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Abstract

Nothing found here is original except for a few mistakes and misprints here and
there. These notes are simply a record of what I cover in class, to spare the students
the necessity of taking the lecture notes. The readers should consult the original books
for a better presentation and context. We plan to follow the material from the following
books: J. Bedrossian and V. Vicol " The Mathematical Analysis of the Incompressible
Euler and Navier-Stokes Equations” C. Doering and J. Gibbon “Applied Analysis of
the Navier-Stokes Equations”, A. Majda and A. Bertozzi “Vorticity and Incompressible
Flow”, P. Constantin and C. Foias “The Navier-Stokes Equations”, as well as lecture
notes by Vladimir Sverak on the mathematical fluid dynamics that can be found on his
website.
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1 The derivation of the Navier-Stokes and Euler equa-
tions

The state of a fluid is characterized by its density p(¢,x) and fluid velocity wu(t,z), and our
first task is to derive the partial differential equations that govern their evolution. They will
come from the conservation of mass, Newton’s second law and, finally, an assumption on the
material properties of the fluid.

1.1 The continuity equation

Each fluid particle is following a trajectory governed by the fluid velocity u(t, z):

dX(t,«)

o =ult, X(a,1), X(0,0) =, (1.1)



Here, « is the starting position of the particle, and is sometimes called “the label”, and the
inverse map A; : X(t,a) — « is called the “back-to-the-labels” map. If the flow wu(t,z) is
sufficiently smooth so that the particles can not coalesce, and the particles are never removed,
the forward map o« — X (¢, a) should preserve the total mass.

Let us first assume that the fluid density p(¢,x) = po is a constant, and see what can be
deduced from mass preservation — the fluid is neither created nor destroyed. In the constant
density case, mass preservation is equivalent to the conservation of the volume. That is,
if Vo C R, (d = 2,3) is an initial volume of a parcel of the fluid, then the set

V() ={X(t,a): aeVy}

of where the particles that started in V; at ¢ = 0 ended up at a later time ¢ > 0, should have
the same volume as V. In order to quantify this property, let us define the Jacobian

(9Xl(t, CY)

J(t, ) = det( da, ).

The change of variables formula, for the coordinate transformation o — X (¢, «), implies that
volume preservation means that J(¢t,a) = 1. As J(0,«) = 1, this condition is equivalent to

dJ
— =0. 1.2

Thus, our first task is to compute the time derivative d.J/dt for a general velocity field u(t, x).
It follows from (1.1) that the full derivative matrix

8XZ (t, Oé)

Hij(t,Oé) = 6a~
J

obeys the evolution equation

dHij - aul 8Xk
- , 1.3
dt c~ Oy, o (1.3)
which, in the matrix form, is
dH Ou;
S (VWH, (Vu)y = <= (1.4)

dt

The matrix H;; is also known as the deformation tensor. For example, if u = @ is a constant
vector, so that

8!Ek.

X(t,a) = o + at,

then H = Id is the identity matrix. In order to find d.J/dt, with J(t,a) = det H(t, ), we
consider a general n x n time-dependent matrix A;;(¢) and decompose, for each i =1,...,n
fixed:

j=1
Note that the minors M;;, for all 1 < j < n, do not depend on the matrix element A;;, hence

(det A) = (—]_)H_]MU

8142']'



We conclude that

d = O(det A)dA; O dA;;
d—t(dem)_z—%w — = (—1)" My = (1.5)

3,7=1 1,j=1

Recall also that
(A1) = (1/ det A)(—=1)" My,

meaning that

(det A)di = (det A) Y~ Agg (A1) =D (=1) T My Ag;. (1.6)
j=1 j=1
We apply now (1.5)-(1.6) to the matrix H;;:
d] dH;;

— = 1 ; ) 1.7
i~ MG (1.7

and .
T = (=1)7" My Hy (1.8)

j=1

Here, M;; are the minors of the matrix H;;. Using (1.3) and (1.8) in (1.7) gives

n

dJ ; 8uZ 8uz
—= > ”MZ]@ Z 0y = J(V -u). (1.9)
i,4,k=1

This is the equation for d.JJ/dt that we sought. Preservation of the volume means that J = 1.
As H(0) =Id and J(0) = 1, this is equivalent to the incompressibility condition:

V-u=0. (1.10)

Here, we use the notation

V- U—dIVU—ZgUk.
T

More generally, if the density is not constant, mass conservation would require that for
any initial volume Vj we would have (recall that p(t,z) is the fluid density)

p(t,z)dx =0, 1.11
R (111)

where

V() ={X(t,a): ac )}

Using the change of variables o« — X (¢, &) and writing

/ p(t, ) — / o, X (£, ) (£, @)dar, (1.12)
V(t) Vo
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we see that mass conservation is equivalent to the condition

d
(ol X (1, 0)) T (¢, ) = 0. (1.13)
Using (1.1) and (1.9) leads to
dp
aJ—l—(u‘V,o)J—l—p(V-u)J:O. (1.14)
Dividing by J we obtain the continuity equation
Ip
- . = 0. 1.15
LV (o) (115

We note briefly some basic properties of (1.15). First, the total mass over the whole space is
conserved:

/Rd p(t, ) — /R p(0, 2)dz. (1.16)

This follows both from (1.15) after integration over R? (assuming an appropriate decay at
infinity), and, independently, from our derivation of the continuity equation. If (1.15) is posed
in a bounded domain €2 then, in order to ensure mass preservation, one may assume that the
flow does not penetrate the boundary 0€:

u-v =0 on d. (1.17)

Here, v is the outward normal to 9€2. Under this condition, we have

/Qp(t,x)dx:/gp(O,x)dx. (1.18)

This may be verified directly from (1.15) but it also follows from our derivation of the con-
tinuity equation since (1.17) implies that €2 is an invariant region for the flow u: if o € Q
then X (¢, ) € Q for all ¢ > 0.

Furthermore, (1.15) preserves the positivity of the solution: if p(0,x) > 0 then p(t,z) > 0
for all £ > 0 and x — this also follows from common sense: density can not become negative.

1.2 Newton’s second law in an inviscid fluid

The continuity equation for the evolution of the density p(¢,z) should be supplemented by
an evolution equation for the fluid velocity wu(t, z). This will come from Newton’s second law
of motion. Consider a fluid volume V. If the fluid is inviscid, so that there is no “internal
friction” in the fluid, the only force acting on this volume is due to the pressure:

F = —/ prdS = —/ Vpdz, (1.19)
ov v

where 9V is the boundary of V, and v is the outside normal to V. Taking V to be an
infinitesimal volume around a point X (¢), which moves with the fluid, Newton’s second law
of motion leads to the balance

p(t, X (1)) X (t) = =Vp(t, X(t)). (1.20)



We may compute X (t) from (1.1):
X;(t) = %(uj(t,X(t)) = w + ZXk(t)%j“)) (1.21)

_ Ouy(t, X(t))
N ot

Therefore, we have the following equation of motion:

+u(t, X(t)) - Vu;(t, X(t)).

ou
p(E—FU'VU) +Vp=0. (1.22)

Equations (1.15) and (1.22) do not form a closed system of equations by themselves —
they involve n + 1 equations for n 4+ 2 unknowns (the density p(t, z), the pressure p(¢, x) and
the fluid velocity u(t,x)). The missing equation should provide the connection between the
density and the pressure, and this comes from the physics of the problem, that goes into the
assumptions on the material properties of the fluid. In gas dynamics, it often takes the form
of a constitutive relation p = F'(p), where F(p) is a given function, such as F(p) = Cp” with
some constant v > 0. Then, the full system becomes

pe+ V- (pu) =0
1
w4+ u - Vu + ;Vp =0, (1.23)

p=Fl(p).

The pressure may also depend on the temperature, and then the evolution of the local tem-
perature has to be included as well but we will not discuss this at the moment.

1.2.1 The linearized equations

The simplest solution of (1.23) is the constant density and pressure, zero fluid velocity state:

p=po, p="po=F(py) and u = 0. (1.24)
Let us consider a small perturbation around this state:
p=po+en+O0(),
p=po+eF (po)n + O(?) (1.25)
u=¢cv+ O(e?),
with € < 1. Inserting these expansions into (1.23) gives, in the (leading) order O(e):

ne+poV-v=0

F/
v+ ﬂvn = 0. (1.26)
Po
It is common to write this system in terms of v and the pressure perturbation p = F'(pg)n.
After dropping the tilde it becomes the linearized acoustic system
kopr + Vv =0 (1.27)

povr + Vp = 0. (1.28)
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Here, ko = 1/(F'(po)po) is the compressibility constant. Equations (1.27)-(1.28) form what
is known as the linearized acoustics system. Differentiating (1.27) in time and using (1.28)
leads to the wave equation for pressure:

1
0

with the sound speed

cp = plolio =/ F'(po). (1.30)

The linearized acoustics is what governs most of the “real-world” applications at “bearable”
sound levels.

1.2.2 Euler’s equations in incompressible fluids

A common approximation in the fluid dynamics is to assume that the fluid is incompressible,
that is, its density is constant: p(t,z) = po, as the fluid can not be compressed. Using this
condition in (1.15), leads to another form of the incompressibility condition:

V-u=0, (1.31)

that we have already seen before in (1.10) as the volume preservation condition for the flow.
That is natural: conservation of density means exactly that the volume of a fluid is preserved.
Equations (1.22) and (1.31) together form Euler’s equations for an incompressible fluid:

ou 1

- . - = 1.32
8t+u Vu+pOVp 0, (1.32)
V.ou=0. (1.33)

Unlike in the acoustics system, the pressure p(t, z) is not prescribed but is rather determined
by the fluid incompressibility condition. In other words, p(¢,z) has to be chosen is such a
way that the solution to (1.32) remains divergence free. In order to find the pressure, we may
take the divergence of (1.32), leading to the Poisson equation for the pressure in terms of the
velocity field:

B S~ R

" Oxy, Ox; Oxy,’

"L 0

1,j= 1,j=1

We used the incompressibility condition (1.33) in the second and third equalities above.
Equations (1.32)-(1.34) together may be thought of as a closed system of equations for the
velocity u(t, z) alone since p(t, z) is determined by u(t, x) via (1.34). An extremely important
point is that the Poisson equation (1.34) for the pressure means that p(t,z) is a non-local
function of the velocity. Hence the Euler equations are a non-local system of equations for
the fluid velocity — the pressure field at a given point depends on the velocity distribution in
the whole space.

When the problem is posed in a bounded domain, we need to prescribe the boundary
conditions for the fluid velocity and pressure. If the physical domain 2 is fixed and the fluid
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does not penetrate through its boundary, a natural physical condition for the fluid velocity is
that the normal component of the velocity vanishes at the boundary:

v-u=0on 0, (1.35)

where v is the outward normal to the boundary. It follows that

v- % =0 on 0, (1.36)

thus the pressure satisfies the Neumann boundary conditions

op
ov

Often, as a simplification we will consider the Euler equations either in the whole space,
with the decaying boundary conditions at infinity, or with the periodic boundary conditions
on a two- or three-dimensional torus, as the boundaries bring extra (and, admittedly, very
interesting) difficulties into an already difficult problem.

= —pov - (u - Vu) on 0f. (1.37)

1.3 The viscous stress and the Navier-Stokes equations

The previous discussion did not take into account the viscosity of a fluid, which comes from the
forces that resist the shearing motions because of the microscopic friction. The forces normal
to a given area element are associated to the pressure (which we did take into account), while
those acting in the plane of the area element are associated to the shear stress. In order to
derive the fluid motion equations, as a generalization of the force on a volume element V
coming from the pressure field:

F = —/ prdS = —/ Vpdz, (1.38)
oV v

we may write, for the force that acts on an infinitesimal surface area dS of a volume element V':

dF; = " vymydS, (1.39)

k=1

where v is the outward normal to dS, and 7 is the total stress tensor that includes both the
pressure and the shear stress. We will soon start making assumptions on the stress tensor
but for moment, we simply assume that the surface force has the form (1.39) with some
tensor 7;. Integrating this expression over the boundary OV leads to the total force acting

on the volume V:
- i 87;64
F; = / VyTiidS = / Ldw. (1.40)

We will use the notation V - 7 for the vector with the components

n

0Ty
(V-7); = Z%"Z (1.41)
k=1
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as well as denote .
(v-71); = Z VkThj - (1.42)
k=1

In addition to the surface forces, there may internal forces that act inside the volume V', that
need to be balanced with the surface forces. Let us assume for the moment that the fluid is
in equilibrium, and let f be the internal forces, 7 be the stress tensor, and V' be an arbitrary
volume element. Then the balance of forces says that

/ fdx + / (V-1)dx =0, (1.43)
v 1%
which means that in an equilibrium we have

f+V.71=0. (1.44)

The total angular momentum of the force should also vanish, meaning that (in three dimen-
sions)

/V(f « 2)dx +/ (v 7) x 2)dS = 0, (1.45)

oV
for each volume element V. The surface integral above can be re-written as'

0 0T
/ EijkUTTrdS = / sijka—xl(ﬂjxk)da: = / Eijk <8Lwljxk + Tkj>dx, for each 1 = 1,2, 3.
oV 1% 1%
(1.46)

Here, €, is the totally anti-symmetric tensor: (v X w); = €;;,v;wg, and €;; = 0 if any pair
of the indices 4, j, k coincide, while if all 4, j, k are different, then &, = (—1)P*!, where p =1
if (ijk) is an even permutation, and p = 0 if it is odd. Using (1.44) in (1.46), we get

/ EijkTTpdS = / gijk( — fijTe + Tkj>d£l,’, for each 1 = 1,2, 3. (1.47)
R1% 1%

Returning to (1.45), and combing it with (1.47), we obtain

0= / ik firrde +/ gijk( — fixp + Tkj)dx = / ijkTjdz, for each i =1,2,3. (1.48)
1% 1% 1%

As a consequence,
eijkTjk = 0, for each ¢ = 1,2, 3, (1.49)

which means that the tensor 7;; has to be symmetric.

Exercise. Modify the above computation to show that the stress tensor is symmetric
even if the fluid is not in an equilibrium.

We may now go back to the derivation of the Euler equations and proceed as before, the
difference being that the force term in the Newton second law is not —Vp but V - 7. This
will lead to the equation of motion

ou

E—i—u-Vu—%V-T. (1.50)

'From now we will use the convention that the repeated indices are summed unless specified otherwise.
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As for the Euler equations, the evolution equation for the fluid velocity needs to be supple-
mented by the continuity equation

9]

4N (pu) = 0. (1.51)
ot

Previously, we needed also to prescribe the equation of state — the relation between the
pressure and the density. Now, we need to postulate, or derive from physical considerations,
an expression for the stress tensor. We will decompose it as

Tij = —Poij + 0. (1.52)

The first term comes from the pressure — it leads to a force acting on a surface element in the
direction normal to the surface element. The second term comes from the shear stress, and
comes from the friction inside the fluid. It is natural to assume that it depends locally on Vu
— if the flow is uniform there is no shearing force. In order to understand this dependence,
recall that, given a flow

dX
the deformation tensor H;; = 0X;/0a; obeys
i EHW, H;;(0) = d;;. (1.54)

Therefore, the skew-symmetric part of the matrix Vu (locally in time and space) leads to a
rigid-body rotation and does not contribute to the shearing force. Hence, it is also natural to
assume that the shear stress o;; depends only on the symmetric part of Vu:

1 8UZ an
Dij = 5(8% N (3x2~>' (1.55)

In a Newtonian fluid, the shear stress depends linearly on the deformation tensor D;;:
o= L(D),

for some linear map L between symmetric matrices. The map L should not depend on the
point x and it should be isotropic: for each rotation matrix ) we should have

LQDQ") = QL(D)Q". (1.56)
Exercise. Show that the above conditions imply that the map L has to have the form
[L(D)}ij = 2uDij 4 Adi; Tr(D), (1.57)

with some constants A and p. These constants are called the Lamé parameters in the context
of the elasticity theory.
For an incompressible fluid, we have

TtD =V -u=0, (1.58)
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hence the stress tensor has a simpler form
We will make an additional assumption that p and A\ are constants that do not depend on

other physical parameters such as temperature, density or pressure. Then the force term
n (1.50) can be written as

T 0 Ou;  Ouy,
. = —— = —| —pj, — 4+ — 1.
V7= G = g L (G ) AT ) (1.60)
0 0
= P A (e N (V- ).
8 T Ox Tk
This leads to the Navier-Stokes equations of compressible fluid dynamics
A
gﬁ“ Vu + vp_“A SCREIRAvIN (1.61)
dp
1.62
LAV () =0, (1.62)
p=F(p). (1.63)

As with the Euler equations, the equation of state may also involve the temperature, and
then the evolution equation for the temperature should also be prescribed.

The incompressibility constraint V -« = 0, or, equivalently, the constant density ap-
proximation p = po, simplifies the system (1.61)-(1.63) to the incompressible Navier-Stokes
equations

ou 1

—+u-Vu+ — V = —Au 1.64
ot Po P= Po ( )
V-u=0. (1.65)

Note that Euler’s equations are formally recovered from the Navier-Stokes equations by setting
the viscosity u = 0, or, equivalently, assuming that the shear stress vanishes.

From now on, unless specified otherwise, we will consider only the incompressible Euler
and Navier-Stokes equations.

1.3.1 Two-dimensional flows

We will sometimes consider the two-dimensional version of the Navier-Stokes equations, which
has exactly the same form as the three-dimensional equations (1.64)-(1.65) but with the fluid
velocity that has only two components: u = (uy,us), and, in addition, the problem is posed
for x € R?. These can be interpreted as the solutions of the three-dimensional Navier-Stokes
system of a special form u = (u;y(xq,x2), us(x1, x2),0) with the pressure p = p(x;, z5) — that
is, they are independent of x3 and the third component of the fluid velocity vanishes. It is
straightforward to check that, indeed, they satisfy (1.64)-(1.65) provided that @ = (uq,uz)
satisfies

ou Iz

+u-Vu+ V = —Au 1.66
ot Po r= Po (1.66)
Vi =0, (1.67)

posed in R? and not in R3.
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2 The vorticity evolution

An important role in the theory of fluids is played by the fluid vorticity. It is defined in terms
of the fluid velocity u(t, z) as a vector

w=curlu =V xu, w; =e¢;dju,in R? (2.1)

in three dimensions, and as a scalar

W= g—?;f - g—z;in R?, (2.2)
in two dimensions. Here, as before, ¢;; is the totally anti-symmetric tensor and we use the
summation convention for repeated indices. The two-dimensional vorticity can be understood
as the xz-component of the three-dimensional vorticity of the flow (u(xy, z2), us(x1,x2),0) —
the other two components of the vorticity vanish for such flows. It is sometimes convenient
to write also in two dimensions the vorticity as

w = g;50uy, (2.3)

with the antisymmetric tensor €;; defined by €11 = €92 =0, €12 =1, €91 = —1.
Note that the vorticity vector field in three dimensions is always divergence free:

V-w= Eijk&@juk = 0, in R?’. (24)

2.1 Vorticity in two dimensions
2.1.1 Vorticity conservation in two dimensions

Let us now compute the evolution equation for the vorticity in two and three dimensions.
In the two-dimensional case, we start with the Navier-Stokes equations (we will set the den-
sity po = 1 for simplicity from now on, unless specified otherwise)

0
8—1; +u-Vu+ Vp =rvAu, (2.5)
and compute using (2.3):
ow op dujy\ Quy, u *u
E = 51-]-81- (VAUj — a—x] — Uka_xk> = I/A(gz'juj') — 51'3'81'83']) — 8@'8—%8—% — 87;juk 8$Za$k
(2.6)
Now, we note that
5ijaiajp =0, (2-7)

because the tensor ¢;; is anti-symmetric, and also that

Ouy, Qu; _8uk Ouy | Oup OQuy  Oup Quy  Ouy Quy N Oouy Ouy N Ous Ouy

_5Zj 81‘Z 81‘]@ - 8:1;1 al'k 81‘2 al’k; o _61‘1 al’l 8.’])1 81‘2 axQ 81‘1 81‘2 axZ
. 8u1 (9u1 8u2 8u2 8u1 auQ . .
 Om (8:(:2 B 8x1) 0xs <(9132 B 3561) = wevu=0

(2.8)
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Using these two identities in (2.6) gives

ow

— =vAw—u-Vw. 2.9

5 (2.9)
The “miracle” is that in two dimensions the term we have calculated in (2.8), and which in
three dimensions will contribute to the vorticity growth, cancels out completely because of
the incompressibility condition. Thus, in two dimensions, the vorticity satisfies an advection-
diffusion equation

%—C: +u - Vw = rvAw. (2.10)

This is very remarkable, as (2.10) obeys the maximum principle: with appropriate decay
conditions at infinity if (2.10) is posed in the whole space R?, or in the periodic case, we can
immediately conclude that

Jw(t, )llzee < [lwol oo, (2.11)

where wy(z) = w(0, x) is the initial condition for the vorticity, as long as u(t, x) satisfies some
very basic regularity assumptions.

Furthermore, in an inviscid fluid, when v = 0 the vorticity is simply advected along the
flow lines; solution of

ow
- . = 2.12
5 +u-Vw=0 (2.12)
is simply
w(t, ) = wo(t, A(t, x)), (2.13)

where A(t,x) is the "back-to-labels” map for (1.1). This will help us later to prove the
regularity of the solutions of the Euler and Navier-Stokes equations in two dimensions, though
it will not imply the regularity immediately.

2.1.2 The Biot-Savart law in two dimensions

Note also that the pressure term is nowhere to be seen in the vorticity equation (2.10). Thus,
in order to close the problem, we only need to supplement the evolution equation (2.10) for
vorticity by an expression for the fluid velocity u(¢,x) in terms of the vorticity w(t,z). To
this end, observe, that, as u(t,z) is divergence free, and the problem is posed in all of R?
there exists a function ¢ (t, z), called the stream function, so that u(¢,z) has the form

ult, ) = VIt ) = (=, (t, 2), s, (1, 7)) (2.14)
To see this, note that, because of the divergence-free condition for u(¢, z), the flow
v(t,z) = (ug, —uq), (2.15)
satisfies o ) dun 016
Oxy  Oxy’ ’

hence there exists a function ¢ (¢, ) so that v(t,z) = Vi (t, z), which is equivalent to (2.14).
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The vorticity can be expressed in terms of the stream function as
Ay = w, (2.17)

or, more explicitly,

wit.) = 5 [ Joglla —ywlt, . (2.18)

Differentiating (2.18) formally, we obtain an expression for the fluid velocity in terms of its
vorticity
ut,z) = | Ka(x —y)w(t, y)dy, (2.19)
R2
with the vector-valued integral kernel

Ks(2) 1( . (2.20)

Thus, the Navier-Stokes equations in two dimensions can be formulated purely in terms of
vorticity as the advection-diffusion equation for the scalar vorticity

O +u-Vw =rvAw, (2.21)
ot
with the velocity u(t, z) given in terms of w(t, z) by (2.19).

A potential danger is that the function Kj(x) is singular, homogeneous of degree (—1)
in x. Thus, it is not obvious that (2.20) gives a sufficiently regular velocity field u(t, x) for
the coupled problem to have a smooth solution even if the initial conditin wy(z) = w(0, z) is
smooth and rapidly decaying at infinity. However, the ”1/z” singularity in two dimensions is
sufficiently mild: writing (2.19) in the polar coordinates gives (with 2t = (—x9, 1))

u(t,z) = ! / Mw(y)dy: %/00 /%(— sin ¢, cos ¢)w(x1 —1r cos ¢, xo— 1 sin ¢)dodr,
o Jo

2 2 |z =yl

There is no longer a singularity in (2.22), and the expression for the velocity “makes sense”.

The system (2.19), (2.20), (2.21) is an example of an active scalar — the vorticity w(t, x) is
a solution of an advection-diffusion equation with the velocity coupled to the advected scalar
itself.

2.2 Vorticity evolution in three dimensions
2.2.1 Vorticity equation in three dimensions

The situation in three dimensions is very different. In order to compute the evolution equation
for the vorticity vector, first, note that the advection term in the Navier-Stokes equations can
be written as

8u¢

(u-Vu); = s u (

6ui _ 8uj) +u8uj
al'j (9:{;1 J &xi’

(2.22)
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and that

(w X u); = €ijpwWitk = €ijkE jmn (OmUn )k = (8inOkm — OimOkn) (Omiy ) Uk
= (Oui )k — (Osug)uy. (2.23)

We used above the identity
€jikEjmn = (Szmékn - 5zn5km (224)

and anti-symmetry of €;;,. We see that

2
u~Vu:wxu+V<%>. (2.25)

Therefore, the Navier-Stokes equations can be written as

2
U+ w X u+ V(% +p) = vAu. (2.26)

The formula
curl(a x b) = —a-Vb+b-Va+a(V-b) —b(V -a), (2.27)

together with the incompressibility condition V - u = 0 and (2.4) helps us to take the curl
of (2.26), leading to the vorticity equation:

wi +u-Vw =rvAw+ V(t, z)w, (2.28)
with
V(t,z)w=w-Vu V--—% (2.29)
) - ) iy 8!Ej . .
We can decompose the matrix V' into its symmetric and anti-symmetric parts:
1 1
V=D+Q, D:§(V+VT), QZE(V—VT), (2.30)
and observe that, for any h € R3
1 1 1
Qijhj = 5[8]1% — &uj]h] = Eamuk [5lk5]m — 51 5jk]hj = §el,~jslkm(6muk)hj
1 1 1 1
= —aalijalmk@muk)hj = —§€lijwlhj = §5i1jwlhj = 5[&) X h]z, (231)
that is,
1
Qh = 5 X h. (2.32)
The matrix €2 has an explicit form
1 0 —Ws W9
0=- Ws 0 —W1 . (233)
2
—W9 w1 0
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As a consequence, we have Qw = 0, thus Vw = Dw, and the vorticity equation has the form

we+u-Vw =vAw+ D(t, r)w, (2.34)
with L9 5
o U; Uj
D 2 (8@ * 8371)' (2:35)

The term Dw in the vorticity equation is known as the vortex stretching term, and it is maybe
the main reason why the solutions of the three- dimensional Navier-Stokes equations exhibit
such rich behavior and complexity. As we have done in two dimensions, it is possible to
express the velocity u(t, ) in terms of the vorticity — this relation is known as the Biot-Savart
law, leading to the “pure vorticity” formulation of the Navier-Stokes equations, but we will
postpone this computation until slightly later.

2.2.2 An analogy to the Burgers’ equation

The vorticity equation (2.34) has a quadratic term in w in the right side. Such quadratic
nonlinearities may potentially lead to a blow up. This is easily seen on the simple ODE
example

2 =22 2(0) = 2. (2.36)

Its explicit solution is

<0
t) = . 2.37
2(t) = 1— o (2.37)
If zg > 0, the solution becomes infinite at the time
1
te=—. 2.38
- (239

At a slightly more sophisticated level, we can look at the familiar Burgers’ equation on
the line:

ur +uu, =0, u(0,2) = up(x). (2.39)

Its solutions develop a finite time singularity if the initial condition wuy(z) is decreasing on
some interval. Such discontinuities are known as shocks. In order to make a connection to
the vorticity equation, note that the function w = —u, satisfies

wi + uw, = w?, w(0,7) = wo(x) = —uj(w). (2.40)
This equation is analogous to the vorticity equation with v = 0, except the nonlinearity has
a different form: D(w)w is replaced by w?. As in the case of the quadratic ODE (2.36), the
function w(t, x) becomes infinite in a finite time if there are points where wy(z) > 0. One
should mention that there are two regularizations of the inviscid Burgers’ equation (2.39):
first, adding a diffusive (dissipative) term gives the viscous Burgers’ equation

Up + Uy = Vg, u(0,2) = ug(x), (2.41)
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which has global in time smooth solutions if ug(x) is smooth. A natural question which we
may revisit later is why is the wu,, term sufficiently regularizing? More precisely, one may
consider equations of the form

U + uu, = Au, u(0,x) = up(z), (2.42)

where A is a linear dissipative operator in the sense that

(Au,u) = /(Au(x))u(w)dw < 0. (2.43)
R
If A commutes with differentiation, the “vorticity” equation will have the form
Wi+ uw, = Aw +w? w(0,z) = wo(x) = —uph(x). (2.44)

Then, the dissipative effect of Aw will compete with the growth caused by w? in the right
side. The issue of when the dissipation will win is rather delicate — we will revisit it later if
we have time.

There is a different approach to the blow up in the Burgers’ equation that illustrates a
general strategy of trying to control some integral functionals of the solution rather than
solutions themselves. Let us consider, for simplicity, the solution of the Burgers’ equation on
the line with a periodic initial condition wug(z):

uo(z + 2m) = ug(x).

Then the solution to

u +uu, =0, u(0,x) = up(x) (2.45)
will stay periodic for all £ > 0 (as long as it exists):
u(t,z + 2m) = u(t, x). (2.46)
If, in addition, the initial data is odd: ug(—x) = —ug(z), then the solution remains odd as
well: we have u(t,z) = —u(t, z) for all t > 0. This means that, as long as the solution remains
smooth, the functional
Tt
L(t) = / ub.2) g, (2.47)
. T

is well-defined and finite — the function u(¢, x) vanishes at = 0. Differentiating L(¢) in time

gives
dL(t) T uy(t, ) 1 1 [™u’(t, x)
g / " dx / xuumd:c 5 / o dx (2.48)

The Cauchy-Schwartz inequality implies that

LA(t) = (/7r de)Q <2r /7r de. (2.49)

T 2

Hence, the function L(t) satisfies a differential inequality
dL 1
— < ——L*(1). 2.50
dt — 4m ®) (2:50)
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Integrating this inequality in time gives

1 1 t
_ < =, 2.51
Lo L(t) = 4« ( )
Hence, we have
47TLO
L(t) < ———. 2.52

We conclude that if Ly < 0 then L(t) = —oo at some time t < —47/ Ly, thus solution may not
remain smooth past this time. The condition that Ly < 0 distinguishes between the initial
data that “look like” ug(x) = sinz and like ug(x) = —sinz. The latter is decreasing at x = 0,
hence the shock is expected to form there, thus it is reasonable to expect that L(t), which
has x in the denominator in the integrand, will blow-up. On the other hand, the former is
increasing at = 0, thus the shock would not form there, and L(t¢) should not capture the
singularity formation. A different functional should be considered to capture the blow-up.
Another very interesting regularization of the inviscid Burgers’ equation is via dispersion:

U + Uy = PUgrr, w(0,2) = ug(x). (2.53)

This is the Kortweg-de Vries equation which describes a regime of the shallow water waves. Its
mathematics is incredibly rich and is connected by now with nearly every area of mathematics.
If we have time, we will go back to it as well. For now, we just mention that solutions of (2.53)
also remain smooth for all £ > 0 provided that wug(x) is, say, a smooth rapidly decaying
function. However, the mechanism for regularity is not dissipative but rather dispersive — the
high frequencies spread faster, hence an oscillation will ”fly away towards infinity very fast”,
and there u is small, hence the nonlinearity does not play a big role there. On the other hand,
the balance between dispersion and nonlinearity leads to extremely interesting effects.

2.2.3 Flows with a spatially homogenous vorticity

As an example, we consider flows that have a spatially uniform vorticity w(t). Let us choose
a symmetric matrix D(t) with TrD(¢) = 0, and a vector-valued function w(t) # 0 such that

d
d—j = D(t)w(t), w(0) = wp. (2.54)
We also define the anti-symmetric matrix Q(t) via (2.33), so that

1
Q(t)h = §w(t) X h, for any h € R®, Qi = €imjwim. (2.55)

A direct computation, using the symmetry of D, the assumption TrD = 0, and (2.33), gives
Q+ DQ+ QD =0. (2.56)
The observation is that the flow

u(t,z) = %w(t) x x+ D(t)x (2.57)
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gives an exact solution of the three-dimensional Euler and Navier-Stokes equations, with the
vorticity curlu = w. Indeed, first, as the trace of D(t) vanishes, both components in (2.57)
are divergence-free:

V-u= aj (Ejklwk.iﬂl) + 8]- (D]k.iEk) = Ejklwkdﬂ + Djk(sjk =0. (258)

Moreover, the second term in (2.57) is the gradient of the function (1/2)(D(t)z - z), hence its
vorticity vanishes, while identity (2.27) means that

1 1 1 1 3
curlu = —curl(w(t) x z) = ——w -V + —w(V - z) = ——w+ —w = w. (2.59)
2 2 2 2 2
Next, we compute
1 .
Uy = éw X x + D, (2.60)
and ) .
(%uk = Eaj(EkmnmeEn) + @(kaxm) = §€kmjwm + ij, (2.61)
so that ) .
u - Vug = u;05u, = 5k UjWm +u;Dy; = Jw X u+ Du. (2.62)
Putting these equations together and using (2.55) leads to
1. . 1 1. .
ut—l—u-Vu:§wxx+Dx+§wxu+Du:§w><x+Dx (2.63)
1 1 1
—|—§w X <§w xm+Dm> +D<§w xx+Dz>

= (D4 Q4+ Q>+ D? + DQ+ QD)x = (D + Q> + D*)x = —Vp(t, z)
We have used (2.56) in the next to last equality above. The pressure is given explicitly by

1,0D
t ) = ——<— D? 92> . 2.64
plta) =5 (5 + D+ 0)e (264
We conclude that, given any symmetric trace-less matrix D(t), we may construct a solution
of the Euler equations as above.
Example 1. A jet flow. As the first example of using the above construction, we may
take wy = 0, so that w(t) = 0 and D(t) = diag(—v1, =2, 71 + Y2) with 71,72 > 0. The flow is

u(t,z) = (=721, =222, (11 + 72)73). (2.65)
The particle trajectories are
X(t,a) = (e ay, e 2 ay, e T2y, (2.66)

and have the form of a jet, going toward the x3-axis, and up along this line for x3 > 0, and
down this direction for z3 < 0.
Example 2. A strain flow. Consider D = diag(—,~,0) with v > 0, and, once again,
vorticity w = 0, so that

u(t,x) = (—ywy1,yx2,0). (2.67)
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Then the particle trajectories are
X(t,a) = (e My, ey, az). (2.68)

The particle trajectories stay in a fixed plane orthogonal to the xs-axis and are stretched in
this plane: nearby two particles starting near the x;-axis with as > 0 and oy < 0 will separate
exponentially fast in time.

2.2.4 Shear layer solutions

Here, we will generalize the second example above: we will be looking at flows of the form
generalizing (2.67):
u(t, x) = (—y1, ywe, w(t, 21)), (2.69)

that is, the third flow component depends only on z; and t. Such flows satisfy the Navier-
Stokes equations with the pressure p(t, z) = v(2?+z32)/2, provided that the vertical component
of the flow w satisfies a linear advection-diffusion equation

ow ow 0w

L Np — = . 2.70
825 i axl Val‘12 ( )
The vorticity is given by
ow
t,z) =(0,—=—,0 2.71
(t,z) = (0, -5, 0), @11
and its second component w = —w,, satisfies (after dropping the tilde)
0 0 0?
d d iy Yw. (2.72)

— — YT — =V
ot oz Uon?

Here, we see clearly the three competing effects in the vorticity evolution: the diffusive (dis-
sipative) term vw,,,,, the convective term —vyzjw,, and the vorticity growth term yw. It is
instructive to look at the three effects in this very simple setting.

First, let us note that when v > 0, the vorticity equation (2.72) admits steady solutions:

—yrw' = vd" + 0. (2.73)
Indeed, setting y = Az leads to
—yy@, = Ny, + Yo, (2.74)
thus, choosing A = \/W, we arrive at
— YWy = Wyy + w. (2.75)
This equation has an explicit steady solution
oy) = eV, (2.76)
hence a steady solution of (2.73) is

w(xy) = e /@), (2.77)



Such solutions do not exist when v = 0 — they are sustained by the stretch, and are localized
in a layer of the width O(4/v/7) around the plane {z; = 0}. They may also not exist at zero
viscosity: if v = 0 then (2.73) has no non-trivial bounded steady solutions — thus, they are a
result of a balance between the stretch and the friction.

Equation (2.72) can be solved explicitly. Fitst, writing

w(t,x) = e’z(t, 1) (2.78)

gives

0z 0z 9%z

ot~ o~ Von?
Next, making a change of variables:

(2.79)

2(t,x) = n(1(t), e"xy) (2.80)

with the function 7(¢) to be determined, leads to

.On i On £ O 23t 1)
o + ve” xlﬁ_f — yzi€” % ve”! o6 (2.81)
Taking
7 =ve?, (2.82)
or y
r(t) = Z(em -1), (2.83)
leads to the standard heat equation
0 0?
a_zza_gz’ 7>0, £€R, (2.84)
with the initial condition 7(0, &) = wo(§). Therefore, the vorticity is
wt,z)) =€ / G(%(e%t — 1),z — y)wo(y)dy, (2.85)
where G(t,x7) is the standard heat kernel:
L w2/
G(t,z) = e 1" . (2.86)

\Aart

Let us look at the long time behavior of vorticity:

w(t,zy) = ew<4ﬂ(62w - 1)) 1/2/exp{ — M}wo(y)dy (2.87)

2y 3—:(62“ —1)

1/2
S () = (L) ol (20) / wo(y)dy.

2Ty

provided that the initial vorticity wy € L'(R). Thus, the vorticity is localized as ¢ — +o00
around x; = 0, in a layer of the width O(y/v/v), and its long time limit is a multiple of the
steady solution (2.77).
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2.2.5 The Biot-Savart law in three dimensions

We now return to the vorticity equation in three dimensions
wi +u-Vw =vAw +w - Vu. (2.88)

Our goal is to derive an expression for the velocity u in terms of the vorticity w, so as
to formulate the Euler and Navier-Stokes equations purely in terms of vorticity. In two
dimensions, this was done using the stream function, solution of

A = w, (2.89)
with u given by
U = Vl¢ = (_wmza w11)7 (290)
or, equivalently,
ut,z) = | Ka(z —y)w(y)dy, (2.91)
R2
with the vector-valued integral kernel
1 T I
K :—(——,—). 2.92
A0 = 5\ T ap (2.92)

In three dimensions, given a divergence-free vector field w(z) we need to find a divergence-
free vector field u(t,x) so that

Vxu=w, V-u=0. (2.93)
Attempting the same strategy as in two dimensions, we define the stream vector 1 via
A = w, (2.94)

and

u(z) = =V x ¥(z). (2.95)

Note that, as V - w = 0 by assumption, we have
A(V -) = 0. (2.96)

Hence, if we assume that V -4 is bounded, then V-4 = 0, and v is also divergence-free. The
flow u defined by (2.95) is divergence-free: V - u = 0, and

[V x ul; = €ix0;ur, = —€ij10i€kmnOm¥n = —€kij€kmn0jOm¥n = —(0im0jn — din0jm)0;0m iy,
= —0i05; + A, (2.97)

that is, w is the vorticity of u:

Vxu=-V(V-)+ A =uw. (2.98)
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We have an explicit expression for the stream-vector ¢ (x) as the solution of the Poisson
equation (2.94):

o) = / 1w (2.99)

—— w
AT Jgs [z — |

The velocity is then given by

wle) = - [ ot (ot Natty = [ s By (210
so that
ua) = 3= [ Klo—y) x w)dy (2.101)
with 1 3
(@)= ~4-rm (2.102)

As in the two-dimensional case, the integral operator defining u(x) in terms of the vortic-
ity w(z) is not “really singular” — the singularity of the 1/|z|? type is cancelled in three
dimensions by the Jacobian if we pass to the spherical coordinates. However, unlike in two
dimensions, the vorticity equation in three dimensions

wr+u-Vw =vAw+ w - Vu, (2.103)

involves not only u(x) but also the gradient Vu. Formally differentiating (2.101) leads to
(this identity is not quite correct because of the singularity of the integrals involved)

Vu(z)” =7 /RS VK(z —y) X w(y)dy. (2.104)

The integral kernel VK () in (2.104) has the singularity of the type z/|x|*, which can not be
simply cancelled by the Jacobian in three dimensions if we pass to the spherical coordinates.
Integral operators with a singularity of this type are known as singular integral operators,
and we will deal with them in some detail later, leaving for now the vorticity equation on a
formal level.

3 The conserved quantities

We will now discuss the physical quantities conserved by the Euler and Navier-Stokes equa-
tions. They are important both from the physical and mathematical points of view — a system
that possesses sufficiently regular integrals of motion will not have irregular solutions if the
initial condition is smooth. As we will see, the integrals of motion for the fluid equations are
often insufficient to deduce the existence and regularity of solutions.
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3.1 Vortex lines

In three dimensions, we say that a smooth curve I' is a vortex line at a time ¢t > 0 if its
tangent is everywhere parallel to the vorticity vector w(t, z). Let us show that if

Fo={v(s), 0<s<1} (3.1)
is a vortex line at the time ¢t = 0 then its push-forward
P(t) = {X(t,7(s)), 0<s<1) (3.2)
is a vortex line at the time ¢t > 0. For that, we have the following.

Lemma 3.1. Let w(t, x) be the vorticity of a solution to the Euler equations in three dimen-

sions. Then, we have
w(t, X(t,a)) = (Vo X)(t, a)wo(a). (3.3)

Proof. Note that (3.3) holds at ¢ = 0. Recall that the matrix
8X1 (t, CY)

Hi' t, X t, = y 34
S8 0)) = 5 (3.4
satisfies (1.4)
dH
— = H )
== (V). (35)
so that J
a(VaX)(t, a)wo(a) = VuHuwy. (3.6)
On the other hand, the Euler equations
wet+u-Vw=w-Vu (3.7)
imply that
d
@t X (8 a)) = (Voult, X (1 a))w(t, X (2, ) (3.8)

This finishes the proof.

3.2 Kelvin’s theorem

Consider a smooth, oriented, closed curve Cy, and let C(¢) be its image under a flow u(t, z):

Ct) ={X(t,a): ae Oy}, (3.9)
with IX
e u(t, X), X(0,a)=q. (3.10)
The circulation around C(t) is
FC’(t) = yg U(t,ZL’) : dé, (311)
c)
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where df is the length element along I'(#). Recall that, generally, if a closed curve I' is
parametrized as I' = {7(s), 0 < s < 1}, then the circulation of a vector w(z) over I is

§’§ w-dl = /0 L)) - 7 (8)ds. (3.12)

Note that the right side does not depend on the paramettrization of the curve I'.
Let us parametrize the initial and evolved curves as

Co={7(s), 0<s <1}, Ct)={X(t,(s)), 0<s<1}. (3.13)

The length element along the evolved curve has the components (prime denotes the derivative
with respect to the parametrization parameter s)

dX;(t,7(s)) _ 9X;(t(s))

'ds = H(t, X(t ' 14
> ) ds = H(L X (A (9)7 (), (3.14)
with the matrix O, (t. )
i\l, &
H..(t. X =77 1
(1, X (t, @) da, (3.15)
which, as we recall, satisfies (1.4)
dH
— = H. 3.16
2= (vu) (316)

Now, we may compute, using the parametrization (3.13) of the curve C(t):

d d [ / b , -,
dt o(t)u(t7x> b= E/o u(t, X(t,7(s)) - (Hy')ds = /0 [(@- HY') + (u- Hy')]ds
= /0 [(Ut +u- Vu) . H,V/) + (u . (VUH)’}//)]dS (317)

:55 (ut+u-Vu)-d€+§l§ (Vu)tu - de.
C(t) c)

If u satisfies the Euler equations, the first term in the last line above can be written in terms
of the pressure as

yg (ut~|—u-Vu)-d€:—y§Vp-d€:O. (3.18)
C(t)
The second term can be written as
Juy, |u?
Vutu~d€:§£ —ud@-z% VI— ) -df =0. 3.19
yg’(t)< ) C(¢) axj S C(t) ( 2 > ( )
We see that
d
— u(t,z) - dl = 0. (3.20)

This is Kelvin’s theorem for the Euler equations: the circulation of the flow along a curve
that evolves with the flow is preserved in time.
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3.3 Conservation of the integrals of velocity and vorticity

If u is a divergence-free velocity field, and ¢ is a scalar function, and both of them decay
sufficiently fast at infinity, we have

/n(u -Vo)dr = — /(V ~u)pdr = 0. (3.21)

Therefore, integrating either the Euler or the Navier-Stokes equations with solutions that
decay rapidly at infinity, we conclude that
d
— | udx =0, (3.22)
dt Jgn
both in two and three dimensions. The same identity implies that in two dimensions the total
vorticity is preserved: integrating (2.21), we obtain

d

— | wdr=-v | Awdzr-— / (u-Vw)dz = 0. (3.23)
dt R2 R2 R2

However, in that case we know more: any regular solution of (2.21) can be decomposed as

w=w(t,r) —w (t,z),

where w* are the solutions of (2.21) with the initial conditions wi (), respectively. It follows

that
/|w|da7§/ w+(t,x)dx+/ w‘(t,m)dm:/ |wo|dex, (3.24)
R? R2 R2 R2

that is, not only the integral of the vorticity is preserved but its L'-norm does not grow in
two dimensions.
In addition, for the solutions of the Euler equations in two dimensions, vorticity satisfies
the advection equation
w+u-Vw=0. (3.25)

Therefore, not only the integral of the vorticity but all LP-norms of w are preserved, with
any 1 < p < oo:

/R2 |w(t, z)[Pdz = /R2 |wo () [Pd. (3.26)

In three dimensions, the vorticity vector satisfies (2.103). Integrating this equation leads
to

d
dt Jps
since w(t, z) is also a divergence-free field. Thus, the total integral of the vorticity is preserved

also in three dimensions. However, conservation of the LP-norms does not follow, and vorticity
may grow.

widr = / (w- Vu;)dzr =0, (3.27)
R3
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3.4 Evolution of energy, dissipation and enstrophy
The kinetic energy of the fluid is

1

B(t) = 5 / Jult,@)Pde. (3.28)

Differentiating in time, assuming that solutions are smooth, gives

dE ou,;
P /n(u cup)dr = /n(—ujuk—a;i —u- Vp+vu;Auj)de
(3.29)

2
= —/ (u- V(ﬂ +p) —v | |Vufde=—v | |Vul|’dx.

Therefore, the energy of the solutions of the Euler equations (v = 0) is preserved in time:
E(t) = E(0), (3.30)

while the energy of the solutions of the Navier-Stokes equations is dissipating:

dE
— = —1D(t 31
- D), (3.31)
where D(t) is the enstrophy
D(t) = [ |Vu|*dz. (3.32)
R’Il

For incompressible flows, the enstrophy can be expressed purely in terms of vorticity using
the identity

W] = ijrimn(0ur) (Omtin) = (8;mOkn — 0jnOkm) (O5un) (Omttn) = |Vul* — (jur) (Oguy). (3.33)

Note that
/ (O5uk) (Okuy)dx = —/ ug(Or0;u;)dx = 0. (3.34)

We used the incompressibility condition on u in the last step. This implies that the enstrophy
for a divergence-free flow is
D)= [ |w]*dz. (3.35)
RTL

Therefore, large vorticity leads to increased energy dissipation — this, however, does not
automatically lead to regularity.

An important comment is that the above computations assume that the solution u(t, x)
of the Navier-Stokes equations is sufficiently smooth. The possibility of energy dissipation as
the solutions potentially develop a singularity is an extremely important open question.
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3.5 Conservation of helicity

The helicity of a flow is
H= [ (u-w)dx. (3.36)
R3
This definition is non-trivial only in three dimensions, as in two dimensions we have, for any
incompressible flow,

B Ouy  Ouy B Oui | 10(uf)
/Rz wwde = /R “1<ax1 ax2>d”“" - /R (“23;::1 Y o )dl"
10, ,

= 5 . 0—1'2(11,2 — Ul)dflf = 0, (337)

with a similar computaiton for uy. Once again we used above incompressibility of u(t, z).
In three dimensions, however, helicity is a non-trivial quantity, and, for the solutions of
the Euler equations, we may compute

i _ (u - w+ - wy)de. (3.38)
dt R3
We have
u-w~+ (u-Vu) - w+w-Vp=0, (3.39)
and
u-wi+ (u-Vw) -u=u-(w-Vu). (3.40)

The last term in (3.39) integrates to zero since V - w = 0:

/ (w- Vp)dz = 0. (3.41)

The other terms lead to

dH
dat _/ (wk (O )y + ;O — ujerOyus)de =
R3 (3.42)

1
= —/ (—ukujﬁkwj + ukujﬁjwk + §|u|28k.wk)dx =0.
R3

Here, we have integrated by parts in the first term in the right side and used incompressibility
of u to show that the first two terms in the right side cancel each other, while the last term
vanishes after integration by parts because V - w = 0. Thus, helicity is preserved for the
solutions of the Euler equations. In particular, the velocity field and the vorticity can not be
"too aligned” in any growth or blow-up scenario for the Euler equations.

4 The Constantin-Lax-Majda toy model

4.1 The formulation of the model

In order to appreciate the difficulties of the problem of the regularity for the solutions of the
Euler and the Navier-Stokes equations, and in particular, focus on the effect vortex stretching
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term, we consider here a toy model studied by Constantin, Lax and Majda in 1985. The
vortex stretching term in the three-dimensional vorticity equation for the Euler equation

w+u-Vw =w- Vu, (4.1)

has the form (2.104) — once again, it should not be taken too literally because of the singularity
in the integral,

Vu(z)" =7 /R3 VEK(x —y) x w(y)dy, (4.2)
with -
K(z) = "I ap (4.3)

The Constantin-Lax-Majda model aims to imitate three important properties of the right side
in the vorticity equation (4.1): first, it is quadratic in w, second, its integral vanishes:

/ w-Vudr=0. (4.4)
R3

The third feature is that the kernel VK (x) has the singularity of the type z/|z|?, which
is of the kind z/|z|"™! in n dimensions that is "barely non-integrable”. Integral operators
with such kernels are known as Calderon-Zygmund operators. Constantin, Lax and Majda
considered a one-dimensional model, with an analogous singularity in one dimension

ow(t, )
ot

with the initial condition w(0,x) = wy(x). Here, H(w) is the Hilbert transform, a singular
integral operator in one dimension:

= Hw]w, z€R, (4.5)

Hlw(x) = %P.V. /R ;“’(—_y;dy. (4.6)

The principal value above is understood as

Hiwl(x) = 2tim [ S8 =8g, 1 /|>1 W@ =Y) g % /_11 wie - y; =@ 4 47)

T el0 ly|>e Yy ™ Yy

The singularity 1/x in the kernel of the one-dimensional Hilbert transform is analogous to
the singularity z/|z|* in three dimensions that appears in the kernel VK in (4.2): both are
odd, and their size is 1/|z|".

4.2 The toyest model of all

Before proceeding with the analysis of the Constantin-Lax-Majda model, let us pause and
see what would happen if we would consider the simplest model that would preserve only the
quadratic nature of the nonlinearity in the vorticity equation:

dw(t, )

rra Wi(t,r), w(0,7)=wy(z), = €R. (4.8)
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Its explicit solution is

wo ()
w(t,z) = T tun(a)’

If there exist x € R so that wy(z) > 0, this solution makes sense until the denominator
vanishes, that is, until the time

(4.9)

T. = inf ﬁ : wo(x) > 0]. (4.10)

Let us assume that the function wy(x) attains its maximum at x = x,,, so that T, = 1/wo(z,,).
The function w(t, z) at the time ¢ = T, has an asymptotic expansion near the point x = x,,:

wo(r) wo(Tm)

w(Tm ZL’) - 1— TCWO(ZL‘) - _(7—'0/2)(")E)l<wm)('r B Im)Q '

(4.11)

Thus, the function w(t, ) blows up at the point x,, and the blow-up profile is O(z — x,,) 2.
As a consequence, all LP-norms of w(t, ) blow up as well:

/ lw(t, z)|Pdr — 400 as t 1T, (4.12)
R

for all p > 1. Moreover, if we define the “velocity” as the anti-derivative of vorticity:

ot z) = / " wlty)dy, (4.13)

—00

then v(t,x) also blows-up at the time 7T, and its blow-up profile is O(z — z,,)"*. Therefore,
the LP-norms of the velocity blows up as well:

/ lo(t, 2)|Pdz — +oo as t 1T, (4.14)
R
for all p > 1. In particular, the kinetic energy blows up:
/ lv(t, z)|?dx — +oo as t 1 T.. (4.15)
R
This is in contrast to the energy conservation in the true Euler equations. Thus, the toy

model (4.8) can not be even “toyishly” correct. This example is intended simply to show that
some models are too “toy” to be even considered!

4.3 The Hilbert transform

In order to understand the Constantin-Lax-Majda model, let us first recall some basic prop-
erties of the Hilbert transform and its alternative definition in terms of complex analysis.
Given a Schwartz class function f(z) € S(R) define a function

w(,y) = / 2T ()M de, >0, a € R.
R
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Here, the Fourier transform is defined as

F6) = [ e s, gio) = [ foemei
The function u(x,y) is harmonic in the upper half plane:
Ayyu=01in RZ =R x (0, +00),
and satisfies the boundary condition on the line y = 0:
u(z,0) = f(z), =z eR.

We can write u(z,y) as a convolution

o) = Py f = [ Byfo =)@

with

A

Py(g) = 6_27Ty‘§|7
and

1 1 y
on(y —iz) | 2n(ytiz) AP+ gP)

Py(l’) _ / 6—27ry|§\627ri§a:d€ _

Next, set z = x + iy and write

o . SN ) (R B
uz) = [ eeigena = [ joenasy [ foema

Consider the function v(z) given by

0o ) 0 . -~
io(z) = /O flemag — [ floemas

Note that, as f(z) is real-valued, we have f(€) = f(—¢), thus v(z) is real-valued:

0o —

o) == [ F@e e+ [ fee g

(4.16)

0 0 00 0
- _ £ o —27ri2§d r o —27riz§d — ¢ 27riz§d o ¢ 27r7§2§d
| dcermacs [ fgerac [ joentas - [ feena
= w(z)

Moreover, as the function

u(2) +ivlz) = / " fe)emicde

32

(4.17)



is analytic in the upper half-plane {Imz > 0}, the function v is the harmonic conjugate of w.
It can be written as

v@%aé«mm@»eﬁﬂvﬁkwﬁﬁ=w%*ﬁ

with X
Qy(&) = —isgn(&)e~ >, (4.18)
and -
. —2myl¢| 271'1§x 1 x
Qy(x) = —i . sgn({)e d§ = Wm-
The Poisson kernel and its conjugate are related by
? 1

Py(z)+1Qy(x) = m =

which is analytic in {Imz > 0}.

In order to consider the limit of @, as y — 0, we relate it to the principal value of 1/x
defined as in (4.7): it is an element of the space &'(R) of the Schwartz distributions, defined
by

P.V. ! (¢) = lim @dx = Mdm + @da@, » € S(R), (4.19)

x €20 Jigl>e T |z|<1 x lz[>1 T

which is well-defined for ¢ € S(R). The conjugate Poisson kernel (), and the principal value
of 1/x are related as follows.

1

Proposition 4.1. Let Q, = —%, then for any function ¢ € S(R)
TXe+ Yy
! PV li Q,(x
s B ylg(l) Y

Proof. Let 1
Uye) = —xye(2)
so that

P.(0) = tim [ y(a)of

Note, however, that

[ - o= [ S a0 - /| |>dex

x2 + 12 x
e 1
- L@ xx jEy) dz + /z|>y [—3:2 _3; /7 — 5] ¢(z)dx (4.20)
_ zp(ry) yox) zp(ry) ¢(zy)
740ﬂ+fml@wmﬁﬂﬁm_ﬁﬁxﬂﬁw Amﬂﬂ+nw

33




The dominated convergence theorem implies that both integrals on the utmost right side
above tend to zero as y — 0. O

It is important to note that the computation in (4.20) worked only because the kernel 1/x
is odd — this produces the cancellation that saves the day. This would not happen, for instance,
for a kernel behaving as 1/|z| near x = 0.

Thus, the Hilbert transform defined as

1 _
Hi) = 11m [ 1029, (4.21)
7T e—0 ly|>e Yy
can be also written as
Hf(z)= hII(l) Qy* f(x). (4.22)
Yy—r

In other words, we take the function f(z), extend it as a harmonic function u(z,y) to the
upper half-plane, and find the conjugate harmonic function v(z,y). Then, H f(x) = v(z,0),
the restriction of v(x,y) to the real axis. It follows from (4.18) that

HF(©) =lim Q&) f(€) = —isan(©) /(£). (4.23)
Therefore, the Hilbert transform may be extended to an isometry L*(R) — L?*(R), with

| H fllze = [ fllz2s HHS) = ~f, (4.24)
and

[n@giis = - [ f@)g) ws (425

4.4 Back to the Constantin-Lax-Majda model
Let us now return to the CLM model

wy = Hwlw, w(0,2) = wy(x). (4.26)

The term H|w]w in the right side of (4.26) is similar to the vorticity stretching term Dw in
the true three-dimensional vorticity equation in the three aspects we have discussed above,
below (4.3). It is quadratic in w, it follows from (4.25) that the operator H is skew-symmetric:

/HM@W@MzQ (4.27)
R
so the right side of (4.26) integrates to zero, as in (4.4), and the kernel 1/x has the correct

singularity — it is odd and of the size 1/|z|" (where n is the dimension). It follows from (4.27)
that the integral of the solution of the toy model (4.26) is preserved:

7 Rw(t, z)dx = 0. (4.28)
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Given a function ¢, let us now use the “complex analysis” definition of ) = H|[¢], and
set u(x,y) and v(x, y) so that the function f = u+iv is analytic in {y > 0}, with the boundary
values u(x,0) = ¢(x), v(z,0) = (). As we may write

—if? = 2uv +i(v* — u?), (4.29)

it follows that the harmonic conjugate of uv is (v? — u?)/2. Restricting this identity to the

real line gives
1 1
H(¢H[g]) = 5(H[9])" — 50 (4.30)
Applying the Hilbert transform to the toy vorticity equation gives then

d 1

2
2_ Y
Sl = S(H[W])" =5 (4.31)
Therefore, the function
w(t,x) = Hw|(t, z) +iw(t, ) (4.32)
satisfies the simple quadratic ODE
dw 1 , 1, 1,
-2z —Z = Zw?, 4.
= 2(H[w]) 5+ iHwlw W (4.33)
Hence, the function w(t, x) is given explicitly by
wo()
t — . 4.34
wit,a) = T s (1.34)

Taking the imaginary part of (4.34) gives an explicit formula for the solution of the toy
vorticity equation:

wo(z) (o 2(H wo](z) +iwo(@))
1 — two(z) 2 — t(H[wo](x) + iwo(x))

w(t,z) =Im

_ py 2H [wo] () + dtwp(2)) (2 — ¢H [wo] () + itwo ()
-1 (2 — tH o] (2))? + B (2))? (4.8
_ o two(@) Hlwo) () + wo(2)(2 — tH [wo](z)) 4wy ()
(2 — tH|wo]())? + 12 (wo(x))? (2 — tH|wo](x))? + t*(wo(v))*
The explicit formula
Wit ) = Ao () (4.36)

(2 = tHwo](x))? + 2 (wo(x))*’

gives an explicit criterion for the solution of the vorticity to exist for all times ¢ > 0. Namely,
the solution w(t, z) exists and remains smooth provided that there does not exist a point x € R
so that both wy(x) = 0 and Hwo|(z) > 0. The explicit breakdown time for a smooth solution

is then
2

T, = inf{m . wolw) = 0, Hlwo)(x) > o}. (4.37)
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As an example, consider wy(x) = cosz, so that H[wy](z) = sinx, and

4coszx B 4coszx
(2 —tsinw)? +t2cos?x 4+ 12 —4tsinz’

w(t,z) = (4.38)

The breakdown time T, = 2, at the point x = 7/2, and the corresponding “toy velocity” is

T 1 t2
v(t,x) = / w(t,y)dy = zlog(l + o tsinx). (4.39)
0

Therefore,
/Nmmwm%+m (4.40)

as t 1T, for any 1 < p < co. On the other hand, the LP-norms of the velocity stay finite:

/ lv(t, z)Pdx — M, < +o0, (4.41)

for all 1 < p < 400, as t =1 T.. In particular, the kinetic energy does not blow-up at the
time T:
/ lo(t, 2)|*dx — My < 400, (4.42)

This is in contrast to what happens in the “most toyest” model (4.8), where, the kinetic
energy blows up at the blow-up time. Thus, while the Constantin-Lax-Majda model does
not necessarily capture the physics of the Euler equations, it provides a “reasonable” one-
dimensional playground.

5 The weak solutions to the Navier-Stokes equations

We will now start looking at the existence and regularity of the solutions of the Navier-Stokes
equations. In order to focus on the less technical points, we will consider the periodic solutions
to the Navier-Stokes equations:

w +u-Vu—vAu+ Vp = f(t,x),

V.u=0, (5.1)

u(0,z) = uo.
Here, f is the forcing term, and wug(z) is the initial condition. We assume both to be 1-periodic
in all directions: f(t,z +¢;) = f(t,x), uo(x + €;) = up(x), with j = 1,2 in R? and j =1,2,3
in R3. We will look for periodic in x solutions to (5.1) in R™, n = 2,3.

Note first that, integrating (5.1) over T™ and using the incompressibility of u(¢,x), we
deduce that the integral of u is conserved if f = 0:

(u)(t) = /n u(t, z)dx = 0. (5.2)
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Here, T" = [0,1]" is the unit torus. When f # 0, (5.2) holds, provided that (f) = 0 for
all t > 0.
Generally, we have a separate equation for (u):

— =), (5.3)

hence u(t) = (u(t,-)) is explicit:

Then, we can set

and observe that the man-zero flow
U<t7 .’L‘) = u(t7 T+ X<t)) - ﬂ(t),
satisfies the forced Navier-Stokes equations

v +v-Vo—vAv+ Vp = g(t, z),
V.v=0, (5.4)

v(0, z) = vy,

with the force
g(t,l‘) = f(t7$ + X(t)) - <f(t7 )>

With that change of variable, both the initial condition vy(z) and the force g(t, z) are still 1-
periodic in z, but, in addition, (g(¢,-)) = 0 for all ¢t > 0. Thus, we may assume without loss
of generality that (f) =0, and (5.2) holds.

The two and three dimensional cases are very different. In two dimensions, we will eventu-
ally be able to show existence of regular solutions for all ¢ > 0, provided that the forcing f(¢, x)
and the initial condition ug(x) are sufficiently regular. On the other hand, in three dimensions,
we will only be able to show that there exists a time 7, > 0 that depends on the force f and
the initial condition uy so that the solution of the Navier-Stokes equations remains regular
until the time T,. However, if both the initial data and the forcing are sufficiently small (in a
sense to be made precise later), then solutions of the Navier-Stokes equations remain regular
for all times ¢ > 0. This will be shown using the dominance of diffusion over the nonlinearity
for small data.

5.1 The definition of the weak solutions

The distinction between two and three dimensions is less dramatic if we talk about weak
solutions. As is usual in the theory of weak solutions of partial differential equations, the
definition of a weak solution of the Navier-Stokes equations (5.1) comes from multiplying the
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equation by a smooth test function and integrating by parts. First, we note that any test
vector field ¢ can be decomposed as a sum of a gradient field and a divergence-free field:

() = () + Vn(z), (5.5)

with V- ¢(x) = 0. This is known as the Hodge decomposition. In the periodic case the Hodge
decomposition is quite explicit: write ¢(x) in terms of the Fourier transform

Pla) =) e, (5.6)

keZn

and consider the potential

n(x) = Z Me%ikm. (5.7)

2mi|k|?
kEZ™ k#£0
Its gradient is
V()= Y P ke2mike, (5.8)
kEZ™ k£0
The Fourier coefficients of the difference
k ,
ole) = () — Vo) = > (- (Vr : )k>€2mk-x (5.9)
kEZ™ k40 %]
are (e 1)
b =V — ‘l;f|2 k. (5.10)
They satisfy
op k=0, (5.11)
which implies that the vector field ¢(x) is divergence-free:
V- ¢(z) = 0. (5.12)

Let now u(t, z) be a smooth solution of the Navier-Stokes equations

ug +u-Vu+ Vp=vAu+ g, (5.13)
V-u=0. (5.14)

We will also use the Hodge decomposition of the forcing term
g=f+V(withV.f=0. (5.15)
The first observation is that if we multiply (5.13) by Vn(z) and integrate, then we simply

get the Poisson equation for the pressure. Indeed, if w is a smooth periodic vector field,
and V- w = 0, then

/n w(z) - V(a)de = — / n(2)(V - w)(x)dz = 0. (5.16)
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It follows that
/ (ug - Vn)dx = / (Au - Vn)dx = 0. (5.17)
For the pressure we have:

/ (Vp- Vi) = - / pAnds, (5.18)

while for the nonlinear term we get, after an integration by parts, using the divergence-free
condition on w:

/n((u -Vu) - Vn)dx = /Tn u;(O5up)Okndr = —/ ujug(0;0kn)dx. (5.19)

n

We deduce that, for any test function n(z), we have

[ i+ wun@onds = [ g-9n= [ veovy (5.20)
n n Tn
This is the weak form of the Poisson equation

—Ap = (O5ur)(Oku;) — AC. (5.21)

On the other hand, when we multiply (5.13) by a divergence-free smooth vector field w(zx),
the pressure term disappears:

/ (w- Vp)dx =0, (5.22)

and the nonlinear term may be written as

/n((u -Vu) - w)dr = /n w; (Ojup)wpdr = — /n ujup0jwydz. (5.23)

Thus, if w is a C*°(T") periodic divergence-free field, integration by parts gives

/n[ut cw — ujuRdjwildr = I//n (u - Aw)dz + /n(f -w)d. (5.24)

For now, we say that u(t, ) is a weak solution of the Navier-Stokes equations if (5.24) holds
for all periodic smooth divergence-free vector fields w(x). A little later, we will make this
notion more precise, setting up the proper spaces in which the weak solutions live, and relaxing
the C*° assumption on the test function. Note that this definition completes sidesteps the
issue of the pressure field.

5.2 The Galerkin approximation

In order to construct the weak solutions, we will consider the Galerkin approximation of
the Navier-Stokes equations. In the periodic case, this is equivalent to the projection of the
equations on the divergence-free Fourier modes with |k| < m, where m > 0 is fixed. That is,
given a vector-field

Yla) =) a7, (5.25)

kezn
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we set

VO (@) = Put(e) = 3 (o - (“’“'k)k)e%i“, (5.26)

2
|k|<m [

so that, in particular,
V-t =0, (5.27)

Note that if 1/ is a divergence-free vector field then (™ is simply the projection on the Fourier
modes with |k| < m.
The Galerkin approximation of the Navier-Stokes equations

u +u-Vu+ Vp =vAu+ f, (5.28)
with u(0,x) = up(z), and a divergence-free force f: V- f =0, is the system

Oul™
ot

+ P (u'™ - Vul™) = vAu™ 4 - 4m(0) = u(()m). (5.29)

This is a finite-dimensional constant coefficients system of quadratic ODE’s for the Fourier
coefficients u,, of the function u(x) with |k| < m. If the function f is time-independent,
this system is autonomous. The goal is obtain bounds on the solution u(™ of the Galerkin
system that would allow us to pass to the limit m — +o00, leading to a weak solution of the
Navier-Stokes equations.

5.2.1 A bound on the energy and enstrophy for the Galerkin solutions

We fix an arbitrary time 7' > 0 throughout the analysis of the Galerkin system. As (5.29)
is a system of constant coefficient non-linear ODEs for the coefficients wuy, |k| < m, it has a
solution for a sufficiently small time ¢ > 0 (which a priori may depend on the initial data u(()m),
as well as on m). Unlike partial differential equations, such ODEs may lose solutions only via
the blow-up of the energy

™5 = Juxl?, (5.30)

[k|<m

and that, as we will now show, can not happen in a finite time for any finite m. Indeed, we
have

/ (P (u™ - u™) 4™ dy = / ((u!™ - V™) - ™) dz = 0. (5.31)

n

We used the definition of the projection P, in the first identity, and the incompressibility
of u™ in the second. Therefore, multiplying (5.29) by «(™ and integrating, we obtain

1d

—— [ "™ Pdr = —1// V™ |2dx —|—/ (fm - u™)dz (5.32)

We will now use the Poincaré inequality

dr? i |6|*dx < i VoI, (5.33)
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that holds for all mean-zero periodic functions ¢. With its help, identity (5.32) implies
that E(t) = [|ul™)||? satisfies

1dE
5@ S 471' I/E + Hf H \/ < 47T l/E +27T2VE(t) +
(5.34)

< —2mvE(t) +

Therefore, we have the inequality

d 2
E(t A Vt) .
= (B (53
Integrating in time leads to an estimate
—4m2ut 1 ' —4m2v(t—s) 2
E(t) < E(0)e +——1 e Ilf(s)|l5ds. (5.36)
Ar2v ),

The estimate (5.36) relies only on the finiteness of the L?-norm of the forcing f. Another
way to estimate the right side in (5.32), relying only on the finiteness of a weaker norm of f,

1/2 1/2
| fi]?
< (Z 47?2/‘62\9k|2> (Z Ry = [IVygllall fll -1,
kezn

kezm
(5.37)

is to use the inequality

Z Jrgr

kezn

with the H~'-norm defined as in the above inequality. Using this inequality in (5.32) gives

1dE m m m v m 1
Va3 + [Vu™ o flla-r < = V™5 + SIVa™ 3+ [ I
(5.38)

v m 1
= —2IVu I+ 11

Now, we use the Poincaré inequality to obtain:

dE
with universal constants C; and Cs. Integrating this differential inequality in time leads to
another estimate for F(t), which involves only || f||z-1 and not || f]|2

! t
E(t) < E(0)e~ 9 4 % / e~ £(s)||4-1ds. (5.40)
0

The same argument provides a time-averaged bound on the enstrophy D(t) = ||Vu(?)||

Indeed, integrating inequality (5.38) in time leads to

1. o v [T m m
S @+ 5 [ [ s ans < i+ o [ 10O s, 6D
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5.2.2 The function spaces and an intermediate summary

Now, we need to introduce certain spaces. We denote by H the space of all mean-zero vector-
valued functions u in the space [L?(T")]", with zero divergence (in the sense of distributions):

H={ueL*T"): V-u=0, (u) =0}, (5.42)
with the inner product

(ro)= [ (7-g)dr (5.43)

In other words, a vector field u € H if its Fourier coefficients in the expansion

u(z) = Z upe?™ (5.44)

kezn
satisfy ug =0, k- up =0 for all k € Z = 7" \ {0}, and
lullfy = Jurl* < +oo. (5.45)
keZ?

We also denote by V the space of divergence-free functions in the Sobolev space H*(T™):

V={uecHYT"): V-u=0, (u) =0}, (5.46)
with the inner product
ou 0dg
_ ) 4
(19) = [ (G- 5, (547

for two vector-valued functions f and ¢g. That is, u € V if its Fourier coefficients satisfy ug = 0,
as well as k - u, = 0 for all k£, and

lulls = > kP lux)? < +o0. (5.48)
kezn

The dual space to V' consists of all distributions with the Fourier coefficients that satisfy

2
Julir = Z % < 400, ug =0 and k - u; = 0. (5.49)
kezp

We will occasionally use the Sobolev spaces H®, s € R, of divergence-free functions: we say
that uw € H*(T") if its Fourier coefficients uy, satisfy
1/2
up =0, k-up =0 and [ul|gs = | D [k]* || < +o0. (5.50)
keZy
We have, with this notation V' = H' and V' = H~'. The spaces L*(0,T; H) and L*(0,T;V)
have the respective norms
T

T
||UH%2(O7T;H):/O lu() |7, ||u||%2(O,T;V):/O lu()I[3-dt. (5.51)

Summarizing our analysis of the Galerkin system so far, and rephrasing the results in terms
of the spaces H, V and V', we have proved the following.
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Proposition 5.1. Assume that f € L>*(0,T;H). Then, the Galerkin system (5.29) has a
unique solution u'™ € L*(0,T;V) N L>(0,T; H). More precisely, there exist two universal
constants C; > 0 and Cy > 0 so that

t
™ @ < luolfye =+ o [N s, 652
O t
WO, < lualle O+ 2 [ p(s) . ds (559)
T 1 ’ T
v [ s < ol + 55 [ 1) s (5.54)

5.3 The Galerkin approximation: bounds on the time derivative
5.3.1 The time derivative estimate

The next step is obtain bounds on the time derivative of u(™. They will be needed in the
passage to the limit m — +o00, to ensure that the limit is weakly continuous in time. Let us
write the Galerkin approximation of the Navier-Stokes equaitons as

oul™)
ot
(m)

We will aim to obtain the following bounds on w; . The estimates are slightly different in
two and three dimensions.

= vAu™ — P, (u™ - V™) 4 £ 0 (0) = u{™. (5.55)

Proposition 5.2. Assume that f € L*(0,T;V’). There exists a constant C' which depends
on the norm ||ug||g of the initial conditionug, the L*(0,T;V")-norm of the forcing f, and the
viscosity v but not on m, so that the solution to the Galerkin system (5.29) in dimensionn = 3
satisfies the estimate

T
oul™ 4/3
1) 5.56
[ Pl < (550
and in dimension n = 2 it satisfies
T
ou(™ 2
t 5.57
[ Pl < 557

For the proof, we will estimate individually each of the terms in the right side of (5.55). As
we assume that f € L2(0,T;V’), the forcing term in is not a problem either in dimension two
or three. The Laplacian term in (5.55) is also bounded in L?(0,T; V"), as follows from (5.54):
the Fourier coefficients of Au are |k|*us, hence

[kI*
1Aulf = ’k’2|ukl2 = [[ull¥, (5.58)
kezZm

thus

4 m T m 1 m 1 T m
/|MMNﬂW@=/IM)®W@S—MW%+—3/HﬂNﬂW@. (5.50)
0 0 v Qv 0

The nonlinear term will require the most effort. We will establish the following bounds.
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Lemma 5.3. There exists a constant C' that so that in two dimensions we have, for any
function u € V:

[(u-Vu)|lv: < Cllullgllullv, n=2, (5.60)
and in three dimensions we have
(w - V) llyr < Cllullf?|ulli?, n (5.61)

Together with the uniform energy bound (5.53) and the enstrophy bound (5.54), this
implies the conclusion of Proposition 5.2. Indeed, in dimension n = 2, (5.60) gives

T

| 1Pt Vs < [l P s < (s Ol [ s < c.

and in dimension n = 3, (5.61) leads to

T T T
| 1Pt T as < [ - voyIRs < (s @) [ )l < o
0 0 0<t<T
Thus the proof of Proposition 5.2 is reduced to proving Lemma 5.3.

5.3.2 The proof of Lemma 5.3: bounds on the nonlinear term

Note that
(w-Vu)llyr = [[(=A)"2(u- V)| (5.62)

The operator (—A)~'/2 is defined via its action on the Fourier coefficients of a mean-zero

function u(z):
( ) 1/2 Uk 27r7,kx
(—A) Z . (5.63)
keZn

This operator commutes with the projection P,,, as, in particular, it preserves the incom-
pressibility of u. Hence, Lemma 5.3 can be restated as follows.

Lemma 5.4. Let u € V', then in three dimensions we have the estimate
I(=2)712 (- V)l < Clullylully, (5.64)
while in two dimensions we have
I(=2)"2(u- Va)|lg < Cllullmlullv, (5.65)

Proof. In this proof, we will use interchangeably the notation ||u||z: and ||u||y, since
the divergence-free property plays almost no role in the proof. Take an arbitrary u € H
and w € H and write, for the inner product in H:

((—A)’I/Q(u -Vu),w) = ((u-Vu), (—A)’lﬂu}). (5.66)

In three dimensions, we will show
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Lemma 5.5. In dimension n = 3, for any u,v,w € V we have
(- Vo), w)| < Cllullgello) g [Jw] g

Applying this estimate in (5.66) gives

(=2)72(w- V), w)] = |((w V), (=2)72w)] < Cllull goellull o | (=2)2w) | 1.

As
1(=A) " 2w) | = [|wla,

and

1/2 1/2

ullZe = > [kllugl* < (Z |k|2|uk|2> (Z \ukl2> = [lullmllullv,
keZn kezZm kezZn

we deduce from (5.66) that in three dimensions we have

[((=2)72(w- V), w)| < Cllullg Jull|wl| s

As this estimate holds for all w € H, (5.64) follows.
In two dimensions, we will show

Lemma 5.6. In dimension n = 2, we have
|((u- Vo), w)| < Cllullallullg o] -
To see that this implies (5.65), we write, using incompressibility of u:
(=2)7(u- V), w) = ((u- V), (=A)"w) = —((u- V(=2)"?w), u).
Applying estimate (5.72) in (5.73) gives

[(=2)712(u - V), w)| = [((u - V(=2)"w), u)|

< Cllullzll(=2)"2wllmllullm = Cllullallullm llwlz.

As this holds for any w € H, we conclude that (5.65) holds in two dimensions.

(5.67)

(5.68)

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

Thus, we only need to verify (5.67) in three dimensions and (5.72) in two dimensions to

finish the proof of Lemma 5.4.
Proof of Lemma 5.5. In three dimensions, we use Holder’s inequality to get

(- Vo) 0] < [ Jus@pun)unlds < Jullses Vol [l scrs
T3
= [lull sy vl 2 os) [[w]] o).
The Sobolev inequality says that, for m < n/2,

I fllzaczmy < Clfllzm(rny,
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as long as

11
> (5.77)
q 2 n
Therefore, in dimension n = 3, taking ¢ = 3 and m = 1/2 we have
HUHL?’(W) < CHU||H1/2, (5.78)
while taking ¢ = 6 and m = 1, we obtain
Hw||L6(T3) S CHwHHl(TS) (579)

It follows then from (5.75) that
(- F0)0)] < Nullzseeslloln e o < Cllullsce ol sy ol s, (5.80)

which is (5.67).
Proof of Lemma 5.6. In two dimensions, we proceed similarly: Holder’s inequality
implies

(- Vo), )] < [l sz 10l . (5.81)
The Sobolev inequality (5.76) in two dimensions, with ¢ = 4 and m = 1/2 implies that
Iy < Ol iy (5.52)
Using this in (5.81) leads to

(- Vo), )] < llullzsersllewl o el < Cllullaes lwlmz el . (5.8

As
ull 2 < lullallull g, (5.84)
we obtain
|((u - V), w)] < Clullallullm wl mllwllz) 2 ([o] 2, (5.85)
hence
(- Vo), w)| < Cllullullullm lollm ), (5.36)

which is (5.72). This finishes the proof of Lemma 5.4. O

5.4 A compactness theorem

We have deduced above uniform in m a priori bounds on the solution u(™ of the Galerkin
System
oum
ot

The next step is to use these uniform bounds to show that the sequence u(™ has a (strongly)
convergent subsequence in L*(0,T; H). As we will see, the limit of this subsequence will be a
weak solution of the Navier-Stokes equations. We will use the following compactness result.

+ P (u'™ - V™) = vAu™ 4 4 m(0) = u(()m). (5.87)
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Proposition 5.7. Let u,, be a sequence of functions satisfying

[t (D)1 < C, (5.88)
forall 0 <t <T,
/OT um(s)||ds < C, for allm=1,2,... (5.89)
and T e
/0 H 5 (t) y <C, forallm=1,2,..., (5.90)

with some C' > 0 and p > 1. Then there erists a subsequence U, of u, which converges
strongly in L*(0,T; H) to a function u € L*(0,T;V).

Proof. The uniform bound (5.89) implies that there exists a subsequence u,,, which con-
verges weakly in L?(0,T; V) to a function u € L?(0,T; V'), which also obeys the bound (5.89).
In addition, using the diagonal argument, we may ensure that the sequence of time deriva-
tives u\™ converges weakly to the derivative u; in LP(0,7;V'). Thus, the estimate (5.90) also
holds for the function u. The difference

Wj = Uy, — U

converges weakly to zero in L*(0,T; V), and the bounds (5.88)-(5.90) hold for w; as well. Our
goal is to prove that the convergence of w; to zero is strong in L*(0,T; H).
Note that for any f € V

£l < AV, (5.91)

hence, for any § > 0 we have
1
1z < SIFIG + S (5.92)
The uniform bound (5.89) for the functions w; and (5.92) imply

r 2 ]‘ T 2
/O s |2t < 05+5/0 ;|2 (5.93)

Our goal is to estimate the second term in (5.93), and show that it goes to zero as j — +o0,
with 0 > 0 fixed. Note that
[[w; (E)llv: < Jlw; ()]l < C. (5.94)

Thus, the Lebesgue dominated convergence theorem shows that it suffices to show that
|w;|lv — 0 pointwise in t € [0, 7. (5.95)
To this end, given a time € > 0 and ¢ <t < T, let us write

w;(t,x) = w;(s, ) +/ Wcﬁ, (5.96)

s
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and average this identity over s € [t — e, 1]:

L[ 1 [ t O,
wtta) =2 [ uemas [ [0
t—e t_e R

1 t

1/t ow;(T, x)
= g /t_E U)j(S,Jf)dS + g /t_s(T —t+ 5)76[7’. (597)

In order to bound the first term, note that for any 0 < a < b < T the integral

Ii(z) = /b w;(t, z)dt (5.98)

converges weakly to zero in V. Indeed, for any v € V’, the function x4 4 (¢)v(z) is an element
of L*(0,T; V"), and w; — 0 weakly in L?(0,T; V), thus we have

/Tn Ii(z)v(x)de = /0 /n w;(t, ) X[ap (t)v(x)drdt — 0 as j — oo. (5.99)

As V' is compactly embedded into H, weak convergence in V' implies strong convergence in H:
the sequence I; converges strongly to zero in H. Thus, it also converges strongly to zero in V.
In particular, given any € > 0 and § > 0, for all j sufficiently large we have

t
/ w;(s,x)ds
t—e

giving a pointwise in time estimate for the first term in (5.97). For the second term in (5.97),
we may use the Minkowski inequality, followed by Holder’s inequality, with 1/q+ 1/p = 1:

1

8 < 0 for j > J(g,4,t), (5.100)

V/

t . t .
1’/ (T—t—I—E)MdT < 1/ (T—t+¢) (7, x) dr (5.101)
e || Ji—e or v €Jie or v
t 1/q ¢ , p 1/p
([ oo ([ [0 )
€ t—e t—e 87- A

p

T . 1/p
< Cel/a (/ Hw dT) < Csl/qa
0 T /

for all 7 > 1. It is here that the assumption p > 1 is used, so that ¢ < +o0.. It follows from
the above analysis that, given any £ > 0 and ¢ > 0, we may find J(g,d,t) so that

\%4

|w; )]y < 64+ CeV4, for all j > J(e,6,1). (5.102)
In other words, we have shown that
|lw;(t)|[v: — 0 as j — oo, pointwise in ¢ € [0, T7. (5.103)

As we have explained above, we may use the Lebesgue dominated convergence theorem to
conclude from (5.93) that the sequence w; converges strongly to zero in L?*(0,7; H). This
finishes the proof of Proposition 5.7. O
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5.5 The weak solutions as limits of the Galerkin solutions

We will now construct the weak solutions of the Navier-Stokes equations as a limit of the
solutions u(™ of the Galerkin system as m — oco. In particular, the definition of the weak
solution we will adopt is motivated by the estimates on u(™ we have obtained above. We say
that u € C,(0,T; H) if the function ¥ (t) = (u(t), h) is continuous for all h € H.

Definition 5.8. A function u is a weak solution to the (periodic) Navier-Stokes equations

w+u-Vu+ Vp=vAu+ f(t,z), t>0, z€T",
Vou=0, (5.104)
U(07ZL’) ZUO(:E)a

o
we L2(0,T; V) N L®(0,T; H) N Cy(0,T; H) and a_:: e LL.(0,T;V"), (5.105)

and, for any v € V, we have

¢ ¢
/ u(t,z) - v(x)dr + 1// Vu - Vodzds + / / ((w- Vu) - v)dzds
n 0 Jrn o Jrn
¢
= / uo(x) - v(z)dx +/ /f ~vdxds, forallveV and0<t<T. (5.106)
n 0

Let us check that each term in (5.106) makes sense if u satisfies (5.105), and v € V. The
first term is finite since u € L>(0,T; H). The second is finite since u € L*(0,T; V). The last
term in the left side is finite in three dimensions because of the estimate (5.67):

1/2 3/2
(- V), v)| < Cllull e ull ol < Cllall |l o]y, (5.107)

as ||u||g is uniformly bounded in ¢, and u € L?(0,7;V). In two dimensions, this term is
bounded because of the estimate (5.72):

|((u - V), 0)| = [((u- Vo), w)| < Clluflullullvolv, (5.108)

again, because ||u||z is uniformly bounded in ¢, and u € L*(0,T;V).

Finally, the right side in (5.106) is finite provided that f € L%*(0,7;V’) and uy € H.
The following theorem, due to Leray, is one of the most classical results in the mathematical
theory of the Navier-Stokes equations (we state here its simpler version for the periodic case).

Theorem 5.9. Given vy € H and f € L*(0,T;V’), there exists a weak solution of the
Navier-Stokes equations

u+u-Vu+Vp=vAu+ f, t>0, xe€T" (5.109)
V-u=0,
u(0, ) = up(x).
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In addition, this weak solution satisfies the energy inequality

1 ! 1 !
— [ |ul(t, x)|2dx+y/ / |Vu(s,z)|*dzds < —/ |u0(x)|2dx—|—/ f(s,z) - u(s,z)dxds.

(5.110)
Moreover, we have
0
8—1; € L*3(0,T; V') in dimension n = 3, (5.111)
and p
8—1; € L*(0,T;V") in dimension n = 2. (5.112)
Proof. Let u™ be the solutions of the Galerkin system (5.29):
Oul™ (m) . gy () (m) | pm) oy m) ()
BT + P (u'™ - Vu'™) = vAu™ + fU0 w™(0) =y . (5.113)

The estimates we have obtained in the previous section imply that, after extracting a subse-
quence, u™ converge strongly in L?(0,T; H) and weakly in L?(0,7T; V) to some u. Moreover,
the functions u(™ satisfy a uniform continuity in time bound in V'

 gulm)
(M) () — ™ (s) — d 114
W)~ u(s) = [ S, (5.114)
thus
- ) t i ou™ < Ve t o™ (p ; 1/p
m _ m /< _
0 w6 < |55 ar < w—on ([ % ar)
T ou™ p 1/p
< (t—s)V H dr) < O@t—s)V 5.115
<a-or ([ )% ar) <o (5.115)

with p = ¢ = 2 in dimension n = 2, and p = 4/3, ¢ = 4 in dimension n = 3. Thus, u obeys
the same uniform continuity estimate estimate, and u € C(0,7; V). We also know that
oul™ R ou
ot ot’
weakly in L*/3(0,T; V') in three dimensions, and weakly in L?(0,7; V') in two dimensions.
Given any v € V we multiply the Galerkin system (5.113) by v and integrate:

/n u™ (t, 2)v(x)dr + /Ot /n (u™ - Vu™) . (P,v)dzds

t t
= —V/ Vu™ . Vodzds —l—/ u(()m) (x)v(x)dz +/ fvdxds.  (5.116)
o J1n n 0 Jn

We pass now to the limit in this identity, looking at each term individually. The first term in
the right side is easy:

t t
/ Vu'™ - Vodrds — / Vu - Vudads, (5.117)
0 Tn 0 Tn
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because u™ converges weakly to u in L?(0,T;V).
Next, we look at the nonlinear term: set

t
/ / u™ - Vu™) . (P,v)drds — / / (u-Vu) - vdzds. (5.118)
n 0 n

Let us recall (5.67):
|((u- V), w)| < Cllull gz f[oll g 1wz (5.119)

This inequality holds both in two and three dimensions and implies that

(u-Vu) - (Ppv —v)dzds

n

t
s(/HMQmw)wav—wvscwav—wv+a
0

(5.120)
as m — oo. Hence, A,, has the same limit as m — oo as
t
2/ / (u(m)-Vu —u-Vu) - (Pyv)dxds = By + By, (5.121)
where B 5 Correspond to the decomposition
) V™ — - Vu—u ). V™ — Vu+u™ - Vu—u-Vu
= u™ . (Vul™ — Vu) + (u(m) —u) - Vu. (5.122)

To estimate By, we write

Blz/ot/n(u(m)-(Vu — V) - (Pyv)deds = — // m) .V P,w) - (u™ — u)dads.

(5.123)
The same proof as for (5.67) shows that
|(u - Vo), w)| < ullv[vflv 1wl ge- (5.124)
Using this in (5.123) gives
B </ ™ ()l [[ollv l[ut™ (s) = u(s) r1/2ds
1/2
< bl [ 1)) (/nu mmmw)
(5.125)

< Clvllv (/ ™ HvdS) v (/ e )Hvd8> 1/2

(/nu >mw) < O™ — ull gz — 0, asm — oo,
as u(™ converges to u strongly in L?*(0,T; H). As for By, we write

| By| = ) —w) - V) - (Pyw)deds| <

) / 1™ (s) = u(s) |z lu(s) v ollvds

< ||”||V||“||L2(0,T;V)||U(m)( ) = u(S)ll z20,71/2) = 0,

(5.126)
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for the same reason as in (5.125).

In order to pass to the limit in the two terms in (5.116) that do not involve the time
integration, we first note that u(()m) converges strongly in H to uy. Furthermore, as u(™
converges weakly to u in L2(0,7T;V), we may extract a subsequence so that (™ (t) converges
weakly in V' to u(t) (pointwise in t), except for ¢ € E, where E is an exceptional set of times
in [0,7] of measure zero. Weak convergence in V implies that u(™(¢) converges strongly

to u(t) in H for t ¢ E. Hence, taking t ¢ F and passing to the limit m — oo in (5.116) we

o /n u(t, z)v(z)dr = /Tn uo(z)v(x)de — /Ot /n (u- Vu) - vdzds

t t
— y/ Vu - Vodzds + / fudxds.
o Jrn 0o Jrn

Given the a priori bounds on u, the right side of (5.127) is a continuous function of ¢, defined
for all t € [0,7], not just ¢t € E. In addition, we know that (u(t),v) is also continuous
because u € C,,(0,7; V'), and coincides with the aforementioned right side of (5.127) for ¢t ¢ E.
This continuity implies that (u(t),v) coincides with the right side of (5.127) for all 0 < ¢ < T,
which means that it satisfies (5.127) for all ¢ € [0, 7], giving us a weak solution of the Navier-
Stokes equations.

The fact that v € C(0,T; H), and not just u € C(0,7;V’) follows from (5.127), the
density of V' in H and the uniform in ¢ bound on ||u(t)||x.

To obtain the energy inequality, we start with the identity

(5.127)

t
SO+ [t @ = S+ [ s 29

The right side converges, as m — oo, to
1 t
—||uoll? + V/ f - udzds. (5.129)
2 tO Tn

In the left side, we may use the Fatou lemma to conclude that, as u(™(t) converges weakly
in H to u(t) for all t € [0,T], we have

1 ¢ 1 ¢
§Hu(t)H?{+v/ [u(s)[3-ds < §HUoH%+/ : [ udxds. (5.130)
0 0 n

This completes the proof. O

5.6 Uniqueness of the weak solutions in two dimensions

One of the main issues with weak solutions in general in nonlinear partial differential equations
is their uniqueness — it is often much easier to show that they exist than to prove their
uniqueness. Uniqueness of a weak solution hints that it is a “correct” solution, while non-
uniqueness means that an extra condition is needed to pick the physically meaningful solution.
This happens, for instance, in the theory of conservation laws where the notion of an entropy
solution guarantees uniqueness among all weak solutions. The problem of the uniqueness of
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the weak solutions for the Navier-Stokes equations in three dimensions is still open. In two
dimensions, we know that the weak solutions of

u+u-Vu+Vp=vAu, t>0, z¢cT? (5.131)
V-u=0,
u(0, ) = up(x).

are unique.

Theorem 5.10. Let f € L*(0,T;V’') and uy € H. If uy and uy are two weak solutions
of (5.181) which both lie in L*(0,T; V)N L>(0,T; H) N C,(0,T; H), then u; = us.

Proof. First, we recall, see Theorem 5.9, that if u is a weak solution of the Navier-Stokes
equations (5.131) in L*(0,7;V) N L>(0,T; H) in two dimensions, then u; € L?(0,T;V"). Let
us denote w = u; — uy. This function satisfies

wy +uy - Vw4 w-Vuy + Vp =vAw, t>0, € T? (5.132)
V.-w =0,
w(0,z) =0,

with p’ = p; — p2, and we know that w; € L*(0,T;V").
Multiplying (5.132) by w and integrating over the torus gives

/ wi-w+v [ |Vw|rdr + / Wy (0jug,m )Wy dx = 0. (5.133)
T2 T2 T2

As w, € V' for a.e. t, and w € V for a.e. t € [0,T7], identity (5.133) holds for a.e. ¢t € [0, 7.
Recall that in two dimensions we have

|(w - Vg, w)| < Cllw|[[luz|lv[lwllv- (5.134)

Asw e L>(0,T; H) and uy,w € L*(0,T, H), we conclude from (5.133) and (5.134) that
T
/ |(wy(t),w(t))|dt < +oo.
0
Now, (5.133) implies that

C
el < Cllwllalluslviiwly = viwl < —[luslfllwl- (5.135)

As
T
/ Hugﬂ%/dt < +00,
0

Gronwall’s inequality implies that
t
@) < ) rexe { [ Jus(s)ldsh <o, (5.136)
0
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since w(0) = 0. This finishes the proof. O
Note that this proof would fail in three dimensions. The reason is that in three dimensions
the nonlinear term satisfies

|(w - Vg, w)| < Cllwll3f[us v [|w][7, (5.137)
rather than
|(w - V), w| < Cllwllulfw]v[usl]v, (5.138)

which holds in two dimensions. Thus, instead of (5.135), we would get, using Young’s in-
equality

d 1/2 3/2 C
vl < Cllwl* uzllvlwly? = vl < llualvllwl (5.139)

As we do not have a uniform bound on

T
/0 lu(s)l4ds,

we would not be able to finish the proof using the Gronwall inequality. We will need extra
assumptions for uniqueness, which is what we will discuss next.

6 Strong solutions in two and three dimensions

6.1 Uniqueness of strong solutions in three dimensions

We say that u is a strong solution of the Navier-Stokes equations (in either two or three
dimensions) if u is a weak solution, and, in addition, v € Cy(0,7;V), and the following

bounds hold:

sup |Vu(t, z)|*dz < +oo, (6.1)
te[0,T] J T
and
T
/ |Au(t, z)Pdxdt < +oo. (6.2)
o Jrm

The motivation for this definition comes from two properties that we will prove: first, unlike

for the weak solutions, one can show that strong solutions are unique in three dimensions

(existence of strong solutions in three dimensions is an important open problem). Second, as

we will show, the conditions in the definition of the strong solutions are sufficient to show

that they are actually infinitely differentiable if the initial condition uy and the forcing f are.
First, we prove their uniqueness in three dimensions.

Theorem 6.1. Let uy 5 be two solutions of the Navier-Stokes equations on T® with the initial
condition ug € H and f € L*(0,T;H). If both uyo satisfy (6.1) and (6.2), and they lie
in Cy(0,T;V) then u; = uy.

Proof. We argue as in the proof of uniqueness of the weak solutions in two dimensions.

Let w = uy; — us, so that

ow

(W,w)+y||w||%/+(w~VuQ,w) =0, (6.3)
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as in (5.133). We now use the estimate
1/2 1/2
[(w - Vu,w)] < Cllw]|galfwl| o |l 7 1 Aully. (6.4)
It is obtained as follows: recall that in three dimensions we have
|wl|zsrsy < Cllwl] g/, (6.5)

thus

|((w - Vu, w)] < /TS wl[Vullwlde < [lw]zal|Vul s wllzs < Cllwllfp | Vull g

(6.6)
< Cllwll e lwll s fulf7 | Aul
which is (6.4). Using the bound (6.4) in (6.3) leads to
2 ol + vl < <l | Al + v ol (6.7
It follows that 14 o
§%(leliz) < —lullm | Aulls]w]7. (6.8)
Now, Grownwall’s inequality implies that w(t) = 0 provided that w(0) = 0, and
t
/0 ||u|| 7 || Aul2ds < 400, (6.9)

which is a consequence of (6.1)-(6.2). O

6.2 Construction of the strong solutions in two dimensions

We now use the Galerkin system in two dimensions to show existence of global in time strong
solutions of the Navier-Stokes equations in two dimensions. Once again, we restrict ourselves
to the simpler case of the two-dimensional torus T?. As in the proof of the existence of weak
solutions, we will use the Galerkin system

oul™
ot

+ P (u™ - V™) = v AW + £ 4™ (0) = ui™ (6.10)

and then pass to the limit m — +oo. However, we will be able to obtain better a priori
bounds on the Galerkin system in two dimensions to conclude that in the limit we actually
obtain strong solutions of the Navier-Stokes equations. Since we have already shown the
uniqueness of the weak solutions in the two-dimensional case, this will also show that weak
solutions are actually strong in two dimensions.
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6.2.1 Galerkin solutions are often not large

The first step is to show that solutions of the Galerkin system are “often not large” — this
will be made precise soon. The second step will be to show that if solutions are often not too
large, then they can never be large.

Taking the inner product of (6.11) with «™ we obtain the familiar identity

1d

w(™ (m)|2 —
5™ 3 Va3 = (f, ). (6.11)

We may use the Poincaré inequality
/ u(z)Pde =) Jugl* < kP lugl* = —/ \Vul?dz, (6.12)
kezn kezn

to conclude from (6.11) that

1d

5 ™ 3+ Va3 <

1113 +

A2y m 1 v m
lut™)][ < &T—lelfllir + §||Vu( I
(6.13)
We deduce the bounds we have seen before: there exist two explicit constants C15 > 0, so
that

242

t . C t
v [ IVl ds < ol + 52 [ s, (6.14)
and
(m) 2 2 —Chut Cl ! —Cav(t—s) 2
[ Ol < Nuollge™" + — | e [/ ||z ds. (6.15)
0
In particular, if f € L*>°(0,T; H), then
(m) 2 2 —Cout Cy 2
[l @ < lluollzze™" + Sl fll%, (6.16)
with
Il = sup 17O (6.17

Our next goal is to get uniform in time bounds on ||u{™(#)||y; — this is not something we
have done in the construction of the weak solutions, because such bound holds only in two
dimensions, and not in three, while the weak solutions can be constructed both in two and
three dimensions. The first step in that direction is to show that this norm can not be large
for too long a time.

Proposition 6.2. Let u(™(t) be the solution for the Galerkin system with f € L>(0, +oo; H)
and ug € H, in either two or three dimensions. Then in every time interval of length T > 0
there exists a time ty so that

+2C 1) (6.18)

2
™ (t0) I < = (Jluolly +
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Proof. Inequality (6.15) implies that

! Cit
v [ 19 s < uoll + S (6.19)
and (6.15) that
m Ch
WO < ol + 211 (6.20)

Let us also integrate (6.13) between the times t and ¢ + 7, leading to
L m Ch Ch 1
v [ 1) s < N @+ e < ol + S (47 (621
t

The right side above does not depend on the time ¢. Therefore, on any time interval [t,¢ + 7|
we may estimate the Lebesgue measure of the set of times when |Ju(s)||y is large:

. 1 C 1
{52 st st W)l > o} < o5 (ol + e +7). (622)

In particular, taking

2 C 1 1/
= |2 (lt+ 1 +7))]

we arrive at the conclusion of Proposition 6.2. O

6.2.2 Galerkin solutions are never large

Next, we will get rid of the “sometimes not large” restriction in Proposition 6.2, showing
that in two dimensions Galerkin solutions are never large in V. We will prove the following
estimate for the solutions of the Galerkin system

oul™

Proposition 6.3. Let u™ be the solution of the Galerkin system (6.23) with the initial
condition ug € H and f € L>*(0,T; H). There ezists a constant « that depends on v, ||uo||m
and || f|lse but not on m so that u'™ satisfies the bounds

™ )|y < o for all t > 1, (6.24)

and o
™ @)y < " forall0 <t < 1. (6.25)

In addition, if ug € V then there exists a constant oy which depends on v, ||ug|lg and || f||

but not on m so that
™ )|y <o forall0 <t < 1. (6.26)
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Proof. The idea is to use Proposition 6.2 — we know that for any time ¢ > 1 there is a
time ¢y € [t — 1,¢] so that the norm ||u(™(¢,)||y < a, with the constant a which depends only
on v, ||ug|lg and || f||s- The additional ingredient in this proof will be a control of the growth
of |u™]||y on the time intervals of length 1.

We multiply (6.23) by Au and integrate. The first term gives

m m 1d
/ ™ A dr = — [ vul™ - V™ de = —= = |[Va ™ (1), (6.27)
T2 T2 2dt
so that the overall balance is
1 d m m m m m m
5 7 Ve @ + v Au™ 5 = (@™ - Vu™), Au™) = —(f, Aut™). (6.28)
For the nonlinear term, we will use the inequality
1/2 3/2
(- V), Aw)| < [l ulv | Aul3, (6.29)

which holds in two dimensions. The proof is similar to that of (5.72): we write
|((w- Vo), w)| < /T (w050 )wi|dz < flu- Vol p2llwl 2 < [lull | Vol pallwllz. (6.30)

The Sobolev inequality

1 1 m
| fllzacrny < Ol f|lm ey, 23w (6.31)
implies that in two dimensions we have
£l zacr2y < ClF e (6.32)
Using this in (6.30) leads to
1/2 1/2 1/2 1/2
|((w - V), Aw)| < [l oo [l groe | Al 2 < (ullig 2 el el Al 32 | A
1/2 3/2
= ully*|Jullv]|Aul}?, (6.33)

which is (6.29). It follows that the nonlinear term can be estimated, using the inequality
Vo o4/3 ¢y
ab S Za + ;b
as
v 2, O 4
(- V), Aw)] < Z|Aullfy + —lullzlu]y- (6.34)

Returning to (6.28), we obtain

Ld

5 IV O + v Au™ [ < [(t™ - Fu™), Aut™)] + || flo | Au™ |

6.35)
< Z1AC B+ ™ B+ S Au B + IR
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We conclude that

1d v C C
= ], (m) 2 -z M) 12 < 1,12 [, (M) |4 el 2
e O+ 218w < B + 71 (6.36)
Let us set
20 (! 2 )
G(to;t) = 5 ()| [[u(s)[5-ds, (6.37)
to
then (6.36) implies, for any t > to:
d " C
%(HU( )||%/exp{—G(t0;t)}> < ;||f||§oeXp{—G(to;t)}- (6.38)

Integrating between ty and ¢ gives
Cf t
[u™ @3 < [ (t0) I exp{ G (to; 1)} + —lIf1% eXp{G(to;t)}/ exp{—G(to; s) }ds
to

C t
< ™ o)} exp{Gltast)} + 112 [ exp(Glsit))ds

< ™ () exp{Cios 1)} + NI (¢ — to) exp{ Gl 1)) (6:39)

Now we will use the “sometimes small” result in Proposition 6.2. Given 7 > 0 and ¢t > 7 we
may find ¢y € [t — 7,¢t] such that

Jutto)l < a(1+2), (6.40)

with the constant o > 0 that only depends on v, ||ug||xz and || f]|s but not on m or |Jug||y.
We may also use (6.21) to estimate G(to;1):

G(to;t) < a(l+71). (6.41)
Using this in (6.39) shows that for all ¢ > 7 we have

C
[t @I < [u® ()| exp{Gto; 1)} + — [ fIl%(t — to) exp{G(to; 1)} (6:42)
<a(l+ l)ea(l”) + are®+),
T

This bound is uniform in ¢ > 7. Hence, if we fix 7 = 1, we get a uniform in m estimate
for ||u™(t)||y for all t > 1, giving the bound (6.24).

In order to deal with times ¢ < 1, we will use (6.42) on the time intervals ¢ € [1/2%1 1/2*]
with 7 = 1/ 2k+1 " The point is that for such times ¢t and 7 are comparable: 7 < t < 27.
Therefore, for t < 1 we have an estimate

tlu™ @)} < o, (6.43)

with the constant « that only depends on v, ||ug||g and || f||c but not on m or ||ug||y, which
is (6.25).

Finally, if we allow the dependence on the norm ||uglly, then for times ¢ < 1 we may
simply use the first line in (6.42) with ¢y = 0, together with the estimate

Glto=0,t =1) < 2a, (6.44)
which follows from (6.41). This gives (6.26) and finishes the proof of Proposition 6.3. O
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6.2.3 The strong solutions in two dimensions

The above bounds on the solutions u™ of the Galerkin system (6.23) allow us to pass to
the limit m — oo to construct solutions of the Navier-Stokes equations on a two-dimensional
torus

u+u-Vu+Vp=vAu+f, t>0, xecT? (6.45)
V-u=0,
u(0,x) = ug(x).

Theorem 6.4. Assume that T > 0, ug € H and f € L>*(0,T;H). Then there ezists a

constant C' > 0 which depends only on v, ||uo||g and ||f||e, and a solution of the Navier-
Stokes equation (6.45) which satisfies the bounds

lu()||n < C, (6.46)

lu(®)|vy < C fort>1, and ||u(t)| < % for0<t<1, (6.47)
T

/ |u(®)|2.dt < C. (6.48)
0

In addition, for any s > 0 there exists Cs so that
T
/ |Au(t)||Fdt < C,T. (6.49)

Moreover, if ug € V' then there exists a constant C' > 0 which depends only on v, ||ugl|ly and
Il flloo sO that

lu)|ly < C forallt >0, (6.50)

and
T
/ | Au(t)||Fdt < COT. (6.51)
0

These bounds are inherited from the solutions of the Galerkin system, we leave the details
of this passage to the reader, as they are very close to what was done in the corresponding
passage in the construction of the weak solutions. We only mention that the L?*(0,T; H)
estimate for Au follows from (6.36). Note that we do not yet claim that if ug is an infinitely
differentiable function, then the solution u(t,x) is also smooth but only that w is a strong
solution in the sense that the aforementioned bounds on u(t, z) hold. We will improve them
soon, assuming that ug is smooth.

6.3 Existence of strong solutions in three dimensions
6.3.1 Strong solutions in three dimensions: small data

While existence of global in time strong solutions in three dimensions is not known, strong
solutions do exist if the initial condition and the forcing are small.
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Theorem 6.5. Let ug € V and f € L*(0,T; H). There exists a constant C' > 0 which depends
only on v, so that if

T
Jually + [ @ < C. (652
0
then the Navier-Stokes equations
w+u-Vu+Vp=vAu+f, t>0, ze&T? (6.53)
V-u=0,

u(0,x) = uo(),
have a strong solution on the time interval [0,T) that satisfies

T
1
||u(t)||%/+/0 |Au®)7dt < =, (6.54)

forall0 <t <T.

In particular, this theorem says that if f = 0, then there exists C' > 0 so that a unique strong
solution exists for all ¢ > 0 if ||ug||g < C.
The proof of Theorem 6.5, once again, relies on the estimates for the Galerkin solutions

ugm) + P, (u'™ - Vul™) = vAu™ | ™ (0,z) = uém) (r), t>0, zcT (6.55)

Taking the inner product with Au(™, as we did in the two-dimensional case, we obtain, as
in (6.28):

5 ™ @ + vl Aut™ | — (™ - Va™, Aut™) = —(f, Aul™). (6.56)

In three dimensions, we may not use the two-dimensional estimate (6.29) for the nonlinear
term. Instead, we will bound it as

C v
|(u- Vu, Au)| < Cllu])¥?|Aulll? < ;HUH?/ + ZIIAUHE- (6.57)
This comes from the estimate
|(u - Vu, Au)| < C||lu||s||Vul 3| Aul| 2. (6.58)

The Sobolev inequality implies that in three dimensions we have

[ullzs < Cllullgare, ullee < Cllulla- (6.59)
Using this in (6.58) gives
|(u -V, Au)| < Cllull sl Vaull sl Aull 2 < Cllaall [ Vull /e | A2 < Cllullj? | A2,
(6.60)

which is (6.57). We will estimate the forcing term in (6.56) as
A2 Y 2
. )] < 21718, + Y ul, (6:61)
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Altogether, with the above estimates, (6.56) implies

2dﬂ\ N5+ v Au™ 5 = @™ - Val™, Au™) = (f, Aut™)

6.62)
< = ™% + Z||Au< NZ +

This gives
1d C v C C
GO) (m6 _ = (m))12 = 2 (™
s I < Sl ™y = 1A I+l < ety
Therefore, the function y(t)

C v m
A+

Vi m C
N 1 (6.63)

= |lul™(t)||? satisfies a differential inequality

dy
P —HfHH (6.64)
Hence, as long as
2
v
5) < —, forall 0 < s < t, 6.65
y(s) < NG (6.65)
we have p o
y
< < ZIfI (6.6
and c
m>Sym-+;/Wuww%m (6.67)
0
It follows that if o e
v+ — ds < —= 6.68
ol + < [ s < (6.68)
with a universal constant C' > 0, then
2
m)())12, < 2
u" (t < —, 6.69
[u™ (@B < NG (6.69)
for all t > 0. This is part of the bound (6.54) on ||u(™||y;. In order to get the bound on Au(™
in L?(0,T; H), we go back to (6.62):
1d 5 U C C
Z (m) |12 g8 o = 2 (m) |12
5 IO + 2IA I < S8+ I < Culh
leading to

C
I+~ 1%, (6.70)

As we also have

2 [ il < 1+ o [ eeias S [l

(6.71)

uAnu O dt < o3 + C/|uo%m

: (6.72)
we deduce that under the assumptions (6.52) we have

T
/ 1AW (4)|2dt < C. (6.73)
0

Passing to the limit m — oo we construct a strong solution wu(t,z) to the Navier-Stokes
equations that satisfies the same estimates (6.54). Uniqueness of the strong solution finishes
the proof.
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6.3.2 Strong solutions in three dimensions: short times
Next, we show that strong solutions of the Navier-Stokes exist for a sufficiently short time
even if the data are not small.

Theorem 6.6. Let ug € V and f € L*(0,T;H). There exists a constant Cy > 0 which
depends on v and ||ug||y, so that if

To
Tyt [ 7@ < o (6.74)
0
then the Navier-Stokes equations
w4u-Vu+Vp=vAu+f, t>0, ze&T?, (6.75)
V.-u=0,

(0, z) = ug(x),

have a strong solution on the time interval [0, Ty] that satisfies

lu()[5 < C5 (6.76)
forall0 <t <Ty.
For the proof, we recall (6.70):
1d, o v m C C
=IO + DN < S+ S, (677)
which, in particular, implies that the function y(¢) = [[u™(¢)||? satisfies a differential in-
equality
y(t) < Cy(t)* + CIf Iz, (6.78)
with the constant C' that depends on v. Dividing by (1 + y)® we get
y Cy’ + Cllf 1% 2
< <C+O|fI3, 6.79
Integrating in time leads to
1 1 t
— §Ct+0/ f(s)|3ds. 6.80
AT w0 (I y)P , [ (050

Therefore, as long as the time ¢ is such that (6.80) holds, or, rather, as long as Tj satisfies

1 1

< , 6.81
T+ TP = 20+ 507 (6.81)

To
CTy+C [ I O)ds < 5
0

we have, for all 0 <t < Tj:
1 1 1
3 2 3 2 212"
(1+y()* ~ 21 +w0)* — 2(1+ [[uoll¥)
Therefore, as long as the time ¢ is sufficiently small, so that (6.80) holds, we have
lu™ @) < 201+ luoll})- (6.83)

As usual, this uniform bound on the Galerkin approximations u(™ (¢) implies that, passing
to the limit m — 400, we construct a strong solution of the Navier-Stokes equations for
times 0 <t < Tp. O

(6.82)
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6.3.3 Strong solutions are smooth if the data are smooth

We now show that if the initial condition uy and the forcing f are smooth, then the strong
solution to the Navier-Stokes equations (if it exists) is also infinitely differentiable. We con-
sider only the three-dimensional case but the analysis applies essentially verbatim to the
two-dimensional case as well.

Theorem 6.7. Let u(t, ) be the strong solution of the Navier-Stokes equations
wHu-Vu+Vp=vAu+f, 0<t<T, zeT? (6.84)
V-u=0,
U(O,l’) = u0($)7

in the sense that there exists C > 0 so that

T
sup lu(t)[lv < C, / [Au(s)|l3ds < C. (6.85)
0<t<T 0

Assume that ug € C*(T?) and f € C>(0,T;T?), then u € C(0,T;T?).

The strategy of the proof will be to estimate ||A™u(t)|| g for all m € N, and show that, as
long u satisfies the assumptions of Theorem 6.7, these norms remain finite for 0 <t < T, and
all m € N. As m € N will be arbitrary, the Sobolev embedding theorem will imply that w is
infinitely differentiable in z, while the Navier-Stokes equations themselves will imply that w is
infinitely differentiable in time (using the projection on the divergence free fields, the reader
should check that the pressure term is not a problem).

Multiplying (6.84) by (—A)™u and integrating over T? gives

(ug, (—A)"u) — (u - Vu, (=A)"u) = —v(=Au, (—A)"u) + (f, (—A)"u). (6.86)

Integrating by parts leads to

S5 I=2)™2ul 3 — (=2)™2(u - V), (=A)"2u) + ]| (=A) ™D 2|
< =AYl (=2)" 2l . (6.87)
The key inequality we will need for the nonlinear term is given by the following lemma.

Lemma 6.8. For every m > 3/2 there exists a constant C > 0 so that for any vector-valued
functions u, v such that ug =vy =0, and V-u=V -v =0, and up = vy =0 for all k > M,
with some M > 0, we have

I(=2)"2P(u- Vo) < Cll(=A)"2ullu|(=2)" V20| 4. (6.88)
Here, P is the projection on divergence-free fields.
Postponing the proof of this lemma, we apply it in (6.87):

1d

S (=AUl + v (A2, < (=AY [ (— )™ 2l

+ O (=A)™ Pl | (= 2) D2 .

(6.89)
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Next, we use Young’s inequality in the right side together with the Poincare inequality in the
form

1(=A)™ul|y < CJl(=A) D20 . (6.90)
This leads to

5 dtn( AY™ 2l + vl (- ) Rl < ) (~A 4+ 2 (- )

m v m
P A)ully + Y ()2l (6.91)
< A2 A + S A ulll + SN (=2) D 2

Therefore, we have

AY/2|12 Vo AN (m+1)/2 2<€ A2 £)[2 9 CAYm/2, 14
S NAY2ully + 2 (- a) D, < Ay + DAyl (6.92)

Looking at this as the differential inequality for y(t) = ||(—A)™2ul|%,, we deduce that

C

g < (=221l + I (=2)2ullfy(t) < Cr + — (=) ulfy(), (6.93)

v

with a finite constant Cy as f € C°°(0,T;T?*). Grownwall’s inequality implies now that y(t)
obeys an upper bound

t
o0 < v e[S [ 182 s] + ¢ [ [ [ Iy as

(6.94)
In other words, if we know that
T
/ I(=A)™2u(s)|%ds < +oo, (6.95)
0
then
sup ||[(—=A)™?u(s)||%ds < +oc. (6.96)
0<t<T
This, in turn, implies that
T
| I8 s < c. (6.97)
0
which can be inserted into (6.92) to conclude that
T
/ (=AY 2 (5) |2 ds < oo, (6.98)
0
allowing us to build an induction argument and continue forever, meaning that
sup ||[(—=A)™?u(s)||%ds < 400, for any m € N. (6.99)

0<t<T
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This will, in turn, imply that « € C*° by the Sobolev embedding theorem. However, this
argument uses the bound (6.88) which applies only for m > 3/2, and the “free” estimate for
the weak solution is

/0 Vu(s)|Zds /0 (=) 2u(s) |2 ds < +oo, (6.100)

which corresponds to m = 1, and for which we may not use this argument. Hence, to start
the induction we need the assumption that

T
/ 1 Au(s)||Z ds < +o0, (6.101)
0

which corresponds to taking m = 2 > 3/2, allowing us to proceed. This is the reason behind
the requirement that strong solutions satisfy (6.101).

The proof of Lemma 6.8

Recall that
||(—A)m/277(u -Vo)llg = sup ((—A)m/Q(u - V), w). (6.102)

weH,||w||g=1

Let us write

u-Vo(z) = Z(zm)( N uj)vl)emx, (6.103)

kez3 Jj+Hl=k
so that
((=2)"2(u- Vo), w) = 3 @mi) Am? k22 (D2 (1 u)ur) - w
kez? jHi=k

= > @r)(Amk*) " (1 ug) (v - wp).

j+l+k=0

(6.104)

Next, we will use the inequality
g+ ™ < (51 1ID™ < Cu (g™ + 11™), (6.105)
which implies
(=A™ (- V), w)] < Cp > [k[™ 1| |or] ey
Jj+Hl+k=0
<Com > (1™ A+ ™) s or] [ (6.106)

JjH+Hl+k=0

<Co S 1™ usllurllwrl + Co S gl el = A+ B.

JH+kE=0 jHA+kE=0
For the first term, we may estimate

A=Con Y U™ M ugledlfwnl =Y Jugl D 1™ el [w—

J+H+k=0 JEZ3 lez?

< Sl (S ul?) (3 ) = A 2l 3

JEZ3 lez3 lez3 jEZ3

(6.107)
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For the last sum above we may use the estimate

Sl < (1) (Z o) () = Al

jEZ3 jEZ3 jEZ3
(6.108)
We used in the last step the assumption that m > 3/2 (in a dimension n we would have
needed to assume that m > n/2).
For the second term in (6.106) we write

B=C Y li™Uluslvlfwil =Y (o D 1™ ] [w-r )
J+i+k=0 lez3 jez3

< O(=2)"ullmllwla Y U,

lez3

(6.109)

and
D Ml < (Z P2 ) (Z |z|zm> o2y, (610)
lez3
as m > 3/2. This shows that for any w € H we have

(=)™ (u- V), w)| < CI(=L)"2u ]| (=2) "™ D20] g ||w] 1, (6.111)
and thus finishes the proof of Lemma 6.8. O

6.3.4 Local in time existence in higher Sobolev spaces

The arguments of the previous section imply also that the Navier-Stokes equations are locally
well-posed in the higher Sobolev spaces H™(T?). For simplicity, we state the result for the
case f = 0.

Theorem 6.9. Let ug € H™, with m > 2, and f = 0. There exist a time T,, > 0 and Cy > 0
that depend on v, m > 1 and ||ug||zm, so that the Navier-Stokes equations

u+u-Vu+Vp=vAu, t>0, z¢cT (6.112)
V.-u=0,
u(0, ) = uo(x),
have a strong solution on the time interval [0,T,,] that satisfies
lu(®)[[Fm < Co (6.113)
forall 0 <t <T,,.
The proof is familiar: we start with (6.114) with f = 0:

v
SI(=2) 2], < II(—A)m/ZUII%' (6.114)

Looking at this as the differential inequality for y(t) = H(—A)m/ 2u||%, we deduce that

5 (=2)" 2l +

j < ng(t). (6.115)

As a consequence, y(t) remains finite for a time that depends only on y(0). O
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6.4 Infinite time blow-up implies a finite time blow-up

The problem of blow-up of solutions of a nonlinear partial differential equation usually consists
in two separate problems: (1) can solutions blow-up in a finite time, and (2) can they blow-up
in an infinite time, in the sense that the norm of the solutions tends to infinity as ¢ — +00?
The second notion is usually much weaker. For example, solutions to the heat equation with
a linear growth term

u=Au+u, t>0xeR" (6.116)
have the long time behavior
’ (4t )n/2 ’

and thus “blow-up in an infinite time” — all its LP-norms, p > 1 tend to infinity as ¢ — +oo.
However, one does not normally think of these solutions as really “blowing-up” — they just
grow in time.

The situation is different for the Navier-Stokes equations: an infinite time blow-up implies
a finite-time blow-up. More precisely, let us assume that there exists a strong solution u(¢, x)
of the Navier-Stokes equations

wHu-Vu+Vp=vAu, 0<t<T, zeT? (6.118)
V.-u=0,

u(0, z) = ug(x),

such that ug € H, and
lim [|u(t)|ly = +oo. (6.119)

t—4o00

Assuming that such u exists, and given any T' > 0, we will now construct an initial con-
dition vy € V so that the solution to (6.118) with v(0,2) = wvo(x), blows up before the
time 7' > 0. That is, there will be a time T} € (0, 7] such that

lim [|v(t)[|y = +o0. (6.120)

t—T)

The idea is to combine the blow-up assumption that there exists a sequence of times t; — +o00
such that '
lu(t;)llv > 27, (6.121)

with the main result of Proposition 6.2: solutions to the Navier-Stokes equations are often
not large. Given an initial condition ug € H and a sequence ¢; as in (6.121), we may use the
aforementioned Proposition to find a time s; € [t; — T, t;] so that

1
lu(s)llv < 0(1 + T) —C (6.122)
The constant C' depends only on ||ug||m, and v > 0. Thus, if we take u(s;) as the initial

condition for the Navier-Stokes equations at the time t = 0, then the corresponding solu-
tion to the Cauchy problem will have reached the V-norm that is larger than 2/ by the
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time 7. As ||u(s;)|ly is uniformly bounded in j, we may choose a subsequence ji, — +oo
so that vQ(z) = u(s;,,x) converges weakly in V and strongly in H to a function vy € V.
Consider now the Cauchy problem with the initial condition vy:

v +v-Vo+Vp=vAv, 0<t<T, ze&T3, (6.123)
V-v=0,
v(0, ) = vo(x).

This problem has a strong solution on some time interval [0, 7|, which depends only on ||vg]|v
and v.

We will now show that (6.123) may not have a strong solution on the time interval [0, 7.
To this end, assume that such solution exists on [0, T, denote

r= sup ||v(t)|v, (6.124)

0<t<T
and consider the functions vi(t) = u(t + s;, ), which are the solutions to

0
S v Vo Voo =vhu, 0<t<T, xe T,
mG:(),

ve(0,7) = vp(z) = u(s;, z).

(6.125)

Writing w; = v; — v, and expanding

v;- Vv, —v-Vo=(v+w;) - Vv+w;) —v-Vo=w; - Vo+v-Vw; +w, - Vw;, (6.126)
we see that w; satisfies (as in the proof of the uniqueness of the solutions of the Navier-Stokes
equations):

ow;
%—kwj~Vv+v-ij+wj~ij+Vp':Vij, 0<t<T, zeT? (6.127)
V'U}j:O,

w;(0,2) = U?(JU) — vo(x),
with p’ = p; — p. Multiplying by w; and integrating leads to
1d
2dt

In three dimensions, we can estimate the right side as

;7 + viw;ll = —(w; - Vo, wy). (6.128)

[(wj - Vo, w)| < flwgl| 2| Vol 2llw; || s < Cllw; || gz llollv[ws |
1/2 1/2 1/2 3/2

< Cllw; |l " l[w; llv ™ [vllv lwsllv = Cllollv l[w; ™ l[w; Iy (6.129)
v C
< glwilly + ol llwsl-
We used Young’s inequality in the last step, with p = 4/3, ¢ = 4. Using this in (6.128) gives
1d v C
sl + gl < ol o (6.10)
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As v is a strong solution to (6.123) and ||v||y is uniformly bounded by r, by the assump-
tion (6.124), it follows from (6.130) that there exists C' > 0, which depends on v and r that
appears in (6.124), so that

lw; ()l < JJw;(0)]| e (6.131)

As w;(0) — 0 strongly in H, we conclude that w;(t) — 0 strongly in H, for all 0 <t < T.
Another consequence of (6.130) and the uniform bound (6.124) is that
y T

T
2 [ Tl < sl + € [yl (6.12)

and since ||w;(t)||g — 0, pointwise in ¢, while ||w;(¢)||z < C, we conclude that
T
/ s ()|t — 0 as j — oo, (6.133)
0

In particular, possibly after extracting another subsequence, we know that
|w;(t)|ly — 0 for a.e. t € [0,T]. (6.134)

Thus, given any § > 0 we can choose a sequence of times 7, € [0, T] such that 0 < 75,1 —7% < 0,
and ||w;(7x)[|v < 1. Next, note that if ||w;(t)|v < 1, then

[o;(B)llv < llw; D)llv + [lo@)]lv < T+, (6.135)

with 7 > 0 as in (6.124). The local in time existence theorem implies that there exists a
time 77, which depends only on v and 7, so that if ||v;(¢)|y <14 r, then

[v;(s)lv < 10(1 +7), (6.136)

for all s € [t,t + T3]. Taking 6 = T}, we deduce that (6.136) holds for all 0 < ¢ < T'. This,
however, contradicts the assumption that 0 <¢; —s; <7 and

lor(ts, = si)llv = llulss)llv > 2%

Thus, v(s,z) can not be a strong solution on the time interval [0, 7.

6.5 The Beale-Kato-Majda regularity criterion

We now describe a sufficient condition for the solution to remain smooth. This time, we will
work in the whole space R? but the existence and regularity results we have proved for the
three-dimensional torus apply essentially verbatim to the whole space as well. As we have
seen in Theorem 6.9, if the H™-norms of a smooth solution w(t,z) remain finite on a time
interval [0, 7], for some m > 3/2, then the solution may be extended past the time 7. In
other words, a time T is the maximal time of existence of a smooth solution u(¢,z) if and
only if

ltlTr%l |u()|| gm = +o0. (6.137)

The Beale-Kato-Majda criterion reformulates this condition in terms of the vorticity (this
also requires only one derivative of u, not 3/2 derivatives).
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Theorem 6.10. Let ug € C(R?), so that there exists a classical solution v to the Navier-
Stokes equations with f = 0. If for any T > 0 we have

T
/ | (t)|| peedt < +o0, (6.138)
0

then the smooth solution u exists globally in time. If the mazimal existence time of the smooth
solution is T' < +o00, then necessarily we have

T

ltlTr%l i l|lw(t)|| Leedt = +00. (6.139)

6.5.1 A bound in terms of ||Vul|~

The starting point in the proof of Theorem 6.10 is an estimate for the evolution of the H™-
norms, assuming that we have the control of || Dul| .
We take m to be an even integer for convenience. Recall the identity (6.87) with f = 0:
1d
2dt

Our goal is to show the following inequality:

I(=2)"2ull3y + v (=2) "D 2uf = (=A)"(u- V), (=A)™?u). (6.140)

(=)™ (u- V), (=A)"?u)| < Cul| D™ 2| D (6.141)

with the notation D = (—A)'2. An important preliminary point is that the term in the inner
product that has the highest order derivative of w, of the order (m + 1), vanishes

((u- V(=2)"2u), (=A)"™2u) = 0,

because V - u = 0. Hence, the left side in (6.141) can be estimated by

(=)™ (u - Vu), (=A)™2u)| < Co Y 1D ul| o | DO | (6.142)
k=1
with 1 < pi, ¢ < oo such that
! + L1 (6.143)
Pk G 2 '
We recall a Gagliardo-Nirenberg type inequality for R?: for any with 0 < j < m, there
exists C' > 0 so that we have
1D flles < CID™ FlISILFII (6.144)

with , ,
lzj J (1 m>

and a = j/m. We will use it for f = Du and j = k — 1 < m. This gives

|D*ull e = | D" Dul| o < G| D™ Dul| 5| Dull g = Cil| D™ul| 75| Dul| 0™, 1 < k < m,
(6.145)
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with
k—1
ar = ——
k m_17
and
1 k—1 k—1,1 m-—1 k—1 ay

o d +m—1(§_ d )_2(m—1)_7

This gives the estimate

| DFul| o < CkHDmuH“L‘;HDqu%, 1<k<m. (6.146)

The paired term | D™ ~*y|,, that appears in (6.142) can be estimated similarly:

D™ | o = | D™ * Dul| g < Cil|[ D™ Dl | Dul| 5% = Crl| D™ ul| % | Dul| 2%,
(6.147)
with "
m —
bp — —
k m — 1 )
and

l_m—k+m—k(1 m—l) m—k by,
o  d m—1'2 d 2(m —1) 2

Luckily, we both have

k—1 m—k
m—1 m-—1
and (6.143) holds with the above choice of py and gy:

1 1 b 1

Ll % + ok _ 7

P Gk 2 2
so that these p, and g; can be taken in (6.142). It follows from (6.146), (6.147) and (6.148)
that

1D ul| e [ DY P o < G| D™ 2| D o
When k& =m or k =1, we simply use p = 1/2 and ¢ = oo, getting the estimate
D™ ul| 2 || Dul| o

for those terms. Inserting this into (6.142) gives (6.141).
With (6.141) in hand, going back to (6.140), we conclude that
1d
2 dt

Summing over m, we conclude that for any s € N we have

1D ullfy < Conl D™l V]| (6.149)

d
o [l = Gl V| < lull 7. (6.150)

Therefore, if ug € C°(R?), then for any of the H*-norms to become infinite by a time 7' it is
necessary that

T
| IVt = o (6.151)
0

72



and, in general, we have

[l s < [luol

t
Hs €XP {Cs/ ||Vu(7‘)||Lood7'}. (6.152)
0
In a similar vein, multiplying the vorticity equation
wtu-Vw=vAw+w-Vu (6.153)

by w and integrating, we see that
—llw®)lz2 < IVull oo ||| 2, (6.154)

so that .
lw(®)ll= < [lewo|lz2 exp{/ [Vu(s)] s ). (6.155)
0

6.5.2 Bounding ||Vu||i~ by ||w| L=

The above bounds show that the conclusion of Theorem 6.10 would follow from (6.151)
and (6.152) if we would know that

NVl e < Cllw]| e (6.156)

One may expect this to be true based on the validity of a similar identity for the L?-norms:

recall (3.35)
/ |Vu|2da7:/ |w|?dz, (6.157)
R3 R3

because

6 = Eigkimn (05106) Ornttn) = (S — S8t (Dy00) (D) = [Vuul® = (D) Dy ),
(6.158)

and

/n(ﬁjuk)(akuj)dx =— /" uy(0x0juj)dr = 0. (6.159)

Identity (6.156), however, is not quite true for the L*-norms — the relation between the
gradient of the velocity and the vorticity is in terms of a singular integral operator which
maps every LP — LP for 1 < p < +00 but does not map L> to L*>. However, it is “almost
true” as shown by the following lemma.

Lemma 6.11. Let u(z) be a smooth divergence free velocity field in L*NL*°, and let w = V X u.
There exists a constant C' > 0 so that

IVl < C(1+log™ ||ull = +log™ [|w]l2)(1 + [|wl[z=). (6.160)

73



Here, for z > 0, we set log™ 2 = log 2 if log z > 0, and log* z = 0 otherwise. The L?-norm
of w(t) that appears in (6.160) can be estimated from (6.155) as

t
log* [Js(®)l] > < log™ [lwol]z2 +/ |Vu(s)l|oeds. (6.161)
0
Similarly, the H3-norm of u(t) can be bounded as in (6.152):
t
log™ ||u(t)||gs < log™ ||ugl| s + C/ IVu(s)| Leds. (6.162)
0

Assuming the result of Lemma 6.11, we deduce that ||Vu||s satisfies the inequality

HVuunuwfst@:%/:HVu@nume<1+nw@nuw, (6.163)

with a constant Cy that depends on the initial data ug. Setting

zlnw@mm&@mzrwwwm,

we have from (6.163):

dG

< Coll + G0)B(),

so that
%(G(t)exp /5 ds )<COB exp /ﬁ ds

Integrating in time gives
G(t exp / B(s ds <1 —eXp C’o/ B(s ds (6.164)

so that .
G(t) < exp {Co [ Bls)as)}

In other words, we have
t t
/ IVau(s)| zeeds < exp {Cot + co/ Hw(s)HLoods)}. (6.165)
0 0

As a consequence, as long as

t
/ oo (8)[| g ds < o0, (6.166)
0

all H™-norms of the velocity remain finite, hence u(t) € C°°(R?). Therefore, the proof of
Theorem 6.10 boils down to Lemma 6.11.
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6.5.3 The proof of the estimate on ||Vu| ;=

We now prove Lemma 6.11 using the ideas from the theory of singular integral operators.
The velocity field is related to vorticity by the Biot-Savart law:

u(r) = — g K(z — y)w(y)dy = g K(y)w(z + y)dy, (6.167)
with .
K(z)h = Wm X h, (6.168)

for any i € R3. As the singularity in VK (z) is of the order 1/|z|> which is not integrable in
three dimensions, we have to be careful about computing the gradient of u. Let us write

w(r + z) —u(x) = g Ky)w(z+ 2z +vy) — w(z+y)]dy. (6.169)

As K € L}, .(R3), if, say, w € Cg°(R?), then, passing to the limit z — 0, we get

loc

Ous(x) = K (y)0jwm (z + y)dy. (6.170)
(91’]- R3

Because of the singularity in K we can not immediately integrate by parts. Let us write this
integral as

Ouy () .
o, lim . Ky (y)O0jwm(x + y)dy =
. Yj . (6.171)
= — lim K (y)wm(x 4+ y)==dy — lim 0 K (9) |wm (x 4+ y)dy
iy [ K0+ 0) iy Ty [ [0, K+ 0)
The first integral can be re-written as
Ap; = —lim Kim (y)wm (z + y)ﬂdy = —lim S %[y X w(z + y)]k&dy
e—0 ly|=e |y| e=0 47 ly|=¢ ‘y| ’y|
1'1/ 1[><(+)]Zj2d ! [z X w(w)]pz;d 6.172
= —lim — ez X w(r +e2)|p—e"dz = —— 2 X w(x)|pzdz
e=04T J 112 e3|z|? k\Z\ AT J=1 £ (6.172)
1 mn 1
= - Chn /|Z:1 Zmwn (T)2;dz = EkTwn(x)(Smj = —gekjnwn(x).

Thus, we have

1
| Agj| < §HWHL°07

and the main focus is on the second term. We have

€krm
Kim(y) = Wyra
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so that

3€krm €kim
0 Ko (1)) = ——Skrm ) Ckim
Kim(9) e

We conclude that for any h € R? we have

. . Sekrm kgm
'yze?»(y Wl x oz + 2l (6173
= lim ( : b w(x+1y)xXh )dy.
=0 | > 47|y|® 47r\y|3[ ( ) Ji

We shall split B further as follows: take a smooth cut-off function p(r) so that p(r) = 0
for r > 2R, and p(r) = 1 for r < R, with R to be chosen later, and write

Bty =tim [ (PRI ot ) < ol
+lim N <3(y : h)[i;];;;x Yl 47T’1y|3[ (2 — 1) x h]k>(1 — syl (6.174)

The Cauchy-Schwartz inequality implies that

<1

1 2
Dyl < C\h\HwHL2</ L2y ool 2| (6.175)
R

)" <

The key estimate is for Cy: we will show that for any § > 0 and any Holder regularity
exponent v € (0,1) we have

R
Cy] < O{(WHme + ||w|| p~max(1, log )}|h| (6.176)

Here, ||w||c~ is the Holder norm. Let us assume momentarily that (6.176) holds. The Sobolev
inequality in dimension n

£ ller@ny < Clf]

n

HS"'"V(]R”)? S > §

implies that in three dimensions we have, for all 0 < v < 1/2:
wller < Cllwl|a,

so that if (6.176) holds then

R R
G| < C’{57||w||Hz + ]| e max (1, log = )}yh| < c{muuum + [Jwl||~max(1, log = )}|h|

(6.177)
Altogether, we have

C R
1V g < 0(||w||Loo b lwlle + {m||u||H3 + [[w]| e max (1, log 3) }) (6.178)

R3/2
76



Thus, we set the cut-off R to be )
= w75

As far ¢ is concerned, if ||ul|gs < 1, we can take § = 1, while if ||ul|gs > 1, we can take
6 = [lullys
In both cases, we have
IVl < C(1 +log™ [|ullgs +log™ f|wllr2) (1 + fJw]|ze), (6.179)
which is the claim of Lemma 6.11. It remains, therefore, only to prove the estimate (6.176).

6.5.4 A nearly L™ — L* estimate for singular integral operators

We now prove estimate (6.176) for C, which we write as

. 3(y - h)ly x w(z + y)lk 1
Cy = lim ( + w(x +y xh)pydy
k 650 iz 47T|y|5 47T|y|3[ ( ) ]k (‘ D
- Elﬁ% (300l <ol e 9) < B
_ dy
— An lli% e (3 Ym mekjrijr(x + ?J) + 5k7‘mwr($ + y) ) (|y|)| | (6180)
_ ftm dy
= tim (B + 2o Jor o+ (I
By, .
= —— lim Boier () (z 4+ y)p([y|)dy
Am =0 Jiy >
We have denoted here .
Pmkr = W(Z’)@mskﬂg}j + 6k7«m). (6181)
The kernel Q(y) = Pur(y) (we fix for the moment the indices m, k and r) is homogenous of
degree (—3):
1
Q\y) = = (y), forall A >0andy e R3 y#0. (6.182)

Thus, Q(y) is “barely not in L'”: if it were slightly less singular it would have been in L.
In addition, the average of Q(y) over the unit sphere (and thus over any sphere centered
at y = 0) vanishes:

Qly)dy = / (3UmErjrUi+ekrm)dy = AT[EkjrOm;+Ekrm] = 4T [Ekmr+Elrm] = 0. (6.183)
ly|=1 ly[=1
Consider now the term (again, with an index r fixed)

Qu(z) = lim Qy)wr(z +y)p(ly|)dy. (6.184)

0 Jly1>e

7



We split the integration in the definition of Qw as follows:

Quw(r) = lim Q(y)wr(z +y)p(ly|)dy + Q(y)w(z +y)p(ly|)dy = A+ B. (6.185)

e0 Je<y|<s ly|>6

The second term above is (recall that p(|y|) = 0 for |y| > 2R):

B= [ Qe+ wluay, (6.186)
5<|y|<2R
which can be estimated as
2R 7,.n—1 2R
B < Cllllu [ i < Cllal log % (6.187)
s

The first term in (6.185) is estimated using the Holder continuity of w: the mean-zero prop-
erty (6.183) means that we can write

A = lim Q(y)wr(r+y)p(ly)dy = lim Q) wr(z+y) —w.(z)]p(lyl)dy. (6.188)

e20 Je<py|<s e20 Je<py|<s

The Holder continuity of w implies that the integrand in the last expression above has an
upper bound

C

QW) wr(z —y) — wp(z)]p(ly])] < lel”llwllm = 7|| wlev, (6.189)

which is integrable in y at y = 0 for v > 0. Therefore, we have
A= [ Qs =) - w@lpllsl)dy (6.190)

0<]y|<é
and
0 yn—1

412 Clleller | Ty < Clalend (6.191)

Putting the bounds for A and B together gives (6.176).

7 The Yudovich theory for two-dimensional Euler equa-
tions

In this section, we will study some of the basic questions concerning the behavior of solutions
to the two-dimensional incompressible Euler equations.
u+ (u-V)u+Vp =0,
V.-u=0.
The system (7.1) should be supplemented by the initial condition u(0, ) = ug(x). Moreover,
if it is posed in a domain D, we also need to impose a boundary condition on the flow u(¢, z).
If the boundary is impenetrable, then the natural boundary condition is
u-v|yp =0. (7.2)

Here v is the normal at the boundary 0D. The Euler equations are also often considered in
the whole space R?, with the decay conditions at infinity, or on a torus — which is equivalent
to taking periodic initial data in R

(7.1)
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7.1 The vorticity formulation of the two-dimensional Euler equa-
tions

The theory of the existence, uniqueness and regularity of the solutions to the Euler equations
is quite different in two and three spatial dimensions. In the two dimensional case, for
smooth initial data there exists a unique global in time smooth solution, while for the three
dimensional case an analogous result is only known locally in time. The question of the
global existence of smooth solutions to the Euler equations in three dimensions is a major
open problem. This difference can be illustrated on a basic level by rewriting the Euler
equations in the vorticity form.

An important quantity in the fluid mechanics is the vorticity w = V x u, which describes
the rotational motion of the fluid. In three dimensions, if we apply the curl operator to the
system (7.1), we obtain the Euler equation in the vorticity form:

we+ (u-Vw = (w- V)u, (7.3)

with the initial condition w(0,z) = wy(z).

The vector field u can be recovered from w via the Biot-Savart law. In order to obtain this
law in R?, consider the (vector-valued) stream function ¢ defined (in terms of the vorticity)
as the solution of the Poisson equation

—AY =w, in R3, (7.4)
Then, one can show via vector algebra that u is given by
u=V X1 (7.5)

That is, if u and w are related via (7.4) and (7.5), and w is incompressible (as it should be),
then w = V x u. Together, (7.4) and (7.5) form the Biot-Savart law which expresses the
velocity u via the vorticity w.

On the other hand, in the two dimensional case the term in the right side of (7.3) vanishes.
This term is often called “vortex stretching term” as it can amplify the size of the vorticity. To
see that the vortex stretching term is absent in two dimensions, observe that the solutions of
the two-dimensional Euler equations can be thought of as solutions of the three-dimensional
equations of the special form (uy(x1,z2), us(x1,22),0), P(x1,x2). In that case, the vorticity
vector has only one non-zero component:

w = (O, 0, 31u2 — 82u1),
and can be regarded as a scalar. Then, the term in the right side of (7.3) is simply
(w- V)u = wsdsu,

but the two dimensional u does not depend on x3. Thus, in two dimensions, the vorticity
equation simplifies. We will use the notation

W = 8111,2 - 82u1, (76)
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instead of ws.

Given a smooth bounded domain D, let us define the operator (—Ap)~! as follows: given
a function w, we denote by ¢ = (—Ap)~'w the unique solution of the Dirichlet boundary
value problem

—AYp =w, in D, (7.7)
P =0, on 0D.

The vorticity formulation of the two-dimensional Euler equations is the system

Ow + (u-V)w =0, (7.8)
u=V*+(—Ap) tw, (7.9)

w(0,x) = wo(x),

where V4 = (05, —0;). Note that the flow u defined by (7.9) automatically satisfies the
boundary condition
u-v=_0ondD. (7.10)

This is because the gradient of the stream function ¢ = (—Ap)~'w is normal to 9D due to
the boundary condition, and hence u = V+1 is tangent to it.

Exercise 7.1. Verify that if u(t, z) satisfies the Euler equations in two dimensions, then the
vorticity w(t, ) given by (7.6) satisfies (7.8), and u(t, ) and w(t, z) are related via (7.9).

The vorticity formulation of the Euler equations in two dimensions leads to several impor-
tant observations. As we will shortly see, any L” norm of the vorticity is conserved for smooth
solutions of (7.8). In particular, ||w||f~ does not change. In contrast, in three dimensions,
the amplitude of vorticity can and often does grow due to the vortex stretching term in the
right side of (7.3).

The Yudovich theory addresses existence and uniqueness of the solutions to the 2D Euler
equations with a bounded initial vorticity. The L class for vorticity is very natural since it is
preserved by the evolution, and is likely close to being sharp. In addition, many phenomena
in nature, such as hurricanes or tornados, feature vorticities with a very abrupt variation,
hence the theory of solutions with rough vorticities is not a purely mathematical issue. As we
will see, if the initial condition is more regular, this regularity is reflected in the additional
regularity of the solution, even though the quantitative estimates can deteriorate very quickly.

It is not immediately clear how one can define the low regularity solutions (such as L)
of the vorticity equation (7.8) since we need to take derivatives. A “canonical” way around
that is to define a weak solution of a nonlinear equation via the multiplication of the equation
by a test function and integration by parts, and then to try to obtain some a priori bounds
and use compactness arguments to show that such weak solution exists. Indeed, this is the
original approach of Yudovich. However, there is an arguably more elegant approach for the
two-dimensional Euler equations, via a reformulation of the problem that allows us to define
a weak solution in a different way. Given a divergence-free flow u(t, z), recall our definition
of the particle trajectories ®,(z):

dq)t (.Z')
dt

= u(t, ®(z)), Po(z) = =x. (7.11)
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As we have seen, if u is sufficiently regular and incompressible, (7.11) defines a volume pre-
serving map x — ®;(x) for each ¢.

A direct calculation, using the method of characteristics, shows that if w(t, z) is a smooth
solution of (7.8), then

w(t,®(z)) = wo(x), thus w(t,r) = we(®; (x)). (7.12)

The inverse map is well-defined since trajectories cannot intersect if u is sufficiently regular
(we will discuss it in more detail below). In addition, denote, as before, by Gp(x,y) the
Green’s function for the Dirichlet Laplacian in a domain D, in the sense that the solution
to (7.7) is given by

wwzlfbmwmw@7xea (7.13)

and set

Then the Biot-Savart law in two dimensions can be written as
t.a) = [ Ko(e.g)(t.y) dy (7.15)
D

A classical C! solution of the two-dimensional Euler equations (7.8) satisfies the sys-
tem (7.11), (7.12) and (7.15). On the other hand, a direct computation shows that a smooth
solution to (7.11), (7.12) and (7.15) gives rise to a classical solution of (7.8). Thus, for smooth
solutions the two formulations are equivalent.

We will generalize the notion of the solution to the 2D Euler equations by saying that
a triple (w,u,®i(x)) solves the 2D Euler equations if it satisfies (7.11), (7.12) and (7.15).
The obvious next task is to make sense of the solutions of the latter system with the only
requirement that wy € L*°. A well known theorem on solutions to systems of ordinary
differential equations yields uniqueness if u(t,z) is Lipschitz in x. Thus, if it were true that
for w(t,z) € L™, the Biot-Savart law would give a Lipschitz function u(t, z), then it would
be very reasonable to expect (7.11), (7.12) and (7.15) to be a well-posed system. This looks
possible — (7.9) indicates that u is “one derivative better than w”, but in fact it is not quite
true — the regularity for u(t,z) when w € L™ is slightly lower than Lipschitz. Nevertheless, we
will see that this lower regularity is sufficient to define unique trajectories of the ODE (7.11),
making the system well-posed.

7.2 The regularity of the flow

In order to construct the solutions of the 2D Euler equations in the trajectory formula-
tion (7.11)-(7.15) with the vorticity wy € L>, we first need to establish the regularity of the
fluid velocity given by (7.15) for a vorticity in L*. This question is clearly related to the
regularity of the kernel Kp(z,y). The following proposition summarizes some well known
properties of the Dirichlet Green’s function.
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Proposition 7.2. If D C R? is a compact domain with a smooth boundary, the Dirichlet
Green’s function Gp(x,y) has the form

1
™
Here, for each y € D, h(x,y) is a harmonic function solving
1
Ayh =0, h|,cop = 5 log |z — yl. (7.16)
T

We have Gp(x,y) = Gp(y,x) for all (x,y) € D, and Gp(x,y) = 0 if either x or y belongs
to OD. In addition, we have the estimates

Go(z,y)| < C(D) (log |z -yl + 1) (7.17)
[VGp(z,y)| < C(D)|lz —y| ™", (7.18)
[V*Gp(z,y)| < C(D)|z —y|™*. (7.19)

The following lemma outlines a key regularity property of the Green’s function which
allows to construct the unique solutions of the Euler equations for the initial vorticity in L°°.

Lemma 7.3. The kernel Kp(x,y) = V*Gp(x,y) satisfies

ZJKMaw—wwmawwyscunmm—xw, (7.20)
where _ .
¢(r) :{ 7{< ~logr) ;;1 (7.21)

with a constant C (D) which depends only on the domain D.

Proof. In what follows, C'(D) denotes constants that may depend only on the domain D,
and may change from line to line. To show (7.20), we may assume that r = |z — 2’| < 1.
Indeed, otherwise (7.20) follows from the simple observation that

|Kp(z,y)| < C(D)|z —y|™,
so that
/WKmmeyscum
D

which implies (7.20) for z, 2’ € D such that |z — 2’| > 1.
Assume now that » < 1 and suppose first that the interval connecting the points x and 2’
lies entirely inside D. Let us set

A={yeD: |y—=z| <2r}.
The estimate (7.18) implies

1 1
Kp(z,y) — Kp(2',y dySC'D/ + dy
/DﬂA| ole,y) = Kple,y) (D) BQT(x)(|x_y| |$’—y|)

1 1
§CD/ dy—l—C(D/ ——dy < C(D)r.
( ) Bar () |.T - y| ) Bsr(z') |I/ - Z/’ (( )
7.22

82



We used above the fact that |z — 2| < r implies that By, (x) C Bs,(2').
To bound the remainder of the integral, observe that for every vy,

| Kp(z,y) — Kp(a',y)| < r[VEp(x"(y), )], (7.23)

where the point x”(y) lies on the interval connecting = and 2’. Note also that choice of the
set A ensures that the distances |x — y|, |¢' — y| and |2” — y| are all comparable if y € A°.
Then, by (7.19) and the above considerations we have

dy / dy
Y oD 7
o"(y) —yl* ~ (D) prae | —y[?

(D)
< C’(D)r/ s tds < C(D)r(1 —logr).

/ Kpl,y) - Kp(@',y)| dy < C(D)r /
DNAc

DnA¢

(7.24)

The case where the interval connecting x and x’ does not lie entirely in D is similar, one
just needs to replace this interval by a curve connecting x and 2’ with the length of the order r.
We briefly sketch the argument. The following lemma can be proved by standard methods
using the compactness of the domain and the regularity of the boundary, so we do not present
its proof.

Lemma 7.4. Fiz an arbitrary ¢ > 0 and let D C R? be bounded domain with a smooth
boundary. Then there exists 1o = ro(D,e) > 0 such that if xy € 0D, and r < 1o, then
B.(xo) NOD is a curve that, by a rotation and a translation of the coordinate system, can be
represented as a graph xo = f(x1), with xo = (0,0). The function f is C*, and f'(0) = 0.
Moreover, the part of the boundary 0D within B,(xq) lies in the narrow angle between the the
lines x9 = Lex;.

With this lemma, suppose we have x and z’ such that the interval connecting these points
does not lie in D. It is enough to consider the case where |x — 2/| = r < ry/2, where ry is as
in Lemma 7.4 corresponding to a sufficiently small €. Indeed, the larger values of |x — 2’| can
be handled by adjusting C(D) in (7.20). Find a point zy € 0D closest to x (it does not have
to be unique). Note that by the assumption that the interval (x, z’) crosses the boundary, we
must have |z — xo| < ro/2 and |z’ — x¢| < 79. Thus, both x and z’ lie in the disk B(xq, o)
where 0D lies between the lines x5 = £ex;. It is also not hard to see that x must lie on
the vertical x9-axis of a system of coordinates centered at x(, with the horizontal xi-axis
tangent to 0D at xy. We also know that 2’ must lie in the narrow angle between the lines
x9 = texy. Otherwise, the interval (z,2’) could not have crossed the boundary. Now take a
curve connecting x and z’ consisting of a straight vertical interval from 2’ to a point on one
of the lines x5 = +ex; which is closest to x, and then an interval connecting this point to z.
We can smooth out this curve without changing its length by much. It is easy to see that
the length of this curve does not exceed 2r if ¢ is small enough. The rest of the proof goes
through as before. O

Now we can state the regularity result for the fluid velocity.

Corollary 7.5. The fluid velocity u satisfies
[ullz < C(D)||wl| e, (7.25)
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and

u(z) = u(a)] < Cllwl| L~ (lz —2']), (7.26)
with the function ¢(r) defined in (7.21).
Proof. By (7.18), we have, for any x,y € D,
|Kp(z,y)| < C(D)|x —y| ™,

so that

D|$—y|

which is (7.25). The proof of (7.26) is immediate from Lemma 7.3, as

1
[ Kol dy]<c< Ml [ dy < C(D)||w] o

ult, ) = /D Kp(z,y)w(t,y)dy,

and we are done. O
We say that u is log-Lipschitz if it satisfies (7.26): there exists M > 0 so that

lu(t, z) —u(t,2")| < Mo(|Jxz — '|). (7.27)

We will see that this bound is in fact sharp: there are velocities that correspond to bounded
vorticities which are just log-Lipschitz and in particular fail to be Lipschitz.

7.3 Trajectories for log-Lipschitz velocities
7.3.1 Existence and uniqueness of trajectories

As the fluid velocity with an L®-vorticity is not necessarily Lipschitz but only log-Lipschitz,
we may not use the classical results on the existence and uniqueness of the solutions of systems
of ODEs with Lipschitz velocities. Nevertheless, as we show next, the log-Lipschitz regularity
is sufficient to determine the fluid trajectories uniquely.

Lemma 7.6. Let D be a bounded smooth domain in RY. Assume that the velocity field b(t, )
satisfies, for allt > 0:

b€ C([0,00) x D), |b(t, ) —b(t,y)| < Co(lz —yl), blt, ) v]yp =0. (7.28)

Here, the function ¢(r) is given by (7.21) and v is the unit normal to 0D at the point x. Then

the Cauchy problem in D
dx

dt
has a unique global solution for all ¥y € D. Moreover, if zg ¢ OD, then x(t) ¢ D for
allt > 0. If xg € OD, then x(t) € D for allt > 0.

= b(t,x), x(0) = xo, (7.29)
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Note that the log-Lipschitz regularity is border-line: the familiar example of the ODE
=2 2(0)=0,
with 8 € (0,1) does not have the uniqueness property: for example, z(t) = 0, and
tP 1
1) = — -

are both solutions. Thus, ODEs with Holder (with an exponent smaller than one) velocities
may have more than one solution. Existence of the solutions, on the other hand, does not
really require the log-Lipschitz condition: uniform continuity of b(t,x) and at most linear
growth as |x| — 400 would be sufficient.

Proof. Step 1. Existence of a local in time solution. Let us first show the existence
of a local solution using a version of the standard Picard iteration: set

x,(t) = xo +/0 b(s,zn,_1(s))ds, zo(t) = xo.

Let us assume first that o € D. Then, as usual, we have, using the log-Lipschitz property
of b:

| (t) — 21 (B)] < /0 [b(s, Zp—1(5)) — b(s, Tp—2(s))| ds < 0/0 O(|zn-1(s) — Tn—2(s)|) ds.
(7.30)

Since the function ¢(r) is concave, we have
o(r) < o(e) +¢'(e)(r —e) =e(1 +loge™ ")+ (r —e)loge™ = +rloge™!,

for every ¢ < 1. Using this in (7.30) gives

|zn(t) — zpq ()] < Clog(al)/o |zp_1(s) — xp_2(s)| ds + Cte.

Exercise 7.7. Use an induction argument to show that (7.30) implies, for any 0 < ¢ < T
and € € (0,1)

n—2
Ck 10g6_1 ktk Cn—ltn—l 10g6_1 n—1
|zn(t) =21 ()] < CT@Z ( o ) + (n<— ] ) SUPg<;<r|T1(t) —20]. (7.31)
prt ! !
As
I:L’l(t) — l’0| S Ct,
we have

C"T"(loge™ 1)1

(n—1)! ’
for any € > 0 and all n > 2, with a constant C' that is independent of ¢ > 0 or n. We may
now choose ¢ = exp(—n) and 7T sufficiently small so that 1 — CT > 1/2. This leads to

CnTnnn—l
(n—1)!"

|20 (t) — 2,1 (t)| < CTeexp(CTloge™") +

|20 (t) = 2o ()| < CT exp(—n/2) +
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The Stirling formula
n! ~ 27rn(ﬁ>

e
implies that if 7" is sufficiently small (independently of n), then

|2 (t) — T (t)] < ",

with a < 1. Thus, z,(t) converges uniformly to a limit z(¢). The uniformity of the convergence
implies that the limit satisfies the integral equation

t
z(t) = xo +/ b(s,x(s))ds. (7.32)
0
We also need to choose T so that |x(t) — xo| < dist(zg,dD). Taking
T < ||b|| ;& dist(zo, OD), (7.33)

would suffice. As b is continuous, we may differentiate (7.32) and obtain the desired ODE

dx(t)
dt

for all ¢ on the time interval 0 <t <T.

Step 2. Uniqueness of a local in time solution. Next, we show the uniqueness of
this local solution — here, the log-Lipchitz property will play a crucial role. We will prove a
little more general stability estimate than needed for the uniqueness, as we will need it later.
Let ¢ > 0 be a small number. Suppose that z(t) and y(t) are two different solutions to (7.29)
with the initial data satisfying 0 < |zo — yo| < o and set z(t) = |z(t) — y(t)|. Then, by the
log-Lipschitz assumption on b in (7.28), we have

A(02(1) = 5 2O = (2(t) — y(1)) - (alt). 1) — by(t, 1) < Co(o(=(1), (739

=b(t,z(t)), x(0)= o,

as well as

2(t)2(t) = %% 2O = (2(t) —y(t)) - (b(x(t),£) = bly(t, 1)) = =Cz(t)p(=(t)),  (7.35)

It follows that, as long as z(¢) > 0 (which is true for ¢ > 0 sufficiently small by the continuity
of z(t) and y(t)), we have

—Ch(2(1)) < () < Co(2(t)), 0 < 2(0) < o

In order to control z(t), define f,(¢) as the solution of

Jo= 2C¢(f0(t))’ fa(o) =0,

and ¢, (t) as the solution of

9o = =2C00(f5(1)), 9,(0) = —=.
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We claim that
go(t) < z(t) < fs(t), forallt>0. (7.36)

We will only show that z(t) < f,(t), with the other inequality proved similarly. This is true for
some initial time interval, simply because both z(t) and f,(t) are continuous and f,(0) > z(0).
Let t; > 0 be the smallest time such that z(t;) = f,(f1). At this time, by the definition of ¢y,
we would have

A(t) > fo(th). (7.37)

On the other hand, we would also have
At) — fo(tr) < Co(z(t) — 206(f,(t)) = —Co(2(t)) <0,
contradicting the definition of ¢;. Thus, no such ¢; exists and
2(t) < fo(t) for all ¢t > 0. (7.38)

The proof of the lower bound in (7.36) is similar.
Now, we need an estimate on f,(t). Let us show that for any ¢ > 0 fixed we have
lim f,(¢) = 0. .
lim (1) =0 (739

It suffices to consider the case where o is small and times are small enough so that f,(¢) < 1.

Then we have p
E 10g fa(t) = 20(1 - IOg fa(t))

Solving this differential equation leads to
1 —log f,(t) = (1 — log o)e 2",

or
fo(t) = 0P exp(1 — exp(—2C1)), (7.40)

whence (7.39) follows. If the initial conditions for z(t) and y(¢) are the same, then
0 < z(t) < fo(t) for every o > 0. (7.41)
Now, (7.39) and (7.41) imply that z(¢) = 0, hence the solution x(t) of (7.29) is unique.

Exercise 7.8. Identify the place in the uniqueness proof above where we have used the log-
Lipschitz condition on the function b(t,z); that is, where the proof would have failed, for
example, for ¢(r) = r?, with 3 € (0,1).

Step 3. Global in time existence. We now address the question of the global existence.
Having constructed a local solution until a time ¢, we can continue to extend our local solution
from ¢ to a time t + At, using the local in time existence we have just proved, since z(t) is
inside D. However, as (7.33) shows, the time step At¢ depends on the distance from xz(t)
to dD. Thus, in order to construct a global in time solution we need to control this distance.
Let us set

d(t) = dist(x(t), D),
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with d(0) = dy > 0 since 29 € D. Our goal is to get a lower bound on d(t). Note first that
since b € L, the trajectory x(t) is Lipschitz in time, and so is the function d(t). Thus, by
the Rademacher theorem, the derivative d(t) exists almost everywhere, and

d(t) = do + /t d(s) ds.

We will now estimate d(t) from below at any given time ¢ for which the local solution is
defined. Consider the set

S(t)={Pe€oD: |z(t)— P|=d(t)},
and, given x > 0, define
Se(t)={Q €0D: IP € S(t), |Q — P| <k}.

We can think of the set S, (t) as the points on 9D that are very close to the points at which the
distance between z(t) and 0D is realized. Therefore, we expect these points to be important
for the estimate of how the distance changes. Fix some small ¢ > 0, and take k. > 0
sufficiently small, so that if @ € S,_(t), then there exists P € S(t) such that

£

<
16| o

0 - a(t)
‘\@ ) (7:42)

Here, vp is the outside unit normal to 0D at the point P. Such . exists due to the smoothness
of the boundary 0D.

Exercise 7.9. Assume that the boundary 0D can be represented around the point P as
a graph 0D = (w,g(w)) with P = (0,0) and ¢(0) = 0. Assume that the function g(w) is
bounded in C? and find an explicit bound for £ which ensures that (7.42) holds.

Let us now proceed to estimate d(s) for times s slightly large than ¢. Consider first any
point @ € 0D \ S._(t). The set 9D \ S..(t) is compact, and dist(z(t),Q) > d(t) for every
point @ € D \ S,_(t). Therefore, there exists 7. > 0 such that

lz(t) — Q| > d+~., forall Qe dD\ S (t). (7.43)
We deduce that
|z(s)—Q| > |z(t)—Q|—|z(t)—x(s)| > d(t)+~v—||b|| L= (s—t), for all s > ¢ and Q € ID \ S,_(t).

Thus, if
0<s—t<|bl,

then
|z(s) — Q| > d(t) for any Q € 9D \ S,_(t). (7.44)

Next, suppose that @ € S,_(t). We have

z(s) — Q =xz(t) + /ts b(r,z(r)) dr — Q. (7.45)



Denote

-0
jz(t) = QI
and note that (7.42) says that
o= vpl < — (7.46)
16 o=

Going back to (7.45), we obtain

lz(s)—Q| > (z(s)—Q)-e= |x(t)—Q|+/: b(x(r),r)dr-e > d(t)—i—/S b(x(r),r)dr-e. (7.47)

t

We also recall that by the last assumption in (7.28) we have
b(P,t)-vp =0. (7.48)

Next, using (7.46) and (7.48), we get
/tsb(a:(r),r)dr-e:/tsb(:v(r),r)-(e—yp)dr+/ts(b(:x(r),r)—b(P,r))-ypdr
>WW()WW@ﬂ%Ww—Wm@4WW$ (7.49)

/ S(|a(r) = P|)dr — e(s — £) > —Co(2d(1))(s — ) — (s — 1).

In the last step we used that |z(r) — P| < 2d(t) if r — ¢ is small enough, depending on d(t)
and [|b||. Note also that

¢(2d(t)) < 2¢(d(t))
by concavity. To summarize (7.44), (7.47), and (7.49), we have

d(s) > d(t) — Co(d(t))(s —t) — e(s — ).

for s sufficiently close to t. Therefore, since € > 0 is arbitrary, we get

d(t) > —Ce(d(t)),

for every t for which the derivative exists. Solving this differential inequality, similarly
o (7.40), we obtain

d(t) > dSXp(Ct) exp(l — exp(Ct)). (7.50)
Therefore, the local solution can be continued indefinitely in time, and z(t) will never arrive

Step 4. Starting point on the boundary. It remains to consider the case of o € 0D.
In this situation, take z,, € D, n =1,..., such that

lim z,, = zq,
n—o0

and consider the corresponding solutions z,(t). Due to the estimates (7.38) and (7.40), the
sequence 1, (t) is Cauchy in C([0, T, R?) for any T' < co. Therefore it has a limit z(#) in this
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space, and this limit satisfies the integral form (7.32). We can then differentiate it in time,
arriving at (7.29).

Finally, we claim that x(t) € 9D for all times if g € 9D. Indeed, suppose there exists g
such that z(ty) ¢ 0D. Let us invert time and solve the characteristic backwards:

dy _

U~ —blto— 5,(5)). 9(0) = alto). (7.5)

Then y(s) and z(ty — s) satisfy the same differential equation with log-Lipschitz coefficient,
so by our previous result on uniqueness, we know that y(s) = z(ty — s). But this means
that y(s) starts at x(tg) € D and arrives at &y € 9D in a finite time. This contradicts our
earlier estimates that apply in the same fashion to the backwards equation (7.51). O

7.3.2 The Holder regularity of the flow map

We will now obtain a uniform continuity bound on the trajectories ®;(z), which are the
solutions to

d
Ecbt(x) = b(P4(z),1), Po(z) =z, (7.52)

when the flow b(z,t) is only log-Lipschitz in xz. To contrast our set up with more regular
situation, let us first recall the following result.

Exercise 7.10. Let b(t, ) be a Lipschitz function in x: there exists g(t) € L{ (0, 00) so that

loc
b(x,t) — b(y,t)| < g(t)|z —yl, for all t > 0 and z,y € R% (7.53)

Show that the solution to (7.52) satisfies a Lipschitz bound

)~ @] < fr = e { [ ot} (754

In contrast to (7.54), we have the following Holder estimate for the flow map when the
velocity is only log-Lipschitz.

Lemma 7.11. Suppose that D C R? is a smooth bounded domain, and the map ®(x) is
generated by a log-Lipschitz vector field b(t,x) satisfying assumptions of Lemma 7.6. Then,
for every x,y € D with |z — y| < 1/2, and while |P(z) — Py(y)| < 1/2, we have

ECt e—Ct
[z —yl® <[Pufx) = Du(y)| <[z —yl* . (7.55)
The constant C' in (7.55) only depends on the constant in the log-Lipschitz bound for b.

Of course, one can write the corresponding bounds for all z,y € D (recall that D is
bounded, so |x — y| < C(D)). We restrict to the < 1/2 range to simplify the argument, as
the bound looks different at large distances. Also note that the bound (7.55) similarly applies
to @, (z).

This is a rather remarkable estimate: we can show that ®,(x) is Hélder continuous in space
for any ¢ > 0, but the Holder exponent deteriorates in time. The loss of regularity compared
to the result for the Lipschitz velocities in Exercise 7.10 is pretty dramatic: not only the
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solution is no longer Lipschitz, it cannot even keep a constant in time Holder exponent. This
is a reflection of the complexity of dynamics: the exponent in the upper bound in (7.55)
tends to zero as t — 400 because two trajectories that start very close at t = 0 may diverge
very far at large times — much further than for Lipschitz velocities. On the other hand, the
exponent in the lower bound in (7.55) grows as t — +00 because even if at the time ¢t = 0 the
starting points x and y are relatively far apart, they can be extremely close at large times.
This deterioration of the estimates is not an artefact of the proof — the particle trajectories
corresponding to true solutions of the Euler equations can get extremely close at large times.

Proof. The result is of course closely related to the estimates (7.38) and (7.40). Let us
fix z and y, and set F(t) = |®y(z) — ®;(y)|. We compute

d

EFQ(t)' = 2[(@u(x) — Pu(y)) - (0(Pe(2), 1) — b(Pe(y), 1)) < 2CF(1)p(F (1)),

with the constant C' > 0 that depends on the domain D and |jwg||z~. Thus
|F'(t)] < CF(t)max(1,1 —log F(t)).
Recall that we only need to consider the case when F'(¢) < 1/2. Then we have
[F'(t)] < CP(t)log F(t) ",

which leads to
[log F(0)]e“* < log F(t) < [log F(0)]e™“".

The estimate (7.55) follows immediately from exponentiating this inequality and taking into
account that F'(0) = |z —y|. O

7.4 The approximation scheme

Let us return to our strategy of constructing a triple (w,u,®;(x)) solving (7.11), (7.12)
and (7.15), with the initial vorticity wy € L. We define an iterative sequence of approxima-
tions

SOL) = (1, B (2), W) =, (7.56)
w(t.) = [ Kol ey (7.57)
W' (t,x) = wo((®F) ™' (2)), (7.58)
with w®(t,z) = wo(x) € L™ for all t > 0. Note that since the velocities u™ defined by (7.57)

satisfy the no flow boundary conditions at 9D, and by Corollary 7.5 and Lemma 7.6, the
solutions to the trajectory equation (7.56) exist and are unique.

Moreover, the trajectory maps ®}(z) are injective due to the uniqueness of the backward
trajectories and surjective due to the global existence of these backward trajectories. There-
fore, the inverse maps (®7)~!(z) in (7.58) are well-defined. Both the direct and the inverse
trajectory maps are also continuous in x for each t on D due to the estimates (7.38) and (7.40),

91



and map D to D and 9D to 0D. In fact, it follows from (7.40) that these maps also satisfy
the Holder regularity bounds, which we will spell out precisely in a moment.
Intuitively, each successive approximation involves solving a linear problem

wy + (u" - V)w" =0, (7.59)

with the flow
Mt ) = / Kp (e, )™ (t,y) dy, (7.60)
D

computed from the previous iteration. Note that each w™ € L*, with
lw" ()| < Jlwo] e (7.61)

However, one can not take (7.59) too literally, since we only know that wy is in L*°, and
there is no reason to expect that the iterates w™ are smooth, which is needed to make sense
of (7.59) pointwise. Thus, we resort to the approximation scheme (7.56)-(7.58) as the weak
formulation for (7.59)-(7.60).

The next step is to obtain uniform bounds on the solutions to the approximation scheme
that will allow us to pass to the limit n — oo and get a solution to (7.11)-(7.15).

7.4.1 The flow map corresponding to divergence free log-Lipschitz velocity is
measure preserving

It will be useful for us to know that the trajectory maps corresponding to log-Lipschitz vector
fields are measure preserving. We have discussed that if u is smooth and V - u = 0, then the
associated trajectories map is measure preserving. However, this argument does not apply
directly when the vector field u(¢, x) is just log-Lipschitz in the spatial variable. Taking the
derivatives of the flow map to study the Jacobian is not straightforward. We will instead use
an approximation argument to establish this property.

Lemma 7.12. Let D € RY and b(t,z) satisfy the assumptions of Lemma 7.6. Assume, in
addition, that V -b = 0 in the distributional sense. Then, the trajectory map ®,(x) defined by
the vector field b(t,x) according to (7.11) is measure preserving on D.

Proof. From the proof of Lemma 7.6 and Lemma 7.11, we already know that ®;(x)
is a Holder continuous bijection on D. It suffices to check the preservation of measure for
an arbitrary d-dimensional interval lying in D, at a positive distance from 9D. Fix such
interval I and an arbitrary time 7" > 0. We will use a smooth incompressible flow that
approximates b(t, ) in a neighborhood of ®,(I). It is constructed as follows. According to
the estimate (7.50), there exists x > 0 such that

dist(®y(1),0D) > Kk for all 0 <t < T.

Take any 0 < k/2, and set
Is :={x € D|dist(z,I) <d}.

Further decreasing ¢ if necessary, we may ensure that

dist(®;(15),0D) > k/2 for all 0 <t < T.
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Let n(x) be a standard mollifier:

n € CF(RY), n(xz) = 0if [z] > 1, and / n(z)dz = 1.
Rd
Take any € < k/4, and define
be = nG * ba

with n.(z) = n(z/e). The flow b.(t,x) is defined for all x such that dist(x,0D) < e. In
addition, it is smooth, and it is easy to check that b.(¢,x) is divergence free. Let us denote
the trajectory map corresponding to b.(t,z) by ®§(z). We have

|@1(z) — ()] < /0(b(&@s(ﬁ))—5(8@2(93)))618 + /O(b(87¢§($)))—bs(s,q)é(x)))ds

<C / O(|Pa(x) — (2)]) + Colet. (7.62)

Here we used the log-Lipschitz bound on b to estimate both terms. We have assumed above
that ®§(z) does not come within distance € to the boundary 0D, and we now verify that this
indeed does not happen if we choose € to be small enough. One can see from (7.62) that

| @1 (2) — @(x)] < g(1),

where ¢(t) satisfies
g'(t) = Co(g(t)) + Co(e), g(0)=0.

Exercise 7.13. Let h(t) be the solution of
W(t) = Co(h(t), h(0) = Co(e)T.
Show that g(t) < h(t), for 0 <t <T.
We can find h(t) explicitly (at least while A(t) < 1):
h(t) = (CHET)™ exp(1 — exp(=CH)).
Therefore, there exists § = S(T") > 0 such that
|y (2) — ()| < C° (7.63)
for all 0 <t <T. We can then choose € so that, in particular, we have
|Dy(x) — P(z)| < k/dforall0 <t <T,

and so ®f(x) stays at least distance ¢ away from 0D for all € I5 during this time interval.
Next, take a cut-off function f € C§°(15) such that

0< f(z) <1, IVf(@)||re <C§ ' and f(z)=1ifx €1,
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Observe that
@ﬂmzém@mmmgémwmmsl}mmwwz@ﬂML (7.64)

and

1] =1(25)~ (D] < /Df(@i(ﬂﬁ))dw < (@) (Ls)] = |1s]- (7.65)

We used in (7.65) the fact that (®¢)~! is measure preserving since this map is generated by
a smooth incompressible velocity field. On the other hand, for 0 < ¢ < T we have

66
zﬁ@mwm—éﬂ@mestWW|sw Bu(z) - 0(a)] < LD

2€I5,0<t<T )

(7.66)
We used (7.63) in the last step. Taking d to zero, and simultaneously taking ¢ = §2/% to zero
(so that the right hand side of (7.66) goes to zero too), and using (7.64), (7.65) and (7.66),
we conclude that

[ (D] < |11,

for every interval I C D at a positive distance from 0D, and any 0 < t < T It follows that
the same is true for any open set Q C D : |®; 1(Q)| < |Q|. An analogous argument using

/Df<q)t1(l'))d$, and /Df((cbg)l(%))dx,

leads to the inequality |®;(Q)| < |Q|. Since ®;, ®;* are continuous and bijective, these two
inequalities together imply that these maps are measure preserving. O

7.4.2 The time regularity of velocities

In order to be able to use Lemma 7.6 in the analysis of the approximation scheme, we need
to establish the necessary bounds on the velocities u™.

The space regularity estimates on u™ can be obtained using (7.61) and Corollary 7.5: it
follows that all u"(¢,z) are uniformly bounded and log-Lipschitz:

u"(t, ) —u(t,2")] < C(D)g(|x — 2')). (7.67)

In the direction of time continuity, we only need continuity but stronger control is not
hard to get.

Lemma 7.14. The velocities u™ are uniformly log-Lipschitz in time. Namely,
|u™ (2, t2) — u"(z,t1)| < Co(|t2 — 1), (7.68)
with a constant C' independent of n, x, and t; 5.

Proof. Let us take to > t; > 0. Clearly we need to focus on the case of |ty —t;| < 1, since
otherwise the estimate follows from uniform L> bound on u". Now let us denote by ®} . (z)
the flow map generated by u™ from time ¢; to to, that is,

to
o} 1, (2) =2 —|—/ u" (@7 (2),1)dt,

t1
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so that
7, (y) = 04 4, (P (), (7.69)
and
i () = P4 (2517 (1)) (7.70)
It follows that the map @7 , is also measure-preserving.
We now write, first,

u”(aj,tl):/DKD(:E,y)w"_l(tl,y) dy:/DKD(x,z)wo(@g—l)_l(z))dz, (7.71)

n—1

and, second, using the measure-preserving property of the map ®; .,

u (o, 1) = /D K (e, g™ (ta, ) dy = /D Kp(z, y)wo((B2 ) (4)) dy
= [ Koo 013 nl(@) 18 (2) d: (7.72)

_ /D K (e, B2 () (B171) 7 (2)) de.

This gives
u(z,ty) —u(z,t) = / (Kp(z, @} ,,(2)) — Kp(z, 2)) wo((P71)71(2)) d=. (7.73)
D
Note that for all z € D we have
|®F, 1, (2) — 2| <sup,[[u"]| ety — 1] < C(D)||lwollzos|t2 — t]. (7.74)
Let us set
r = 2C(D)||lwol| L |ta — t1]. (7.75)

Using again the measure-preserving property of the map ®7 , the expression in the right side
of (7.73) can be bounded by

d O, (2) — 2z
(2, 1) — u™ (81| < C(D)||wo e (/ z +/ Mdz)
- (z)ND |z — 2| B (z)°nD |z — 2|
C(D)||lwol| L (r + [[u™|| L]tz — t1|logr™")
C(D, [Jwol|z=)o([t2 — t1]).

<
<

(7.76)
Thus, u(t, x) is log-Lipschitz in time. O

Convergence of the approximation scheme

Let us now investigate the convergence of the sequence (w”,u™, ®}). We will first show ex-
istence of the Yudovich solution on a sufficiently small time interval [—7',7]. We can then
iterate the arguments below to get the global solution, since the time step 1" will only depend
on |lwol|z~ and D.

The first key step is to prove convergence of the flow ®}(z) in the C([-T,T], L*(D))
topology.
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Lemma 7.15. There exists T > 0 and ®,(x) € C([-T,T), L*(D)) such that

|9} — @ello-r.1,L1(D)) — O
as n — 00.

Proof. Let us focus on ¢ > 0; the other alternative is handled by the same argument.
Observe that

19 = 05 ooy < [ [ Wi @2 e, 0 @l dds (37
+ /Ot /D [u™ (s, @71 (x)) — u" (s, @ ()| dads = I7M(t) + I3(t). (7.78)
By Corollary 7.5, we have that
10 < Ol [ [ o(200) - 217
Since ¢ is concave on R™, we can apply Jensen’s inequality to obtain
i [ et e @hae <o (5 [ et - e @)

Let us define 1
nt———CD”—(I)"_l .
g ( ) |D| || t t ||L1(D)

Then .
13(t) < O(D, wollz) / o(0(s)) ds. (7.79)

Since ®7! is a measure preserving mapping, we have

IX(t) = /t/ |u"(s, z) —u"" (s, 2)| dzds.
0 D
Now
u(s, 2) = /D Kp(z, ylo(y,s) dy = /D Ko (2 ywo((@7) 1) dy = /D Kp(z, 021 (y)Jwoly) dy'
Therefore,
[ s = s ds < el [ [ 1Kl @27 0) = Ko, 02720 dud
< C(D)lfuoll /D 6102 (y) — D2 2(y)]) d=.
Applying Jensen’s inequality again, we obtain
I3 (t) < C(D) el 1< / t /D B(1971 () — B22(y)]) dzds < C(D, |lwo | 1) / $(oan(s)) ds.
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Combining this last inequality with (7.77) and (7.79), we arrive at

ou(t) < O(D, [l ) / (6(0n(5)) + &(0n_1(5)). (7.80)

Define
pn(t) = [ sup,>non(t).
Then by (7.80), for all n > N,

0u(t) < C(D, |Jwol| =) / (6o (s)) ds

and hence

ox(t) < C(D, Jwoll ) / (Donr(s)) ds.

We now arrived at an inequality similar to (10.13) and, similarly to the argument in the proof
of Lemma 7.6, we can show that o, (t) < p,(t) < o for some 1 > a > 0 for all t € [0,7T] if
T > 0 is sufficiently small. This shows that ®(x) is a Cauchy sequence in C([0, 7], L*(D)),
finishing the proof of the lemma. O

We next upgrade the convergence of ®(z) to ®.(z).

Lemma 7.16. The sequence ®}(x) converges to ®y(x) uniformly on C([=T,T] x D) provided
that T > 0 is chosen sufficiently small. Moreover, the limiting map ®,(x) € C*T)([~T, T|x D)
for some a(T) > 0 and is measure preserving.

Proof. As before, we focus on times t > 0. The value of T" will be the same as in the
previous lemma. Observe that the estimate (7.55) implies that for every T' > 0, we have

|97 (2) | com o.r1xpy < C(D, [JwollLee), (7.81)

for some «(T") > 0, and with the norm bounded uniformly in n.

First, by the Arzela-Ascoli theorem, we can find a subsequence n; such that @, () conver-
gences to ®;(x) uniformly on [0, T] x D. This implies that ®;(x) is continuous, and moreover a
simple argument shows that it inherits the Holder bound (7.81). Notice that for every smooth
function f, we have

[ty = tin [ s@ @y = [ s (782

The last step follows since ®,”(x) are measure preserving, while the first step is not hard to
establish. Using (7.82), it is not hard to show that |®;(I)| = |I| for every rectangle I lying in
D, and this implies that ®;(x) is measure preserving.

Exercise 7.17. Fill all the gaps in the previous paragraph.

Now suppose, on the contrary, that the uniform convergence of ®j(z) to ®(x) does not
hold. Then we can find € > 0 and the sequences ny — oo, t, € [—T,T] and x; € D such that
| D (2r) — Py, (21)] > €. By (7.81) and the fact that ®,(x) satisfies the same bound, we can
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find 7 > 0 independent of k such that for all [z — x| < r, we have |®p*(z) — @y, (7)| > €/2.
But this contradicts the C([0,T], L*(D)) convergence proved in Lemma 7.15. O

One can ask why do we need to worry about convergence of the whole sequence @} (z)
when we have convergence over a subsequence basically for free? Unfortunately, convergence
over a subsequence does not work well with the oterative scheme. Even if we have convergence
for ®* (), we know nothing about convergence of ®*~'(x) but we would need exactly that
to establish the convergence of velocities that we address next.

The lower bound in (7.55) which applies to ®} uniformly is inherited by ®;(z) and im-
plies that ®;(z) is invertible. As ®;' satisfies the same estimate (7.55), it also belongs
to C*M)([0,T] x D). We may then define the corresponding vorticity

w(t, ) = wo(®; ' (2)),
and the fluid velocity
uta) = [ Kole,p)tt.v)dy
D
Lemma 7.18. We have |u(t,z) — u™(t,x)| — 0, as n — oo, uniformly in [T, T] x D.

Proof. Note that

lu(t, z) —u™(t,z)| = /D(KD(:U, Dy(2)) — Kp(z, D} (2))) wo(2) dz| . (7.83)

Given € > 0, choose N so that |®(z) — ®?(z)| < 6, for all n > N and for all x € D, t € [0,T],
with 6 > 0 to be determined later. Pulling ||wp||r=~ out of the integral in (7.83) and setting
z = ®;(p) we have

Ju(t, &) — u"(t, 2)| < [jwol| > /D |Kp(z,p) — Kp(z,y(p))| dp. (7.84)

Note that the map y(p) = ®" o ®; '(p) is measure preserving, and

ly(p) — pl = |2}(®; " (p)) — (D7 ' (p))] < 0,

for every p. As usual, we split the integral in (10.22) into two regions: in the first one we have

d
/ Kp(e.p) — Kp(e,y(p)|dp < 20(D) / P < 90(D)s
Bss(z)ND Bss(z) |z — p|
while in the second

/ Kp(e.p) — Kple,y(p)) dp < C(D)5 / VEp(x, q(p))] dp

Bss(z)eND Bjss(z)°ND

< O(D)s / d—p2 < O(D)slogs™'.  (7.85)
Bs(z)e [T — p|

Here, ¢(p) is a point on a curve of length < ¢ that connects p and y(p). If the interval
connecting these points lies in D then this interval can be used as this curve. If not, one can
use an argument similar to that in the proof of Lemma 7.3. Thus choosing ¢ sufficiently small
we can make sure that the difference of the velocities does not exceed €. O
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Exercise 7.19. Fill in all the details in the last step in the proof of the Lemma. Alternatively,
you may first show that w™ converges to w in C([—T,T], LP(D)) for all p € [1,00), and use
this and Holder inequality to prove Lemma 7.18.

We are now ready to show that

d
%Qt( x) = u(t, Py(x)).

Indeed, we have
t
oY (z) =z + / u" (s, ®7(x)) ds,
0

and, taking n — oo, using Lemma 7.18 and the definition of ®;(x), we obtain

Oy(x) =x +/0 u(s, ®s(z)) ds.

Thus, the limit triple (w(t, ), u(t, z), ®;(x)) satisfies the Euler equations in our generalized
sense, completing the proof of the existence of solutions.

7.5 Existence and uniqueness of the solutions

Let us now finally state the main result on the existence and uniqueness of solutions of the two-
dimensional Euler equations with wg € L. The existence part of this theorem summarizes
what has been proved above using the approximation scheme.

Theorem 7.20. Fiz any wy € L>(D). There exists a unique triple (w(t,x), u(t,z), Pi(z))
such that for every T' > 0 the vorticity w € L*>([0,T], L>°(D)) and is weak-x continuous in
time in L, the fluid velocity u(t, x) is uniformly bounded and log-Lipschitz in x and t, and
o, € CT ([O T] x D) is a measure preserving, invertible mapping of D, satisfying

ddy(z) B
7 = u(t, ®(z)), Po(x) =z, (7.86)
w(t = wo(P :E))

t,x / Kp(x ,y) dy.

Here o(T') > 0 and only depends on ||wpl|ze-.

Proof of Theorem 7.20. We have already established existence and regularity estimates
with an exception of weak-* continuity. This property is key as it gives meaning to the initial
value problem: w(t, z) converges to wp(x) in L™ as t — 0 in the weak-* sense, that is for any
test function n € L*(D) we have

/D w(t, 2)(z)dz = /D wol(@;7 (2))n(x)dz = /D wo(@)n(@i(2))dz — /D wol@)n(z)de, (7.87)
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as t — 0. Indeed, as w is uniformly bounded in L*>°(D), it suffices to check (10.17) for smooth
functions 7, for which we have

/D [(®(x)) = n()|dz < [[Vi]] L= /D |@(2) — xldr < C(D)[[Vn] oo [[ul| <t

A similar argument works at any time ¢ > 0. Note also that while we only proved existence of
solutions on a small interval [—T,T1], the solution can be extended globally by iterating the
construction as the time step only depends on D and ||wo|| .

It remains only to prove the uniqueness. Suppose that there are two solution triples (w', u!, ®})
and (w?, u?, ®?) satisfying the properties described in Theorem 7.20, and set

n(t /@ ()] da.
~ D]
Let us write

|@@%@%ﬂs£m%@mw—w@@@mw+Am%@wm—ﬁ@ﬁ@mw

(7.88)
By Corollary 7.5, the first integral in the right side of (7.88) can be bounded by
t
Clllios [ 6(1}() = 83(a)]) ds.
For the second integral in (7.88), consider the difference
(5, 83(a) = (0, 830) = [ Ko@) sy = [ Ko@), ) (s, dy
D

= [ (Ko@), 9100)) ~ Ko @2(0), 920) cn(s)

where we used the vorticity evolution formula in (7.86). Averaging (7.88) in x, we now obtain

o < BB oy [ ol - w1 ds

+m/ ds/ |w0(y)]/ |Kp(z, ®(y)) — Kp(z, ®2(y))| dzdy
=ew ”%Mf/%/¢@ o)) - (7.8

We used Lemma 7.3 in the last step. As the function ¢ is concave, we may use Jensen’s
inequality to exchange ¢ and averaging in the last expression in (10.56):

mwsammwmA¢W@mS

In addition, we have 7(0) = 0. An argument very similar to the proof of uniqueness in
Lemma 7.6 (based on the log-Lipschitz property of the function ¢) can be now used to prove
that n(t) =0 for all ¢ > 0.

Exercise 7.21. Work out the details of this argument.
This completes the proof of the theorem. O
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Regularity of the solutions for regular initial data

So far, we have only assumed that wy € L. Of course, the Yudovich construction also applies
if the initial condition wy possesses additional regularity. In that case, the solution w(t,z)
inherits this extra regularity. This is expressed by the following theorem.

Theorem 7.22. Suppose that wy € C¥(D), k > 1. Then the solution described in Theo-
rem 7.20, satisfies, in addition, the following regqularity properties, for each t > 0:

w(t) € C¥(D), ®y(z) € C**D(D), andu € C**(D),
for all B < 1. In addition, the kth order derivatives of u are log-Lipschitz.

The regularity of the flow u(¢, x) is similar in spirit to that in Theorem 7.20 — there, L*°
initial data for vorticity led to log-Lipschitz u(t, ). Here, C* initial condition wp(z) leads to
a flow u(t,z) which has a log Lipschitz derivative of the order k. The first proof of a result
similar to Theorem 7.22 goes back to the work of Wolibner and of Hélder in the early 1930s.
We will provide a detailed argument for the case of k = 1, larger values of k will be left as
an exercise for the reader. We will need the following elliptic regularity result of the kind we
have seen many times in Chapter ?77.

Theorem 7.23. Suppose that D is a domain in R? with smooth boundary, and let ¥ be the
solution of the Dirichlet problem

Ifw e C*D), a >0, then 1 € C**(D), and
10l cre < Cler, D)|[w]lce

This result was originally proved by Kellogg in 1931. Schauder later established a similar
bound for more general elliptic operators. Such estimates are commonly called the Schauder
estimates. We have not quite proved this particular estimate in Chapter ?7? since it applies to
a bounded domain. The reader should either treat it as a refresher exercise on the methods on
Chapter ??, or consult [?, ?] for the proof. We will use this estimate for the stream function

Y(t, ) = (=Ap) tw, u(t,x) =Vt o).

We have already proved that if wy € L®(D) then ®;'(z) € C*®(D) for all t > 0,
with a(t) = e~“". Since
w(t, ) = wo(®; ' (2)),

if in addition we know that wy € C*(D), we then automatically have w(t, z) € C*® (D) so that
the vorticity is Holder continuous. By Theorem 7.23, we deduce that the flow u(¢, x) has a
Holder continuous derivative: u(t,z) € CY*® (D). However, this a priori Hélder exponent o(t)
decreases as t grows, while we are looking to prove that u(t,z) € C*#(D), for all # € (0, 1),
hence this a priori information is not sufficient.
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A simple calculation starting with the trajectories equation leads to
d
Z|®u(@) = @u(y)* < 2A[Vult, ) [[1e]@i(z) = Du(y)[, (7.90)

where we now know that the derivatives of u are bounded for all ¢, even though their size
may grow with time. Integrating (7.90) in time and using the initial condition

|[Po(x) — Po(y)| = & —yl,

we obtain

e { = [ 19uts o s} < PN <oy ([t feas). o

This inequality will be useful for us later. For now, we observe that it implies that ®,(x)
is Lipschitz for every t > 0. We would like to show that, in fact, ®;(x) € CY*®(D) for
all t > 0. For this purpose we need a couple of technical lemmas. In what follows, we adopt
the summation convention: we sum over repeated indexes.

Lemma 7.24. There exists a set S C D of full measure so that for all x € S we have

0;®0F (x) = §; + /t Ou* (s, 4(2))0;®L (x) ds, (7.92)

for allt > 0.

Proof. By the Rademacher theorem (see, e.g. [?]), it follows from (7.91) that ®,(z) is
differentiable in z a.e. in D, for each t fixed. Next, note that by the Fubini theorem, it follows
that for a.e. x, ®;(z) is differentiable in z for a.e. t. We let S be the set of such z.

Let now x € 9, set

y =1z +ejAzx,

where e; is a unit vector in jth direction, and consider the finite differences

il (y)A_;Dt (z) _ jk+/0 u (s,CDS(y))A—mu (5, P4()) is. (7.93)

We may write, explicitly listing the coordinates

uf(s, Du(y)) — ut(s, s(x)) _ ul(s, Di(y), Pi(y)) — uf(s, Pi(x), PLy)) Di(y) — Tu(x)
Ax Ol(y) — OL(x) Ax
ut (s, (), i(y)) — ut(s, By(w), Pi(z)) Pi(y) — Pi(x)

3 (y) — (=) Az

Since u € CY*(D), it is not difficult to show, using the mean value theorem, that the
first factors in the two products in the right side converge, as Ax — 0, uniformly in z,
to Quf (s, ®,(x)), | = 1,2 respectively. On the other hand, the ratios

dl(y) — ®i(x)
Az
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are controlled in L* by the Lipschitz estimate (7.91). Moreover, for z € S, the ratio converges
to 0;®!(x) for a.e. s € [0,¢]. By the Lebesgue dominated convergence theorem, we have the
convergence of the integral in (7.93) to the integral in (7.92). O

Now, for x,y € S we find from (7.92) that

0,0; Py (1) = Oyu® (¢, ©4(2))0; P} ()

for all ¢, and similarly for y. Without loss of generality, we may confine our considerations
to z, y such that |z — y| < 1. Consider the expression

0,(0;%; () — 9; 0 (y)) = (O (t, P()) — O (¢, Di(y)))0; @4 ()
+ 0t (t, 2u(y) (9,04 () — 0 P1(y))-

It follows that
04|0;@F () — 0,05 ()] < 1]l Lipl| V| oo | () — ()™ + (| V|| 1< |0; @} () — ;P4 ()]

where we denote by ||| i, the Lipschitz bound we have on ®,(z) in x for a given ¢. Let us

denote
P(t) =) |0;®f(x) — 0, (y)].
k7j

Then we get _
F(t) < | Vul )l F () + |z =yl @] 23, | Vurll oo -

This inequality holds for every ¢ > 0 with the corresponding value of a(t). Fix an arbitrary
time interval [0,7]. By applying the Gronwall inequality, we conclude that for all z,y € S
and all ¢ € [0,7] we have

0,9 () = 0,98 ()| < C(llwoller, Tz = y|*™. (7.94)

Note that the dependence of the constant in (7.94) on 7" can be pretty complex — it is controlled
by the size of norms that we showed to be finite for every time but never traced their growth.
We will obtain a more clear cut, quantitative bound on the possible growth later.

Now we need one more elementary lemma.

Lemma 7.25. Suppose that f : D C R* — R is Lipschitz. Suppose there exists a set of full
measure S such that V f(x) exists for x € S, and moreover for every x,y € S we have

V(@) =Vl <Cle -yl (7.95)
for some fized constant C and 0 < v < 1. Then f € C*7(D).

Proof. Since S is full measure, we can extend V[ by continuity to a function g =
(91, ..,9q) defined on all D. Namely, we set g(z) = Vf(z)if z € S. If x ¢ S, then we take
any sequence z, € S — x, and define g(x) = lim,,_,o V f(x,). Note that the sequence V f(z,)
is Cauchy due to (7.95), so the limit is well-defined. It is also straightforward to check that
the definition is unambiguous (different sequences in S lead to the same limit), and that the
resulting function g € C7(D). It remains to show that in fact f is everywhere differentiable

and Vf(x) = g(z).
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Without loss of generality, let us consider 0 f. Let © = (x1,%) € D, where & = (29, ..., 2q);
the case © € 0D is similar. Given xy, let us denote the set of & such that (z1,%) € D by
F. Suppose first that Z is such that V f(y;,Z) exists for a.e. y; such that (y;,z) € D. We
know that a.e. = € F'is like that, and we denote this set by G. We also know that if * € G,
then Vf(y1,Z) = g(y1,7) for those a.e. y; where it exists. Then for every (y1,Z) € D and
sufficiently close to (z1, %), we have

f(yl, ) .%'1, / 81 Zl, le f(l’l, ) /ylgl(zl,i)dzl.

1

But this implies that 0y f(z1, ) exists and is equal to g(z1, Z). Assume now that & belongs to
the exceptional measure zero set F'\ G where V f(y;, Z) fails to exist for a set of y; of positive
measure. But then we can find z,, € G such that z,, = ¥ as n — oo. For each z,,, we have

F(r, 8n) = flar, Ba) + / (o1, 80) don

1

for all y; close enough to x;. Passing to the limit in this equality, we find

fy,2) = f(w1,2) + /yl g1(21, ) dz.

1
This implies that 0y f(x1, Z) exists and is equal to g;(xy,Z) in this case, too. O
Exercise 7.26. Work out the details of the above argument in the case of (z1,%) € 9D.
We conclude that the following lemma holds.

Lemma 7.27. For every t > 0, the function 9;0F(z) belongs to C*®(D) and (7.92) holds
for all x,t.

Now, the proof of Theorem 7.22 in the case k = 1 is straightforward.
Proof. Indeed, since ®;(x) is measure preserving, we have

det V(I)t = 17

and then the derivatives of the inverse map ®, ! () in x satisfy the bounds analogous to those
of ®;. Then, Lemma 7.27 implies immediately that

w(t, ) = wo(P; ()
is C1(D) for all times. O

Exercise 7.28. Carry out the analogous computations for k£ > 1, proving Theorem 7.22 in
this case.
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8 Vortex lines and geometric conditions for blow-up

The vorticity growth equation

Here, we investigate how vorticity alignment in the regions of high vorticity can prevent blow-
up in the Navier-Stokes and Euler equations. First, we obtain an equation for the magnitude
of vorticity |w| that shows that it is plausible that the vorticity alignment in the regions of
high vorticity may prevent the growth of vorticity. Recall that the vorticity of the solutions
of the Navier-Stokes equations satisfies the evolution equation

wi+u-Vw—vAw =w- Vu (8.1)
Multiplying by 2w, we obtain
Oi(|w?) +u - V(|w?) — vAlw|* 4+ 2v|Vw|? = 2(w - Vu) - w. (8.2)
The right side can be written as
2w Vi) - w = 20y (Oyui)eoy = 2(Sw - w) = 2()|wl’,

with

o(x) = (S()ela) €@, &) = 0 (33)

and
S(z) = %(Vu - (Va)). (8.4)

When v = 0 we get a particularly simple form of the vortex stretching balance for the Euler
equations:

O|lw| +u - V]w| = a(t, z)|w|. (8.5)
Thus, the vorticity growth may only appear from a(x) large. Our next task is to express a(x)
in terms of the vorticity alignment. We start with the Biot-Savart law

1 y
- — | L dy. 8.6
u(@) = L TE w(r +y)dy (8.6)
Let us recall that
Oul®) o [ K ()05t ( + 1) d (8.7)
al‘j _a—>0 ‘y|25 e y o y y .
~ _lim Ko ()wm( + y) Zdy —lim [ [0;Kim(y)|wm (@ + y)dy = Ayj + By,
=0 Jly|=2 lyl " 0 e
The term Aj; can be simplified as
Ay = —lim K (y)wm (z + y)ﬂdy = —lim L %[y X w(x + y)]k&dy
e=0 ly|=¢ |y‘ e=0 47 ly|=¢ ‘y| ’y|
lim — Ll xw(eten)iZetds = —— [ (5 x w(a)]izd
= — 111m — —|EZ wlx EZ —&az = —— VA wlx zZ:az
=041 Ji, 12 €3]2)3 g |z A J 1= m
et | (2250 = — 0 (1) = — metn(®) (8.8)
= ——€Lmn Zmwn(X)z2:dz = — Wn(X)0mi = —=€pinwn (), .
A " 7 3 R
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and B can be written as

3€krm

By =t [ [20mmy,
o=t ) Ll aaly

e—0 |y‘>5

]wm(x + y)dy.

Multiplying (8.7) by €;;% and summing over j, k, leads now to an integral equation for the
vorticity:

1
WZ(IE) = EijkajUk = eijkAkj + EijkBkj = _geijkekjnwn (89)
. €krm €kmyj
e wize 2 Laryp Y Tyl (@ +v)dy

The first term above can be re-written as
—€ijk€kinWn = €ijk€njkWn = Zwi.
In the second term, we use the identities
€ijkC€hkrm¥iYrWm = €kij€krmY;YrWm = [5ir5jm - 5im5jr]yjyrwm = yz<y . w) - |y|2wi;

and
€ijk€hmjWm = €kijChmjWm = 2W;

Using these transformations in (8.9), gives

1 3 2wi(x + )
—w;(x) = lim [ yi(y - wlx+y)) — |ylPw(z +vy —|——]d
i) =tim | [ty st + ) ~loPde )+ 2
so that
3. X dy
w(z) = 7 m |y‘250(y)a)(93 + ?J)W (8.10)
with the matrix o(7), ¥ = y/|y|, defined as
o) =35 @ §) — 1. (8.11)

Similarly, we may compute the symmetric part of Vu:
1
S(z) = §(Vu + (Vu)").
We have
1 1
It is easy to see that the matrix Ay; is anti-symmetric, thus
Akj + Ajk =0.
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For the symmetric part of the matrix B we compute

. Bekrm 3€ irm €kim €ikm
Byj + Bj, = lim [ YiYr + s Yy — o — ]wmx+y dy
TR a0 s WnlyPTTT T drlyl dmlyl> Anlyl (@ +y)
3 dy
= —lim [ekrmg)’gr + e'rmgkgr:| W\ T + Y)T 7=
47'[' e—0 |y‘2€ J J ( )‘y|3
We conclude that 5 p
N Y
S(z)=—PV. | M — 8.12
(@) = 2PV [ MGt + ) (812)
with the matrix-valued function
. 1. . A .
M(y,w):5[(y><w)®y+y®(y><w)}. (8.13)

Going back to (8.3), we get the following expression for the vorticity stretching coefficient a(z):

dy

a(z) = (S(x)é(z) - §(x)) = %P.V. /(M(g, w(z +y))E(x) - 5($))W_

(8.14)
The integrand can be re-written as

(G xwz+y) @i+ [ xw(x+y))]E(x)-E(x)
) = D(3,&(x +y),&(x))|lw(z +y)],

DO | —

M(g,w(z +y))E(x) - £(x)) =
=@ xwlx+y) &) (7 &

~—

thus
3 A dy
a(z) = (S(2)(x) - £(2) = —P.V. [ D(§,&(z +y),£(x))lw(z + y)lw- (8.15)
Here, we have defined, for three unit vectors ey, e and es:
D(el, €9, 63) = (61 . 63)D6t(€1, €2, 63).

Geometrically, it follows that the regions where {(z + y) is aligned with £(z) contribute less
to a(z). This applies also to the antiparallel vortex pairing, which is a physically observed
phenomenon. That is, we expect that if the vorticity direction field is aligned or anti-aligned
in the regions of high vorticity, the blow-up might be prevented by the vorticity alignment,
though this requires a careful analysis which we will undertake next.

A priori bounds on the strain matrix

Let us first obtain some bounds on the strain matrix in terms of w that we will need later.
We have, from (8.12)-(8.13):

3 dy 3
Spi (1) = —P.V. [ nBiOr + €rmd ] o —:—P.V./R (1) dy,
@) =GPV [ [+ camiid iz + ) = i (1) <x+y(>8gi6)
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with the kernel )
Rkjm(y) = W [Ekrmgjyr + Ejrmgkyr} .

This kernel is of the singular integral type we have seen before in the Beale-Kato-Majda
criterion: it is homogeneous of degree (—n) (the dimension n = 3), in the sense that

Rijm(Ay) = A% Ry (v), (8.17)

and its integral over any sphere centered at y = 0 vanishes:

€kjm + ejkm] =0. (818)

1 1
/ Rkjm( )dy - [ekrmdjr + Ejrmékr] = _[
ly|=1 3 3

Let us show that (8.17) and (8.18) imply that the Fourier transform Ry, () is uniformly
bounded: R
| Ryjm (§)| < C. (8.19)

Indeed, let us write
1

ly3

As Ryjm(y) is homogeneous of degree (—n) (in dimension n = 3), its Fourier transform is
homogeneous of degree zero. Then we have:

Ran) = @) [ oGy =0

drdy

R 1/6
Rijm(€) = lim / —e e2mrEN g 2drdy—hm/ / cos(2mr(€-y)) — 1| D(9)
s2 T S2

€,0—0

1/6 drdy 1/6

+ lim / cos(2mr(& - 9))P(y) +4 lim / sin(2mr (€ - 9))@(y)
= A, + Ay + As. (8.20)

We used the mean-zero property of ®(7) in the second equality above. For Az, we may write

drdj

1/5
Aal) =i Jim, [ () [ sinCemr(e-g)

£,0—0

27IE91/8 gin rdy
>de.

—ilim [ (@sen-)( [

576—)0 S2 271_'{@'6 T

Recall that there exists a constant Cy > 0 so that for any a,b > 0 we have

‘ /b sin rdr
“ r

S 007
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hence |A3(§)| < C. For A; + Ay, we have

A(E) + A€) = liny | @(9)] / " costanre ) - 0% ag
—iy [ o] [ o)1 8Jai = [ o] [eosr-n® s [T,

) 2rl&gl/e gy ) ) ! dr cosrdr
g o[ S ] [ [

—hm/ y)log(27|€ - §]/e)dy

R /0 (cosr =)+ [y - [ 0(3)log(l i) (s.21)

We used the mean-zero property of ®(7) in the last step. In particular, it allowed us to
replace £ by f under the logarithm sign. Now, the first integral in the last line in (8.21)
does not depend on £ and is, therefore, uniformly bounded. The second is also bounded,
by an application of the Cauchy-Schwartz inequality on S2. We conclude that the uniform
bound (8.19) holds. It follows immediately that the strain matrix satisfies an L?-bound

15122 < Cllwl|z2, (8.22)

a bound we have already seen before.

The regularized system

We will follow the paper by P. Constatin and C Fefferman for the analysis of the vorticity
alignment for the Navier-Stokes equations. A similar issue for the Euler equations has been
studied in their joint paper with A. Majda. We will start with a regularized Navier-Stokes
system, obtained by smoothing the advecting velocity:

w4 (¢s xu) - Vu+ Vp=vAu, t>0, ze€R" (8.23)
V- -u=0,
u(0, ) = up(x).

The convolution is performed in space only:

us(t, 2) = s % ult,z) = / b(z — y)ult, y)dy.

and the kernel ¢s has the form

ds(x) = % (§>,

with a smooth compactly supported function ¢(z) > 0 with ||¢||: = 1. Note that us is also
divergence-free: V - us = 0. Let us explain why the regularized system (8.23) has a strong
solution, which is smooth if ug € C°(R?). Of course, the easy bounds on u(t, z) will blow-up
as 0 — 0. We argue as in the estimate for the evolution of the H™-norms in the proof of
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the Beale-Kato-Majda criterion. First, multiplying (8.23) by u and integrating by parts we
deduce that .
/ lu(t, )|*dx + V/ /|Vu(s,x)|2dxds = / |ug ()| *du, (8.24)
R3 0 R3

lu(@)llz2 < [luol|rz- (8.25)
It follows from the definition of us that

hence

[us()]lor < Cr(0), (8.26)

with the constants Cj(9) that may blow-up as 6 — 0. Next, multiplying (8.23) by (—A)™u
and integrating by parts we obtain

1d

SN A) 2l + (= A) 2 = (A s - V), (~A) ). (8.2)

As before, the leading order term in the right side vanishes:
((ug - V(=A)™2u), (=A)™?u) =0,

because V - us = 0. Hence, using (8.26), the right side in (8.27) can be estimated by

3 m
Cro| D™ ulls Y > (1D us s 0o | DO P 12 < C() [l 7 (8.28)

ij=1 k=1

Summing over m, we conclude that for any s € N we have

e < Cs(0)||ul

d

Therefore, if uy € C°(R?), then u(t) remains in all H™(R?) for all ¢ > 0. Of course, the
Sobolev norms of u(t) may blow-up as § — 0.

Vorticity alignment prevents blow-up

We will now show that if the direction of the vorticity of the solutions of the regularized
system (8.23) is sufficiently aligned then solutions of the Navier-Stokes system itself remain
regular. Let us introduce some notation: given a vector e we denote by P the projection
orthogonal to e,

Pro=v—(v-ee.

We will denote by u(t, z) the solution of the regularized system (8.23), let w(t,x) = V x u(t, z)
be its vorticity and &(¢,z) = w(t,x)/|w(t, z)|, while v(t,z) will be the solution of the true
Navier-Stokes equations

v+v-Vo+Vp=vAv, t>0, ze€R" (8.30)
V-v=0,
v(0, ) = up(x).
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Theorem 8.1. Assume that there exists 6y, Q2 > 0 and p > 0 so that for all 6 € (0,0) the
solution u(t,z) of the reqularized system (8.23) satisfies

vl
P&tz +y))| < — (8.31)
forallz,y € R® and 0 <t < T, such that |w(t,z)| > Q and |w(t,x+y) > Q. Then the Navier-

Stokes equations (8.30) have a strong, and hence C*®-solution on the time interval 0 <t < T.

The strategy will be to get a priori bounds on u (¢, x) that do not depend on ¢ and then
pass to the limit 6 — 0. The passage ot the limit is very similar to what we have seen before,
so we focus on the a priori bounds that follow from assumption (8.30).

The a priori bounds for the regularized system

We first get a priori bounds for the regularized system that require no assumptions on the
direction of the vorticity and, in particular, are independent of (8.31). Let us set wy = V X g
and

25
Q= / wola)lda + —/ o () 2.
R3 VvV Jrs
We have then the following bounds, uniform in § > 0.

Lemma 8.2. The following two bounds hold:

t
/ lw(t, z)|dx + V/ / lw(s, z)|VE(s, x)|*drds < Q, (8.32)
R3 0 J{x:|w(s,x)|>0}

for all 0 <t <T, and for any 2 > 0 we have

’ Q
/ / |VE(s, z)Pdrds < —=. (8.33)
0 {z:|w(s,x)|>Q} 129/

Proof. Let us derive the equation for w(t,z): this derivation follows that for the true
Navier-Stokes equations but the vorticity equation in the presence of the regularization is
not identical to that of the Navier-Stokes equations. The advection term in the regularized
Navier-Stokes equations can be written as

us-Vu=u-Vu+ (us —u) - Vu=u-Vu —vs - Vu, (8.34)

with
Vs = U — Usg.

Recall that

(w X U)z = kWU = Eijkgjmn(amun)uk - (6zn5km - 6zm5kn)(amun)uk

We used above the identity
€jik€jmn = 5zm5kn - 5m5km (836)
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and anti-symmetry of €;;,. Thus, as we have previously seen, the advection term can be
written as

_ Juf?
u-Vu-wxu—i—V(T). (8.37)
Recall also the formula
Vx(axb)=—-a-Vb+b-Va+a(V-b)—0bV-a), (8.38)
which now gives
VX (u-Vu)=V x (wxu)=-w--Vu+u-Vw. (8.39)

We also had an observation that

w-Vu=V(t,z)w, V= dz; (8.40)
The matrix V' can be split into its symmetric and anti-symmetric parts:
1 1
V=S+P, S:§(V+VT), Pzé(V—VT), (8.41)
The anti-symmetric part has the form
1 1 1
PZh] = 5[8]1% - &uj]h] = §8muk[(5lk5]m - 5zm5]k]h] = §5lij5lkm(amuk>hj
1 1 1
= —§5lijglmk(8muk)hj = —§€l¢jwlhj = §8iljwlhj = 5[&1 X h]“ (842)
for any h € R3. In other words, P satisfies
1
Ph = v X h, (8.43)
and thus has an explicit form
1 0 —Ws3 W9
P=- w3 0 —W1 . (844)
2
—W w1 0
As a consequence, we have Pw = 0, thus Vw = Sw, so that
V x(u-Vu)=u-Vw— Sw. (8.45)

This is, of course, identical to what we have obtained for the true Navier-Stokes equations.
For the term in (8.34), which involves vs; and comes from the regularization, we write

[V x (vs - Vu)i = €iju0;[vsmOmun] = vsmOn€ijrOjur] + €ijk(05vsm) (Opnur) (8.46)
=5 Vw; + €ijk<ajvé,m)(amuk>

Thus, we have

V X (us-Vu) =u-Vw—Sw—vs-Vw+ (Vu) ® (Vus) = us- Vw — Sw+ (Vu) © (Vus). (8.47)
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Here, we have introduced the following notation: given two matrices a and b, the vector a ©® b
has the entries

(CL ® b)z = 6ijkakmbmj. (848)

Thus, the vorticity satisfies the evolution equation
wi + us - Vw — vAw = Sw — (Vu) © (Vus). (8.49)

Once again, we stress that the second term in the right side comes from the regularization.
Note that the vector (¢, ) = w(t, z)/|w(t, z)| satisfies |£]* = 1, which implies

€6 =0, &&= 0, forall 1 <k <3, (8.50)

leading to
(Ok&5) (Ons) + §AE =0, (8.51)
Multiplying (8.49) by £(¢, x), and using (8.50)-(8.51), we get in the left side
& (we+us - Vw = vAw) = ¢ - (Jw|é + Elwle + [wl(us - V)E + &(us - Vw]))
(& - HAW] = v(§ - Ad|w| = 2606405 |w] = |w]e + us - V]w| = vA|w] = v|w|(E - AS)
= Wl + us - V|w| — vA|w] + v|w||[VE.

We deduce an evolution equation for |w(t, x)| in the region where w(t, x) # 0:

Al g Vel = v + o[l VE = € (S — (V) © (Vo). (852)

Let now f(z) be a C*-function of a scalar variable z which vanishes in a neighborhood of z = 0.
Multiplying (8.52) by f’(|w|) and integrating gives

d 1 ,
T R3f(|w|)dx+u/R3f (|w|)|V|W||2dx+u/]RS | f ()| VEPda (8.53)

— /RS € (Sw — (V) ® (Voy)]f/(|w|)dex.

Choose a function 9 (y) > 0 such that 1(y) vanishes for |y| < ry and y > o, and such
that

OQO Y(y)dy = 1, (8.54)
and set ]
1) = | = oty (8.55)
so that ;
rG) = [ vl £ = i) 2o (8.56)

In particular, we have 0 < f'(z) <1, f’(2) = 0 in a neighborhood of z = 0, and

2f'(2) = z, for z > Q. (8.57)
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In other words, f(z) is an approximation to z. Then, integrating (8.53) in time gives
t
flltt.a))de+v [ [ (s, 0)|[VE(s. )P de < [ fllun(a) o
R3 0 J{z:w(s,x)[>N} R3

+ [ ] € (5= (F0) © (Vus))L (ol dods (8.58)

t 1 1 1 1
< [ wol@)|da +/ / (51505, 2)P + (s, 2) + 3Vl + £ Vo) dods.
R3 0 R3

/ |Vu]2dx:/ \w\Qd:c:2/ TrS?dx.
R3 R3 R3

The energy identity (8.24) means that

As V -u =0, we have

F(lolt, 2)))dz + v / / (s 2)[|VE(s,2)Pde < Q. (8.59)
R3 0 J{z:w(s,z)|>0}
with
Q- /R (@)l + /R o () 2dr. (8.60)

In particular, for any €2 > 0 we obtain

t
Q
IVE(s, 2)|?dr < —%. (8.61)
/0 /{x:w(s,x)|>ﬂ} 129/

We may also let Qp — 0 in (8.59), so that f(z) — z, and obtain the estimate in Lemma 8.2

t
/ Wit 2)|dz + y/ / w(s, )| VE(s, 2)[2dz < O. (8.62)
R3 0 J{zw(s,x)|>0}
This finishes the proof of this Lemma.

Enstrophy bounds when the vorticity direction is regular

Lemma 8.2 does not use assumption (8.31) on the vorticity direction. Now, we will use this
assumption to obtain enstrophy bounds on the solution of the regularized system. We will
show that the solution of the regularized system obeys the following a priori bounds. Here,
we use assumption (8.31): there exists dp, 2 > 0 and p > 0 so that for all 6 € (0,0y) the
solution u(t, x) of the regularized system (8.23) satisfies

P (et + o) < ’—‘Z' (8.63)

for all z,y € R® and 0 < ¢t < T, such that |w(t,z)| > Q and |w(t,z +y) > Q.
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Lemma 8.3. There exists a constant C' which depends on the initial data ug, and Q, v, T,
and the constant p in (8.63), so that

sup |w(t, 2)|*dx < C, (8.64)
0<t<T JR3
and
T
/ Vw(t,z)|*dr < C, (8.65)
o Jr3

for all § € (0,0).

With these a priori bounds in hand, one can find a subsequence ¢, | 0, such that the
solutions u(t, x) of the regularized Navier-Stokes system converge to a solution v(¢,z) of the
true Navier-Stokes equations which obeys the same bounds (8.64) and (8.65). These bounds
imply that v is a strong solution and is therefore smooth if ug is smooth. Thus, our focus is
on proving Lemma 8.3.

Multiplying the vorticity equation

we + us - Vw — vAw = Sw — (Vu) © (Vus) (8.66)

by w and integrating gives

th/’w’ dx+”/|VW\ dr = /(Sw uf)ciaf—/w~((vu) © (Vus))da. (8.67)

We will split the vorticity into the “small” and ”large” components: take a cut-off func-
tion x(z) such that y(z) = 1for 0 < z <1, x(2) = 0 for z > 2, and 0 < x(z) < 1 for
all z > 0. We set

w(t,z) = wW(t,z) +w?(t,z), (8.68)

with

w(t,z) = X(W)w(t ), wP(tz)= (1 - X(W))w(t, ). (8.69)

Recall that the strain matrix can be written in terms of the vorticity as

dy . vy
:_PV/M w(+y))—z, 4=, (8.70)
lyl® ]
with the matrix-valued function
. 1. . A .
M(y,W):5[(yxw)®y+y®(yxwﬂ. (8.71)

The decomposition (8.68) and (8.70) induce then the corresponding decomposition

S(t,z) = SW(t,z) + S (t, x). (8.72)
We can then write )
(Sw-w)= > (SD0 . w®) =X +V+ 2, (8.73)
i4,k=1
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where X comes from the triplets where at least one of w is ”small”:

X2y Y (590

i=1 (jk)#(22)

the term Y has S ”small”, and both w "large”:

Y = (SWw® . w®),
and, finally, Z has S and both w "large”:

Z = (8Pu® . @),

We also set
W =—-w-((Vu) ® (Vuy)).

With this notation, (8.67) has the form

2dt/|w|2dx+u/|Vw| dx_/(X+Y+Z+W)d (8.74)

We will estimate the size of each term in the right side of (8.74) separately.
In order to estimate X, we recall that for any incompressible flow v we have

/|Vv|2dx = / I¢)Pdx, ¢ =V xw.

As a consequence, the strain matrix
1 t
Sy = é(Vv + (Vo))

satisfies

avl av 3 a’l}i 2
1Sull72 = Z/ a; d SA‘Z/(&U) d:c:4/]Vv|2dx:4/|C|2dx. (8.75)
v ij=1 J

Then, the term X can be estimated as follows: either w or w® is "small” and can be
bounded pointwise by €. This allows us to use the Cauchy-Schwartz inequality and (8.75):

‘/X(t,x)dx‘ < COYIS]| w2 < CQlw]Ze. (8.76)

We have used the bound (8.22)
15122 < Cllwl|z2- (8.77)

in the second inequality above.
Next, we note that Y is bounded from above by

Y (t,z)| < |SD(t, z)||w(t.z) (8.78)
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so that

/ Y (t,2)lde < 5Dz / |w(t.x)\4dx)1/ : (8.79)

The Gagliardo-Nirenberg inequality in R™:
fullr < CIVula e, ~= 5=,

implies that in R? we have

(/\w(x)|4dx)1/2 < C’(/|Vw )| da: /|w 2alac 4. (8.80)

Using this in (8.78) gives
[ ¥t lds < ISVl < Clwt Vol ]2
¢ 412
—HVwHLz + Szl (8.81)
We have used Young’s inequality in the last step, as well as the bound (8.77) for ||SM)|| .

The second term in the right side can be bounded with the help of the estimate (8.32) in
Lemma 8.2 as

Jw M2, < 20 / (b, 2)|dz < 200. (8.82)
Thus, the term Y can be estimated as
[ 1Ytz < LIVl + SOQP (55)
Before looking at Z, which is the most difficult term, we bound W:
W= —-w-((Vu)® (Vuvs)).

This term is only there because of the regularization and should disappear as 6 — 0. Note
that

lvsllZe = llu — usl72 = llu — g5 * ullz> = /!1—¢5 §)7d¢ = /\1— (68)*|a(&)[*d¢
< 052/\§| a(&)[*ds = Co* | Vullz> = Co* wl7- (8.84)

The integral of W is

/W(t,x)dﬂf = —/wi&jk(vu)km(vva)mjda? = —/&jkwi%ava@dm (8.85)

Ow; Ouy, Dy,
— g T Tk g g R 9
/gz]kvéma 8xm T + /gwkvé,mwz ﬁxj&vm X
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The last integral above can be written as

0%y, 0 Ouy, Ow;
/Eijkv57mwimd$ = /W{U&m amm (51319 axj >dZL’ /wiv(;,mﬁdx = 0,

since vy is divergence-free. Therefore, we have a bound for W:
C
(/W(t,x)dx( < i/|w(t,x)|2dx+—/|u5(t,x)|2|vu(t,x)|2dx

<5 [ Vet oPde+ ol Tl

The Gagliardo-Nirenberg inequality implies that

lealiza < ClIVwsl22 osll 2
For the gradient term above we can simply bound

IVvsllz> < ClIVullz: + Cl|Vus|lz: < ClIVullz: < Cllwlze,
and we may use the estimate (8.84) for |vs||z2. Therefore, we have
losl|Zs < C8Y2||]|Ze.

We may also use the same Gagliardo-Nirenberg inequality for ||Vul|p4, leading to

[Vullfe < CIVwllZ w]2
Altogether, this gives

1 C5Y/2
;Hva||%4||VUI|%4

C6Y/
3/2 1/2 5/2 3/2
wwumen/uné = \wn/nv 15

v
—6IIVWIIL2 + || [
thus

C6?
‘/W(t,x)d:v‘ < g/|vw(t,$)|2dx+7”w”}:%

Finally, we estimate the most dangerous term Z(t, x),

Z = (§@w® . @),

(8.86)

(8.87)

(8.88)

(8.89)

(8.90)

(8.91)

(8.92)

(8.93)

and this will be the only estimate that will involve the assumption that the direction £(¢, x)

of the vorticity is Lipschitz:
<l

Pera (&t +1))| < o’

We write

Z(t,x) = (SPw® - w®) = |w@(t, 2) (SO (¢, 2)6P (1, 2) - €2 (t,2)) = |w(t, 2)Pa®
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with

3 X d
MWuwzZ#ﬂﬁ/Dwf@+w@@mMWx+w@%, (8.96)
where
D(eq, eq,e3) = (€1 - e3)Det(eq, e, e3).
Assumption (8.94) means that
D€+ v).€a)] < 2, (5.97)

so that

3 dy 3 dy
2(t,2)] < ol t0) / 0.+ )| < Tt o) / ot + I (899

Therefore, we have

[1zt0tas < S ([ 1.0k " (5.99)

I(t.2) :/|w(t,x+y>\|‘y%.

In order to compute the L?-norm of I, we proceed as in the proof of Nash inequality. Let us
compute the Fourier transform of the function 1 (y) = 1/|y|*:

R 2m'§~yd 00 /2 21 ‘ )
D(E) = / i / dr / df cos 0 / de2rilélrsin?
|y 0 —7/2 0

[e’e] 1 o .
= 277/ dr/ due2™iElru — 3/ sin rdr'
0 -1 |§| 0 T

Hence, the L?-norm of (¢, z) can be bounded as (for any R > 0)

with

)] = / i(te)Pde < C / %d&

|w()[*dE |w(&)[dE
<C BNILT 4 o WS TS — Ap + Bp.
= /ZER e " /ﬁgR BE R
Since
(&) < ||wllrr,

the first term can be bounded as,
R
Anl <€ [ olfide < ORIl
0

The second term can be simply bounded by

C / 2 C 2
B < — w dé = —=||w 2.
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It follows that for any R > 0 we have

C
1711z < CRJlwlz: + Fllwlze.

Choosing
o <||w||%2)1/3
i,/
we deduce that
17122 < Cllwl P lwl25. (8.100)
Returning to (8.99), we see that
[ 12.5)de < Sl ol (s.101)

The L*-norm of w is estimated using the same Gagliardo-Nirenberg inequality:

3/2 1/2
lwlizs < CIV@lz @l (8.102)
so that
3/2 5/6 2 3 20/6 8/3
/|Z (t,2)|de < CIIVwl Wl < IVl + || 12 ]2 (8.103)

Recalling also the a priori bound (8.32) in Lemma 8.2:
/ lw(t, z)|dx < Q, (8.104)
R3
we see that Z is bounded as
(7 10/3
|Z(t,z)|dx < —||VwHL2 +——F || 2" (8.105)
Recollecting the starting point of our analysis (8.67)
2dt/\w\ d:c—l—u/]Vw\ i — /(Sw w)dx—/w-((vm O (Vog))dz,  (8.106)

and summarizing the bounds (8.76), (8.83), (8.93), (8.105) that we have obtained for the
terms X, Y, W and Z, respectively, in the right side of the above identity, we get

C
3 [wPde v [ 1VuPds < cOlulfa + ||w||%2 + 00l

10/3
vl + Sl s + vl + SE (3107

3 4

— [ lwtt.0) e
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satisfies a differential inequality

dE
— <G+ E*)E 4 C,6°F°, (8.108)

with a constant C'; that depends on v, p, 2 and @). This is a nonlinear inequality and at the
first glance it may seem useless as the solution of an ODE

=C1(1+ 222+ C16%2°,  2(0) = 2 > 0, (8.109)

blows up in a finite time. Here, however, we are only concerned with the solution being finite
until time t = T', and, in addition, we have an extra piece of information: the function

k(t) = Ci(1+ E*®)

has a bounded integral:

T

g 4/3 1/3 2 2/3
/ k(t)dthT+/ lw(®)|[¥2dt < CT + CT" (/ Hw(t)Hdet> <C(+T)=D.
0 0

(8.110)
Crucially, the constant D does not depend on §. Therefore, the solution of (8.109) with 6 =0
does remain finite until the time 7', and it is reasonable to expect that so does the solution
with 6 > 0 but small. To formalize this observation, let

E(t) = 2E(0) exp { /Ot k:(s)ds}.

Then E(0) < E(0), and we may define 7 as the first time such that F(7) = E(7). Until that
time, the function E(t) satisfies

dE
— <k()E+C8°E°, 0<t<T (8.111)

dt
Therefore, as long as F(t) < E(t), we have a bound for E(t):

E(t) {/ }+0152 /Ot E5(s) exp{/:k:(s')ds'}ds.

Thus, if § is sufficiently small, we have E(t) < E(t) for all 0 < ¢ < T. We conclude that there
exists dg > 0 so that for all 0 < § < dy the enstrophy is bounded:

sup /\w(t,x)\zdx < +00. (8.112)

0<t<T

The last step is to observe that (8.107) together with (8.112) implies that

T
1// /|Vw|2dx < +o00. (8.113)
0
This completes the proof of Lemma 8.3, and thus that of Theorem 8.1. O
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9 The Caffarelli-Kohn-Nirenberg theorem

In this section, we will describe the results of Caffarelli, Kohn and Nirenberg on the Hausdorff
dimension of the set where the solution of the three-dimensional Navier-Stokes equations

u +u-Vu+Vp=Au+ f, (9.1)
V.ou=0, (9.2)

can possibly be singular. We consider this problem in a smooth bounded domain Q C R3,
with the no-slip boundary condition

u(t,z) =0 on ON. (9.3)

The force f(t,x) is assumed to satisfy the incompressibility condition V- f = 0 — this condition
is not really necessary, as otherwise we would write f = V® 4 ¢, with V.g = 0, and absorb ¢
into the pressure term.

Weak solutions

Let us recall the notion of a Leray weak solution of the Navier-Stokes equations: u is a weak
solution if, first, it is a solution in the sense of distributions, that is, for any smooth compactly
supported vector-valued function (¢, z) we have

/[ (t,2) - (t, ) — uo(x) - (0, dx—// " da:ds—/ /uku]axkdmds
// (V- wdxds—/ / u - Ag)) dxd8+// Y)df xds. (9.4)

The second condition is that wu satisfies the energy inequality. Note that if u is a smooth
solution of the Navier-Stokes equations, then for any smooth test function ¢ we have

3 | lutto)Pote. o)+ /0 | Futs.)Pots,a)dnds = 5 [ fuofe)Fo(0,2)de (0.5
! / / [us, @) (645, 7) + Ad(s, ) dads

// |“”|2 (sx))u ngsxdxds—l—// o(s, r)dxds.

Taking, formally, ¢ = 1, the second condition for u to be a Leray weak solution is that it
satisfies the energy inequality:

/|ut:1: 2d$—|—//|Vusx|d93ds< /|u0 |d:B+// w)dzds.  (9.6)

Suitable weak solutions

Caffarelli, Kohn and Nuremberg consider a slightly stronger class of solutions, which they
call suitable weak solutions, defined on an open (time-space) set D € R x R3. We will,
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obviously, require that u is a weak solution of the Navier-Stokes equations in the sense of
distributions: (9.4) holds for any function ¢ supported in D. We will assume that f € L9(D)
with some ¢ > 5/2 — this assumption is not very important, as the main result is interesting
even for f € C*(D). We will also assume that the pressure satisfies

p e L4(D), (9.7)

and that there exist some constants Fy and F; so that or any fixed time ¢ we have

lu(t, v)|?dx < Ey, (9.8)

Dy

where D; = DN (R? x {t}), and
/ (Vu(s,z)|[*dx < E. (9.9)
D

In addition, we require that the generalized (or, localized) energy inequality holds: for any
function ¢ > 0 which is smooth and compactly supported in D, we have

/D]Vu(s,x)|2¢(s,x)dxds < %/D|u(s,x)]2(¢s(s,x) + A¢(s,x))dxds (9.10)

+/D <M + p(s, x))u -Vo(s, xr)dxds + /D(f ~u)o(s, x)dxds.

At the moment, it is not clear that a suitable weak solution exists — we will prove it below.

The parabolic Hausdorff measure

In order to formulate the main results, we need to define an analog of the Hausdorff mea-
sure H! but suitable for the parabolic problems. For any set X C R x R3 6 > 0 and k > 0
we define

Pf(X):inf{irf: XCUQH, m<5}. (9.11)
i=1 i
Here, (), is a parabolic cylinder: it has the form
Q. = [t — 1% 1] x B,(2),
where B, (z) is a ball of radius r centered at the point x. Then we set

PHX) = 1§$P§(X)‘ (9.12)

The standard Hausdorff measure is defined in the same way but with (), replaced by an
arbitrary closed subset of R x R? of diameter at most r;, thus we have

H! < CP*.
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The main results

We may now describe the main results of the Caffarelli-Kohn-Nirenberg paper. We say that
a point (¢,z) is singular if u is not in L;S, in any neighborhood of (¢,z). Otherwise, we say

that (¢,x) is a singular point. We will denote by S the set of all singular points of u(t, z).
Their first result shows that the singularity set has zero Hausdorff measure H!.

Theorem 9.1. Assume that either Q = R? or Q C R? is a smooth bounded domain, and let
D =(0,T) x Q. Suppose that for some q > 5/2 we have
fel*D)nLf

loc

(D) V-f=0

and
ug € L*(Q), V-ug=0, ug-v|og=0.

If Q is bounded, we require, in addition, that uy € VV52 //f (Q). Then the initial boundary value

problem has a suitable weak solution in D whose singular set S satisfies P*(S) = 0.
Their second result concerns absence of singularities outside of a ball of radius 1/+/%.

Theorem 9.2. Consider the Navier-Stokes equations in R® with f = 0 and assume that the
initial data satisfies V - ug = 0, and
1

G = 5/ luo(7)|?|z|dr < +o0. (9.13)
R3

Then there exists a weak solution of the initial value problem which is regular in the re-
gion {|x| > K, /\/t}, with the constant K, which depends only on G and E, where

E = luo(7)|?|z|dr < +o0.
R3

Assumption (9.13) means that w is small at infinity, and this smallness, so to speak, invades
the whole space as t grows. If we assume that v is “small near the origin”, in the sense, that

_ [ wl
L= dx = L < +00, (9.14)

then we have the following result.

Theorem 9.3. Consider the Navier-Stokes equations in R with f = 0 and assume that the
initial data satisfies V -ug = 0, and (9.14) holds. There exists a universal constant Ly so that

if L < Ly, then u is regular in the region {|x| < /(Lo — L)t}.

The first key estimate: localizing “small data regularity”

We will denote the cylinders labeled by the top as

Qr(tax) :{(Say): |y—ZL'| <, t—T2 <8<t}7
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and those labeled by a point slightly below the top as
* 7 9 1 9
Qrtx) ={(s,9): ly—w[<r t—gr* <s<t+or’)

It is well known that if the initial condition uy and the force f are small in an appropriate
norm, then the solution of the Navier-Stokes equations remains regular for a short time. The
main issue in proving the partial regularity theorems is to localize this result. The first step
in this direction is an estimate showing that if u, p and f are sufficiently small on the unit
cylinder @1 = @Q1(0,0), then w is regular in the smaller cylinder Q1,2 = Q1/2(0,0) — this is a
very common theme in the parabolic regularity theory.

Proposition 9.4. There ezist absolute constants Cy > 0 and e > 0 and a constant 5(q) > 0,
which depends only on q with the following property. Suppose that (u,p) is a suitable weak
solution of the Navier-Stokes system on Q1 with f € L%, with ¢ > 5/2. Assume also that

5 0 5/4
/ (|u]? + |u]|p|)dzdt +/ (/ |p|d:p> dt < ey, (9.15)
Q1 -1 ] <1

/ |f|9dzdt < 2. (9.16)

1

and

Then we have [u(t,x)| < Cy for Lebesgue-almost every (t,x) € Q1/2. In particular, u is reqular
m Ql/?-

In order to see how we may scale this result to a parabolic cylinder of length r, let us
investigate the dimension of various terms in the Navier-Stokes equations

ur+u-Vu+ Vp=Au+ f. (9.17)

Let us assign dimension L to the spatial variable z. As all individual terms in (9.17) should
have the same dimension, looking at the terms u; and Au we conclude that time should have
dimension L?. Comparing the terms u; and u-Vu we see that u should have the dimension L 1.
Then, f should have the same dimension as u;, which is L=3. Finally, the dimension of the
pressure term should be L2, Summarizing, we have

@] =L, [t]=L% [u] =L, [f]=L7% [p)]=L" (9.18)

Let us look at the dimension of each term in the estimate (9.15): the term involving |u|* has
the dimension

[P [t][u] = L,

the term involving |u||p| has the same dimension:

while the last term in the left side has the dimension

[t] [I]15/4[p]5/4 _ [23/47-10/4 _ 113/4
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We also should note that the dimension of the L%-norm of f (to the power q) is
2P [ = L7,
Accordingly, for a parabolic cylinder @, (t,x) we set

1 I 5/4
M(r) = ﬁ/@ (|ul?® + |u||p|)dzdt + m/ (/| | |p|dx> dt, (9.19)
” t—r2 y—zx|<r

and

E,(r)=r?""° | f|9dyds. (9.20)
Qr

Therefore, Proposition 9.4 has the following corollary.

Corollary 9.5. Suppose hat (u,p) is a suitable weak solution of the Navier-Stokes system on
a cylinder Q, with f € L, with ¢ > 5/2. Assume also that

M(r) < e, (9.21)

and
Fy(r) < e (9.22)

Then we have |u(t,z)| < Ci/r for Lebesgue-almost every (t,x) € Q2. In particular, u is
reqular in @Q/2.
The second key estimate: the blow-up rate

One can deduce from Corollary 9.5 a heuristic estimate on the possible blow-up rate of the
solution. Assume that (o, zo) is a singular point. Then, (9.21) has to fail for all Q,.(t, z) such
that (to,20) € Qr/2(t, 7). Therefore, we must have

M(r)=M(r;t,x) > e

for a family of parabolic cylinders shrinking to the point (¢y,z¢). Let us assume that

u(t,x) ~r ™,

near rg, with
r= |z — o> + |t — to])V/2

Then we have
2,.3 3—3m
7\1(7a> ~ m,r. r r .

hence, a natural guess is m = 1, which translates into
C
‘VU‘ > o as (t,SL’) — (tﬂaxO)- (923)
r

The next key estimate verifies that this is qualitatively correct.
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Proposition 9.6. There is an absolute constant €3 > 0 with the following property. If u is a
suitable weak solution of the Navier-Stokes equations near (t,z), and if

1
lim sup —/ \Vul2dyds < e3, (9.24)
Q7 (t.z)

rl0 r
then (t,x) is a regular point.

Let us explain how Theorem 9.1 would follow. Take any (¢, x) in the singular set, then,
by Proposition 9.6 we have

1
lim sup —/ |Vul2dyds > es. (9.25)
Qr ()

rl0 r

Take a neighborhood V' of the singular set S and § > 0. For each (¢,z) € S we may choose a
parabolic cylinder Q*(t, z) with » < ¢ and such that

1
—/Q ( )|Vu\2dyds > 3, (9.26)
w(tx

r

and Q*(t,z) C V. We will make use of the following covering lemma.

Lemma 9.7. Let J be a collection of parabolic cylinders Q%(t,z) contained in a bounded
set V.. Then there exists an at most countable sub-collection J' = {Q; = Q; (ti,z;)} of
non-overlapping cylinders such that for any Q* € J there exists Q} so that

Q" C Qi (i),

The proof is very similar to that of the classic Vitali lemma and we leave it to the reader
as an exercise. Using this lemma, we obtain a disjoint collection of cylinders Q7. (t;, z;) such
that

S C U Q;m (tlv xi)a

and . )
d ori<— | |VuPdedt < —/ \Vul|*dzdt.
. €3 Jq;, € Jv
We deduce that )
PHY) < — / |Vu|*dzdt. (9.27)
€ Jv

In particular, we deduce that the (three-dimensional) Lebesgue measure of S is zero. Then,
as V is an arbitrary neighborhood of S, and the function |Vu|? is integrable, we can make the
right side of (9.27) arbitrarily small. It follows that P!(S) = 0, proving Theorem 9.1. Thus,
the crux of the matter is the proof of Propositions 9.4 and 9.6.
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Serrin’s interior regularity result

Before we proceed with the further discussion of the proofs of the theorems of Caffarelli, Kohn
and Nirenberg, let us explain why we say a solution is regular if it is just bounded, and do
not require further differentiability. The reason is a result of Serrin on the interior regularity
of the weak solutions of the Navier-Stokes equations

u+u-Vu—+Vp=Au+ f, (9.28)
V-u=0.

We will assume for simplicity that f = 0 — the reader should consider the generalization to
the case f # 0 as an exercise, or consult Serrin’s original paper. Let us borrow the following
very simple observation from Serrin’s paper: if ¢)(x) is a harmonic function, then any function
of the form
u(t,z) = a(t)Vip(x)

is a weak solution of the Navier-Stokes equations, as long as the function a(t) is integrable.
Therefore, boundedness of u(t,z) can not, in general, imply any information on the time
derivatives of u. On the other hand, this example does not rule out the hope that relatively
weak assumptions on v would guarantee its spatial regularity.

Here is one version of Serrin’s result, which says that bounded solutions of the force-less
Navier-Stokes equations are essentially as good as the solutions of the heat equation.

Theorem 9.8. Let u be a Leray weak solution of the Navier-Stokes equations in an open

region R = (t1,t2) X Q of space-time, with f =0, and such that

to
/ / |w(t, ¥)|*dzdt < +oo,  sup / lu(t, z)|*dr < +oo, (9.29)
t1 Q 1JQ

tG[tl,tz

where w = V X u is the vorticity. Assume, in addition, that u € L>°(R). Then, u is of the C*
class in the space variables on every compact subset of R.

The full statement of the Serrin theorem says that if u € L>* (R), with

[2)
por = / Jul
t1

3 2
g + ; <1, (930)

o 1/s
L3(Q) dt) )

|

with (in three dimensions)

then u is C™ in the spatial variables. If, in addition, we know that v, € L*? with p > 1, then
the spatial derivatives of u are absolutely continuous in time. We will not need these results
for our purposes, so we will leave them out for now. Let us make one comment, however: if
we take s’ = 0o, then condition (9.30) is satisfied, as long as s > 3. That is, if we would have
known a priori that

/ lu(t, z)|*dx < const,
R3
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then we could conclude that u is a smooth solution. Of course, we have this information only
for the L2-norm of the Leray weak solutions, and not for the L3-norm.
For the proof of Theorem 9.8, let us recall the vorticity equation in three dimensions:

wetu-Vw—Aw =w - Vu. (9.31)

Written in the components, this equation is

Ow,  Ouy, Owy,
ot Awr = w, Oz, 1 ox;’ (9.32)
or P P
Wi

Let ©Q; be a compact subset of 2, and t; < s; < sy < to, so that S = (s1, 82) x ) is a proper
subset of R, and define, for s; <t < ss:

Ox(t,x) = aix]/ ; G(t —s,x —y)w;(s, y)uk(s,y) — u;i(s, y)wi(s, y)|dyds

— / / o _8985’ - [wi(s, y)ur(s, y) — u;(s, y)wr(s, y)ldyds.
s1J

J

Here, G(t,z) is the standard heat kernel. The functions

(1, ) = / / Gt — 5% — )y (5 9)us(s, ) — w3 (5, 9)wn (5, )] dyds

satisfy
amkj

ot
Thus, for (t,z) € S, the function @ is the solution of

— Amy; = (Wjur, — Uj W)Xy, () X0, (7). (9.34)

0w 5 0
8—: — Ay, = 8_xj<wjuk — Uj W). (9.35)

It follows that the difference
B(t,x) = w(t,x) — &(t, x)

satisfies the standard heat equation
B, — AB =0,

on the set S.
We will now show that w € L*(S), that is, if w is uniformly bounded on R, then the
vorticity is uniformly bounded on any compact subset of R.
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Exercise 9.9. Use the convolution with the heat kernel to show that if ¢(t,x) satisfies

9y
—Ap=—
¢t ¢ ax]7
in the whole space R™, then
[0l < Cllgll s,

as long as
1 1
(n—|—2)<— - -) <1
q T
The norms are take in space-time.

As u is a Leray weak solution, we know that w € L?(R). As u € L*(R), it follows that
the functions

9ik(8,y) = wj(s, y)ur(s, y) — u;(s, y)wr(s, y)
are also in L?(R). The result of the above exercise says that then @ € L™ with

1 1 1 1

T 2 3 6

But then g € L5, as well, and, as 1/6 < 1/3, it follows that @ € L*(R). We also know
that B € L>(S) by the regularity estimates for the heat equation, as B € L*(R) — it is the
difference of two functions in L?(R). Moreover, we know that B is Holder continuous.

Now that we know that w € L*(R), we recall that the velocity and the vorticity are
related by the stream vector v, defined as the solution of

—AY=w, V-¢p=0,
and
u=—V x .

Therefore, if w € L*°(R), then ¢ is C** in the spatial variable, hence u is Holder in x, and,
in particular, in L. Then the functions my; are C** in z, thus w is Holder in z. Then, the
functions gx; are Holder in z, so w, is Holder in z, continuing this argument we deduce that
both w and u are C'*°.

Existence of suitable weak solutions

We now prove the existence of suitable weak solutions, in the sense of Caffarelli, Kohn and
Nirenberg. We will restrict ourselves to the whole space: @ = R3. Let us first define the
appropriate function spaces. As usual, we will denote by V the space of smooth divergence-
free vector fields u, by H the closure of V in L?(R?), by V the closure of V in H'(R?), and
by V' the dual space of V. The Sobolev spaces Wé(RS) with ¢ > 1 and 0 < [ < 1 consists of
functions with [ derivatives in L4, and with the norm

lullwy = Nallzo + 11(=2)"ul|s.
We will make the standard assumptions:

Q=R3 u € H, feL0,T; H(R3)). (9.36)
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Theorem 9.10. Assume that Q = R3, uy and f satisfy (9.36). Then there exists a suitable
weak solution
u€ L*0,T; V)N L®(0,T; H),

of the Navier-Stokes equations with the force f and the initial condition ugy, in the sense
that u(t) — o weakly in H as t — 0. The pressure satisfies p € L*?((0,T) x R%). In
addition, if € C>([0,T] x R?), ¢ > 0 and is compactly supported, then

1/ |u(t,x)|2gb(t,x)dx+/ /R3 (Vu(s,z)[*¢(s, x)dzds < %/RS [uo(2)|?¢(0, z)dx
/ g lu(s, z)*(¢s(s, ) + Ad(s, x))dxds (9.37)

2
// ]usx! (sx))u V¢sxdwds+// o(s, z)dxds.
R3 R3

The proof is done via a "retarded mollification”. The (standard) idea is to take Ws(u) to
be a mollifier of u such that ¥s(u) is divergence-free and depends only on the values of u(s, x)
with s <t — . The mollified system

ur + Ws(u) - Vu+Vp=Au+ f (9.38)

is then linear on each time interval of the firm (md, (m + 1)J). We will get uniform in § a
priori bounds on u, and then pass to the limit § — 0.

Let us recall some basic facts about the linear Stokes equation, whose proof is very similar
to what we have done on the torus previously.

w+Vp=Au+f, V-u=0. (9.39)
Lemma 9.11. Suppose that f € L*(0,T;V"), u € L*(0,T;V), p is a distribution and (9.39)

holds. Then u; € L*(0,T;V"),
i/ |u]2dq;—2/(u w)dz
dt Q N Q ' ’

in the sense of distributions on (0,T), and u € C([0,T), H), possibly after a modification on
a set of measure zero.

Lemma 9.12. Suppose that f € L*(0,T;V"), ug € H, and w € C°°([0,T];Q) are prescribed,
and V - w = 0. Then there exists a unique function v € L*(0,T;V) N C([0,T); H), and a
distribution p so that

u+w-Vu+Vp=A~Au+f, V-u=0, (9.40)

in the sense of distributions, and u(0) = .

Some pressure bounds and interpolation on the velocity

Note that if u solves (9.40) in the whole space, then the pressure satisfies the Poisson equation

Z 0% (wiu (9.41)

i,j=1
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The singular integral operator corresponding to the Fourier multiplier

§i&;
&
is bounded LP(R™) — LP(R™) for all 1 < p < oo, thus, in particular, we have the bound

T T

/ p|?3dxds < C’/ / lw|>3|ul*3dxds (9.42)

0o Jms 0o Jrs
T 1/2 T 1/2
< C’(/ |w|10/3d:13d3> (/ |u|10/3dxds> . (9.43)
0o Jrs 0o Jrs

We will now use a Gagliardo-Nirenberg inequality

/RS lu|9de < c(/R !VUIQda:>a</Rg \u|2dx)q/“, (0.44)

with 2 < ¢ < 6 and a = 3(¢ — 2)/4. Note that when ¢ = 2, a = 0, this is a tautology, and
when ¢ = 6, a = 3, this is the familiar Gagliardo-Nirenberg inequality

3
/ lulSdz < c(/ |Vu|2d95> . (9.45)
R3 R3

Taking ¢ = 10/3, and a = 1 gives

2/3
g |u|*3dx < C’(/}R3 |Vu|2dx> </R3 |u|2dx> (9.46)

Integrating in time and using the a priori assumptions (9.8) and (9.9) leads to
T
/ / u|"Pdzdt < CEy(u)E2? (u). (9.47)
0o Jrs
Another useful estimate, obtained, once again, by taking ¢ = 10/3 and a = 1, is

T T 5/8 T 3/8
/ w - V| Adwdt < ( / |Vu|2dxdt> ( / |w|10/3d:pdt) (9.48)
0 R3 0 R3 0 R3

< CEy(u)*8 By (w)* 8 Ey(w)*4, (9.49)
which can be restated as
||w . VU“Ls/zx S CEl (U)1/2E1 (w)3/10E0(w)1/5‘ (950)

We will also use the following bound, which follows from (9.45) with ¢ = 5/2 and a = 3/8:

3/8
[ ot < CES“(/W V)" (9.51)
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As a consequence, we have

T 2 T 3/4

/ ([ upPrar) dt < CEw)” / ([ 1ufar) " ar (9.52)

0 R3 0 R3
T 3/4 74

< C’Eo(u)7/4T1/4( / |Vu|2da:dt) < CTVAE' B, (u)*/4.
0 R3
This can be restated as
ull 1507152y < CTYPEG/® By (u)?/ . (9.53)

These bounds allow us to take a solution (in the sense of distributions) v € C([0,T]; H) N
L*(0,T;V) of the Stokes advection equation

u+w-u—Au+Vp=7f, (9.54)

with w € C*°, multiply by a test function ¢ and obtain

/ \u|2(T,x)gb(T,x)dx+2/ / ]Vu(t,x)|2¢(t,x)dxdt:/ luo(2)[26(0, z)dz (9.55)

//|u| gf)t—l—Agbdxdt—i—/ / (|u*w + 2pu) - qudmdt—i—Q// f)dzdt.
R3 R3

Exercise 9.13. Justify the integration by parts above by mollifying (in time and space) each
term in the Stokes equation, multiplying by ¢, integrating by parts and then removing the
mollification using the a priori bounds obtained above.

The retarded mollifier
We take a C*° function (¢, z) > 0 such that

/w(t, x)dxdt =1,

and
suppy C {(t,x): |z[* <t, 1 <t <2}

We also extend u(t,z) by zero to t < 0, and set

1
Us(u)(t,x) = 5—4/ 1/)(% %)ﬂ(m —y,t — s)dyds. (9.56)
The mollified u is divergence-free:
V- Us(u) =0,
and it inherits the a priori bounds on w:
sup / |Ws(u)(t, z)dr < CEy(u), (9.57)
o<t<t JRr3

and

/ /R W5 () (1, ) dwdt < C By (u). (9.58)
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The approximants

We will use the approximants

0
% +\I/5(UN) 'VUN+VpN = AUN—i—f, (959)
V- unN = 0,

un (0, ) = ug(x),

with 6 = T'/N. We may apply inductively the existence result for the Stokes equation with a
prescribed advection, on the time intervals of the form (md, (m+1)d), 0 <m < N —1. Then
we have

t t
|uN(t,:c)\2d:c+2/ Yy (s, 2) 2dwds — |u0(:c)|2d:17+2/ / (F - uw)dzds. (9.60)
R3 0 R3 R3 0 R3

In particular, we have

¢ ¢
lun (t, z)|*dx + / |Vuy (s, z)Pdzds < / luo()|*dz + / I f3ds. (9.61)
R3 o Jms R3 0

We conclude that uy is uniformly bounded in L*(0,7;V) N L*°(0,T; H), the usual Leray
bound. In addition, we know that py is bounded in L*/3([0, T] x R?). It follows that, after an
extraction of a sub-sequence, we have that py — p, weakly in L>3([0, T] x R?), and uy — u,,
weak-star in L>(0,T; H), and weakly in L*(0,T;V).

Exercise 9.14. Show that if uy is bounded in L*°(0,T; V)NL>(0,T; H), and ag—;v is bounded
in L?(0,T; H?), then uy has a convergent subsequence in L*([0,7] x R3).

Exercise 9.15. Show that if uy — u, strongly in LY and uy is bounded in L™, 1 < q <r,
then uny — u, strongly in L*® for all q,s <.

We may use this with ¢ = 2 and r = 10/3 to conclude that uy — w, strongly in L*([0, T] x
R3) for all 2 < s < 10/3. Then one may easily check that (u.,p.) is the sought suitable weak
solution of the Navier-Stokes equations.

The proof of Proposition 9.4

We now turn to the proof of the two main auxiliary results, and begin with Proposition 9.4.
We recall its statement:

Proposition 9.16. There exist two absolute constants C7 > 0 and €1 > 0 and another
constant €5(q) > 0, which depends only on q with the following property. Suppose that (u,p)
is a suitable weak solution of the Navier-Stokes system on @1(0,0) with f € L%, with ¢ > 5/2.

Assume also that
0 5/4
/(\u|3+|u||p\)dxdt+/ (/ pldz) e < <, (9.62)
Q1 1 |z|<1

and
| f|%dxdt < es. (9.63)
Q1
Then we have |u(t,x)| < Cy for Lebesgue-almost every (t,x) € Q12(0,0). In particular, u is
reqular in Q1 2.
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Outline of the proof

Let us take an arbitrary point (s, x) € Q1/2(0,0), where we want to show that |u(s, zo)| < C.
As Q1/2(s,20) C Q1(0,0), we have an integral estimate

§ 5/4
/ (Ju|® + |u||p|)dzdt +/ (/ |p|dw) dt <e. (9.64)
Q1/2(s,z0) s—1/4 |x—x0|<1/2

We will consider a sequence of shrinking parabolic cylinders Qr = Q. (s, o), “centered” at
the point (s, ) with 7, = 27%. Our goal will be to show that for all k& > 2 we have

][ lu(s, z)[?dx < Coe’?, (9.65)
|z—zo| <7y

where fS f denotes the average of a function f over the set S. Then, if (s,xz¢) is a Lebesgue
point for u, it follows that
lu(s, zo)|? < Coeal?, (9.66)

hence (9.66) holds for Lebesgue almost every point in Q;,2(0,0), which is exactly the claim
of Proposition 9.16.
In order to prove (9.65) we will show that for all £ > 2 we have a more general estimate

1
sup ][ u(t,2)Pde + ~ [ [Vult,o)Pdedt < Coe?®. (9.67)
|x—x0|<T) Tk Qr

s—r,% <t<s

Note that (9.65) follows immediately from (9.67). Thus, the conclusion of Proposition 9.4
follows from (9.67).

The induction base. We will prove (9.67) by induction, starting with & = 2. For k = 2,
we may use the localized energy inequality: for every smooth test function ¢(¢,z) > 0, that
vanishes near x| = 1 and ¢t = —1, we have, for —1 < s < 0, with B; = B;(0,0):

S S

[ (s, o, )i + 2 / Vut, 2)2o(t, 2)dedt < / | e+ Aoz

/ /B (|ul?* + 2p)u - Vo(t, )dtdr + 2/ / o(t, z)dxdt. (9.68)

Taking ¢ such that 0 < ¢ <1, ¢ =1 on Q1/2(0,0) and ¢ is supported in @Q;(0,0), we deduce
that

1JB

/ lu(s, z)Pdz+ [ |Vu(t,z)|*dedt < C (|u?+u>+|ul|p|+|ul| f|)dxdt. (9.69)
|z—zo|<1/4 Q2 @1(0,0)

Now, we may use Young’s inequality on the term |u||f|, together with the L9-bound on f,
with ¢ > 5/2, the Holder inequality, as well as our assumption (9.64), to conclude that the

left side of (9.69) is smaller than Cef/ ® provided that e, and e, are both sufficiently small.
Thus, (9.67) holds for k£ = 2.
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The induction step. The induction step in the proof of (9.67) will be split into two
sub-steps. First, we will show that if (9.67) holds for all 2 < k <n — 1, and n > 3, then we

have
3/5

1 3 T'n _ 2/3
ul’dxdt + / ullp — pu|dxdt < ei'”, 9.70
where
Pn(t) :][ p(t, z)dz. (9.71)
|z—x0|<Tn

Next, we will show that if (9.70) holds for all 3 < k < n, then (9.67) holds for £k = n. That
is, we have the following two lemmas.

Lemma 9.17. Assume that 1 and ey are sufficiently small, and n > 3, and (9.67) holds for
all2 <k <mn-—1, then (9.70) holds.

Lemma 9.18. Assume that (9.70) holds for all 3 < k < n, and €1 and ey are sufficiently
small, then (9.67) holds for k = n.

The proof of these lemmas is the heart of the argument.

The proof of Lemma 9.17

We set . .
A(r) = sup —/ lu(t, )|*de, G(r) = —2/ lu|*dxdt,
s—r2<t<s I J Bp(x0) 7% JQr(s,20)
and .
i(r) = —/ \Vu(t, z)[*dzdt.
r QT(S,xo)

Recalling that the dimension of u is 1/L, and the dimension of ¢ is L?  while the dimension
of pis 1/L% we see that, A(r), G(r), and §(r) are all dimensionless. The induction hypothesis

1S
Alr) +0(r) < CetPr}, 2<k<n-—1. (9.72)

In addition, we know that
G(Tl) + K(Tl) S 051, (973)

which is part of (9.64).
Bound on the first term in (9.70). The two terms in the left side of (9.70) will be
estimated separately. We will extensively use the Gagliardo-Nirenberg inequality in a ball

/BT lulidz < 0(/3 |Vu]2d:1;>a</3r yuP)Q/Q_“ + 7%(/3 my%)qm, (9.74)

with 2 < ¢ < 6, and a = 3(q — 2)/4 — this is the only choice of a which makes (9.74)
dimensionally correct. Taking ¢ = 3 and a = 3/4 gives a bound on the L3-norm that appears
in the left side of (9.70):

[ ot < 0(/3 |Vu|2dx>3/4(/ |u|2)3/4+r3—(’;2(/& |u|2dx)3/2. (9.75)

r
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Integrating in time and using Holder’s inequality leads to

s 3/4 3/2
lu|*dzdt < C/ (/ ]Vu]zd:v / \u]%lx) dt—l— / / |ul? dx dt
Qr s—r2
3/4 1/4 3/2
2
< C(/Qr\vm d:cdt) (/ / | d:c) dt) + TS/Q/ / Jul? d:c dt

< C’(ré(r))g/ L2 A 4 Cr R AP = Cr AP 4 AP (9.76)

Dividing by |Q,| gives

1 C
lu|®drdt < AT 210 (rn-1)** + A(rn_1)*4]
Q| Qr, 4 n-1JQ., Tn—1
C
< 5 (Alra) + 0(m0)) " < Con, (9.77)
which, in turn, means that
1 3 Cl 3 "
|ul°dzdt < lu|*dzdt < C"e;. (9.78)
‘an| an ‘Qr"71| anfl
Hence, if £ is so small that
1
C" /3 «
elh =g,
then
1 1
o ulPdzdt < 553/3. (9.79)
T'n Qryp

This is the estimate we need on the first term in the left side of (9.70). Note that (9.78) can
be also restated as

G(rn) < Cerrd. (9.80)

Bound on the second term in (9.70). In order to get a bound on the second term in
the left side of (9.70), we need to show that, under the assumption

Alrg) +0(r) < Cer2, 2<k<n-—1, (9.81)
we have
7“?/5 2/3
@l Lo lul[p — pp|dzdt < —— 2 (9.82)

provided that e, is sufficiently small. The main issue is bounding the pressure. Recall that p
satisfies the Poisson equation (note that this is the first time in the proof of the current lemma
that we use the Navier-Stokes equations)

62

—Ap =
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For any cut-off function ¢ we can write

it ) = —— [ LAy =2

A Jps [ — | AT Jgs [z =y

(PAY +2V ¢ - Vp + ¢pAp)dy

Using (9.83) and integrating by parts, we may write the above as

¢p = p1 + p2 + ps,

where

plzi/ Al [ ! ]@M%’dy,

A s Oy;0y; L|x — y|
3 x; —y; 0P 3/ 1 0%
u;dy + u;dy,
P2 0r Jos Te—yP oy, Y T ax o o — gl 0gidy, Y

3 / 1 3 — Y 8¢
p —p ¢dy+ / ——dy.
5T A e lr— ] Ix—yl3 y;

We will take a function ¢ so that ¢(y) =1 for |y — x| < 3/16 and ¢(y) = 0 if |y — x| > 1/4.
Let us split p; as

P1 = P11 + P12,
with

3 0? 1

P11 = — [ ]¢Uiu'dy,
am ly—zo| <27y ayzay] |.§C - yl ’
3 0? 1

P12 = — [ ]¢Uszy
AT 1y >2m, O¥iOY; Lz — | !

We can write (dropping the subscript n for the moment)

lp —p| < |p1i1 — Pl + |p12 — a2l + [ps — P3| + |pa — Dal-

To estimate pqq, recall that the operators

are Calderon-Zygmund operators, hence they are uniformly bounded in L9, 1 < ¢ < co. It
follows that (we denote r = r,, and B, = B, (1))

2/3
Il <C( [ lufar)”
B

2r

and
2/3

1 1
< —— dxﬁ—(/ 3/2d:c> ,
P11 |Br| /';r ’p| |Br|2/3 B |p‘

|P11|3/2d$§/ |P|3/2d$'
B,

hence

B
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We conclude that

1/3 2/3
/ lul|p11 — pu1ldx < C’(/ |u|3dx> (/ |u|3dm> ) (9.84)
Br B'r BQT‘

The terms |p; — p;| for p1a, pe and ps are estimated using the following bounds on the
gradients Vp; for |x — x| < 7 (recall that ¢ =1 in the ball Bs/16(xo) so that V¢ = 0 in that
ball):

Jul? |u?
|Vp12(x)| S C —de S C —de,
2r<ly—zol<1/a |Y — | ar<Jy—ro|<1/4 1Y — Tol
[Vpa(2)| < C |ul?dy,
By 4(z0)
Vis@| <C [ play
31/4(950)
This leads to
/ |ul[pra — Pra| < Cr| Sup [Vpia(z 2/3 / |ul? d:c
1/3 2
< C’r3< |u|3dx> / —]u\ sdy, (9.85)
B, 2r<|y—zo|<1/4 ’y - ZEo‘
and
1/3
/ |ul|p2 = pa| < Cr[ sup [Vps(x 2/3 / Jul? da: (9.86)
Br zeB T

1/3 1/3 2/3
< Cr3</ |u\3d3:) / lul?dy < C?“B(/ |u\3d3:) (/ \u]?’dy> :
By B /4(z0) By B /4(z0)

For p3, we write

/BT lullps — ps| < Cr(/BT !u\dy) (/Bw(xo) !P!) (9.87)

< Cr(r3)3/5(/B Iu\Qdy>l/5(/B \U|3dy>1/5(/3 ( )|P\>
T r 1/4 Zo
<craw ([ wran) ([ W)
r 1/4\T0

Integrating the above estimates over the time interval s — %2 < t < s, and collecting all the
terms we get

/ |ullp — ppldxdt < Wi+ Wo + Wy + Wy (9.88)
Qr
The term

1/3 2/3
W= [ juParar)”( / uPdedt)” = CPGEYCET (989
Qr

2r
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comes from (9.84) and using Hoélder’s inequality. Using (9.80), W; can be bounded as
W1 S 0517"7217"2 = C€1T2. (990)

The second term arises from (9.85) and also using Holder’s inequality (note that 13/3 =
3+ 2(2/3)),

1/3 t 2
Wy = Cr13/3</ |u|3dxdt> sup / Mdy. (9.91)
Q- s—r2<t<s J 2r<|y—zo|<1/4 |y — o

Note that for r = r,, = 27", the last factor in (9.91) can be estimated with the help of the
induction hypothesis (9.81) as

(t t,y)|?
/ ’u Y)| 3 Z/ Ju( y)|3dy
2rn < |y—wo|<1/4 |y - ng 2k <Jy—zo|<2=(k=1) |y — o

— n—1 2/3
_ ., _ Ce
%y ult )Py < 3 Al <cel/32kls e
k=3

2=k <|y—xo|<2— (k1) =3 Tn
Using this inequality, together with (9.80) in (9.91) gives
L2/3
W, < Crl3/3 (TZG(Tn))l/S L < CriG(r,) 3] 25 < Oy oEl. (9.92)

Tn

W, = o / |u|3dxdt>1/ o / ]u|3d:vdt>2/ ’ (9.93)
Qr Q

1/4

The third term

comes from (9.86) and, of course, using Holder’s inequality once again, and can be bounded
with the help of (9.80) as

Wy < Crd (r2G(r,))) P G(1/4)23 < Crit/3e,. (9.94)

Finally, the last term in (9.88) comes from (9.87):
0

W, = Ot A /Q !u\3d:vdt>1/ ( / » ( /B |p|dx>5/ 4dt)4/5. (9.95)
. - 1/4

It can be bounded as (assuming that ¢; < 1):

Wi < Cr3A(ra) P (r2G () Pel® < Or3 (2223 (15 e )55 < Op22/5g,. (9.96)
Altogether, we conclude that
/Q ullp — Py, |dxdt < Cr2/oe,, (9.97)
We conclude that
315 213
S [ullp — by, |dwdt < Cey < =, (9.98)
|Qn| Qn 2

provided that ¢; is small enough. This bounds the second term in (9.70) and finishes the
proof of Lemma 9.17.
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Proof of Lemma 9.18

We now assume that

1 3/5 »
— lu|*dzdt + £~ \qu Dnldxdt < 7’7, (9.99)
Qkl Jo, \Q | /o
for all 3 < k < n, and show that then
sup ][ lu(t, z)Pdz + —/ IVu(t, z)|2dzdt < Coc?®. (9.100)
s—r2<t<sJ |z—xo|<rn,

We will shift the origin so that (s,zg) = (0,0), to simplify the notation. The idea is to use
the generalized energy inequality

s

[ lu(s,m)Po(s, )i + 2 / [ Vu(t.a)Poft.a)dzdr < / lu(t, )2 (& + Ad)dadt

1JB;

/ / (|u* + 2p)u - Vo(t, z)dtdx + 2/ / o(t, z)dxdt, (9.101)
—1 Bl Bl

with a suitable test function ¢,,. We will set

¢n(ta m) = X(x>¢n(ta :L‘),
with the backward heat kernel
T )
(2= P Az

and a smooth function x(x) > 0 so that x(z) = 1 on Q2 = (Q1,4(0,0) and x = 0 outside
of @1/3(0,0). Then we have

wn(tv :U) =

Opn
(;i + A(bn = O on QQ,
and
On
T + A¢,| < C, everywhere,
and the following bounds hold:
1 C C
Cra S < ¢, < 3 V| < — s on Q,, n>2 (9.102)
and ) o o
=] <on <=, Vo< 4 on Qi1 \ Qr, n > 2. (9.103)
T Tl Tk
We may now insert this ¢, into (9.101), and use the lower bound for ¢, on @, to get
1 1 n
sup  — lu(t, r)|? dx—l— — |VulPdzdt < C/ |ul? yﬁqb + A¢y,|dzdt
—r2<t<0 Ty Jiz|<rn Qn
/ (| V b |ditdz + C‘ / - Vo) dtdx‘ + C/ \f ||l ||dazdt
=C(L+ 1+ I3+ 1y). (9.104)
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To estimate I; we simply use Holder’s inequality:

2/3
Ll <[ julfdedt < c( |u]3d:cdt> < 0, (9.105)
Q1 Q1
The second term is estimated as
L] < CZ / u|*dzdt < OZ —453/%2 < e’ (9.106)
Qk k— Tk

The last term in (9.104) is also easy:

\f4|50i%3 | |u|rf|dxdtscki}3( L) (L ) a0

< CZ 8?/37’2 1/3”fHLq(Q1)r;0/3*5/q < Cgl/q 2/927“2 5/q < Cgl/q 2/9’
k=1

as ¢ > 5/2. Therefore, if €, is sufficiently small, we have
L] < C2°, (9.108)

Finally, we deal with I3. Here, we will use the condition that u is a divergence-free flow.
Let us take smooth functions 0 < x; < 1 such that xx = 1 on Q7,, /s, and xx = 0 outside
of @y, , and

C
Vxe| < —.
Tk

Then, as x1¢, = ¢,, we can write I3 as a telescoping sum:

L= [ e Voide =3 [ g Vi xena) + [ petas. 0109

1 k=1 1 1

Since u is divergence-free, and x; — X1 vanishes outside of @)y, we can write for k£ > 3:

/ pu - V((Xk — Xt1)Pn) = / pu- V(X — Xt1)Pn) = / (P — pr)u - V((Xk — Xe41)Pn)-

k

For k = 1,2 we simply have

[ e ¥ =)o)

<c [ |pllul <<,

Q1

while for the last term in (9.109) we have

/ - () = | 0= p)u- Vo).

n

Putting these together, we have

1'3<C€2/3+CZ /]p pkHu\<Ce€2/3+C’Z 2/353/5<C’2/3 (9.110)
k=3 Tk

This finishes the proof of Lemma 9.18, and thus that of Proposition 9.4.
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10 The weak solutions of the Euler equations

The goal of this section is to give a naive and simplistic glimpse of the recent results on the
Onsager conjecture and the weak solutions of the Euler and Navier-Stokes equations that do
not preserve the energy. This material is mostly based on a recent review by V. Vicol and
T. Buckmaster, but also includes some material from the pioneering papers by C. De Lellis
and L. Székelyhidi.

10.1 The statistical description of turbulence

The starting point of our discussion are the Navier-Stokes equations

uy +u” - Vu' + Vp =vAu” + f,
Vou’ =0, (10.1)

with a small viscosity v > 0. Our favorite fundamental energy balance says that, as long as
the solution u”(t, x) remains smooth, we have

1d

o [P = v [Vt oPde+ [(f ) (10.2)
On the other hand, if we consider the Euler equations rather than the Navier-Stokes equations,
with the same forcing

v+v-Vo4+Vp=f,
V.v=0, (10.3)

and assume that v(t, z) is also smooth, then the corresponding energy balance is simply

LA [t o)2de / (f - v)dz. (10.4)
2dt Jy, T,

Our interest will be in two issues: first, should we think of the solutions to Euler equations as
the solutions to the Navier-Stokes equations in the limit of a zero viscosity, and, second, how
do the weak solutions to the Euler equations behave when the forcing f is, in some sense,
small. In other words, can a small force f create a large (but oscillatory) solution to the Euler
equations. These issues are quite closely related.

The answer to the first question depends, essentially, on what happens to the energy
dissipation term in the right side of (10.2). Naively, one may expect that this term vanishes
as v — 0, so that for v > 0 small it is also small. This, of course, assumes that v remains
uniformly smooth as v — 0. As we will see, this is not the case even in much simpler linear
problems. In order to be more specific, we will assume, without any rigorous justification,
that u” satisfies the following hypotheses that reflect the physical observations. First, u” (¢, x)
is a space-time stationary random process — its law is the same for all t € R and x € R3, and
for any a collection of space-time points (¢, 1), .., (tx, zy) and any shifts s € R and y € R?,
the joint law of

u(t1+s,21+y),...,u"(ty + s, 28 +y)
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does not depend on the "off-sets” s € R and y € R3 but only on the relative times and
positions t1,...,ty and z1,...,zy. Second, we assume that the field u”(¢, ) is statistically
isotropic: for any collection of points z,...,xy, any ¢t € R, and any orthogonal matrix R,
the joint law of

u’(t, Rx), ..., u"(t, Rry)

is the same as that of u”(t,z),...,u”(t,xy). For the final assumption, let us define the
increments
ou’(t,x,z) =u’(t,x + z) — u”(t, x).

We assume self-similarity of the increments: there is a range of scales ¢, known as the in-
ertial range, and a constant g > 0, so that the law of du”(t,x,\l2) is the same as that
of Méu¥(t,z, (%) for all unit vectors 2 with |2] = 1, and A > 0 so that both ¢ and M\ are in
the inertial range.

A basic hypothesis of the theory of turbulence, together with the above space-time homo-
geneity, isotropy and self-similarity properties, is that the average energy dissipation rate

e’ = (v|Vu’(t,z)]*) = e>0asv — 0, (10.5)

does not vanish in the limit v — 0. Here, (-) denotes the statistical averaging. This, in a
sense, defines, what it means for u” to be turbulent. This should, naturally, in the limit v — 0,
lead to the solutions to the Euler equations for which we have an inequality in (10.4) rather
than an equality:

%%/|v(i,x)\2d:c</(f~v)dx, (10.6)

and which are not smooth. This brings about two fundamental questions: first, how should we
expect the energy dissipation rate to behave for v small, and, second, for what kind of rough
solutions to the Euler equations should we not expect energy conservation? The former is
addressed by the Kolmogorov theory of turbulence, and the latter by the Onsager conjecture,
though the two are closely related.

Let us define the mean energy per unit volume carried by wave numbers smaller than s
as (|P<.u”|?). Here, P<, denotes the projection on the wave numbers smaller than « in the
Fourier space. The energy spectrum of u” is then defined as

d
E(k) = —(|P<,u”]?). 10.7
() = (P’ ) (10.7
The main hypothesis of the statistical turbulence theory is that in the inertial range the
energy F(k) depends only on the limiting average energy density € in (10.5) and the wave
number x but not on f or the viscosity v. The dimensions of these objects are

d length?  length?®
E :[—IP’H”2]:1 th _ ,
[ (R)] d/{<| S ’ > ong time? time?
length? 1 length?
] = o2 = 8 (10.8)
time time time
W] = —
K length
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Therefore, the dimensional analysis implies that the ratio

E(x)

s (10.9)
is non-dimensional, and thus should be a constant, if (and only if)
3=2a—-0b, 2=3a, (10.10)
so that a = 2/3, b = —5/3. We deduce that in a turbulent flow we should have
E(r) = Cre?Pr5/3, (10.11)

in the inertial range, with some constant Cx > 0, that should be determined from the physical
considerations.

The self-similarity exponent p can also be determined from purely dimensional consider-
ations. Let us define the p-th order absolute structure function as

Sy(0) = (Ju(t, + 2) — (L)), |2l =1, £>0.
In the inertial range we should have
Sp(£) = Caim ™, (10.12)

with a dimensional constant Cg,,. The physical hypothesis is again that S,(¢) depends only
on ¢ and /. Note that the corresponding dimensions are

_ length” B length?
[Sp( )]_W’ [e] = 3

time

[(] = length.
We conclude that there exists a non-dimensional constant D, so that
S,(6) = Dy(et)”.

Comparing to (10.12) we conclude that the self-similarity exponent p = 1/3.

The inertial range extends from the macroscopic scale of the forcing down to a small
scale (x that should depend only on € and the viscosity v. Once again, looking at the
dimensions

length? length?
= me 0=

we conclude that the Kolmogorov dissipation length is

e

Y

time

e

cl/a

Ak = (10.13)

with a constant cx that comes from physical considerations. The constants cx and Cx are
not independent — they can be related using the hypothesis that the energy is concentrated
in the inertial scale A\ < ¢ < L, together with (10.11) and the relation between € and F(k).

145



10.2 The easy direction of Onsager’s conjecture

Let us now turn to a more mathematical analysis. As usual, we work on the torus T3. We
say that v(t, z) is a weak solution to the Euler equations

vw+v-Vo+Vp=0,1t>0, €T
V-v=0, (10.14)
v(0, ) = vo(),

if v € C[0,T; L*(R3)], for any ¢t > 0 the vector field v(t,-) is divergence-free in the sense of
distributions, and for any divergence-free test function ¢(t,z) we have

/OOO /1r3 v(t, ) - [Opp(t, ) + v(t,x) - Vo(t, z)|dedt + / vo(z)p(0, x)dx = 0. (10.15)

’I[‘3

A smooth solution to Euler’s equations conserves energy:

|v(t,x)|2dx:/ |[vo()|?da. (10.16)
T3 T3

For the weak solutions, Onsager’s conjecture, directly related to the Kolmogorov self-similarity
exponent = 1/3, says that (i) a weak solution to the Euler equations that belongs to the
Holder space CF, with o > 1/3 conserves energy, and (ii) for any o < 1/3 there exists a weak
solution to the Euler equations in the Holder space Cy, that does not conserve energy.

The first part of this conjecture is much easier to prove. Let us assume that v(t,z) is C*
in the x-variable, with @ > 1/3. Let ¢ > 0 be a smooth test function in C°(R3) such
that ||¢[|z1 = 1 and set ¢y = £73¢(x/f), a standard mollifier. Given a function f we will use
the notation

Je=¢ex f. (10.17)

The mollified vector field v, = v x ¢, satisfies

815?]@ + ('Ug . Vl)g) + ([U . V’U]g — Vg - V?Jg) + Vpg =0,t>0, z € TS,
Vv =0. (10.18)

We can write, using the divergence-free property of v:
[v - Vvl = @0 * [0k0kv;] = dp x [Ok(vrv;)] = Ok[de * (vkv;)] = Ok[(vkv; ). (10.19)
Then, multiplying (10.18) by v, and integrating by parts gives, as vy is also divergence-free:

1 1 t
—/ lvg(t, x)|?dw — = [06(0, 2)|?dx = —/ / (vgj[vkakvj]g — v ;v kﬁkvgj)da:ds
2 T3 2 T3 0 T3 ’ ’ ’ ’

t t
= —/ / (Ug’jak[(?}kvj)g] — Ugyj [vg,k.(()kvg,j)dxds = / / [(Ukﬂ}j)g — Uﬂkvg’j]akUngdCL’dS(.lo.QO)
0 T3 0 T3

We have the following lemma.
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Lemma 10.1. Let ¢ > 0 be in C>°(R?) and such that ||¢||r = 1, and set ¢o(x) = (=% (x/l).
Then, for any a € (0,1) we have

1f x ¢eller < COE| flloa, (10.21)

and
1(£g9) * de = (f *x de)(g * Po)llco < CE| fllcallglice, (10.22)
with a constant C' that depends on ¢.

With this lemma in hand, and assuming that v € C%(R?), we may estimate the integral
in the right side of (10.20) as

’ / [(vrv5)e = W,kve,j]akve,jM‘ < Cl[(vrvj)e = vervellcollveller
T3
< CC)Igat™ " vlloe = CE*Hv]|Za — 0, (10.23)
if & > 1/3. Therefore, passing to the limit £ — 0 in (10.20), we obtain

lv(t, z)|*dr = / [v(0, z)|*dz, (10.24)
T3 T3
thus the energy is conserved.

Let us now prove Lemma 10.1. To prove the first bound in this lemma, we write

h _
G Y e L
do( $+h€k— — ¢u(r —y)
h~>0/

_ }JL% [t )/,f) I CE R
=t [ PEFRO) 2O (0 ) — pa)ya
so that
o0l o0 < Jim [ILEHIE O iy pay
< el iy [IEERLZ A e < oot 10,25

For the second bound, we note that
(F9) - 0n(2) = (< 00)(@) g 00)(&) = [ Fg(won(o ~ )u(s — 2)dyds
/f Voo(a — y)g(2)be(x — 2)dydz (10.26)
~ [0~ (e~ ) - o~ (o~ ))dyd:
= [6e@f @ 1) = fla ~ t)lgta — ¢2)dyd:
— [l - t2) - 1o~ gl — t2) = glw)ldyd
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so that
(£g) % dul2) — (f % 60)(a (9*@)( ) (10.27)
/ S0 (@ — €2) — f(z — ty)l|g(z — 2) — g(x)|dydz

fz"llfllcallgllc*a/é 2)|z = yl*l2|*dydz = CC¥| fllcalgllce,

finishing the proof of Lemma 10.1.

10.3 The wild continuous weak solutions of the Euler equations

In this section, we prove existence of a Holder continuous solution of the Euler equations, with
a sufficiently small Hodler exponent § > 0. The Euler equations written in the divergence
form are

v +V-(v@v)+Vp=0,1t>0, v T
Vv =0, (10.28)

that does not conserve the energy. Here, the torus is normalized as T = [0, 1], with the
periodic boundary conditions. We use here and below the notation

for the standard tensor product of two vectors and
1
[a Rty b]zj = aibj — —(a . b)éij, (1030)
n

for a traceless tensor product of a pair of vectors a and b in R”. Only the divergence of the
traceless tensor products will appear below in various equations that also have the pressure
terms, and the trace part can be always added to the gradient of the pressure.

Theorem 10.2. There exists f > 0 and a weak solution v € C([0,T]; C?(T?)) to the Euler
equations such that

lv(1,2)[Pdz >2 [ |v(0,2)|*dx. (10.31)
T3 T3

The proof proceeds by an induction. We will construct a sequence v,, ¢ = 0,1,2,... of
solutions to the forced Euler equations

g+ V- (v,®@0)) +Vp,=V- Ry, t>0, z €T

V-, =0, (10.32)
with a Reynolds stress R, that goes uniformly to zero as ¢ — +o00, and v, converges uniformly
to a weak solution to the Euler equations satisfying the ”"reverse” energy inequality (10.31).

At each induction step, we do not design v,y directly but rather use v, to construct the
increment wgy1 = Vg1 — Vg, in such a way that v, satisfies

(9tvq+1 + V. (Uqul ® 'Uq+1) + qu+1 =V Rq+1, t> 0, x e Tg,
V- vgsr =0, (10.33)
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with a smaller Reynolds stress R,y1. Given wg.;, the Reynolds stress R, is determined as
the trace-less symmetric matrix satisfying

% Rq+1 = Eosc + Etr + ENash; (1034)

with the "error” terms in the right side depending on v, and wg4:

Eosc =V- (wq+1 & wq+1) - V- Rq + v(pq+1 - pq)7 (1035)
Etr = atwq+1 + Uq . qu+1, (1036)
ENash = Wg+1 - Vvq. (1037)

These terms are known as the oscillation error, the transport error and the Nash error,
respectively. Given the iterate v,, the goal will be to choose wyy1 so that R,y1, the symmetric
trace-less solution to (10.34) with a given right side, is small, and, in addition, the series

> w, (10.38)

converges. In order to make sure that the reverse energy inequality (10.31) holds, we will
choose the first iterate vy so that vy(0,2) = 0, and vo(1,x) does not vanish. This means
that vo(t, z) satisfies (10.31) trivially. The induction construction will ensure that actually
all v,(t, ) stay sufficiently close to vy(t, z) for all 0 <t < 1, so that in the limit ¢ — +o0 the
inequality (10.31) will still hold.

The correction wy4; will consist of two parts:

wer1 = w) +w,. (10.39)

Here, w((lﬁ)l is the principal part of the perturbation, chosen so that the low frequency terms in

the trace-less product w41 @4 wey1 essentially cancel those in R, so that these contributions
to the oscillation error cancel each other. Roughly speaking, it is of the form

W~ ag(Ry)We. (10.40)
§

Here, W are "building blocks” oscillating at a high frequency A41, and the coefficients a¢(R,)
are chosen so that the aforementioned cancellation of the lower frequencies takes place. As
an additional minor complication, wé’jr)l will need to be corrected to decrease the transport
error. The correction wéi)l is chosen to ensure that wy; is divergence-free.

In order to see yet another way the threshold 1/3 for the Hodler regularity comes up, let

us assume that the frequencies are chosen so that
Ay = A, (10.41)

with some A € N. Then, in order for the series in (10.38) to converge to a C# function v, we
should have, at least,
[wgllco < A7 (10.42)
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The Reynolds stress should then satisfy, roughly
IRy llco < A7, (10.43)

because it is related quadratically to w,4+1. The contribution of the Nash error to the Reynolds
stress R,;1 is one derivative smoother that Ey,sn, and oscillates at frequency A,41. In the
uniform norm, it should be of the order

Cllwgsillco[valler _ CAgta - a1y1e
| RNash | co < d < 1 A AP < ONPTINP
q+1 )\q+1 )\qul ngq q+1 “q
—B-1 1-8 - —28 38—
= Oy APFIN GO0 < oa 2N (10.44)

In other words, for the bound (10.43) to be "iteratable” we need to have g < 1/3, another
indication for why Onsager’s conjecture holds. In reality, we will take the frequencies growing
much faster than in (10.41), and we will also take  to be very small.

10.4 The iterative estimate
We now turn to an implementation of the above scheme. We will take the frequencies

A = a”, (10.45)
with a € N sufficiently large, to be specified later, so that

Agr1 = Ao (10.46)

We also set
0 =", (10.47)

with # > 0 sufficiently small, also to be specified later. We will assume the following inductive
bounds on v, and R:

lvglloo <1 —6,/2, (10.48)
lvgllcs, < CréyAq, (10.49)
[Rqllco < crOg+1, (10.50)

with a pair of universal constants Cr and cg, to be specified below. Let us explain the choices
here. As we have mentioned above, the basic premise is that the increment wy11 = vg41 — vy

is of the size 5;421 in the uniform norm — see (10.52) below, and oscillates at frequency A,41.
Then the Reynolds stress R, should be of the size d,4; in the uniform norm, simply because
it is quadratic in wgqq, which gives the induction assumption (10.50). The uniform bound
(10.48) is a convenient induction assumption since

Ug+1 = Vg + W1,
so that if (10.48) holds at level ¢, and we have (10.52) below, then

1/2 1/2
logenll < 1—012+ 6,03 <1-0,13.
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Finally, assumption (10.49) on the C*-norm of v, comes about because the frequencies \,

grows sufficiently fast, so that even though ||wyi1|lco < |Jwyl|co, we still have [Jwgi1]|cr >

||wgl|c1, so that the main contribution to ||v,||c1 comes from ||w,||c1, which is of the size
[wgller ~ Agrillwgllco = )‘q+151/2-

Note that 5;/2)\(] — +00 as ¢ — 400 in (10.49), since § > 0 is small — because of the easy part

of Onsager’s conjecture, we do not expect v, to converge in a Holder space Cf', with a > 1/3,

let alone in C’tl@. The induction step is described in the following.

Proposition 10.3. There exists 5 > 0 sufficiently small and ay sufficiently large, so that for
any a > ag there exist v, and Ry, ¢ > 0, that satisfy

g+ V- (v,®@v)) +Vp, =V -R,, t>0, z €T,
Vv, =0, (10.51)

and obey (10.48)-(10.50), and such that
o1 = vlleo < 6,43 (10.52)

Let us explain how Proposition 10.3 implies the conclusion of Theorem 10.2. We take the
first iterate to be an oscillatory shear flow

t
volt,z) = §(sin()\(1)/2w3), 0,0). (10.53)

Then we have 1
leo(t, Nlles < 5 <18, (10.54)

so that (10.48) is satisfied, for a large enough. We also have
loo(t Mz, < A’ < Aoy, (10.55)

as long as §; ' < Ao, which is true as long as 8 < 1/2, and a is sufficiently large. Hence, (10.49)
also holds for ¢ = 0. To find Ry we note that, as vy is a shear flow, we have vy - Vyy = 0,
hence

1 0 0 — cos()\é/2x3)
207\~ Cos(Al/Qx ) 0 0
0 T3
so that . 5
. v

V-Ry= §(Sm(/\(1)/2x3),0,0) = a—to.

It follows that
[1Rol|co = <a '’ < cpby = cpa?’, (10.57)

222

provided that 8 < 1/8 and a is sufficiently large. Hence, condition (10.50) also holds at ¢ = 0.
A key consequence of (10.57) is that vy is a solution of the forced Euler equations with a
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Reynolds stress that is already very small in the uniform norm, provided that we take a
sufficiently large. In addition, the L?-norm of v, vanishes at ¢+ = 0 but is not zero at t = 1.
We will now construct a rough weak solution to the unforced Euler equations that will be
close to vy(t,z) in the uniform norm for all 0 < ¢ < 1, and this will force it to violate the
energy inequality.

We start the iteration as in Proposition 10.3, with the initialization (vg, Ry), and obtain
a sequence (v,, R,). Let us take § > 0 as in the definition (10.47) of §,. Then, for any
a < [ the bounds (10.48), (10.49) and (10.52), together with an interpolation inequality
between the Hélder norms, and the fact that the sequence &y ?)\, in the right side of (10.49)
is monotonically increasing, imply that

vgs1—vglleg < callvgrs —vallgn™ 1vgr1— vl < cabyir™ 205300 = cadyliNgyy = cadgh .
(10.58)
Thus, the limit
v = lim Vg
qg—+00

exists in C([0, 1], C*(T?)) for any a < 3. Furthermore, (10.50) implies that
R, — 0in C°([0,1] x T?).

It follows that v(¢,z) is a weak solution to the Euler equations that lies in C([0, 1], C*(T?))
for any o < f.
To finish the proof of Theorem 10.2, it remains to show that the reverse energy inequality

[o(1, )22 = 2|0 (0, )| 2 (10.59)

holds. The point is that, if a is sufficiently large, then, on one hand, v(¢,x) is close in the
uniform norm to vy (¢, x) for all 0 < ¢t < 1, and on the other vy(0,z) = 0 while vy(1, z) has a
fixed non-zero L?-norm that is independent of \g. Indeed, we have using (10.52):

00 00 00 00
1/2 — —B.
v = vollco <D vger —vglleo <D 6,5 =D A7 =D ™
q=0 q=0 q=0 q=0

> 1
< —B(q+1) < - 10.60
= qz;“ = 10000’ (10.60)

if a is sufficiently large, so that v and vy are close. It follows that

1 1
2[00, )llz2 = 2v0(0, 22 + 755 = 155 = o Mlzz = oo, ) = v(L, )22 < o, e,

finishing the proof of Theorem 10.2.

10.5 Proof of Proposition 10.3

We now prove Proposition 10.3. We only need to prove the inductive step as we have already
constructed the pair (v, Ro). It will be more convenient to work with the mollified versions
of v, and R, defined as

Vy = (Uq *z G1) *t P, (10.61)
Ry = (Rg *z ¢0) %t .
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We dropped the subscript g above in v, and R, to simplify the notation. Here, ¢,(x) and ¢y(t)
are standard scalar-valued mollifiers of compact support in z and ¢, respectively. As we are
not aiming to prove an optimal result, we choose the mollification scales in x and ¢ to be the

same, and take ¢ as an intermediate scale between /\;1 and )\;13

0= \732 (10.62)

q

so that
A =A<< (10.63)

Note that, by the induction hypothesis (10.48), we have
[velloo < flvglleo < 1= 6,72, (10.64)

and for any N > 1 we have, because of the way ¢ was chosen and the second induction
hypothesis (10.49):

vellen < CEONTHugllor < CENFINGSY2 < O™, (10.65)

while

[vg — vellco < llvgller < CADY? < ONV20Y? < 8113, (10.66)

as long as 8 > 0 is sufficiently small.
As in (10.18), we obtain

Oy + V- [Ug (%9 Ug] +Vp, =V- (R@ + Rcomm), (10.67)
V- Vy = 0,

with
Rcomm = Vg Q¢ Vg — [(U Rt U) *g QSZ] *t Do (1068)

Recall that the traceless tensor product ®,. is defined in (10.30). In (10.67), with a slight
abuse of notation, the pressure p, includes both the convolution of p, with the mollifiers and
what should have been the trace part of Repmm. Note that, as in (10.27), we have, using

(10.49) and (10.30):
HRcommHCRx < Cﬁ”””ctleUHng < O&S;/Q)‘q - C)‘q_g/Q)‘q_ﬁ)‘q - )‘;ﬂ_l/z < Og+2, (10.69)

provided that [ is sufficiently small and a is sufficiently large.

10.5.1 The Reynolds stress equation

Let us first address the equation for the Reynolds stress:
V-R=E(), 2T (10.70)

with the condition that R(x) is a symmetric trace-free matrix. Here, F is a mean-zero vector-

field on T3:
/ E(z)dz = 0. (10.71)
T3
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We claim that a trace-less symmetric solution to (10.70) is given by
1
R () = (kA E,y + 0 AT E)) — 5(5,% + OO A HATH(V - E). (10.72)

The symmetry and mean-zero properties of R are obvious from (10.72). Its trace vanishes

because
n+1

TrR=2A"YV-E) — A YV -E)=0

in dimension n = 3. To check (10.70) we write

(V . R)m = O Rpm = Ok(GkA‘lEm + 8mA_1Ek) — %&c(ékm + &ﬁmA‘l)A_l(V . E)
=E,+0,A(V-E)— %amA—l(v - E) — %amA—l(v -E)=E,. (10.73)

The next lemma says that R is similar to (—A)~'/2E when FE is oscillatory.

Lemma 10.4. Assume that a(x) € C™*(T3) and ® € C™(T?) be smooth R*-valued func-
tions, let C' be such that
C™' < |V@(2)| < C for all x € T5.

Letw € Z?, a € (0,1) and m > 1, and R(x) be the solution to (10.70) with
E(l’) — a(x)eiw.<1>(:1:) _/ a(y)ei“"q’(y)dy, (10‘74)
T3

given by (10.72). There exists a constant K that depends on C, a and m but not on |w| such

that
lal|co 1

‘w‘lfoz |w|mfa

IRlles < € (lallone + llallcolV@[lcne) ). (10.75)

Proof. To be filled in.

The reason we allow a phase factor ®(¢,x) in Lemma 10.4 is that we will need to modify
the phase to decrease the transport error, as discussed in Section 10.5.3 below. Our strategy
will be to construct w41 so that R, satisfies (10.70) with a right side that is as in Lemma 10.4:
mean-zero and oscillatory, ”essentially” at a single, sufficiently high frequency: in particular,

the terms
lallco  [lallgm.a

|w|1fa’ |w|mfa

in the right side of (10.75) should be small.

10.5.2 The Beltrami flows

The building blocks we will use to construct the principal part of the perturbation w,.; as
in (10.40):

wiy ~ > ag(Ry)We (10.76)
:
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are the Beltrami waves W;. They are defined as follows. Recall that the set Q* N'S* of
rational points is dense on the unit sphere S?. To see that, consider the inverse map of the
stereographic projection s(z,y) : R? — §?

2y 21 x2+y2—1>
e e e R N

s(z,y) = (

It is clear that s maps Q2 to Q3N S?. Since Q? is dense in R? and s is a diffeomorphism of R?
onto §?\ (0,0, 1), the density of Q* N'S? in S follows.
Next, given & € Q* N'S?, we take A¢ € Q* N'S? so that

Ac-£=0, A=A (10.77)

The choice of A¢ is not unique: for instance, we can take A = (—£2,&1,0) for € = (&1,£2,&3)
with £ > 0 and extend it to £ with £ < 0 using the even symmetry in (10.77). We also

define the complex vector
1

B
VG

(Ae + i€ x Ag). (10.78)
By construction, the vector B satisfies
|Bel =1, Be-£=0, i§ X Be=Be, B_ =B, (10.79)

with - denoting the standard real inner product, without the complex conjugation, and the
bar denoting the complex conjugation. The third identity above relies on the formula

[5 X (6 X A{)]k = €kmj€m€jrs£r<f4£)s = [5rk6ms - 5k55mr]£m£r(f4§>s
= &(€ - Ae) — [P (A = — (A

It follows that for any A € Z such that A\¢ € Z3, the function
We () = Bee?™ee (10.80)

satisfies 4 '
[V X Wenlj = €jam2TiA Be €T = 2w\ By ;€™ (10.81)

and is therefore a periodic eigenfunction of the curl operator corresponding to the eigen-

value 27 A\:
V x Wg)\ = 27T>\W5’)\. (1082)

We can now fix A\ € Z and take any finite set I' € Q3 N'S? such that —I' = T" and \¢ € Z3 for
any £ € I'. Then for any collection of coefficients as € C such that a_¢ = a¢, the vector field

W(z) =) acBee™ " (10.83)
ger

is a real-valued divergence free vector field on T? such that

V x W(zx)=2rA\W(x). (10.84)
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Note that for any vector W we have
(W X [V X W])l = eijkl/{/jékmnamWn = <5zm53n — 5m§jm)WJ6mWn = W}@W] — WjﬁjWi,

which gives the vector identity

2
W x [V x W] :v(@) —W VW (10.85)
It follows from (10.84) and (10.85) that
oW
W VW = v( > ) (10.86)

In other words, any W of the form constructed above is a solution of the Euler equations,
with zero pressure.

Observe also that given any & € Q® N S?, the vectors &, A(§) and & x A(£) form an
orthonormal basis, so that

ERE+ A @ Ac+ (€ x Ag) ® (€ x Ag) = 1d, (10.87)
which implies
Be® B¢ = 5(Ac i€ x AQ) ® (Ac — i€ x Ao) (10.88)
= S(Ae® Ac+ (€ X A ® (€ X Ag)) + 2[(€ X Ag) ® Ac — Ag ® (€ x Ae)]
= (14— €@+ J[(€ X A) ® A — Ac® (€ x Ag)]

It follows that for W of the form (10.83) we have

/TS(W @W)de = 3 /TS agag ™ (B @ Bg)dr = ) aca_¢(Be @ B_g)

§¢'el ger
- %Z|a§|2(1d—§®§), (10.89)
el
because
D lagl (€ x Ag) © Ag — Ag @ (€ x Ag) =0, (10.90)

ger

as the individual terms inside the sum are odd in £ and the set I' is symmetric: —I" =T".
We will use the Beltrami flows as building blocks in the decomposition (10.40) for the
principal part of the perturbation wg;1:

wil ~ > ag(Ry)Wen, - (10.91)
¢
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The goal will be to cancel out the average of the R, term in the oscillation error (10.35)
Eosc =V (wq+1 ® wq+1) -V Rq + V(pq+1 - pq)7 (1092)

so that E,s. has the form (10.74) in Lemma 10.4. To this end, we need to know that the family
of the Beltrami flows is rich enough so that the cancellation is achievable for a large class of
given matrices R,. Keeping in mind expression (10.89), we will now prove the following. We
denote by B, (Id) the closed ball of 3 x 3 symmetric matrices centered at Id, of radius 7.

Lemma 10.5. There exist two disjoint finite subsets Ao, Ay C Q* N'S? such that if £ € A
then —¢ € A;, and ro > 0, so that for each matrix M € B, (Id) and j = 0,1, we have a
decomposition

M= % S () Id- €2 ¢). (10.93)
geA,

Moreover, for each £ € Aj and j = 0,1, the coefficients 7§j)(R) are C*-functions on By, (Id).
Proof. To be filled in.

10.5.3 The principal part of the perturbation

We would like to take the principal part of the perturbation as a sum of the Beltrami waves.
At the same time, we need to make sure that we have a small transport error in (10.36)

Etr = atwq+1 + 'Uq . qu+1. (1094)

To this end, we will replace the phase £ - x in the definition of the Beltrami wave by a
phase ®(t, ) that is transported by the vector field v,. We divide the interval 0 < ¢ <1 into

intervals of length ¢, and for j = 0,...,[¢7!], we define ®;(¢,z) as the T*-periodic solution to
atCI)j + vg - V(I)] = 0, (1095)
D;(jl, x) = .

We have the following standard estimates for ®,: first, differentiating (10.95) in z, and using
Gronwall’s inequality and the inductive assumption (10.49) gives

IV®;(t) — Id[|co < Cljvgllor < CUAGY? = CA;V?6)7 < 1, for all (j — 1)<t < (j+ 1)L

(10.96)
Differentiating (10.95) once again gives
IV®;(#)llcp, < CAGy%, forall (j — 1)0 <t < (5 + 1)L, (10.97)
and, more generally,
IV®;(t)][on < COTAGY? < €7, forall (j — 1) <t < (j+ 1)L (10.98)

Each ®,(¢,z) will play a role only on the time interval [(j — 2)¢, (j + 2)¢]. For this, we will
make use of time-cutoffs: take a non-negative bump function x(¢) supported in [—1,1] so
that x(¢) =1 on [—1/2,1/2] and such that the shifts

Xi(t) = x(C7't = )
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satisfy
d Xt =1for0<t <1 (10.99)
J

Note that each time ¢ at most two of x;(¢) are non-zero.
Let us recall the sets Ag and A; from Lemma 10.5. For a general j we will set A; = Ay

if j is even and A; = A; if j is odd. We do the same for the functions 7§j) appearing in that
lemma. With this notation, we define for the principal part of the perturbation w((lﬂ)l (t,z) as
wlh (t2) =D we(t, ), (10.100)
7 EEA;
with each individual wave we)(t, ) in the form of a modulated Beltrami wave

wie) (£, 7) = agi1ge(t, ©)Wen, 0 (951, @) = agyre(t, ©) B exp {2midg 1€ (¢, 2) }. (10.101)
Note that
(9 + v, - V) (exp{2midgé - B (t, ) }) = 0, (10.102)
so that
(O +vg - V)wigy = (0 + vg - V)|agir¢l (¢, 2) Be(exp{2miAg 11§ - 5(t, x)}), (10.103)

and the potentially dangerous term of the size A\;41 coming from the differentiation of the
exponent vanishes. This is why we use the phases ®;(t, z) rather than simply x. The ampli-
tudes a,11,;¢(t, ) are chosen as

Qg et ) = e 0,50 (e (Mi(t, 2)). (10.104)
with the matrix
My(t,x) = 1d — ¢z 20 Ry(t, ). (10.105)

As the functions fyéj) are defined only in the ball B, (Id), we need to check that the ma-
trices My(t,x) are in that ball for all 0 < ¢ < 1 and = € T3. Recalling the inductive

assumption (10.50), we see that
cn 20 [ Relleo < e 207t erbrn < cf? < 1o, (10.106)
with rg as in Lemma 10.5, provided we take
cr <1l (10.107)
It follows that the matrix M,(t,x) is, indeed, in the domain of definition of the functions yéj )

for all j, all t € [0,1] and z € T?. As at most two of the functions x; do not vanish for any
given ¢ € [0, 1], and they satisfy 0 < x;(¢) < 1, we have a uniform estimate

[, (t,2) |0 < Kocy '00i3 < %1 (10.108)

provided that we choose cg sufficiently small, depending only on a universal constant K
that itself depends only on the uniform norm of the functions véj (M) on B,,(Id) and on
the number of elements in the finite sets Ag and A;. The above estimate accounts for the
contribution of wé{?l to the error bound (10.52).
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10.5.4 The incompressibility correction
Let us write the individual terms wg (¢, ) that appear in (10.100) as

ey (t, ) = agir;¢(t, ) exp {2miNg11€ - (¢, x) } Be exp {2mirg 1€ - x} (10.109)
= g1, (t, @) exp {2miA1§ - G, ) fWen, 10 (2) = bgr (B, 2) W, (7)),

with
¢j(t,x) = @;(t,x) — x, bgsrje(t, @) = agrje(t, @) exp {2mirg1 € - ¢;(t, )} (10.110)

Recalling (10.96), we can think of ¢;(t,x) as small, so the largest contribution to Vw)(t, x)
should come from the Beltrami wave W¢ » ., (). However, the latter is incompressible so one
can think of we) as incompressible to the leading order. To be more precise, let us use (10.84)
to write

1
27T)\q+1

byt1,j.e(t; T)Wer,n () = [V X (bgy1gie(t, 2)Wen, 1 (7)) = (Vbgqje(t, w) X We s, (7).

While the first term above is incompressible, the second is not. Accordingly, to compensate
for the second term, we define

c 1
wig)(t, ) = 3o (Varte(t,2)) % Wea,., (0)
1 » »
=95\ (Vaqﬂ,j,& + 2midg11Gg+1,5,¢(VP;(t, x) — Id)f) X Beexp{2mi\g 1€ - ®;(t, )}
q+1
~ (Vagrje | .
= (SIS gy (Tt ) — T)E) X We,,, (@;(t,2)). (10.111)
27T)\q+1

The full incompressibility correction is then

widi(tx) =3 ) w (10.112)

J EeA;

and the full perturbation is

DDV X by et x)Wen,., (2)], (10.113)

J EEA;

wai () = wi (8, 7) +w, (t,7) = m -
q

so that
V. -weq =0, (10.114)

and wgy1(t, x) is mean-zero. We may also estimate the incompressible correction, starting
with the right side of (10.111), and once again using the fact that x;(¢) satisty 0 < x;(t) < 1,
and only two of x;(t) do not vanish for any ¢ € [0, 1] as

Va iellco
lwiy leo < Ksnpgs;ap [% + lagrjellco | V5 — Id||co], (10.115)
J q
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with a universal constant /. At the moment, we do not have a good bound on ||Vag41,;¢|co
as that would require a bound on ||V Ry||co, since R, enters the definition (10.104)-(10.105)
of ag11,;¢. However, a standard mollification estimate, together with (10.104)-(10.105) and
the induction assumption (10.50), show that the first term above can be bounded as

1/2 1/2

Hvaq+1j§||00 1/2 c—1 y—1 | Rel| co 5q+1 5q+1
L AT KGO A < K—/— < 2= 10.116
)\q—f—l — qg+1Yg+1"q+1 f — €>\q+1 = 100’ ( )

because
g1 = AP > 1.

Here we see that it is important that aq1 ;¢ oscillate on scales much larger than )\q’jl. The
second term in the right side of (10.115) can be estimated with the help of (10.96) as

1/2
lagsrellcoll V) — Idfln < K o3 0 1260/ < <20, (10.117)

provided that a is sufficiently large and ( is sufficiently small. It follows that

1/2
lwiilloo < 155 (10.118)

Together with (10.108), this finishes the proof of the error bound (10.52):

3
lwgerllen < 76,45 (10.119)

However, we still need to verify that the induction bounds (10.48)-(10.50) hold for v,
and Rgq;.

10.5.5 The induction estimates on the velocity

We first prove the inductive estimates (10.48)-(10.49) on the velocity v,41, as they follow
directly from the construction of the perturbation w,4;. It is convenient to define v,4; not as
Vg + Wg+1 but as

Ug+1 = Uy + Wg+1- (10120)

The uniform bound in (10.48) for g + 1 follows simply from this estimate at level ¢ and
(10.119), together with (10.66):

vg — velloo < 8,03, (10.121)
which gives
logrillco < llvglloo +1lvg = velloo + [[wgsilleo <1 =07+ 750550 + 70041 < 1=d54, (10.122)

since we have 0,11 < 40, if we choose a sufficiently large, for a given fixed small 3 > 0.
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To get the gradient bound (10.49) at the level ¢ + 1 we first recall that for the spatial
derivatives we have (10.96), (10.97) and (10.116):

[V®;(t) — Id||co < CAJM25,/2, (10.123)

IVe;(®)lcz, < CA6Y2, (10.124)
51/2

IVagi1elleo < C%l. (10.125)

Once again, as at most two of x;(¢) do not vanish for any ¢ > 0, it follows from (10.101)-
(10.105) that the principal part of the perturbation satisfies

[Vgtlillor < I sup sup (IVagsriellon + lagsieleores V@5l ). (10.126)
ARSIV

with a constant K that depends only on the number of the elements of the sets Ay and A;.
The first term above we estimate by (10.125), and the second by (10.123), which gives

1/2

5
IVl oo < 0%1 + O A1 < O8N 1. (10.127)

For the spatial derivative of wé?l, we note that

a : 2
IVuihllen < Ksupsup (1222802 4y va, — 1)
J jGA]’ q+1

g 1seleoI9®sllor + Agsa ol ) (10.128)

The first term above, once again, can be bounded using the basic mollification estimate as

1/2 1/2 \3/2 1/2
lagiellos o Kohirl[Rellco | NRelleo] o KO31AH _ giiAgen (10.129)
Mt e Lo T el ST S T 00 '

The second term in the right side of (10.128) is estimated using (10.116) and (10.123) as

K(;;fl 1/2y—1/2 1/2 ¢1/2 5;421)‘11“
||Vaq+17j7§||co||V<I>j - Id”co S T(gq )\q = K6q+15q /\q S W (10130)

The third and the fourth terms in right side of (10.128) satisfy
c 1/2 1/2 1/2
lag1selleo V05 ller + Aggallwylleo < KOoyEADY? + Agadyl3 < 20g4a8,43. (10.131)
Putting together the above estimates, we see that
IVwgsillco < CrAu10,43, (10.132)

with a universal constant C'g. In particular, we have not used the estimate (10.49) at level ¢
in deriving (10.131), hence there is no danger that C'r may change from step ¢ to step ¢ + 1.
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For the time derivative we have (10.95), which, together with (10.96) shows that

10:®;(t)l|lco < C (10.133)
while
0rags1ellco < COPA(ET +071) = Co, 507, (10.134)
as in the estimate (10.129) for the gradient of a,41¢ ;. These two bounds give
18w |0 < COYAET, (10.135)

in the same way as (10.125) and (10.126) lead to (10.127). For the time derivative of wflil,
we note that

10rw, o < K sup sup + [10ug1 el o[ VR; — 1]l o

J JEA;

Hlag1eleo AV o + Agsallwfsllon). (10.136)

( 10:Vagi1jellco
Ag+1

The first term above is estimated exactly as in (10.129), the second as in (10.130), the third
and the fourth as in (10.131), which gives us

10w |0 < COVAET, (10.137)

finishing the proof of (10.49) at level g + 1.

10.5.6 The new Reynolds stress

We finally come to the key estimate in the proof of Proposition 10.3: the proof of the inductive
estimate (10.50) at level ¢+ 1 that shows that the Reynolds stress decreases at each inductive
step and tends to zero in the uniform norm as ¢ — 4+o00. The analysis is based on Lemma 10.4
that we state again here.

Lemma 10.6. Assume that a(x) € C™*(T3) and ® € C™*(T?) be smooth R3-valued func-
tions, and let C' be such that

C™' < |V@(2)| < C for all x € T5.

Letw € 7%, a € (0,1) and m > 1, and R(x) be the solution to

V-R=FE(), TrR(x)=0, R(z)is a symmetric matriz, (10.138)
with
E(z) = a(z)e™®®@ — / 3 a(y)e™ *Wdy, (10.139)
given by :
Rim(2) = (A 'E,, + 0, AT E)) — %((nm + OO A HATH(V - E). (10.140)

There ezists a constant K that depends on C, o and m but not on |w| such that

lallco 1
‘w‘l—a |w|m—a

|Rllc- < C( (lallone + llallcolV@lgme) ). (10.141)
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In particular, if E(z) is of the form
E(z) = a(z)We)(®;(z)), W (z) = Bee* a8, (10.142)
with
lallen < CE", [V ®llen < CETT, (10.143)
then R(z) satisfies

C g gmey o C oy O 1) c
1Blleo < I1Rllow < 7= (145 ) < 372 (1 mr) = 7 (LA™ < s

q+1 g+1 q+1 q+1 q+1 q+1
(10.144

~—

as long as we take m > 8.
To get an equation for R,;; we recall that v, satisfies (10.67):

Oy + V- [Ug X Ug] +Vp, =V - (Rg + Rcomm), (10.145)
V- Vy = 0,

with
Reomm = Ve @i ¢ — [(V @y ) x5 4] %1 0 (10.146)

Hence, vg41 = vy + wy4q satisfies

(‘9tvq+1 + V- (Uq—i-l ® Uq-‘rl) = @W + V- (Uz X Ug) -+ 8twq+1 + V- (wq+1 X wq+1)
+V - (0 @ wys1) + V- (Wgp1 @ vp) =V - (R + Reomm) — VDo + Owgi1 + vp - Vwgiq
+wgpr - Vo + V- (Wgp1 @ Wetr), (10.147)

so that the Reynolds stress 7,41 and pressure p,yq satisfy, after absorbing p, into p,4q
V'Rq+1 = qu+1+V~(Rﬁ—mem)+c9twq+1—i—vg-quH—i—qu-Vw—i—V-(wq+1®wq+1). (10148)

We write
(p) (c)

We+1 = wq+1 + wq+17
and represent the right side of (10.148) as
% Rq-‘rl = Etr + Eosc + ENash + Ecorr +V- Rcomm +V- Rgf;z«r + qu—l—h (10149)

with the transport error

By = 00, + vp - Vu'l®), — (8wl)), (10.150)

the oscillation error
Epe = V- (W) @ w) + R, (10.151)

and the Nash error
ENasn = wéi)l - Vg, (10.152)

coming from the principal part of the perturbation, and the corrector error

Ecorr = atw(gjzl + Vg - vwéﬁl - <8tw((121>7 (10153)

163



and the tensor
RY), = w', @ 0, +w?) @ 0D +wl, @ w®, (10.154)

coming from the incompressibility correction to the perturbation. Note that in the definition
of Rg,)w we have replaced the tensor products ® by the trace-free tensor products ®,., with
the difference going into the pressure p,.;. The notation (-) refers to the spatial average, as
before:

(fy=1 flydy
T3
As wyq is a curl, its spatial average vanishes, hence
(Orwl) + (D) =0, (10.155)

so that the addition of these two terms to (10.150) and (10.153) does not change anything.
Then we can write

Rq+1 - Rtr + RNash + Rcomm + Rcorr + Rl(:(c))rr + Rosca (10156)

with Reomm and RY)., defined in (10.146) and (10.154), respectively, and Ry., Ryash, Reomm
and Ry given by (10.140) with the corresponding E in the right side.
The term R, in (10.156) should be a trace-less symmetric solution to

V. Rosc = Eosc + Vposcu (10157)

with E,s given by (10.151) and some pressure p,s. that we will absorb into p,+1. We can
re-write E 4. as

Eoe = V- (w®, @ wl®), + Ry) = (Z 3w @uwe + Rg>. (10.158)

J.J" €A, E’EA./

Note that we) and wey have disjoint support in time if £ € A; and ' € Ay with [j — 5| > 1.
In addition, if [j — j’| = 1, then A; and A, are disjoint sets so that & + &' # 0 — this is why
we took Ay and A; as two different sets. Hence, the only terms in the sum in (10.158) that
satisfy £ + & = 0 are those with j = j'. Thus, we have

se = V- (Z Z Wiey ® Wi—g) + Rg) +V. (Z Z we) ® wg). (10.159)

J EeN; 53" EEN; & €N E+EF#0

We claim that the divergence of the first sum in (10.159) actually vanishes — and that is the
reason we have chosen the coefficients a,41 ;¢ in the way we did. Indeed, recall that

agr1ge(t, ) = e 032 (S (My(t, ), (10.160)

with the coefficients 7 ) defined so that

Mt x) = 5 360 (Mt )21 — €@ 6). (10.161)
§EA,;
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for each 7, where

My(t,x) = 1d — c5'/*6, 1 Ro(t, @), (10.162)
which implies
1
e *gld = Re(t,2) = 5 3 e 0y (v (My(t, 2))*(1d ~ £ ®€), (10.163)
EEA;

again for each j. Multiplying (10.163) by X?(t) and summing over j, using (10.99), we arrive
at

cH%65,11d = Rylt,x) = ZZ (t)er*Ogu1 (3 (M (£, 2)))*(1d — £ ® &)

J EEA;

B % DD lagrget o) P(ld — €@ €). (10.164)

J E€A;

On the other hand, as in (10.89), we have, since a,11,j—¢ = a1 ¢, that

D we @wee = Y lagrel’Be ® B (10.165)
§6Aj fEAj
1 ) .
=5 D lager el (Ae + i€ x Ag) ® (Ag — i€ x Ag)
£eA;

1 |
= 3D lagrel(Ae ® Ac + (€ x Ag) ® (€ X A) + Z[(€ X Ag) ® A¢ — A¢ ® (€ x Ag)

€eA;
1
"2 D lagirjelPld—€@¢).
§EA,;
Since the set A; is symmetric: A; = —A;, the second term in the third line above vanishes

after summation over £ € A;, and for the first term in that line we used (10.87):
§®§+A§®A§+(§XA§>®(§XAg):Id. (10.166)

We deduce from (10.164) and (10.165) that

( 3w ® wig) + Rg) —0, (10.167)

£EA;

as we have claimed. Recall also that for a scalar-valued function g(z) and a matrix-valued
function F'(z) we have

[V - (g(2) F (@)l = 0;(g(x) Fju(w)) = (9;9(x)) Fji(x) + 9(x)(9;(F(x))
= (F'(z)Vg(2))i + 9(z)(V - F());,

so that
V- (gF) =F'Vg+gV-F
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Hence, E,. has the form

Fue=V- (> > weoue) (10.168)

53" EeN; TN E+EF#0

1
—9 > > bg+1,j.bg+1,5.6V - Wenin @ Wernon + Wenon @ Wern11)
j»jl £€A]"£IGAJ'/»£+£I7£0

+> > (Werngin ® Wen 1)V (bg11,5,6bg+1,5¢7)
G EENSEEN, E+E £

with b+ j¢ asin (10.109) and (10.110). In addition, as in the derivation of the Euler equation

W 2
V(o W) = (),

we also have fill this in
V- (W&)\ X W&)\ + Wg,)\ X Wg/)\) = V(Wg’)\ . Wg/,)\). (10169)
Therefore, (10.168) becomes
1
Eosc - 5 Z Z bq+1,j,§bq+17j7§/v(Wgakq+1 : W£,7Aq+1)
jvj/ gEAjvgleAj/7§+£/7éo

+> > (Werngir @ Wen 1)V (bg11,5,6bg+1,5¢7)
jaj/ gEAj’gleAj’ﬁ£+§,7é0

1
=3 > > Vv [bq+1,j,sbq+1,j,§'(Wg,AqH : Wg',xqﬂ)] (10.170)
jvjl geAj’gleAj/7£+£l7éO
1
+> > [Wg',AqH ® Wearn = 5(Weagn st,AqH)Id] V(g+1,5,ebg+1,5¢7)
753" fEAj,E’EA]-/,f"rf/?éO
= VDosc + Fosec (10.171)

The first term in the right side can be incorporated into pressure, so that we can define R,
as the solution to .
Y Rosc - EOSC7 (10172)

given by (10.140) with E = E,,.. Summarizing, and recalling (10.156), we have the following
expression for Rqyq:

Rq—i—l = Ry + Rnash + Reomm + Reorr + R((;,C))rr + Rosca (10]—73)

With Repmm and RS, defined in (10.146) and (10.154), respectively, and the individual con-
tributions Ry, Rnash, Reomm, Reorr and Ryge given by (10.140) with the corresponding E in
the right side.

10.5.7 The inductive estimates on the new Reynolds stress

Now we estimate each individual term in the right side of (10.173).
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The transport error

Recall that the transport error is given by (10.150):
By = 00, + vp - Vu'l®), — (80l)). (10.174)

The last term in the right side does not contribute to (10.140) and only serve to ensure
that (Ey.) = 0. In addition, we have

OWen(®)) +vg - VIWea (D) =0, (10.175)
because ®; is advected by v,: it satisfies (10.95). It follows that
Etr = Z Z (ataq+17§,j (t, (L’) + [ vaq+1,§7j(t, I))W§7>\q+1(®j(t7 x)) (10176)
J EEA;

As we have seen many times, the standard mollification estimates on the derivatives of R, in
terms of || Ry||co, imply the bounds

1/2 ,—
lagsirgrellom < COVAET™, ||Bagrne; + Vg - Vagire,]

om < OSYEET™L(10.177)

Thus, we are in the situation as in (10.142)-(10.144), with C' = C’6'/2¢~! in (10.144), which
gives

o CRO
|Rurllen < [[Burllon < COLAETINGT = O8N < 2, (10.178)

provided that o and S are sufficiently small.

The oscillation error

The estimate for the oscillation error is similar. First, we note that
|v(bq+1,j,§bq+17j7£’)| < |V(aq+17j7faq+1,j,£’)| + >‘q+15q+1 (|V(I)j - Idl + |V(I)j’ - Id|)
< Ol + OAgi1 8441000, (10.179)
A very similar argument, using (10.98) yields
IV (bgs1j.ebgrrje)lom < COyrl™™ 1 + C)\q+15q+1€)\q5;/2£_m. (10.180)

Hence, we can use (10.144) (strictly speaking, we are using its analog for the case when the
right side of (10.138) has the form of a tensor product of two right sides as in (10.142) but
the same argument applies) with

C = C'[0g10" + Agr10g1100 0,7,

which gives
_ a_1 _ CRO,
| Rosclleo < [ Rurlln < Cloginl™ + Agradysalhgdy Ny < =102, (10.181)
provided that o and S are sufficiently small.
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The Nash error
The Nash error comes from (10.152):

ENash = wq+1 Vo, = Z Z aq+17j7£W£,)\q+l(®j) - Vy, (10.182)
J EEA;

so it is again of the form (10.142) and we can appeal to (10.144). The estimate

lagi1eVoellen < COANOL 0T (10.183)
then leads to 5
| Ryasnllco < | Rnashlloe < COMENS2A0) < CRﬂ%’O“ (10.184)

The corrector error
The corrector error has two components:
Reorr + R (10.185)
Here, R, is given by (10.154):
RY), = wl)) @ wl)) + ) @4 w0l + 0l 0wl (10.186)
and R, is given by (10.140) with E' = E.,,., which is defined in (10.153)
Beorr = 00} + vp - Vol — (0pwl)). (10.187)

The first term is estimated using the estimates (10.108)

51/2
lia(t @)llow < =42, (10.188)

and (10.115)-(10.117) which say that

VCL ; 0
'Y, [lco < K sup sup [M + llagsrjellcol| VO; — IdHCO] (10.189)

J EEA; )\q—&-l
§L/2 512
< K- KAV < KL (10.190)
14 q+1 /\(1+1

This allows us to estimate R, simply as

w'© ( w'® (c)

||RcorrHCO = qu+1 Qpr Wg g + W p)1 Opr Wo g T Weiq Srp q+1HCO
0,
< O8I < C’;JJ? (10.191)

As for R, note that, once again, because We 5 ., (®;) solves the transport equation (10.175),
we have

Eeorr = > 3 (@ + 00+ 9 (V““”§ T ig41,56(VO) — 1)) ) Wen, . (5t 2)). (10.192)

J EEA; A g+l
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We know that
1

Agt1

101+ ve - V)Vagsr jellon < Ko/ 3A L = Ko, a0, (10.193)

and

1(8s + ve - V)[ags1,e(V; — Id)[lon < K603 [0 NGY? + 017706V < K513 NOY2 07",

(10.194)
Appealing to (10.144) one more time, we obtain
_ CRO,
| Reorrllen < COLAAN < =152, (10.195)

if & and § are sufficiently small. This was the last estimate we needed to prove that

5
| Reors | co < 2202 > (10.196)

and we are done. This completes the proof of Proposition 10.3 and hence that of Theorem 10.2
as well.
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