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Abstract

We consider energy fluctuations for solutions of the Schrodinger equation with an Ornstein-
Uhlenbeck random potential when the initial data is spatially localized. The limit of the fluctu-
ations of the Wigner transform satisfies a kinetic equation with random initial data. This result
generalizes that of [13] where the random potential was assumed to be white noise in time.

1 Introduction

Solutions of the Schrodinger equation with a weakly random potential

;09

8t+ Aqﬁ VeV (t,x)p =0,

and a small parameter ¢ < 1 behave non-trivially on the time scale t ~ O(¢~!). The corresponding
rescaled problem is

ad’a t x B
2% = ng,— vev(t Do, —o,

A convenient tool to study the energy distribution in this long time limit is via the Wigner trans-
form [10, 15] of the solution defined as

. EY. - € d
Weltib) = [ 90u(t.0 = Proettr+ Pt
The weak limit W (t,x, k) exists and is called the Wigner measure of the family ¢.. As the weak
limit of the energy density |¢: (¢, )|? is, under very mild conditions, [ W (t,, k)dk, the behavior of
the Wigner measure is important.
The Wigner transform We(t,x, k) itself is a solution to an equation

OWe(t,x, k) t/a dp Jipa/e op
Sk VWt k) = 021 / Wg(t,w,k‘+ 2). (1.1)

Here V (¢, dp) is the (spatial) spectral measure corresponding to the random field V (¢, z). It has been
shown under various assumptions on the random potential see [1, 8, 9, 16], that when the initial data
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Wy for (1.1) is in L2(R??) the solutions converge in probability, as ¢ | 0, to W (t,x, k) the solution
of a linear Boltzmann equation

OW (t, 2, k) + k- V W(t,x, k) = LW(t,z, k),
(1.2)

W(0,x,k) = Wy(x, k),
where the operator L is given by

2 7.2
EW(:c,k):/R(p ka ,p—k)(W(:c,p)—W(x,k))(;T];Qd.

It is important, in particular, for inverse problems, to understand the fluctuations of W, around this
self-averaging limit, as wave energy fluctuations are often large in practice [2, 3, 4]. As it was shown
in [5, 6], the size of the fluctuations depends on the regularity of the initial Wy — both spatially and
wave vector localized singularities in Wy produce stronger fluctuations than smooth initial energy
distributions. Here, we study the fluctuations of the Wigner transform

Z(t,x, k) = e V2 Wa(t,z, k) — W(t, z, k)]

when Wy(x, k) = 6(x)f(k) and f € S(R?), that is, the initial wave energy distribution is spatially
localized but smoothly distributed in various directions. The fact that the fluctuations have the size
O(y/e) comes from the singularity of the initial data — their size would be smaller were Wy(z, k)
more regular.

This problem was previously studied when the random potential V (¢, x) is white noise in time
n [13] and the limit of Z. has been identified. In this paper we consider random potentials of
Ornstein-Uhlenbeck type that have finite correlation time, and show that the gist of the result is
similar to that in [13] — the limit Z is identified as a solution of a deterministic kinetic equation with
a random initial data. This is because the main contribution to the fluctuations of Z. comes from
the initial boundary time layer when the wave energy is very singular, and the fluctuations that are
created later are of a smaller size since the wave field becomes spatially distributed. The analysis of
the present paper is quite more involved than in [13] as it requires a completely different technique
— it is impossible to get away with relying on a sophisticated version of the Ito formula, and one has
to resort to a summation over all products of covariances that arise while computing the moments
of multi-point statistics of a Gaussian potential, which is much more complicated technically. We
refer the reader to [5, 6, 13] for a more detailed discussion of the motivation and related results.

The paper is organized as follows. Section 2 describes the detailed probabilistic setting of the
problem, and the main result of the paper, Theorem 2.8. The rest of the paper contains the proof
of Theorem 2.8 that is performed via a series of intermediate steps, outlined after the statement of
this theorem.
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2 Preliminaries and the formulation of the main result

This section contains the background material that is necessary to make sense of the Wigner equation
with a random Ornstein-Uhlenbeck potential. First, in Sections 2.1 and 2.2 we define the Ornstein-
Uhlenbeck potential as a process taking values in an appropriate function Hilbert space. This
material is somewhat standard but we were unable to find it in the literature. Section 2.3 contains



the definition and basic properties of the scattering operator. These notions allow us to define
in Section 2.4 the notion of a mild solution to the Wigner equation. We further recall the basic
properties of the linear kinetic equation, and introduce the needed notation in Sections 2.5 and 2.6.
Finally, the main result is formulated in Section 2.7.

2.1 Basic notation

We denote by S(R?) the space of rapidly decreasing functions of the (complex valued) Schwartz class
and by &’ (Rd) the corresponding space of tempered distributions. Let

f¢@>:ihﬂ::/‘eip%wax

Rd
be the Fourier transform of a function ¢ (z). We will also use the notation

Fi(f)(q, k) ::/ e T f(z, kYdx, Fo(f)(x,y) = /Rd e Wk f(x, k)dk

Rd
for the partial Fourier transform of a function f(z, k) in just one of the variables. The inverse Fourier
transform is dod
= o B _|_‘ -k q y
ff(l'a k') = /€qu W f(Q7y) (27r)2d’
and the inverse Fourier transform in just one of the variables is defined similarly.
Given s, u, p1, p2 € R we denote by Hp'), the mixed Sobolev space with the norm

£ 11750

P1,P2

:@ﬂwmmwwwwﬂwwmfwww

were 0,(x) := (1+|2[2)?/2. We will simply write H*" when p; = ps = 0. The corresponding Sobolev
space for functions f : R — C depending only on one of the variables shall be denoted by H , and
H? when p = 0.

2.2 The Ornstein-Uhlenbeck potential

The Cameron-Martin reproducing kernel Hilbert space

Let R(p) € L'(R%) be a non-negative even function, and v(p) € L>®°(R%) be a uniformly positive
even function:

0<% <7(p) <Tw, () =7(-p), VpeR™ (2.1)
We assume that o
R(p) < for all p € RY, (2.2)

(1+ [p[2)2/2+e"

with some C' > 0 and § > 0. Consider a stationary Gaussian random field V' (x) whose covariance
function equals
"
R(z) :== /e’p'“”u(p) (2.3)

where du(p) = R(p)dp is a non-negative measure of finite mass. In order to describe the functional

space that supports the law of the process consider the real Hilbert space L%S) (1) consisting of all

functions ¢ € L?(i1) that are complex even, that is, ¥(—p) = 1*(p). Note that

Wrvahi= [ 5@l

is a real valued scalar product on L%s) (). The following proposition holds, see Corollary 1 of [13].
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Proposition 2.1 Suppose that {&,, n > 0} is a sequence of i.i.d. standard normal random variables,
and define the measure v(dp,dq) = 6(p+ q)u(dp)dq. Let also vy, be an orthonormal basis of L%S) ().

Then, for any function ¥ € L&(p) N LE(v) we have
B[ 3 6nbn(W 00 @ vnlueu| = [ Vo, —p)utdp). (2.4)
m,n>0

Let H,, be the Cameron-Martin reproducing kernel Hilbert space that corresponds to the Gaussian
random field V'(x), that is, the subspace of &'(R%) given by

My = [ﬁ (Yu) : ¢ € LY, (u)} ,

where, as we recall,

Fon) = [ o))

It is a real Hilbert space, when considered with the scalar product induced from L%S) (w), that is, for
all 1,19 € L%S) (1) we have

(F (1), F (h2p)) e, = (b1, 02) -

Note that all elements of H,, are continuous functions, as L%S) (n) C LY(p):

[W(p)ldp < (R [ [¢Pdp 1/2<+oo,
Lo (ucws [ i)

for any ¢ € L%S) (). Suppose that £ is a Hilbert space continuously embedded in C(R™) such that
H,, is its dense subset and the natural embedding J : H, — & given by Jf = f, f € H, is a
Hilbert-Schmidt operator. More explicitly one can take, for instance, £ := H™,, where p,m > d,
so all elements of £ have continuous realizations. In that case, the embedding J : H, — & is
Hilbert-Schmidt, provided that

/Hm(p)R(p) < +o0. (2.5)

Indeed, suppose that f,,(z) = [ €?%v,(p)u(dp) be an orthonormal system in H,. We have

S alfan, =3 [ 0P (10 2) )Pl (2.6)

n>0 n>0

=Y - Om(q)e™ =) e P2 e (e, (p)0_ ()0, 2 (2 )dgdda’ 1u(dp) u(dp')
n>0

= [, 0@+ ) PR dad.

Since 0_,/5 € Nk>oH* for each k > 0 we can choose a constant Cj, > 0 such that |0A,p/2(p)| <
CrO_k(p) for all & > 0. It is easy to observe that, for k > m + d one choose a constant C' > 0 such
that

|é—p/2|2 * em(p) < Cem(p)
for all p and the embedding is Hilbert-Schmidt, if (2.5) holds.



The covariance operator and the field V(x)

Denote (¢(U) := (U, f) for given f € £*, U € £ and define a bounded and symmetric linear operator
Q:& — & by

QF, glex =(J"f, T g, Vf.ge& (2.7)
Since J is Hilbert-Schmidt, so is J* (see e.g. Appendix C of [7]), thus @ is of trace class. There
exists therefore a unique Gaussian measure 7 on £ corresponding to @, see Section 2.3.2 of ibid,
i.e. a Borel, probability measure such that for all ui,...,u, € & the joint law of random vector
(Cuys -« -+ Cuy) over (€,B(E),m) is normal and for any f,g € £ we have

/g CHU)GU)T(dU) = (QF g)e-.

Suppose that {g,, n > 0} is an orthonormal basis in £* consisting of eigenvectors of Q. Let
An = {QGn, gn)e+ and hy, == A\;1JJ*g,, n > 0. Observe that

(gm hm> = Ar:l<=]*gna J*gm>HM = dmn

thus {gn, n > 0}, {hn, n > 0} form a bi-orthogonal system in £* and &, respectively. Note also
that J*UJ = Idy,, where 4 : &€ — £* is the canonical unitary isomorphism coming from the Riesz
representation theorem.

1/2

In particular, the above implies that &, := A, /7(4,, n > 0 is a sequence of independent, standard

normal, random variables. Define an orthonormal base of H, by f, = A\, Y 2J~ *gn, n > 0 and let

{en, n > 0} be the corresponding orthonormal base on L%s) (), given by f, = F(epu). We have of

course

F=Y &It VI EH (2.8)

n>0

Let us define V € L2(m; £)
Vi=Y & fn
n=0

The series converges both a.s. and in the L?-sense in £. Moreover, the real valued random field
V(z):=(V,6:) = Y _ & ful2).
n=0

is stationary, with the covariance function given by (2.3). To abbreviate we shall also denote

V(dp) ==Y &nen(p)u(dp). (2.9)
n>0
Then .
V(z) = / o ‘(/2(:37 .
using (2.8) we conclude that
6= [ o) (2.10)

when J*v = F(0u).



The definition of the Ornstein-Uhlenbeck process

Suppose that {Vt(n), t > 0}, n > 0 are real valued jointly Gaussian processes such that
BV V) = 2m)? [ 0, p)en (puldp (211)

for all n,m > 0 and t, s € R. Note that for each ¢ fixed {Vt(n), n > 0} are idependent, standard nor-
mal random variables. Let V; be an £ valued process given by V; := ano Vt(n) J fn. The convergence

again takes place in the a.s. and L? sense.
The covariance function of the field V (¢, x) := (V;, d,) = Vi(z) equals

EVi@)Vsw)] = > BV VIV fu(@) ] fn(y) (2.12)
n,m>0

hence

EV, V. — = (p)[t—s| —ipY g ( —ip'-x ( ,)du(p,)

Vi) s(y)]—zn: e en(p)e” "V du(p) [ e enld) 7
- Z/ev(p)lt8|62(p)€ip-ydu(p)/eip’-xez(p/)dlu(p’) — /ev(p)lterip-(yw) 'ELQ(d])B
77

:R(t—s,m—y),

where p
R(t,z) = /eip'xewp”t']%(p)(%f)d, (t,z) € R, (2.13)

In the same way we can also prove that

(2.14)

for any 11,y € £* such that J*t; = F({ip), where ¢; € L2 (p), i = 1,2,

Homogeneous Wiener process

Recall that an &'(RY) -valued, Gaussian process { By, t > 0} is called a spatially homogeneous Wiener
process on R? with the spectral measure m, see e.g. [7], if:

(M) for any ¢ € S(RY), {(By,), t > 0} is a real-valued and E(By, ) = 0 for all ¢ > 0,

(C) its covariance is of the form

E [(By, 1) (Bs, ¥2)] = (21) U ah1, Po)m(t A s), 1,100 € S(RY), ¢, 5 > 0. (2.15)



Suppose that m is such that the space H,, is Hilbert-Schmidt embedded in £. One can show the
following, see e.g. Proposition 4.1, p. 87 of [7].

Proposition 2.2 For any orthonormal basis {v,} of L%S)(m) there is a sequence of independent

standard real-valued Wiener processes {Bén), t > 0} such that

B =Y B"F(am), t>0, (2.16)

where the series converges in the L? sense and P-a.s in &.

It is easy to calculate that

E[B(t,)B(s,y)] = [Fml(w —y)(t As),  a,y € R, ts> 0.
Stochastic differential equation for the random potential
Let f = F(pu), then we define S°(t) : H,, — H,, by

S°(t)f = / P TP () /é(iz)?g

The family of mappings {S°(t), t € R} forms a uniformly strongly continuous group on H,, with the
generator C° : ‘H,, — M, given by C°f = —F(ypu). Let S(t) := JS°(t)J*4, then {S(t), t > 0}
form a group that is continuous in the uniformly strong operator topology on £ with the generator
C := JC°J*4. Since the process {V;, t > 0} is Gaussian, equality (2.14) implies that

E[(Vi,v)| 7] = (8= 9)Vev) (2.17)

for any ¢ € £* and t > s. Here {3, t > 0} is the natural filtration corresponding to the process.
One can directly verify the following.

Proposition 2.3 The process By := V; — Vo — fot CVids, t > 0 is homogeneous, Wiener on &,
non-anticipative w.r.t. the filtration {F;, t > 0}, with the spectral measure v(dp) := 2v(p)p(dp).

Let ,(p) := (27(p))~Y2e,(p). It is an orthonormal base in L%S)(I/). Thanks to Proposition 2.2

there exists a family of i.i.d. standard Brownian motions {Bt(") , t > 0} such that
¢
Vi — Vo — / CVids =Y BMF(ew), t20. (2.18)
0 n

The process {V;, t > 0} is Markovian, see e.g. [7] chapter 5, with an invariant measure 7. The
L?(7) extension of the transition semigroup is strongly continuous and we denote its generator by
0 : D(Q) — L*(m). To abbreviate the notation we shall write

V (s, dp) : ZV en(p)p(dp) and  B(ds,dp) : Zen )dB v (dp). (2.19)
n>0 n>0



Generator of the process

Denote by II the class of polynomials in L?(7), defined as the span over the random variables of the
form

n
b — H Cors (2.20)
i=1
where v1,...,v, € £ and n > 0. In case n = 0 we adopt the convention ®(¢) = 1. Elements of

the form (2.20) are called monomials of degree n. It is well known, see e.g. Chapter 2 of [11], that
IT is dense in L?(7) and forms a core of the generator Q (see Theorem 13.15, p. 207 of ibid.), i.e.
II ¢ D(Q) and {(P,QP) : € II] is a dense subset of the graph of the generator in the epigraph
norm.

Using (2.18) we can calculate easily, via an application of the It6 formula, the generator on II.
Namely for ® of the form (2.20) we have

do(V,) = QB(Vi)dt + > dGu, (Br) [ [ ¢ui(V2) (2.21)
k=1 i£k
and
= Z CC*vk H C’Ui + % Z R'Uk, 'Ug H C’uz (222)
k=1 i#k k#L i#k,L

Here H#k (resp. H#k,g) denotes the product over all i = 1,...,n-s excluding k (resp. k,/), the
summation Zk# extends over all distinct 1 < k,¢ < n. In addition, J*C*vy, = —F(yopp), if
J v = F(Okp),

(Rog, vg)er = Q/Rd v(p) ok (p)0e(p) 2m)d’

and (Cy, (Bt), - - -, (v, (Bt)) is an n dimensional Brownian motion with the covariance matrix [( Rvg, ve)e+],
k.0 =1,...,n. In particular for the first degree polynomial given by (2.10) we obtain

6, == | A0V (223)

2.3 Definition of the scattering operator

We define an operator valued function
K : C(R3?) x RY — L(H,,, C(R*))

assigning to a function 1 € C(R3?) and z € R? an operator K[, z] € L(H,,, C(R??)) setting

K[, z|lu(z, k) := —i Z / zpzw x 2,k + 5 ) (p) (2(?;3 (2.24)

o=%+1

for u := F (), where 4 € L%s) (). We let

Keflu(e, k) = K, ZJu(e, k).



Proposition 2.4 Suppose that for a given € >0 and s € R

as :=2 sup / 0_s (q + 2) 0s(q)u(dp) < +oo. (2.25)
geRd JRA 3
Then,
ZHIC fn||H90 <a8”7/)€HHsO, (2.26)
n>0
where Y- (x, k) := P(x,x/e, k) € H*® and ¢p € C(R3?). Moreover,
Y IKE, 2 fullfreo < 20@DN$( 23 ) [Fre0 (2.27)
n>0

for any z € R and ¢ € C(R3%), such that (-, z;-) € H*P.
Proof. We only prove (2.27), the proof of (2.26) is given in [13]. Note that

2

S IIKT 2 mMN_EQ/ / (21,0 F)en(P)uldp)| Os(a)dqdh,  (2.28)

n>0
where

Z p7q7 oe' qx-‘rpz)w ZC Z; k— ip)d.ﬁlf
02:21/ 2
We have
2
En: /Rd¢(2,p, a4, k)en(p)u(dp)| = ;/Rd@(z,p,q, k)en (p)pu(dp) /Rd (2,7, ¢, k)en(—p) ) pu(dp')

- Z/ﬂw D(z,p,q, k)P (2, —1', ¢, k)en(p)en (") p(dp) p(dp’). (2.29)

Therefore, by Proposition 2.1, we obtain

>

n

2
L o bentin)| -

[ 18pa. 0P i)
Rd
and, consequently, the utmost left hand side of (2.28) equals

/de |®(2,p, 4, k)[* 05(q)p(dp)dg.

Now, write

Du(eipig ) im [ TG s bk Dy,
Rd

so that & = &_ + ¢, and, moreover,

/ @i(zm,q,k)lzdk:/
R4 R4

Hence, the sum on the utmost left hand side of (2.28) is bounded by

),
R3d

2
/ P2 (2 k) dx| dk.
Rd

2
0s(q)p(dp)dkdq = 2u(RY) 1Y (-, 2, ) |30, (2.30)

/ ei(q'Hp'z)l/}(x, z, k)dx
Rd




hence (2.27) holds. O

The above result shows in particular that for each ¢ > 0 and such that 1. € H*9 operator
u — Kc[tpe]u can be extended to a Hilbert-Schmidt operator from H,, to H*°.

Let us fix 1 € S(R3?) and define H*0-valued, square integrable random element on & as follows

KU = &u(U)K (] fn, for mas. U € E. (2.31)

n>0

Thanks to Proposition 2.4 the right hand side of (2.31) is L?(7) convergent in H*? and the limiting
object is defined as an element of L?(r; H*?) - the space of all square integrable, H*%-valued, random
elements with the appropriate norm. Formally speaking KC2[¢)]Ju = K. [¢)]u for u € H,, (the left hand
side needs not really be defined on Ju). For that reason and to simplify matters whenever it will
not lead to a confusion we drop the superscript in the notation of the random element appearing on
the right hand side of (2.31).

Similarly, when (-, z,-) € H*? for any z € R? we can define

K, 2)U =Y &a(U)K ), 2] fu- (2.32)

n>0

Note also that for any 0 < t; <9 < T and z € R

K[, 2)Viy — K[, 2)Ve, = Y (VY = VI KL [6] foe
n>0
Hence,

B[, 2V, = K[, Vi oo = 3 B[V = VYV = VE™)] (L8] fs K] i) 0

n,m>0

= > B[ - Vi - v / (2,0, 0, k)P (2,0, 4, K)en(p)en (1) 0:(a) (dp) p(dp gk

n,m>0 RAd

_ (27T)d Z /[6—7(P1)|t2—t1 _ 1]en(p1)em(_p1)lu,<dp1)

n,m>0

X /RM P(z,p,q, k)P (2,7, ¢, k)en(p)ey, (0")0s(q) u(dp) p(dp')dqdk
= 2myt [ e = 1)z, g, k) PO @l dadk < Clts = ][9]
RS

This, according to Corollary 11. 8 of [Ledoux-Talagrand|, and due to properties of Gaussian elements,
see Lemma 3. 7 and Corollary 3.9 of ibid. suffices to find an H*° valued, Holder continuous
modification of {K[¢, 2]V, t > 0}.

2.4 The solution of the Wigner equation with a random potential

Denote by {So(t),t € R} a group of operators Sy(t)f(x,k) := f(x — kt,k) that corresponds to
generator A
AY(x, k) == —k - Vap(z, k). (2.33)

It can be shown, see [13], that

Proposition 2.5 The group {Sy(t), t € R} is strongly continuous on any space H*" for s,u € R.
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Equation(1.1) can be recast in the following form (recall that W(t, z, k) is real valued)
OWe(t) = AWL(t) + & PKWL(t), Vi, (2.34)
W (0,z, k) = Wy(z, k).

This, in turn, leads to a mild formulation
t
W) = So(OWa+ | Soft — )KLWe(s), Vol (2:35)
0

for a.s. realization of {V;, t > 0}, n > 0 satisfying (2.11). Performing the Fourier transform on both
sides of (2.35) we get

V (s/e,dp)d
(2m)e
(2.36)
Iterating the right hand side of (2.36) we obtain that, at least formally, the solution should be given
by the following series:

We(t, q, k) = e "TF W (q, k) + e V2 Z / / —kE)Y (s, q — p/e, k + op/2)
o==%1

Wet 2, k) = Waelt, k), (2.37)
n>0
where Wy (t) := So(t)Wy and Wn,g(t, g, k) = Fi(Whe(t))(q, k) is given by
Woe(t, g, k) = e *9y(q, 1), (2.38)

o~ 5_1/21: "
Wn,a(tu% k) = W / /exp _lZQJ j 8]+1)
O1,.. ,an—il

x ﬂv( J dpj> Wo(Qn, Ky )ds™,
j=1

for n > 1. Here,

j j
Qj=q— é > om Kji=k+ % > Ompm, (2.39)
m=1 =
with the conventions of writing Qg := Q, Ko := K, so := t, spy1 := 0 and ds(™ := ds;...ds,
and dp™ := dp; ...dp, and Ap(tys) :=[(S1y...,8p) 1t > 81 > ... > s, > | is an n-dimensional
simplex. In case s = 0 we shall simply write A,,(¢). The Duhamel solution of (2.34) is defined as
the sum of the series (2.37) in H*Y.
Another notion of solution that can be introduced in the context of equation (2.34) is a weak
solution. A stochastic process {We(t), t > 0} with trajectories belonging to C([0,+oc0); H*Y) is
called a weak solution if

t
V(0.0 = (Wo.0) = [ (Welo). {0+ 72K f01Veyc | ) s (2.40)
for any ¢ € H=*9. Here (-,-) denotes the duality pairing between H 50 and H*?°.

Theorem 2.6 For a given Wy € H*C there exists a unique mild solution of (2.34). In addition,
it is also a weak soltuion of the equation. In addition, the series appearing on the right hand side
of (2.37) is convergent in H* in the LP(P) sense for any p € [1,+00). There exists a version of
{W.(t), t > 0} whose paths belong to C([0,+00); H*). It is also a unique weak solution of (2.34).

The proof is standard and can be done following the methods of [7].
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2.5 The kinetic scattering operator

Given a function A € H*% we define \i(z, 2z, k; U) for 7 a.s. U € £ as a random element belonging
to the domain of the generator Q for each (z, z, k) that is differentiable in the L?(r) sense w.r.t. z
variable such that

K\ 2)U(x, k) = [k-V,+Q]\i(z, 2,k;U) (2.41)

and
<A1(.CE, k, Z)>7r =0. (242)

Suppose that A(x, k) is such that 7-a.s. Ai(-, z,-) € H*". Let
LNz, k) == (KA1, 2;4]) . - (2.43)

It might look that the right hand side of (2.43) depends on z, but as the calculation below shows it
is not the case. Indeed, using (2.23), we obtain

Mz, k,z) = /eip'za(a;,k:,p)V(dp).
Here, as we recall (see (2.9)), V (dp) := > n>0&n(U)en(p)p(dp) and

alz, k,p) = i(21) " y(p) —ip - k] 7" Z oAz, k+op/2). (2.44)
o==%1

As a result we obtain
LNz, k) = —i < Z a/ ! PHp) 2 (z,k+op/2,p) V(dp)V(dp/)> .
o==+1 R2d -

A simple application of (2.4) shows that the right hand side equals

—i Z J/Rd a(z, k+op/2,—p) 'é(i];)l (2.45)

o=%1
and substituting for a(-) from (2.44) we obtain that

LNz, k) = —(2m) 72 /

R4

(b (55 )] om0

+ [v(p) —ip- (k - g)}_l Az, k) = Az, k —p)}} 1(dp).

Changing variables in the last expression, p := k-+p for the term corresponding to the first summand,
p := k — p for the other one we obtain that

Lz, k) = (21) 2% (k) /Rd o(k,p) [A(x,p) — A (x, k)] dp, (2.46)
e L (1pl? AP
J(k7p) = Z(k)R< 2 7p_k>a
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and X(k) - the scattering cross-section corresponding to a wavevector k — is chosen in such a way
that [o(k,p)dp = 1. Here

2v(p) R(p)

R(w,p) == —iWtp2) Rt ) dbde = SIPEHD)
(@,p) /R (ta)dde = P2

A simple calculation shows that

_ 2+(p) R(p)dp
M= G b s ) =40

2.6 Probabilistic representation of the radiative transport equation
Define by {W(t), t > 0} the solution of the linear kinetic equation

@W(t, k) + K-V W(t,z, k) = LW (t,z, k),
W(0,z, k) = Wy(x, k),

(2.48)
where Wy € H*P. Let
To(t) f(z, k) = e =0 f(x — kt k), VfeH™ t>0
for an arbitrary s,u € R. By the solution of (2.48) we mean here a function {W(t), t > 0} that
belongs to C([0, +00), H*Y) and such that
¢
W(t) = To(t)Wo + / To(t — $) LTV (s)ds. (2.49)
0

One can show by a standard application of Gronwall’s inequality that such a solution is unique.

Below we give a probabilistic formula for the solution to (2.48) treating it as the solution of
Kolmogorov’s equation for a certain Markov jump process. The results of this section are standard
and their proofs can be found e.g. in Apppendix 2 of [12]. Let t(k) := X~!(k). The scattering kernel
o(k,p) corresponds to the transition probability density of a certain Markov chain Ky, K1, .... Let Py
and [E; be respectively the path measure and its expectation corresponding to the chain satisfying
Ky = k. Let 0g,01,... be i.i.d. exponential random variables with intensity 1. Let ¢ty := 0 and
ty = Z?;ol oit(K;) for n > 1. Define then K (t) := K, t € [tn,tns1). Since R(—w, —p) = R(w,p)
the Lebesgue measure on R? is invariant for the process {K(t), t > 0}.

The solution of (2.48) has a representation given by

W(t,z, k) = E {Wo(x - /Ot K(s)ds, K(t))} : (2.50)

We can rewrite (2.50) more explictly. Iterating (2.49) we obtain
W(t,z, k) ZW t,z, k), (2.51)

where Wy (t) := To(t)Wp and

Wi (t,z, k) ::/Om.../ dmn/ /dklnHa i1,k
X {exp{— ; Ti} Wo (v — X, kn) 1 [Z i)Ti §t<z }
=0 =0
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for n > 1. Here ky := k,

n—1 n—1
X i= > kit (k)i + ki ( > t(ks) )
i=0 =0
and drop, = dro . ..dr,, dk1y := dky ...dk,. Integrating over 7, and changing remaining variables
according to 7/ := t(k;)7;, 1 =0,...,n — 1 we get

+oo +oo n
Wn(t,x,k):/o /0 dron /.../dklmn[a(ki_l,ki)zwi_l)] (2.52)
{exp{ Zz } — X, k) (t—zn:n)}
=0

Here X, := Y1 kiTi.
Define B,, ,, as the Banach spaces that is the completion of S(R??) under the norm

R p1/p2
L R W

The deﬁll\ition can be easily extended to cover the case when one, or both of the indices equal +oo.
Denote W (t,q, k) := F1(W(t))(q, k).

Proposition 2.7 Suppose that Wo(z,k) = 6@ f(x, k), where f € S(RY). Then, for any p € [1, 4]
Wi p = sup [|[W(t)]|op < +00. (2.53)
t>0

Proof. Estimate (2.53) follows immediately from the invariance of the Lebesgue measure under the
process {K (t), t > 0} and the formula

W(t,q, k) = Ex {exp {—iq : /Ot K(s)ds} f(K(t))} . (2.54)

that is a consequence of (2.50). O
Using (2.52) we can write that

(1,9, k Z Win(7,q,k), (2.55)

m>0

where /WO(T, q, k) := e ke =2(R)T £(k) and

(r.q,k / o / ™ drom / / dkl,mﬁl ok ki) B0k)] (2.56)

X exp § — Z Y(kj)m; pexpq —i Z q-kjti p f(km)d | 7 — Z’Tj
=0 =0

j=0

Here ko := k.
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2.7 The formulation of the main result

Let us recall that the initial data for the Wigner transform is assumed to be of the form Wy(z, k) =
§(z)f(k), where f € C$°(R?) is a smooth energy distribution in directions k. Consider the rescaled
fluctuations of the solution of the Wigner equation around its mean, that is,

Z:(t) = e V2 Wa(t) — W (t)].
It satisfies the equation

O Z:(t) = AZ(t) + e W (£); Vel + e V2 {Ke[Z:(); Ve — LW (1) }
(2.57)
Z.(0) = 0.

Suppose also that s,u > d/2 and Z(t) is the solution in H~*~" of (2.48) with the initial data
Z(0,x,k) = 0(x)X (k). Here X is a real valued Gaussian H ~“-valued element given by

We=i Y o[ [entikopstbt) -0 ) PGB sy

d
o==1 <27T>

that is, for any collection ¥; € S(R?), j = 1,..., N, the pairings (X,;), j = 1,..., N are jointly
Gaussian of mean zero and with the covariance given by

Ol ts) =B )X = 3 o o [

o'==+1

/ zs(o,g/)|p|2/zga7gl (ps, p)ds, (2.59)

where
oo (q,p) = /R N 'R (kY (k') [(v(p) — ip - k) ((p) +ip - k)]

We use above the notation

PR, F(KL ) dkdE

Ky(k,p):==k+op/2, (2.60)

and K!, := k'+0'p' /2. Using (2.51) and (2.52) we obtain that for any 6 € S(R??) we have a Duhamel
series for Z:
+o0o

(Z(1),6) =) (Za(t).6), (2.61)

n=0
+o00 +o00 n n
:/ / 7o /.../dko,nHa(ki_l,ki)Hz(ki_l) (2.62)
0 0 i=1 i=1

{exp{ Zz } Xn,ko)X(k:n)é(t—gn)},

The following theorem is the main result of the article.

where

Theorem 2.8 Suppose that R
R e Woold/241(Rd) (2.63)

and
Sup/ P+ q| 7 R(p)dp < +o. (2.64)
q

Assume also that € S(RY). Under the above assumptions the finite dimensional laws of the pro-
cesses {(Z(t),0), t > 0} converge in law, as € | 0, to those of {{Z(t),0), t > 0}.

15



Outline of the proof

The strategy of the proof is to gradually simplify the terms on the right side of the equation (2.57)
for Z.. The first step is to eliminate the term of the apparent order O(¢~!) in (2.57) in Section 3.
This is done by adding a corrector A(¢,x, k), in the spirit of the perturbed test function method.
The crucial step here is Proposition 3.1 that shows that the corrector needed to eliminate the
"apparently largest” term in (2.57) is actually small (as a distribution). This is done using the
Duhamel expansion for the deterministic kinetic equation. This step reduces the asymptotics of Z.
to those of Z., solution of (3.1) below. The latter equation has three forcing terms, of which one
is a martingale, and the other two are not but all come about because of the corrector A.. The
next step is to eliminate the non-martingale forcing terms from (3.1). This is done in Section 4, see
Theorem 4.1. The asymptotics of Z. is, therefore, reduced to those of Z2, the solution of (5.1), which
is the ”standard” Wigner equation (in particular, with the ”apparently largest” term of the order
O(e=1/2), not O(¢7') as in (2.57)), with a martingale forcing. In Section 5 we formulate Theorem 5.2
that allows us to replace the "Wigner equation” part of (5.1) with a kinetic equation and the same
martingale forcing, see (5.5). The proof of this theorem is contained in Section 6. All that remains
to do in Section 7 in order to finish the proof of Theorem 2.8 is to show that the solution of (5.5)
converges to the solution of the kinetic equation with a random initial datum.

3 Eliminating the largest term

Definition of the corrector
We represent the solution to (2.57) in the form
Ze(t) = Ze(t) +Ac(2),

where Ac(t,7,k) = A(t,V;/e; 7,2 /e, k) and the corrector A : [0, +00) X & — C(R?4, L%s) (1)) is linear

in the £-variable and shall be specified in (3.5) below. We can write

2
dZ.(t) = {AZ(t) +e P Z(); Vige) + Y e P <t>} dt + dM. (1)

i=0
Z.(0) = ~A.(0) (3.1)
Here, we have defined ) .
Wi (t, o, k) = Witz k,x/e; Vi) (3.2)
with
Wolt, @, k, 2,U) == —[0, + k - Vo ]JA(t, Us 2, k, 2), (3.3)

Wit @k, 2 U) = LW (t 2, k) + KA U), 2 U (2, k),

Wa(t,z, k,2;U) = =1k -V, + QA U;x, 2, k) + KW (t), z; U)(z, k)

while {M.(t), t > 0} is a certain H $_valued martingale, which we describe below. The function
A(t) is chosen in such a way that Wa(t) = 0, or, equivalently,

k- V. + QA 2, 2, k; U) = K[W(t), 2 U)(z, k). (3.4)

This of course implies that W5(t) = 0, eliminating the largest term in (3.1).
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Using the same argument as the one below (2.41) we obtain that
At 2,k U) = [ eP*alt,x.k,p)V(dp), (3.5)

where

a(t, o, k,p) =i(2m) " Yy(p) —ip- k7" D oW(t, .k + op/2).
o=%1

Note that we have, cf. (2.41) and (2.43),
<IC[A(t, U),zU|(z, k) — LW(t,z, k)>7T =0.
From (2.57) and Proposition 2.3, cf. also (2.19), we conclude that

c(tyx k) =1 Z / E/ Pe/E [y (p) 4 ip - k] W (e, @ k+ap/2)é;l7sr’)ip). (3.6)

o==+1

The martingale is, therefore, Gaussian, adapted to the natural filtration corresponding to the Brow-
nian motion.

The following crucial estimate shows that the weak limits of Z. and Z. (if they exist) are the same
— recall, once again, that working with Z. is simpler since the leading order term in the equation for
Z. has an apparent order O(e~'/2) rather than O(s~1).

Proposition 3.1 For any t > 0 there exists a constant C > 0 such that for all § € S(R?*?) we have

2
E [(A.(t),6)2] < C <5 log i)

Proof of Proposition 3.1

We have .
V(t/e, dp)

(t,z, k) —ZZ /”””/‘E p) +ip- k| IW(t, z, Ky) i

o=%1

where K, is given by (2.60). The process A.(t) is Gaussian, of zero mean. The variance of (A.(t), )
equals

/ /
E| Zaa/ S K0 WO KT (5,2, K )TV (s, !, K, ) 207 ARAR pdp)
o,0'=%1 (27T)
(3.7)
where,
L(p,k, k') = {ly(p) —ip - Kl[v(p) +ip- K]} (3.8)

The right side of (3.7) can be further transformed by using expansion (2.51) for W leading to

E[(A:(1),0)] = > A,

n,n'>0

with AL given by formulas similar to (3.7), with the product of W (s, z, K,) and W (s,2’, K.,)
replaced by the respective product of Wi, (s, x, K) and W, (s, 2, K/,) defined in (2.52). Using those
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definitions and the representation 4(t) = (27) ! [ ?'d3 we can write

e S o A W A )

n,n'>00,0'=—1,1

n+1—times n+1 —times

X /ei(’8+ﬂ,)texp{—i <ﬁin —ﬁ'in’)}exp{ Zp kiTi — Zp kTl }
i=0 i=0
X exp {—z‘ (Z g kim =3 d k) } Fi(6)(a. W) (60)(d, F) (3.9)
i=0 i=0

, : (m) g1/ ()
H —S(ks )TLHe k)i, (p, K™ KO )dﬂdﬂdqdqdk k"™ pu(dp)

o (27T)d+2
Here,
T (0, K, X)) 2= T, ke, k) f (k) £ (Kpy) [T (B (Kim1)or (ki k)] [ [S i1 kD]
i=1 1=0
ky := K,, kj := K!, and for abbreviation sake we write dr := dry...dr,, dr’' = d7}...d7},,

dk™ = dkdk; . . .dk,, dk'") .= dk'dk} ... dk],. Integrating out the 7 variables we get

E[(A(t),0)] = 2m) 2" " oo / WHONF(0)(q, k) FL(0)(qs k) Ty o (p, K K
nn'>00,0'=-1,1

/ -1
n n

-1
< [Tk + 8+ (0 + 51 m] [H[E(kb 8+ (¢ + D) ki]] dpdf3 dqdg’dk™ dk'™) p(dp).

i=0 =0

Using the fact that é4(3) = (A +i3)~! is the Fourier transform of the function

e*At, t>0
ea(t) ==
0, t<0

we can rewrite

E [(A(2), 9>] (2m) 242 Z Z oo // .*6An(t)€A6*...*€A;l(t)7

n,n'>00,0'=—1,1

< F1(0)(q, k) F1(0)(q, k') T (p, k), K') ) dgdg' dk™ dk' ™) pu(dp) (3.10)

where A; := X(k;) +i(q+ (p/e)) - ki and A} := X(k}) +i(¢' + (p/e)) - k. Computing the convolution
on the right hand side of (3.10) we obtain that this expression equals

)22 , e e

¢ n;owgllaa /n(t) dTl’n/An,(t) M //e p{—Ao7i} exp {—Ayri } F1(0)(q, k)

XFUONG, KT, ks k) £ () f () H [exp {—Ai(7it1 — 7)} Blkim1)o (ki1, ki) (3.11)
i=1

nl

x [ lexp {=Ai(r/s1 — 7))} S(k}_))o (K}, k)] dqdq'dk™ dk'™ pu(dp),
=0
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where 7,11 = 7",+1 :=t. We can further rewrite (3.11) as being equal to

(2m) 242 Z Z O'O'/ dTLn/ ATy //dqdq'dkdk',u(dp) (3.12)
A, (t)

n,n'>00,0'=—1,1
(ko) exp {—(ko)m1 } £ (ko) exp { =X (ko)1 } F1(0)(q, k) F1(0) (¢, K)T(p, k, k')
xF(Gn(-5k)) ((p/e + @) (11 — T0)5- -+ (P/e + @) (Tnt1 — Tn))
X F (G (k) ((p/e + ) = 70)s -+ (p/e + ) Tpia — 70)) 5

where
- kil? — |ki_q|?
Gn(k, .. H exp {—X(k;)(Tit1 — 74) H (M ki — ki—l)
and
g(kn) = E_l(kn)f(kn) €xp {*E(kn)(7n+1 - Tn)} .
We have

y (12— Ik ) /Ru—k) 2/A
Ri:=su /R(,l—k dl = su ———dl < — [ R(l)dl < +o0. (3.13

Since X(ky,) is continuous and strictly positive for all k, and f(ky,) is compactly supported we have
llgllco < +o00 and as a result

G1 = sup [ (Gulh . i)k < g]lRY < +cx. (3.14)
k

Here dk; ,, := dkq ...dk,. We can also easily estimate

Sup [ F (G 8)) (Ws-- -1 yn) | < / VGt o ).
Y1,---Yn

Lemma 3.2 We have
G i— Zsup/ Vi, Goa(krs s ks )| dkyn < CLRIL,
=k

where the constant Cy depends on R, G, t but not on Ry and n.

We postpone the proof of Lemma 3.2 for the moment. Returning to (3.12) we obtain E [(A.(t), 6)?] =
Zn n’/>0 A‘gn’n/) and

A = (2m) 7272 N g0 / dri / dr{ / / dqdq' dkdk' u(dp)
n(t) An’(t)

o,0'=-—1,1
x (ko) exp {—X(ko)71} (k) exp { —2(ko)71 } F1(0)(q, k) F1(0)(d, K" )T (p, k, k)

x (1 + > 1(p/e + @)l (rips — n)) F(Gn(5 k) ((p/e + @) (11 = 70), -, (p/€ + @) (Tny1 — T0))

i=1

X (1 +) lp/e+ (i —n’)) F(Gu(5K) (p/e +d) 1 = 70), s (/e + ) (Ths1 — )
=1

-1

(1 + > |(p/e+a)|(ris1 — Ti)) (1 +> p/e+ (7l — Ti’))]
i=1 i=1
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and, by virtue of Lemma 3.2, the right hand side can be estimated by

R n+n’—2
0

n!(n')!
-1

(1+Z!p/€+q )(1—1—2 (p/e+ )| )] drdr' u(dp).

Cn+1)(n' + DIIONI 1.5

af [ f

Observe that

t

/Ot [1+|(p/e +q)|r] dr < s+/ 1+ |(p/e + q)|r] " dr

<ec+elpteq™ /t rtdr <C <5 log i) [1+ |p+eq| Y]
for some constant C' > 0 and all € € (0,1). Therefore,
8 [(0:0,07] < (<10 1) W0l e (1500 [ o+ ol 2t
for some constant C' > 0. The constant on the right hand side is finite thanks to (2.64). O

The proof of Lemma 3.2

In order to prove Lemma 3.2 we shall need the following estimate.

Ry := sup/
k

Proof of Lemma 3.3. Let us first explain the rough balance leading to (3.15). Let f(k,w) be
a bounded function supported inside the set {|k| < 1,|w| < 1}. Then the support of the function
f((k+p)? — k2,p) (as function of p) lies inside the set {|p| < 1,|(k - p)| < 10}. Tt follows that

Lemma 3.3 We have

5 (117 — [k

/!llf( k—D)dl < O(1+ k) [{lp] < 1.|(k - p)| < 10}] < C.

which is the spirit of (3.15).
We now prove (3.15) more carefully. Assume that |k| > 1. We have

4y(p)wR(p)
(V2(p) +w?)?

For n > 0 we let A, (k) := [n < |k —1] <n+1]. Since, for any M > 0 there exists C' > 0 such that
R(p) < C{p)~™ we can easily see that

2 2 2 B
/ awz%(””f',l_k>'dl§0<|k|+m/ K| — [1)i
An (k) 2 A

()™M atk) L RFAIR) =1
We change variables ¢ := [/|k|. The right hand side of the above estimate equals

C(lk] + n)?[k|4+! / |1 —|ef|a¢
(n)M An(ky L [K[B[1— €]+

awR(wa p) = -

(3.16)
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where A, (k) := [n|k|™* < |k — | < (n+ 1)|k|™'] and k := k|k|~'. Note that D, (k) D A, (k) for
|k| > C1(C, p) V1, where C1(C, p) is a certain constant depending only on C, p and

Du(k):=[0: 10—kl < (n+DkI™ 10 € (1 = (n+ D)k V0,1+ (n+ 1)k~

The expression in (3.16) can be estimated by

C(Ix] +n)2!k\d“/ |1 — [¢]|de
(n)M Do) L4 |31 — [£[|*
Co(|k| + n)? |k k| ~¢H1nd—! /1+<n+1>|’f|1 2?11 — z|dz
N ()M 0 L [RFL —
Cs([k| +n)[k[>(1 + nlk| )" /H(”“”“_l 1~ alde (3.17)
- (n)M=d+i 0 L [RPL —t '

After the change of variables 2’ := |k|?z the utmost right hand side of (3.17) can be estimated by

1 k —1\d+1 +o00 1—zld
0

(V=71 T+ kP —

Therefore we can estimate

S ]1]2 - ]k\2 C4 1 + n]k] 1)d 1 Cy
8wR ( 2 7l y dl ‘?\;1 n>0 M dl n>0 <n>M_2d = e

sup
|k[>1

provided M > 2d. UJ
Proof of Lemma 3.2. Suppose first that ¢ # n. Then,

Vi, Gn (kh ooy kni k) = =VEK) (i1 — 1) Gkt ..o kns k)
R ks 2 _ ko 2
H exp {—X(k;)(7j41 — 7))} H R <|]’2j1|a kj — kj—l)
JAii+1

1

ki 12 _ ki 12
Z [(kzﬂa R+VR) (' +i| 2' +i=1] ,kz‘+j—ki+y‘—1>]

7=0

(3 - kl 2
(\HJ\ L

We obtain therefore

[ 190Gl i )k < RAGut + g R R

On the other hand when i = n we get

- kil2 — |ki—1]?
Vi Gn(kt, ... kni k) = Vi, g( HGXP{ S(ki)(Tiv1 — 7) H <M ki_ki—1>

(kjn)ﬁ [GXP{E(kj)(TjH ~ )} R (W i kjl)]

- P |k7n|2 - |k3nfl|2
x [(knawRerz) <2,kn kot )|
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Note that

Vi, g(kn) = _E_l(kn)vknz(kn)f(kn) exp {—X(kn)(Tn41 — 7n)} [E_l(kn) + Tny1 — Tnl
+2_1(kn)vknf(kn) exp {_Z(kn>(7—n+1 - Tn)} :

and

IV, < (Ro + 1) sp {E (S (RIS ) + ]+ 270 Vi, £ } < o0,
Hence,
/ Vs G (B s )|kt < [V glloRY + gl RYR,

and the conclusion of the lemma follows. OJ

4 Elimination of the non-martingale forcing

Proposition 3.1 shows that the weak limits of Z. and Zg are the same. We will now further write
Z.=U. + Z2, where U, satisfies (3.1) without the martingale term d M, and the same initial data
as Z., while Z? satisfies (3.1) without the terms involving Wj (but with dM.), and with zero initial
data. It will turn out that the weak limit of U vanishes, while Z2 converges to Z.

More precisely, let {U(t), t > 0} be the solution of the equation

1
OUL(t) = AUL(t) + e VKU (8); Viye) + > e /PWE(),

i=0 (4.1)
U:(0,z, k) = —A-(0).
Equation (4.1) can be rewritten in the mild form.
2
)= 30600 + 72 [ it = KU1 Vil (4.2
=0
where
G (t) = —So(t)A(0 ) (4.3)

Gt / So(t — s)W5(s)ds,
95(2) (t) := 51/2/ So(t — S)Wf(s)ds.
0

Here WE(s) and A.(t) are given by (3.2) and (3.5), respectively.
Let U.(t,q,k) = F1(U:(t))(q, k). Performing the Fourier transform in the x variable and writing
the Duhamel series as in Section 2.4 we obtain

Ue(t,q, k Zzgz")tq, ), (4.4)

1=0 n>0
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where G0 (1) = G (¢) := £, (G (t)) and

ggi,n)(t,q,k) = (72" Z Jl...O'n/ ()/exp ZQ] j(sj—1—sj) p (4.5)
An(t

O1y.,0n==E1

xﬁv(sj ap;) G (0, Qn, Kn) ds™dp™,
j=1

with ¢ = 0,1,2, and n > 1. Here K, Qn,s™,p™ are given by (2.39). The main result of this
section concerns the behavior of U.(t), as ¢ | 0.

Theorem 4.1 For anyt > 0 and § € S(R*?) we have

lim B [(U(t ),0)*] = 0.

Proof of Theorem 4.1

Let
GLm 2 (t,0) i= B [(G0)(1), 08 (2),0)]

From (4.4) we obtain that

E [(U- <3Z > GUmm(9). (4.6)

=0 n1,n2>0
The theorem in question is a simple conclusion of the following.

i)

Proposition 4.2 There ezist constants Gglm (T') such that

sup |GUm)(L,60)] < eGY) L, (671, Ve e (0,1] (4.7)
t€[0,T]
and
Z Gn1 ny (T) < +o00.
ni,na2=0
fori=0,1,2.

Proof. We consider only the case when ¢ = 2. The other cases, i.e. i = 0,1, can be deals similarly
(in fact they are simpler). Observe that then estimate (4.7) needs to be checked only for n = n; +ns
even (otherwise its left hand side vanishes). Using (4.5) (for ¢ = 2) and (2.53) we conclude that the
left hand side of (4.7) can be estimated by

cre 2617 W2y (4.8)
2 n;
~ Sij ~  Sing+1
ds,d E V(2L dpij) | Va(Z2 L dpin, 11, dpin,
// 5152/ 11;[11;[1(57])]) 2( . dPini+1 Pin;+2)
n1+ln2+1 J

Here sz,k = Ap(t) x Ag(t),

Va(t,dp, dq) = V(t,dp)V (t,dq) — R(p)é(p + q)dpdq (4.9)
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We shall also denote Df;sk = Ap(t,s) X Ag(t, s).
Symmetry consideration concerning the first n; variables s;; for i = 1,2 respectively allow us to
rewrite the right hand side of (4.8) as being equal to

C|0|IF W
' n/2+1 d81 n1+1d52 511 dsydss (4.10)
ni: n2 € S1,n1+1 v $2,ng9+1
2 ng
o Sij o o Sing+1
x [ |E V(—,dpi;)| V- T dpin+1, APin,
/ H H ( c ’ plj) 2( c y APin;+1, pm,—&-?) )
=1 | j=1
where s; = (S;1, .. ., Sin;). Using the rules of computing joint moments of mean zero Gaussian random

variables we conclude that the right hand side of (4.8) equals

Z/ / d81 n1+1d82 n2+1/ / dSldSQ/ (4.11)
S1,n1+1 Y S2,ng9+1

~ 8 A
< I E[VEEdpa) V(P dpin) | dsidsa|
(jk;lm)eF

CroN3 W,
nl'nQ‘E”/QH

where the summation extends over pairings formed over the pairs ((i171); (i2,72)), (i, Jk) € V =
{(1,1),...,(1,n1+1),(2,1),...,(2,n2+1)} that contain at least one bond of the form ((¢, 5), (1, n; +
1)) (then it has to contain a bond ((i,7), (2,n2 + 1))), for some (i,5) € V\ {(1,n1 +1),(2,n2 + 1)}
(then it has to contain a bond ((¢',j), (2,n2 + 1)) for some (7/,j") € V\ {(1,n1 + 1),(2,n2 + 1)}).
Applying the relation

E [V(t, dp)V (s, dq)} = (27r)de_7(p)|t_5|5(p + q)R(p)dpdyg, (4.12)

we can estimate the expression in (4.11) by

crllo)z w2, )| \/ A
Z/ / / H e 1 Pilssk=siml/5 (. + pi) R(pji)dsidsadpydpa, (4.13)

nl ln2|€n/2+1

Here p; = (pj1,...,Pjn;) and the range of summation extends over all pairings between elements of
V.
Changing variables s, := s;;/e we obtain that expression (4.13) equals
CM1011 1 W2 se te il
Y(Pjk)|8jk—S1ml]
TS [ 1 / / lssk=siml sy s (4.14)
(k,hHeF
x0(pjk + pzm)R(ij:)dmdpz
C”t”/2+1H9|| W2ie R( k)
o( dp1d
> [ T1 8w+ o) kS dpudp

(kl)EF
P93, W2 e + 1)

nl'ng'

R n/2+1
/ (p dp] .
v(p)

In the last step above we used the fact that the total number of pairings for a set of n+2 = ny+no+2
elements equals (n 4 1)!l. O
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5 The term with the martingale forcing

We have now got rid of the largest apparent order term in (2.57) with the help of the corrector, as
well as of the non-martingale forcing terms that arose after the addition of the corrector. Therefore,
the problem is now reduced to the Wigner equation with a martingale forcing, see (5.1) below. Our
next task is to replace the Wigner equation with the kinetic equation with the same martingale
forcing, and we formulate that result in this section.

The stochastic equation with the martingale forcing

Let us define Z2(t) := Z.(t) — U.(t). It satisfies the stochastic equation

dZ2(t) = {AZ2(t) + e V2K Z2(); Vel } dt + dM.(2),

(5.1)
Z2(0) = 0,

where the additive noise {M_(t), ¢t > 0} is given by (3.6). We can perform the Fourier transform in
the first variable on both sides of (5.1) and obtain, as in Section 4, that Z2(t, q, k) = F1(Z2(t))(q, k)
is given by

ZO t,qk ZZna t,q, k (5.2)
n>0
Here,
A t . —_~
ZO,E(t7Q7k) :_/ elq.k(tis)dME(‘%qak)a (53)
0

t
Zn’&*(t, q, k') = (Eil/QZ‘)n / / Vn(ta Sn+1,4, k7 dp(n))dMé(Sn-f-l; an K’Vl)v
0

for n > 1. Here,

17n(t, s,q, k,dp™) := Z 01...0p / exp ZQ] i(sj —sj41) H Vv ( dp]) ds™,

O1y.,0n==21 An(t,5)

where Ay (t,s) :=[t>s1>...> 8, >8], so:=1t, Sp+1 = s and M\E(t,q, k) is a Gaussian maringale

given by
— t/e P .
Mc(t,q, k) = Fi(Mc(t)) (g, k) =1 Z / / p)+ip-k] —w (53 q— Kg) B(ds,dp) (5.4)
o=%1

and W(t,q, k) := F1(W)(t,q, k). The next proposition says that, for a fixed € > 0, we can, indeed,
represent the solution of (5.1) as a convergent series (5.2).

Proposition 5.1 For any s € R, p > 1 the series in (5.2) is convergent in the LP(P) sense in H*°.
In addition, we have Z2(t,q, k) = F1(Z2(t))(q, k).

The proof is standard and is, therefore, omitted. The simple reason for convergence is that integra-
tion over the simplex A, (¢) provides sufficient decay for the terms of the series.
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The kinetic equation with the martingale forcing

We shall define {Z.(t), t > 0} as the Duhamel solution of

dZ:(t) = {AZ:(t) + LZ(t) } dt + dM(t),
_ (5.5)
Z:(0) = 0.
Using (2.52) we can write
ZE(t>Q7 k) Fl(Z ZZna t, q7 (56)
n>0
Here,
t
Zoo(t,q, k) = / RS IM_ (s, q, k), (5.7)
0

t
Z’n,E(t7 q, k) = / /Vn(tv S,4, kO,n)dMé‘(Sn-‘rla q, kn)dkl,rm
0

for n > 1 and

Dn t787Q7k0,n ::/ exp q- k — Sj+1
( ) Ao Z j+1)

X H [(7(]{2'_1, kz) exp { Z Z — Sj+1)} dS(n)dkLn.

Here kj,, = (kj,...,kn) and dk;,, = dk;...dk, for any j < n.
The next theorem shows that solutions of (5.1) an (5.5) are asymptotically close to each other.
This is the most difficult step in the proof of Theorem 2.8.

Theorem 5.2 Suppose that {Z2(t), t > 0} and {Z.(t), t > 0} are the solutions of (5.1) and (5.5)

respectively. Then,

lim E [(22(6).0) — (Z:().6)] =0

for any t > 0 and 6 € S(R?).

6 The proof of Theorem 5.2

6.1 Some preliminary results and terminology
We start with the following.

Proposition 6.1 For any € > 0 we have

E [(Z2(t),0) — (Z:(£),0)])" = 3" Anle) + 3 Bale), (6.1)
n>1 n>1
where
An(e) = E(Z8, .(t),0)? — E(Z, (1), 0)*
and



Once again, for € > 0 this propostion is quite standard so we do not present it here.
A direct calculation shows that

R R n+1
E(Z2.(t),0)? = (=1 sn+1 Zam/ dT/v o, F.p\" piV:t, 7) (6.2)

01,02,p F
<0% (g1, k)0 (g2, k) D (p, K KW (r, QD = 2K )W (7.Q = £ K(2), ) dpdkdg

El

cf. formula (3.8) for the definition of I'(-). Here p(n) := (pi1,- - -, Pin), dpdkdq is an abbreviation for

)

the volume element V(dp)dqldqukldkgdpln) dpgn), and we set

. 1 <& « 1 & N O ,
QV ==~ Y pim: K=kt 5 Y oimpim, K, =KD +3p fori=12 (63)
m=1

and

V(p, F, p(n),pg) t,7) ::a/D ( )exp ZQU ij(8ij — Sij+1)
n (L, T

X H |:6—’Y(pjk)‘Sjk—sj/mV&R(pjk)&(pjk +pj’m)] dsgn)dsgn) (6.4)
(jk.j'm)eF

The first summation in (6.2) extends over o1,09,0;; = 1, 7 := H(ij) Oij, Dn(t,7) := Ap(t,7) X
A, (t,T), and

1 J
D) = (). Q=i - D P,
m=1

1< .
K;; :ki+520impim fori=1,2.

m=1

The second summation there extends over all pairings formed over pairs of integers (ij), with ¢ = 1,2,
and j = 1,...,n. The pairs are ordered lexicographically, that is, we say that (ij) < (i'j') if i < ¢/,
or if i =4’ then j < j'. If (e, f) is an edge we say that e, f are left and right vertices respectively if
e < f. Also, given a vertex e = (ij) we will use the notation s(e) = s;5, p(e) = p;;. We say that an
edge v = (e, f) straddles over v = (¢/, f') if v #v" and e < € < f' < f. Edges v = (e, f) and v’ are
said to intersect each other if they are different, not straddled by each other and one of the vertices,
say ¢, satisfies e < ¢/ < f. A mized edge is of the form ((1j1),(272))-

For a given pairing F let hy(-; F) be a function defined over its edges assigning to each v € F its
vertex in such a way that the number of v, for which h;(v; F) = (15) equals [n/2]. Let ha(v; F) be
the other edge of v. We shall omit writing F in the notation of these functions if it is obvious from
the context.

A pairing is called time-ordered if all edges are of the form ((i;2j — 1), (i;27)) for some i = 1,2
and j =1,...,n. A pairing F is said to be negligible if it does not contain mixed edges and belongs
to either of three classes of pairings: 1) £ consisting of pairings containing an edge ((i7), (ij')) such
that |7 —j| > 4, 2) & pairings with at least two edges ((ixjk), (ixj;.)) € F, k = 1,2 with |j] —j1| > 3
and |75 — jo| > 2, or 3) & pairings with at least three edges ((ij), (ij')) € F such that |j" — j| > 2.
An almost time-ordered pairing is defined as a pairing that contains no mixed edges and is neither
ladder, nor negligible. Observe that the pairings considered in this case can be divided into two
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classes: 1) &, - those that contain an edge of the form ((4, 7), (¢, + 3)) and all other edges are of the
form ((i,7),(i,7 + 1)), 2) & - containing edges ((i,7), (i,7 +2)), ((¢,5 + 1), (4,5 + 3)) and all other
edges are of the form ((¢,7), (i,7+1)). By & we denote the class of pairings containing mixed edges.
Such pairings are called mized.

Similarly, with K, , := ky, + op/2, we can write

B(Zp. (1), 0) = 2 Z oo / a7 [ [Vttt 7' K )0 6 1)
o/'=%+1
p p
T (p, k, k:)W( a1t Kng) W(T A )dpdqdk: (6.5)

with dpdqdk := v(dp)dqdq'dko ndky ,, and

. o Pt :
E[(28,,:(8).0)(Zac(1),6)] = - €1+n Y Yoo / df//v p oo™t 1) Vult, 7 d K
o0, p=x1 F

p

<0 (q,k)0" (¢, K )T (p, Kon, &)W (T, Qan — = Kzn,a) W (T, q — g,f(;,o,) dpdqdk. (6.6)

The second summation on the right hand side extends over all pairings formed over vertices {1, ..., 2n},

2n
V(o, F,p";t,7) =0 /eXp iy QI (s —sje1) ¢ I [6_7(”)‘8”'_5]"VaR(Pj)5(pj +pj')}ds(")‘

Azn(t,T) 7=t )7

6.2 Estimates of A, (¢)

We define A} (), AP (), ALY (¢) by expressions analogous to (6.2) except for the fact that the
summation extends only over negligible, almost time-ordered and mixed pairings correspondingly.
By ASL) (¢) we denote the respective expression corresponding to the time-ordered pairing. We let

AP (&) := AP () — B(Zp (1), 0)°,
The following result holds.

Proposition 6.2 There exist constants Cy,Co > 0 and k € (0,1) such that

cn
AP ()] < e+ (Cae™)", (6.7)
IA® (e)] < 70} £, (6.8)
n.
, cr
(@) &
A= s (6.9)

foralln>1,¢>0 andi=2,4.

The proof of (6.7). Observe that

< 6n+1 Z Z/ . [T e lr=Veas{Masy?, (6.10)

i=1 Feg; T Pnt0) (o peF
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where the constant C' > 0 depends on 6, W, ~, and the measure y. Suppose that n is even,
consideration for n odd is almost identical. Fix a negligible pairing F € £;. The term corresponding
to & in (6.10) can be estimated by

Cn+1

il > > / toems”_sijl‘/eE 1T w(%) ds\"dsS" (6.11)

i=12]j—j/|>47 Pn( e#(15),(i5")

where C' > 0 is some constant indpendent of n and ¢ > 0, {w(s), s > 0} is a stationary, one
dimensional, linear diffusion described by

dw(s) = —vaw(s)ds + \/27.dB(s)

and {B(s), s > 0} is a one dimensional, standard Brownian motion. Let us choose an arbitrary

€ (0,1) and denote vy := ((i5), (ij")). Divide the domain of integration into two sets Dy and Do
depending on whether |s;; — s;5/| > €", or not. The expression in (6.11) can be written as I + I
corresponding to each domain of integrtion. We have then

sl 5,5 [ e T ()| abel o

=12 [j—j' |24 — e#(i4),(i5")
2n—times
+1
G X X X [ ferim ] T w(%)| e
n
T S e T Jo A
n times

where the summation ) » extends over all pairings formed over all vertices (kl) & {(ij), (25)}.
In the case of integration over Dy for v # vg we let 3, () 1= Sp, (v) /€. We can estimate then

I < (n'C i 12/ / /Rn 1 H e~ V= IShg(v) /6= Shl(“)|d8h ()3, (o) (6.13)

veEF v#£vg

n— 1 —times

cnt(2n — 3)! et CF ar,

(n!)2e? ¢ ~ nl
The expression corresponding to integration over Dy can be estimated using the fact that |s;; —s;;| <
. Let r, u denote the respective numbers of edges of F that are straddled by vg := ((i5), (ij")) or
intersect vg. Obviously, [j — j'| = 14 2r 4+ u. Denote by V the set of vertices of those edges that
neither intersect, straddle, nor coincide with vg and V¢ the remaining ones. Let m; := #)V and
ma 1= 2n —mj — 2 = 2(r + u). We have then,

I _m1'8”+1 3 Z/ / I e SfVEdch/ / LEV )]dsv (6.14)

=12 F K Go), (@HER
‘] j|>4 —s; /|<6/§ m1 times

‘-513

Here dsy = H(kl) ¢y dsg and likewise dsye. The summation ) - extends over all pairings formed
over all vertices belonging to V¢ \ {(ij), (ij')}. For v # vy that does not intersect vy we change
variable 8y, () 1= sp,(») /€. Also for an edge v = (e, f) that intersects v and e lies between vertices
of vy we let 5; := sy/e. We can write then

I < Z

i=1,2,j—j"|>4

Cn8/£|j’—j|5m1/25u

(m1/2)len 1
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The exponent of € appearing in the expression above equals
Kli" =l +ut+mi/2—n—1=klj'—j| —r—22>(k—-1/2)|j' = j| - 3/2.

We can choose k € (0,1) such that the above expression is positive since |j' — j| > 3. In fact, since
mi + 2|5 — j| > 2n we have

.[2 < (025m)n (6.15)

for some constant Co > 0. Considerations in the remaining two cases, i.e. pairings belonging to &;,

i = 2,3 are similar and we conclude in this way that (6.7) follows.

The proof of (6.9) for i = 2. One can obtain then a bound for AP (¢) analogous to (6.10) with
&, 1 =4,5. Since the expressions (Si,j — Si7j+3> -+ (S@j_;,_l — Si’j_;_g) and (S@j — Si’j+2) -+ (Si,j—i—l — Si7j+3)
are comparable with Z%{:O(SL]'JrK — 51’,j+K+1) on the set Si,5 > Si,j+1 > Si,j+2 > Si,j+3 it suffices
only to consider the pairings belonging to the classes £4. The bound obtained for the this class can
be used also to estimate the expression containing pairings from &. The term corresponding to &4

can be estimated by

Cn+1
ol Z Z/ H exp {—n(sij+K — Sij+K+1)/e} E

i=1,2 j=1 (t.0) k—o

[Tw (55)] dsMdst", (6.16)

e

where C,~; > 0 are some constants indpendent of n and £ > 0 and H; denotes the product over all
vertices except (i,7), (i,7 + 1), (4,7 +2), (4,5 + 3). Changing variables 5x; := sg4;/e, K =1,2,3
and dealing with the expectation term as above we obtain that the expression in (6.16) is bounded
from above by C7/n!.

Bound of (6.9) for i = 4. The case of mixed pairings. Consider now the case when F is of
class &. Suppose that the edge (e, f) := ((1,j1), (2, j2)) corresponds to the smallest values of such
"mixed” s, that is, all smaller times come from the same simplex, say from the one corresponding to
the first index 2: s(e) > s(f) > s2,j,41 > ... > s2,,. The other case, i.e. when the first index equals
1, can be argued in the same way. Let V; ;, == {(1,1),...,(1,n),(2,1),...,(2,72 — 1)} \ {(1,51)}.
In case jo = 1 we suppose that V; 1 = {(1,1),...,(1,n)} \ {(1,51)}. Let also A(t,s1;,7) :=
Aji1(t, s1,5,) X Ap_jy (5151, 7) and Dy r := Ap_q(t,7) X Ajy_1(t, 52,j5—1). The term corresponding
to & can be estimated by

Cn+1 n ~ Se ~ ~
prwsy / dT/D dsv;, ;, /E 11 V(;ﬁdpe) |0(a2, k2)|R(p1,j, )0 (P1j1 + P2,52)
t,T

J1,52=1 e€Vj1 4a
(n=i2)/2

11 [R(Pz,j2+2k—1)5(P2,j2+2k—1 +p2,j2+2k)] |Ge (51,51 -15 1,51 +1, 52,5, —1) [dpdgadky, (6.17)
k=1

where dp is the volume element corresponding to the integration over all relevant p variables,

/S2J2 lﬁ eXP{lC thz(n)) JL} ()(827jz)i|

S1,51 — 52,5
X exp {—’Y(pl,jl)'”&,”'} dsi,j,ds2 j, (6.18)

81,511

Ge(S1,j1-15 S1,j1+15 52,jo—1) 22/
S

1,51+1
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with

J1 J1—1 Jj1—1
Cél)(éh,Pgn)) = {(6(11 Z p1m> ‘ (Z P1mp1m> - (5611 - Z p1m> : (Z plmp1m> } )
m=1 m=1 m=1
C§2)(CI2,P§”)) = —eQ2j,-1 - Ko j,-1,

and

I (s15,) = /é*(éh, k1) exp {iCS’) (fh,Pgn)) : kl} W (T, QLY — §7K7(11z)71> v(p) —ip - K1) dk,

n
I (s0,3,) = / exp Qi Y Qo Koj(sa;—s2,11)
An—ja(52,j5,7)

J=Jj2
(n—j2)/2 @)
x T exp{—r(p2joron—1)(s2jps26-1 = S2jpt2k)/E} dS,) 1
k1

where ds ; )Jr Ln = ds2 j,41...dsz, and

¢ (g1, p{") := 7)/e — Z Prm(S1m —
By the Plancherel formula we can write

IO (s1,,) = / F(0) (g1, 2+ CP(qr, P exp fiz- PYF (1.Q) = £.2) dz (6.19)

where

1 & o
= 5 Z O1,mP1,m + ?pa
j=1
F(rq2) = / MY (1, 00k + 01p/2) [1(p) — ip - K dk.

Using (2.52) we can write Ig(l)(slvjl) =2 >0 Il(?(sul), where

—+00 oo
I (s1,) : / / dm,/ / kf}/dzH &, k) (ky))} (6.20)

o {‘ 2 2“‘:%))7’”} R ((Q0) =) r— =) F(O)" (a1, + € ar, b)) exp {i - P)

l l
X exp {—i (@v-1). kg;)Tm} F(E) <T -3 Tm) .
m=1 m=0

Here k( ) = = k1. We apply here the convention of writing dzy,, = dxj...dz, for any indexed

—_

variable zj,. Here K(z) is the Fourier transform of
(k) = R (B2 = |B2)/2, 6 — &) exp {~S(k)70} [1(p) = ip - (k — o1p/2)] ™"
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Using the expansion of Iél)(sl,jl) we can write Ge = > 5 G1¢, where G . is given by (6.18) in which

Ia(l) is replaced by Il(?.
From formula (2.47) one can conclude that

1+ |22 KC(2) < ©

where the constant C' depends only 7., d and Z,[i/j(}]ﬂ sup,, |V™R(p)|, cf assumption (2.63). Thus,

/|I€(z)]dz =: Ky < 4o00. (6.21)
Changing variables 53 j,1or := S j,12k/€, k = 0,...,(n — j2)/2 and 31, := 51,5, /¢ and using (6.21)
we obtain
Ccn—izt j2) /242 i
1G1e(s151-1 815141 82,50-1)] < —; S sup / |7 (0)(q1, y + [prjilws)|ds | ,
: yER weSd—1 J—o0
(6.22)
which, after summing up over [-s, leads to an upper bound
1Ge (51,4115 5111, 82,4, 1)| < O 2P R)2H2) (6.23)

which in turn leads to an estimate of (6.17) by

Cn-i—l n t Se . .
psy > /O dT/D dSvjl,jz/E 11 V(;vdpe> |0(q2, k2)[R(p1,5, )0 (P15, + D2,2)
t,T

J1,J2=1 e€Vj jo

) +00
xen=i2)/2+2 < sup / |F(0)(q1,y + |p1,j, |ws)|ds> (6.24)

yeR weSd—1 J—oco
(n—jz2)/2

11 [R(pQ,jz—&-Qk—l)5(p27j2+2k—1 +p27j2+2k)} dpdqdks.
k=1

Estimating E [Heevj ; V (se/e, dpe)} in the same way as in previous cases we conclude that expres-
1:J2

sion (6.24) can be bounded from above by

vt (B0, V5~ 1
o (/rm‘m)giun+hvm!

for some constant C' > 0 and (6.9) follows, cf (2.64).
The proof of (6.8). Using(6.2) we can write that

t
A5 (e) = —E(Znﬂ)/o dr {ZU//9*(Q17/€1)W (T, @ — g,Kzn,a(ﬂD dqidkydp
a.p

xh@rmKM@wﬂ*R@m/

[H exp {iq1 - Kok (p)(sor — s2+1) } (6.25)
Aoy, (t,7)

k=0

n 2
X H exp { —[v(P2k—1) = iGe i - Kon—1(p)] (5261 — 52k)/5}] dSLQn}
k=1
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where p:= [1", pr, R(p) := [1}—, R(p2r_1), dp := v(dp)dp; . .. dpan_1 and Ko(p) := ki,
Qe k = €41 — P2k—1,

_ _ 1
Kop—1(p) := Kaor—2(p) + = p2k—1P2k—1,

2
1 k=l
K2k72(p) = kl + 5 Z(me—l - PZm)me—la k= 17 27 e, n + 17
m=1
— — o .
K2n,0(p) = K2n(p) + §pa 1= 17 2.
We change variables §y := s /e, i =1,2, k =1,...,2n. As a result

~ t ~ A —
Ag?;z)(@ = —52n_1/ dr {ZU//G*(QL k)W (7-7 Q- Q,Kzn,a(P)) dqidkydp
0 op €

x [Y(p) + iKa2n(p) - p] ' R(p)pD:(t/2,7/2)}7,

where

D(t/e,7/¢e) := /A o) [H exp {ieqi - Kok(p)(s2r — sok11) }

k=0
X H exp { —[v(par—1) — iGe e - Kon—1(p)](s26-1 — 52k:)}] ds12n-

We can integrate out the s-variables with odd indices using an elementary formula

/82 eiA(so—sl)e—(B+iC)(51752)d81 — [B + Z(A + C)]*l[eiA(SO*SQ) o ef(BJriC)(So*Sz)}

S0

valid for all A,C' € R, B > 0, so > s1 we obtain, after changing variables soi := €91, that

Dc(t/e,T/¢e) = 5_n/ . H {[7(p2k—1) +i (eq1 - Kor—a(p) = @epo - Kono1(p))] ™
t,T k—1

x [exp {igq1 - Kog—2(p)(s2k—2 — s2r) } — exp {=[¥(P2k—1) = iGe ke - Kox—1(p)](s2k—2 — s21) /€ }] dsle%n,

where dsgn = dsy...dsay,. Choose k € (1/2,1). Considering the cases sop_o — Sor, > € and

0 < 8959 — S9i < €™ we conclude that

(3) —1/ dq-/ (dp) {Z // (g1, k)W (T, (h_g"f(?nﬂ(p)) dqidkidp

% [y () + iKan(p) - 11 RD)p DL ﬂ} £ Cale), (6.26)
where
D(t,7) := /A . kl;[l { [V (p2k—1) + ip2k—1 - K—2k—1(P)]71 exp {iq1 - Kog—2(p)(s2k—2 — 52k)}} dsﬁf%m

n

Cn(E) < 7'52/{71

n!
for some constant C' > 0. A simple calculation shows that the term of order =1 on the right hand
side of (6.26) coincides with E(Z,, -(t),8)? and the conclusion of the proposition follows. [J
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6.3 Estimates of 5,(¢)

For the most part the argument one can use to estimate B, (¢) is a simplified version of the argument
from the previous section. From (6.6) we obtain that

( 1n+1

an(t),é)] T Zaap/ dT//G* ¢, k)0 (¢, K')Vu(t, snt1,4' Ko )

o, ,p=+1 F

3

X / exp 7 Qj . Kj(sj _ 8j+1) H |:e—"/(Pj)|8j—8j/|/€R(pj)(5(pj —l—pj/)] dSLQn (627)
. j=0 (3)eF

<D(p, Koo KWW (8041 Qan = 2. Koo ) W (su1,0' = 2. K, ) v(dp)dgdg/dk,

Here for a given sequence p = (p1,...,pon) € {—1,1}?" we let p := H?Zl of

J J

(2n) _ L g ]

pin _(pla"-aan)> Qj -—q—EE:lpm, Kj —k+§zpmpm
—

The summation ) » extends over all pairings formed over integers j = 1,...,2n. In analogy with
the previous notation we say that an edge v = (i,7) straddles over v' = (i',j') if v # v/ and
i <i <j <j. Edgesv = (i,j) and v are said to intersect each other if they are different, not
straddled by each other and one of the vertices, say i, satisfies 1 < i’ < j.

A pairing is called time-ordered if all edges are of the form (5 — 1,7) and j = 1,...,2n. A
pairing F is said to be negligible if it belongs to either of three classes of pairings: 1) & consisting
of pairings containing an edge (j,7’) such that |j' — j| > 4, 2) & pairings with at least two edges
(JksJy) € F, k = 1,2 with |j{ — j1] > 3 and [j5 — j2| > 2, or 3) &3 pairings with at least three
edges (j,7') € F such that |/ — j| > 2. An almost time-ordered pairing is defined as a pairing that
is neither time-ordered, nor negligible. We can divide the summation over pairings appearing in
(6.27) into three sums B( )( ), i =1,2 and B(B)( ) according to the classes &;, i = 1,2,3 described

above. We let B (e) := 8(3)( ) — E(Znc(t),0)%. Repeating almost literally the argument used in
the previous section we obtain the following.

Proposition 6.3 There exist constants C1,C2 > 0 and k € (0,1) such that

C’n
1B (e)] < —ret (Cag™)", (6.28)
BOE) < her, (629
CTL
(2)
BR ) < T, (6:30)

foralln>1,¢ > 0.

6.4 The end of the proof of Theorem 5.2

In light of the results of Propositions 6.2 and 6.3 to finish the proof of the theorem we need to show
that for each n > 1 we have

t
i) [ [ [ V(07 B B0, (0 )0 k) D K Ka) (630
0

e—0

W (T, QW — g, K,(L};l) W ( Qv -L K<?3,2) dpdqdk = 0,
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for an almost time-ordered, or mixed type pairing F, according to the terminology of Section 6.1.
Here dpdgqdk is an abbreviation for the volume element v(dp)dqidgadky dk:gdpgn)dpgn). The definition
of the terms appearing in expression (6.31) are the same as those given in Section 6.2.

In addition we also need to prove that

limgH”/dT//H*q, G*qkf)th, n) (6.32)
e—0+
></ exp Z’ZQ]..KJ. Sj—l—l 6 —v(pj)lsj— sl|/€R( )(5(pj+pj’)] dsl,2n
Azn(t’r) =0
p
<D (p, Ko KW (7, Qo = 2, Ko ) W ( d = L K], o) vldp)dada'di,, = 0

for an almost time-ordered pairing, according to the terminology of Section 6.3. We start with the
proof of (6.31).

The case of an almost time-ordered pairing. In this case n = 2¢. Suppose first that F € &;.
It contains an edge of the form ((ig,2¢y — 1), (i0,2¢p + 2)) and all other edges are of the form
((2,7), (i,74+1)). With no loss of generality we may assume that iy = 1. It suffices therefore to prove
that

t 2 y4
. —(1+n) A 17 _p (1) _
81_1)1%1+€ /0 dT//0 (g1, k1)W (T, q E,Kn’ 1)};{ ng (pi,2m—1)dk1dgdp = 0, (6.33)
i=1,2

)

where dgdp is the abbreviation for the volume element V(dp)dqldqukldpgn)dpén) and

Dy(r) == / H exp{[i(eq1 — p12m—1) - K1,2m—1 — ¥(p1,2m—1)] (51,2m—1 — 81,2m)/€}
An (t,7) mlo+1

xexp{i[(eq1 + P1200+1 — P1.200—1) - K200 — 27(D1,200-1)] (51,200 — S1.200+1)/€}
xexp {[i(eq1 — p1,200—1) - K1 20041 — Y(P1,20041)] (51,2001 — S1,20042)/€}

X H exp {iq1 - K1 2m(S1,2m — S1.2m+1)} dsﬁ”)
m##Lo

and

20

Dy / / (P, K120, K2,20)0% (g2, k2) exp { i Y Qo - Ko j(s25 — $2,511)
Aoy (t,T) =0

xW (T g2 — b Kgg(m) H exp {—v(P2,2m—1)(52,.2m—1 — 522m)/5}d522€ dks

m=1

To estimate D;(7) we rewrite it in the form

Dy 2—/ ( )Je(sgw) II e {-v@rem1)(s12m1 — s12m)/€}
Aop(t,T

m#£0+1

26
X exXp {—27(171,22071)(81,2@0 51 2@0+1)/8} eXp{ ’Y(Pl 2£0+1)(31 200+1 — S1 2@0+2)/8} dS( ),

where sup\jg(sgn%))\ < 400 and P, = %Z;”:l p1,3p1,; + o1p/2. Changing variables s1 9, =
51,2m /€, 81,200—1 := S1,200—1/€ We obtain SUPr¢(0,4] |D1(7)| < Cettt,
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We can use the change of variables s29; := s295/e, 7 = 1,...,£ to obtain that |Dy(7)| < Cet
uniformly in all variables that are left after integrating out s j-s.

Using (2.55) we can write that Dy =3, Dém), where

¢
(0) o P . ) o ) (20)
Dy /(1) == /Au(m/ Jo ((‘D a) TO) ]I:II exp {—y(p2,2j-1)(s2,2j-1 — $2,25)/€} ds;

and
“+o00 —+o0
e o [ o
D, T 6.34
o a2~ 2)n) (6.34)
m—1 m
X { B kDD (k) ]eXp ZE (k)7 ¢ exp _iZ<QZ_§) P b PP
i=1 j=1
l m .
x [T exp {=v(p22j1) (52051 — 529/} 6 | 7= > 75 | dro s,
j=1 =0
Here
Jo(z) iZ/F(P, K190, K2.20)0% (g2, k2) exp QQ,] Ks j(s2,5 — s2,j+1) (6.35)
7=0
xexp{—zz Kég)@}f(KéZ)Uz)exp{—E(Kéz)m)m dko
and
) 20
J(z) = /F(p, K10, K2.20)0" (g2, ko) exp 4 i > Qa5+ Ko j(s25 — s2,541) (6.36)
=0

2 2)
K(g) R \k% ‘ - ‘Kéé,@’z k:(2) K(Q) K( ) dk
X exp {—zz 20 02} 5 1R T By, | €XP { (K, 0’2) 0} 2

Then, with the assumptions made one can easily verify that

B +1T()] < —

With that estimate we conclude easily that

D (7)) < o™ / / /
Agy(t,T) >3 73,120

XHeXp{ Y(p2,2j-1)(52,2j—1 — 52,25)/€} dTo,mdss
7=1

1

1+< — i 1”)2]_ (6.38)

20)

for m > 1. Changing variables 7,,, := 7, /¢ + 6*1(2?:11 7; — 7) and Sgj 1= sg;/¢ we obtain

oo g, ot
mém)(T)’ < CmHEeH/ m2 // ATy m < 1 ' st
o0 1+ 7h >V >0 m:
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for some constant C'; > 0. Since we also have

(0) c?
D <
| 2 (T)| -1 (T/€)2

we can estimate the expression under the limit in (6.33) by

t Y
c—(1+n) C2€€2£+1/ dr + Z cmt 22| < O
o 1+ (7/¢)? L oml

for some constant C; > 0. What remains yet to be shown is estimate (6.37). We perform substitution

ko := Kéz)m in (6.35). The case when F € & can be dealt with similarly.
Mized pairings. Consider a mixed pairing F whose last mixed bond is ((1,71),(2,J2)) (as in
Section 6.2). According to (6.2) the term corresponding to & can be estimated by

1 ! :
He = en+l 0 ar DItz dSVJ'LjQ eXp Z Q” g (S” Sij—’—l)
t, T

(ij)v(i7j+1)€vjla]2

<E | ] v (Zdpe) | 0 (g2 k) (v(p) = ip - o)™

EGle,]'Q
X W <7-7 Q,S?) — g’Kﬁf{)fQ> gs(sl,jl,l, 81,51 +1; 827j2,1)dpdqdk‘2 . (639)
Here G.(81,5,—1,51,j1+1, 52,j,—1) is defined by (6.18) and
Dz’lT’jz = [t > S811.-- Sj1—1 > 81,4141 - - - > S1n = 0,t> 82,1+ -82,j,—1 > 0].
Using (2.55) we obtain H. <> Hgm), where
“+oo +oo @) @)
5 = €n+1 / dT/DH 2 Viy 12/0 /(; dTOm/ dk 7m/eXp{—E(Kn702)TO}
<P 212 — K3, 2 K _ K@ @ _ K® -
; & ) exp{=i (@ = 2) - K2}
m—1 m m
[ (k@),kﬁ)l) (k:(2 } exp ZZ k‘ 2 )Tj ¢ €xXp zZ( ) k§2)TJ
=1 7j=1 7j=1
- . Se
X f(kENS | - Z’Tj exp 1 @ Z Qij - K z (sw — sij+1) ¢ E H 14 (;, dpe>
j=0 (ij):(i»jJrl)thdg eevjlva
X 0% (g2, k2) (v(p) — ip - Kon) ™t Ge(S1.1—1, 5141415 52.4o—1)dpdqdks| . (6.40)

This expression can be estimated in the same way as in (6.34). We obtain then

2
‘7(77’1)‘ 1/ dT/ ] ; / / ] < Zz 1;%>
er DJI 92 e 7>Zz 1 Ti:Ti>0

< ]] eXP{_’Y(pe)|Se_Se|/5}|ga(51,j1—1751,j1+1’52,j2—1)|d7'0,md5é K

e,f€Vj1 4o
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Changing variables 7., := 7, /e + 6*1(2?;_11 7; — 7) and S, := 8. /e we conclude, using (6.23),

1| < Ci":g<n+jz—2>/2+1€<n—jz>+2,
m:

which in turn implies that |H.| < Ce. This ends the proof of (6.31). The proof of (6.32) is obtained
essentially in the same way. Actually, in this case we do not have to consider the mixed type pairings,
so it suffices only to use the same argument as the one applied in the proof of (6.33).

7 The proof of Theorem 2.8

Suppose that {Z(t), t > 0} that is the solution of (2.48) with the initial condition Z(0) = § ® X.
The result in ugestion follows from.

Theorem 7.1 Suppose that tg > 0 and 6 € S(R?). Then, the finite dimensional distributions of
{{Z(t),0) t > to} converge in law, as € — 0+, to the respective distributions of {(Z(t),0)t > to}.

Proof. To simplify notation we shall show only the convergence in law of one dimensional marginals.
The proof in the general case is almost identical. From (5.4) and (2.55) we can write that M.(t,q, k) =

MO(t, g, k) + Re(t, q, k), where

MOt g, k) - 1/22 // p)+ip- k]~ 1W0( f,KU)B(ds,dp) (7.1)

o=%1

and

Re(t,q, k) : 1/2 Z Z // p) +ip - k]I, (s,q—gKU> B(ds,dp). (7.2)

m>1o=%+1

Correspondingly, (Z.(t),0) = I.(t) + Rc(t), where I.(t) = > >0 it (t) with

t
1O(t) = / / SR (g k)M (s, g, k)dgdk, (7.3)
0
t
- / / 6 (q, ko) V(b 1, €, Ko )M (8151, 4, b )l e
0

Likewise we let R.( ) > >0 Rt )( t), where R (t) is defined by equation analogous to (7.3), in
which martingale M'” () should be replaced by R.(t).

Lemma 7.1 We have
ER%(t) < Ce (7.4)

for some C > 0 and all € € (0,1].

Proof. We have R.(t) = }_,~0,m>1 g™ (t), where

400 +o0
R(nm — / / / / /gP,QakalvT’S
51/2 Z An(t,sns1) JO 0 ( )

xds™ B (dan,dp)dTo,mdll,mdkomdq.
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Here Iy := k,, + op/2 and

n

G(p, . k,1,7,8) 1= 0"(q, ko) exp < i Y _q-kj(sj — s11)

=0
x[=y(p) +ip - ky] H ki—1,k eXp{ ZZ 5j+1)}
=1
m—1 m m
X [o(liyliv1)2(l;)] exp { Z (1 } exp { Z (q - g) : lej} flm)
i=0 j=0 J=0

m
X0 3n+1_g Tj

j=0

We define
Je(2) == /exp {iq - kn(sn — sn11)} [=7(p) +ip - kn] ™!
Bt (1P ey = K ) 050 =S 0) o 00))
‘B (;qm? ol — 11> exp (= (lo)ro} exp {—i - Iy} .

Mimicking the argument used to obtain (6.37) we conclude that

<
()] < g

for some constant C' > 0. The second moment of Rgn’m) (t) equals

_1 t +o00 +o00
E[R™)(1)]2 = Z 00// d8n+1/ / / /g(p,q,k,l,T,S)
0 n(t;37L+1) 0 0

ol=+1
xG(p,qd ¥,V 7, s’)dpdp’dm,mdTéymdll,mdlll’mdko’ndk&ndqdq’.

This leads to the following estimate

n+m
E[RC™(t C / dsnt1 / dsin
n t 5n+1

271 2
m
Sntl — D oreq Ti
" / " <n+21) drm b .
Sny1>> i 74,7 >0 €

Changing variables 7,,, := 7,/ we conclude that

[elrem@P) " <

Cn+m61/2
min!

which in turn implies (7.4) O
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From (7.1) we obtain that

I(O . 1/2 Z // iq-k(t— 39* q’ )
o=%1

%[=1(p) +ip- k™ exp {=is (4= L) - K, | e 20 £ (1) B(ds, dp)dak,

I(n) 1/2 Z // o /0 (g, ko) exp{ Zq E;( sj+1)}
o==+1 5)

n

x[=(p) +ip - k] T [ lo(kimrs ki) E (ki eXp{ ZE - Sj+1)}

=1

X exp {—is (q — g) . Krw} e_Z(K”"’)sf(KnJ)ds( )B(ds, dp)dko ndg.
The following result holds.
Lemma 7.2 There exists a sequence of non-negative numbers {Cy, n > 0} such that
E[IM(1)]? < C2, Vee (0,1],n>0,
and 3 _,~q Cn < +o00.

Proof. We have

sty [ [ [ {z LR

j
n—1

X H [0(ki—1,ki)2(ki—1)] exp { Z (k - SjH)}
i=1

2

x J (s (q — ]g)) ds(")dkom_ldq v(dp)ds,

where

/ / D)+ ip - En] " exp {—[S(kn) + i - i) (5n — 5)}
><R< (|kn1]? = [En|?), kn_1 — kn >exp{ iz Kyo e 2Enads (K Nk,

Since J(z) < C(1+ |z|?)~! for some constant C' > 0 we can estimate the right hand side of (7.6) by

n's/ /[/'9 ¢, k)|[1+ |s(p/e — @)*] ' dgdk QV(dp)ds,

which after an application of Jensen’s inequality and a subsequent change of variables s’ := s|p—eq| /e
can be estimated by

n tlp—eq| /e ) crlo|3
C HGHLI/ //|9(q’ k)](l—1—32)72\1)—Eq\fldqdky(dp)ds < 1 H ||1,1
0

n! n!
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for some C7 > 0, cf (2.64). O
Let B.(t,dp) := £'/2B(t/e, dp) and

/e
c(t k) =1 Z /t / p) +ip- k] Lexp {isp - Ky} f(Ky)B.(ds, dp).
o=%1

Define also

IO = / R (¢, k) X (t, k)dgdk,

t— 0*(q, ko) exp q-kij(sj—s
Lo {z )

n

X H ki_1,k )] exp { Z Y(k — s]+1)} X (t, ky)dko ndg.

Using an argument very similar to the one used to demonstrate Lemma 7.2 we can also conclude
that there exists a sequence of non-negative numbers {C,,, n > 0} such that

E[I!(#)* < Gl e € (0,1, n>0 (7.7)
and ), o Cp < +00. Moreover, we also have.
Lemma 7.3

11r51+1@[1<“>( ) —IM @) =0, Vn>0. (7.8)
£—

Proof. Define
L(k,1,0) :=exp{o{-X() +il{ —q- (I +F)]}}.

A simple calculation shows that

~ 1 +oo +o00
E[Ig(n) (t) — Ign) (t)]Q < - I (b, Koy 8) — 1] (7.9)
© o=t1
X exp {—15 } (g, ko) exp {Z[—E(kz) +iq - ki Z} [—y(p) + ip - ky]
i=0 =0

2
dsv(dp).

n—1

.S
< [T o ki k) S(ki)] exp {~iZp - Kug | £(Ko)drondko,ndgde
i=1

Writing
C(k,1s) — 1= {~S() +ilt —q- <z+k>1}/08exp{g{—z<z>+i[§—q-<z+k>]}}d9.

and changing variables s := s/¢ we can rewrite the right hand side of (7.9) as being equal to

t/e 400 +o0o
L1 + Ly + L3 J (pS) (710)
o==1
n—1
X exp {—25 (t— Zn - 69)} 0*(q, ko) exp {Z[—E(/@) +iq - k’i]Ti}
=0 =0

2
dsv(dp),

n—1

< [ lo(kio1, ki) S(ki—1)] drondkon-1dqdéde
=1
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where

T(z) = / exp {[=S(kn) +iq - Fnlra} [=1(p) + ip - ku] " exp {—ic0q - (kn + Knp)}
><R< (|kn1]® = |En|?), kno1 — kn >exp{ iz Kpo)e =Enolef(K, dk,

and Ly := —%(1), Ly := i€, Ly := —iq- (I+k). As in (6.37) we can argue that |7 (z)| < C(1+]z|*)~}
uniformly in all parameters, i.e. p,e, k,—1. From that we obtain that the expression in (7.10) is of
order of magnitude O(¢e) and (7.8) follows. OJ

Let

10) .= / TRY* (¢, k) X (k)dqdk,

(t) —/ /0 (g, ko) exp Zq kj(sj — sj+1)
(¢,0)

n

X H [o(ki—1, ki)Y (ki—1)] exp { Z (k - 8]+1)} X (kn)dkondg,

=1

where X (k) is given by (2.58), and
In light of (7.7) to finish the proof of convergence in law of (Z.(t),#) it suffices only to show that

11%1+E[I~(”) t)—IM®)? =0 (7.11)

for each n > 0. Let

/ /9 (, ko) exp Zq kj(sj — 5j41)
(£,0)
X H [o(ki—1, ki) S (ki—1)] exp { Z X(k - Sj+1)} ds™dko -1

i=1
A direct calculation shows that the expression under the limit can be estimated by

C Z / dp / ezs(cr—g/)|p‘2/2‘gg7al (pS,p)dS

0'0'—

where
90,0 (D) = /R?d K g (k) gn (k)

< [(1(p) — ip - k) (v(0) + i+ )]

Expression in (7.12) tends to 0, as € — 0+. This ends the proof of convergence in law of (Z.(t),6).

f(KnJ)f(K,’w,)dkndk:,’l.
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