain the following bounds on u
(m)
t . The estimates are slightly different in

two and three dimensions.

Proposition 5.2. Assume that f ∈ L2(0, T ;V ′). There exists a constant C which depends
on the norm ∥u0∥H of the initial conditionu0, the L

2(0, T ;V ′)-norm of the forcing f , and the
viscosity ν but not on m, so that the solution to the Galerkin system (5.29) in dimension n = 3
satisfies the estimate ˆ T

0

∥∥∥∂u(m)

∂t
(t)
∥∥∥4/3
V ′

≤ C. (5.56)

and in dimension n = 2 it satisfies
ˆ T

0

∥∥∥∂u(m)

∂t
(t)
∥∥∥2
V ′

≤ C. (5.57)

For the proof, we will estimate individually each of the terms in the right side of (5.55). As
we assume that f ∈ L2(0, T ;V ′), the forcing term in is not a problem either in dimension two
or three. The Laplacian term in (5.55) is also bounded in L2(0, T ;V ′), as follows from (5.54):
the Fourier coefficients of ∆u are |k|2uk, hence

∥∆u∥2V ′ =
∑
k∈Zn

|k|4

|k|2
|uk|2 = ∥u∥2V , (5.58)

thus ˆ T

0

∥∆u(m)(s)∥2V ′ds =

ˆ T

0

∥u(m)(s)∥2V ds ≤
1

ν
∥u(m)

0 ∥22 +
1

2ν2

ˆ T

0

∥f (m)(s)∥2V ′ds. (5.59)

The nonlinear term will require the most effort. We will establish the following bounds.
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Lemma 5.3. There exists a constant C that so that in two dimensions we have, for any
function u ∈ V :

∥(u · ∇u)∥V ′ ≤ C∥u∥H∥u∥V , n = 2, (5.60)

and in three dimensions we have

∥(u · ∇u)∥V ′ ≤ C∥u∥1/2H ∥u∥3/2V , n = 3. (5.61)

Together with the uniform energy bound (5.53) and the enstrophy bound (5.54), this
implies the conclusion of Proposition 5.2. Indeed, in dimension n = 2, (5.60) gives

ˆ T

0

∥Pm(u · ∇u)(s)∥2V ′ds ≤
ˆ T

0

∥(u · ∇u)(s)∥2V ′ds ≤ ( sup
0≤t≤T

∥u(t)∥2H)
ˆ T

0

∥u(s)∥2V ds ≤ C,

and in dimension n = 3, (5.61) leads to

ˆ T

0

∥Pm(u · ∇u)(s)∥4/3V ′ ds ≤
ˆ T

0

∥(u · ∇u)(s)∥4/3V ′ ds ≤ ( sup
0≤t≤T

∥u(t)∥2/3H )

ˆ T

0

∥u(s)∥2V ds ≤ C.

Thus the proof of Proposition 5.2 is reduced to proving Lemma 5.3.

5.3.2 The proof of Lemma 5.3: bounds on the nonlinear term

Note that
∥(u · ∇u)∥V ′ = ∥(−∆)−1/2(u · ∇u)∥H . (5.62)

The operator (−∆)−1/2 is defined via its action on the Fourier coefficients of a mean-zero
function u(x):

(−∆)−1/2u(x) =
∑
k∈Zn

uk
|k|
e2πik·x. (5.63)

This operator commutes with the projection Pm, as, in particular, it preserves the incom-
pressibility of u. Hence, Lemma 5.3 can be restated as follows.

Lemma 5.4. Let u ∈ V , then in three dimensions we have the estimate

∥(−∆)−1/2(u · ∇u)∥H ≤ C∥u∥1/2H ∥u∥3/2V , (5.64)

while in two dimensions we have

∥(−∆)−1/2(u · ∇u)∥H ≤ C∥u∥H∥u∥V , (5.65)

Proof. In this proof, we will use interchangeably the notation ∥u∥H1 and ∥u∥V , since
the divergence-free property plays almost no role in the proof. Take an arbitrary u ∈ H
and w ∈ H and write, for the inner product in H:

((−∆)−1/2(u · ∇u), w) = ((u · ∇u), (−∆)−1/2w). (5.66)

In three dimensions, we will show
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Lemma 5.5. In dimension n = 3, for any u, v, w ∈ V we have

|((u · ∇v), w)| ≤ C∥u∥H1/2∥v∥H1∥w∥H1 . (5.67)

Applying this estimate in (5.66) gives

|((−∆)−1/2(u ·∇u), w)| = |((u ·∇u), (−∆)−1/2w)| ≤ C∥u∥H1/2∥u∥H1∥(−∆)−1/2w)∥H1 . (5.68)

As
∥(−∆)−1/2w)∥H1 = ∥w∥H , (5.69)

and

∥u∥2H1/2 =
∑
k∈Zn

|k||uk|2 ≤

(∑
k∈Zn

|k|2|uk|2
)1/2(∑

k∈Zn

|uk|2
)1/2

= ∥u∥H∥u∥V , (5.70)

we deduce from (5.66) that in three dimensions we have

|((−∆)−1/2(u · ∇u), w)| ≤ C∥u∥1/2H ∥u∥3/2V ∥w∥H . (5.71)

As this estimate holds for all w ∈ H, (5.64) follows.
In two dimensions, we will show

Lemma 5.6. In dimension n = 2, we have

|((u · ∇v), u)| ≤ C∥u∥H∥u∥H1∥v∥H1 . (5.72)

To see that this implies (5.65), we write, using incompressibility of u:

((−∆)−1/2(u · ∇u), w) = ((u · ∇u), (−∆)−1/2w) = −((u · ∇(−∆)−1/2w), u). (5.73)

Applying estimate (5.72) in (5.73) gives

|((−∆)−1/2(u · ∇u), w)| = |((u · ∇(−∆)−1/2w), u)|
≤ C∥u∥H∥(−∆)−1/2w∥H1∥u∥H1 = C∥u∥H∥u∥H1∥w∥H .

(5.74)

As this holds for any w ∈ H, we conclude that (5.65) holds in two dimensions.
Thus, we only need to verify (5.67) in three dimensions and (5.72) in two dimensions to

finish the proof of Lemma 5.4.
Proof of Lemma 5.5. In three dimensions, we use Hölder’s inequality to get

|((u · ∇v), w)| ≤
ˆ
T3

|uj(∂jvk)wk|dx ≤ ∥u∥L3(T3)∥∇v∥L2(T3)∥w∥L6(T3)

= ∥u∥L3(T3)∥v∥H1(T3)∥w∥L6(T3). (5.75)

The Sobolev inequality says that, for m < n/2,

∥f∥Lq(Tn) ≤ C∥f∥Hm(Tn), (5.76)
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as long as
1

q
≥ 1

2
− m

n
. (5.77)

Therefore, in dimension n = 3, taking q = 3 and m = 1/2 we have

∥u∥L3(T3) ≤ C∥u∥H1/2 , (5.78)

while taking q = 6 and m = 1, we obtain

∥w∥L6(T3) ≤ C∥w∥H1(T3). (5.79)

It follows then from (5.75) that

|((u · ∇v), w)| ≤ ∥u∥L3(T3)∥v∥H1(T3)∥w∥L6(T3) ≤ C∥u∥H1/2(T3)∥v∥H1(T3)∥w∥H1(T3), (5.80)

which is (5.67).
Proof of Lemma 5.6. In two dimensions, we proceed similarly: Hölder’s inequality

implies

|((u · ∇v), w)| ≤ ∥u∥L4(T2)∥w∥L4(T2)∥v∥H1(T2). (5.81)

The Sobolev inequality (5.76) in two dimensions, with q = 4 and m = 1/2 implies that

∥f∥L4(T2) ≤ C∥f∥H1/2(T2). (5.82)

Using this in (5.81) leads to

|((u · ∇v), w)| ≤ ∥u∥L4(T2)∥w∥L4(T2)∥v∥H1(T2) ≤ C∥u∥H1/2(T2)∥w∥H1/2(T2)∥v∥H1(T2). (5.83)

As
∥u∥2H1/2 ≤ ∥u∥H∥u∥H1 , (5.84)

we obtain

|((u · ∇v), w)| ≤ C(∥u∥H∥u∥H1∥w∥H∥w∥H1)1/2∥v∥H1(T2), (5.85)

hence
|((u · ∇v), u)| ≤ C∥u∥H∥u∥H1∥v∥H1(T2), (5.86)

which is (5.72). This finishes the proof of Lemma 5.4. 2

5.4 A compactness theorem

We have deduced above uniform in m a priori bounds on the solution u(m) of the Galerkin
system

∂u(m)

∂t
+ Pm(u

(m) · ∇u(m)) = ν∆u(m) + f (m), u(m)(0) = u
(m)
0 . (5.87)

The next step is to use these uniform bounds to show that the sequence u(m) has a (strongly)
convergent subsequence in L2(0, T ;H). As we will see, the limit of this subsequence will be a
weak solution of the Navier-Stokes equations. We will use the following compactness result.
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Proposition 5.7. Let um be a sequence of functions satisfying

∥um(t)∥H ≤ C, (5.88)

for all 0 ≤ t ≤ T , ˆ T

0

∥um(s)∥2V ds ≤ C, for all m = 1, 2, . . . (5.89)

and ˆ T

0

∥∥∥∂u(m)

∂t
(t)
∥∥∥p
V ′

≤ C, for all m = 1, 2, . . . , (5.90)

with some C > 0 and p > 1. Then there exists a subsequence umj
of um which converges

strongly in L2(0, T ;H) to a function u ∈ L2(0, T ;V ).

Proof. The uniform bound (5.89) implies that there exists a subsequence umj
which con-

verges weakly in L2(0, T ;V ) to a function u ∈ L2(0, T ;V ), which also obeys the bound (5.89).
In addition, using the diagonal argument, we may ensure that the sequence of time deriva-
tives u

(m)
t converges weakly to the derivative ut in L

p(0, T ;V ′). Thus, the estimate (5.90) also
holds for the function u. The difference

wj = umj
− u

converges weakly to zero in L2(0, T ;V ), and the bounds (5.88)-(5.90) hold for wj as well. Our
goal is to prove that the convergence of wj to zero is strong in L2(0, T ;H).

Note that for any f ∈ V
∥f∥H ≤ (∥f∥V ∥f∥V ′)1/2, (5.91)

hence, for any δ > 0 we have

∥f∥2H ≤ δ∥f∥2V +
1

δ
∥f∥2V ′ . (5.92)

The uniform bound (5.89) for the functions wj and (5.92) imply

ˆ T

0

∥wj∥2Hdt ≤ Cδ +
1

δ

ˆ T

0

∥wj∥2V ′dt. (5.93)

Our goal is to estimate the second term in (5.93), and show that it goes to zero as j → +∞,
with δ > 0 fixed. Note that

∥wj(t)∥V ′ ≤ ∥wj(t)∥H ≤ C. (5.94)

Thus, the Lebesgue dominated convergence theorem shows that it suffices to show that

∥wj∥V ′ → 0 pointwise in t ∈ [0, T ]. (5.95)

To this end, given a time ε > 0 and ε ≤ t ≤ T , let us write

wj(t, x) = wj(s, x) +

ˆ t

s

∂wj(τ, x)

∂τ
dτ, (5.96)
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and average this identity over s ∈ [t− ε, t]:

wj(t, x) =
1

ε

ˆ t

t−ε

wj(s, x)ds+
1

ε

ˆ t

t−ε

ds

ˆ t

s

∂wj(τ, x)

∂τ
dτ

=
1

ε

ˆ t

t−ε

wj(s, x)ds+
1

ε

ˆ t

t−ε

(τ − t+ ε)
∂wj(τ, x)

∂τ
dτ. (5.97)

In order to bound the first term, note that for any 0 ≤ a ≤ b ≤ T the integral

Ij(x) =

ˆ b

a

wj(t, x)dt (5.98)

converges weakly to zero in V . Indeed, for any v ∈ V ′, the function χ[a,b](t)v(x) is an element
of L2(0, T ;V ′), and wj → 0 weakly in L2(0, T ;V ), thus we have

ˆ
Tn

Ij(x)v(x)dx =

ˆ T

0

ˆ
Tn

wj(t, x)χ[a,b](t)v(x)dxdt→ 0 as j → ∞. (5.99)

As V is compactly embedded into H, weak convergence in V implies strong convergence in H:
the sequence Ij converges strongly to zero in H. Thus, it also converges strongly to zero in V ′.
In particular, given any ε > 0 and δ > 0 , for all j sufficiently large we have

1

ε

∥∥∥∥ˆ t

t−ε

wj(s, x)ds

∥∥∥∥
V ′
< δ for j ≥ J(ε, δ, t), (5.100)

giving a pointwise in time estimate for the first term in (5.97). For the second term in (5.97),
we may use the Minkowski inequality, followed by Hölder’s inequality, with 1/q + 1/p = 1:

1

ε

∥∥∥∥ˆ t

t−ε

(τ − t+ ε)
∂wj(τ, x)

∂τ
dτ

∥∥∥∥
V ′

≤ 1

ε

ˆ t

t−ε

(τ − t+ ε)

∥∥∥∥∂wj(τ, x)

∂τ

∥∥∥∥
V ′
dτ (5.101)

≤ 1

ε

(ˆ t

t−ε

(τ − t+ ε)qdτ

)1/q (ˆ t

t−ε

∥∥∥∥∂wj(τ, x)

∂τ

∥∥∥∥p
V ′
dτ

)1/p

≤ Cε1/q
(ˆ T

0

∥∥∥∥∂wj(τ, x)

∂τ

∥∥∥∥p
V ′
dτ

)1/p

≤ Cε1/q,

for all j ≥ 1. It is here that the assumption p > 1 is used, so that q < +∞.. It follows from
the above analysis that, given any ε > 0 and δ > 0, we may find J(ε, δ, t) so that

∥wj(t)∥V ′ ≤ δ + Cε1/q, for all j ≥ J(ε, δ, t). (5.102)

In other words, we have shown that

∥wj(t)∥V ′ → 0 as j → ∞, pointwise in t ∈ [0, T ]. (5.103)

As we have explained above, we may use the Lebesgue dominated convergence theorem to
conclude from (5.93) that the sequence wj converges strongly to zero in L2(0, T ;H). This
finishes the proof of Proposition 5.7. 2
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5.5 The weak solutions as limits of the Galerkin solutions

We will now construct the weak solutions of the Navier-Stokes equations as a limit of the
solutions u(m) of the Galerkin system as m → ∞. In particular, the definition of the weak
solution we will adopt is motivated by the estimates on u(m) we have obtained above. We say
that u ∈ Cw(0, T ;H) if the function ψ(t) = (u(t), h) is continuous for all h ∈ H.

Definition 5.8. A function u is a weak solution to the (periodic) Navier-Stokes equations

ut + u · ∇u+∇p = ν∆u+ f(t, x), t > 0, x ∈ Tn,

∇ · u = 0,

u(0, x) = u0(x),

(5.104)

if

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) ∩ Cw(0, T ;H) and
∂u

∂t
∈ L1

loc(0, T ;V
′), (5.105)

and, for any v ∈ V , we have

ˆ
Tn

u(t, x) · v(x)dx+ ν

ˆ t

0

ˆ
Tn

∇u · ∇vdxds+
ˆ t

0

ˆ
Tn

((u · ∇u) · v)dxds

=

ˆ
Tn

u0(x) · v(x)dx+
ˆ t

0

ˆ
f · vdxds, for all v ∈ V and 0 ≤ t ≤ T . (5.106)

Let us check that each term in (5.106) makes sense if u satisfies (5.105), and v ∈ V . The
first term is finite since u ∈ L∞(0, T ;H). The second is finite since u ∈ L2(0, T ;V ). The last
term in the left side is finite in three dimensions because of the estimate (5.67):

|((u · ∇u), v)| ≤ C∥u∥H1/2∥u∥H1∥v∥H1 ≤ C∥u∥1/2H ∥u∥3/2V ∥v∥V , (5.107)

as ∥u∥H is uniformly bounded in t, and u ∈ L2(0, T ;V ). In two dimensions, this term is
bounded because of the estimate (5.72):

|((u · ∇u), v)| = |((u · ∇v), u)| ≤ C∥u∥H∥u∥V ∥v∥V , (5.108)

again, because ∥u∥H is uniformly bounded in t, and u ∈ L2(0, T ;V ).
Finally, the right side in (5.106) is finite provided that f ∈ L2(0, T ;V ′) and u0 ∈ H.

The following theorem, due to Leray, is one of the most classical results in the mathematical
theory of the Navier-Stokes equations (we state here its simpler version for the periodic case).

Theorem 5.9. Given u0 ∈ H and f ∈ L2(0, T ;V ′), there exists a weak solution of the
Navier-Stokes equations

ut + u · ∇u+∇p = ν∆u+ f, t > 0, x ∈ Tn, (5.109)

∇ · u = 0,

u(0, x) = u0(x).
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In addition, this weak solution satisfies the energy inequality

1

2

ˆ
Tn

|u(t, x)|2dx+ ν

ˆ t

0

ˆ
Tn

|∇u(s, x)|2dxds ≤ 1

2

ˆ
Tn

|u0(x)|2dx+
ˆ t

0

ˆ
Tn

f(s, x) · u(s, x)dxds.

(5.110)
Moreover, we have

∂u

∂t
∈ L4/3(0, T ;V ′) in dimension n = 3, (5.111)

and
∂u

∂t
∈ L2(0, T ;V ′) in dimension n = 2. (5.112)

Proof. Let u(m) be the solutions of the Galerkin system (5.29):

∂u(m)

∂t
+ Pm(u

(m) · ∇u(m)) = ν∆u(m) + f (m), u(m)(0) = u
(m)
0 . (5.113)

The estimates we have obtained in the previous section imply that, after extracting a subse-
quence, u(m) converge strongly in L2(0, T ;H) and weakly in L2(0, T ;V ) to some u. Moreover,
the functions u(m) satisfy a uniform continuity in time bound in V ′:

u(m)(t)− u(m)(s) =

ˆ t

s

∂u(m)

∂τ
dτ, (5.114)

thus

∥u(m)(t)− u(m)(s)∥V ′ ≤
ˆ t

s

∥∥∥∂u(m)

∂τ

∥∥∥
V ′
dτ ≤ (t− s)1/q

(ˆ t

s

∥∥∥∂u(m)

∂τ

∥∥∥p
V ′
dτ

)1/p

≤ (t− s)1/q
(ˆ T

0

∥∥∥∂u(m)

∂τ

∥∥∥p
V ′
dτ

)1/p

≤ C(t− s)1/q, (5.115)

with p = q = 2 in dimension n = 2, and p = 4/3, q = 4 in dimension n = 3. Thus, u obeys
the same uniform continuity estimate estimate, and u ∈ C(0, T ;V ′). We also know that

∂u(m)

∂t
→ ∂u

∂t
,

weakly in L4/3(0, T ;V ′) in three dimensions, and weakly in L2(0, T ;V ′) in two dimensions.
Given any v ∈ V we multiply the Galerkin system (5.113) by v and integrate:

ˆ
Tn

u(m)(t, x)v(x)dx+

ˆ t

0

ˆ
Tn

(u(m) · ∇u(m)) · (Pmv)dxds

= −ν
ˆ t

0

ˆ
Tn

∇u(m) · ∇vdxds+
ˆ
Tn

u
(m)
0 (x)v(x)dx+

ˆ t

0

ˆ
Tn

fvdxds. (5.116)

We pass now to the limit in this identity, looking at each term individually. The first term in
the right side is easy:

ˆ t

0

ˆ
Tn

∇u(m) · ∇vdxds→
ˆ t

0

ˆ
Tn

∇u · ∇vdxds, (5.117)
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because u(m) converges weakly to u in L2(0, T ;V ).
Next, we look at the nonlinear term: set

Am =

ˆ t

0

ˆ
Tn

(u(m) · ∇u(m)) · (Pmv)dxds−
ˆ t

0

ˆ
Tn

(u · ∇u) · vdxds. (5.118)

Let us recall (5.67):
|((u · ∇v), w)| ≤ C∥u∥H1/2∥v∥H1∥w∥H1 . (5.119)

This inequality holds both in two and three dimensions and implies that∣∣∣∣ˆ t

0

ˆ
Tn

(u · ∇u) · (Pmv − v)dxds

∣∣∣∣ ≤ (ˆ t

0

∥u(s)∥2V ds
)
∥Pmv − v∥V ≤ C∥Pmv − v∥V → 0,

(5.120)
as m→ ∞. Hence, Am has the same limit as m→ ∞ as

A′
m =

ˆ t

t0

ˆ
Tn

(u(m) · ∇u(m) − u · ∇u) · (Pmv)dxds = B1 +B2, (5.121)

where B1,2 correspond to the decomposition

u(m) · ∇u(m) − u · ∇u = u(m) · ∇u(m) − u(m) · ∇u+ u(m) · ∇u− u · ∇u
= u(m) · (∇u(m) −∇u) + (u(m) − u) · ∇u. (5.122)

To estimate B1, we write

B1 =

ˆ t

0

ˆ
Tn

(u(m) · (∇u(m) −∇u)) · (Pmv)dxds = −
ˆ t

0

ˆ
Tn

(u(m) · ∇Pmv) · (u(m) − u)dxds.

(5.123)
The same proof as for (5.67) shows that

|(u · ∇v), w)| ≤ ∥u∥V ∥v∥V ∥w∥H1/2 . (5.124)

Using this in (5.123) gives

|B1| ≤
ˆ t

t0

∥u(m)(s)∥V ∥v∥V ∥u(m)(s)− u(s)∥H1/2ds

≤ ∥v∥V
(ˆ t

0

∥u(m)(s)∥2V ds
)1/2(ˆ t

0

∥u(m)(s)− u(s)∥2H1/2ds

)1/2

≤ C∥v∥V
(ˆ t

0

∥u(m)(s)∥2V ds
)1/2(ˆ t

0

∥u(m)(s)− u(s)∥2V ds
)1/2

×
(ˆ t

0

∥u(m)(s)− u(s)∥2Hds
)1/4

≤ C∥u(m) − u∥L2(0,T ;H) → 0, as m→ ∞,

(5.125)

as u(m) converges to u strongly in L2(0, T ;H). As for B2, we write

|B2| =
∣∣∣∣ˆ t

0

ˆ
Tn

((u(m) − u) · ∇u) · (Pmv)dxds

∣∣∣∣ ≤ ˆ t

0

∥u(m)(s)− u(s)∥H1/2∥u(s)∥V ∥v∥V ds

≤ ∥v∥V ∥u∥L2(0,T ;V )∥u(m)(s)− u(s)∥L2(0,T ;H1/2) → 0,
(5.126)
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for the same reason as in (5.125).
In order to pass to the limit in the two terms in (5.116) that do not involve the time

integration, we first note that u
(m)
0 converges strongly in H to u0. Furthermore, as u(m)

converges weakly to u in L2(0, T ;V ), we may extract a subsequence so that u(m)(t) converges
weakly in V to u(t) (pointwise in t), except for t ∈ E, where E is an exceptional set of times
in [0, T ] of measure zero. Weak convergence in V implies that u(m)(t) converges strongly
to u(t) in H for t ̸∈ E. Hence, taking t ̸∈ E and passing to the limit m → ∞ in (5.116) we
arrive at ˆ

Tn

u(t, x)v(x)dx =

ˆ
Tn

u0(x)v(x)dx−
ˆ t

0

ˆ
Tn

(u · ∇u) · vdxds

− ν

ˆ t

0

ˆ
Tn

∇u · ∇vdxds+
ˆ t

0

ˆ
Tn

fvdxds.

(5.127)

Given the a priori bounds on u, the right side of (5.127) is a continuous function of t, defined
for all t ∈ [0, T ], not just t ∈ E. In addition, we know that ⟨u(t), v⟩ is also continuous
because u ∈ Cw(0, T ;V

′), and coincides with the aforementioned right side of (5.127) for t ̸∈ E.
This continuity implies that ⟨u(t), v⟩ coincides with the right side of (5.127) for all 0 ≤ t ≤ T ,
which means that it satisfies (5.127) for all t ∈ [0, T ], giving us a weak solution of the Navier-
Stokes equations.

The fact that u ∈ Cw(0, T ;H), and not just u ∈ C(0, T ;V ′) follows from (5.127), the
density of V in H and the uniform in t bound on ∥u(t)∥H .

To obtain the energy inequality, we start with the identity

1

2
∥u(m)(t)∥2H + ν

ˆ t

0

∥u(m)(s)∥2V ds =
1

2
∥u(m)

0 ∥2H +

ˆ t

0

ˆ
Tn

f · u(m)dxds. (5.128)

The right side converges, as m→ ∞, to

1

2
∥u0∥2H + ν

ˆ t

t0

ˆ
Tn

f · udxds. (5.129)

In the left side, we may use the Fatou lemma to conclude that, as u(m)(t) converges weakly
in H to u(t) for all t ∈ [0, T ], we have

1

2
∥u(t)∥2H + ν

ˆ t

0

∥u(s)∥2V ds ≤
1

2
∥u0∥2H +

ˆ t

0

ˆ
Tn

f · udxds. (5.130)

This completes the proof. 2

5.6 Uniqueness of the weak solutions in two dimensions

One of the main issues with weak solutions in general in nonlinear partial differential equations
is their uniqueness – it is often much easier to show that they exist than to prove their
uniqueness. Uniqueness of a weak solution hints that it is a “correct” solution, while non-
uniqueness means that an extra condition is needed to pick the physically meaningful solution.
This happens, for instance, in the theory of conservation laws where the notion of an entropy
solution guarantees uniqueness among all weak solutions. The problem of the uniqueness of

52



the weak solutions for the Navier-Stokes equations in three dimensions is still open. In two
dimensions, we know that the weak solutions of

ut + u · ∇u+∇p = ν∆u, t > 0, x ∈ T2, (5.131)

∇ · u = 0,

u(0, x) = u0(x).

are unique.

Theorem 5.10. Let f ∈ L2(0, T ;V ′) and u0 ∈ H. If u1 and u2 are two weak solutions
of (5.131) which both lie in L2(0, T ;V ) ∩ L∞(0, T ;H) ∩ Cw(0, T ;H), then u1 = u2.

Proof. First, we recall, see Theorem 5.9, that if u is a weak solution of the Navier-Stokes
equations (5.131) in L2(0, T ;V )∩L∞(0, T ;H) in two dimensions, then ut ∈ L2(0, T ;V ′). Let
us denote w = u1 − u2. This function satisfies

wt + u1 · ∇w + w · ∇u2 +∇p′ = ν∆w, t > 0, x ∈ T2, (5.132)

∇ · w = 0,

w(0, x) = 0,

with p′ = p1 − p2, and we know that wt ∈ L2(0, T ;V ′).
Multiplying (5.132) by w and integrating over the torus gives

ˆ
T2

wt · w + ν

ˆ
T2

|∇w|2dx+
ˆ
T2

wk(∂ju2,m)wmdx = 0. (5.133)

As wt ∈ V ′ for a.e. t, and w ∈ V for a.e. t ∈ [0, T ], identity (5.133) holds for a.e. t ∈ [0, T ].
Recall that in two dimensions we have

|(w · ∇u2, w)| ≤ C∥w∥H∥u2∥V ∥w∥V . (5.134)

As w ∈ L∞(0, T ;H) and u2, w ∈ L2(0, T,H), we conclude from (5.133) and (5.134) that

ˆ T

0

|(wt(t), w(t))|dt < +∞.

Now, (5.133) implies that

d

dt
∥w∥2H ≤ C∥w∥H∥u2∥V ∥w∥V − ν∥w∥2V ≤ C

ν
∥u2∥2V ∥w∥2H . (5.135)

As ˆ T

0

∥u2∥2V dt < +∞,

Gronwall’s inequality implies that

∥w(t)∥2H ≤ ∥w(0)∥2H exp
{ˆ t

0

∥u2(s)∥2V ds
}
= 0, (5.136)
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since w(0) = 0. This finishes the proof. 2
Note that this proof would fail in three dimensions. The reason is that in three dimensions

the nonlinear term satisfies

|(w · ∇u2, w)| ≤ C∥w∥1/2H ∥u2∥V ∥w∥3/2V , (5.137)

rather than
|(w · ∇u2), w| ≤ C∥w∥H∥w∥V ∥u2∥V , (5.138)

which holds in two dimensions. Thus, instead of (5.135), we would get, using Young’s in-
equality

d

dt
∥w∥2H ≤ C∥w∥1/2H ∥u2∥V ∥w∥3/2V − ν∥w∥2V ≤ C

ν3
∥u2∥4V ∥w∥2H . (5.139)

As we do not have a uniform bound onˆ T

0

∥u(s)∥4V ds,

we would not be able to finish the proof using the Gronwall inequality. We will need extra
assumptions for uniqueness, which is what we will discuss next.

6 Strong solutions in two and three dimensions

6.1 Uniqueness of strong solutions in three dimensions

We say that u is a strong solution of the Navier-Stokes equations (in either two or three
dimensions) if u is a weak solution, and, in addition, u ∈ Cw(0, T ;V ), and the following
bounds hold:

sup
t∈[0,T ]

ˆ
Tn

|∇u(t, x)|2dx < +∞, (6.1)

and ˆ T

0

ˆ
Tn

|∆u(t, x)|2dxdt < +∞. (6.2)

The motivation for this definition comes from two properties that we will prove: first, unlike
for the weak solutions, one can show that strong solutions are unique in three dimensions
(existence of strong solutions in three dimensions is an important open problem). Second, as
we will show, the conditions in the definition of the strong solutions are sufficient to show
that they are actually infinitely differentiable if the initial condition u0 and the forcing f are.

First, we prove their uniqueness in three dimensions.

Theorem 6.1. Let u1,2 be two solutions of the Navier-Stokes equations on T3 with the initial
condition u0 ∈ H and f ∈ L2(0, T ;H). If both u1,2 satisfy (6.1) and (6.2), and they lie
in Cw(0, T ;V ) then u1 = u2.

Proof. We argue as in the proof of uniqueness of the weak solutions in two dimensions.
Let w = u1 − u2, so that

(
∂w

∂t
, w) + ν∥w∥2V + (w · ∇u2, w) = 0, (6.3)
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as in (5.133). We now use the estimate

|((w · ∇u,w)| ≤ C∥w∥L2∥w∥H1∥u∥1/2H1 ∥∆u∥1/22 . (6.4)

It is obtained as follows: recall that in three dimensions we have

∥w∥L3(T3) ≤ C∥w∥H1/2 , (6.5)

thus

|((w · ∇u,w)| ≤
ˆ
T3

|w||∇u||w|dx ≤ ∥w∥L3∥∇u∥L3∥w∥L3 ≤ C∥w∥2H1/2∥∇u∥H1/2

≤ C∥w∥L2∥w∥H1∥u∥1/2H1 ∥∆u∥1/2L2 ,

(6.6)

which is (6.4). Using the bound (6.4) in (6.3) leads to

1

2

d

dt
(∥w∥2L2) + ν∥w∥2H1 ≤

C

ν
∥w∥2L2∥u∥H1∥∆u∥2 + ν∥w∥2H1 . (6.7)

It follows that
1

2

d

dt
(∥w∥2L2) ≤

C

ν
∥u∥H1∥∆u∥2∥w∥2L2 . (6.8)

Now, Grownwall’s inequality implies that w(t) = 0 provided that w(0) = 0, and

ˆ t

0

∥u∥H1∥∆u∥2ds < +∞, (6.9)

which is a consequence of (6.1)-(6.2). 2

6.2 Construction of the strong solutions in two dimensions

We now use the Galerkin system in two dimensions to show existence of global in time strong
solutions of the Navier-Stokes equations in two dimensions. Once again, we restrict ourselves
to the simpler case of the two-dimensional torus T2. As in the proof of the existence of weak
solutions, we will use the Galerkin system

∂u(m)

∂t
+ Pm(u

(m) · ∇u(m)) = ν∆u(m) + f (m), u(m)(0) = u
(m)
0 , (6.10)

and then pass to the limit m → +∞. However, we will be able to obtain better a priori
bounds on the Galerkin system in two dimensions to conclude that in the limit we actually
obtain strong solutions of the Navier-Stokes equations. Since we have already shown the
uniqueness of the weak solutions in the two-dimensional case, this will also show that weak
solutions are actually strong in two dimensions.
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6.2.1 Galerkin solutions are often not large

The first step is to show that solutions of the Galerkin system are “often not large” – this
will be made precise soon. The second step will be to show that if solutions are often not too
large, then they can never be large.

Taking the inner product of (6.11) with u(m) we obtain the familiar identity

1

2

d

dt
∥u(m)∥2H + ν∥∇u(m)∥2H = (f, u(m)). (6.11)

We may use the Poincaré inequality

ˆ
T2

|u(x)|2dx =
∑
k∈Zn

|uk|2 ≤
∑
k∈Zn

|k|2|uk|2 =
1

4π2

ˆ
Tn

|∇u|2dx, (6.12)

to conclude from (6.11) that

1

2

d

dt
∥u(m)∥2H + ν∥∇u(m)∥2H ≤ 1

2 · 4π2ν
∥f∥2H +

4π2ν

2
∥u(m))∥2H ≤ 1

8π2ν
∥f∥2H +

ν

2
∥∇u(m))∥2H .

(6.13)
We deduce the bounds we have seen before: there exist two explicit constants C1,2 > 0, so
that

ν

ˆ t

0

∥∇u(m)∥2V ds ≤ ∥u0∥2H +
C1

ν

ˆ t

0

∥f∥2Hds, (6.14)

and

∥u(m)(t)∥2H ≤ ∥u0∥2He−C2νt +
C1

ν

ˆ t

0

e−C2ν(t−s)∥f∥2Hds. (6.15)

In particular, if f ∈ L∞(0, T ;H), then

∥u(m)(t)∥2H ≤ ∥u0∥2He−C2νt +
C1

ν2
∥f∥2∞, (6.16)

with
∥f∥∞ = sup

t>0
∥f(t)∥H . (6.17)

Our next goal is to get uniform in time bounds on ∥u(m)(t)∥V – this is not something we
have done in the construction of the weak solutions, because such bound holds only in two
dimensions, and not in three, while the weak solutions can be constructed both in two and
three dimensions. The first step in that direction is to show that this norm can not be large
for too long a time.

Proposition 6.2. Let u(m)(t) be the solution for the Galerkin system with f ∈ L∞(0,+∞;H)
and u0 ∈ H, in either two or three dimensions. Then in every time interval of length τ > 0
there exists a time t0 so that

∥u(m)(t0)∥2V ≤ 2

τν

(
∥u0∥2H +

C1

ν
(
1

ν
+ τ)∥f∥∞

)
. (6.18)

56



Proof. Inequality (6.15) implies that

ν

ˆ t

0

∥∇u(m)∥2V ds ≤ ∥u0∥2H +
C1t

ν
∥f∥2∞, (6.19)

and (6.15) that

∥u(m)(t)∥2H ≤ ∥u0∥2H +
C1

ν2
∥f∥2∞. (6.20)

Let us also integrate (6.13) between the times t and t+ τ , leading to

ν

ˆ t+τ

t

∥u(m)(s)∥2V ds ≤ ∥u(m)(t)∥2H +
C1

ν
∥f∥∞τ ≤ ∥u0∥2H +

C1

ν
∥f∥∞(

1

ν
+ τ). (6.21)

The right side above does not depend on the time t. Therefore, on any time interval [t, t+ τ ]
we may estimate the Lebesgue measure of the set of times when ∥u(s)∥V is large:∣∣∣{s : s ∈ [t, t+ τ ] s.t. ∥u(m)(s)∥V ≥ ρ}

∣∣∣ ≤ 1

νρ2

(
∥u0∥2H +

C1

ν
∥f∥∞(

1

ν
+ τ)

)
. (6.22)

In particular, taking

ρ0 =

[
2

τν

(
∥u0∥2H +

C1

ν
∥f∥∞(

1

ν
+ τ)

)]1/2
,

we arrive at the conclusion of Proposition 6.2. 2

6.2.2 Galerkin solutions are never large

Next, we will get rid of the “sometimes not large” restriction in Proposition 6.2, showing
that in two dimensions Galerkin solutions are never large in V . We will prove the following
estimate for the solutions of the Galerkin system

∂u(m)

∂t
+ Pm(u

(m) · ∇u(m)) = ν∆u(m) + f (m), u(m)(0) = u
(m)
0 . (6.23)

Proposition 6.3. Let u(m) be the solution of the Galerkin system (6.23) with the initial
condition u0 ∈ H and f ∈ L∞(0, T ;H). There exists a constant α that depends on ν, ∥u0∥H
and ∥f∥∞ but not on m so that u(m) satisfies the bounds

∥u(m)(t)∥V ≤ α for all t ≥ 1, (6.24)

and
∥u(m)(t)∥V ≤ α

t
for all 0 < t < 1. (6.25)

In addition, if u0 ∈ V then there exists a constant α1 which depends on ν, ∥u0∥H and ∥f∥∞
but not on m so that

∥u(m)(t)∥V ≤ α1 for all 0 < t < 1. (6.26)
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Proof. The idea is to use Proposition 6.2 – we know that for any time t > 1 there is a
time t0 ∈ [t− 1, t] so that the norm ∥u(m)(t0)∥V ≤ α, with the constant α which depends only
on ν, ∥u0∥H and ∥f∥∞. The additional ingredient in this proof will be a control of the growth
of ∥u(m)∥V on the time intervals of length 1.

We multiply (6.23) by ∆u and integrate. The first term gives

ˆ
T2

u
(m)
t ·∆u(m)dx = −

ˆ
T2

∇u(m)
t · ∇u(m)dx = −1

2

d

dt
∥∇u(m)(t)∥2H , (6.27)

so that the overall balance is

1

2

d

dt
∥∇u(m)(t)∥2H + ν∥∆u(m)∥2H − ((u(m) · ∇u(m)),∆u(m)) = −(f,∆u(m)). (6.28)

For the nonlinear term, we will use the inequality

|((u · ∇u),∆u)| ≤ ∥u∥1/2H ∥u∥V ∥∆u∥3/2H , (6.29)

which holds in two dimensions. The proof is similar to that of (5.72): we write

|((u · ∇v), w)| ≤
ˆ
Tn

|(uj∂jvk)wk|dx ≤ ∥u · ∇v∥L2∥w∥L2 ≤ ∥u∥L4∥∇v∥L4∥w∥L2 . (6.30)

The Sobolev inequality

∥f∥Lq(Tn) ≤ C∥f∥Hm(Tn),
1

q
≥ 1

2
− m

n
(6.31)

implies that in two dimensions we have

∥f∥L4(T2) ≤ C∥f∥H1/2(T2). (6.32)

Using this in (6.30) leads to

|((u · ∇u),∆u)| ≤ ∥u∥H1/2∥u∥H3/2∥∆u∥L2 ≤ ∥u∥1/2H ∥u∥1/2V ∥u∥1/2V ∥∆u∥1/2H ∥∆u∥H
= ∥u∥1/2H ∥u∥V ∥∆u∥3/2H , (6.33)

which is (6.29). It follows that the nonlinear term can be estimated, using the inequality

ab ≤ ν

4
a4/3 +

C

ν3
b4

as

|((u · ∇u),∆u)| ≤ ν

4
∥∆u∥2H +

C

ν3
∥u∥2H∥u∥4V . (6.34)

Returning to (6.28), we obtain

1

2

d

dt
∥∇u(m)(t)∥2H + ν∥∆u(m)∥2H ≤ |((u(m) · ∇u(m)),∆u(m))|+ ∥f∥∞∥∆u(m)∥H

≤ ν

4
∥∆u(m)∥2H +

C

ν3
∥u(m)∥2H∥u(m)∥4V +

ν

4
∥∆u(m)∥2H +

C

ν
∥f∥2∞.

(6.35)
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We conclude that

1

2

d

dt
∥u(m)(t)∥2V +

ν

2
∥∆u(m)∥2H ≤ C

ν3
∥u(m)∥2H∥u(m)∥4V +

C

ν
∥f∥2∞. (6.36)

Let us set

G(t0; t) =
2C

ν3

ˆ t

t0

∥u(s)∥2H∥u(s)∥2V ds, (6.37)

then (6.36) implies, for any t ≥ t0:

d

dt

(
∥u(m)∥2V exp{−G(t0; t)}

)
≤ C

ν
∥f∥2∞ exp{−G(t0; t)}. (6.38)

Integrating between t0 and t gives

∥u(m)(t)∥2V ≤ ∥u(m)(t0)∥2V exp{G(t0; t)}+
C

ν
∥f∥2∞ exp{G(t0; t)}

ˆ t

t0

exp{−G(t0; s)}ds

≤ ∥u(m)(t0)∥2V exp{G(t0; t)}+
C

ν
∥f∥2∞

ˆ t

t0

exp{G(s; t)}ds

≤ ∥u(m)(t0)∥2V exp{G(t0; t)}+
C

ν
∥f∥2∞(t− t0) exp{G(t0; t)}. (6.39)

Now we will use the “sometimes small” result in Proposition 6.2. Given τ > 0 and t > τ we
may find t0 ∈ [t− τ, t] such that

∥u(t0)∥V ≤ α(1 +
1

τ
), (6.40)

with the constant α > 0 that only depends on ν, ∥u0∥H and ∥f∥∞ but not on m or ∥u0∥V .
We may also use (6.21) to estimate G(t0; t):

G(t0; t) ≤ α(1 + τ). (6.41)

Using this in (6.39) shows that for all t > τ we have

∥u(m)(t)∥2V ≤ ∥u(m)(t0)∥2V exp{G(t0; t)}+
C

ν
∥f∥2∞(t− t0) exp{G(t0; t)} (6.42)

≤ α(1 +
1

τ
)eα(1+τ) + ατeα(1+τ).

This bound is uniform in t > τ . Hence, if we fix τ = 1, we get a uniform in m estimate
for ∥u(m)(t)∥V for all t > 1, giving the bound (6.24).

In order to deal with times t < 1, we will use (6.42) on the time intervals t ∈ [1/2k+1, 1/2k]
with τ = 1/2k+1. The point is that for such times t and τ are comparable: τ ≤ t ≤ 2τ .
Therefore, for t < 1 we have an estimate

t∥u(m)(t)∥2V ≤ α, (6.43)

with the constant α that only depends on ν, ∥u0∥H and ∥f∥∞ but not on m or ∥u0∥V , which
is (6.25).

Finally, if we allow the dependence on the norm ∥u0∥V , then for times t < 1 we may
simply use the first line in (6.42) with t0 = 0, together with the estimate

G(t0 = 0, t = 1) ≤ 2α, (6.44)

which follows from (6.41). This gives (6.26) and finishes the proof of Proposition 6.3. 2
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6.2.3 The strong solutions in two dimensions

The above bounds on the solutions u(m) of the Galerkin system (6.23) allow us to pass to
the limit m→ ∞ to construct solutions of the Navier-Stokes equations on a two-dimensional
torus

ut + u · ∇u+∇p = ν∆u+ f, t > 0, x ∈ T2, (6.45)

∇ · u = 0,

u(0, x) = u0(x).

Theorem 6.4. Assume that T > 0, u0 ∈ H and f ∈ L∞(0, T ;H). Then there exists a
constant C > 0 which depends only on ν, ∥u0∥H and ∥f∥∞, and a solution of the Navier-
Stokes equation (6.45) which satisfies the bounds

∥u(t)∥H ≤ C, (6.46)

∥u(t)∥V ≤ C for t ≥ 1, and ∥u(t)∥ ≤ C

t
for 0 < t < 1, (6.47)

ˆ T

0

∥u(t)∥2V dt ≤ C. (6.48)

In addition, for any s > 0 there exists Cs so that

ˆ T

s

∥∆u(t)∥2Hdt ≤ CsT. (6.49)

Moreover, if u0 ∈ V then there exists a constant C > 0 which depends only on ν, ∥u0∥V and
∥f∥∞ so that

∥u(t)∥V ≤ C for all t ≥ 0, (6.50)

and
ˆ T

0

∥∆u(t)∥2Hdt ≤ CT. (6.51)

These bounds are inherited from the solutions of the Galerkin system, we leave the details
of this passage to the reader, as they are very close to what was done in the corresponding
passage in the construction of the weak solutions. We only mention that the L2(0, T ;H)
estimate for ∆u follows from (6.36). Note that we do not yet claim that if u0 is an infinitely
differentiable function, then the solution u(t, x) is also smooth but only that u is a strong
solution in the sense that the aforementioned bounds on u(t, x) hold. We will improve them
soon, assuming that u0 is smooth.

6.3 Existence of strong solutions in three dimensions

6.3.1 Strong solutions in three dimensions: small data

While existence of global in time strong solutions in three dimensions is not known, strong
solutions do exist if the initial condition and the forcing are small.
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Theorem 6.5. Let u0 ∈ V and f ∈ L2(0, T ;H). There exists a constant C > 0 which depends
only on ν, so that if

∥u0∥V +

ˆ T

0

∥f(t)∥2Hdt ≤ C, (6.52)

then the Navier-Stokes equations

ut + u · ∇u+∇p = ν∆u+ f, t > 0, x ∈ T3, (6.53)

∇ · u = 0,

u(0, x) = u0(x),

have a strong solution on the time interval [0, T ] that satisfies

∥u(t)∥2V +

ˆ T

0

∥∆u(t)∥2Hdt ≤
1

C
, (6.54)

for all 0 ≤ t ≤ T .

In particular, this theorem says that if f = 0, then there exists C > 0 so that a unique strong
solution exists for all t > 0 if ∥u0∥H ≤ C.

The proof of Theorem 6.5, once again, relies on the estimates for the Galerkin solutions

u
(m)
t + Pm(u

(m) · ∇u(m)) = ν∆u(m), u(m)(0, x) = u
(m)
0 (x), t > 0, x ∈ T3. (6.55)

Taking the inner product with ∆u(m), as we did in the two-dimensional case, we obtain, as
in (6.28):

1

2

d

dt
∥u(m)(t)∥2V + ν∥∆u(m)∥2H − (u(m) · ∇u(m),∆u(m)) = −(f,∆u(m)). (6.56)

In three dimensions, we may not use the two-dimensional estimate (6.29) for the nonlinear
term. Instead, we will bound it as

|(u · ∇u,∆u)| ≤ C∥u∥3/2V ∥∆u∥3/2H ≤ C

ν3
∥u∥6V +

ν

4
∥∆u∥2H . (6.57)

This comes from the estimate

|(u · ∇u,∆u)| ≤ C∥u∥L6∥∇u∥L3∥∆u∥L2 . (6.58)

The Sobolev inequality implies that in three dimensions we have

∥u∥L3 ≤ C∥u∥H1/2 , ∥u∥L6 ≤ C∥u∥H1 . (6.59)

Using this in (6.58) gives

|(u · ∇u,∆u)| ≤ C∥u∥L6∥∇u∥L3∥∆u∥L2 ≤ C∥u∥H1∥∇u∥H1/2∥∆u∥L2 ≤ C∥u∥3/2H1 ∥∆u∥3/2L2 ,
(6.60)

which is (6.57). We will estimate the forcing term in (6.56) as

|(f,∆u)| ≤ 4

ν
∥f∥2H +

ν

4
∥∆u∥2H . (6.61)
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Altogether, with the above estimates, (6.56) implies

1

2

d

dt
∥u(m)∥2V + ν∥∆u(m)∥2H = (u(m) · ∇u(m),∆u(m))− (f,∆u(m))

≤ C

ν3
∥u(m)∥6V +

ν

4
∥∆u(m)∥2H +

C

ν
∥f∥2H +

ν

4
∥∆u(m)∥2H .

(6.62)

This gives

1

2

d

dt
∥u(m)∥2V ≤ C

ν3
∥u(m)∥6V −

ν

2
∥∆u(m)∥2H+

C

ν
∥f∥2H ≤ C

ν3
∥u(m)∥6V −

ν

2
∥u(m)∥2V +

C

ν
∥f∥2H . (6.63)

Therefore, the function y(t) = ∥u(m)(t)∥2V satisfies a differential inequality

dy

dt
≤ C

ν3
y3 − νy +

C

ν
∥f∥2H . (6.64)

Hence, as long as

y(s) ≤ ν2√
C
, for all 0 < s < t, (6.65)

we have
dy

dt
≤ C

ν
∥f∥2H , (6.66)

and

y(t) ≤ y(0) +
C

ν

ˆ t

0

∥f(s)∥2Hds. (6.67)

It follows that if

∥u0∥2V +
C

ν

ˆ ∞

0

∥f(s)∥2Hds ≤
ν2√
C
, (6.68)

with a universal constant C > 0, then

∥u(m)(t)∥2V ≤ ν2√
C
, (6.69)

for all t > 0. This is part of the bound (6.54) on ∥u(m)∥V . In order to get the bound on ∆u(m)

in L2(0, T ;H), we go back to (6.62):

1

2

d

dt
∥u(m)(t)∥2V +

ν

2
∥∆u(m)∥2H ≤ C

ν3
∥u(m)∥6V +

C

ν
∥f∥2H ≤ Cν∥u(m)∥2V +

C

ν
∥f∥2H , (6.70)

leading to

ν

2

ˆ T

0

∥∆u(m)(t)∥2Hdt ≤ ∥u(m)
0 ∥2V + Cν

ˆ T

0

∥u(m)(t)∥2V dt+
C

ν

ˆ T

0

∥f(t)∥2Hdt. (6.71)

As we also have

ν

ˆ T

0

∥u(m)(t)∥2V dt ≤ ∥u0∥2H +
C

ν

ˆ T

0

∥f(t)∥2Hdt, (6.72)

we deduce that under the assumptions (6.52) we haveˆ T

0

∥∆u(m)(t)∥2Hdt ≤ C. (6.73)

Passing to the limit m → ∞ we construct a strong solution u(t, x) to the Navier-Stokes
equations that satisfies the same estimates (6.54). Uniqueness of the strong solution finishes
the proof.
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6.3.2 Strong solutions in three dimensions: short times

Next, we show that strong solutions of the Navier-Stokes exist for a sufficiently short time
even if the data are not small.

Theorem 6.6. Let u0 ∈ V and f ∈ L2(0, T ;H). There exists a constant C0 > 0 which
depends on ν and ∥u0∥V , so that if

T0 +

ˆ T0

0

∥f(t)∥2Hdt ≤ C0, (6.74)

then the Navier-Stokes equations

ut + u · ∇u+∇p = ν∆u+ f, t > 0, x ∈ T3, (6.75)

∇ · u = 0,

u(0, x) = u0(x),

have a strong solution on the time interval [0, T0] that satisfies

∥u(t)∥2V ≤ C−1
0 , (6.76)

for all 0 ≤ t ≤ T0.

For the proof, we recall (6.70):

1

2

d

dt
∥u(m)(t)∥2V +

ν

2
∥∆u(m)∥2H ≤ C

ν3
∥u(m)∥6V +

C

ν
∥f∥2H , (6.77)

which, in particular, implies that the function y(t) = ∥u(m)(t)∥2V satisfies a differential in-
equality

ẏ(t) ≤ Cy(t)3 + C∥f∥2H , (6.78)

with the constant C that depends on ν. Dividing by (1 + y)3 we get

ẏ

(1 + y)3
≤ Cy3 + C∥f∥2H

(1 + y)3
≤ C + C∥f∥2H , (6.79)

Integrating in time leads to

1

(1 + y0)2
− 1

(1 + y(t))2
≤ Ct+ C

ˆ t

0

∥f(s)∥2Hds. (6.80)

Therefore, as long as the time t is such that (6.80) holds, or, rather, as long as T0 satisfies

CT0 + C

ˆ T0

0

∥f(s)∥2Hds ≤
1

2(1 + ∥u0∥2V )2
≤ 1

2(1 + y0)2
, (6.81)

we have, for all 0 ≤ t ≤ T0:

1

(1 + y(t))2
≥ 1

2(1 + y0)2
≥ 1

2(1 + ∥u0∥2V )2
. (6.82)

Therefore, as long as the time t is sufficiently small, so that (6.80) holds, we have

∥u(m)(t)∥2V ≤ 2(1 + ∥u0∥2V ). (6.83)

As usual, this uniform bound on the Galerkin approximations u(m)(t) implies that, passing
to the limit m → +∞, we construct a strong solution of the Navier-Stokes equations for
times 0 ≤ t ≤ T0. 2
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6.3.3 Strong solutions are smooth if the data are smooth

We now show that if the initial condition u0 and the forcing f are smooth, then the strong
solution to the Navier-Stokes equations (if it exists) is also infinitely differentiable. We con-
sider only the three-dimensional case but the analysis applies essentially verbatim to the
two-dimensional case as well.

Theorem 6.7. Let u(t, x) be the strong solution of the Navier-Stokes equations

ut + u · ∇u+∇p = ν∆u+ f, 0 < t ≤ T, x ∈ T3, (6.84)

∇ · u = 0,

u(0, x) = u0(x),

in the sense that there exists C > 0 so that

sup
0≤t≤T

∥u(t)∥V ≤ C,

ˆ T

0

∥∆u(s)∥2Hds ≤ C. (6.85)

Assume that u0 ∈ C∞(T3) and f ∈ C∞(0, T ;T3), then u ∈ C∞(0, T ;T3).

The strategy of the proof will be to estimate ∥∆mu(t)∥H for all m ∈ N, and show that, as
long u satisfies the assumptions of Theorem 6.7, these norms remain finite for 0 ≤ t ≤ T , and
all m ∈ N. As m ∈ N will be arbitrary, the Sobolev embedding theorem will imply that u is
infinitely differentiable in x, while the Navier-Stokes equations themselves will imply that u is
infinitely differentiable in time (using the projection on the divergence free fields, the reader
should check that the pressure term is not a problem).

Multiplying (6.84) by (−∆)mu and integrating over T3 gives

(ut, (−∆)mu)− (u · ∇u, (−∆)mu) = −ν(−∆u, (−∆)mu) + (f, (−∆)mu). (6.86)

Integrating by parts leads to

1

2

d

dt
∥(−∆)m/2u∥2H − ((−∆)m/2(u · ∇u), (−∆)m/2u) + ν∥(−∆)(m+1)/2u∥2H

≤ ∥(−∆)m/2f∥H∥(−∆)m/2u∥H . (6.87)

The key inequality we will need for the nonlinear term is given by the following lemma.

Lemma 6.8. For every m > 3/2 there exists a constant C > 0 so that for any vector-valued
functions u, v such that u0 = v0 = 0, and ∇ · u = ∇ · v = 0, and uk = vk = 0 for all k > M ,
with some M > 0, we have

∥(−∆)m/2P(u · ∇v)∥H ≤ C∥(−∆)m/2u∥H∥(−∆)(m+1)/2v∥H . (6.88)

Here, P is the projection on divergence-free fields.

Postponing the proof of this lemma, we apply it in (6.87):

1

2

d

dt
∥(−∆)m/2u∥2H + ν∥(−∆)(m+1)/2u∥2H ≤ ∥(−∆)m/2f∥H∥(−∆)m/2u∥H

+ C∥(−∆)m/2u∥2H∥(−∆)(m+1)/2u∥H .
(6.89)
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Next, we use Young’s inequality in the right side together with the Poincare inequality in the
form

∥(−∆)m/2u∥H ≤ C∥(−∆)(m+1)/2u∥H . (6.90)

This leads to

1

2

d

dt
∥(−∆)m/2u∥2H + ν∥(−∆)(m+1)/2u∥2H ≤ C

ν
∥(−∆)m/2f∥2H +

ν

4
∥(−∆)(m+1)/2u∥2H

+
C

ν
∥(−∆)m/2u∥4H +

ν

4
∥(−∆)(m+1)/2u∥2H (6.91)

≤ C

ν
∥(−∆)m/2f∥2H +

C

ν
∥(−∆)m/2u∥4H +

ν

2
∥(−∆)(m+1)/2u∥2H .

Therefore, we have

1

2

d

dt
∥(−∆)m/2u∥2H +

ν

2
∥(−∆)(m+1)/2u∥2H ≤ C

ν
∥(−∆)m/2f∥2H +

C

ν
∥(−∆)m/2u∥4H . (6.92)

Looking at this as the differential inequality for y(t) = ∥(−∆)m/2u∥2H , we deduce that

ẏ ≤ C

ν
∥(−∆)m/2f∥2H +

C

ν
∥(−∆)m/2u∥2Hy(t) ≤ Cf +

C

ν
∥(−∆)m/2u∥2Hy(t), (6.93)

with a finite constant Cf as f ∈ C∞(0, T ;T3). Grownwall’s inequality implies now that y(t)
obeys an upper bound

y(t) ≤ y(0) exp
[C
ν

ˆ t

0

∥(−∆)m/2u(s)∥2Hds
]
+ Cf

ˆ t

0

exp
[C
ν

ˆ t

s

∥(−∆)m/2u(τ)∥2Hdτ
]
ds.

(6.94)
In other words, if we know that

ˆ T

0

∥(−∆)m/2u(s)∥2Hds < +∞, (6.95)

then
sup

0≤t≤T
∥(−∆)m/2u(s)∥2Hds < +∞. (6.96)

This, in turn, implies that ˆ T

0

∥(−∆)m/2u(s)∥4Hds < C, (6.97)

which can be inserted into (6.92) to conclude that

ˆ T

0

∥(−∆)(m+1)/2u(s)∥2Hds < +∞, (6.98)

allowing us to build an induction argument and continue forever, meaning that

sup
0≤t≤T

∥(−∆)m/2u(s)∥2Hds < +∞, for any m ∈ N. (6.99)
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This will, in turn, imply that u ∈ C∞ by the Sobolev embedding theorem. However, this
argument uses the bound (6.88) which applies only for m > 3/2, and the “free” estimate for
the weak solution is ˆ T

0

∥∇u(s)∥2Hds =
ˆ T

0

∥(−∆)1/2u(s)∥2Hds < +∞, (6.100)

which corresponds to m = 1, and for which we may not use this argument. Hence, to start
the induction we need the assumption thatˆ T

0

∥∆u(s)∥2Hds < +∞, (6.101)

which corresponds to taking m = 2 > 3/2, allowing us to proceed. This is the reason behind
the requirement that strong solutions satisfy (6.101).

The proof of Lemma 6.8

Recall that
∥(−∆)m/2P(u · ∇v)∥H = sup

w∈H,∥w∥H=1

((−∆)m/2(u · ∇v), w). (6.102)

Let us write
u · ∇v(x) =

∑
k∈Z3

(2πi)
( ∑

j+l=k

(l · uj)vl
)
e2πik·x, (6.103)

so that

((−∆)m/2(u · ∇v), w) =
∑
k∈Z3

(2πi)(4π2|k|2)m/2
( ∑

j+l=k

(l · uj)vl
)
· w−k

=
∑

j+l+k=0

(2πi)(4π2|k|2)m/2(l · uj)(vl · wk).
(6.104)

Next, we will use the inequality

|j + l|m ≤ (|j|+ |l|)m ≤ Cm(|j|m + |l|m), (6.105)

which implies

|((−∆)m/2(u · ∇v), w)| ≤ Cm

∑
j+l+k=0

|k|m|l||uj||vl||wk|

≤ Cm

∑
j+l+k=0

(|j|m + |l|m)|l||uj||vl||wk|

≤ Cm

∑
j+l+k=0

|l|m+1|uj||vl||wk|+ Cm

∑
j+l+k=0

|j|m|l||uj||vl||wk| = A+B.

(6.106)

For the first term, we may estimate

A = Cm

∑
j+l+k=0

|l|m+1|uj||vl||wk| =
∑
j∈Z3

|uj|
∑
l∈Z3

|l|m+1|vl||w−j−l|

≤
∑
j∈Z3

|uj|
(∑

l∈Z3

|l|2m+2|vl|2
)1/2(∑

l∈Z3

|wl|2
)1/2

= ∥(−∆)(m+1)/2v∥H∥w∥H
∑
j∈Z3

|uj|.
(6.107)
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For the last sum above we may use the estimate∑
j∈Z3

|uj| ≤
(∑

j∈Z3

|j|2m|uj|2
)1/2(∑

j∈Z3

1

|j|2m
)1/2

≤ C
(∑

j∈Z3

|j|2m|uj|2
)1/2

= C∥(−∆)m/2u∥H .

(6.108)
We used in the last step the assumption that m > 3/2 (in a dimension n we would have
needed to assume that m > n/2).

For the second term in (6.106) we write

B = C
∑

j+l+k=0

|j|m|l||uj||vl||wk| =
∑
l∈Z3

|l||vl|
∑
j∈Z3

|j|m|uj||w−l−j|

≤ C∥(−∆)m/2u∥H∥w∥H
∑
l∈Z3

|l||vl|,
(6.109)

and ∑
l∈Z3

|l||vl| ≤
(∑

l∈Z3

|l|2+2m|vl|2
)1/2(∑

l∈Z3

1

|l|2m
)1/2

≤ C∥(−∆)(m+1)/2v∥H , (6.110)

as m > 3/2. This shows that for any w ∈ H we have

|((−∆)m/2(u · ∇u), w)| ≤ C∥(−∆)m/2u∥H∥(−∆)(m+1)/2v∥H∥w∥H , (6.111)

and thus finishes the proof of Lemma 6.8. 2

6.3.4 Local in time existence in higher Sobolev spaces

The arguments of the previous section imply also that the Navier-Stokes equations are locally
well-posed in the higher Sobolev spaces Hm(T3). For simplicity, we state the result for the
case f = 0.

Theorem 6.9. Let u0 ∈ Hm, with m ≥ 2, and f = 0. There exist a time Tm > 0 and C0 > 0
that depend on ν, m ≥ 1 and ∥u0∥Hm, so that the Navier-Stokes equations

ut + u · ∇u+∇p = ν∆u, t > 0, x ∈ T3, (6.112)

∇ · u = 0,

u(0, x) = u0(x),

have a strong solution on the time interval [0, Tm] that satisfies

∥u(t)∥2Hm ≤ C−1
0 , (6.113)

for all 0 ≤ t ≤ Tm.

The proof is familiar: we start with (6.114) with f = 0:

1

2

d

dt
∥(−∆)m/2u∥2H +

ν

2
∥(−∆)(m+1)/2u∥2H ≤ C

ν
∥(−∆)m/2u∥4H . (6.114)

Looking at this as the differential inequality for y(t) = ∥(−∆)m/2u∥2H , we deduce that

ẏ ≤ C

ν
y2(t). (6.115)

As a consequence, y(t) remains finite for a time that depends only on y(0). 2
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6.4 Infinite time blow-up implies a finite time blow-up

The problem of blow-up of solutions of a nonlinear partial differential equation usually consists
in two separate problems: (1) can solutions blow-up in a finite time, and (2) can they blow-up
in an infinite time, in the sense that the norm of the solutions tends to infinity as t → +∞?
The second notion is usually much weaker. For example, solutions to the heat equation with
a linear growth term

ut = ∆u+ u, t > 0, x ∈ Rn, (6.116)

have the long time behavior

u(t, x) ∼ et∥u0∥L1

(4πt)n/2
e−|x|2/(4t), (6.117)

and thus “blow-up in an infinite time” – all its Lp-norms, p ≥ 1 tend to infinity as t→ +∞.
However, one does not normally think of these solutions as really “blowing-up” – they just
grow in time.

The situation is different for the Navier-Stokes equations: an infinite time blow-up implies
a finite-time blow-up. More precisely, let us assume that there exists a strong solution u(t, x)
of the Navier-Stokes equations

ut + u · ∇u+∇p = ν∆u, 0 < t ≤ T, x ∈ T3, (6.118)

∇ · u = 0,

u(0, x) = u0(x),

such that u0 ∈ H, and
lim

t→+∞
∥u(t)∥V = +∞. (6.119)

Assuming that such u exists, and given any T > 0, we will now construct an initial con-
dition v0 ∈ V so that the solution to (6.118) with v(0, x) = v0(x), blows up before the
time T > 0. That is, there will be a time T1 ∈ (0, T ] such that

lim
t→T−

1

∥v(t)∥V = +∞. (6.120)

The idea is to combine the blow-up assumption that there exists a sequence of times tj → +∞
such that

∥u(tj)∥V ≥ 2j, (6.121)

with the main result of Proposition 6.2: solutions to the Navier-Stokes equations are often
not large. Given an initial condition u0 ∈ H and a sequence tj as in (6.121), we may use the
aforementioned Proposition to find a time sj ∈ [tj − T, tj] so that

∥u(sj)∥V ≤ C
(
1 +

1

T

)
= C ′. (6.122)

The constant C depends only on ∥u0∥H , and ν > 0. Thus, if we take u(sj) as the initial
condition for the Navier-Stokes equations at the time t = 0, then the corresponding solu-
tion to the Cauchy problem will have reached the V -norm that is larger than 2j by the
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time T . As ∥u(sj)∥V is uniformly bounded in j, we may choose a subsequence jk → +∞
so that v0k(x) = u(sjk , x) converges weakly in V and strongly in H to a function v0 ∈ V .
Consider now the Cauchy problem with the initial condition v0:

vt + v · ∇v +∇p = ν∆v, 0 < t ≤ T, x ∈ T3, (6.123)

∇ · v = 0,

v(0, x) = v0(x).

This problem has a strong solution on some time interval [0, T0], which depends only on ∥v0∥V
and ν.

We will now show that (6.123) may not have a strong solution on the time interval [0, T ].
To this end, assume that such solution exists on [0, T ], denote

r = sup
0≤t≤T

∥v(t)∥V , (6.124)

and consider the functions vk(t) = u(t+ sjk), which are the solutions to

∂vk
∂t

+ vk · ∇vk +∇pk = ν∆vk, 0 < t ≤ T, x ∈ T3,

∇ · vk = 0,

vk(0, x) = v0k(x) = u(sj, x).

(6.125)

Writing wj = vj − v, and expanding

vj · ∇vj − v · ∇v = (v + wj) · ∇(v + wj)− v · ∇v = wj · ∇v + v · ∇wj + wj · ∇wj, (6.126)

we see that wj satisfies (as in the proof of the uniqueness of the solutions of the Navier-Stokes
equations):

∂wj

∂t
+ wj · ∇v + v · ∇wj + wj · ∇wj +∇p′ = ν∆wj, 0 < t ≤ T, x ∈ T3, (6.127)

∇ · wj = 0,

wj(0, x) = v0j (x)− v0(x),

with p′ = pj − p. Multiplying by wj and integrating leads to

1

2

d

dt
∥wj∥2H + ν∥wj∥2V = −(wj · ∇v, wj). (6.128)

In three dimensions, we can estimate the right side as

|(wj · ∇v, wj)| ≤ ∥wj∥L3∥∇v∥L2∥wj∥L6 ≤ C∥wj∥H1/2∥v∥V ∥wj∥H1

≤ C∥wj∥1/2H ∥wj∥1/2V ∥v∥V ∥wj∥V = C∥v∥V ∥wj∥1/2H ∥wj∥3/2V

≤ ν

2
∥wj∥2V +

C

ν3
∥v∥4V ∥wj∥2H .

(6.129)

We used Young’s inequality in the last step, with p = 4/3, q = 4. Using this in (6.128) gives

1

2

d

dt
∥wj∥2H +

ν

2
∥wj∥2V ≤ C

ν3
∥v∥4V ∥wj∥2H . (6.130)
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As v is a strong solution to (6.123) and ∥v∥V is uniformly bounded by r, by the assump-
tion (6.124), it follows from (6.130) that there exists C > 0, which depends on ν and r that
appears in (6.124), so that

∥wj(t)∥H ≤ ∥wj(0)∥HeCt. (6.131)

As wj(0) → 0 strongly in H, we conclude that wj(t) → 0 strongly in H, for all 0 ≤ t ≤ T .
Another consequence of (6.130) and the uniform bound (6.124) is that

ν

2

ˆ T

0

∥wj(t)∥2V dt ≤ ∥wj(0)∥2H + C

ˆ T

0

∥wj(t)∥2Hdt, (6.132)

and since ∥wj(t)∥H → 0, pointwise in t, while ∥wj(t)∥H ≤ C, we conclude that

ˆ T

0

∥wj(t)∥2V dt→ 0 as j → ∞. (6.133)

In particular, possibly after extracting another subsequence, we know that

∥wj(t)∥V → 0 for a.e. t ∈ [0, T ]. (6.134)

Thus, given any δ > 0 we can choose a sequence of times τk ∈ [0, T ] such that 0 < τk+1−τk < δ,
and ∥wj(τk)∥V ≤ 1. Next, note that if ∥wj(t)∥V ≤ 1, then

∥vj(t)∥V ≤ ∥wj(t)∥V + ∥v(t)∥V ≤ 1 + r, (6.135)

with r > 0 as in (6.124). The local in time existence theorem implies that there exists a
time T1, which depends only on ν and r, so that if ∥vj(t)∥V ≤ 1 + r, then

∥vj(s)∥V ≤ 10(1 + r), (6.136)

for all s ∈ [t, t + T1]. Taking δ = T1, we deduce that (6.136) holds for all 0 ≤ t ≤ T . This,
however, contradicts the assumption that 0 ≤ tjk − sjk ≤ T and

∥vk(tjk − sjk)∥V = ∥u(sjk)∥V ≥ 2jk .

Thus, v(s, x) can not be a strong solution on the time interval [0, T ].

6.5 The Beale-Kato-Majda regularity criterion

We now describe a sufficient condition for the solution to remain smooth. This time, we will
work in the whole space R3 but the existence and regularity results we have proved for the
three-dimensional torus apply essentially verbatim to the whole space as well. As we have
seen in Theorem 6.9, if the Hm-norms of a smooth solution u(t, x) remain finite on a time
interval [0, T ], for some m > 3/2, then the solution may be extended past the time T . In
other words, a time T is the maximal time of existence of a smooth solution u(t, x) if and
only if

lim
t↑T

∥u(t)∥Hm = +∞. (6.137)

The Beale-Kato-Majda criterion reformulates this condition in terms of the vorticity (this
also requires only one derivative of u, not 3/2 derivatives).
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Theorem 6.10. Let u0 ∈ C∞
c (R3), so that there exists a classical solution v to the Navier-

Stokes equations with f = 0. If for any T > 0 we have

ˆ T

0

∥ω(t)∥L∞dt < +∞, (6.138)

then the smooth solution u exists globally in time. If the maximal existence time of the smooth
solution is T < +∞, then necessarily we have

lim
t↑T

ˆ T

0

∥ω(t)∥L∞dt = +∞. (6.139)

6.5.1 A bound in terms of ∥∇u∥L∞

The starting point in the proof of Theorem 6.10 is an estimate for the evolution of the Hm-
norms, assuming that we have the control of ∥Du∥L∞ .

We take m to be an even integer for convenience. Recall the identity (6.87) with f = 0:

1

2

d

dt
∥(−∆)m/2u∥2H + ν∥(−∆)(m+1)/2u∥2H = ((−∆)m/2(u · ∇u), (−∆)m/2u). (6.140)

Our goal is to show the following inequality:

|((−∆)m/2(u · ∇u), (−∆)m/2u)| ≤ Cm∥Dmu∥L2∥Du∥L∞ , (6.141)

with the notation D = (−∆)1/2. An important preliminary point is that the term in the inner
product that has the highest order derivative of u, of the order (m+ 1), vanishes

((u · ∇(−∆)m/2u), (−∆)m/2u) = 0,

because ∇ · u = 0. Hence, the left side in (6.141) can be estimated by

|((−∆)m/2(u · ∇u), (−∆)m/2u)| ≤ Cm

m∑
k=1

∥Dku∥Lpk∥D(m+1−k)u∥Lqk , (6.142)

with 1 ≤ pk, qk ≤ ∞ such that
1

pk
+

1

qk
=

1

2
. (6.143)

We recall a Gagliardo-Nirenberg type inequality for Rd: for any with 0 ≤ j < m, there
exists C > 0 so that we have

∥Djf∥Lp ≤ C∥Dmf∥a2∥f∥1−a
L∞ , (6.144)

with
1

p
=
j

d
+

j

m

(1
2
− m

d

)
,

and a = j/m. We will use it for f = Du and j = k − 1 < m. This gives

∥Dku∥Lpk = ∥Dk−1Du∥Lpk ≤ Ck∥Dm−1Du∥akL2∥Du∥1−ak
∞ = Ck∥Dmu∥akL2∥Du∥1−ak

∞ , 1 ≤ k ≤ m,
(6.145)
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with

ak =
k − 1

m− 1
,

and
1

pk
=
k − 1

d
+
k − 1

m− 1

(1
2
− m− 1

d

)
=

k − 1

2(m− 1)
=
ak
2
.

This gives the estimate

∥Dku∥Lpk ≤ Ck∥Dmu∥akL2∥Du∥1−ak
∞ , 1 ≤ k ≤ m. (6.146)

The paired term ∥Dm+1−ku∥qk that appears in (6.142) can be estimated similarly:

∥Dm+1−ku∥Lqk = ∥Dm−kDu∥Lqk ≤ Ck∥Dm−1Du∥bkL2∥Du∥1−bk
∞ = Ck∥Dmu∥bkL2∥Du∥1−bk

∞ ,
(6.147)

with

bk =
m− k

m− 1
,

and
1

qk
=
m− k

d
+
m− k

m− 1

(1
2
− m− 1

d

)
=

m− k

2(m− 1)
=
bk
2
.

Luckily, we both have

ak + bk =
k − 1

m− 1
+
m− k

m− 1
= 1, (6.148)

and (6.143) holds with the above choice of pk and qk:

1

pk
+

1

qk
=
ak + bk

2
=

1

2
,

so that these pk and qk can be taken in (6.142). It follows from (6.146), (6.147) and (6.148)
that

∥Dku∥Lpk∥D(m+1−k)u∥Lqk ≤ Ck∥Dmu∥L2∥Du∥L∞ .

When k = m or k = 1, we simply use p = 1/2 and q = ∞, getting the estimate

∥Dmu∥L2∥Du∥L∞

for those terms. Inserting this into (6.142) gives (6.141).
With (6.141) in hand, going back to (6.140), we conclude that

1

2

d

dt
∥Dmu∥2H ≤ Cm∥Dmu∥2H∥∇u∥L∞ . (6.149)

Summing over m, we conclude that for any s ∈ N we have

d

dt
∥u∥Hs ≤ Cs∥∇u∥L∞∥u∥Hs . (6.150)

Therefore, if u0 ∈ C∞
c (R3), then for any of the Hs-norms to become infinite by a time T it is

necessary that ˆ T

0

∥∇u(t)∥L∞dt = +∞, (6.151)
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and, in general, we have

∥u∥Hs ≤ ∥u0∥Hs exp
{
Cs

ˆ t

0

∥∇u(τ)∥L∞dτ
}
. (6.152)

In a similar vein, multiplying the vorticity equation

ωt + u · ∇ω = ν∆ω + ω · ∇u (6.153)

by ω and integrating, we see that

d

dt
∥ω(t)∥L2 ≤ ∥∇u∥L∞∥ω∥L2 , (6.154)

so that

∥ω(t)∥L2 ≤ ∥ω0∥L2 exp
{ˆ t

0

∥∇u(s)∥L∞ds
}
. (6.155)

6.5.2 Bounding ∥∇u∥L∞ by ∥ω∥L∞

The above bounds show that the conclusion of Theorem 6.10 would follow from (6.151)
and (6.152) if we would know that

“∥∇u∥L∞ ≤ C∥ω∥L∞”. (6.156)

One may expect this to be true based on the validity of a similar identity for the L2-norms:
recall (3.35) ˆ

R3

|∇u|2dx =

ˆ
R3

|ω|2dx, (6.157)

because

|ω|2 = εijkεimn(∂juk)(∂mun) = (δjmδkn − δjnδkm)(∂juk)(∂mun) = |∇u|2 − (∂juk)(∂kuj),
(6.158)

and ˆ
Rn

(∂juk)(∂kuj)dx = −
ˆ
Rn

uk(∂k∂juj)dx = 0. (6.159)

Identity (6.156), however, is not quite true for the L∞-norms – the relation between the
gradient of the velocity and the vorticity is in terms of a singular integral operator which
maps every Lp → Lp for 1 < p < +∞ but does not map L∞ to L∞. However, it is “almost
true” as shown by the following lemma.

Lemma 6.11. Let u(x) be a smooth divergence free velocity field in L2∩L∞, and let ω = ∇×u.
There exists a constant C > 0 so that

∥∇u∥L∞ ≤ C(1 + log+ ∥u∥H3 + log+ ∥ω∥L2)(1 + ∥ω∥L∞). (6.160)
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Here, for z > 0, we set log+ z = log z if log z > 0, and log+ z = 0 otherwise. The L2-norm
of ω(t) that appears in (6.160) can be estimated from (6.155) as

log+ ∥ω(t)∥L2 ≤ log+ ∥ω0∥L2 +

ˆ t

0

∥∇u(s)∥L∞ds. (6.161)

Similarly, the H3-norm of u(t) can be bounded as in (6.152):

log+ ∥u(t)∥H3 ≤ log+ ∥u0∥H3 + C

ˆ t

0

∥∇u(s)∥L∞ds. (6.162)

Assuming the result of Lemma 6.11, we deduce that ∥∇u∥∞ satisfies the inequality

∥∇u(t)∥L∞ ≤ C0

(
1 +

ˆ t

0

∥∇u(s)∥L∞ds
)
(1 + ∥ω(t)∥L∞ , (6.163)

with a constant C0 that depends on the initial data u0. Setting

G(t) =

ˆ t

0

∥∇u(s)∥L∞ds, β(t) = 1 + ∥ω(t)∥L∞ ,

we have from (6.163):
dG

dt
≤ C0(1 +G(t))β(t),

so that
d

dt

(
G(t) exp

{
− C0

ˆ t

0

β(s)ds)
})

≤ C0β(t) exp
{
− C0

ˆ t

0

β(s)ds
}
.

Integrating in time gives

G(t) exp
{
− C0

ˆ t

0

β(s)ds)
}
≤ 1− exp

{
− C0

ˆ t

0

β(s)ds
}
, (6.164)

so that

G(t) ≤ exp
{
C0

ˆ t

0

β(s)ds)
}
.

In other words, we have

ˆ t

0

∥∇u(s)∥L∞ds ≤ exp
{
C0t+ C0

ˆ t

0

∥ω(s)∥L∞ds)
}
. (6.165)

As a consequence, as long as ˆ t

0

∥ω(s)∥L∞ds < +∞, (6.166)

all Hm-norms of the velocity remain finite, hence u(t) ∈ C∞(R3). Therefore, the proof of
Theorem 6.10 boils down to Lemma 6.11.
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6.5.3 The proof of the estimate on ∥∇u∥L∞

We now prove Lemma 6.11 using the ideas from the theory of singular integral operators.
The velocity field is related to vorticity by the Biot-Savart law:

u(x) = −
ˆ
R3

K(x− y)ω(y)dy =

ˆ
R3

K(y)ω(x+ y)dy, (6.167)

with

K(x)h =
1

4π|x|3
x× h, (6.168)

for any h ∈ R3. As the singularity in ∇K(x) is of the order 1/|x|3 which is not integrable in
three dimensions, we have to be careful about computing the gradient of u. Let us write

u(x+ z)− u(x) =

ˆ
R3

K(y)[ω(x+ z + y)− ω(x+ y)]dy. (6.169)

As K ∈ L1
loc(R3), if, say, ω ∈ C∞

0 (R3), then, passing to the limit z → 0, we get

∂uk(x)

∂xj
=

ˆ
R3

Kkm(y)∂jωm(x+ y)dy. (6.170)

Because of the singularity in K we can not immediately integrate by parts. Let us write this
integral as

∂uk(x)

∂xj
= lim

ε→0

ˆ
|y|≥ε

Kkm(y)∂jωm(x+ y)dy =

= − lim
ε→0

ˆ
|y|=ε

Kkm(y)ωm(x+ y)
yj
|y|
dy − lim

ε→0

ˆ
|y|≥ε

[∂jKkm(y)]ωm(x+ y)dy

= Akj +Bkj.

(6.171)

The first integral can be re-written as

Akj = − lim
ε→0

ˆ
|y|=ε

Kkm(y)ωm(x+ y)
yj
|y|
dy = − lim

ε→0

1

4π

ˆ
|y|=ε

1

|y|3
[y × ω(x+ y)]k

yj
|y|
dy

= − lim
ε→0

1

4π

ˆ
|z|=1

1

ε3|z|3
[εz × ω(x+ εz)]k

zj
|z|
ε2dz = − 1

4π

ˆ
|z|=1

[z × ω(x)]kzjdz

= − 1

4π
ϵkmn

ˆ
|z|=1

zmωn(x)zjdz =
ϵkmn

3
ωn(x)δmj = −1

3
ϵkjnωn(x).

(6.172)

Thus, we have

|Akj| ≤
1

3
∥ω∥L∞ ,

and the main focus is on the second term. We have

Kkm(y) =
ϵkrm
4π|y|3

yr,
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so that

∂jKkm(y) = − 3ϵkrm
4π|y|5

yjyr +
ϵkjm
4π|y|3

.

We conclude that for any h ∈ R3 we have

(Bh)k = − lim
ε→0

ˆ
|y|≥ε

[
− 3ϵkrm

4π|y|5
yjyr +

ϵkjm
4π|y|3

]
ωm(x+ y)hjdy

= lim
ε→0

ˆ
|y|≥ε

(3(y · h)[y × ω(x+ y)]k
4π|y|5

+
1

4π|y|3
[ω(x+ y)× h]k

)
dy.

(6.173)

We shall split B further as follows: take a smooth cut-off function ρ(r) so that ρ(r) = 0
for r > 2R, and ρ(r) = 1 for r < R, with R to be chosen later, and write

(Bh)k = lim
ε→0

ˆ
|y|≥ε

(3(y · h)[y × ω(x+ y)]k
4π|y|5

+
1

4π|y|3
[ω(x+ y)× h]k

)
ρ(|y|)dy

+ lim
ε→0

ˆ
|y|≥ε

(3(y · h)[y × ω(x+ y)]k
4π|y|5

+
1

4π|y|3
[ω(x− y)× h]k

)
(1− ρ(|y|)dy

= Ck +Dk.

(6.174)

The Cauchy-Schwartz inequality implies that

|Dk| ≤ C|h|∥ω∥L2

( ˆ ∞

R

1

r6
r2dr

)1/2
≤ C

R3/2
∥ω∥L2|h|. (6.175)

The key estimate is for Ck: we will show that for any δ > 0 and any Hölder regularity
exponent γ ∈ (0, 1) we have

|Ck| ≤ C
{
δγ∥ω∥Cγ + ∥ω∥L∞max

(
1, log

R

δ

)}
|h|. (6.176)

Here, ∥ω∥Cγ is the Hölder norm. Let us assume momentarily that (6.176) holds. The Sobolev
inequality in dimension n

∥f∥Cγ(Rn) ≤ C∥f∥Hs+γ(Rn), s >
n

2

implies that in three dimensions we have, for all 0 < γ < 1/2:

∥ω∥Cγ ≤ C∥ω∥H2 ,

so that if (6.176) holds then

|Ck| ≤ C
{
δγ∥ω∥H2 + ∥ω∥L∞max

(
1, log

R

δ

)}
|h| ≤ C

{
δγ∥u∥H3 + ∥ω∥L∞max

(
1, log

R

δ

)}
|h|.

(6.177)
Altogether, we have

∥∇u∥L∞ ≤ C
(
∥ω∥L∞ +

C

R3/2
∥ω∥L2 +

{
δγ∥u∥H3 + ∥ω∥L∞max

(
1, log

R

δ

)})
. (6.178)
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Thus, we set the cut-off R to be
R = ∥ω∥2/3L2 .

As far δ is concerned, if ∥u∥H3 ≤ 1, we can take δ = 1, while if ∥u∥H3 ≥ 1, we can take

δ = ∥u∥−γ
H3 .

In both cases, we have

∥∇u∥L∞ ≤ C(1 + log+ ∥u∥H3 + log+ ∥ω∥L2)(1 + ∥ω∥L∞), (6.179)

which is the claim of Lemma 6.11. It remains, therefore, only to prove the estimate (6.176).

6.5.4 A nearly L∞ → L∞ estimate for singular integral operators

We now prove estimate (6.176) for Ck, which we write as

Ck = lim
ε→0

ˆ
|y|≥ε

(3(y · h)[y × ω(x+ y)]k
4π|y|5

+
1

4π|y|3
[ω(x+ y)× h]k

)
ρ(|y|)dy

=
1

4π
lim
ε→0

ˆ
|y|≥ε

(
3(ŷ · h)[ŷ × ω(x+ y)]k + [ω(x+ y)× h]k

)
ρ(|y|) dy

|y|3

=
1

4π
lim
ε→0

ˆ
|y|≥ε

(
3ŷmhmεkjrŷjωr(x+ y) + εkrmωr(x+ y)hm

)
ρ(|y|) dy

|y|3

=
hm
4π

lim
ε→0

ˆ
|y|≥ε

(
3ŷmεkjrŷj + εkrm

)
ωr(x+ y)ρ(|y|) dy

|y|3

=
hm
4π

lim
ε→0

ˆ
|y|≥ε

Pmkr(y)ωr(x+ y)ρ(|y|)dy.

(6.180)

We have denoted here

Pmkr =
1

|y|3
(3ŷmεkjrŷj + εkrm). (6.181)

The kernel Q(y) = Pmkr(y) (we fix for the moment the indices m, k and r) is homogenous of
degree (−3):

Q(λy) =
1

λ3
Q(y), for all λ > 0 and y ∈ R3, y ̸= 0. (6.182)

Thus, Q(y) is “barely not in L1”: if it were slightly less singular it would have been in L1.
In addition, the average of Q(y) over the unit sphere (and thus over any sphere centered
at y = 0) vanishes:

ˆ
|y|=1

Q(y)dy =

ˆ
|y|=1

(3ŷmεkjrŷj+εkrm)dy = 4π[εkjrδmj+εkrm] = 4π[εkmr+εkrm] = 0. (6.183)

Consider now the term (again, with an index r fixed)

Qω(x) = lim
ε→0

ˆ
|y|≥ε

Q(y)ωr(x+ y)ρ(|y|)dy. (6.184)
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We split the integration in the definition of Qω as follows:

Qω(x) = lim
ε→0

ˆ
ε≤|y|≤δ

Q(y)ωr(x+ y)ρ(|y|)dy +
ˆ
|y|≥δ

Q(y)ωr(x+ y)ρ(|y|)dy = A+B. (6.185)

The second term above is (recall that ρ(|y|) = 0 for |y| > 2R):

B =

ˆ
δ≤|y|≤2R

Q(y)ωr(x+ y)ρ(|y|)dy, (6.186)

which can be estimated as

|B| ≤ C∥ω∥L∞

ˆ 2R

δ

rn−1

rn
dr ≤ C∥ω∥L∞ log

2R

δ
. (6.187)

The first term in (6.185) is estimated using the Hölder continuity of ω: the mean-zero prop-
erty (6.183) means that we can write

A = lim
ε→0

ˆ
ε≤|y|≤δ

Q(y)ωr(x+y)ρ(|y|)dy = lim
ε→0

ˆ
ε≤|y|≤δ

Q(y)[ωr(x+y)−ωr(x)]ρ(|y|)dy. (6.188)

The Hölder continuity of ω implies that the integrand in the last expression above has an
upper bound

|Q(y)[ωr(x− y)− ωr(x)]ρ(|y|)| ≤
C

|y|n
|y|γ∥ω∥Cγ =

C

|y|n−γ
∥ω∥Cγ , (6.189)

which is integrable in y at y = 0 for γ > 0. Therefore, we have

A =

ˆ
0≤|y|≤δ

Q(y)[ωr(x− y)− ω(x)]ρ(|y|)dy, (6.190)

and

|A| ≤ C∥ω∥Cγ

ˆ δ

0

rn−1

rn−γ
dy ≤ C∥ω∥Cγδγ. (6.191)

Putting the bounds for A and B together gives (6.176).

7 The Yudovich theory for two-dimensional Euler equa-

tions

In this section, we will study some of the basic questions concerning the behavior of solutions
to the two-dimensional incompressible Euler equations.

ut + (u · ∇)u+∇p = 0,

∇ · u = 0.
(7.1)

The system (7.1) should be supplemented by the initial condition u(0, x) = u0(x). Moreover,
if it is posed in a domain D, we also need to impose a boundary condition on the flow u(t, x).
If the boundary is impenetrable, then the natural boundary condition is

u · ν|∂D = 0. (7.2)

Here ν is the normal at the boundary ∂D. The Euler equations are also often considered in
the whole space Rd, with the decay conditions at infinity, or on a torus – which is equivalent
to taking periodic initial data in Rd.
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7.1 The vorticity formulation of the two-dimensional Euler equa-
tions

The theory of the existence, uniqueness and regularity of the solutions to the Euler equations
is quite different in two and three spatial dimensions. In the two dimensional case, for
smooth initial data there exists a unique global in time smooth solution, while for the three
dimensional case an analogous result is only known locally in time. The question of the
global existence of smooth solutions to the Euler equations in three dimensions is a major
open problem. This difference can be illustrated on a basic level by rewriting the Euler
equations in the vorticity form.

An important quantity in the fluid mechanics is the vorticity ω = ∇× u, which describes
the rotational motion of the fluid. In three dimensions, if we apply the curl operator to the
system (7.1), we obtain the Euler equation in the vorticity form:

ωt + (u · ∇)ω = (ω · ∇)u, (7.3)

with the initial condition ω(0, x) = ω0(x).
The vector field u can be recovered from ω via the Biot-Savart law. In order to obtain this

law in R3, consider the (vector-valued) stream function ψ defined (in terms of the vorticity)
as the solution of the Poisson equation

−∆ψ = ω, in R3. (7.4)

Then, one can show via vector algebra that u is given by

u = ∇× ψ. (7.5)

That is, if u and ω are related via (7.4) and (7.5), and ω is incompressible (as it should be),
then ω = ∇ × u. Together, (7.4) and (7.5) form the Biot-Savart law which expresses the
velocity u via the vorticity ω.

On the other hand, in the two dimensional case the term in the right side of (7.3) vanishes.
This term is often called “vortex stretching term” as it can amplify the size of the vorticity. To
see that the vortex stretching term is absent in two dimensions, observe that the solutions of
the two-dimensional Euler equations can be thought of as solutions of the three-dimensional
equations of the special form (u1(x1, x2), u2(x1, x2), 0), P (x1, x2). In that case, the vorticity
vector has only one non-zero component:

ω = (0, 0, ∂1u2 − ∂2u1),

and can be regarded as a scalar. Then, the term in the right side of (7.3) is simply

(ω · ∇)u = ω3∂3u,

but the two dimensional u does not depend on x3. Thus, in two dimensions, the vorticity
equation simplifies. We will use the notation

ω = ∂1u2 − ∂2u1, (7.6)
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instead of ω3.
Given a smooth bounded domain D, let us define the operator (−∆D)

−1 as follows: given
a function ω, we denote by ψ = (−∆D)

−1ω the unique solution of the Dirichlet boundary
value problem

−∆ψ = ω, in D, (7.7)

ψ = 0, on ∂D.

The vorticity formulation of the two-dimensional Euler equations is the system

∂tω + (u · ∇)ω = 0, (7.8)

u = ∇⊥(−∆D)
−1ω, (7.9)

ω(0, x) = ω0(x),

where ∇⊥ = (∂2,−∂1). Note that the flow u defined by (7.9) automatically satisfies the
boundary condition

u · ν = 0 on ∂D. (7.10)

This is because the gradient of the stream function ψ = (−∆D)
−1ω is normal to ∂D due to

the boundary condition, and hence u = ∇⊥ψ is tangent to it.

Exercise 7.1. Verify that if u(t, x) satisfies the Euler equations in two dimensions, then the
vorticity ω(t, x) given by (7.6) satisfies (7.8), and u(t, x) and ω(t, x) are related via (7.9).

The vorticity formulation of the Euler equations in two dimensions leads to several impor-
tant observations. As we will shortly see, any Lp norm of the vorticity is conserved for smooth
solutions of (7.8). In particular, ∥ω∥L∞ does not change. In contrast, in three dimensions,
the amplitude of vorticity can and often does grow due to the vortex stretching term in the
right side of (7.3).

The Yudovich theory addresses existence and uniqueness of the solutions to the 2D Euler
equations with a bounded initial vorticity. The L∞ class for vorticity is very natural since it is
preserved by the evolution, and is likely close to being sharp. In addition, many phenomena
in nature, such as hurricanes or tornados, feature vorticities with a very abrupt variation,
hence the theory of solutions with rough vorticities is not a purely mathematical issue. As we
will see, if the initial condition is more regular, this regularity is reflected in the additional
regularity of the solution, even though the quantitative estimates can deteriorate very quickly.

It is not immediately clear how one can define the low regularity solutions (such as L∞)
of the vorticity equation (7.8) since we need to take derivatives. A “canonical” way around
that is to define a weak solution of a nonlinear equation via the multiplication of the equation
by a test function and integration by parts, and then to try to obtain some a priori bounds
and use compactness arguments to show that such weak solution exists. Indeed, this is the
original approach of Yudovich. However, there is an arguably more elegant approach for the
two-dimensional Euler equations, via a reformulation of the problem that allows us to define
a weak solution in a different way. Given a divergence-free flow u(t, x), recall our definition
of the particle trajectories Φt(x):

dΦt(x)

dt
= u(t,Φt(x)), Φ0(x) = x. (7.11)
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As we have seen, if u is sufficiently regular and incompressible, (7.11) defines a volume pre-
serving map x→ Φt(x) for each t.

A direct calculation, using the method of characteristics, shows that if ω(t, x) is a smooth
solution of (7.8), then

ω(t,Φt(x)) = ω0(x), thus ω(t, x) = ω0(Φ
−1
t (x)). (7.12)

The inverse map is well-defined since trajectories cannot intersect if u is sufficiently regular
(we will discuss it in more detail below). In addition, denote, as before, by GD(x, y) the
Green’s function for the Dirichlet Laplacian in a domain D, in the sense that the solution
to (7.7) is given by

ψ(x) =

ˆ
D

GD(x, y)ω(y)dy, x ∈ D, (7.13)

and set
KD(x, y) = ∇⊥

xGD(x, y). (7.14)

Then the Biot-Savart law in two dimensions can be written as

u(t, x) =

ˆ
D

KD(x, y)ω(t, y) dy. (7.15)

A classical C1 solution of the two-dimensional Euler equations (7.8) satisfies the sys-
tem (7.11), (7.12) and (7.15). On the other hand, a direct computation shows that a smooth
solution to (7.11), (7.12) and (7.15) gives rise to a classical solution of (7.8). Thus, for smooth
solutions the two formulations are equivalent.

We will generalize the notion of the solution to the 2D Euler equations by saying that
a triple (ω, u,Φt(x)) solves the 2D Euler equations if it satisfies (7.11), (7.12) and (7.15).
The obvious next task is to make sense of the solutions of the latter system with the only
requirement that ω0 ∈ L∞. A well known theorem on solutions to systems of ordinary
differential equations yields uniqueness if u(t, x) is Lipschitz in x. Thus, if it were true that
for ω(t, x) ∈ L∞, the Biot-Savart law would give a Lipschitz function u(t, x), then it would
be very reasonable to expect (7.11), (7.12) and (7.15) to be a well-posed system. This looks
possible – (7.9) indicates that u is “one derivative better than ω”, but in fact it is not quite
true – the regularity for u(t, x) when ω ∈ L∞ is slightly lower than Lipschitz. Nevertheless, we
will see that this lower regularity is sufficient to define unique trajectories of the ODE (7.11),
making the system well-posed.

7.2 The regularity of the flow

In order to construct the solutions of the 2D Euler equations in the trajectory formula-
tion (7.11)-(7.15) with the vorticity ω0 ∈ L∞, we first need to establish the regularity of the
fluid velocity given by (7.15) for a vorticity in L∞. This question is clearly related to the
regularity of the kernel KD(x, y). The following proposition summarizes some well known
properties of the Dirichlet Green’s function.
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Proposition 7.2. If D ⊂ R2 is a compact domain with a smooth boundary, the Dirichlet
Green’s function GD(x, y) has the form

GD(x, y) =
1

2π
log |x− y|+ h(x, y).

Here, for each y ∈ D, h(x, y) is a harmonic function solving

∆xh = 0, h|x∈∂D = − 1

2π
log |x− y|. (7.16)

We have GD(x, y) = GD(y, x) for all (x, y) ∈ D, and GD(x, y) = 0 if either x or y belongs
to ∂D. In addition, we have the estimates

|GD(x, y)| ≤ C(D) (|log |x− y||+ 1) (7.17)

|∇GD(x, y)| ≤ C(D)|x− y|−1, (7.18)

|∇2GD(x, y)| ≤ C(D)|x− y|−2. (7.19)

The following lemma outlines a key regularity property of the Green’s function which
allows to construct the unique solutions of the Euler equations for the initial vorticity in L∞.

Lemma 7.3. The kernel KD(x, y) = ∇⊥GD(x, y) satisfiesˆ
D

|KD(x, y)−KD(x
′, y)| dy ≤ C(D)ϕ(|x− x′|), (7.20)

where

ϕ(r) =

{
r(1− log r) r < 1
1 r ≥ 1,

(7.21)

with a constant C(D) which depends only on the domain D.

Proof. In what follows, C(D) denotes constants that may depend only on the domain D,
and may change from line to line. To show (7.20), we may assume that r = |x − x′| < 1.
Indeed, otherwise (7.20) follows from the simple observation that

|KD(x, y)| ≤ C(D)|x− y|−1,

so that ˆ
D

|KD(x, y)|dy ≤ C(D),

which implies (7.20) for x, x′ ∈ D such that |x− x′| ≥ 1.
Assume now that r < 1 and suppose first that the interval connecting the points x and x′

lies entirely inside D. Let us set

A = {y ∈ D : |y − x| ≤ 2r}.

The estimate (7.18) impliesˆ
D∩A

|KD(x, y)−KD(x
′, y)| dy ≤ C(D)

ˆ
B2r(x)

( 1

|x− y|
+

1

|x′ − y|

)
dy

≤ C(D)

ˆ
B2r(x)

1

|x− y|
dy + C(D)

ˆ
B5r(x′)

1

|x′ − y|
dy ≤ C(D)r.

(7.22)
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We used above the fact that |x− x′| < r implies that B2r(x) ⊂ B5r(x
′).

To bound the remainder of the integral, observe that for every y,

|KD(x, y)−KD(x
′, y)| ≤ r|∇KD(x

′′(y), y)|, (7.23)

where the point x′′(y) lies on the interval connecting x and x′. Note also that choice of the
set A ensures that the distances |x − y|, |x′ − y| and |x′′ − y| are all comparable if y ∈ Ac.
Then, by (7.19) and the above considerations we have

ˆ
D∩Ac

|KD(x, y)−KD(x
′, y)| dy ≤ C(D)r

ˆ
D∩Ac

dy

|x′′(y)− y|2
≤ C(D)r

ˆ
D∩Ac

dy

|x− y|2

≤ C(D)r

ˆ C(D)

r

s−1 ds ≤ C(D)r(1− log r).

(7.24)

The case where the interval connecting x and x′ does not lie entirely in D is similar, one
just needs to replace this interval by a curve connecting x and x′ with the length of the order r.
We briefly sketch the argument. The following lemma can be proved by standard methods
using the compactness of the domain and the regularity of the boundary, so we do not present
its proof.

Lemma 7.4. Fix an arbitrary ε > 0 and let D ⊂ R2 be bounded domain with a smooth
boundary. Then there exists r0 = r0(D, ε) > 0 such that if x0 ∈ ∂D, and r ≤ r0, then
Br(x0) ∩ ∂D is a curve that, by a rotation and a translation of the coordinate system, can be
represented as a graph x2 = f(x1), with x0 = (0, 0). The function f is C∞, and f ′(0) = 0.
Moreover, the part of the boundary ∂D within Br(x0) lies in the narrow angle between the the
lines x2 = ±ϵx1.

With this lemma, suppose we have x and x′ such that the interval connecting these points
does not lie in D. It is enough to consider the case where |x− x′| = r < r0/2, where r0 is as
in Lemma 7.4 corresponding to a sufficiently small ε. Indeed, the larger values of |x− x′| can
be handled by adjusting C(D) in (7.20). Find a point x0 ∈ ∂D closest to x (it does not have
to be unique). Note that by the assumption that the interval (x, x′) crosses the boundary, we
must have |x − x0| ≤ r0/2 and |x′ − x0| < r0. Thus, both x and x′ lie in the disk B(x0, r0)
where ∂D lies between the lines x2 = ±εx1. It is also not hard to see that x must lie on
the vertical x2-axis of a system of coordinates centered at x0, with the horizontal x1-axis
tangent to ∂D at x0. We also know that x′ must lie in the narrow angle between the lines
x2 = ±εx1. Otherwise, the interval (x, x′) could not have crossed the boundary. Now take a
curve connecting x and x′ consisting of a straight vertical interval from x′ to a point on one
of the lines x2 = ±εx1 which is closest to x, and then an interval connecting this point to x.
We can smooth out this curve without changing its length by much. It is easy to see that
the length of this curve does not exceed 2r if ε is small enough. The rest of the proof goes
through as before. 2

Now we can state the regularity result for the fluid velocity.

Corollary 7.5. The fluid velocity u satisfies

∥u∥L∞ ≤ C(D)∥ω∥L∞ , (7.25)
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and
|u(x)− u(x′)| ≤ C∥ω∥L∞ϕ(|x− x′|), (7.26)

with the function ϕ(r) defined in (7.21).

Proof. By (7.18), we have, for any x, y ∈ D,

|KD(x, y)| ≤ C(D)|x− y|−1,

so that ∣∣∣∣ˆ
D

KD(x, y)ω(y) dy

∣∣∣∣ ≤ C(D)∥ω∥L∞

ˆ
D

1

|x− y|
dy ≤ C(D)∥ω∥L∞ ,

which is (7.25). The proof of (7.26) is immediate from Lemma 7.3, as

u(t, x) =

ˆ
D

KD(x, y)ω(t, y)dy,

and we are done. 2
We say that u is log-Lipschitz if it satisfies (7.26): there exists M > 0 so that

|u(t, x)− u(t, x′)| ≤Mϕ(|x− x′|). (7.27)

We will see that this bound is in fact sharp: there are velocities that correspond to bounded
vorticities which are just log-Lipschitz and in particular fail to be Lipschitz.

7.3 Trajectories for log-Lipschitz velocities

7.3.1 Existence and uniqueness of trajectories

As the fluid velocity with an L∞-vorticity is not necessarily Lipschitz but only log-Lipschitz,
we may not use the classical results on the existence and uniqueness of the solutions of systems
of ODEs with Lipschitz velocities. Nevertheless, as we show next, the log-Lipschitz regularity
is sufficient to determine the fluid trajectories uniquely.

Lemma 7.6. Let D be a bounded smooth domain in Rd. Assume that the velocity field b(t, x)
satisfies, for all t ≥ 0:

b ∈ C([0,∞)× D̄), |b(t, x)− b(t, y)| ≤ Cϕ(|x− y|), b(t, x) · ν|∂D = 0. (7.28)

Here, the function ϕ(r) is given by (7.21) and ν is the unit normal to ∂D at the point x. Then
the Cauchy problem in D̄

dx

dt
= b(t, x), x(0) = x0, (7.29)

has a unique global solution for all x0 ∈ D̄. Moreover, if x0 /∈ ∂D, then x(t) /∈ ∂D for
all t ≥ 0. If x0 ∈ ∂D, then x(t) ∈ ∂D for all t ≥ 0.
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Note that the log-Lipschitz regularity is border-line: the familiar example of the ODE

ẋ = xβ, x(0) = 0,

with β ∈ (0, 1) does not have the uniqueness property: for example, x(t) ≡ 0, and

x(t) =
tp

pp
, p =

1

1− β

are both solutions. Thus, ODEs with Hölder (with an exponent smaller than one) velocities
may have more than one solution. Existence of the solutions, on the other hand, does not
really require the log-Lipschitz condition: uniform continuity of b(t, x) and at most linear
growth as |x| → +∞ would be sufficient.

Proof. Step 1. Existence of a local in time solution. Let us first show the existence
of a local solution using a version of the standard Picard iteration: set

xn(t) = x0 +

ˆ t

0

b(s, xn−1(s)) ds, x0(t) ≡ x0.

Let us assume first that x0 ∈ D. Then, as usual, we have, using the log-Lipschitz property
of b:

|xn(t)− xn−1(t)| ≤
ˆ t

0

|b(s, xn−1(s))− b(s, xn−2(s))| ds ≤ C

ˆ t

0

ϕ(|xn−1(s)− xn−2(s)|) ds.

(7.30)
Since the function ϕ(r) is concave, we have

ϕ(r) ≤ ϕ(ε) + ϕ′(ε)(r − ε) = ε(1 + log ε−1) + (r − ε) log ε−1 = ε+ r log ε−1,

for every ε < 1. Using this in (7.30) gives

|xn(t)− xn−1(t)| ≤ C log(ε−1)

ˆ t

0

|xn−1(s)− xn−2(s)| ds+ Ctε.

Exercise 7.7. Use an induction argument to show that (7.30) implies, for any 0 ≤ t ≤ T
and ε ∈ (0, 1)

|xn(t)−xn−1(t)| ≤ CTε
n−2∑
k=0

Ck(log ε−1)ktk

k!
+
Cn−1tn−1(log ε−1)n−1

(n− 1)!
sup0≤t≤T |x1(t)−x0|. (7.31)

As
|x1(t)− x0| ≤ Ct,

we have

|xn(t)− xn−1(t)| ≤ CTε exp(CT log ε−1) +
CnT n(log ε−1)n−1

(n− 1)!
,

for any ε > 0 and all n ≥ 2, with a constant C that is independent of ε > 0 or n. We may
now choose ε = exp(−n) and T sufficiently small so that 1− CT > 1/2. This leads to

|xn(t)− xn−1(t)| ≤ CT exp(−n/2) + CnT nnn−1

(n− 1)!
.
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The Stirling formula

n! ∼
√
2πn

(n
e

)n
implies that if T is sufficiently small (independently of n), then

|xn(t)− xn−1(t)| ≤ αn,

with α < 1. Thus, xn(t) converges uniformly to a limit x(t). The uniformity of the convergence
implies that the limit satisfies the integral equation

x(t) = x0 +

ˆ t

0

b(s, x(s)) ds. (7.32)

We also need to choose T so that |x(t)− x0| ≤ dist(x0, ∂D). Taking

T < ∥b∥−1
L∞dist(x0, ∂D), (7.33)

would suffice. As b is continuous, we may differentiate (7.32) and obtain the desired ODE

dx(t)

dt
= b(t, x(t)), x(0) = x0,

for all t on the time interval 0 ≤ t ≤ T .
Step 2. Uniqueness of a local in time solution. Next, we show the uniqueness of

this local solution – here, the log-Lipchitz property will play a crucial role. We will prove a
little more general stability estimate than needed for the uniqueness, as we will need it later.
Let σ > 0 be a small number. Suppose that x(t) and y(t) are two different solutions to (7.29)
with the initial data satisfying 0 < |x0 − y0| < σ and set z(t) = |x(t) − y(t)|. Then, by the
log-Lipschitz assumption on b in (7.28), we have

z(t)ż(t) =
1

2

d

dt
|z(t)|2 = (x(t)− y(t)) · (b(x(t), t)− b(y(t, t)) ≤ Cz(t)ϕ(z(t)), (7.34)

as well as

z(t)ż(t) =
1

2

d

dt
|z(t)|2 = (x(t)− y(t)) · (b(x(t), t)− b(y(t, t)) ≥ −Cz(t)ϕ(z(t)), (7.35)

It follows that, as long as z(t) > 0 (which is true for t > 0 sufficiently small by the continuity
of x(t) and y(t)), we have

−Cϕ(z(t)) ≤ ż(t) ≤ Cϕ(z(t)), 0 < z(0) < σ.

In order to control z(t), define fσ(t) as the solution of

ḟσ = 2Cϕ(fσ(t)), fσ(0) = σ,

and gσ(t) as the solution of

ġσ = −2Cϕ(fσ(t)), gσ(0) =
z(0)

2
.
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We claim that
gσ(t) < z(t) < fσ(t), for all t > 0. (7.36)

We will only show that z(t) < fσ(t), with the other inequality proved similarly. This is true for
some initial time interval, simply because both z(t) and fσ(t) are continuous and fσ(0) > z(0).
Let t1 > 0 be the smallest time such that z(t1) = fσ(t1). At this time, by the definition of t1,
we would have

ż(t1) ≥ ḟσ(t1). (7.37)

On the other hand, we would also have

ż(t1)− ḟσ(t1) ≤ Cϕ(z1(t))− 2Cϕ(fσ(t1)) = −Cϕ(z(t1)) < 0,

contradicting the definition of t1. Thus, no such t1 exists and

z(t) < fσ(t) for all t ≥ 0. (7.38)

The proof of the lower bound in (7.36) is similar.
Now, we need an estimate on fσ(t). Let us show that for any t > 0 fixed we have

lim
σ→0+

fσ(t) = 0. (7.39)

It suffices to consider the case where σ is small and times are small enough so that fσ(t) < 1.
Then we have

d

dt
log fσ(t) = 2C(1− log fσ(t)).

Solving this differential equation leads to

1− log fσ(t) = (1− log σ)e−2Ct,

or
fσ(t) = σexp(−2Ct) exp(1− exp(−2Ct)), (7.40)

whence (7.39) follows. If the initial conditions for x(t) and y(t) are the same, then

0 ≤ z(t) ≤ fσ(t) for every σ > 0. (7.41)

Now, (7.39) and (7.41) imply that z(t) ≡ 0, hence the solution x(t) of (7.29) is unique.

Exercise 7.8. Identify the place in the uniqueness proof above where we have used the log-
Lipschitz condition on the function b(t, x); that is, where the proof would have failed, for
example, for ϕ(r) = rβ, with β ∈ (0, 1).

Step 3. Global in time existence. We now address the question of the global existence.
Having constructed a local solution until a time t, we can continue to extend our local solution
from t to a time t + ∆t, using the local in time existence we have just proved, since x(t) is
inside D. However, as (7.33) shows, the time step ∆t depends on the distance from x(t)
to ∂D. Thus, in order to construct a global in time solution we need to control this distance.
Let us set

d(t) = dist(x(t), ∂D),
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with d(0) ≡ d0 > 0 since x0 ∈ D. Our goal is to get a lower bound on d(t). Note first that
since b ∈ L∞, the trajectory x(t) is Lipschitz in time, and so is the function d(t). Thus, by
the Rademacher theorem, the derivative ḋ(t) exists almost everywhere, and

d(t) = d0 +

ˆ t

0

ḋ(s) ds.

We will now estimate ḋ(t) from below at any given time t for which the local solution is
defined. Consider the set

S(t) = {P ∈ ∂D : |x(t)− P | = d(t)} ,

and, given κ > 0, define

Sκ(t) = {Q ∈ ∂D : ∃P ∈ S(t), |Q− P | < κ} .

We can think of the set Sκ(t) as the points on ∂D that are very close to the points at which the
distance between x(t) and ∂D is realized. Therefore, we expect these points to be important
for the estimate of how the distance changes. Fix some small ε > 0, and take κε > 0
sufficiently small, so that if Q ∈ Sκε(t), then there exists P ∈ S(t) such that∣∣∣∣ Q− x(t)

|Q− x(t)|
− νP

∣∣∣∣ < ε

∥b∥L∞
. (7.42)

Here, νP is the outside unit normal to ∂D at the point P . Such κε exists due to the smoothness
of the boundary ∂D.

Exercise 7.9. Assume that the boundary ∂D can be represented around the point P as
a graph ∂D = (w, g(w)) with P = (0, 0) and ġ(0) = 0. Assume that the function g(w) is
bounded in C2 and find an explicit bound for κ which ensures that (7.42) holds.

Let us now proceed to estimate d(s) for times s slightly large than t. Consider first any
point Q ∈ ∂D \ Sκε(t). The set ∂D \ Sκε(t) is compact, and dist(x(t), Q) > d(t) for every
point Q ∈ ∂D \ Sκε(t). Therefore, there exists γε > 0 such that

|x(t)−Q| > d+ γε, for all Q ∈ ∂D \ Sκε(t). (7.43)

We deduce that

|x(s)−Q| ≥ |x(t)−Q|−|x(t)−x(s)| ≥ d(t)+γε−∥b∥L∞(s−t), for all s > t and Q ∈ ∂D \ Sκε(t).

Thus, if
0 < s− t ≤ γε∥b∥−1

L∞ ,

then
|x(s)−Q| ≥ d(t) for any Q ∈ ∂D \ Sκε(t). (7.44)

Next, suppose that Q ∈ Sκε(t). We have

x(s)−Q = x(t) +

ˆ s

t

b(r, x(r)) dr −Q. (7.45)
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Denote

ē =
x(t)−Q

|x(t)−Q|
,

and note that (7.42) says that

|ē− νP | <
ε

∥b∥L∞
. (7.46)

Going back to (7.45), we obtain

|x(s)−Q| ≥ (x(s)−Q) · ē = |x(t)−Q|+
ˆ s

t

b(x(r), r) dr · ē ≥ d(t)+

ˆ s

t

b(x(r), r) dr · ē. (7.47)

We also recall that by the last assumption in (7.28) we have

b(P, t) · νP = 0. (7.48)

Next, using (7.46) and (7.48), we get
ˆ s

t

b(x(r), r) dr · ē =
ˆ s

t

b(x(r), r) · (ē− νP ) dr +

ˆ s

t

(b(x(r), r)− b(P, r)) · νP dr

≥
ˆ s

t

(b(x(r), r)− b(P, r)) · νP dr − ∥b∥L∞(s− t)ε∥b∥−1
L∞

≥ −C
ˆ s

t

ϕ(|x(r)− P |) dr − ε(s− t) ≥ −Cϕ(2d(t))(s− t)− ε(s− t).

(7.49)

In the last step we used that |x(r) − P | ≤ 2d(t) if r − t is small enough, depending on d(t)
and ∥b∥∞. Note also that

ϕ(2d(t)) ≤ 2ϕ(d(t))

by concavity. To summarize (7.44), (7.47), and (7.49), we have

d(s) ≥ d(t)− Cϕ(d(t))(s− t)− ε(s− t).

for s sufficiently close to t. Therefore, since ε > 0 is arbitrary, we get

ḋ(t) ≥ −Cϕ(d(t)),

for every t for which the derivative exists. Solving this differential inequality, similarly
to (7.40), we obtain

d(t) ≥ d
exp(Ct)
0 exp(1− exp(Ct)). (7.50)

Therefore, the local solution can be continued indefinitely in time, and x(t) will never arrive
at ∂D if x0 /∈ ∂D.

Step 4. Starting point on the boundary. It remains to consider the case of x0 ∈ ∂D.
In this situation, take xn ∈ D, n = 1, . . . , such that

lim
n→∞

xn = x0,

and consider the corresponding solutions xn(t). Due to the estimates (7.38) and (7.40), the
sequence xn(t) is Cauchy in C([0, T ],Rd) for any T <∞. Therefore it has a limit x(t) in this
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space, and this limit satisfies the integral form (7.32). We can then differentiate it in time,
arriving at (7.29).

Finally, we claim that x(t) ∈ ∂D for all times if x0 ∈ ∂D. Indeed, suppose there exists t0
such that x(t0) /∈ ∂D. Let us invert time and solve the characteristic backwards:

dy

ds
= −b(t0 − s, y(s)), y(0) = x(t0). (7.51)

Then y(s) and x(t0 − s) satisfy the same differential equation with log-Lipschitz coefficient,
so by our previous result on uniqueness, we know that y(s) = x(t0 − s). But this means
that y(s) starts at x(t0) ∈ D and arrives at x0 ∈ ∂D in a finite time. This contradicts our
earlier estimates that apply in the same fashion to the backwards equation (7.51). 2

7.3.2 The Hölder regularity of the flow map

We will now obtain a uniform continuity bound on the trajectories Φt(x), which are the
solutions to

d

dt
Φt(x) = b(Φt(x), t), Φ0(x) = x, (7.52)

when the flow b(x, t) is only log-Lipschitz in x. To contrast our set up with more regular
situation, let us first recall the following result.

Exercise 7.10. Let b(t, x) be a Lipschitz function in x: there exists g(t) ∈ L1
loc(0,∞) so that

|b(x, t)− b(y, t)| ≤ g(t)|x− y|, for all t ≥ 0 and x, y ∈ Rd. (7.53)

Show that the solution to (7.52) satisfies a Lipschitz bound

|Φt(x)− Φt(y)| ≤ |x− y| exp
{ˆ t

0

g(s) ds
}
. (7.54)

In contrast to (7.54), we have the following Hölder estimate for the flow map when the
velocity is only log-Lipschitz.

Lemma 7.11. Suppose that D ⊂ Rd is a smooth bounded domain, and the map Φt(x) is
generated by a log-Lipschitz vector field b(t, x) satisfying assumptions of Lemma 7.6. Then,
for every x, y ∈ D̄ with |x− y| ≤ 1/2, and while |Φt(x)− Φt(y)| ≤ 1/2, we have

|x− y|eCt ≤ |Φt(x)− Φt(y)| ≤ |x− y|e−Ct

. (7.55)

The constant C in (7.55) only depends on the constant in the log-Lipschitz bound for b.

Of course, one can write the corresponding bounds for all x, y ∈ D (recall that D is
bounded, so |x − y| ≤ C(D)). We restrict to the ≤ 1/2 range to simplify the argument, as
the bound looks different at large distances. Also note that the bound (7.55) similarly applies
to Φ−1

t (x).
This is a rather remarkable estimate: we can show that Φt(x) is Hölder continuous in space

for any t ≥ 0, but the Hölder exponent deteriorates in time. The loss of regularity compared
to the result for the Lipschitz velocities in Exercise 7.10 is pretty dramatic: not only the
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solution is no longer Lipschitz, it cannot even keep a constant in time Hölder exponent. This
is a reflection of the complexity of dynamics: the exponent in the upper bound in (7.55)
tends to zero as t → +∞ because two trajectories that start very close at t = 0 may diverge
very far at large times – much further than for Lipschitz velocities. On the other hand, the
exponent in the lower bound in (7.55) grows as t→ +∞ because even if at the time t = 0 the
starting points x and y are relatively far apart, they can be extremely close at large times.
This deterioration of the estimates is not an artefact of the proof – the particle trajectories
corresponding to true solutions of the Euler equations can get extremely close at large times.

Proof. The result is of course closely related to the estimates (7.38) and (7.40). Let us
fix x and y, and set F (t) = |Φt(x)− Φt(y)|. We compute∣∣∣∣ ddtF 2(t)

∣∣∣∣ = 2 |(Φt(x)− Φt(y)) · (b(Φt(x), t)− b(Φt(y), t))| ≤ 2CF (t)ϕ(F (t)),

with the constant C > 0 that depends on the domain D and ∥ω0∥L∞ . Thus

|F ′(t)| ≤ CF (t)max(1, 1− logF (t)).

Recall that we only need to consider the case when F (t) ≤ 1/2. Then we have

|F ′(t)| ≤ CF (t) logF (t)−1,

which leads to
[logF (0)]eCt ≤ logF (t) ≤ [logF (0)]e−Ct.

The estimate (7.55) follows immediately from exponentiating this inequality and taking into
account that F (0) = |x− y|. 2

7.4 The approximation scheme

Let us return to our strategy of constructing a triple (ω, u,Φt(x)) solving (7.11), (7.12)
and (7.15), with the initial vorticity ω0 ∈ L∞. We define an iterative sequence of approxima-
tions

d

dt
Φn

t (x) = un(t,Φn
t (x)), Φn

0 (x) = x, (7.56)

un(t, x) =

ˆ
D

KD(x, y)ω
n−1(t, y) dy, (7.57)

ωn(t, x) = ω0((Φ
n
t )

−1(x)), (7.58)

with ω0(t, x) ≡ ω0(x) ∈ L∞ for all t ≥ 0. Note that since the velocities un defined by (7.57)
satisfy the no flow boundary conditions at ∂D, and by Corollary 7.5 and Lemma 7.6, the
solutions to the trajectory equation (7.56) exist and are unique.

Moreover, the trajectory maps Φn
t (x) are injective due to the uniqueness of the backward

trajectories and surjective due to the global existence of these backward trajectories. There-
fore, the inverse maps (Φn

t )
−1(x) in (7.58) are well-defined. Both the direct and the inverse

trajectory maps are also continuous in x for each t on D̄ due to the estimates (7.38) and (7.40),
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and map D to D and ∂D to ∂D. In fact, it follows from (7.40) that these maps also satisfy
the Hölder regularity bounds, which we will spell out precisely in a moment.

Intuitively, each successive approximation involves solving a linear problem

ωn
t + (un · ∇)ωn = 0, (7.59)

with the flow

un(t, x) =

ˆ
D

KD(x, y)ω
n−1(t, y) dy, (7.60)

computed from the previous iteration. Note that each ωn ∈ L∞, with

∥ωn(t)∥L∞ ≤ ∥ω0∥L∞ . (7.61)

However, one can not take (7.59) too literally, since we only know that ω0 is in L∞, and
there is no reason to expect that the iterates ωn are smooth, which is needed to make sense
of (7.59) pointwise. Thus, we resort to the approximation scheme (7.56)-(7.58) as the weak
formulation for (7.59)-(7.60).

The next step is to obtain uniform bounds on the solutions to the approximation scheme
that will allow us to pass to the limit n→ ∞ and get a solution to (7.11)-(7.15).

7.4.1 The flow map corresponding to divergence free log-Lipschitz velocity is
measure preserving

It will be useful for us to know that the trajectory maps corresponding to log-Lipschitz vector
fields are measure preserving. We have discussed that if u is smooth and ∇ · u = 0, then the
associated trajectories map is measure preserving. However, this argument does not apply
directly when the vector field u(t, x) is just log-Lipschitz in the spatial variable. Taking the
derivatives of the flow map to study the Jacobian is not straightforward. We will instead use
an approximation argument to establish this property.

Lemma 7.12. Let D ∈ Rd and b(t, x) satisfy the assumptions of Lemma 7.6. Assume, in
addition, that ∇ · b = 0 in the distributional sense. Then, the trajectory map Φt(x) defined by
the vector field b(t, x) according to (7.11) is measure preserving on D.

Proof. From the proof of Lemma 7.6 and Lemma 7.11, we already know that Φt(x)
is a Hölder continuous bijection on D. It suffices to check the preservation of measure for
an arbitrary d-dimensional interval lying in D, at a positive distance from ∂D. Fix such
interval I and an arbitrary time T > 0. We will use a smooth incompressible flow that
approximates b(t, x) in a neighborhood of Φt(I). It is constructed as follows. According to
the estimate (7.50), there exists κ > 0 such that

dist(Φt(I), ∂D) ≥ κ for all 0 ≤ t ≤ T.

Take any δ < κ/2, and set
Iδ := {x ∈ D |dist(x, I) < δ} .

Further decreasing δ if necessary, we may ensure that

dist(Φt(Iδ), ∂D) ≥ κ/2 for all 0 ≤ t ≤ T.
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Let η(x) be a standard mollifier:

η ∈ C∞
0 (Rd), η(x) = 0 if |x| ≥ 1, and

ˆ
Rd

η(x) dx = 1.

Take any ϵ < κ/4, and define
bϵ = ηϵ ∗ b,

with ηϵ(x) = η(x/ϵ). The flow bϵ(t, x) is defined for all x such that dist(x, ∂D) < ε. In
addition, it is smooth, and it is easy to check that bε(t, x) is divergence free. Let us denote
the trajectory map corresponding to bϵ(t, x) by Φϵ

t(x). We have

|Φt(x)− Φϵ
t(x)| ≤

∣∣∣∣ˆ t

0

(b(s,Φs(x))− b(s,Φϵ
s(x))) ds

∣∣∣∣+ ∣∣∣∣ˆ t

0

(b(s,Φϵ
s(x)))− bϵ(s,Φ

ϵ
s(x))) ds

∣∣∣∣
≤ C

ˆ t

0

ϕ(|Φs(x)− Φϵ
s(x)|) + Cϕ(ϵ)t. (7.62)

Here we used the log-Lipschitz bound on b to estimate both terms. We have assumed above
that Φϵ

t(x) does not come within distance ε to the boundary ∂D, and we now verify that this
indeed does not happen if we choose ϵ to be small enough. One can see from (7.62) that

|Φt(x)− Φϵ
t(x)| ≤ g(t),

where g(t) satisfies
g′(t) = Cϕ(g(t)) + Cϕ(ϵ), g(0) = 0.

Exercise 7.13. Let h(t) be the solution of

h′(t) = Cϕ(h(t)), h(0) = Cϕ(ϵ)T.

Show that g(t) ≤ h(t), for 0 ≤ t ≤ T.

We can find h(t) explicitly (at least while h(t) ≤ 1):

h(t) = (Cϕ(ϵ)T )exp(−Ct) exp(1− exp(−Ct)).

Therefore, there exists β = β(T ) > 0 such that

|Φt(x)− Φϵ
t(x)| ≤ Cϵβ (7.63)

for all 0 ≤ t ≤ T. We can then choose ϵ so that, in particular, we have

|Φt(x)− Φϵ
t(x)| ≤ κ/4 for all 0 ≤ t ≤ T ,

and so Φϵ
t(x) stays at least distance ε away from ∂D for all x ∈ Iδ during this time interval.

Next, take a cut-off function f ∈ C∞
0 (Iδ) such that

0 ≤ f(x) ≤ 1, ∥∇f(x)∥L∞ ≤ Cδ−1, and f(x) = 1 if x ∈ I,
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Observe that

|Φ−1
t (I)| =

ˆ
D

χI(Φt(x)) dx ≤
ˆ
D

f(Φt(x)) dx ≤
ˆ
D

χIδ(Φt(x)) dx = |Φ−1
t (Iδ)|, (7.64)

and

|I| = |(Φϵ
t)

−1(I)| ≤
ˆ
D

f(Φϵ
t(x)) dx ≤ |(Φϵ

t)
−1(Iδ)| = |Iδ|. (7.65)

We used in (7.65) the fact that (Φϵ
t)

−1 is measure preserving since this map is generated by
a smooth incompressible velocity field. On the other hand, for 0 ≤ t ≤ T we have∣∣∣∣ˆ

D

f(Φt(x)) dx−
ˆ
D

f(Φϵ
t(x)) dx

∣∣∣∣ ≤ ∥∇f∥L∞ |D| sup
x∈Iδ,0≤t≤T

|Φt(x)− Φϵ
t(x)| ≤

C(D)ϵβ

δ
.

(7.66)
We used (7.63) in the last step. Taking δ to zero, and simultaneously taking ϵ = δ2/β to zero
(so that the right hand side of (7.66) goes to zero too), and using (7.64), (7.65) and (7.66),
we conclude that

|Φ−1
t (I)| ≤ |I|,

for every interval I ⊂ D at a positive distance from ∂D, and any 0 ≤ t ≤ T. It follows that
the same is true for any open set Ω ⊂ D : |Φ−1

t (Ω)| ≤ |Ω|. An analogous argument usingˆ
D

f(Φ−1
t (x)) dx, and

ˆ
D

f((Φϵ
t)

−1(x)) dx,

leads to the inequality |Φt(Ω)| ≤ |Ω|. Since Φt, Φ
−1
t are continuous and bijective, these two

inequalities together imply that these maps are measure preserving. 2

7.4.2 The time regularity of velocities

In order to be able to use Lemma 7.6 in the analysis of the approximation scheme, we need
to establish the necessary bounds on the velocities un.

The space regularity estimates on un can be obtained using (7.61) and Corollary 7.5: it
follows that all un(t, x) are uniformly bounded and log-Lipschitz:

|un(t, x)− un(t, x′)| ≤ C(D)ϕ(|x− x′|). (7.67)

In the direction of time continuity, we only need continuity but stronger control is not
hard to get.

Lemma 7.14. The velocities un are uniformly log-Lipschitz in time. Namely,

|un(x, t2)− un(x, t1)| ≤ Cϕ(|t2 − t1|), (7.68)

with a constant C independent of n, x, and t1,2.

Proof. Let us take t2 > t1 ≥ 0. Clearly we need to focus on the case of |t2− t1| ≤ 1, since
otherwise the estimate follows from uniform L∞ bound on un. Now let us denote by Φn

t1,t2
(z)

the flow map generated by un from time t1 to t2, that is,

Φn
t1,t2

(z) = z +

ˆ t2

t1

un(Φn
t1,t

(z), t) dt,
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so that
Φn

t2
(y) = Φn

t1,t2
(Φn

t1
(y)), (7.69)

and
Φn

t1,t2
(y) = Φn

t2
([Φn

t1
]−1(y)). (7.70)

It follows that the map Φn
t1,t2

is also measure-preserving.
We now write, first,

un(x, t1) =

ˆ
D

KD(x, y)ω
n−1(t1, y) dy =

ˆ
D

KD(x, z)ω0((Φ
n−1
t1

)−1(z)) dz, (7.71)

and, second, using the measure-preserving property of the map Φn−1
t1,t2 ,

un(x, t2) =

ˆ
D

KD(x, y)ω
n−1(t2, y) dy =

ˆ
D

KD(x, y)ω0((Φ
n−1
t2

)−1(y)) dy

=

ˆ
D

KD(x,Φ
n−1
t1,t2

(z))ω0((Φ
n−1
t2

)−1Φn−1
t1,t2

(z)) dz

=

ˆ
D

KD(x,Φ
n−1
t1,t2

(z))ω0((Φ
n−1
t1

)−1(z)) dz.

(7.72)

This gives

un(x, t2)− un(x, t1) =

ˆ
D

(
KD(x,Φ

n
t1,t2

(z))−KD(x, z)
)
ω0((Φ

n−1
t1

)−1(z)) dz. (7.73)

Note that for all z ∈ D we have

|Φn
t1,t2

(z)− z| ≤ supn∥un∥L∞|t2 − t1| ≤ C(D)∥ω0∥L∞|t2 − t1|. (7.74)

Let us set
r = 2C(D)∥ω0∥L∞|t2 − t1|. (7.75)

Using again the measure-preserving property of the map Φn
t1,t2

the expression in the right side
of (7.73) can be bounded by

|un(x, t2)− un(x, t1)| ≤ C(D)∥ω0∥L∞

(ˆ
Br(x)∩D

dz

|x− z|
+

ˆ
Br(x)c∩D

|Φn
t1,t2

(z)− z|
|x− z|2

dz

)
≤ C(D)∥ω0∥L∞

(
r + ∥un∥L∞|t2 − t1| log r−1

)
≤ C(D, ∥ω0∥L∞)ϕ(|t2 − t1|).

(7.76)
Thus, u(t, x) is log-Lipschitz in time. 2

Convergence of the approximation scheme

Let us now investigate the convergence of the sequence (ωn, un,Φn
t ). We will first show ex-

istence of the Yudovich solution on a sufficiently small time interval [−T, T ]. We can then
iterate the arguments below to get the global solution, since the time step T will only depend
on ∥ω0∥L∞ and D.

The first key step is to prove convergence of the flow Φn
t (x) in the C([−T, T ], L1(D))

topology.

95



Lemma 7.15. There exists T > 0 and Φt(x) ∈ C([−T, T ], L1(D)) such that

∥Φn
t − Φt∥C([−T,T ],L1(D)) → 0

as n→ ∞.

Proof. Let us focus on t > 0; the other alternative is handled by the same argument.
Observe that

∥Φn
t − Φn−1

t ∥L1(D) ≤
ˆ t

0

ˆ
D

|un(s,Φn
s (x))− un(s,Φn−1

s (x))| dxds (7.77)

+

ˆ t

0

ˆ
D

|un(s,Φn−1
s (x))− un−1(s,Φn−1

s (x))| dxds ≡ Im1 (t) + Im2 (t). (7.78)

By Corollary 7.5, we have that

In1 (t) ≤ C(D)∥ω0∥L∞

ˆ t

0

ˆ
D

ϕ(|Φn
s (x)− Φn−1

s (x)|) dx.

Since ϕ is concave on R+, we can apply Jensen’s inequality to obtain

1

|D|

ˆ
D

ϕ(|Φn
s (x)− Φn−1

s (x)|) dx ≤ ϕ

(
1

|D|

ˆ
D

|Φn
s (x)− Φn−1

s (x)| dx
)
.

Let us define

σn(t) =
1

|D|
∥Φn

t − Φn−1
t ∥L1(D).

Then

In1 (t) ≤ C(D, ∥ω0∥L∞)

ˆ t

0

ϕ(σn(s)) ds. (7.79)

Since Φn−1
t is a measure preserving mapping, we have

In2 (t) =

ˆ t

0

ˆ
D

|un(s, z)− un−1(s, z)| dzds.

Now

un(s, z) =

ˆ
D

KD(z, y)ω
n−1(y, s) dy =

ˆ
D

KD(z, y)ω0((Φ
n−1
s )−1) dy =

ˆ
D

KD(z,Φ
n−1
s (y′))ω0(y

′) dy′.

Therefore,
ˆ
D

|un(s, z)− un−1(s, z)| dz ≤ ∥ω0∥L∞

ˆ
D

ˆ
D

|KD(z,Φ
n−1
s (y))−KD(z,Φ

n−2
s (y))| dydz

≤ C(D)∥ω0∥L∞

ˆ
D

ϕ(|Φn−1
s (y)− Φn−2

s (y)|) dz.

Applying Jensen’s inequality again, we obtain

In2 (t) ≤ C(D)∥ω0∥L∞

ˆ t

0

ˆ
D

ϕ(|Φn−1
s (y)− Φn−2

s (y)|) dzds ≤ C(D, ∥ω0∥L∞)

ˆ t

0

ϕ(σn−1(s)) ds.
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Combining this last inequality with (7.77) and (7.79), we arrive at

σn(t) ≤ C(D, ∥ω0∥L∞)

ˆ t

0

(ϕ(σn(s)) + ϕ(σn−1(s)). (7.80)

Define
ρN(t) = [ supn≥Nσn(t).

Then by (7.80), for all n ≥ N,

σn(t) ≤ C(D, ∥ω0∥L∞)

ˆ t

0

(ϕ(ρN−1(s)) ds

and hence

ρN(t) ≤ C(D, ∥ω0∥L∞)

ˆ t

0

(ϕ(ρN−1(s)) ds.

We now arrived at an inequality similar to (10.13) and, similarly to the argument in the proof
of Lemma 7.6, we can show that σn(t) ≤ ρn(t) ≤ αN for some 1 > α > 0 for all t ∈ [0, T ] if
T > 0 is sufficiently small. This shows that Φn

t (x) is a Cauchy sequence in C([0, T ], L1(D)),
finishing the proof of the lemma. 2

We next upgrade the convergence of Φn
t (x) to Φt(x).

Lemma 7.16. The sequence Φn
t (x) converges to Φt(x) uniformly on C([−T, T ]× D̄) provided

that T > 0 is chosen sufficiently small. Moreover, the limiting map Φt(x) ∈ Cα(T )([−T, T ]×D̄)
for some α(T ) > 0 and is measure preserving.

Proof. As before, we focus on times t > 0. The value of T will be the same as in the
previous lemma. Observe that the estimate (7.55) implies that for every T > 0, we have

∥Φn
t (x)∥Cα(T )([0,T ]×D̄) ≤ C(D, ∥ω0∥L∞), (7.81)

for some α(T ) > 0, and with the norm bounded uniformly in n.
First, by the Arzela-Ascoli theorem, we can find a subsequence nj such that Φ

nj

t (x) conver-
gences to Φt(x) uniformly on [0, T ]×D̄. This implies that Φt(x) is continuous, and moreover a
simple argument shows that it inherits the Hölder bound (7.81). Notice that for every smooth
function f, we have

ˆ
D

f(Φt(y)) dy = lim
j→∞

ˆ
D

f(Φ
nj

t (y)) dy =

ˆ
D

f(y) dy. (7.82)

The last step follows since Φ
nj

t (x) are measure preserving, while the first step is not hard to
establish. Using (7.82), it is not hard to show that |Φt(I)| = |I| for every rectangle I lying in
D, and this implies that Φt(x) is measure preserving.

Exercise 7.17. Fill all the gaps in the previous paragraph.

Now suppose, on the contrary, that the uniform convergence of Φn
t (x) to Φt(x) does not

hold. Then we can find ϵ > 0 and the sequences nk → ∞, tk ∈ [−T, T ] and xk ∈ D̄ such that
|Φnk

tk
(xk) − Φtk(xk)| ≥ ϵ. By (7.81) and the fact that Φt(x) satisfies the same bound, we can

97



find r > 0 independent of k such that for all |x − xk| ≤ r, we have |Φnk
tk
(x) − Φtk(x)| ≥ ϵ/2.

But this contradicts the C([0, T ], L1(D)) convergence proved in Lemma 7.15. 2
One can ask why do we need to worry about convergence of the whole sequence Φn

t (x)
when we have convergence over a subsequence basically for free? Unfortunately, convergence
over a subsequence does not work well with the oterative scheme. Even if we have convergence
for Φnk

t (x), we know nothing about convergence of Φnk−1
t (x) but we would need exactly that

to establish the convergence of velocities that we address next.
The lower bound in (7.55) which applies to Φn

t uniformly is inherited by Φt(x) and im-
plies that Φt(x) is invertible. As Φ−1

t satisfies the same estimate (7.55), it also belongs
to Cα(T )([0, T ]× D̄). We may then define the corresponding vorticity

ω(t, x) = ω0(Φ
−1
t (x)),

and the fluid velocity

u(t, x) =

ˆ
D

KD(x, y)ω(t, y) dy.

Lemma 7.18. We have |u(t, x)− un(t, x)| → 0, as n→ ∞, uniformly in [−T, T ]× D̄.

Proof. Note that

|u(t, x)− un(t, x)| =
∣∣∣∣ˆ

D

(KD(x,Φt(z))−KD(x,Φ
n
t (z)))ω0(z) dz

∣∣∣∣ . (7.83)

Given ϵ > 0, choose N so that |Φt(x)−Φn
t (x)| < δ, for all n ≥ N and for all x ∈ D̄, t ∈ [0, T ],

with δ > 0 to be determined later. Pulling ∥ω0∥L∞ out of the integral in (7.83) and setting
z = Φ−1

t (p) we have

|u(t, x)− un(t, x)| ≤ ∥ω0∥L∞

ˆ
D

|KD(x, p)−KD(x, y(p))| dp. (7.84)

Note that the map y(p) = Φn
t ◦ Φ−1

t (p) is measure preserving, and

|y(p)− p| = |Φn
t (Φ

−1
t (p))− Φt(Φ

−1
t (p))| < δ,

for every p. As usual, we split the integral in (10.22) into two regions: in the first one we have
ˆ
B3δ(x)∩D

|KD(x, p)−KD(x, y(p))| dp ≤ 2C(D)

ˆ
B3δ(x)

dp

|x− p|
≤ 2C(D)δ,

while in the secondˆ
B3δ(x)c∩D

|KD(x, p)−KD(x, y(p))| dp ≤ C(D)δ

ˆ
B3δ(x)c∩D

|∇KD(x, q(p))| dp

≤ C(D)δ

ˆ
Bδ(x)c

dp

|x− p|2
≤ C(D)δ log δ−1. (7.85)

Here, q(p) is a point on a curve of length ≤ δ that connects p and y(p). If the interval
connecting these points lies in D̄ then this interval can be used as this curve. If not, one can
use an argument similar to that in the proof of Lemma 7.3. Thus choosing δ sufficiently small
we can make sure that the difference of the velocities does not exceed ϵ. 2
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Exercise 7.19. Fill in all the details in the last step in the proof of the Lemma. Alternatively,
you may first show that ωn converges to ω in C([−T, T ], Lp(D)) for all p ∈ [1,∞), and use
this and Hölder inequality to prove Lemma 7.18.

We are now ready to show that

d

dt
Φt(x) = u(t,Φt(x)).

Indeed, we have

Φn
t (x) = x+

ˆ t

0

un(s,Φn
s (x)) ds,

and, taking n→ ∞, using Lemma 7.18 and the definition of Φt(x), we obtain

Φt(x) = x+

ˆ t

0

u(s,Φs(x)) ds.

Thus, the limit triple (ω(t, x), u(t, x),Φt(x)) satisfies the Euler equations in our generalized
sense, completing the proof of the existence of solutions.

7.5 Existence and uniqueness of the solutions

Let us now finally state the main result on the existence and uniqueness of solutions of the two-
dimensional Euler equations with ω0 ∈ L∞. The existence part of this theorem summarizes
what has been proved above using the approximation scheme.

Theorem 7.20. Fix any ω0 ∈ L∞(D). There exists a unique triple (ω(t, x), u(t, x),Φt(x))
such that for every T > 0 the vorticity ω ∈ L∞([0, T ], L∞(D)) and is weak-∗ continuous in
time in L∞, the fluid velocity u(t, x) is uniformly bounded and log-Lipschitz in x and t, and
Φt ∈ Cα(T )([0, T ]× D̄) is a measure preserving, invertible mapping of D̄, satisfying

dΦt(x)

dt
= u(t,Φt(x)), Φ0(x) = x, (7.86)

ω(t, x) = ω0(Φ
−1
t (x)),

u(t, x) =

ˆ
D

KD(x, y)ω(t, y) dy.

Here α(T ) > 0 and only depends on ∥ω0∥L∞ .

Proof of Theorem 7.20. We have already established existence and regularity estimates
with an exception of weak-∗ continuity. This property is key as it gives meaning to the initial
value problem: ω(t, x) converges to ω0(x) in L

∞ as t→ 0 in the weak-∗ sense, that is for any
test function η ∈ L1(D) we have

ˆ
D

ω(t, x)η(x)dx =

ˆ
D

ω0(Φ
−1
t (x))η(x)dx =

ˆ
D

ω0(x)η(Φt(x))dx→
ˆ
D

ω0(x)η(x)dx, (7.87)
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as t→ 0. Indeed, as ω is uniformly bounded in L∞(D), it suffices to check (10.17) for smooth
functions η, for which we haveˆ

D

|η(Φt(x))− η(x)|dx ≤ ∥∇η∥L∞

ˆ
D

|Φt(x)− x|dx ≤ C(D)∥∇η∥L∞∥u∥L∞t.

A similar argument works at any time t > 0. Note also that while we only proved existence of
solutions on a small interval [−T, T ], the solution can be extended globally by iterating the
construction as the time step only depends on D and ∥ω0∥L∞ .

It remains only to prove the uniqueness. Suppose that there are two solution triples (ω1, u1,Φ1
t )

and (ω2, u2,Φ2
t ) satisfying the properties described in Theorem 7.20, and set

η(t) =
1

|D|

ˆ
D

|Φ1
t (x)− Φ2

t (x)| dx.

Let us write

|Φ1
t (x)− Φ2

t (x)| ≤
ˆ t

0

|u1(s,Φ1
s(x))− u1(s,Φ2

s(x))| ds+
ˆ t

0

|u1(s,Φ2
s(x))− u2(s,Φ2

s(x))| ds.

(7.88)
By Corollary 7.5, the first integral in the right side of (7.88) can be bounded by

C∥ω0∥L∞

ˆ t

0

ϕ(|Φ1
s(x)− Φ2

s(x)|) ds.

For the second integral in (7.88), consider the difference

u1(s,Φ2
s(x))− u2(s,Φ2

s(x)) =

ˆ
D

KD(Φ
2
s(x), y)ω

1(s, y) dy −
ˆ
D

KD(Φ
2
s(x), y)ω

2(s, y) dy

=

ˆ
D

(
KD(Φ

2
s(x),Φ

1
s(y))−KD(Φ

2
s(x),Φ

2
s(y))

)
ω0(y) dy,

where we used the vorticity evolution formula in (7.86). Averaging (7.88) in x, we now obtain

η(t) ≤ C∥ω0∥L∞

|D|

ˆ t

0

ds

ˆ
D

ϕ(|Φ1
s(x)− Φ2

s(x)|) dx

+
C

|D|

ˆ t

0

ds

ˆ
D

|ω0(y)|
ˆ
D

|KD(x,Φ
1
s(y))−KD(x,Φ

2
s(y))| dxdy

≤ C(D)∥ω0∥L∞

ˆ t

0

ds

ˆ
D

ϕ(|Φ1
s(x)− Φ2

s(x)|)
dx

|D|
. (7.89)

We used Lemma 7.3 in the last step. As the function ϕ is concave, we may use Jensen’s
inequality to exchange ϕ and averaging in the last expression in (10.56):

η(t) ≤ C(D)∥ω0∥L∞

ˆ t

0

ϕ(η(s)) ds.

In addition, we have η(0) = 0. An argument very similar to the proof of uniqueness in
Lemma 7.6 (based on the log-Lipschitz property of the function ϕ) can be now used to prove
that η(t) = 0 for all t ≥ 0.

Exercise 7.21. Work out the details of this argument.

This completes the proof of the theorem. 2
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Regularity of the solutions for regular initial data

So far, we have only assumed that ω0 ∈ L∞. Of course, the Yudovich construction also applies
if the initial condition ω0 possesses additional regularity. In that case, the solution ω(t, x)
inherits this extra regularity. This is expressed by the following theorem.

Theorem 7.22. Suppose that ω0 ∈ Ck(D̄), k ≥ 1. Then the solution described in Theo-
rem 7.20, satisfies, in addition, the following regularity properties, for each t ≥ 0:

ω(t) ∈ Ck(D̄), Φt(x) ∈ Ck,α(t)(D̄), and u ∈ Ck,β(D̄),

for all β < 1. In addition, the kth order derivatives of u are log-Lipschitz.

The regularity of the flow u(t, x) is similar in spirit to that in Theorem 7.20 – there, L∞

initial data for vorticity led to log-Lipschitz u(t, x). Here, Ck initial condition ω0(x) leads to
a flow u(t, x) which has a log Lipschitz derivative of the order k. The first proof of a result
similar to Theorem 7.22 goes back to the work of Wolibner and of Hölder in the early 1930s.
We will provide a detailed argument for the case of k = 1, larger values of k will be left as
an exercise for the reader. We will need the following elliptic regularity result of the kind we
have seen many times in Chapter ??.

Theorem 7.23. Suppose that D is a domain in Rd with smooth boundary, and let ψ be the
solution of the Dirichlet problem

−∆ψ = ω,

ψ|∂D = 0.

If ω ∈ Cα(D̄), α > 0, then ψ ∈ C2,α(D̄), and

∥∂iψ∥C1,α ≤ C(α,D)∥ω∥Cα.

This result was originally proved by Kellogg in 1931. Schauder later established a similar
bound for more general elliptic operators. Such estimates are commonly called the Schauder
estimates. We have not quite proved this particular estimate in Chapter ?? since it applies to
a bounded domain. The reader should either treat it as a refresher exercise on the methods on
Chapter ??, or consult [?, ?] for the proof. We will use this estimate for the stream function

ψ(t, x) = (−∆D)
−1ω, u(t, x) = ∇⊥ψ(t, x).

We have already proved that if ω0 ∈ L∞(D̄) then Φ−1
t (x) ∈ Cα(t)(D̄) for all t ≥ 0,

with α(t) = e−Ct. Since
ω(t, x) = ω0(Φ

−1
t (x)),

if in addition we know that ω0 ∈ C1(D̄), we then automatically have ω(t, x) ∈ Cα(t)(D̄) so that
the vorticity is Hölder continuous. By Theorem 7.23, we deduce that the flow u(t, x) has a
Hölder continuous derivative: u(t, x) ∈ C1,α(t)(D̄). However, this a priori Hölder exponent α(t)
decreases as t grows, while we are looking to prove that u(t, x) ∈ C1,β(D̄), for all β ∈ (0, 1),
hence this a priori information is not sufficient.
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A simple calculation starting with the trajectories equation leads to

d

dt
|Φt(x)− Φt(y)|2 ≤ 2∥∇u(t, ·)∥L∞|Φt(x)− Φt(y)|2, (7.90)

where we now know that the derivatives of u are bounded for all t, even though their size
may grow with time. Integrating (7.90) in time and using the initial condition

|Φ0(x)− Φ0(y)| = |x− y|,

we obtain

exp
{
−
ˆ t

0

∥∇u(s, ·)∥L∞ ds
}
≤ |Φt(x)− Φt(y)|

|x− y|
≤ exp

{ˆ t

0

∥∇u(s, ·)∥L∞ ds
}
. (7.91)

This inequality will be useful for us later. For now, we observe that it implies that Φt(x)
is Lipschitz for every t ≥ 0. We would like to show that, in fact, Φt(x) ∈ C1,α(t)(D̄) for
all t ≥ 0. For this purpose we need a couple of technical lemmas. In what follows, we adopt
the summation convention: we sum over repeated indexes.

Lemma 7.24. There exists a set S ⊆ D of full measure so that for all x ∈ S we have

∂jΦ
k
t (x) = δjk +

ˆ t

0

∂lu
k(s,Φs(x))∂jΦ

l
s(x) ds, (7.92)

for all t ≥ 0.

Proof. By the Rademacher theorem (see, e.g. [?]), it follows from (7.91) that Φt(x) is
differentiable in x a.e. in D̄, for each t fixed. Next, note that by the Fubini theorem, it follows
that for a.e. x, Φt(x) is differentiable in x for a.e. t. We let S be the set of such x.

Let now x ∈ S, set
y = x+ ej∆x,

where ej is a unit vector in jth direction, and consider the finite differences

Φk
t (y)− Φk

t (x)

∆x
= δjk +

ˆ t

0

uk(s,Φs(y))− uk(s,Φs(x))

∆x
ds. (7.93)

We may write, explicitly listing the coordinates

uk(s,Φs(y))− uk(s,Φs(x))

∆x
=
uk(s,Φ1

s(y),Φ
2
s(y))− uk(s,Φ1

s(x),Φ
2
s(y))

Φ1
s(y)− Φ1

s(x)

Φ1
s(y)− Φ1

s(x)

∆x

+
uk(s,Φ1

s(x),Φ
2
s(y))− uk(s,Φ1

s(x),Φ
2
s(x))

Φ2
s(y)− Φ2

s(x)

Φ2
s(y)− Φ2

s(x)

∆x
.

Since u ∈ C1,α(D̄), it is not difficult to show, using the mean value theorem, that the
first factors in the two products in the right side converge, as ∆x → 0, uniformly in x,
to ∂lu

k(s,Φs(x)), l = 1, 2 respectively. On the other hand, the ratios

Φl
s(y)− Φl

s(x)

∆x
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are controlled in L∞ by the Lipschitz estimate (7.91). Moreover, for x ∈ S, the ratio converges
to ∂jΦ

l
s(x) for a.e. s ∈ [0, t]. By the Lebesgue dominated convergence theorem, we have the

convergence of the integral in (7.93) to the integral in (7.92). 2
Now, for x, y ∈ S we find from (7.92) that

∂t∂jΦ
k
t (x) = ∂lu

k(t,Φt(x))∂jΦ
l
t(x)

for all t, and similarly for y. Without loss of generality, we may confine our considerations
to x, y such that |x− y| ≤ 1. Consider the expression

∂t(∂jΦ
k
t (x)− ∂jΦ

k
t (y)) = (∂lu

k(t,Φt(x))− ∂lu
k(t,Φt(y)))∂jΦ

l
t(x)

+ ∂lu
k(t,Φt(y))(∂jΦ

l
t(x)− ∂jΦ

l
t(y)).

It follows that

∂t|∂jΦk
t (x)− ∂jΦ

k
t (y)| ≤ ∥Φt∥Lip∥∇u∥Cα(t) |Φt(x)− Φt(y)|α(t) + ∥∇u∥L∞|∂jΦl

t(x)− ∂jΦ
l
t(y)|,

where we denote by ∥Φt∥Lip the Lipschitz bound we have on Φt(x) in x for a given t. Let us
denote

F (t) =
∑
k,j

|∂jΦk
t (x)− ∂jΦ

k
t (y)|.

Then we get
Ḟ (t) ≤ ∥∇u(·, t)∥L∞F (t) + |x− y|α(t)∥Φt∥2Lip∥∇u∥Cα(t) .

This inequality holds for every t > 0 with the corresponding value of α(t). Fix an arbitrary
time interval [0, T ]. By applying the Gronwall inequality, we conclude that for all x, y ∈ S
and all t ∈ [0, T ] we have

|∂jΦk
t (x)− ∂jΦ

k
t (y)| ≤ C(∥ω0∥C1 , T )|x− y|α(T ). (7.94)

Note that the dependence of the constant in (7.94) on T can be pretty complex – it is controlled
by the size of norms that we showed to be finite for every time but never traced their growth.
We will obtain a more clear cut, quantitative bound on the possible growth later.

Now we need one more elementary lemma.

Lemma 7.25. Suppose that f : D̄ ⊂ Rd 7→ R is Lipschitz. Suppose there exists a set of full
measure S such that ∇f(x) exists for x ∈ S, and moreover for every x, y ∈ S we have

|∇f(x)−∇f(y)| ≤ C|x− y|γ (7.95)

for some fixed constant C and 0 < γ < 1. Then f ∈ C1,γ(D̄).

Proof. Since S is full measure, we can extend ∇f by continuity to a function g =
(g1, . . . , gd) defined on all D̄. Namely, we set g(x) = ∇f(x) if x ∈ S. If x /∈ S, then we take
any sequence xn ∈ S → x, and define g(x) = limn→∞∇f(xn). Note that the sequence ∇f(xn)
is Cauchy due to (7.95), so the limit is well-defined. It is also straightforward to check that
the definition is unambiguous (different sequences in S lead to the same limit), and that the
resulting function g ∈ Cγ(D̄). It remains to show that in fact f is everywhere differentiable
and ∇f(x) ≡ g(x).
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Without loss of generality, let us consider ∂1f. Let x = (x1, x̃) ∈ D, where x̃ = (x2, . . . , xd);
the case x ∈ ∂D is similar. Given x1, let us denote the set of x̃ such that (x1, x̃) ∈ D by
F. Suppose first that x̃ is such that ∇f(y1, x̃) exists for a.e. y1 such that (y1, x̃) ∈ D. We
know that a.e. x̃ ∈ F is like that, and we denote this set by G. We also know that if x̃ ∈ G,
then ∇f(y1, x̃) = g(y1, x̃) for those a.e. y1 where it exists. Then for every (y1, x̃) ∈ D and
sufficiently close to (x1, x̃), we have

f(y1, x̃) = f(x1, x̃) +

ˆ y1

x1

∂1f(z1, x̃) dz1 = f(x1, x̃) +

ˆ y1

x1

g1(z1, x̃) dz1.

But this implies that ∂1f(x1, x̃) exists and is equal to g(x1, x̃). Assume now that x̃ belongs to
the exceptional measure zero set F \G where ∇f(y1, x̃) fails to exist for a set of y1 of positive
measure. But then we can find x̃n ∈ G such that x̃n → x̃ as n→ ∞. For each x̃n, we have

f(y1, x̃n) = f(x1, x̃n) +

ˆ y1

x1

g1(z1, x̃n) dz1

for all y1 close enough to x1. Passing to the limit in this equality, we find

f(y1, x̃) = f(x1, x̃) +

ˆ y1

x1

g1(z1, x̃) dz1.

This implies that ∂1f(x1, x̃) exists and is equal to g1(x1, x̃) in this case, too. 2

Exercise 7.26. Work out the details of the above argument in the case of (x1, x̃) ∈ ∂D.

We conclude that the following lemma holds.

Lemma 7.27. For every t ≥ 0, the function ∂jΦ
k
t (x) belongs to Cα(t)(D̄) and (7.92) holds

for all x, t.

Now, the proof of Theorem 7.22 in the case k = 1 is straightforward.
Proof. Indeed, since Φt(x) is measure preserving, we have

det∇Φt = 1,

and then the derivatives of the inverse map Φ−1
t (x) in x satisfy the bounds analogous to those

of Φt. Then, Lemma 7.27 implies immediately that

ω(t, x) = ω0(Φ
−1
t (x))

is C1(D̄) for all times. 2

Exercise 7.28. Carry out the analogous computations for k > 1, proving Theorem 7.22 in
this case.
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8 Vortex lines and geometric conditions for blow-up

The vorticity growth equation

Here, we investigate how vorticity alignment in the regions of high vorticity can prevent blow-
up in the Navier-Stokes and Euler equations. First, we obtain an equation for the magnitude
of vorticity |ω| that shows that it is plausible that the vorticity alignment in the regions of
high vorticity may prevent the growth of vorticity. Recall that the vorticity of the solutions
of the Navier-Stokes equations satisfies the evolution equation

ωt + u · ∇ω − ν∆ω = ω · ∇u (8.1)

Multiplying by 2ω, we obtain

∂t(|ω|2) + u · ∇(|ω|2)− ν∆|ω|2 + 2ν|∇ω|2 = 2(ω · ∇u) · ω. (8.2)

The right side can be written as

2(ω · ∇u) · ω = 2ωj(∂juk)ωk = 2(Sω · ω) = 2α(x)|ω|2,

with

α(x) = (S(x)ξ(x) · ξ(x)), ξ(x) =
ω(x)

|ω(x)|
, (8.3)

and

S(x) =
1

2

(
∇u+ (∇u)t

)
. (8.4)

When ν = 0 we get a particularly simple form of the vortex stretching balance for the Euler
equations:

∂t|ω|+ u · ∇|ω| = α(t, x)|ω|. (8.5)

Thus, the vorticity growth may only appear from α(x) large. Our next task is to express α(x)
in terms of the vorticity alignment. We start with the Biot-Savart law

u(x) =
1

4π

ˆ
R3

y

|y|3
× ω(x+ y)dy. (8.6)

Let us recall that

∂uk(x)

∂xj
= lim

ε→0

ˆ
|y|≥ε

Kkm(y)∂jωm(x+ y)dy (8.7)

= − lim
ε→0

ˆ
|y|=ε

Kkm(y)ωm(x+ y)
yj
|y|
dy − lim

ε→0

ˆ
|y|≥ε

[∂jKkm(y)]ωm(x+ y)dy = Akj +Bkj.

The term Akj can be simplified as

Akj = − lim
ε→0

ˆ
|y|=ε

Kkm(y)ωm(x+ y)
yj
|y|
dy = − lim

ε→0

1

4π

ˆ
|y|=ε

1

|y|3
[y × ω(x+ y)]k

yj
|y|
dy

= − lim
ε→0

1

4π

ˆ
|z|=1

1

ε3|z|3
[εz × ω(x+ εz)]k

zj
|z|
ε2dz = − 1

4π

ˆ
|z|=1

[z × ω(x)]kzjdz

= − 1

4π
ϵkmn

ˆ
|z|=1

zmωn(x)zjdz = −ϵkmn

3
ωn(x)δmj = −1

3
ϵkjnωn(x), (8.8)
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and B can be written as

Bkj = lim
ε→0

ˆ
|y|≥ε

[ 3ϵkrm
4π|y|5

yjyr −
ϵkjm
4π|y|3

]
ωm(x+ y)dy.

Multiplying (8.7) by ϵijk and summing over j, k, leads now to an integral equation for the
vorticity:

ωi(x) = ϵijk∂juk = ϵijkAkj + ϵijkBkj = −1

3
ϵijkϵkjnωn (8.9)

+ lim
ε→0

ˆ
|y|≥ε

ϵijk

[ 3ϵkrm
4π|y|5

yjyr +
ϵkmj

4π|y|3
]
ωm(x+ y)dy.

The first term above can be re-written as

−ϵijkϵkjnωn = ϵijkϵnjkωn = 2ωi.

In the second term, we use the identities

ϵijkϵkrmyjyrωm = ϵkijϵkrmyjyrωm = [δirδjm − δimδjr]yjyrωm = yi(y · ω)− |y|2ωi,

and
ϵijkϵkmjωm = ϵkijϵkmjωm = 2ωi

Using these transformations in (8.9), gives

1

3
ωi(x) = lim

ε→0

ˆ
|y|≥ε

[ 3

4π|y|5
[yi(y · ω(x+ y))− |y|2ωi(x+ y)] +

2ωi(x+ y)

4π|y|3
]
dy.

so that

ω(x) =
3

4π
lim
ε→0

ˆ
|y|≥ε

σ(ŷ)ω(x+ y)
dy

|y|3
(8.10)

with the matrix σ(ŷ), ŷ = y/|y|, defined as

σ(ŷ) = 3(ŷ ⊗ ŷ)− I. (8.11)

Similarly, we may compute the symmetric part of ∇u:

S(x) =
1

2

(
∇u+ (∇u)t

)
.

We have

Skj =
1

2
(Akj + Ajk) +

1

2
(Bkj +Bjk).

It is easy to see that the matrix Akj is anti-symmetric, thus

Akj + Ajk = 0.
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For the symmetric part of the matrix B we compute

Bkj +Bjk = lim
ε→0

ˆ
|y|≥ε

[ 3ϵkrm
4π|y|5

yjyr +
3ϵjrm
4π|y|5

ykyr −
ϵkjm
4π|y|3

− ϵjkm
4π|y|3

]
ωm(x+ y)dy

=
3

4π
lim
ε→0

ˆ
|y|≥ε

[
ϵkrmŷj ŷr + ϵjrmŷkŷr

]
ωm(x+ y)

dy

|y|3
.

We conclude that

S(x) =
3

4π
P.V.

ˆ
M(ŷ, ω(x+ y))

dy

|y|3
, (8.12)

with the matrix-valued function

M(ŷ, ω) =
1

2

[
(ŷ × ω)⊗ ŷ + ŷ ⊗ (ŷ × ω)

]
. (8.13)

Going back to (8.3), we get the following expression for the vorticity stretching coefficient α(x):

α(x) = (S(x)ξ(x) · ξ(x)) = 3

4π
P.V.

ˆ
(M(ŷ, ω(x+ y))ξ(x) · ξ(x)) dy

|y|3
. (8.14)

The integrand can be re-written as

M(ŷ, ω(x+ y))ξ(x) · ξ(x)) = 1

2

[
(ŷ × ω(x+ y))⊗ ŷ + ŷ ⊗ (ŷ × ω(x+ y))

]
ξ(x) · ξ(x)

= (ŷ × ω(x+ y) · ξ(x))(ŷ · ξ(x)) = D(ŷ, ξ(x+ y), ξ(x))|ω(x+ y)|,

thus

α(x) = (S(x)ξ(x) · ξ(x)) = 3

4π
P.V.

ˆ
D(ŷ, ξ(x+ y), ξ(x))|ω(x+ y)| dy

|y|3
. (8.15)

Here, we have defined, for three unit vectors e1, e2 and e3:

D(e1, e2, e3) = (e1 · e3)Det(e1, e2, e3).

Geometrically, it follows that the regions where ξ(x + y) is aligned with ξ(x) contribute less
to α(x). This applies also to the antiparallel vortex pairing, which is a physically observed
phenomenon. That is, we expect that if the vorticity direction field is aligned or anti-aligned
in the regions of high vorticity, the blow-up might be prevented by the vorticity alignment,
though this requires a careful analysis which we will undertake next.

A priori bounds on the strain matrix

Let us first obtain some bounds on the strain matrix in terms of ω that we will need later.
We have, from (8.12)-(8.13):

Skj(x) =
3

8π
P.V.

ˆ [
ϵkrmŷj ŷr + ϵjrmŷkŷr

]
ωm(x+ y)

dy

|y|3
=

3

8π
P.V.

ˆ
Rkjm(y)ωm(x+ y)dy,

(8.16)
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with the kernel

Rkjm(y) =
1

|y|3
[
ϵkrmŷj ŷr + ϵjrmŷkŷr

]
.

This kernel is of the singular integral type we have seen before in the Beale-Kato-Majda
criterion: it is homogeneous of degree (−n) (the dimension n = 3), in the sense that

Rkjm(λy) = λ−3Rkmj(y), (8.17)

and its integral over any sphere centered at y = 0 vanishes:

ˆ
|y|=1

Rkjm(y)dy =
1

3
[ϵkrmδjr + ϵjrmδkr] =

1

3
[ϵkjm + ϵjkm] = 0. (8.18)

Let us show that (8.17) and (8.18) imply that the Fourier transform R̂kjm(ξ) is uniformly
bounded:

|R̂kjm(ξ)| ≤ C. (8.19)

Indeed, let us write

Rkjm(y) =
1

|y|3
Φ(ŷ),

ˆ
|y|=1

Φ(y)dy = 0.

As Rkjm(y) is homogeneous of degree (−n) (in dimension n = 3), its Fourier transform is
homogeneous of degree zero. Then we have:

R̂kjm(ξ) = lim
ε,δ→0

ˆ 1/δ

ε

ˆ
S2

1

r3
e2πir(ξ·ŷ)Φ(ŷ)r2drdŷ = lim

ε→0

ˆ 1

ε

ˆ
S2

[
cos(2πr(ξ · ŷ))− 1

]
Φ(ŷ)

drdŷ

r

+ lim
δ→0

ˆ 1/δ

1

ˆ
S2
cos(2πr(ξ · ŷ))Φ(ŷ)drdŷ

r
+ i lim

ε,δ→0

ˆ 1/δ

ε

ˆ
S2
sin(2πr(ξ · ŷ))Φ(ŷ)drdŷ

r

= A1 + A2 + A3. (8.20)

We used the mean-zero property of Φ(ŷ) in the second equality above. For A3, we may write

A3(ξ) = i lim
ε,δ→0

ˆ
S2
Φ(ŷ)

ˆ 1/δ

ε

sin(2πr(ξ · ŷ))drdŷ
r

= i lim
ε,δ→0

ˆ
S2
Φ(ŷ)sgn(ξ · ŷ)

( ˆ 2π|ξ·ŷ|/δ

2π|ξ·ŷ|ε

sin rdr

r

)
dŷ.

Recall that there exists a constant C0 > 0 so that for any a, b > 0 we have∣∣∣ˆ b

a

sin rdr

r

∣∣∣ ≤ C0,
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hence |A3(ξ)| ≤ C. For A1 + A2, we have

A1(ξ) + A2(ξ) = lim
ε→0

ˆ
S2
Φ(ŷ)

[ ˆ 1/ε

ε

[cos(2πr(ξ · ŷ))− 1]
dr

r

]
dŷ

= lim
ε→0

ˆ
S2
Φ(ŷ)

[ ˆ 2π|ξ·ŷ|/ε

2π|ξ·ŷ|ε
[cos(r)− 1]

dr

r

]
dŷ =

ˆ
S2
Φ(ŷ)

[ ˆ 1

0

(cos r − 1)
dr

r
+

ˆ ∞

1

cos rdr

r

]
dŷ

− lim
ε→0

ˆ
S2
Φ(ŷ)

[ ˆ 2π|ξ·ŷ|/ε

1

dr

r

]
dŷ =

ˆ
S2
Φ(ŷ)

[ ˆ 1

0

(cos r − 1)
dr

r
+

ˆ ∞

1

cos rdr

r

]
dŷ

− lim
ε→0

ˆ
S2
Φ(ŷ) log(2π|ξ · ŷ|/ε)dŷ

=

ˆ
S2
Φ(ŷ)

[ ˆ 1

0

(cos r − 1)
dr

r
+

ˆ ∞

1

cos rdr

r

]
dŷ −

ˆ
S2
Φ(ŷ) log(|ξ̂ · ŷ|)dŷ. (8.21)

We used the mean-zero property of Φ(ŷ) in the last step. In particular, it allowed us to
replace ξ by ξ̂ under the logarithm sign. Now, the first integral in the last line in (8.21)
does not depend on ξ and is, therefore, uniformly bounded. The second is also bounded,
by an application of the Cauchy-Schwartz inequality on S2. We conclude that the uniform
bound (8.19) holds. It follows immediately that the strain matrix satisfies an L2-bound

∥S∥L2 ≤ C∥ω∥L2 , (8.22)

a bound we have already seen before.

The regularized system

We will follow the paper by P. Constatin and C Fefferman for the analysis of the vorticity
alignment for the Navier-Stokes equations. A similar issue for the Euler equations has been
studied in their joint paper with A. Majda. We will start with a regularized Navier-Stokes
system, obtained by smoothing the advecting velocity:

ut + (ϕδ ∗ u) · ∇u+∇p = ν∆u, t > 0, x ∈ Rn (8.23)

∇ · u = 0,

u(0, x) = u0(x).

The convolution is performed in space only:

uδ(t, x) = ϕδ ∗ u(t, x) =
ˆ
ϕδ(x− y)u(t, y)dy,

and the kernel ϕδ has the form

ϕδ(x) =
1

δ3
ϕ
(x
δ

)
,

with a smooth compactly supported function ϕ(x) ≥ 0 with ∥ϕ∥L1 = 1. Note that uδ is also
divergence-free: ∇ · uδ = 0. Let us explain why the regularized system (8.23) has a strong
solution, which is smooth if u0 ∈ C∞

c (R3). Of course, the easy bounds on u(t, x) will blow-up
as δ → 0. We argue as in the estimate for the evolution of the Hm-norms in the proof of

109



the Beale-Kato-Majda criterion. First, multiplying (8.23) by u and integrating by parts we
deduce that ˆ

R3

|u(t, x)|2dx+ ν

ˆ t

0

ˆ
|∇u(s, x)|2dxds =

ˆ
R3

|u0(x)|2dx, (8.24)

hence
∥u(t)∥L2 ≤ ∥u0∥L2 . (8.25)

It follows from the definition of uδ that

∥uδ(t)∥Ck ≤ Ck(δ), (8.26)

with the constants Ck(δ) that may blow-up as δ → 0. Next, multiplying (8.23) by (−∆)mu
and integrating by parts we obtain

1

2

d

dt
∥(−∆)m/2u∥2H + ν∥(−∆)(m+1)/2u∥2H = ((−∆)m/2(uδ · ∇u), (−∆)m/2u). (8.27)

As before, the leading order term in the right side vanishes:

((uδ · ∇(−∆)m/2u), (−∆)m/2u) = 0,

because ∇ · uδ = 0. Hence, using (8.26), the right side in (8.27) can be estimated by

Cm∥Dmu∥2
3∑

i,j=1

m∑
k=1

∥Dkuδ,j∥L∞∥D(m+1−k)ui∥L2 ≤ C(δ)∥u∥2Hm . (8.28)

Summing over m, we conclude that for any s ∈ N we have

d

dt
∥u∥Hs ≤ Cs(δ)∥u∥Hs . (8.29)

Therefore, if u0 ∈ C∞
c (R3), then u(t) remains in all Hm(R3) for all t > 0. Of course, the

Sobolev norms of u(t) may blow-up as δ → 0.

Vorticity alignment prevents blow-up

We will now show that if the direction of the vorticity of the solutions of the regularized
system (8.23) is sufficiently aligned then solutions of the Navier-Stokes system itself remain
regular. Let us introduce some notation: given a vector e we denote by P⊥

e the projection
orthogonal to e,

P⊥
e v = v − (v · e)e.

We will denote by u(t, x) the solution of the regularized system (8.23), let ω(t, x) = ∇×u(t, x)
be its vorticity and ξ(t, x) = ω(t, x)/|ω(t, x)|, while v(t, x) will be the solution of the true
Navier-Stokes equations

vt + v · ∇v +∇p = ν∆v, t > 0, x ∈ Rn (8.30)

∇ · v = 0,

v(0, x) = u0(x).

110



Theorem 8.1. Assume that there exists δ0, Ω > 0 and ρ > 0 so that for all δ ∈ (0, δ0) the
solution u(t, x) of the regularized system (8.23) satisfies∣∣∣P⊥

ξ(t,x)(ξ(t, x+ y))
∣∣∣ ≤ |y|

ρ
, (8.31)

for all x, y ∈ R3 and 0 ≤ t ≤ T , such that |ω(t, x)| > Ω and |ω(t, x+y) > Ω. Then the Navier-
Stokes equations (8.30) have a strong, and hence C∞-solution on the time interval 0 ≤ t ≤ T .

The strategy will be to get a priori bounds on u(t, x) that do not depend on δ and then
pass to the limit δ → 0. The passage ot the limit is very similar to what we have seen before,
so we focus on the a priori bounds that follow from assumption (8.30).

The a priori bounds for the regularized system

We first get a priori bounds for the regularized system that require no assumptions on the
direction of the vorticity and, in particular, are independent of (8.31). Let us set ω0 = ∇×u0
and

Q =

ˆ
R3

|ω0(x)|dx+
25

ν

ˆ
R3

|u0(x)|2dx.

We have then the following bounds, uniform in δ > 0.

Lemma 8.2. The following two bounds hold:

ˆ
R3

|ω(t, x)|dx+ ν

ˆ t

0

ˆ
{x:|ω(s,x)|>0}

|ω(s, x)|∇ξ(s, x)|2dxds ≤ Q, (8.32)

for all 0 ≤ t ≤ T , and for any Ω > 0 we have

ˆ T

0

ˆ
{x:|ω(s,x)|>Ω}

|∇ξ(s, x)|2dxds ≤ Q

νΩ
. (8.33)

Proof. Let us derive the equation for ω(t, x): this derivation follows that for the true
Navier-Stokes equations but the vorticity equation in the presence of the regularization is
not identical to that of the Navier-Stokes equations. The advection term in the regularized
Navier-Stokes equations can be written as

uδ · ∇u = u · ∇u+ (uδ − u) · ∇u = u · ∇u− vδ · ∇u, (8.34)

with
vδ = u− uδ.

Recall that

(ω × u)i = εijkωjuk = εijkεjmn(∂mun)uk = (δinδkm − δimδkn)(∂mun)uk

= (∂kui)uk − (∂iuk)uk. (8.35)

We used above the identity
εjikεjmn = δimδkn − δinδkm (8.36)
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and anti-symmetry of εijk. Thus, as we have previously seen, the advection term can be
written as

u · ∇u = ω × u+∇
( |u|2

2

)
. (8.37)

Recall also the formula

∇× (a× b) = −a · ∇b+ b · ∇a+ a(∇ · b)− b(∇ · a), (8.38)

which now gives
∇× (u · ∇u) = ∇× (ω × u) = −ω · ∇u+ u · ∇ω. (8.39)

We also had an observation that

ω · ∇u = V (t, x)ω, Vij =
∂ui
∂xj

. (8.40)

The matrix V can be split into its symmetric and anti-symmetric parts:

V = S + P, S =
1

2
(V + V T ), P =

1

2
(V − V T ), (8.41)

The anti-symmetric part has the form

Pijhj =
1

2
[∂jui − ∂iuj]hj =

1

2
∂muk[δikδjm − δimδjk]hj =

1

2
εlijεlkm(∂muk)hj

= −1

2
εlijεlmk(∂muk)hj = −1

2
εlijωlhj =

1

2
εiljωlhj =

1

2
[ω × h]i, (8.42)

for any h ∈ R3. In other words, P satisfies

Ph =
1

2
ω × h, (8.43)

and thus has an explicit form

P =
1

2

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (8.44)

As a consequence, we have Pω = 0, thus V ω = Sω, so that

∇× (u · ∇u) = u · ∇ω − Sω. (8.45)

This is, of course, identical to what we have obtained for the true Navier-Stokes equations.
For the term in (8.34), which involves vδ and comes from the regularization, we write

[∇× (vδ · ∇u)]i = εijk∂j[vδ,m∂muk] = vδ,m∂m[εijk∂juk] + εijk(∂jvδ,m)(∂muk) (8.46)

= vδ · ∇ωi + εijk(∂jvδ,m)(∂muk)

Thus, we have

∇× (uδ ·∇u) = u ·∇ω−Sω−vδ ·∇ω+(∇u)⊙ (∇vδ) = uδ ·∇ω−Sω+(∇u)⊙ (∇vδ). (8.47)
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Here, we have introduced the following notation: given two matrices a and b, the vector a⊙ b
has the entries

(a⊙ b)i = εijkakmbmj. (8.48)

Thus, the vorticity satisfies the evolution equation

ωt + uδ · ∇ω − ν∆ω = Sω − (∇u)⊙ (∇vδ). (8.49)

Once again, we stress that the second term in the right side comes from the regularization.
Note that the vector ξ(t, x) = ω(t, x)/|ω(t, x)| satisfies |ξ|2 = 1, which implies

ξ · ξt = 0, ξj∂kξj = 0, for all 1 ≤ k ≤ 3, (8.50)

leading to
(∂kξj)(∂kξj) + ξj∆ξj = 0, (8.51)

Multiplying (8.49) by ξ(t, x), and using (8.50)-(8.51), we get in the left side

ξ · (ωt + uδ · ∇ω − ν∆ω) = ξ · (|ω|ξt + ξ|ω|t + |ω|(uδ · ∇)ξ + ξ(uδ · ∇|ω|))
−ν(ξ · ξ)∆|ω| − ν(ξ ·∆ξ)|ω| − 2νξk∂jξk∂j|ω| = |ω|t + uδ · ∇|ω| − ν∆|ω| − ν|ω|(ξ ·∆ξ)
= |ω|t + uδ · ∇|ω| − ν∆|ω|+ ν|ω||∇ξ|2.

We deduce an evolution equation for |ω(t, x)| in the region where ω(t, x) ̸= 0:

∂|ω|
∂t

+ uδ · ∇|ω| − ν∆|ω|+ ν|ω||∇ξ|2 = ξ · (Sω − (∇u)⊙ (∇vδ)). (8.52)

Let now f(z) be a C2-function of a scalar variable z which vanishes in a neighborhood of z = 0.
Multiplying (8.52) by f ′(|ω|) and integrating gives

d

dt

ˆ
R3

f(|ω|)dx+ ν

ˆ
R3

f ′′(|ω|)|∇|ω||2dx+ ν

ˆ
R3

|ω|f ′(|ω|)|∇ξ|2dx (8.53)

=

ˆ
R3

[ξ · (Sω − (∇u)⊙ (∇vδ))]f ′(|ω|)dx.

Choose a function ψ(y) ≥ 0 such that ψ(y) vanishes for |y| ≤ r0 and y > Ω0, and such
that ˆ Ω0

0

ψ(y)dy = 1, (8.54)

and set

f(z) =

ˆ z

0

(z − y)ψ(y)dy, (8.55)

so that

f ′(z) =

ˆ z

0

ψ(y)dy, f ′′(z) = ψ(z) ≥ 0. (8.56)

In particular, we have 0 ≤ f ′(z) ≤ 1, f ′(z) = 0 in a neighborhood of z = 0, and

zf ′(z) = z, for z > Ω0. (8.57)
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In other words, f(z) is an approximation to z. Then, integrating (8.53) in time gives

ˆ
R3

f(|ω(t, x)|)dx+ ν

ˆ t

0

ˆ
{x:ω(s,x)|>Ω0}

|ω(s, x)||∇ξ(s, x)|2dx ≤
ˆ
R3

f(|ω0(x)|)dx

+

ˆ t

0

ˆ
R3

[ξ · (Sω − (∇u)⊙ (∇vδ))]f ′(|ω|)dxds (8.58)

≤
ˆ
R3

|ω0(x)|dx+
ˆ t

0

ˆ
R3

(1
2
|S(s, x)|2 + 1

2
|ω(s, x)|2 + 1

2
|∇u|2 + 1

2
|∇vδ|2

)
dxds.

As ∇ · u = 0, we have

ˆ
R3

|∇u|2dx =

ˆ
R3

|ω|2dx = 2

ˆ
R3

TrS2dx.

The energy identity (8.24) means that

ˆ
R3

f(|ω(t, x)|)dx+ ν

ˆ t

0

ˆ
{x:ω(s,x)|>Ω0}

|ω(s, x)||∇ξ(s, x)|2dx ≤ Q, (8.59)

with

Q =

ˆ
R3

|ω0(x)|dx+
25

ν

ˆ
R3

|u0(x)|2dx. (8.60)

In particular, for any Ω > 0 we obtain

ˆ t

0

ˆ
{x:ω(s,x)|>Ω}

|∇ξ(s, x)|2dx ≤ Q

νΩ
. (8.61)

We may also let Ω0 → 0 in (8.59), so that f(z) → z, and obtain the estimate in Lemma 8.2

ˆ
R3

|ω(t, x)|dx+ ν

ˆ t

0

ˆ
{x:ω(s,x)|>0}

|ω(s, x)||∇ξ(s, x)|2dx ≤ Q. (8.62)

This finishes the proof of this Lemma.

Enstrophy bounds when the vorticity direction is regular

Lemma 8.2 does not use assumption (8.31) on the vorticity direction. Now, we will use this
assumption to obtain enstrophy bounds on the solution of the regularized system. We will
show that the solution of the regularized system obeys the following a priori bounds. Here,
we use assumption (8.31): there exists δ0, Ω > 0 and ρ > 0 so that for all δ ∈ (0, δ0) the
solution u(t, x) of the regularized system (8.23) satisfies∣∣∣P⊥

ξ(t,x)(ξ(t, x+ y))
∣∣∣ ≤ |y|

ρ
, (8.63)

for all x, y ∈ R3 and 0 ≤ t ≤ T , such that |ω(t, x)| > Ω and |ω(t, x+ y) > Ω.
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Lemma 8.3. There exists a constant C which depends on the initial data u0, and Ω, ν, T ,
and the constant ρ in (8.63), so that

sup
0≤t≤T

ˆ
R3

|ω(t, x)|2dx ≤ C, (8.64)

and ˆ T

0

ˆ
R3

|∇ω(t, x)|2dx ≤ C, (8.65)

for all δ ∈ (0, δ0).

With these a priori bounds in hand, one can find a subsequence δk ↓ 0, such that the
solutions u(t, x) of the regularized Navier-Stokes system converge to a solution v(t, x) of the
true Navier-Stokes equations which obeys the same bounds (8.64) and (8.65). These bounds
imply that v is a strong solution and is therefore smooth if u0 is smooth. Thus, our focus is
on proving Lemma 8.3.

Multiplying the vorticity equation

ωt + uδ · ∇ω − ν∆ω = Sω − (∇u)⊙ (∇vδ) (8.66)

by ω and integrating gives

1

2

d

dt

ˆ
|ω|2dx+ ν

ˆ
|∇ω|2dx =

ˆ
(Sω · ω)dx−

ˆ
ω · ((∇u)⊙ (∇vδ))dx. (8.67)

We will split the vorticity into the ”small” and ”large” components: take a cut-off func-
tion χ(z) such that χ(z) = 1 for 0 ≤ z ≤ 1, χ(z) = 0 for z ≥ 2, and 0 ≤ χ(z) ≤ 1 for
all z ≥ 0. We set

ω(t, x) = ω(1)(t, x) + ω(2)(t, x), (8.68)

with

ω(1)(t, x) = χ
( |ω(t, x)|

Ω

)
ω(t, x), ω(2)(t, x) =

(
1− χ

( |ω(t, x)|
Ω

))
ω(t, x). (8.69)

Recall that the strain matrix can be written in terms of the vorticity as

S(x) =
3

4π
P.V.

ˆ
M(ŷ, ω(x+ y))

dy

|y|3
, ŷ =

y

|y|
, (8.70)

with the matrix-valued function

M(ŷ, ω) =
1

2

[
(ŷ × ω)⊗ ŷ + ŷ ⊗ (ŷ × ω)

]
. (8.71)

The decomposition (8.68) and (8.70) induce then the corresponding decomposition

S(t, x) = S(1)(t, x) + S(2)(t, x). (8.72)

We can then write

(Sω · ω) =
2∑

i,j,k=1

(S(i)ω(j) · ω(k)) = X + Y + Z, (8.73)
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where X comes from the triplets where at least one of ω is ”small”:

X =
2∑

i=1

∑
(j,k)̸=(2,2)

(S(i)ω(j) · ω(k)),

the term Y has S ”small”, and both ω ”large”:

Y = (S(1)ω(2) · ω(2)),

and, finally, Z has S and both ω ”large”:

Z = (S(2)ω(2) · ω(2)).

We also set
W = −ω · ((∇u)⊙ (∇vδ)).

With this notation, (8.67) has the form

1

2

d

dt

ˆ
|ω|2dx+ ν

ˆ
|∇ω|2dx =

ˆ
(X + Y + Z +W )dx. (8.74)

We will estimate the size of each term in the right side of (8.74) separately.
In order to estimate X, we recall that for any incompressible flow v we have

ˆ
|∇v|2dx =

ˆ
|ζ|2dx, ζ = ∇× v.

As a consequence, the strain matrix

Sv =
1

2
(∇v + (∇v)t)

satisfies

∥Sv∥2L2 =
3∑

i,j=1

ˆ ( ∂vi
∂xj

+
∂vj
∂xi

)2
dx ≤ 4

3∑
i,j=1

ˆ ( ∂vi
∂xj

)2
dx = 4

ˆ
|∇v|2dx = 4

ˆ
|ζ|2dx. (8.75)

Then, the term X can be estimated as follows: either ω(j) or ω(k) is ”small” and can be
bounded pointwise by Ω. This allows us to use the Cauchy-Schwartz inequality and (8.75):∣∣∣ˆ X(t, x)dx

∣∣∣ ≤ CΩ∥S∥L2∥ω∥L2 ≤ CΩ∥ω∥2L2 . (8.76)

We have used the bound (8.22)
∥S∥L2 ≤ C∥ω∥L2 . (8.77)

in the second inequality above.
Next, we note that Y is bounded from above by

|Y (t, x)| ≤ |S(1)(t, x)||ω(t.x)|2, (8.78)
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so that ˆ
|Y (t, x)|dx ≤ ∥S(1)∥L2

(ˆ
|ω(t.x)|4dx

)1/2
. (8.79)

The Gagliardo-Nirenberg inequality in Rn:

∥u∥Lp ≤ C∥∇u∥aL2∥u∥1−a
L2 ,

1

p
=

1

2
− a

n
,

implies that in R3 we have(ˆ
|ω(x)|4dx

)1/2
≤ C

(ˆ
|∇ω(x)|2dx

)3/4( ˆ
|ω(x)|2dx

)1/4
. (8.80)

Using this in (8.78) gives

ˆ
|Y (t, x)|dx ≤ ∥S(1)∥L2∥∇ω∥3/2L2 ∥ω∥1/2L2 ≤ C∥ω(1)∥L2∥∇ω∥3/2L2 ∥ω∥1/2L2

≤ ν

8
∥∇ω∥2L2 +

C

ν3
∥ω(1)∥4L2∥ω∥2L2 . (8.81)

We have used Young’s inequality in the last step, as well as the bound (8.77) for ∥S(1)∥L2 .
The second term in the right side can be bounded with the help of the estimate (8.32) in
Lemma 8.2 as

∥ω(1)∥2L2 ≤ 2Ω

ˆ
|ω(t, x)|dx ≤ 2ΩQ. (8.82)

Thus, the term Y can be estimated as

ˆ
|Y (t, x)|dx ≤ ν

8
∥∇ω∥2L2 +

C

ν3
(ΩQ)2∥ω∥2L2 . (8.83)

Before looking at Z, which is the most difficult term, we bound W :

W = −ω · ((∇u)⊙ (∇vδ)).

This term is only there because of the regularization and should disappear as δ → 0. Note
that

∥vδ∥2L2 = ∥u− uδ∥2L2 = ∥u− ϕδ ∗ u∥2L2 =

ˆ
|1− ϕ̂δ(ξ)|2|û(ξ)|2dξ =

ˆ
|1− ϕ̂(δξ)|2|û(ξ)|2dξ

≤ Cδ2
ˆ

|ξ|2|û(ξ)|2dξ = Cδ2∥∇u∥2L2 = Cδ2∥ω∥2L2 . (8.84)

The integral of W is

ˆ
W (t, x)dx = −

ˆ
ωiεijk(∇u)km(∇vδ)mjdx = −

ˆ
εijkωi

∂uk
∂xm

∂vδ,m
∂xj

dx (8.85)

=

ˆ
εijkvδ,m

∂ωi

∂xj

∂uk
∂xm

dx+

ˆ
εijkvδ,mωi

∂2uk
∂xj∂xm

dx.
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The last integral above can be written as
ˆ
εijkvδ,mωi

∂2uk
∂xj∂xm

dx =

ˆ
ωivδ,m

∂

∂xm

(
εijk

∂uk
∂xj

)
dx =

ˆ
ωivδ,m

∂ωi

∂xm
dx = 0, (8.86)

since vδ is divergence-free. Therefore, we have a bound for W :∣∣∣ ˆ W (t, x)dx
∣∣∣ ≤ ν

16

ˆ
|∇ω(t, x)|2dx+ C

ν

ˆ
|vδ(t, x)|2|∇u(t, x)|2dx

≤ ν

16

ˆ
|∇ω(t, x)|2dx+ C

ν
∥vδ∥2L4∥∇u∥2L4 . (8.87)

The Gagliardo-Nirenberg inequality implies that

∥vδ∥2L4 ≤ C∥∇vδ∥3/2L2 ∥vδ∥1/2L2 . (8.88)

For the gradient term above we can simply bound

∥∇vδ∥2L2 ≤ C∥∇u∥2L2 + C∥∇uδ∥2L2 ≤ C∥∇u∥2L2 ≤ C∥ω∥2L2 , (8.89)

and we may use the estimate (8.84) for |vδ∥L2 . Therefore, we have

∥vδ∥2L4 ≤ Cδ1/2∥ω∥2L2 . (8.90)

We may also use the same Gagliardo-Nirenberg inequality for ∥∇u∥L4 , leading to

∥∇u∥2L4 ≤ C∥∇ω∥3/2L2 ∥ω∥1/2L2 . (8.91)

Altogether, this gives

1

ν
∥vδ∥2L4∥∇u∥2L4 ≤

Cδ1/2

ν
∥ω∥2L2∥∇ω∥3/2L2 ∥ω∥1/2L2 =

Cδ1/2

ν
∥ω∥5/2L2 ∥∇ω∥3/2L2

≤ ν

16
∥∇ω∥2L2 +

Cδ2

ν7
∥ω∥10L2 , (8.92)

thus ∣∣∣ˆ W (t, x)dx
∣∣∣ ≤ ν

8

ˆ
|∇ω(t, x)|2dx+ Cδ2

ν7
∥ω∥10L2 . (8.93)

Finally, we estimate the most dangerous term Z(t, x),

Z = (S(2)ω(2) · ω(2)),

and this will be the only estimate that will involve the assumption that the direction ξ(t, x)
of the vorticity is Lipschitz: ∣∣∣P⊥

ξ(t,x)(ξ(t, x+ y))
∣∣∣ ≤ |y|

ρ
, (8.94)

We write

Z(t, x) = (S(2)ω(2) · ω(2)) = |ω(2)(t, x)|2(S(2)(t, x)ξ(2)(t, x) · ξ(2)(t, x)) = |ω(t, x)|2α(2)(t, x),
(8.95)
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with

α(2)(t, x) =
3

4π
P.V.

ˆ
D(ŷ, ξ(x+ y), ξ(x))|ω(2)(x+ y)| dy

|y|3
, (8.96)

where
D(e1, e2, e3) = (e1 · e3)Det(e1, e2, e3).

Assumption (8.94) means that

|D(ŷ, ξ(x+ y), ξ(x))| ≤ |y|
ρ
, (8.97)

so that

|Z(t, x)| ≤ 3

4πρ
|ω(2)(t, x)|2

ˆ
|ω(2)(t, x+ y)| dy

|y|2
≤ 3

4πρ
|ω(t, x)|2

ˆ
|ω(t, x+ y)| dy

|y|2
. (8.98)

Therefore, we have ˆ
|Z(t, x)|dx ≤ C

ρ
∥ω∥2L4

(ˆ
|I(t, x)|2dx

)1/2

, (8.99)

with

I(t, x) =

ˆ
|ω(t, x+ y)| dy

|y|2
.

In order to compute the L2-norm of I, we proceed as in the proof of Nash inequality. Let us
compute the Fourier transform of the function ψ(y) = 1/|y|2:

ψ̂(ξ) =

ˆ
e2πiξ·ydy

|y|2
=

ˆ ∞

0

dr

ˆ π/2

−π/2

dθ cos θ

ˆ 2π

0

dϕe2πi|ξ|r sin θ

= 2π

ˆ ∞

0

dr

ˆ 1

−1

due2πi|ξ|ru =
2

|ξ|

ˆ ∞

0

sin rdr

r
.

Hence, the L2-norm of I(t, x) can be bounded as (for any R > 0)

∥I(t)∥2L2 =

ˆ
|Î(t, ξ)|2dξ ≤ C

ˆ
|ω(ξ)|2

|ξ|2
dξ

≤ C

ˆ
|ξ|≤R

|ω(ξ)|2dξ
|ξ|2

+ C

ˆ
|ξ|≥R

|ω(ξ)|2dξ
|ξ|2

= AR +BR.

Since
|ω̂(ξ)| ≤ ∥ω∥L1 ,

the first term can be bounded as,

|AR| ≤ C

ˆ R

0

∥ω∥2L1dξ ≤ CR∥ω∥2L1 .

The second term can be simply bounded by

|BR| ≤
C

R2

ˆ
|ξ|≥R

|ω(ξ)|2dξ = C

R2
∥ω∥2L2 .
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It follows that for any R > 0 we have

∥I∥2L2 ≤ CR∥ω∥2L1 +
C

R2
∥ω∥2L2 .

Choosing

R =
(∥ω∥2L2

∥ω∥2L1

)1/3
,

we deduce that
∥I∥2L2 ≤ C∥ω∥4/3L1 ∥ω∥2/3L2 . (8.100)

Returning to (8.99), we see that

ˆ
|Z(t, x)|dx ≤ C

ρ
∥ω∥2L4∥ω∥2/3L1 ∥ω∥1/3L2 . (8.101)

The L4-norm of ω is estimated using the same Gagliardo-Nirenberg inequality:

∥ω∥2L4 ≤ C∥∇ω∥3/2L2 ∥ω∥1/2L2 , (8.102)

so thatˆ
|Z(t, x)|dx ≤ C∥∇ω∥3/2L2 ∥ω∥5/6L2 ∥ω∥2/3L1 ≤ ν

15
∥∇ω∥2L2 +

C

ν3ρ4
∥ω∥20/6L2 ∥ω∥8/3L1 . (8.103)

Recalling also the a priori bound (8.32) in Lemma 8.2:

ˆ
R3

|ω(t, x)|dx ≤ Q, (8.104)

we see that Z is bounded as
ˆ

|Z(t, x)|dx ≤ ν

15
∥∇ω∥2L2 +

CQ8/3

ν3ρ4
∥ω∥10/3L2 . (8.105)

Recollecting the starting point of our analysis (8.67)

1

2

d

dt

ˆ
|ω|2dx+ ν

ˆ
|∇ω|2dx =

ˆ
(Sω · ω)dx−

ˆ
ω · ((∇u)⊙ (∇vδ))dx, (8.106)

and summarizing the bounds (8.76), (8.83), (8.93), (8.105) that we have obtained for the
terms X, Y , W and Z, respectively, in the right side of the above identity, we get

1

2

d

dt

ˆ
|ω|2dx+ ν

ˆ
|∇ω|2dx ≤ CΩ∥ω∥2L2 +

ν

8
∥∇ω∥2L2 +

C

ν3
(ΩQ)2∥ω∥2L2

+
ν

8
∥∇ω∥2 + Cδ2

ν7
∥ω∥10L2 +

ν

15
∥∇ω∥2L2 +

CQ8/3

ν3ρ4
∥ω∥10/3L2 . (8.107)

Thus, the enstrophy

E(t) =

ˆ
|ω(t, x)|2dx,
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satisfies a differential inequality

dE

dt
≤ C1(1 + E2/3)E + C1δ

2E5, (8.108)

with a constant C1 that depends on ν, ρ, Ω and Q. This is a nonlinear inequality and at the
first glance it may seem useless as the solution of an ODE

ż = C1(1 + z2/3)z + C1δ
2z5, z(0) = z0 > 0, (8.109)

blows up in a finite time. Here, however, we are only concerned with the solution being finite
until time t = T , and, in addition, we have an extra piece of information: the function

k(t) = C1(1 + E2/3)

has a bounded integral:

ˆ T

0

k(t)dt ≤ CT +

ˆ T

0

∥ω(t)∥4/3L2 dt ≤ CT + CT 1/3
(ˆ T

0

∥ω(t)∥2L2dt
)2/3

≤ C(1 + T ) = D.

(8.110)
Crucially, the constant D does not depend on δ. Therefore, the solution of (8.109) with δ = 0
does remain finite until the time T , and it is reasonable to expect that so does the solution
with δ > 0 but small. To formalize this observation, let

Ē(t) = 2E(0) exp
{ˆ t

0

k(s)ds
}
.

Then E(0) ≤ Ē(0), and we may define τ as the first time such that E(τ) = Ē(τ). Until that
time, the function E(t) satisfies

dE

dt
≤ k(t)E + C1δ

2Ē5, 0 ≤ t ≤ τ. (8.111)

Therefore, as long as E(t) ≤ Ē(t), we have a bound for E(t):

E(t) ≤ E(0) exp
{ˆ t

0

k(s)ds
}
+ C1δ

2

ˆ t

0

Ē5(s) exp
{ˆ t

s

k(s′)ds′
}
ds.

Thus, if δ is sufficiently small, we have E(t) ≤ Ē(t) for all 0 ≤ t ≤ T . We conclude that there
exists δ0 > 0 so that for all 0 < δ < δ0 the enstrophy is bounded:

sup
0≤t≤T

ˆ
|ω(t, x)|2dx < +∞. (8.112)

The last step is to observe that (8.107) together with (8.112) implies that

ν

ˆ T

0

ˆ
|∇ω|2dx < +∞. (8.113)

This completes the proof of Lemma 8.3, and thus that of Theorem 8.1. 2
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9 The Caffarelli-Kohn-Nirenberg theorem

In this section, we will describe the results of Caffarelli, Kohn and Nirenberg on the Hausdorff
dimension of the set where the solution of the three-dimensional Navier-Stokes equations

ut + u · ∇u+∇p = ∆u+ f, (9.1)

∇ · u = 0, (9.2)

can possibly be singular. We consider this problem in a smooth bounded domain Ω ⊂ R3,
with the no-slip boundary condition

u(t, x) = 0 on ∂Ω. (9.3)

The force f(t, x) is assumed to satisfy the incompressibility condition∇·f = 0 – this condition
is not really necessary, as otherwise we would write f = ∇Φ+g, with ∇·g = 0, and absorb Φ
into the pressure term.

Weak solutions

Let us recall the notion of a Leray weak solution of the Navier-Stokes equations: u is a weak
solution if, first, it is a solution in the sense of distributions, that is, for any smooth compactly
supported vector-valued function ψ(t, x) we have

ˆ
Ω

[u(t, x) · ψ(t, x)− u0(x) · ψ(0, x)]dx−
ˆ t

0

ˆ
Ω

(u · ψs)dxds−
ˆ t

0

ˆ
Ω

ukuj
∂ψj

∂xk
dxds

−
ˆ t

0

ˆ
Ω

p(∇ · ψ)dxds =
ˆ t

0

ˆ
Ω

(u ·∆ψ)dxds+
ˆ t

0

ˆ
Ω

(f · ψ)dfxds. (9.4)

The second condition is that u satisfies the energy inequality. Note that if u is a smooth
solution of the Navier-Stokes equations, then for any smooth test function ϕ we have

1

2

ˆ
Ω

|u(t, x)|2ϕ(t, x)dx+
ˆ t

0

ˆ
Ω

|∇u(s, x)|2ϕ(s, x)dxds = 1

2

ˆ
Ω

|u0(x)|2ϕ(0, x)dx (9.5)

+
1

2

ˆ t

0

ˆ
Ω

|u(s, x)|2(ϕs(s, x) + ∆ϕ(s, x))dxds

+

ˆ t

0

ˆ
Ω

( |u(s, x)|2
2

+ p(s, x)
)
u · ∇ϕ(s, x)dxds+

ˆ t

0

ˆ
Ω

(f · u)ϕ(s, x)dxds.

Taking, formally, ϕ ≡ 1, the second condition for u to be a Leray weak solution is that it
satisfies the energy inequality:

1

2

ˆ
Ω

|u(t, x)|2dx+
ˆ t

0

ˆ
Ω

|∇u(s, x)|2dxds ≤ 1

2

ˆ
Ω

|u0(x)|2dx+
ˆ t

0

ˆ
Ω

(f · u)dxds. (9.6)

Suitable weak solutions

Caffarelli, Kohn and Nuremberg consider a slightly stronger class of solutions, which they
call suitable weak solutions, defined on an open (time-space) set D ∈ R × R3. We will,
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obviously, require that u is a weak solution of the Navier-Stokes equations in the sense of
distributions: (9.4) holds for any function ϕ supported in D. We will assume that f ∈ Lq(D)
with some q > 5/2 – this assumption is not very important, as the main result is interesting
even for f ∈ C∞(D). We will also assume that the pressure satisfies

p ∈ L5/4(D), (9.7)

and that there exist some constants E0 and E1 so that or any fixed time t we have

ˆ
Dt

|u(t, x)|2dx ≤ E0, (9.8)

where Dt = D ∩ (R3 × {t}), and
ˆ
D

|∇u(s, x)|2dx ≤ E1. (9.9)

In addition, we require that the generalized (or, localized) energy inequality holds: for any
function ϕ ≥ 0 which is smooth and compactly supported in D, we have

ˆ
D

|∇u(s, x)|2ϕ(s, x)dxds ≤ 1

2

ˆ
D

|u(s, x)|2(ϕs(s, x) + ∆ϕ(s, x))dxds (9.10)

+

ˆ
D

( |u(s, x)|2
2

+ p(s, x)
)
u · ∇ϕ(s, x)dxds+

ˆ
D

(f · u)ϕ(s, x)dxds.

At the moment, it is not clear that a suitable weak solution exists – we will prove it below.

The parabolic Hausdorff measure

In order to formulate the main results, we need to define an analog of the Hausdorff mea-
sure H1 but suitable for the parabolic problems. For any set X ⊂ R × R3, δ > 0 and k ≥ 0
we define

Pk
δ (X) = inf

{ ∞∑
i=1

rki : X ⊂
⋃
i

Qri , ri < δ
}
. (9.11)

Here, Qr is a parabolic cylinder: it has the form

Qr = [t− r2, t]×Br(x),

where Br(x) is a ball of radius r centered at the point x. Then we set

Pk(X) = lim
δ↓0

Pk
δ (X). (9.12)

The standard Hausdorff measure is defined in the same way but with Qr replaced by an
arbitrary closed subset of R× R3 of diameter at most ri, thus we have

H1 ≤ CkPk.
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The main results

We may now describe the main results of the Caffarelli-Kohn-Nirenberg paper. We say that
a point (t, x) is singular if u is not in L∞

loc in any neighborhood of (t, x). Otherwise, we say
that (t, x) is a singular point. We will denote by S the set of all singular points of u(t, x).
Their first result shows that the singularity set has zero Hausdorff measure H1.

Theorem 9.1. Assume that either Ω = R3 or Ω ⊂ R3 is a smooth bounded domain, and let
D = (0, T )× Ω. Suppose that for some q > 5/2 we have

f ∈ L2(D) ∩ Lq
loc(D) ∇ · f = 0

and
u0 ∈ L2(Ω), ∇ · u0 = 0, u0 · ν|∂Ω = 0.

If Ω is bounded, we require, in addition, that u0 ∈ W
2/5
5/4 (Ω). Then the initial boundary value

problem has a suitable weak solution in D whose singular set S satisfies P1(S) = 0.

Their second result concerns absence of singularities outside of a ball of radius 1/
√
t.

Theorem 9.2. Consider the Navier-Stokes equations in R3 with f = 0 and assume that the
initial data satisfies ∇ · u0 = 0, and

G =
1

2

ˆ
R3

|u0(x)|2|x|dx < +∞. (9.13)

Then there exists a weak solution of the initial value problem which is regular in the re-
gion {|x| ≥ K1/

√
t}, with the constant K1 which depends only on G and E, where

E =

ˆ
R3

|u0(x)|2|x|dx < +∞.

Assumption (9.13) means that u is small at infinity, and this smallness, so to speak, invades
the whole space as t grows. If we assume that u is “small near the origin”, in the sense, that

L =

ˆ
R3

|u0|2

|x|
dx = L < +∞, (9.14)

then we have the following result.

Theorem 9.3. Consider the Navier-Stokes equations in R3 with f = 0 and assume that the
initial data satisfies ∇·u0 = 0, and (9.14) holds. There exists a universal constant L0 so that
if L < L0, then u is regular in the region {|x| ≤

√
(L0 − L)t}.

The first key estimate: localizing “small data regularity”

We will denote the cylinders labeled by the top as

Qr(t, x) = {(s, y) : |y − x| < r, t− r2 < s < t},
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and those labeled by a point slightly below the top as

Q∗
r(t, x) = {(s, y) : |y − x| < r, t− 7

8
r2 < s < t+

1

8
r2}.

It is well known that if the initial condition u0 and the force f are small in an appropriate
norm, then the solution of the Navier-Stokes equations remains regular for a short time. The
main issue in proving the partial regularity theorems is to localize this result. The first step
in this direction is an estimate showing that if u, p and f are sufficiently small on the unit
cylinder Q1 = Q1(0, 0), then u is regular in the smaller cylinder Q1/2 = Q1/2(0, 0) – this is a
very common theme in the parabolic regularity theory.

Proposition 9.4. There exist absolute constants C1 > 0 and ε1 > 0 and a constant ε2(q) > 0,
which depends only on q with the following property. Suppose that (u, p) is a suitable weak
solution of the Navier-Stokes system on Q1 with f ∈ Lq, with q > 5/2. Assume also that

ˆ
Q1

(|u|3 + |u||p|)dxdt+
ˆ 0

−1

(ˆ
|x|<1

|p|dx
)5/4

dt ≤ ε1, (9.15)

and ˆ
Q1

|f |qdxdt ≤ ε2. (9.16)

Then we have |u(t, x)| ≤ C1 for Lebesgue-almost every (t, x) ∈ Q1/2. In particular, u is regular
in Q1/2.

In order to see how we may scale this result to a parabolic cylinder of length r, let us
investigate the dimension of various terms in the Navier-Stokes equations

ut + u · ∇u+∇p = ∆u+ f. (9.17)

Let us assign dimension L to the spatial variable x. As all individual terms in (9.17) should
have the same dimension, looking at the terms ut and ∆u we conclude that time should have
dimension L2. Comparing the terms ut and u·∇u we see that u should have the dimension L−1.
Then, f should have the same dimension as ut, which is L−3. Finally, the dimension of the
pressure term should be L−2. Summarizing, we have

[x] = L, [t] = L2, [u] = L−1, [f ] = L−3, [p] = L−2. (9.18)

Let us look at the dimension of each term in the estimate (9.15): the term involving |u|3 has
the dimension

[x]3[t][u]3 = L2,

the term involving |u||p| has the same dimension:

[x]3[t][u][p] = L2,

while the last term in the left side has the dimension

[t][x]15/4[p]5/4 = L23/4L−10/4 = L13/4.
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We also should note that the dimension of the Lq-norm of f (to the power q) is

[x]3[t][f ]q = L5−3q.

Accordingly, for a parabolic cylinder Qr(t, x) we set

M(r) =
1

r2

ˆ
Qr

(|u|3 + |u||p|)dxdt+ 1

r13/4

ˆ t

t−r2

(ˆ
|y−x|<r

|p|dx
)5/4

dt, (9.19)

and

Fq(r) = r3q−5

ˆ
Qr

|f |qdyds. (9.20)

Therefore, Proposition 9.4 has the following corollary.

Corollary 9.5. Suppose hat (u, p) is a suitable weak solution of the Navier-Stokes system on
a cylinder Qr with f ∈ Lq, with q > 5/2. Assume also that

M(r) ≤ ε1, (9.21)

and
Fq(r) ≤ ε2. (9.22)

Then we have |u(t, x)| ≤ C1/r for Lebesgue-almost every (t, x) ∈ Qr/2. In particular, u is
regular in Qr/2.

The second key estimate: the blow-up rate

One can deduce from Corollary 9.5 a heuristic estimate on the possible blow-up rate of the
solution. Assume that (t0, x0) is a singular point. Then, (9.21) has to fail for all Qr(t, x) such
that (t0, x0) ∈ Qr/2(t, x). Therefore, we must have

M(r) =M(r; t, x) > ε1

for a family of parabolic cylinders shrinking to the point (t0, x0). Let us assume that

u(t, x) ∼ r−m,

near x0, with
r = (|x− x0|2 + |t− t0|)1/2.

Then we have

M(r) ∼ 1

r2
1

r3m
r2r3 = r3−3m.

hence, a natural guess is m = 1, which translates into

|∇u| ≥ C

r2
, as (t, x) → (t0, x0). (9.23)

The next key estimate verifies that this is qualitatively correct.
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Proposition 9.6. There is an absolute constant ε3 > 0 with the following property. If u is a
suitable weak solution of the Navier-Stokes equations near (t, x), and if

lim sup
r↓0

1

r

ˆ
Q∗

r(t,x)

|∇u|2dyds ≤ ε3, (9.24)

then (t, x) is a regular point.

Let us explain how Theorem 9.1 would follow. Take any (t, x) in the singular set, then,
by Proposition 9.6 we have

lim sup
r↓0

1

r

ˆ
Q∗

r(t,x)

|∇u|2dyds > ε3. (9.25)

Take a neighborhood V of the singular set S and δ > 0. For each (t, x) ∈ S we may choose a
parabolic cylinder Q∗

r(t, x) with r < δ and such that

1

r

ˆ
Q∗

r(t,x)

|∇u|2dyds > ε3, (9.26)

and Q∗
r(t, x) ⊂ V . We will make use of the following covering lemma.

Lemma 9.7. Let J be a collection of parabolic cylinders Q∗
r(t, x) contained in a bounded

set V . Then there exists an at most countable sub-collection J ′ = {Q∗
i = Q∗

r1
(ti, xi)} of

non-overlapping cylinders such that for any Q∗ ∈ J there exists Q∗
i so that

Q∗ ⊂ Q∗
5ri
(ti, xi).

The proof is very similar to that of the classic Vitali lemma and we leave it to the reader
as an exercise. Using this lemma, we obtain a disjoint collection of cylinders Q∗

ri
(ti, xi) such

that
S ⊂

⋃
i

Q∗
5ri
(ti, xi),

and ∑
i

ri ≤
1

ε3

ˆ
Q∗

ri

|∇u|2dxdt ≤ 1

ε3

ˆ
V

|∇u|2dxdt.

We deduce that

P1(S) ≤ 1

ε3

ˆ
V

|∇u|2dxdt. (9.27)

In particular, we deduce that the (three-dimensional) Lebesgue measure of S is zero. Then,
as V is an arbitrary neighborhood of S, and the function |∇u|2 is integrable, we can make the
right side of (9.27) arbitrarily small. It follows that P1(S) = 0, proving Theorem 9.1. Thus,
the crux of the matter is the proof of Propositions 9.4 and 9.6.
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Serrin’s interior regularity result

Before we proceed with the further discussion of the proofs of the theorems of Caffarelli, Kohn
and Nirenberg, let us explain why we say a solution is regular if it is just bounded, and do
not require further differentiability. The reason is a result of Serrin on the interior regularity
of the weak solutions of the Navier-Stokes equations

ut + u · ∇u+∇p = ∆u+ f, (9.28)

∇ · u = 0.

We will assume for simplicity that f = 0 – the reader should consider the generalization to
the case f ̸= 0 as an exercise, or consult Serrin’s original paper. Let us borrow the following
very simple observation from Serrin’s paper: if ψ(x) is a harmonic function, then any function
of the form

u(t, x) = a(t)∇ψ(x)

is a weak solution of the Navier-Stokes equations, as long as the function a(t) is integrable.
Therefore, boundedness of u(t, x) can not, in general, imply any information on the time
derivatives of u. On the other hand, this example does not rule out the hope that relatively
weak assumptions on u would guarantee its spatial regularity.

Here is one version of Serrin’s result, which says that bounded solutions of the force-less
Navier-Stokes equations are essentially as good as the solutions of the heat equation.

Theorem 9.8. Let u be a Leray weak solution of the Navier-Stokes equations in an open
region R = (t1, t2)× Ω of space-time, with f = 0, and such that

ˆ t2

t1

ˆ
Ω

|ω(t, x)|2dxdt < +∞, sup
t∈[t1,t2]

ˆ
Ω

|u(t, x)|2dx < +∞, (9.29)

where ω = ∇×u is the vorticity. Assume, in addition, that u ∈ L∞(R). Then, u is of the C∞

class in the space variables on every compact subset of R.

The full statement of the Serrin theorem says that if u ∈ Ls,s′(R), with

∥u∥Ls,s′ =
( ˆ t2

t1

∥u∥s′Ls(Ω)dt
)1/s′

,

with (in three dimensions)
3

s
+

2

s′
< 1, (9.30)

then u is C∞ in the spatial variables. If, in addition, we know that ut ∈ L2,p with p ≥ 1, then
the spatial derivatives of u are absolutely continuous in time. We will not need these results
for our purposes, so we will leave them out for now. Let us make one comment, however: if
we take s′ = ∞, then condition (9.30) is satisfied, as long as s > 3. That is, if we would have
known a priori that ˆ

R3

|u(t, x)|3dx ≤ const,
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then we could conclude that u is a smooth solution. Of course, we have this information only
for the L2-norm of the Leray weak solutions, and not for the L3-norm.

For the proof of Theorem 9.8, let us recall the vorticity equation in three dimensions:

ωt + u · ∇ω −∆ω = ω · ∇u. (9.31)

Written in the components, this equation is

∂ωk

∂t
−∆ωk = ωj

∂uk
∂xj

− uj
∂ωk

∂xj
, (9.32)

or
∂ωk

∂t
−∆ωk =

∂

∂xj
(ωjuk − uj ωk). (9.33)

Let Ω̄1 be a compact subset of Ω, and t1 < s1 < s2 < t2, so that S = (s1, s2)×Ω1 is a proper
subset of R, and define, for s1 ≤ t ≤ s2:

ω̃k(t, x) =
∂

∂xj

ˆ t

s1

ˆ
Ω1

G(t− s, x− y)[ωj(s, y)uk(s, y)− uj(s, y)ωk(s, y)]dyds

=

ˆ t

s1

ˆ
Ω1

∂G(t− s, x− y)

∂xj
[ωj(s, y)uk(s, y)− uj(s, y)ωk(s, y)]dyds.

Here, G(t, x) is the standard heat kernel. The functions

mkj(t, x) =

ˆ t

s1

ˆ
Ω1

G(t− s, x− y)[ωj(s, y)uk(s, y)− uj(s, y)ωk(s, y)]dyds

satisfy
∂mkj

∂t
−∆mkj = (ωjuk − uj ωk)χ[s1,s2](t)χΩ̄1

(x). (9.34)

Thus, for (t, x) ∈ S, the function ω̃ is the solution of

∂ω̃k

∂t
−∆ω̃k =

∂

∂xj
(ωjuk − uj ωk). (9.35)

It follows that the difference
B(t, x) = ω(t, x)− ω̃(t, x)

satisfies the standard heat equation

Bt −∆B = 0,

on the set S.
We will now show that ω ∈ L∞(S), that is, if u is uniformly bounded on R, then the

vorticity is uniformly bounded on any compact subset of R.

129



Exercise 9.9. Use the convolution with the heat kernel to show that if ϕ(t, x) satisfies

ϕt −∆ϕ =
∂g

∂xj
,

in the whole space Rn, then
∥ϕ∥Lr ≤ C∥g∥Lq ,

as long as

(n+ 2)
(1
q
− 1

r

)
< 1.

The norms are take in space-time.

As u is a Leray weak solution, we know that ω ∈ L2(R). As u ∈ L∞(R), it follows that
the functions

gjk(s, y) = ωj(s, y)uk(s, y)− uj(s, y)ωk(s, y)

are also in L2(R). The result of the above exercise says that then ω̃ ∈ Lr with

1

r
=

1

2
− 1

3
=

1

6

But then g ∈ L6, as well, and, as 1/6 < 1/3, it follows that ω̃ ∈ L∞(R). We also know
that B ∈ L∞(S) by the regularity estimates for the heat equation, as B ∈ L2(R) – it is the
difference of two functions in L2(R). Moreover, we know that B is Hölder continuous.

Now that we know that ω ∈ L∞(R), we recall that the velocity and the vorticity are
related by the stream vector ψ, defined as the solution of

−∆ψ = ω, ∇ · ψ = 0,

and
u = −∇× ψ.

Therefore, if ω ∈ L∞(R), then ψ is C1,α in the spatial variable, hence u is Hölder in x, and,
in particular, in L∞. Then the functions mkj are C

1,α in x, thus ω is Hölder in x. Then, the
functions gkj are Hölder in x, so ωx is Hölder in x, continuing this argument we deduce that
both ω and u are C∞.

Existence of suitable weak solutions

We now prove the existence of suitable weak solutions, in the sense of Caffarelli, Kohn and
Nirenberg. We will restrict ourselves to the whole space: Ω = R3. Let us first define the
appropriate function spaces. As usual, we will denote by V the space of smooth divergence-
free vector fields u, by H the closure of V in L2(R3), by V the closure of V in H1(R3), and
by V ′ the dual space of V . The Sobolev spaces W l

q(R3) with q ≥ 1 and 0 < l < 1 consists of
functions with l derivatives in Lq, and with the norm

∥u∥W l
q
= ∥u∥Lq + ∥(−∆)l/2u∥Lq .

We will make the standard assumptions:

Ω = R3, u0 ∈ H, f ∈ L2(0, T ;H−1(R3)). (9.36)
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Theorem 9.10. Assume that Ω = R3, u0 and f satisfy (9.36). Then there exists a suitable
weak solution

u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H),

of the Navier-Stokes equations with the force f and the initial condition u0, in the sense
that u(t) → u0 weakly in H as t → 0. The pressure satisfies p ∈ L5/3((0, T ) × R3). In
addition, if ϕ ∈ C∞([0, T ]× R3), ϕ ≥ 0 and is compactly supported, then

1

2

ˆ
R3

|u(t, x)|2ϕ(t, x)dx+
ˆ t

0

ˆ
R3

|∇u(s, x)|2ϕ(s, x)dxds ≤ 1

2

ˆ
R3

|u0(x)|2ϕ(0, x)dx

+
1

2

ˆ t

0

ˆ
R3

|u(s, x)|2(ϕs(s, x) + ∆ϕ(s, x))dxds (9.37)

+

ˆ t

0

ˆ
R3

( |u(s, x)|2
2

+ p(s, x)
)
u · ∇ϕ(s, x)dxds+

ˆ t

0

ˆ
R3

(f · u)ϕ(s, x)dxds.

The proof is done via a ”retarded mollification”. The (standard) idea is to take Ψδ(u) to
be a mollifier of u such that Ψδ(u) is divergence-free and depends only on the values of u(s, x)
with s ≤ t− δ. The mollified system

ut +Ψδ(u) · ∇u+∇p = ∆u+ f (9.38)

is then linear on each time interval of the firm (mδ, (m + 1)δ). We will get uniform in δ a
priori bounds on u, and then pass to the limit δ → 0.

Let us recall some basic facts about the linear Stokes equation, whose proof is very similar
to what we have done on the torus previously.

ut +∇p = ∆u+ f, ∇ · u = 0. (9.39)

Lemma 9.11. Suppose that f ∈ L2(0, T ;V ′), u ∈ L2(0, T ;V ), p is a distribution and (9.39)
holds. Then ut ∈ L2(0, T ;V ′),

d

dt

ˆ
Ω

|u|2dx = 2

ˆ
Ω

(ut · u)dx,

in the sense of distributions on (0, T ), and u ∈ C([0, T ], H), possibly after a modification on
a set of measure zero.

Lemma 9.12. Suppose that f ∈ L2(0, T ;V ′), u0 ∈ H, and w ∈ C∞([0, T ]; Ω) are prescribed,
and ∇ · w = 0. Then there exists a unique function u ∈ L2(0, T ;V ) ∩ C([0, T ];H), and a
distribution p so that

ut + w · ∇u+∇p = ∆u+ f, ∇ · u = 0, (9.40)

in the sense of distributions, and u(0) = u0.

Some pressure bounds and interpolation on the velocity

Note that if u solves (9.40) in the whole space, then the pressure satisfies the Poisson equation

∆p = −
3∑

i,j=1

∂2ij(wiuj). (9.41)
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The singular integral operator corresponding to the Fourier multiplier

ξiξj
|ξ|2

is bounded Lp(Rn) → Lp(Rn) for all 1 < p <∞, thus, in particular, we have the bound

ˆ T

0

ˆ
R3

|p|5/3dxds ≤ C

ˆ T

0

ˆ
R3

|w|5/3|u|5/3dxds (9.42)

≤ C
(ˆ T

0

ˆ
R3

|w|10/3dxds
)1/2( ˆ T

0

ˆ
R3

|u|10/3dxds
)1/2

. (9.43)

We will now use a Gagliardo-Nirenberg inequality

ˆ
R3

|u|qdx ≤ C
(ˆ

R3

|∇u|2dx
)a(ˆ

R3

|u|2dx
)q/2−a

, (9.44)

with 2 ≤ q ≤ 6 and a = 3(q − 2)/4. Note that when q = 2, a = 0, this is a tautology, and
when q = 6, a = 3, this is the familiar Gagliardo-Nirenberg inequality

ˆ
R3

|u|6dx ≤ C
(ˆ

R3

|∇u|2dx
)3
. (9.45)

Taking q = 10/3, and a = 1 gives

ˆ
R3

|u|10/3dx ≤ C
( ˆ

R3

|∇u|2dx
)( ˆ

R3

|u|2dx
)2/3

(9.46)

Integrating in time and using the a priori assumptions (9.8) and (9.9) leads to

ˆ T

0

ˆ
R3

|u|10/3dxdt ≤ CE1(u)E
2/3
0 (u). (9.47)

Another useful estimate, obtained, once again, by taking q = 10/3 and a = 1, is

ˆ T

0

ˆ
R3

|w · ∇u|5/4dxdt ≤
(ˆ T

0

ˆ
R3

|∇u|2dxdt
)5/8(ˆ T

0

ˆ
R3

|w|10/3dxdt
)3/8

(9.48)

≤ CE1(u)
5/8E1(w)

3/8E0(w)
1/4, (9.49)

which can be restated as

∥w · ∇u∥L5/4 ≤ CE1(u)
1/2E1(w)

3/10E0(w)
1/5. (9.50)

We will also use the following bound, which follows from (9.45) with q = 5/2 and a = 3/8:

ˆ
R3

|u|5/2dx ≤ CE
7/8
0

( ˆ
R3

|∇u|2dx
)3/8

. (9.51)
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As a consequence, we have
ˆ T

0

(ˆ
R3

|u|5/2dx
)2
dt ≤ CE0(u)

7/4

ˆ T

0

(ˆ
R3

|∇u|2dx
)3/4

dt (9.52)

≤ CE0(u)
7/4T 1/4

(ˆ T

0

ˆ
R3

|∇u|2dxdt
)3/4

≤ CT 1/4E
7/4
0 E1(u)

3/4.

This can be restated as

∥u∥L5(0,T ;L5/2) ≤ CT 1/20E
7/20
0 E1(u)

3/20. (9.53)

These bounds allow us to take a solution (in the sense of distributions) u ∈ C([0, T ];H) ∩
L2(0, T ;V ) of the Stokes advection equation

ut + w · u−∆u+∇p = f, (9.54)

with w ∈ C∞, multiply by a test function ϕ and obtain
ˆ
R3

|u|2(T, x)ϕ(T, x)dx+ 2

ˆ T

0

ˆ
R3

|∇u(t, x)|2ϕ(t, x)dxdt =
ˆ
R3

|u0(x)|2ϕ(0, x)dx (9.55)

+

ˆ T

0

ˆ
R3

|u|2(ϕt +∆ϕ)dxdt+

ˆ T

0

ˆ
R3

(|u|2w + 2pu) · ∇ϕdxdt+ 2

ˆ T

0

ˆ
R3

(u · f)dxdt.

Exercise 9.13. Justify the integration by parts above by mollifying (in time and space) each
term in the Stokes equation, multiplying by ϕ, integrating by parts and then removing the
mollification using the a priori bounds obtained above.

The retarded mollifier

We take a C∞ function ψ(t, x) ≥ 0 such thatˆ
ψ(t, x)dxdt = 1,

and
suppψ ⊂ {(t, x) : |x|2 < t, 1 < t < 2}.

We also extend u(t, x) by zero to t < 0, and set

Ψδ(u)(t, x) =
1

δ4

ˆ
R4

ψ
(s
δ
,
y

δ

)
ũ(x− y, t− s)dyds. (9.56)

The mollified u is divergence-free:
∇ ·Ψδ(u) = 0,

and it inherits the a priori bounds on u:

sup
0≤t≤t

ˆ
R3

|Ψδ(u)|2(t, x)dx ≤ CE0(u), (9.57)

and ˆ T

0

ˆ
R3

|Ψδ(u)|2(t, x)dxdt ≤ CE1(u). (9.58)
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The approximants

We will use the approximants

∂uN
∂t

+Ψδ(uN) · ∇uN +∇pN = ∆uN + f, (9.59)

∇ · uN = 0,

uN(0, x) = u0(x),

with δ = T/N . We may apply inductively the existence result for the Stokes equation with a
prescribed advection, on the time intervals of the form (mδ, (m+1)δ), 0 ≤ m ≤ N − 1. Then
we haveˆ

R3

|uN(t, x)|2dx+2

ˆ t

0

ˆ
R3

|∇uN(s, x)|2dxds =
ˆ
R3

|u0(x)|2dx+2

ˆ t

0

ˆ
R3

(f ·uN)dxds. (9.60)

In particular, we haveˆ
R3

|uN(t, x)|2dx+
ˆ t

0

ˆ
R3

|∇uN(s, x)|2dxds ≤
ˆ
R3

|u0(x)|2dx+
ˆ t

0

∥f∥2V ′ds. (9.61)

We conclude that uN is uniformly bounded in L∞(0, T ;V ) ∩ L∞(0, T ;H), the usual Leray
bound. In addition, we know that pN is bounded in L5/3([0, T ]×R3). It follows that, after an
extraction of a sub-sequence, we have that pN → p∗ weakly in L5/3([0, T ]×R3), and uN → u∗,
weak-star in L∞(0, T ;H), and weakly in L2(0, T ;V ).

Exercise 9.14. Show that if uN is bounded in L∞(0, T ;V )∩L∞(0, T ;H), and ∂uN

∂t
is bounded

in L2(0, T ;H−2), then uN has a convergent subsequence in L2([0, T ]× R3).

Exercise 9.15. Show that if uN → u∗ strongly in Lq and uN is bounded in Lr, 1 ≤ q < r,
then uN → u∗ strongly in Ls for all q, s < r.

We may use this with q = 2 and r = 10/3 to conclude that uN → u∗ strongly in Ls([0, T ]×
R3) for all 2 ≤ s < 10/3. Then one may easily check that (u∗, p∗) is the sought suitable weak
solution of the Navier-Stokes equations.

The proof of Proposition 9.4

We now turn to the proof of the two main auxiliary results, and begin with Proposition 9.4.
We recall its statement:

Proposition 9.16. There exist two absolute constants C1 > 0 and ε1 > 0 and another
constant ε2(q) > 0, which depends only on q with the following property. Suppose that (u, p)
is a suitable weak solution of the Navier-Stokes system on Q1(0, 0) with f ∈ Lq, with q > 5/2.
Assume also that ˆ

Q1

(|u|3 + |u||p|)dxdt+
ˆ 0

−1

(ˆ
|x|<1

|p|dx
)5/4

dt ≤ ε1, (9.62)

and ˆ
Q1

|f |qdxdt ≤ ε2. (9.63)

Then we have |u(t, x)| ≤ C1 for Lebesgue-almost every (t, x) ∈ Q1/2(0, 0). In particular, u is
regular in Q1/2.
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Outline of the proof

Let us take an arbitrary point (s, x0) ∈ Q1/2(0, 0), where we want to show that |u(s, x0)| ≤ C1.
As Q1/2(s, x0) ⊂ Q1(0, 0), we have an integral estimate

ˆ
Q1/2(s,x0)

(|u|3 + |u||p|)dxdt+
ˆ s

s−1/4

(ˆ
|x−x0|<1/2

|p|dx
)5/4

dt ≤ ε1. (9.64)

We will consider a sequence of shrinking parabolic cylinders Qk = Qrk(s, x0), “centered” at
the point (s, x0) with rk = 2−k. Our goal will be to show that for all k ≥ 2 we have

−
ˆ
|x−x0|<rk

|u(s, x)|2dx ≤ C0ε
2/3
1 , (9.65)

where −́
S
f denotes the average of a function f over the set S. Then, if (s, x0) is a Lebesgue

point for u, it follows that
|u(s, x0)|2 ≤ C0ε

2/3
1 , (9.66)

hence (9.66) holds for Lebesgue almost every point in Q1/2(0, 0), which is exactly the claim
of Proposition 9.16.

In order to prove (9.65) we will show that for all k ≥ 2 we have a more general estimate

sup
s−r2k<t≤s

−
ˆ
|x−x0|≤rk

|u(t, x)|2dx+ 1

r3k

ˆ
Qk

|∇u(t, x)|2dxdt ≤ C0ε
2/3
1 . (9.67)

Note that (9.65) follows immediately from (9.67). Thus, the conclusion of Proposition 9.4
follows from (9.67).

The induction base. We will prove (9.67) by induction, starting with k = 2. For k = 2,
we may use the localized energy inequality: for every smooth test function ϕ(t, x) ≥ 0, that
vanishes near |x| = 1 and t = −1, we have, for −1 < s < 0, with B1 = B1(0, 0):

ˆ
B1

|u(s, x)|2ϕ(s, x)dx+ 2

ˆ s

−1

ˆ
B1

|∇u(t, x)|2ϕ(t, x)dxdt ≤
ˆ s

−1

ˆ
B1

|u(t, x)|2(ϕt +∆ϕ)dxdt

+

ˆ s

−1

ˆ
B1

(|u|2 + 2p)u · ∇ϕ(t, x)dtdx+ 2

ˆ s

−1

ˆ
B1

(f · u)ϕ(t, x)dxdt. (9.68)

Taking ϕ such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 on Q1/2(0, 0) and ϕ is supported in Q1(0, 0), we deduce
thatˆ

|x−x0|≤1/4

|u(s, x)|2dx+
ˆ
Q2

|∇u(t, x)|2dxdt ≤ C

ˆ
Q1(0,0)

(|u|2+|u|3+|u||p|+|u||f |)dxdt. (9.69)

Now, we may use Young’s inequality on the term |u||f |, together with the Lq-bound on f ,
with q > 5/2, the Hölder inequality, as well as our assumption (9.64), to conclude that the

left side of (9.69) is smaller than Cε
2/3
1 , provided that ε1 and ε2 are both sufficiently small.

Thus, (9.67) holds for k = 2.
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The induction step. The induction step in the proof of (9.67) will be split into two
sub-steps. First, we will show that if (9.67) holds for all 2 ≤ k ≤ n− 1, and n ≥ 3, then we
have

1

|Qn|

ˆ
Qn

|u|3dxdt+ r
3/5
n

|Qn|

ˆ
Qn

|u||p− p̄n|dxdt ≤ ε
2/3
1 , (9.70)

where

p̄n(t) = −
ˆ
|x−x0|<rn

p(t, x)dx. (9.71)

Next, we will show that if (9.70) holds for all 3 ≤ k ≤ n, then (9.67) holds for k = n. That
is, we have the following two lemmas.

Lemma 9.17. Assume that ε1 and ε2 are sufficiently small, and n ≥ 3, and (9.67) holds for
all 2 ≤ k ≤ n− 1, then (9.70) holds.

Lemma 9.18. Assume that (9.70) holds for all 3 ≤ k ≤ n, and ε1 and ε2 are sufficiently
small, then (9.67) holds for k = n.

The proof of these lemmas is the heart of the argument.

The proof of Lemma 9.17

We set

A(r) = sup
s−r2<t<s

1

r

ˆ
Br(x0)

|u(t, x)|2dx, G(r) =
1

r2

ˆ
Qr(s,x0)

|u|3dxdt,

and

δ(r) =
1

r

ˆ
Qr(s,x0)

|∇u(t, x)|2dxdt.

Recalling that the dimension of u is 1/L, and the dimension of t is L2, while the dimension
of p is 1/L2, we see that, A(r), G(r), and δ(r) are all dimensionless. The induction hypothesis
is

A(rk) + δ(rk) ≤ Cε
2/3
1 r2k, 2 ≤ k ≤ n− 1. (9.72)

In addition, we know that
G(r1) +K(r1) ≤ Cε1, (9.73)

which is part of (9.64).
Bound on the first term in (9.70). The two terms in the left side of (9.70) will be

estimated separately. We will extensively use the Gagliardo-Nirenberg inequality in a ball
ˆ
Br

|u|qdx ≤ C
( ˆ

Br

|∇u|2dx
)a( ˆ

Br

|u|2
)q/2−a

+
C

r2a

( ˆ
Br

|u|2dx
)q/2

, (9.74)

with 2 ≤ q ≤ 6, and a = 3(q − 2)/4 – this is the only choice of a which makes (9.74)
dimensionally correct. Taking q = 3 and a = 3/4 gives a bound on the L3-norm that appears
in the left side of (9.70):

ˆ
Br

|u|3dx ≤ C
( ˆ

Br

|∇u|2dx
)3/4(ˆ

Br

|u|2
)3/4

+
C

r3/2

(ˆ
Br

|u|2dx
)3/2

. (9.75)
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Integrating in time and using Hölder’s inequality leads to
ˆ
Qr

|u|3dxdt ≤ C

ˆ s

s−r2

(ˆ
Br

|∇u|2dx
)3/4( ˆ

Br

|u|2dx
)3/4

dt+
C

r3/2

ˆ s

s−r2

(ˆ
Br

|u|2dx
)3/2

dt

≤ C
(ˆ

Qr

|∇u|2dxdt
)3/4(ˆ s

s−r2

(ˆ
Br

|u|2dx
)3
dt
)1/4

+
C

r3/2

ˆ s

s−r2

(ˆ
Br

|u|2dx
)3/2

dt

≤ C
(
rδ(r)

)3/4
r1/2[rA(r)]3/4 + Cr1/2[rA(r)]3/2 = Cr2A(r)3/4[δ(r)3/4 + A(r)3/4]. (9.76)

Dividing by |Qr| gives

1

|Qrn−1|

ˆ
Qrn−1

|u|3dxdt ≤ C

r5n−1

ˆ
Qrn−1

|u|3dxdt ≤ C

r3n−1

A(rn−1)
3/4[δ(rn−1)

3/4 + A(rn−1)
3/4]

≤ C

r3n−1

(A(rn−1) + δ(rn−1))
3/2 ≤ Cε1, (9.77)

which, in turn, means that

1

|Qrn|

ˆ
Qrn

|u|3dxdt ≤ C ′

|Qrn−1|

ˆ
Qrn−1

|u|3dxdt ≤ C ′′ε1. (9.78)

Hence, if ε1 is so small that

C ′′ε1/3 ≤ 1

2
,

then

1

|Qrn|

ˆ
Qrn

|u|3dxdt ≤ 1

2
ε
2/3
1 . (9.79)

This is the estimate we need on the first term in the left side of (9.70). Note that (9.78) can
be also restated as

G(rn) ≤ Cε1r
3
n. (9.80)

Bound on the second term in (9.70). In order to get a bound on the second term in
the left side of (9.70), we need to show that, under the assumption

A(rk) + δ(rk) ≤ Cε
2/3
1 r2k, 2 ≤ k ≤ n− 1, (9.81)

we have
r
3/5
n

|Qn|

ˆ
Qn

|u||p− p̄n|dxdt ≤
ε
2/3
1

2
, (9.82)

provided that ε1 is sufficiently small. The main issue is bounding the pressure. Recall that p
satisfies the Poisson equation (note that this is the first time in the proof of the current lemma
that we use the Navier-Stokes equations)

−∆p =
∂2

∂xi∂xj
(uiuj). (9.83)
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For any cut-off function ϕ we can write

ϕ(x)p(t, x) = − 3

4π

ˆ
R3

1

|x− y|
∆y(ϕp)dy = − 3

4π

ˆ
R3

1

|x− y|
(p∆ϕ+ 2∇ϕ · ∇p+ ϕ∆p)dy.

Using (9.83) and integrating by parts, we may write the above as

ϕp = p1 + p2 + p3,

where

p1 =
3

4π

ˆ
R3

∂2

∂yi∂yj

[ 1

|x− y|

]
ϕuiujdy,

p2 =
3

2π

ˆ
R3

xi − yi
|x− y|3

∂ϕ

∂yj
uiujdy +

3

4π

ˆ
R3

1

|x− y|
∂2ϕ

∂yi∂yj
uiujdy,

p3 =
3

4π

ˆ
R3

1

|x− y|
p∆ϕdy +

3

2π

ˆ
R3

xi − yi
|x− y|3

p
∂ϕ

∂yj
dy.

We will take a function ϕ so that ϕ(y) ≡ 1 for |y− x0| ≤ 3/16 and ϕ(y) = 0 if |y− x0| ≥ 1/4.
Let us split p1 as

p1 = p11 + p12,

with

p11 =
3

4π

ˆ
|y−x0|<2rn

∂2

∂yi∂yj

[ 1

|x− y|

]
ϕuiujdy,

p12 =
3

4π

ˆ
|y−x0|>2rn

∂2

∂yi∂yj

[ 1

|x− y|

]
ϕuiujdy.

We can write (dropping the subscript n for the moment)

|p− p̄| ≤ |p11 − p̄11|+ |p12 − p̄12|+ |p3 − p̄3|+ |p4 − p̄4|.

To estimate p11, recall that the operators

Tij(ψ) =
(
∇2

ik

1

|x|

)
⋆ ψ

are Calderon-Zygmund operators, hence they are uniformly bounded in Lq, 1 < q < ∞. It
follows that (we denote r = rn and Br = Brn(x0))

∥p11∥L3/2(Br) ≤ C
( ˆ

B2r

|u|3dx
)2/3

,

and

p̄11 ≤
1

|Br|

ˆ
Br

|p|dx ≤ 1

|Br|2/3
(ˆ

Br

|p|3/2dx
)2/3

,

hence ˆ
Br

|p̄11|3/2dx ≤
ˆ
Br

|p|3/2dx.
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We conclude that ˆ
Br

|u||p11 − p̄11|dx ≤ C
(ˆ

Br

|u|3dx
)1/3(ˆ

B2r

|u|3dx
)2/3

. (9.84)

The terms |pi − p̄i| for p12, p2 and p3 are estimated using the following bounds on the
gradients ∇pi for |x− x0| < r (recall that ϕ ≡ 1 in the ball B3/16(x0) so that ∇ϕ = 0 in that
ball):

|∇p12(x)| ≤ C

ˆ
2r<|y−x0|<1/4

|u|2

|y − x|3
dy ≤ C

ˆ
2r<|y−x0|<1/4

|u|2

|y − x0|3
dy,

|∇p2(x)| ≤ C

ˆ
B1/4(x0)

|u|2dy,

|∇p3(x)| ≤ C

ˆ
B1/4(x0)

|p|dy.

This leads to ˆ
Br

|u||p12 − p̄12| ≤ Cr
[
sup
x∈Br

|∇p12(x)|
]
(r3)2/3

(ˆ
Br

|u|3dx
)1/3

≤ Cr3
(ˆ

Br

|u|3dx
)1/3 ˆ

2r<|y−x0|<1/4

|u|2

|y − x0|3
dy, (9.85)

and ˆ
Br

|u||p2 − p̄2| ≤ Cr
[
sup
x∈Br

|∇p2(x)|
]
(r3)2/3

( ˆ
Br

|u|3dx
)1/3

(9.86)

≤ Cr3
( ˆ

Br

|u|3dx
)1/3 ˆ

B1/4(x0)

|u|2dy ≤ Cr3
( ˆ

Br

|u|3dx
)1/3( ˆ

B1/4(x0)

|u|3dy
)2/3

.

For p3, we write
ˆ
Br

|u||p3 − p̄3| ≤ Cr
( ˆ

Br

|u|dy
)(ˆ

B1/4(x0)

|p|
)

(9.87)

≤ Cr(r3)3/5
(ˆ

Br

|u|2dy
)1/5( ˆ

Br

|u|3dy
)1/5(ˆ

B1/4(x0)

|p|
)

≤ Cr3A(r)1/5
(ˆ

Br

|u|3dy
)1/5( ˆ

B1/4(x0)

|p|
)
.

Integrating the above estimates over the time interval s − r2 ≤ t ≤ s, and collecting all the
terms we get ˆ

Qr

|u||p− p̄r|dxdt ≤ W1 +W2 +W3 +W4. (9.88)

The term

W1 = C
( ˆ

Qr

|u|3dxdt
)1/3( ˆ

Q2r

|u|3dxdt
)2/3

= Cr2G(r)1/3G(2r)2/3 (9.89)
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comes from (9.84) and using Hölder’s inequality. Using (9.80), W1 can be bounded as

W1 ≤ Cε1r
2
nr

3
n = Cε1r

5
n. (9.90)

The second term arises from (9.85) and also using Hölder’s inequality (note that 13/3 =
3 + 2(2/3)),

W2 = Cr13/3
(ˆ

Qr

|u|3dxdt
)1/3

sup
s−r2<t<s

ˆ
2r<|y−x0|<1/4

|u(t, y)|2

|y − x0|3
dy. (9.91)

Note that for r = rn = 2−n, the last factor in (9.91) can be estimated with the help of the
induction hypothesis (9.81) as

ˆ
2rn<|y−x0|<1/4

|u(t, y)|2

|y − x0|3
dy ≤

n−1∑
k=3

ˆ
2−k<|y−x0|<2−(k−1)

|u(t, y)|2

|y − x0|3
dy

≤
n−1∑
k=3

23k
ˆ
2−k<|y−x0|<2−(k−1)

|u(t, y)|2dy ≤
n−1∑
k=3

r−3
k A(rk−1) ≤ Cε

2/3
1

n−1∑
k=3

r−1
k ≤ Cε

2/3
1

rn
.

Using this inequality, together with (9.80) in (9.91) gives

W2 ≤ Cr13/3n

(
r2nG(rn)

)1/3 ε2/31

rn
≤ Cr4nG(rn)

1/3ε
2/3
1 ≤ Cr5nε1. (9.92)

The third term

W3 = Cr3
(ˆ

Qr

|u|3dxdt
)1/3(ˆ

Q1/4

|u|3dxdt
)2/3

(9.93)

comes from (9.86) and, of course, using Hölder’s inequality once again, and can be bounded
with the help of (9.80) as

W3 ≤ Cr3n
(
r2nG(rn))

)1/3
G(1/4)2/3 ≤ Cr14/3n ε1. (9.94)

Finally, the last term in (9.88) comes from (9.87):

W4 = Cr3A(r)1/5
(ˆ

Qr

|u|3dxdt
)1/5(ˆ 0

−1/16

(ˆ
B1/4

|p|dx
)5/4

dt
)4/5

. (9.95)

It can be bounded as (assuming that ε1 ≤ 1):

W4 ≤ Cr3nA(rn)
1/5(r2nG(rn))

1/5ε
4/5
1 ≤ Cr3n(r

2
nε

2/3
1 )1/5(r5nε1)

1/5ε
4/5
1 ≤ Cr22/5n ε1. (9.96)

Altogether, we conclude that ˆ
Qn

|u||p− p̄rn|dxdt ≤ Cr22/5n ε1. (9.97)

We conclude that
r
3/5
n

|Qn|

ˆ
Qn

|u||p− p̄rn|dxdt ≤ Cε1 ≤
ε
2/3
1

2
, (9.98)

provided that ε1 is small enough. This bounds the second term in (9.70) and finishes the
proof of Lemma 9.17.
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Proof of Lemma 9.18

We now assume that

1

|Qk|

ˆ
Qk

|u|3dxdt+ r
3/5
k

|Qk|

ˆ
Qk

|u||p− p̄n|dxdt ≤ ε
2/3
1 , (9.99)

for all 3 ≤ k ≤ n, and show that then

sup
s−r2n<t≤s

−
ˆ
|x−x0|≤rn

|u(t, x)|2dx+ 1

r3n

ˆ
Qn

|∇u(t, x)|2dxdt ≤ C0ε
2/3
1 . (9.100)

We will shift the origin so that (s, x0) = (0, 0), to simplify the notation. The idea is to use
the generalized energy inequalityˆ

B1

|u(s, x)|2ϕ(s, x)dx+ 2

ˆ s

−1

ˆ
B1

|∇u(t, x)|2ϕ(t, x)dxdt ≤
ˆ s

−1

ˆ
B1

|u(t, x)|2(ϕt +∆ϕ)dxdt

+

ˆ s

−1

ˆ
B1

(|u|2 + 2p)u · ∇ϕ(t, x)dtdx+ 2

ˆ s

−1

ˆ
B1

(f · u)ϕ(t, x)dxdt, (9.101)

with a suitable test function ϕn. We will set

ϕn(t, x) = χ(x)ψn(t, x),

with the backward heat kernel

ψn(t, x) =
1

(r2n − t)3/2
exp

{
− |x|2

4(r2n − t)

}
,

and a smooth function χ(x) ≥ 0 so that χ(x) ≡ 1 on Q2 = Q1/4(0, 0) and χ = 0 outside
of Q1/3(0, 0). Then we have

∂ϕn

∂t
+∆ϕn = 0, on Q2,

and ∣∣∣∂ϕn

∂t
+∆ϕn

∣∣∣ ≤ C, everywhere,

and the following bounds hold:

1

Cr3n
≤ ϕn ≤ C

r3n
, |∇ϕn| ≤

C

r4n
, on Qn, n ≥ 2 (9.102)

and
1

Cr3k
≤ ϕn ≤ C

r3k
, |∇ϕn| ≤

C

r4k
, on Qk−1 \Qk, n ≥ 2. (9.103)

We may now insert this ϕn into (9.101), and use the lower bound for ϕn on Qn to get

sup
−r2n≤t≤0

1

r3n

ˆ
|x|<rn

|u(t, x)|2dx+ 1

r3n

ˆ
Qn

|∇u|2dxdt ≤ C

ˆ
Q1

|u|2|∂ϕn

∂t
+∆ϕn|dxdt

+C

ˆ
Q1

|u|3|∇ϕn|dtdx+ C
∣∣∣ ˆ

Q1

p(u · ∇ϕn)dtdx
∣∣∣+ C

ˆ s

Q1

|f ||u||ϕ|dxdt

= C(I1 + I2 + I3 + I4). (9.104)
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To estimate I1 we simply use Hölder’s inequality:

|I1| ≤ C

ˆ
Q1

|u|2dxdt ≤ C
( ˆ

Q1

|u|3dxdt
)2/3

≤ Cε
2/3
1 . (9.105)

The second term is estimated as

|I2| ≤ C

n∑
k=1

1

r4k

ˆ
Qk

|u|3dxdt ≤ C
n∑

k=1

1

r4k
ε
2/3
1 r5k ≤ Cε

2/3
1 . (9.106)

The last term in (9.104) is also easy:

|I4| ≤ C

n∑
k=1

1

r3k

ˆ
Qk

|u||f |dxdt ≤ C

n∑
k=1

1

r3k

( ˆ
Qk

|u|3
)1/3(ˆ

Qk

|f |3/2
)2/3

(9.107)

≤ C
n∑

k=1

1

r3k
(ε

2/3
1 r5k)

1/3∥f∥Lq(Q1)r
10/3−5/q
k ≤ Cε

1/q
2 ε

2/9
1

n∑
k=1

r
2−5/q
k ≤ Cε

1/q
2 ε

2/9
1 ,

as q > 5/2. Therefore, if ε2 is sufficiently small, we have

|I4| ≤ Cε
2/3
1 . (9.108)

Finally, we deal with I3. Here, we will use the condition that u is a divergence-free flow.
Let us take smooth functions 0 ≤ χk ≤ 1 such that χk ≡ 1 on Q7rk/8, and χk ≡ 0 outside
of Qrk , and

|∇χk| ≤
C

rk
.

Then, as χ1ϕn = ϕn, we can write I3 as a telescoping sum:

I3 =

ˆ
Q1

p(u · ∇ϕn)dtdx =
n−1∑
k=1

ˆ
Q1

pu · ∇((χk − χk+1)ϕn) +

ˆ
Q1

pu · (χnϕn). (9.109)

Since u is divergence-free, and χk − χ+1 vanishes outside of Qk, we can write for k ≥ 3:ˆ
Q1

pu · ∇((χk − χk+1)ϕn) =

ˆ
Qk

pu · ∇((χk − χk+1)ϕn) =

ˆ
Qk

(p− p̄k)u · ∇((χk − χk+1)ϕn).

For k = 1, 2 we simply have∣∣∣ ˆ
Q1

pu · ∇((χk − χk+1)ϕn)
∣∣∣ ≤ c

ˆ
Q1

|p||u| ≤ Cε
2/3
1 ,

while for the last term in (9.109) we haveˆ
Q1

pu · (χnϕn) =

ˆ
Qn

(p− p̄n)u · ∇(χnϕn).

Putting these together, we have

I3 ≤ Cε
2/3
1 + C

n∑
k=3

1

r4k

ˆ
Qk

|p− p̄k||u| ≤ Cε
2/3
1 + C

n∑
k=3

1

r4k
ε
2/3
1 r

5−3/5
k ≤ Cε

2/3
1 . (9.110)

This finishes the proof of Lemma 9.18, and thus that of Proposition 9.4.
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10 The weak solutions of the Euler equations

The goal of this section is to give a naive and simplistic glimpse of the recent results on the
Onsager conjecture and the weak solutions of the Euler and Navier-Stokes equations that do
not preserve the energy. This material is mostly based on a recent review by V. Vicol and
T. Buckmaster, but also includes some material from the pioneering papers by C. De Lellis
and L. Székelyhidi.

10.1 The statistical description of turbulence

The starting point of our discussion are the Navier-Stokes equations

uνt + uν · ∇uν +∇p = ν∆uν + f,

∇ · uν = 0, (10.1)

with a small viscosity ν > 0. Our favorite fundamental energy balance says that, as long as
the solution uν(t, x) remains smooth, we have

1

2

d

dt

ˆ
|uν(t, x)|2dx = −ν

ˆ
|∇uν(t, x)|2dx+

ˆ
(f · uν)dx. (10.2)

On the other hand, if we consider the Euler equations rather than the Navier-Stokes equations,
with the same forcing

vt + v · ∇v +∇p = f,

∇ · v = 0, (10.3)

and assume that v(t, x) is also smooth, then the corresponding energy balance is simply

1

2

d

dt

ˆ
TL

|v(t, x)|2dx =

ˆ
TL

(f · v)dx. (10.4)

Our interest will be in two issues: first, should we think of the solutions to Euler equations as
the solutions to the Navier-Stokes equations in the limit of a zero viscosity, and, second, how
do the weak solutions to the Euler equations behave when the forcing f is, in some sense,
small. In other words, can a small force f create a large (but oscillatory) solution to the Euler
equations. These issues are quite closely related.

The answer to the first question depends, essentially, on what happens to the energy
dissipation term in the right side of (10.2). Naively, one may expect that this term vanishes
as ν → 0, so that for ν > 0 small it is also small. This, of course, assumes that uν remains
uniformly smooth as ν → 0. As we will see, this is not the case even in much simpler linear
problems. In order to be more specific, we will assume, without any rigorous justification,
that uν satisfies the following hypotheses that reflect the physical observations. First, uν(t, x)
is a space-time stationary random process – its law is the same for all t ∈ R and x ∈ R3, and
for any a collection of space-time points (t1, x1), . . . , (tN , xN) and any shifts s ∈ R and y ∈ R3,
the joint law of

uν(t1 + s, x1 + y), . . . , uν(tN + s, xN + y)
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does not depend on the ”off-sets” s ∈ R and y ∈ R3 but only on the relative times and
positions t1, . . . , tN and x1, . . . , xN . Second, we assume that the field uν(t, x) is statistically
isotropic: for any collection of points x1, . . . , xN , any t ∈ R, and any orthogonal matrix R,
the joint law of

uν(t, Rx), . . . , uν(t, RxN)

is the same as that of uν(t, x), . . . , uν(t, xN). For the final assumption, let us define the
increments

δuν(t, x, z) = uν(t, x+ z)− uν(t, x).

We assume self-similarity of the increments: there is a range of scales ℓ, known as the in-
ertial range, and a constant µ > 0, so that the law of δuν(t, x, λℓẑ) is the same as that
of λµδuν(t, x, ℓẑ) for all unit vectors ẑ with |ẑ| = 1, and λ > 0 so that both ℓ and λℓ are in
the inertial range.

A basic hypothesis of the theory of turbulence, together with the above space-time homo-
geneity, isotropy and self-similarity properties, is that the average energy dissipation rate

εν = ⟨ν|∇uν(t, x)|2⟩ → ε > 0 as ν → 0, (10.5)

does not vanish in the limit ν → 0. Here, ⟨·⟩ denotes the statistical averaging. This, in a
sense, defines, what it means for uν to be turbulent. This should, naturally, in the limit ν → 0,
lead to the solutions to the Euler equations for which we have an inequality in (10.4) rather
than an equality:

1

2

d

dt

ˆ
|v(t, x)|2dx <

ˆ
(f · v)dx, (10.6)

and which are not smooth. This brings about two fundamental questions: first, how should we
expect the energy dissipation rate to behave for ν small, and, second, for what kind of rough
solutions to the Euler equations should we not expect energy conservation? The former is
addressed by the Kolmogorov theory of turbulence, and the latter by the Onsager conjecture,
though the two are closely related.

Let us define the mean energy per unit volume carried by wave numbers smaller than κ
as ⟨|P≤κu

ν |2⟩. Here, P≤κ denotes the projection on the wave numbers smaller than κ in the
Fourier space. The energy spectrum of uν is then defined as

E(κ) =
d

dκ
⟨|P≤κu

ν |2⟩. (10.7)

The main hypothesis of the statistical turbulence theory is that in the inertial range the
energy E(κ) depends only on the limiting average energy density ε in (10.5) and the wave
number κ but not on f or the viscosity ν. The dimensions of these objects are

[E(κ)] =
[ d
dκ

⟨|P≤κu
ν |2⟩
]
= length

length2

time2
=

length3

time2
,

[ε] =
length2

time

1

time2
=

length2

time3
, (10.8)

[κ] =
1

length
.
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Therefore, the dimensional analysis implies that the ratio

E(κ)

εaκb
(10.9)

is non-dimensional, and thus should be a constant, if (and only if)

3 = 2a− b, 2 = 3a, (10.10)

so that a = 2/3, b = −5/3. We deduce that in a turbulent flow we should have

E(κ) = CKε
2/3κ−5/3, (10.11)

in the inertial range, with some constant CK > 0, that should be determined from the physical
considerations.

The self-similarity exponent µ can also be determined from purely dimensional consider-
ations. Let us define the p-th order absolute structure function as

Sp(ℓ) = ⟨|uν(t, x+ ℓẑ)− uν(t, x)|p⟩, |ẑ| = 1, ℓ > 0.

In the inertial range we should have

Sp(ℓ) = Cdimℓ
pµ, (10.12)

with a dimensional constant Cdim. The physical hypothesis is again that Sp(ℓ) depends only
on ε and ℓ. Note that the corresponding dimensions are

[Sp(ℓ)] =
lengthp

timep
, [ε] =

length2

time3
, [ℓ] = length.

We conclude that there exists a non-dimensional constant Dp so that

Sp(ℓ) = Dp(εℓ)
p/3.

Comparing to (10.12) we conclude that the self–similarity exponent µ = 1/3.
The inertial range extends from the macroscopic scale of the forcing down to a small

scale ℓK that should depend only on ε and the viscosity ν. Once again, looking at the
dimensions

[ε] =
length2

time3
, [ν] =

length2

time
,

we conclude that the Kolmogorov dissipation length is

λK =
cKν

3/4

ε1/4
, (10.13)

with a constant cK that comes from physical considerations. The constants cK and CK are
not independent – they can be related using the hypothesis that the energy is concentrated
in the inertial scale λK ≪ ℓ≪ L, together with (10.11) and the relation between ε and E(κ).
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10.2 The easy direction of Onsager’s conjecture

Let us now turn to a more mathematical analysis. As usual, we work on the torus T3. We
say that v(t, x) is a weak solution to the Euler equations

vt + v · ∇v +∇p = 0, t > 0, x ∈ T3,

∇ · v = 0, (10.14)

v(0, x) = v0(x),

if v ∈ C[0, T ;L2(R3)], for any t > 0 the vector field v(t, ·) is divergence-free in the sense of
distributions, and for any divergence-free test function ϕ(t, x) we have

ˆ ∞

0

ˆ
T3

v(t, x) · [∂tϕ(t, x) + v(t, x) · ∇ϕ(t, x)]dxdt+
ˆ
T3

v0(x)ϕ(0, x)dx = 0. (10.15)

A smooth solution to Euler’s equations conserves energy:

ˆ
T3

|v(t, x)|2dx =

ˆ
T3

|v0(x)|2dx. (10.16)

For the weak solutions, Onsager’s conjecture, directly related to the Kolmogorov self-similarity
exponent µ = 1/3, says that (i) a weak solution to the Euler equations that belongs to the
Hölder space Cα

t,x with α > 1/3 conserves energy, and (ii) for any α < 1/3 there exists a weak
solution to the Euler equations in the Hölder space Cα

t,x that does not conserve energy.
The first part of this conjecture is much easier to prove. Let us assume that v(t, x) is Cα

in the x-variable, with α > 1/3. Let ϕ ≥ 0 be a smooth test function in C∞
c (R3) such

that ∥ϕ∥L1 = 1 and set ϕℓ = ℓ−3ϕ(x/ℓ), a standard mollifier. Given a function f we will use
the notation

fℓ = ϕℓ ⋆ f. (10.17)

The mollified vector field vℓ = v ⋆ ϕℓ satisfies

∂tvℓ + (vℓ · ∇vℓ) + ([v · ∇v]ℓ − vℓ · ∇vℓ) +∇pℓ = 0, t > 0, x ∈ T3,

∇ · vℓ = 0. (10.18)

We can write, using the divergence-free property of v:

[v · ∇v]ℓ,j = ϕℓ ⋆ [vk∂kvj] = ϕℓ ⋆ [∂k(vkvj)] = ∂k[ϕℓ ⋆ (vkvj)] = ∂k[(vkvj)ℓ]. (10.19)

Then, multiplying (10.18) by vℓ and integrating by parts gives, as vℓ is also divergence-free:

1

2

ˆ
T3

|vℓ(t, x)|2dx−
1

2

ˆ
T3

|vℓ(0, x)|2dx = −
ˆ t

0

ˆ
T3

(
vℓ,j[vk∂kvj]ℓ − vℓ,j[vℓ,k∂kvℓ,j

)
dxds

= −
ˆ t

0

ˆ
T3

(
vℓ,j∂k[(vkvj)ℓ]− vℓ,j[vℓ,k∂kvℓ,j

)
dxds =

ˆ t

0

ˆ
T3

[(vkvj)ℓ − vℓ,kvℓ,j]∂kvℓ,jdxds.(10.20)

We have the following lemma.

146



Lemma 10.1. Let ϕ ≥ 0 be in C∞
c (Rd) and such that ∥ϕ∥L1 = 1, and set ϕℓ(x) = ℓ−dϕ(x/ℓ).

Then, for any α ∈ (0, 1) we have

∥f ⋆ ϕℓ∥C1 ≤ Cℓ−(1−α)∥f∥Cα , (10.21)

and
∥(fg) ⋆ ϕℓ − (f ⋆ ϕℓ)(g ⋆ ϕℓ)∥C0 ≤ Cℓ2α∥f∥Cα∥g∥Cα , (10.22)

with a constant C that depends on ϕ.

With this lemma in hand, and assuming that v ∈ Cα(R3), we may estimate the integral
in the right side of (10.20) as∣∣∣ ˆ

T3

[(vkvj)ℓ − vℓ,kvℓ,j]∂kvℓ,jdx
∣∣∣ ≤ C∥(vkvj)ℓ − vℓ,kvℓ,j∥C0∥vℓ∥C1

≤ Cℓ2α∥v∥2Cαℓ−(1−α)∥v∥Cα = Cℓ3α−1∥v∥3Cα → 0, (10.23)

if α > 1/3. Therefore, passing to the limit ℓ→ 0 in (10.20), we obtainˆ
T3

|v(t, x)|2dx =

ˆ
T3

|v(0, x)|2dx, (10.24)

thus the energy is conserved.
Let us now prove Lemma 10.1. To prove the first bound in this lemma, we write

∂k(f ⋆ ϕℓ)(x)= lim
h→0

ˆ
ϕℓ(x+ hek − y)− ϕℓ(x− y)

h
f(y)dy

= lim
h→0

ˆ
ϕℓ(x+ hek − y)− ϕℓ(x− y)

h
(f(y)− f(x))dy

= lim
h→0

ˆ
ϕ((x+ hek − y)/ℓ)− ϕ((x− y)/ℓ)

h
(f(y)− f(x))

dy

ℓn

= lim
h→0

ˆ
ϕ(z + hℓ−1ek)− ϕ(z)

h
(f(x− ℓz)− f(x))dz,

so that

|∂k(f ⋆ ϕℓ)(x)| ≤ lim
h→0

ˆ
|ϕ(z + hℓ−1ek)− ϕ(z)|

h
|f(x− ℓz)− f(x)|dy

≤ ℓα−1∥f∥Cα lim
h→0

ˆ
|ϕ(z + hek)− ϕ(z)|

h
|z|αdz ≤ Cℓα−1∥f∥Cα .(10.25)

For the second bound, we note that

(fg) ⋆ ϕℓ(x)− (f ⋆ ϕℓ)(x)(g ⋆ ϕℓ)(x) =

ˆ
f(y)g(y)ϕℓ(x− y)ϕℓ(x− z)dydz

−
ˆ
f(y)ϕℓ(x− y)g(z)ϕℓ(x− z)dydz (10.26)

=

ˆ
ϕ(y)ϕ(z)[f(x− ℓy)g(x− ℓy)− f(x− ℓy)g(x− ℓz)]dydz

=

ˆ
ϕ(y)ϕ(z)[f(x− ℓz)− f(x− ℓy)]g(x− ℓz)dydz

=

ˆ
ϕ(y)ϕ(z)[f(x− ℓz)− f(x− ℓy)][g(x− ℓz)− g(x)]dydz,
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so that

|(fg) ⋆ ϕℓ(x)− (f ⋆ ϕℓ)(x)(g ⋆ ϕℓ)(x)| (10.27)

≤
ˆ
ϕ(y)ϕ(z)|f(x− ℓz)− f(x− ℓy)||g(x− ℓz)− g(x)|dydz

≤ ℓ2α∥f∥Cα∥g∥Cα

ˆ
ϕ(y)ϕ(z)|z − y|α|z|αdydz = Cℓ2α∥f∥Cα∥g∥Cα ,

finishing the proof of Lemma 10.1.

10.3 The wild continuous weak solutions of the Euler equations

In this section, we prove existence of a Hölder continuous solution of the Euler equations, with
a sufficiently small Hödler exponent β > 0. The Euler equations written in the divergence
form are

vt +∇ · (v ⊗ v) +∇p = 0, t > 0, x ∈ T3,

∇ · v = 0, (10.28)

that does not conserve the energy. Here, the torus is normalized as T3 = [0, 1]3, with the
periodic boundary conditions. We use here and below the notation

[a⊗ b]ij = aibj (10.29)

for the standard tensor product of two vectors and

[a⊗tr b]ij = aibj −
1

n
(a · b)δij, (10.30)

for a traceless tensor product of a pair of vectors a and b in Rn. Only the divergence of the
traceless tensor products will appear below in various equations that also have the pressure
terms, and the trace part can be always added to the gradient of the pressure.

Theorem 10.2. There exists β > 0 and a weak solution v ∈ C([0, T ];Cβ(T3)) to the Euler
equations such that ˆ

T3

|v(1, x)|2dx ≥ 2

ˆ
T3

|v(0, x)|2dx. (10.31)

The proof proceeds by an induction. We will construct a sequence vq, q = 0, 1, 2, . . . of
solutions to the forced Euler equations

∂vq +∇ · (vq ⊗ vq) +∇pq = ∇ ·Rq, t > 0, x ∈ T3,

∇ · vq = 0, (10.32)

with a Reynolds stress Rq that goes uniformly to zero as q → +∞, and vq converges uniformly
to a weak solution to the Euler equations satisfying the ”reverse” energy inequality (10.31).
At each induction step, we do not design vq+1 directly but rather use vq to construct the
increment wq+1 = vq+1 − vq, in such a way that vq+1 satisfies

∂tvq+1 +∇ · (vq+1 ⊗ vq+1) +∇pq+1 = ∇ ·Rq+1, t > 0, x ∈ T3,

∇ · vq+1 = 0, (10.33)
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with a smaller Reynolds stress Rq+1. Given wq+1, the Reynolds stress Rq+1 is determined as
the trace-less symmetric matrix satisfying

∇ ·Rq+1 = Eosc + Etr + ENash, (10.34)

with the ”error” terms in the right side depending on vq and wq+1:

Eosc = ∇ · (wq+1 ⊗ wq+1)−∇ ·Rq +∇(pq+1 − pq), (10.35)

Etr = ∂twq+1 + vq · ∇wq+1, (10.36)

ENash = wq+1 · ∇vq. (10.37)

These terms are known as the oscillation error, the transport error and the Nash error,
respectively. Given the iterate vq, the goal will be to choose wq+1 so that Rq+1, the symmetric
trace-less solution to (10.34) with a given right side, is small, and, in addition, the series∑

q

wq (10.38)

converges. In order to make sure that the reverse energy inequality (10.31) holds, we will
choose the first iterate v0 so that v0(0, x) ≡ 0, and v0(1, x) does not vanish. This means
that v0(t, x) satisfies (10.31) trivially. The induction construction will ensure that actually
all vq(t, x) stay sufficiently close to v0(t, x) for all 0 ≤ t ≤ 1, so that in the limit q → +∞ the
inequality (10.31) will still hold.

The correction wq+1 will consist of two parts:

wq+1 = w
(p)
q+1 + w

(c)
q+1. (10.39)

Here, w
(p)
q+1 is the principal part of the perturbation, chosen so that the low frequency terms in

the trace-less product wq+1⊗trwq+1 essentially cancel those in Rq, so that these contributions
to the oscillation error cancel each other. Roughly speaking, it is of the form

w
(p)
q+1 ∼

∑
ξ

aξ(Rq)Wξ. (10.40)

Here,Wξ are ”building blocks” oscillating at a high frequency λq+1, and the coefficients aξ(Rq)
are chosen so that the aforementioned cancellation of the lower frequencies takes place. As
an additional minor complication, w

(p)
q+1 will need to be corrected to decrease the transport

error. The correction w
(c)
q+1 is chosen to ensure that wq+1 is divergence-free.

In order to see yet another way the threshold 1/3 for the Hödler regularity comes up, let
us assume that the frequencies are chosen so that

λq = λq, (10.41)

with some λ ∈ N. Then, in order for the series in (10.38) to converge to a Cβ function v, we
should have, at least,

∥wq∥C0 ≤ λ−β
q . (10.42)
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The Reynolds stress should then satisfy, roughly

∥Rq∥C0 ≤ λ−2β
q+1 , (10.43)

because it is related quadratically to wq+1. The contribution of the Nash error to the Reynolds
stress Rq+1 is one derivative smoother that ENash, and oscillates at frequency λq+1. In the
uniform norm, it should be of the order

∥RNash
q+1 ∥C0 ≤ C∥wq+1∥C0∥vq∥C1

λq+1

≤
Cλ−β

q+1

λq+1

∑
m≤q

λmλ
−β
m ≤ Cλ−β−1

q+1 λ1−β
q

= Cλ−β−1
q+2 λβ+1λ1−β

q+2λ
2(β−1) ≤ Cλ−2β

q+2λ
3β−1. (10.44)

In other words, for the bound (10.43) to be ”iteratable” we need to have β < 1/3, another
indication for why Onsager’s conjecture holds. In reality, we will take the frequencies growing
much faster than in (10.41), and we will also take β to be very small.

10.4 The iterative estimate

We now turn to an implementation of the above scheme. We will take the frequencies

λq = a2
q

, (10.45)

with a ∈ N sufficiently large, to be specified later, so that

λq+1 = λ2q. (10.46)

We also set
δq = λ−2β

q , (10.47)

with β > 0 sufficiently small, also to be specified later. We will assume the following inductive
bounds on vq and Rq:

∥vq∥C0 ≤ 1− δ1/2q , (10.48)

∥vq∥C1
t,x

≤ CRδ
1/2
q λq, (10.49)

∥Rq∥C0 ≤ cRδq+1, (10.50)

with a pair of universal constants CR and cR, to be specified below. Let us explain the choices
here. As we have mentioned above, the basic premise is that the increment wq+1 = vq+1 − vq
is of the size δ

1/2
q+1 in the uniform norm – see (10.52) below, and oscillates at frequency λq+1.

Then the Reynolds stress Rq should be of the size δq+1 in the uniform norm, simply because
it is quadratic in wq+1, which gives the induction assumption (10.50). The uniform bound
(10.48) is a convenient induction assumption since

vq+1 = vq + wq+1,

so that if (10.48) holds at level q, and we have (10.52) below, then

∥vq+1∥ ≤ 1− δ1/2q + δ
1/2
q+1 ≤ 1− δ

1/2
q+1.
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Finally, assumption (10.49) on the C1-norm of vq comes about because the frequencies λq
grows sufficiently fast, so that even though ∥wq+1∥C0 ≪ ∥wq∥C0 , we still have ∥wq+1∥C1 ≫
∥wq∥C1 , so that the main contribution to ∥vq∥C1 comes from ∥wq∥C1 , which is of the size

∥wq∥C1 ∼ λq+1∥wq∥C0 = λq+1δ
1/2.

Note that δ
1/2
q λq → +∞ as q → +∞ in (10.49), since β > 0 is small – because of the easy part

of Onsager’s conjecture, we do not expect vq to converge in a Hölder space Cα
t,x with α > 1/3,

let alone in C1
t,x. The induction step is described in the following.

Proposition 10.3. There exists β > 0 sufficiently small and a0 sufficiently large, so that for
any a ≥ a0 there exist vq and Rq, q ≥ 0, that satisfy

∂vq +∇ · (vq ⊗ vq) +∇pq = ∇ ·Rq, t > 0, x ∈ T3,

∇ · vq = 0, (10.51)

and obey (10.48)-(10.50), and such that

∥vq+1 − vq∥C0 ≤ δ
1/2
q+1. (10.52)

Let us explain how Proposition 10.3 implies the conclusion of Theorem 10.2. We take the
first iterate to be an oscillatory shear flow

v0(t, x) =
t

2
(sin(λ

1/2
0 x3), 0, 0). (10.53)

Then we have

∥v0(t, ·)∥C0 ≤ 1

2
≤ 1− δ

1/2
0 , (10.54)

so that (10.48) is satisfied, for a large enough. We also have

∥v0(t, ·)∥C1
t,x

≤ λ
1/2
0 ≤ λ0δ

1/2
0 , (10.55)

as long as δ−1
0 ≤ λ0, which is true as long as β < 1/2, and a is sufficiently large. Hence, (10.49)

also holds for q = 0. To find R0 we note that, as v0 is a shear flow, we have v0 · ∇v0 = 0,
hence

R0 =
1

2λ
1/2
0

 0 0 − cos(λ
1/2
0 x3)

0 0 0

− cos(λ
1/2
0 x3) 0 0

 , (10.56)

so that

∇ ·R0 =
1

2
(sin(λ

1/2
0 x3), 0, 0) =

∂v0
∂t

.

It follows that

∥R0∥C0 =
1

2λ
1/2
0

≤ a−1/2 ≤ cRδ1 = cRa
−4β, (10.57)

provided that β < 1/8 and a is sufficiently large. Hence, condition (10.50) also holds at q = 0.
A key consequence of (10.57) is that v0 is a solution of the forced Euler equations with a
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Reynolds stress that is already very small in the uniform norm, provided that we take a
sufficiently large. In addition, the L2-norm of v0 vanishes at t = 0 but is not zero at t = 1.
We will now construct a rough weak solution to the unforced Euler equations that will be
close to v0(t, x) in the uniform norm for all 0 ≤ t ≤ 1, and this will force it to violate the
energy inequality.

We start the iteration as in Proposition 10.3, with the initialization (v0, R0), and obtain
a sequence (vq, Rq). Let us take β > 0 as in the definition (10.47) of δq. Then, for any
α < β the bounds (10.48), (10.49) and (10.52), together with an interpolation inequality

between the Hölder norms, and the fact that the sequence δ
1/2
q λq in the right side of (10.49)

is monotonically increasing, imply that

∥vq+1−vq∥Cα
x
≤ cα∥vq+1−vq∥1−α

C0
x
∥vq+1−vq∥αC1

x
≤ cαδ

(1−α)/2
q+1 δ

α/2
q+1λ

α
q+1 = cαδ

1/2
q+1λ

α
q+1 = cαλ

−(β−α)
q+1 .

(10.58)
Thus, the limit

v = lim
q→+∞

vq

exists in C([0, 1], Cα(T3)) for any α < β. Furthermore, (10.50) implies that

Rq → 0 in C0([0, 1]× T3).

It follows that v(t, x) is a weak solution to the Euler equations that lies in C([0, 1], Cα(T3))
for any α < β.

To finish the proof of Theorem 10.2, it remains to show that the reverse energy inequality

∥v(1, ·)∥L2 ≥ 2∥v(0, ·)∥L2 (10.59)

holds. The point is that, if a is sufficiently large, then, on one hand, v(t, x) is close in the
uniform norm to v0(t, x) for all 0 ≤ t ≤ 1, and on the other v0(0, x) = 0 while v0(1, x) has a
fixed non-zero L2-norm that is independent of λ0. Indeed, we have using (10.52):

∥v − v0∥C0 ≤
∞∑
q=0

∥vq+1 − vq∥C0 ≤
∞∑
q=0

δ
1/2
q+1 =

∞∑
q=0

λ−β
q =

∞∑
q=0

a−β·2q

≤
∞∑
q=0

a−β(q+1) ≤ 1

10000
, (10.60)

if a is sufficiently large, so that v and v0 are close. It follows that

2∥v(0, ·)∥L2 ≤ 2∥v0(0, ·)∥L2 +
1

100
=

1

100
≤ ∥v0(1, ·)∥L2 − ∥v0(1, ·)− v(1, ·)∥L2 ≤ ∥v(1, ·)∥L2 ,

finishing the proof of Theorem 10.2.

10.5 Proof of Proposition 10.3

We now prove Proposition 10.3. We only need to prove the inductive step as we have already
constructed the pair (v0, R0). It will be more convenient to work with the mollified versions
of vq and Rq defined as

vℓ = (vq ⋆x ϕℓ) ⋆t φℓ, (10.61)

Rℓ = (Rq ⋆x ϕℓ) ⋆t φℓ.
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We dropped the subscript q above in vℓ and Rℓ to simplify the notation. Here, ϕℓ(x) and φℓ(t)
are standard scalar-valued mollifiers of compact support in x and t, respectively. As we are
not aiming to prove an optimal result, we choose the mollification scales in x and t to be the
same, and take ℓ as an intermediate scale between λ−1

q and λ−1
q+1:

ℓ = λ−3/2
q , (10.62)

so that
λ−1
q+1 = λ−2

q ≤ ℓ ≤ λ−1
q . (10.63)

Note that, by the induction hypothesis (10.48), we have

∥vℓ∥C0 ≤ ∥vq∥C0 ≤ 1− δ1/2q , (10.64)

and for any N ≥ 1 we have, because of the way ℓ was chosen and the second induction
hypothesis (10.49):

∥vℓ∥CN ≤ Cℓ−N+1∥vq∥C1 ≤ Cℓ−N+1λqδ
1/2
q ≤ Cℓ−N , (10.65)

while
∥vq − vℓ∥C0 ≤ ℓ∥vq∥C1 ≤ Cℓλqδ

1/2
q ≤ Cλ−1/2

q δ1/2q ≪ δ
1/2
q+1, (10.66)

as long as β > 0 is sufficiently small.
As in (10.18), we obtain

∂tvℓ +∇ · [vℓ ⊗ vℓ] +∇pℓ = ∇ · (Rℓ +Rcomm), (10.67)

∇ · vℓ = 0,

with
Rcomm = vℓ ⊗tr vℓ − [(v ⊗tr v) ⋆x ϕℓ] ⋆t φℓ. (10.68)

Recall that the traceless tensor product ⊗tr is defined in (10.30). In (10.67), with a slight
abuse of notation, the pressure pℓ includes both the convolution of pq with the mollifiers and
what should have been the trace part of Rcomm. Note that, as in (10.27), we have, using
(10.49) and (10.30):

∥Rcomm∥C0
t,x

≤ Cℓ∥v∥C1
t,x
∥v∥C0

t,x
≤ Cℓδ1/2q λq = Cλ−3/2

q λ−β
q λq = λ−β−1/2

q ≪ δq+2, (10.69)

provided that β is sufficiently small and a is sufficiently large.

10.5.1 The Reynolds stress equation

Let us first address the equation for the Reynolds stress:

∇ ·R = E(x), x ∈ T3, (10.70)

with the condition that R(x) is a symmetric trace-free matrix. Here, E is a mean-zero vector-
field on T3: ˆ

T3

E(x)dx = 0. (10.71)
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We claim that a trace-less symmetric solution to (10.70) is given by

Rkm(x) = (∂k∆
−1Em + ∂m∆

−1Ek)−
1

2
(δkm + ∂k∂m∆

−1)∆−1(∇ · E). (10.72)

The symmetry and mean-zero properties of R are obvious from (10.72). Its trace vanishes
because

TrR = 2∆−1(∇ · E)− n+ 1

2
∆−1(∇ · E) = 0

in dimension n = 3. To check (10.70) we write

(∇ ·R)m = ∂kRkm = ∂k(∂k∆
−1Em + ∂m∆

−1Ek)−
1

2
∂k(δkm + ∂k∂m∆

−1)∆−1(∇ · E)

= Em + ∂m∆
−1(∇ · E)− 1

2
∂m∆

−1(∇ · E)− 1

2
∂m∆

−1(∇ · E) = Em. (10.73)

The next lemma says that R is similar to (−∆)−1/2E when E is oscillatory.

Lemma 10.4. Assume that a(x) ∈ Cm,α(T3) and Φ ∈ Cm,α(T3) be smooth R3-valued func-
tions, let C be such that

C−1 ≤ |∇Φ(x)| ≤ C for all x ∈ T3.

Let ω ∈ Z3, α ∈ (0, 1) and m ≥ 1, and R(x) be the solution to (10.70) with

E(x) = a(x)eiω·Φ(x) −
ˆ
T3

a(y)eiω·Φ(y)dy, (10.74)

given by (10.72). There exists a constant K that depends on C, α and m but not on |ω| such
that

∥R∥Cα ≤ C
( ∥a∥C0

|ω|1−α
+

1

|ω|m−α

(
∥a∥Cm,α + ∥a∥C0∥∇Φ∥Cm,α

))
. (10.75)

Proof. To be filled in.
The reason we allow a phase factor Φ(t, x) in Lemma 10.4 is that we will need to modify

the phase to decrease the transport error, as discussed in Section 10.5.3 below. Our strategy
will be to construct wq+1 so that Rq satisfies (10.70) with a right side that is as in Lemma 10.4:
mean-zero and oscillatory, ”essentially” at a single, sufficiently high frequency: in particular,
the terms

∥a∥C0

|ω|1−α
,
∥a∥Cm,α

|ω|m−α

in the right side of (10.75) should be small.

10.5.2 The Beltrami flows

The building blocks we will use to construct the principal part of the perturbation wq+1 as
in (10.40):

w
(p)
q+1 ∼

∑
ξ

aξ(Rq)Wξ (10.76)
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are the Beltrami waves Wξ. They are defined as follows. Recall that the set Q3 ∩ S2 of
rational points is dense on the unit sphere S2. To see that, consider the inverse map of the
stereographic projection s(x, y) : R2 → S2

s(x, y) =
( 2y

x2 + y2 + 1
,

2x

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
.

It is clear that s maps Q2 to Q3∩S2. Since Q2 is dense in R2 and s is a diffeomorphism of R2

onto S2 \ (0, 0, 1), the density of Q3 ∩ S2 in S2 follows.
Next, given ξ ∈ Q3 ∩ S2, we take Aξ ∈ Q3 ∩ S2 so that

Aξ · ξ = 0, A−ξ = Aξ. (10.77)

The choice of Aξ is not unique: for instance, we can take Aξ = (−ξ2, ξ1, 0) for ξ = (ξ1, ξ2, ξ3)
with ξ1 ≥ 0 and extend it to ξ with ξ1 < 0 using the even symmetry in (10.77). We also
define the complex vector

Bξ =
1√
2
(Aξ + iξ × Aξ). (10.78)

By construction, the vector Bξ satisfies

|Bξ| = 1, Bξ · ξ = 0, iξ ×Bξ = Bξ, B−ξ = Bξ, (10.79)

with · denoting the standard real inner product, without the complex conjugation, and the
bar denoting the complex conjugation. The third identity above relies on the formula

[ξ × (ξ × Aξ)]k = εkmjξmεjrsξr(Aξ)s = [δrkδms − δksδmr]ξmξr(Aξ)s

= ξk(ξ · Aξ)− |ξ|2(Aξ)k = −(Aξ)k.

It follows that for any λ ∈ Z such that λξ ∈ Z3, the function

Wξ,λ(x) = Bξe
2πiλξ·x (10.80)

satisfies
[∇×Wξ,λ]j = εjkm2πiλξkBξ,me

2πiλξ·x = 2πλBξ,je
2πiλξ·x, (10.81)

and is therefore a periodic eigenfunction of the curl operator corresponding to the eigen-
value 2πλ:

∇×Wξ,λ = 2πλWξ,λ. (10.82)

We can now fix λ ∈ Z and take any finite set Γ ⊂ Q3 ∩ S2 such that −Γ = Γ and λξ ∈ Z3 for
any ξ ∈ Γ. Then for any collection of coefficients aξ ∈ C such that a−ξ = āξ, the vector field

W (x) =
∑
ξ∈Γ

aξBξe
2πiλξ·x (10.83)

is a real-valued divergence free vector field on T3 such that

∇×W (x) = 2πλW (x). (10.84)
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Note that for any vector W we have

(W × [∇×W ])i = εijkWjεkmn∂mWn = (δimδjn − δinδjm)Wj∂mWn = Wj∂iWj −Wj∂jWi,

which gives the vector identity

W × [∇×W ] = ∇
( |W |2

2

)
−W · ∇W. (10.85)

It follows from (10.84) and (10.85) that

W · ∇W = ∇
( |W |2

2

)
. (10.86)

In other words, any W of the form constructed above is a solution of the Euler equations,
with zero pressure.

Observe also that given any ξ ∈ Q3 ∩ S2, the vectors ξ, A(ξ) and ξ × A(ξ) form an
orthonormal basis, so that

ξ ⊗ ξ + Aξ ⊗ Aξ + (ξ × Aξ)⊗ (ξ × Aξ) = Id, (10.87)

which implies

Bξ ⊗B−ξ =
1

2
(Aξ + iξ × Aξ)⊗ (Aξ − iξ × Aξ) (10.88)

=
1

2
(Aξ ⊗ Aξ + (ξ × Aξ)⊗ (ξ × Aξ)) +

i

2
[(ξ × Aξ)⊗ Aξ − Aξ ⊗ (ξ × Aξ)]

=
1

2
(Id− ξ ⊗ ξ) +

i

2
[(ξ × Aξ)⊗ Aξ − Aξ ⊗ (ξ × Aξ)].

It follows that for W of the form (10.83) we have

ˆ
T3

(W ⊗W )dx =
∑
ξ,ξ′∈Γ

ˆ
T3

aξaξ′e
2πiµ(ξ+ξ′)·x(Bξ ⊗Bξ′)dx =

∑
ξ∈Γ

aξa−ξ(Bξ ⊗B−ξ)

=
1

2

∑
ξ∈Γ

|aξ|2(Id− ξ ⊗ ξ), (10.89)

because ∑
ξ∈Γ

|aξ|2((ξ × Aξ)⊗ Aξ − Aξ ⊗ (ξ × Aξ) = 0, (10.90)

as the individual terms inside the sum are odd in ξ and the set Γ is symmetric: −Γ = Γ.
We will use the Beltrami flows as building blocks in the decomposition (10.40) for the

principal part of the perturbation wq+1:

w
(p)
q+1 ∼

∑
ξ

aξ(Rq)Wξ,λq+1 . (10.91)
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The goal will be to cancel out the average of the Rq term in the oscillation error (10.35)

Eosc = ∇ · (wq+1 ⊗ wq+1)−∇ ·Rq +∇(pq+1 − pq), (10.92)

so that Eosc has the form (10.74) in Lemma 10.4. To this end, we need to know that the family
of the Beltrami flows is rich enough so that the cancellation is achievable for a large class of
given matrices Rq. Keeping in mind expression (10.89), we will now prove the following. We
denote by Br(Id) the closed ball of 3× 3 symmetric matrices centered at Id, of radius r.

Lemma 10.5. There exist two disjoint finite subsets Λ0,Λ1 ⊂ Q3 ∩ S2 such that if ξ ∈ Λj

then −ξ ∈ Λj, and r0 > 0, so that for each matrix M ∈ Br0(Id) and j = 0, 1, we have a
decomposition

M =
1

2

∑
ξ∈Λj

(γ
(j)
ξ (M))2(Id− ξ ⊗ ξ). (10.93)

Moreover, for each ξ ∈ Λj and j = 0, 1, the coefficients γ
(j)
ξ (R) are C∞-functions on Br0(Id).

Proof. To be filled in.

10.5.3 The principal part of the perturbation

We would like to take the principal part of the perturbation as a sum of the Beltrami waves.
At the same time, we need to make sure that we have a small transport error in (10.36)

Etr = ∂twq+1 + vq · ∇wq+1. (10.94)

To this end, we will replace the phase ξ · x in the definition of the Beltrami wave by a
phase Φ(t, x) that is transported by the vector field vq. We divide the interval 0 ≤ t ≤ 1 into
intervals of length ℓ, and for j = 0, . . . , [ℓ−1], we define Φj(t, x) as the T3-periodic solution to

∂tΦj + vℓ · ∇Φj = 0, (10.95)

Φj(jℓ, x) = x.

We have the following standard estimates for Φj: first, differentiating (10.95) in x, and using
Gronwall’s inequality and the inductive assumption (10.49) gives

∥∇Φj(t)− Id∥C0 ≤ Cℓ∥vℓ∥C1 ≤ Cℓλqδ
1/2
q = Cλ−1/2

q δ1/2q ≪ 1, for all (j − 1)ℓ ≤ t ≤ (j + 1)ℓ.
(10.96)

Differentiating (10.95) once again gives

∥∇Φj(t)∥C1
t,x

≤ Cλqδ
1/2
q , for all (j − 1)ℓ ≤ t ≤ (j + 1)ℓ, (10.97)

and, more generally,

∥∇Φj(t)∥Cn ≤ Cℓ1−nλqδ
1/2
q ≪ ℓ−n, for all (j − 1)ℓ ≤ t ≤ (j + 1)ℓ. (10.98)

Each Φj(t, x) will play a role only on the time interval [(j − 2)ℓ, (j + 2)ℓ]. For this, we will
make use of time-cutoffs: take a non-negative bump function χ(t) supported in [−1, 1] so
that χ(t) ≡ 1 on [−1/2, 1/2] and such that the shifts

χj(t) = χ(ℓ−1t− j)
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satisfy ∑
j

χ2
j(t) ≡ 1 for 0 ≤ t ≤ 1. (10.99)

Note that each time t at most two of χj(t) are non-zero.
Let us recall the sets Λ0 and Λ1 from Lemma 10.5. For a general j we will set Λj = Λ0

if j is even and Λj = Λ1 if j is odd. We do the same for the functions γ
(j)
ξ appearing in that

lemma. With this notation, we define for the principal part of the perturbation w
(p)
q+1(t, x) as

w
(p)
q+1(t, x) =

∑
j

∑
ξ∈Λj

w(ξ)(t, x), (10.100)

with each individual wave w(ξ)(t, x) in the form of a modulated Beltrami wave

w(ξ)(t, x) = aq+1,j,ξ(t, x)Wξ,λq+1(Φj(t, x)) = aq+1,j,ξ(t, x)Bξ exp
{
2πiλq+1ξ ·Φj(t, x)

}
. (10.101)

Note that
(∂t + vq · ∇)(exp{2πiλq+1ξ · Φj(t, x)}) = 0, (10.102)

so that

(∂t + vq · ∇)w(ξ) = (∂t + vq · ∇)[aq+1,j,ξ](t, x)Bξ(exp{2πiλq+1ξ · Φj(t, x)}), (10.103)

and the potentially dangerous term of the size λq+1 coming from the differentiation of the
exponent vanishes. This is why we use the phases Φj(t, x) rather than simply x. The ampli-
tudes aq+1,j,ξ(t, x) are chosen as

aq+1,j,ξ(t, x) = c
1/4
R δ

1/2
q+1χj(t)γ

(j)
ξ (Mℓ(t, x)), (10.104)

with the matrix
Mℓ(t, x) = Id− c

−1/2
R δ−1

q+1Rℓ(t, x). (10.105)

As the functions γ
(j)
ξ are defined only in the ball Br0(Id), we need to check that the ma-

trices Mℓ(t, x) are in that ball for all 0 ≤ t ≤ 1 and x ∈ T3. Recalling the inductive
assumption (10.50), we see that

c
−1/2
R δ−1

q+1∥Rℓ∥C0 ≤ c
−1/2
R δ−1

q+1cRδq+1 ≤ c
1/2
R ≤ r0, (10.106)

with r0 as in Lemma 10.5, provided we take

cR ≤ r20. (10.107)

It follows that the matrix Mℓ(t, x) is, indeed, in the domain of definition of the functions γ
(j)
ξ

for all j, all t ∈ [0, 1] and x ∈ T3. As at most two of the functions χj do not vanish for any
given t ∈ [0, 1], and they satisfy 0 ≤ χj(t) ≤ 1, we have a uniform estimate

∥w(p)
q+1(t, x)∥C0 ≤ K0c

1/4
R δ

1/2
q+1 ≤

δ
1/2
q+1

2
, (10.108)

provided that we choose cR sufficiently small, depending only on a universal constant K0

that itself depends only on the uniform norm of the functions γ
(j)
ξ (M) on Br0(Id) and on

the number of elements in the finite sets Λ0 and Λ1. The above estimate accounts for the
contribution of w

(p)
q+1 to the error bound (10.52).
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10.5.4 The incompressibility correction

Let us write the individual terms w(ξ)(t, x) that appear in (10.100) as

w(ξ)(t, x) = aq+1,j,ξ(t, x) exp
{
2πiλq+1ξ · ϕj(t, x)

}
Bξ exp

{
2πiλq+1ξ · x

}
(10.109)

= aq+1,j,ξ(t, x) exp
{
2πiλq+1ξ · ϕj(t, x)

}
Wξ,λq+1(x) = bq+1,j,ξ(t, x)Wξ,λq+1(x),

with

ϕj(t, x) = Φj(t, x)− x, bq+1,j,ξ(t, x) = aq+1,j,ξ(t, x) exp
{
2πiλq+1ξ · ϕj(t, x)

}
. (10.110)

Recalling (10.96), we can think of ϕj(t, x) as small, so the largest contribution to ∇w(ξ)(t, x)
should come from the Beltrami wave Wξ,λq+1(x). However, the latter is incompressible so one
can think of w(ξ) as incompressible to the leading order. To be more precise, let us use (10.84)
to write

bq+1,j,ξ(t, x)Wξ,λq+1(x) =
1

2πλq+1

[
∇× (bq+1,j,ξ(t, x)Wξ,λq+1(x))− (∇bq+1,j,ξ(t, x))×Wξ,λq+1(x)

]
.

While the first term above is incompressible, the second is not. Accordingly, to compensate
for the second term, we define

w
(c)
(ξ)(t, x) =

1

2πλq+1

(∇bq+1,j,ξ(t, x))×Wξ,λq+1(x)

=
1

2πλq+1

(
∇aq+1,j,ξ + 2πiλq+1aq+1,j,ξ(∇Φj(t, x)− Id)ξ

)
×Bξ exp{2πiλq+1ξ · Φj(t, x)}

=
(∇aq+1,j,ξ

2πλq+1

+ iaq+1,j,ξ(∇Φj(t, x)− Id)ξ
)
×Wξ,λq+1(Φj(t, x)). (10.111)

The full incompressibility correction is then

w
(c)
q+1(t, x) =

∑
j

∑
ξ∈Λj

w
(c)
(ξ)(t, x), (10.112)

and the full perturbation is

wq+1(t, x) = w
(p)
q+1(t, x) + w

(c)
q+1(t, x) =

1

2πλq+1

∑
j

∑
ξ∈Λj

∇× [bq+1,j,ξ(t, x)Wξ,λq+1(x)], (10.113)

so that
∇ · wq+1 = 0, (10.114)

and wq+1(t, x) is mean-zero. We may also estimate the incompressible correction, starting
with the right side of (10.111), and once again using the fact that χj(t) satisfy 0 ≤ χj(t) ≤ 1,
and only two of χj(t) do not vanish for any t ∈ [0, 1] as

∥w(c)
q+1∥C0 ≤ K sup

j
sup
ξ∈Λj

[∥∇aq+1,j,ξ∥C0

λq+1

+ ∥aq+1,j,ξ∥C0∥∇Φj − Id∥C0

]
, (10.115)
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with a universal constant K. At the moment, we do not have a good bound on ∥∇aq+1,j,ξ∥C0

as that would require a bound on ∥∇Rℓ∥C0 , since Rℓ enters the definition (10.104)-(10.105)
of aq+1,j,ξ. However, a standard mollification estimate, together with (10.104)-(10.105) and
the induction assumption (10.50), show that the first term above can be bounded as

∥∇aq+1,j,ξ∥C0

λq+1

≤ Kδ
1/2
q+1δ

−1
q+1λ

−1
q+1

∥Rℓ∥C0

ℓ
≤ K

δ
1/2
q+1

ℓλq+1

≤
δ
1/2
q+1

100
, (10.116)

because
ℓλq+1 = λ−3/2

q λ2q ≫ 1.

Here we see that it is important that aq+1,j,ξ oscillate on scales much larger than λ−1
q+1. The

second term in the right side of (10.115) can be estimated with the help of (10.96) as

∥aq+1,j,ξ∥C0∥∇Φj − Id∥C0 ≤ Kδ
1/2
q+1λ

−1/2
q δ1/2q ≤

δ
1/2
q+1

100
, (10.117)

provided that a is sufficiently large and β is sufficiently small. It follows that

∥w(c)
q+1∥C0 ≤

δ
1/2
q+1

10
. (10.118)

Together with (10.108), this finishes the proof of the error bound (10.52):

∥wq+1∥C0 ≤ 3

4
δ
1/2
q+1. (10.119)

However, we still need to verify that the induction bounds (10.48)-(10.50) hold for vq+1

and Rq+1.

10.5.5 The induction estimates on the velocity

We first prove the inductive estimates (10.48)-(10.49) on the velocity vq+1, as they follow
directly from the construction of the perturbation wq+1. It is convenient to define vq+1 not as
vq + wq+1 but as

vq+1 = vℓ + wq+1. (10.120)

The uniform bound in (10.48) for q + 1 follows simply from this estimate at level q and
(10.119), together with (10.66):

∥vq − vℓ∥C0 ≪ δ
1/2
q+1, (10.121)

which gives

∥vq+1∥C0 ≤ ∥vq∥C0 +∥vq−vℓ∥C0 +∥wq+1∥C0 ≤ 1− δ1/2q +
1

10
δ
1/2
q+1+

3

4
δ
1/2
q+1 ≤ 1− δ1/2q+1, (10.122)

since we have δq+1 ≤ 4δq if we choose a sufficiently large, for a given fixed small β > 0.
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To get the gradient bound (10.49) at the level q + 1 we first recall that for the spatial
derivatives we have (10.96), (10.97) and (10.116):

∥∇Φj(t)− Id∥C0 ≤ Cλ−1/2
q δ1/2q , (10.123)

∥∇Φj(t)∥C1
t,x

≤ Cλqδ
1/2
q , (10.124)

∥∇aq+1,j,ξ∥C0 ≤ C
δ
1/2
q+1

ℓ
. (10.125)

Once again, as at most two of χj(t) do not vanish for any t > 0, it follows from (10.101)-
(10.105) that the principal part of the perturbation satisfies

∥∇w(p)
q+1∥C0 ≤ K sup

j
sup
j∈Λj

(
∥∇aq+1,j,ξ∥C0 + ∥aq+1,j,ξ∥C0λq+1∥∇Φj∥C0

)
, (10.126)

with a constant K that depends only on the number of the elements of the sets Λ0 and Λ1.
The first term above we estimate by (10.125), and the second by (10.123), which gives

∥∇w(p)
q+1∥C0 ≤ C

δ
1/2
q+1

ℓ
+ Cδ

1/2
q+1λq+1 ≤ Cδ

1/2
q+1λq+1. (10.127)

For the spatial derivative of w
(c)
q+1, we note that

∥∇w(c)
q+1∥C0 ≤ K sup

j
sup
j∈Λj

(∥aq+1,j,ξ∥C2

λq+1

+ ∥∇aq+1,j,ξ∥C0∥∇Φj − Id∥C0

+∥aq+1,j,ξ∥C0∥∇Φj∥C1 + λq+1∥w(c)
q+1∥C0

)
. (10.128)

The first term above, once again, can be bounded using the basic mollification estimate as

∥aq+1,j,ξ∥C2

λq+1

≤
Kδ

1/2
q+1

λq+1

[∥Rℓ∥C0

δq+1ℓ2
+

∥Rℓ∥2C0

δ2q+1ℓ
2

]
≤
Kδ

1/2
q+1λ

3/2
q+1

λq+1

≤
δ
1/2
q+1λq+1

100
. (10.129)

The second term in the right side of (10.128) is estimated using (10.116) and (10.123) as

∥∇aq+1,j,ξ∥C0∥∇Φj − Id∥C0 ≤
Kδ

1/2
q+1

ℓ
δ1/2q λ−1/2

q = Kδ
1/2
q+1δ

1/2
q λq ≤

δ
1/2
q+1λq+1

100
. (10.130)

The third and the fourth terms in right side of (10.128) satisfy

∥aq+1,j,ξ∥C0∥∇Φj∥C1 + λq+1∥w(c)
q+1∥C0 ≤ Kδ

1/2
q+1λqδ

1/2
q + λq+1δ

1/2
q+1 ≤ 2λq+1δ

1/2
q+1. (10.131)

Putting together the above estimates, we see that

∥∇wq+1∥C0 ≤ CRλq+1δ
1/2
q+1, (10.132)

with a universal constant CR. In particular, we have not used the estimate (10.49) at level q
in deriving (10.131), hence there is no danger that CR may change from step q to step q + 1.
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For the time derivative we have (10.95), which, together with (10.96) shows that

∥∂tΦj(t)∥C0 ≤ C, (10.133)

while
∥∂taq+1,j,ξ∥C0 ≤ Cδ

1/2
q+1(ℓ

−1 + ℓ−1) = Cδ
1/2
q+1ℓ

−1, (10.134)

as in the estimate (10.129) for the gradient of aq+1,ξ,j. These two bounds give

∥∂tw(p)
q+1∥C0 ≤ Cδ

1/2
q+1ℓ

−1, (10.135)

in the same way as (10.125) and (10.126) lead to (10.127). For the time derivative of w
(c)
q+1,

we note that

∥∂tw(c)
q+1∥C0 ≤ K sup

j
sup
j∈Λj

(∥∂t∇aq+1,j,ξ∥C0

λq+1

+ ∥∂taq+1,j,ξ∥C0∥∇Φj − Id∥C0

+∥aq+1,j,ξ∥C0∥∂t∇Φj∥C0 + λq+1∥w(c)
q+1∥C0

)
. (10.136)

The first term above is estimated exactly as in (10.129), the second as in (10.130), the third
and the fourth as in (10.131), which gives us

∥∂tw(c)
q+1∥C0 ≤ Cδ

1/2
q+1ℓ

−1, (10.137)

finishing the proof of (10.49) at level q + 1.

10.5.6 The new Reynolds stress

We finally come to the key estimate in the proof of Proposition 10.3: the proof of the inductive
estimate (10.50) at level q+1 that shows that the Reynolds stress decreases at each inductive
step and tends to zero in the uniform norm as q → +∞. The analysis is based on Lemma 10.4
that we state again here.

Lemma 10.6. Assume that a(x) ∈ Cm,α(T3) and Φ ∈ Cm,α(T3) be smooth R3-valued func-
tions, and let C be such that

C−1 ≤ |∇Φ(x)| ≤ C for all x ∈ T3.

Let ω ∈ Z3, α ∈ (0, 1) and m ≥ 1, and R(x) be the solution to

∇ ·R = E(x), TrR(x) = 0, R(x) is a symmetric matrix, (10.138)

with

E(x) = a(x)eiω·Φ(x) −
ˆ
T3

a(y)eiω·Φ(y)dy, (10.139)

given by

Rkm(x) = (∂k∆
−1Em + ∂m∆

−1Ek)−
1

2
(δkm + ∂k∂m∆

−1)∆−1(∇ · E). (10.140)

There exists a constant K that depends on C, α and m but not on |ω| such that

∥R∥Cα ≤ C
( ∥a∥C0

|ω|1−α
+

1

|ω|m−α

(
∥a∥Cm,α + ∥a∥C0∥∇Φ∥Cm,α

))
. (10.141)
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In particular, if E(x) is of the form

E(x) = a(x)W(ξ)(Φj(x)), W(ξ)(x) = Bξe
2πiλq+1ξ·x, (10.142)

with
∥a∥Cn ≤ Cℓ−n, ∥∇Φj∥Cn ≤ Cℓ−n, (10.143)

then R(x) satisfies

∥R∥C0 ≤ ∥R∥Cα ≤ C

λ1−α
q+1

(
1+

ℓ−m−α

λm−α
q+1

)
≤ C

λ1−α
q+1

(
1+

ℓ−m−1

λm−1
q+1

)
=

C

λ1−α
q+1

(
1+λ

3/4(m+1)−m+1
q+1

)
≤ C

λ1−α
q+1

,

(10.144)
as long as we take m ≥ 8.

To get an equation for Rq+1 we recall that vℓ satisfies (10.67):

∂tvℓ +∇ · [vℓ ⊗ vℓ] +∇pℓ = ∇ · (Rℓ +Rcomm), (10.145)

∇ · vℓ = 0,

with
Rcomm = vℓ ⊗tr vℓ − [(v ⊗tr v) ⋆x ϕℓ] ⋆t φℓ. (10.146)

Hence, vq+1 = vℓ + wq+1 satisfies

∂tvq+1 +∇ · (vq+1 ⊗ vq+1) = ∂tvℓ +∇ · (vℓ ⊗ vℓ) + ∂twq+1 +∇ · (wq+1 ⊗ wq+1)

+∇ · (vℓ ⊗ wq+1) +∇ · (wq+1 ⊗ vℓ) = ∇ · (Rℓ +Rcomm)−∇pℓ + ∂twq+1 + vℓ · ∇wq+1

+wq+1 · ∇vℓ +∇ · (wq+1 ⊗ wq+1), (10.147)

so that the Reynolds stress Rq+1 and pressure pq+1 satisfy, after absorbing pℓ into pq+1

∇·Rq+1 = ∇pq+1+∇·(Rℓ+Rcomm)+∂twq+1+vℓ·∇wq+1+wq+1·∇vℓ+∇·(wq+1⊗wq+1). (10.148)

We write
wq+1 = w

(p)
q+1 + w

(c)
q+1,

and represent the right side of (10.148) as

∇ ·Rq+1 = Etr + Eosc + ENash + Ecorr +∇ ·Rcomm +∇ ·R(c)
corr +∇pq+1, (10.149)

with the transport error

Etr = ∂tw
(p)
q+1 + vℓ · ∇w(p)

q+1 − ⟨∂tw(p)
q+1⟩, (10.150)

the oscillation error
Eosc = ∇ · (w(p)

q+1 ⊗ w
(p)
q+1 +Rq), (10.151)

and the Nash error
ENash = w

(p)
q+1 · ∇vℓ, (10.152)

coming from the principal part of the perturbation, and the corrector error

Ecorr = ∂tw
(c)
q+1 + vℓ · ∇w(c)

q+1 − ⟨∂tw(c)
q+1⟩, (10.153)
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and the tensor

R(c)
corr = w

(c)
q+1 ⊗tr w

(c)
q+1 + w

(p)
q+1 ⊗tr w

(c)
q+1 + w

(c)
q+1 ⊗tr w

(p)
q+1 (10.154)

coming from the incompressibility correction to the perturbation. Note that in the definition
of R

(c)
corr we have replaced the tensor products ⊗ by the trace-free tensor products ⊗tr, with

the difference going into the pressure pq+1. The notation ⟨·⟩ refers to the spatial average, as
before:

⟨f⟩ =
ˆ
T3

f(y)dy.

As wq+1 is a curl, its spatial average vanishes, hence

⟨∂tw(p)
q+1⟩+ ⟨∂tw(c)

q+1⟩ = 0, (10.155)

so that the addition of these two terms to (10.150) and (10.153) does not change anything.
Then we can write

Rq+1 = Rtr +RNash +Rcomm +Rcorr +R(c)
corr +Rosc, (10.156)

with Rcomm and R
(c)
corr defined in (10.146) and (10.154), respectively, and Rtr, RNash, Rcomm

and Rcorr given by (10.140) with the corresponding E in the right side.
The term Rosc in (10.156) should be a trace-less symmetric solution to

∇ ·Rosc = Eosc +∇posc, (10.157)

with Eosc given by (10.151) and some pressure posc that we will absorb into pq+1. We can
re-write Eosc as

Eosc = ∇ · (w(p)
q+1 ⊗ w

(p)
q+1 +Rℓ) = ∇ ·

(∑
j,j′

∑
ξ∈Λj ,ξ′∈Λj′

w(ξ) ⊗ wξ′ +Rℓ

)
. (10.158)

Note that w(ξ) and w(ξ′) have disjoint support in time if ξ ∈ Λj and ξ
′ ∈ Λj′ with |j − j′| > 1.

In addition, if |j − j′| = 1, then Λj and Λj′ are disjoint sets so that ξ + ξ′ ̸= 0 – this is why
we took Λ0 and Λ1 as two different sets. Hence, the only terms in the sum in (10.158) that
satisfy ξ + ξ′ = 0 are those with j = j′. Thus, we have

Eosc = ∇ ·
(∑

j

∑
ξ∈Λj

w(ξ) ⊗ w(−ξ) +Rℓ

)
+∇ ·

(∑
j,j′

∑
ξ∈Λj ,ξ′∈Λj′ ,ξ+ξ′ ̸=0

w(ξ) ⊗ wξ′

)
. (10.159)

We claim that the divergence of the first sum in (10.159) actually vanishes – and that is the
reason we have chosen the coefficients aq+1,j,ξ in the way we did. Indeed, recall that

aq+1,j,ξ(t, x) = c
1/4
R δ

1/2
q+1χj(t)γ

(j)
ξ (Mℓ(t, x)), (10.160)

with the coefficients γ
(j)
ξ defined so that

Mℓ(t, x) =
1

2

∑
ξ∈Λj

(γ
(j)
ξ (Mℓ(t, x)))

2(Id− ξ ⊗ ξ), (10.161)
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for each j, where
Mℓ(t, x) = Id− c

−1/2
R δ−1

q+1Rℓ(t, x), (10.162)

which implies

c
1/2
R δq+1Id−Rℓ(t, x) =

1

2

∑
ξ∈Λj

c
1/2
R δq+1(γ

(j)
ξ (Mq(t, x)))

2(Id− ξ ⊗ ξ), (10.163)

again for each j. Multiplying (10.163) by χ2
j(t) and summing over j, using (10.99), we arrive

at

c
1/2
R δq+1Id−Rℓ(t, x) =

1

2

∑
j

∑
ξ∈Λj

χ2
j(t)c

1/2
R δq+1(γ

(j)
ξ (Mq(t, x)))

2(Id− ξ ⊗ ξ)

=
1

2

∑
j

∑
ξ∈Λj

|aq+1,j,ξ(t, x)|2(Id− ξ ⊗ ξ). (10.164)

On the other hand, as in (10.89), we have, since aq+1,j,−ξ = aq+1,j,ξ, that∑
ξ∈Λj

w(ξ) ⊗ w(−ξ) =
∑
ξ∈Λj

|aq+1,j,ξ|2Bξ ⊗B−ξ (10.165)

=
1

2

∑
ξ∈Λj

|aq+1,j,ξ|2(Aξ + iξ × Aξ)⊗ (Aξ − iξ × Aξ)

=
1

2

∑
ξ∈Λj

|aq+1,j,ξ|2(Aξ ⊗ Aξ + (ξ × Aξ)⊗ (ξ × Aξ)) +
i

2
[(ξ × Aξ)⊗ Aξ − Aξ ⊗ (ξ × Aξ)]

=
1

2

∑
ξ∈Λj

|aq+1,j,ξ|2(Id− ξ ⊗ ξ).

Since the set Λj is symmetric: Λj = −Λj, the second term in the third line above vanishes
after summation over ξ ∈ Λj, and for the first term in that line we used (10.87):

ξ ⊗ ξ + Aξ ⊗ Aξ + (ξ × Aξ)⊗ (ξ × Aξ) = Id. (10.166)

We deduce from (10.164) and (10.165) that

∇ ·
(∑

ξ∈Λj

w(ξ) ⊗ w(−ξ) +Rℓ

)
= 0, (10.167)

as we have claimed. Recall also that for a scalar-valued function g(x) and a matrix-valued
function F (x) we have

[∇ · (g(x)F (x))]i = ∂j(g(x)Fji(x)) = (∂jg(x))Fji(x) + g(x)(∂j(Fij(x))

= (F t(x)∇g(x))i + g(x)(∇ · F (x))i,

so that
∇ · (gF ) = F t∇g + g∇ · F.
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Hence, Eosc has the form

Eosc = ∇ ·
(∑

j,j′

∑
ξ∈Λj ,ξ′∈Λj′ ,ξ+ξ′ ̸=0

w(ξ) ⊗ wξ′

)
(10.168)

=
1

2

∑
j,j′

∑
ξ∈Λj ,ξ′∈Λj′ ,ξ+ξ′ ̸=0

bq+1,j,ξbq+1,j,ξ′∇ · (Wξ,λq+1 ⊗Wξ′,λq+1 +Wξ,λq+1 ⊗Wξ′,λq+1)

+
∑
j,j′

∑
ξ∈Λj ,ξ′∈Λj′ ,ξ+ξ′ ̸=0

(Wξ′,λq+1 ⊗Wξ,λq+1)∇(bq+1,j,ξbq+1,j,ξ′),

with bq+1,j,ξ as in (10.109) and (10.110). In addition, as in the derivation of the Euler equation

∇ · (Wξ,λ ⊗Wξ,λ) = ∇
( |Wξ,λ|2

2

)
,

we also have fill this in

∇ · (Wξ,λ ⊗Wξ′,λ +Wξ,λ ⊗Wξ′,λ) = ∇(Wξ,λ ·Wξ′,λ). (10.169)

Therefore, (10.168) becomes

Eosc =
1

2

∑
j,j′

∑
ξ∈Λj ,ξ′∈Λj′ ,ξ+ξ′ ̸=0

bq+1,j,ξbq+1,j,ξ′∇(Wξ,λq+1 ·Wξ′,λq+1)

+
∑
j,j′

∑
ξ∈Λj ,ξ′∈Λj′ ,ξ+ξ′ ̸=0

(Wξ′,λq+1 ⊗Wξ,λq+1)∇(bq+1,j,ξbq+1,j,ξ′)

=
1

2

∑
j,j′

∑
ξ∈Λj ,ξ′∈Λj′ ,ξ+ξ′ ̸=0

∇
[
bq+1,j,ξbq+1,j,ξ′(Wξ,λq+1 ·Wξ′,λq+1)

]
(10.170)

+
∑
j,j′

∑
ξ∈Λj ,ξ′∈Λj′ ,ξ+ξ′ ̸=0

[
Wξ′,λq+1 ⊗Wξ,λq+1 −

1

2
(Wξ,λq+1 ·Wξ′,λq+1)Id

]
∇(bq+1,j,ξbq+1,j,ξ′)

= ∇posc + Ẽosc (10.171)

The first term in the right side can be incorporated into pressure, so that we can define Rosc

as the solution to
∇ ·Rosc = Ẽosc, (10.172)

given by (10.140) with E = Ẽosc. Summarizing, and recalling (10.156), we have the following
expression for Rq+1:

Rq+1 = Rtr +RNash +Rcomm +Rcorr +R(c)
corr +Rosc, (10.173)

with Rcomm and R
(c)
corr defined in (10.146) and (10.154), respectively, and the individual con-

tributions Rtr, RNash, Rcomm, Rcorr and Rosc given by (10.140) with the corresponding E in
the right side.

10.5.7 The inductive estimates on the new Reynolds stress

Now we estimate each individual term in the right side of (10.173).

166



The transport error

Recall that the transport error is given by (10.150):

Etr = ∂tw
(p)
q+1 + vℓ · ∇w(p)

q+1 − ⟨∂tw(p)
q+1⟩. (10.174)

The last term in the right side does not contribute to (10.140) and only serve to ensure
that ⟨Etr⟩ = 0. In addition, we have

∂tWξ,λ(Φj) + vq · ∇Wξ,λ(Φj) = 0, (10.175)

because Φj is advected by vq: it satisfies (10.95). It follows that

Etr =
∑
j

∑
ξ∈Λj

(∂taq+1,ξ,j(t, x) + vq · ∇aq+1,ξ,j(t, x))Wξ,λq+1(Φj(t, x)) (10.176)

As we have seen many times, the standard mollification estimates on the derivatives of Rℓ in
terms of ∥Rℓ∥C0 , imply the bounds

∥aq+1,λq+1,ξ∥Cm ≤ Cδ
1/2
q+1ℓ

−m, ∥∂taq+1,ξ,j + vq · ∇aq+1,ξ,j∥Cm ≤ Cδ
1/2
q+1ℓ

−m−1. (10.177)

Thus, we are in the situation as in (10.142)-(10.144), with C = C ′δ1/2ℓ−1 in (10.144), which
gives

∥Rtr∥C0 ≤ ∥Rtr∥Cα ≤ Cδ
1/2
q+1ℓ

−1λα−1
q+1 = Cδ

1/2
q+1λ

α−1/4
q+1 ≤ cRδq+2

100
, (10.178)

provided that α and β are sufficiently small.

The oscillation error

The estimate for the oscillation error is similar. First, we note that

|∇(bq+1,j,ξbq+1,j,ξ′)| ≤ |∇(aq+1,j,ξaq+1,j,ξ′)|+ λq+1δq+1

(
|∇Φj − Id|+ |∇Φj′ − Id|

)
≤ Cδq+1ℓ

−1 + Cλq+1δq+1ℓλqδ
1/2
q . (10.179)

A very similar argument, using (10.98) yields

∥∇(bq+1,j,ξbq+1,j,ξ′)∥Cm ≤ Cδq+1ℓ
−m−1 + Cλq+1δq+1ℓλqδ

1/2
q ℓ−m. (10.180)

Hence, we can use (10.144) (strictly speaking, we are using its analog for the case when the
right side of (10.138) has the form of a tensor product of two right sides as in (10.142) but
the same argument applies) with

C = C ′[δq+1ℓ
−1 + λq+1δq+1ℓλqδ

1/2
q ],

which gives

∥Rosc∥C0 ≤ ∥Rtr∥Cα ≤ C[δq+1ℓ
−1 + λq+1δq+1ℓλqδ

1/2
q ]λα−1

q+1 ≤ cRδq+2

100
, (10.181)

provided that α and β are sufficiently small.
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The Nash error

The Nash error comes from (10.152):

ENash = w
(p)
q+1 · ∇vℓ =

∑
j

∑
ξ∈Λj

aq+1,j,ξWξ,λq+1(Φj) · ∇vℓ, (10.182)

so it is again of the form (10.142) and we can appeal to (10.144). The estimate

∥aq+1,j,ξ∇vℓ∥Cn ≤ Cδ
1/2
q+1λqδ

1/2
q ℓ−n (10.183)

then leads to

∥RNash∥C0 ≤ ∥RNash∥Cα ≤ Cδ
1/2
q+1λqδ

1/2
q λα−1

q+1 ≤ cRδq+2

100
. (10.184)

The corrector error

The corrector error has two components:

Rcorr +R(c)
corr. (10.185)

Here, R
(c)
corr is given by (10.154):

R(c)
corr = w

(c)
q+1 ⊗tr w

(c)
q+1 + w

(p)
q+1 ⊗tr w

(c)
q+1 + w

(c)
q+1 ⊗tr w

(p)
q+1, (10.186)

and Rcorr is given by (10.140) with E = Ecorr, which is defined in (10.153)

Ecorr = ∂tw
(c)
q+1 + vℓ · ∇w(c)

q+1 − ⟨∂tw(c)
q+1⟩. (10.187)

The first term is estimated using the estimates (10.108)

∥w(p)
q+1(t, x)∥C0 ≤

δ
1/2
q+1

2
, (10.188)

and (10.115)-(10.117) which say that

∥w(c)
q+1∥C0 ≤ K sup

j
sup
ξ∈Λj

[∥∇aq+1,j,ξ∥C0

λq+1

+ ∥aq+1,j,ξ∥C0∥∇Φj − Id∥C0

]
(10.189)

≤ K
δ
1/2
q+1

ℓλq+1

+Kδ
1/2
q+1λ

−1/2
q δ1/2q ≤ K ′ δ

1/2
q+1

ℓλq+1

. (10.190)

This allows us to estimate R
(c)
corr simply as

∥R(c)
corr∥C0 = ∥w(c)

q+1 ⊗tr w
(c)
q+1 + w

(p)
q+1 ⊗tr w

(c)
q+1 + w

(c)
q+1 ⊗tr w

(p)
q+1∥C0

≤ Cδq+1ℓ
−1λ−1

q+1 ≤
cRδq+2

100
. (10.191)

As for Rcorr, note that, once again, becauseWξ,λq+1(Φj) solves the transport equation (10.175),
we have

Ecorr =
∑
j

∑
ξ∈Λj

(
(∂t + vℓ · ∇)

(∇aq+1,j,ξ

λq+1

+ iaq+1,j,ξ(∇Φj − Id)ξ
))
Wξ,λq+1(Φj(t, x)). (10.192)
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We know that

1

λq+1

∥(∂t + vℓ · ∇)∇aq+1,j,ξ∥Cn ≤ Kδ
1/2
q+1λ

−1
q+1ℓ

−2−n = Kδ
1/2
q+1λqℓ

−n, (10.193)

and

∥(∂t + vℓ · ∇)[aq+1,j,ξ(∇Φj − Id)∥Cn ≤ Kδ
1/2
q+1[ℓ

−n−1ℓλqδ
1/2
q + ℓ1−nλqδ

1/2
q ] ≤ K ′δ

1/2
q+1λqδ

1/2
q ℓ−n.
(10.194)

Appealing to (10.144) one more time, we obtain

∥Rcorr∥C0 ≤ Cδ
1/2
q+1λqλ

α−1
q+1 ≤ cRδq+2

100
, (10.195)

if α and β are sufficiently small. This was the last estimate we needed to prove that

∥Rcorr∥C0 ≤ cRδq+2

2
, (10.196)

and we are done. This completes the proof of Proposition 10.3 and hence that of Theorem 10.2
as well.
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