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Abstract

We consider energy fluctuations for solutions of the Schrödinger equation with an Ornstein-
Uhlenbeck random potential when the initial data is spatially localized. The limit of the fluctu-
ations of the Wigner transform satisfies a kinetic equation with random initial data. This result
generalizes that of [13] where the random potential was assumed to be white noise in time.

1 Introduction

Solutions of the Schrödinger equation with a weakly random potential

i
∂φ

∂t
+

1
2

∆φ−
√
εV (t, x)φ = 0,

and a small parameter ε� 1 behave non-trivially on the time scale t ∼ O(ε−1). The corresponding
rescaled problem is

iε
∂φε
∂t

+
ε2

2
∆φε −

√
εV (

t

ε
,
x

ε
)φε = 0,

A convenient tool to study the energy distribution in this long time limit is via the Wigner trans-
form [10, 15] of the solution defined as

Wε(t, x, k) =
∫
eik·yφε(t, x−

εy

2
)φ̄ε(t, x+

εy

2
)
dy

(2π)d
.

The weak limit W (t, x, k) exists and is called the Wigner measure of the family φε. As the weak
limit of the energy density |φε(t, x)|2 is, under very mild conditions,

∫
W (t, x, k)dk, the behavior of

the Wigner measure is important.
The Wigner transform Wε(t, x, k) itself is a solution to an equation

∂Wε(t, x, k)
∂t

+ k · ∇xWε(t, x, k) =
i√
ε

∑
σ=±1

σ

∫
V̂ (t/ε, dp)

(2π)d
eip·x/εWε

(
t, x, k +

σp

2

)
. (1.1)

Here V̂ (t, dp) is the (spatial) spectral measure corresponding to the random field V (t, x). It has been
shown under various assumptions on the random potential see [1, 8, 9, 16], that when the initial data
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W0 for (1.1) is in L2(R2d) the solutions converge in probability, as ε ↓ 0, to W̄ (t, x, k) the solution
of a linear Boltzmann equation

∂tW̄ (t, x, k) + k · ∇xW̄ (t, x, k) = LW̄ (t, x, k),

W̄ (0, x, k) = W0(x, k),
(1.2)

where the operator L is given by

LW (x, k) =
∫
R̂(
p2 − k2

2
, p− k)(W (x, p)−W (x, k))

dp

(2π)2d
.

It is important, in particular, for inverse problems, to understand the fluctuations of Wε around this
self-averaging limit, as wave energy fluctuations are often large in practice [2, 3, 4]. As it was shown
in [5, 6], the size of the fluctuations depends on the regularity of the initial W0 – both spatially and
wave vector localized singularities in W0 produce stronger fluctuations than smooth initial energy
distributions. Here, we study the fluctuations of the Wigner transform

Zε(t, x, k) = ε−1/2[Wε(t, x, k)− W̄ (t, x, k)]

when W0(x, k) = δ(x)f(k) and f ∈ S(Rd), that is, the initial wave energy distribution is spatially
localized but smoothly distributed in various directions. The fact that the fluctuations have the size
O(
√
ε) comes from the singularity of the initial data – their size would be smaller were W0(x, k)

more regular.
This problem was previously studied when the random potential V (t, x) is white noise in time

in [13] and the limit of Zε has been identified. In this paper we consider random potentials of
Ornstein-Uhlenbeck type that have finite correlation time, and show that the gist of the result is
similar to that in [13] – the limit Z̄ is identified as a solution of a deterministic kinetic equation with
a random initial data. This is because the main contribution to the fluctuations of Zε comes from
the initial boundary time layer when the wave energy is very singular, and the fluctuations that are
created later are of a smaller size since the wave field becomes spatially distributed. The analysis of
the present paper is quite more involved than in [13] as it requires a completely different technique
– it is impossible to get away with relying on a sophisticated version of the Ito formula, and one has
to resort to a summation over all products of covariances that arise while computing the moments
of multi-point statistics of a Gaussian potential, which is much more complicated technically. We
refer the reader to [5, 6, 13] for a more detailed discussion of the motivation and related results.

The paper is organized as follows. Section 2 describes the detailed probabilistic setting of the
problem, and the main result of the paper, Theorem 2.8. The rest of the paper contains the proof
of Theorem 2.8 that is performed via a series of intermediate steps, outlined after the statement of
this theorem.

Acknowledgment. This work was supported by NSF and an NSSEFF fellowship. T.K. ac-
knowledges the support of EC FP6 Marie Curie ToK programme SPADE2, MTKD-CT-2004-014508
and Polish MNiSW grant NN201419139.

2 Preliminaries and the formulation of the main result

This section contains the background material that is necessary to make sense of the Wigner equation
with a random Ornstein-Uhlenbeck potential. First, in Sections 2.1 and 2.2 we define the Ornstein-
Uhlenbeck potential as a process taking values in an appropriate function Hilbert space. This
material is somewhat standard but we were unable to find it in the literature. Section 2.3 contains
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the definition and basic properties of the scattering operator. These notions allow us to define
in Section 2.4 the notion of a mild solution to the Wigner equation. We further recall the basic
properties of the linear kinetic equation, and introduce the needed notation in Sections 2.5 and 2.6.
Finally, the main result is formulated in Section 2.7.

2.1 Basic notation

We denote by S(Rd) the space of rapidly decreasing functions of the (complex valued) Schwartz class
and by S ′(Rd) the corresponding space of tempered distributions. Let

Fψ(p) = ψ̂(p) :=
∫

Rd
e−ip·xψ(x)dx

be the Fourier transform of a function ψ(x). We will also use the notation

F1(f)(q, k) :=
∫

Rd
e−iq·xf(x, k)dx, F2(f)(x, y) :=

∫
Rd

e−iy·kf(x, k)dk

for the partial Fourier transform of a function f(x, k) in just one of the variables. The inverse Fourier
transform is

F̃f(x, k) =
∫
eiq·x+iy·kf(q, y)

dqdy

(2π)2d
,

and the inverse Fourier transform in just one of the variables is defined similarly.
Given s, u, ρ1, ρ2 ∈ R we denote by Hs,u

ρ1,ρ2 the mixed Sobolev space with the norm

‖f‖2Hs,u
ρ1,ρ2

:=
∫

R2d

θs(q)θu(y)|F(fθρ1/2 ⊗ θρ2/2)|2(q, y)dqdy, f ∈ S(R2d),

were θρ(x) := (1+ |x|2)ρ/2. We will simply write Hs,u when ρ1 = ρ2 = 0. The corresponding Sobolev
space for functions f : Rd → C depending only on one of the variables shall be denoted by Hs

ρ and
Hs when ρ = 0.

2.2 The Ornstein-Uhlenbeck potential

The Cameron-Martin reproducing kernel Hilbert space

Let R̂(p) ∈ L1(Rd) be a non-negative even function, and γ(p) ∈ L∞(Rd) be a uniformly positive
even function:

0 < γ∗ ≤ γ(p) ≤ Γ∗, γ(p) = γ(−p), ∀ p ∈ Rd. (2.1)

We assume that
R̂(p) ≤ C

(1 + |p|2)d/2+δ
, for all p ∈ Rd, (2.2)

with some C > 0 and δ > 0. Consider a stationary Gaussian random field V (x) whose covariance
function equals

R(x) :=
∫
eip·x

dµ(p)
(2π)d

, (2.3)

where dµ(p) = R̂(p)dp is a non-negative measure of finite mass. In order to describe the functional
space that supports the law of the process consider the real Hilbert space L2

(s)(µ) consisting of all
functions ψ ∈ L2(µ) that are complex even, that is, ψ(−p) = ψ∗(p). Note that

〈ψ1, ψ2〉µ :=
∫

Rd
ψ1(p)ψ∗2(p)µ(dp),

is a real valued scalar product on L2
(s)(µ). The following proposition holds, see Corollary 1 of [13].
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Proposition 2.1 Suppose that {ξn, n ≥ 0} is a sequence of i.i.d. standard normal random variables,
and define the measure ν(dp, dq) = δ(p+ q)µ(dp)dq. Let also vn be an orthonormal basis of L2

(s)(µ).
Then, for any function Ψ ∈ L2

C(µ) ∩ L1
C(ν) we have

E

 ∑
m,n≥0

ξnξm〈Ψ, vn ⊗ vm〉µ⊗µ

 =
∫

Ψ(p,−p)µ(dp). (2.4)

LetHµ be the Cameron-Martin reproducing kernel Hilbert space that corresponds to the Gaussian
random field V (x), that is, the subspace of S ′(Rd) given by

Hµ :=
[
F̃(ψµ) : ψ ∈ L2

(s)(µ)
]
,

where, as we recall,

F̃(ψµ)(x) :=
∫
eip·xψ(p)

µ(dp)
(2π)d

.

It is a real Hilbert space, when considered with the scalar product induced from L2
(s)(µ), that is, for

all ψ1, ψ2 ∈ L2
(s)(µ) we have

〈F̃ (ψ1µ) , F̃ (ψ2µ)〉Hµ := 〈ψ1, ψ2〉µ.

Note that all elements of Hµ are continuous functions, as L2
(s)(µ) ⊂ L1(µ):

∫
Rd
|ψ(p)|dµ ≤

(
µ(Rd)

∫
Rd
|ψ|2dµ

)1/2

< +∞,

for any ψ ∈ L2
(s)(µ). Suppose that E is a Hilbert space continuously embedded in C(Rn) such that

Hµ is its dense subset and the natural embedding J : Hµ → E given by Jf = f , f ∈ Hµ is a
Hilbert-Schmidt operator. More explicitly one can take, for instance, E := Hm

−ρ, where ρ,m > d,
so all elements of E have continuous realizations. In that case, the embedding J : Hµ → E is
Hilbert-Schmidt, provided that ∫

θm(p)R̂(p) < +∞. (2.5)

Indeed, suppose that fn(x) =
∫
eip·xvn(p)µ(dp) be an orthonormal system in Hµ. We have∑

n≥0

‖fn‖2Hm
−ρ

=
∑
n≥0

∫
Rd
θm(q)|F(fnθ−ρ/2)(q)|2dq (2.6)

=
∑
n≥0

∫
R5d

θm(q)eiq·(x−x
′)e−i(p·x+p′·x′)en(p)en(p′)θ−ρ/2(x)θ−ρ/2(x′)dqdxdx′µ(dp)µ(dp′)

=
∫

R2d

θm(q)|θ̂−ρ/2(−p+ q)|2R̂(p)dqdp.

Since θ−ρ/2 ∈ ∩k≥0H
k for each k ≥ 0 we can choose a constant Ck > 0 such that |θ̂−ρ/2(p)| ≤

Ckθ−k(p) for all k ≥ 0. It is easy to observe that, for k > m+ d one choose a constant C > 0 such
that

|θ̂−ρ/2|2 ∗ θm(p) ≤ Cθm(p)

for all p and the embedding is Hilbert-Schmidt, if (2.5) holds.
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The covariance operator and the field V (x)

Denote ζf (U) := 〈U, f〉 for given f ∈ E∗, U ∈ E and define a bounded and symmetric linear operator
Q : E∗ → E∗ by

〈Qf, g〉E∗ := 〈J∗f, J∗g〉µ, ∀ f, g ∈ E∗. (2.7)

Since J is Hilbert-Schmidt, so is J∗ (see e.g. Appendix C of [7]), thus Q is of trace class. There
exists therefore a unique Gaussian measure π on E corresponding to Q, see Section 2.3.2 of ibid,
i.e. a Borel, probability measure such that for all u1, . . . , un ∈ E the joint law of random vector
(ζu1 , . . . , ζun) over (E ,B(E), π) is normal and for any f, g ∈ E∗ we have∫

E
ζf (U)ζg(U)π(dU) = 〈Qf, g〉E∗ .

Suppose that {gn, n ≥ 0} is an orthonormal basis in E∗ consisting of eigenvectors of Q. Let
λn := 〈Qgn, gn〉E∗ and hn := λ−1

n JJ∗gn, n ≥ 0. Observe that

〈gn, hm〉 = λ−1
n 〈J∗gn, J∗gm〉Hµ = δmn

thus {gn, n ≥ 0}, {hn, n ≥ 0} form a bi-orthogonal system in E∗ and E , respectively. Note also
that J∗UJ = IdHµ , where U : E → E∗ is the canonical unitary isomorphism coming from the Riesz
representation theorem.

In particular, the above implies that ξn := λ
−1/2
n ζgn , n ≥ 0 is a sequence of independent, standard

normal, random variables. Define an orthonormal base of Hµ by fn := λ
−1/2
n J∗gn, n ≥ 0 and let

{en, n ≥ 0} be the corresponding orthonormal base on L2
(s)(µ), given by fn = F̃(enµ). We have of

course
f =

∑
n≥0

ξn(Jf)fn, ∀ f ∈ Hµ. (2.8)

Let us define V ∈ L2(π; E)

V :=
∞∑
n=0

ξnJfn.

The series converges both a.s. and in the L2-sense in E . Moreover, the real valued random field

V (x) := 〈V, δx〉 =
∞∑
n=0

ξnJfn(x).

is stationary, with the covariance function given by (2.3). To abbreviate we shall also denote

V̂ (dp) :=
∑
n≥0

ξnen(p)µ(dp). (2.9)

Then

V (x) =
∫
eip·x

V̂ (dp)
(2π)d

, ∀x ∈ Rd,

using (2.8) we conclude that

ζv =
∫

Rd
v̂(p)V̂ (dp) (2.10)

when J∗v = F̃(v̂µ).
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The definition of the Ornstein-Uhlenbeck process

Suppose that {V (n)
t , t ≥ 0}, n ≥ 0 are real valued jointly Gaussian processes such that

E[V (n)
t V (m)

s ] = (2π)d
∫
e−γ(p)|t−s|en(p)em(−p)µ(dp) (2.11)

for all n,m ≥ 0 and t, s ∈ R. Note that for each t fixed {V (n)
t , n ≥ 0} are idependent, standard nor-

mal random variables. Let Vt be an E valued process given by Vt :=
∑

n≥0 V
(n)
t Jfn. The convergence

again takes place in the a.s. and L2 sense.
The covariance function of the field V (t, x) := 〈Vt, δx〉 = Vt(x) equals

E [Vt(x)Vs(y)] =
∑
n,m≥0

E[V (n)
t V (m)

s ]Jfn(x)Jfm(y) (2.12)

=
∑
n,m≥0

(2π)d
∫
e−γ(p)|t−s|en(p)e∗m(p)µ(dp)

∫
eip
′·xen(p′)

µ(dp′)
(2π)d

∫
e−iq·ye∗m(q)

µ(dq)
(2π)d

.

Now,∑
m

∫
e−γ(p)|t−s|en(p)e∗m(p)

µ(dp)
(2π)d

∫
e−iq·ye∗m(q)

µ(dq)
(2π)d

=
∫
e−γ(p)|t−s|en(p)eip·y

µ(dp)
(2π)2d

,

hence

E [Vt(x)Vs(y)] =
∑
n

∫
e−γ(p)|t−s|en(p)e−ip·ydµ(p)

∫
e−ip

′·xen(p′)
dµ(p′)
(2π)d

=
∑
n

∫
e−γ(p)|t−s|e∗n(p)eip·ydµ(p)

∫
eip
′·xe∗n(p′)dµ(p′) =

∫
e−γ(p)|t−s|+ip·(y−x)µ(dp)

(2π)d

= R(t− s, x− y),

where
R(t, x) :=

∫
eip·xe−γ(p)|t|R̂(p)

dp

(2π)d
, (t, x) ∈ Rd+1. (2.13)

In the same way we can also prove that

E [〈Vt, ψ1〉〈Vs, ψ2〉] =
∫
e−γ(p)|t−s|ψ̂1(p)ψ̂∗2(p)

µ(dp)
(2π)d

(2.14)

for any ψ1, ψ2 ∈ E∗ such that J∗ψi = F̃(ψ̂iµ), where ψ̂i ∈ L2
(s)(µ), i = 1, 2.

Homogeneous Wiener process

Recall that an S ′(Rd) -valued, Gaussian process {Bt, t ≥ 0} is called a spatially homogeneous Wiener
process on Rd with the spectral measure m, see e.g. [7], if:

(M) for any ψ ∈ S(Rd), {〈Bt, ψ〉, t ≥ 0} is a real-valued and E〈Bt, ψ〉 = 0 for all t ≥ 0,

(C) its covariance is of the form

E [ 〈Bt, ψ1〉〈Bs, ψ2〉] = (2π)−d〈ψ̂1, ψ̂2〉m(t ∧ s) , ψ1, ψ2 ∈ S(Rd), t, s ≥ 0. (2.15)
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Suppose that m is such that the space Hm is Hilbert-Schmidt embedded in E . One can show the
following, see e.g. Proposition 4.1, p. 87 of [7].

Proposition 2.2 For any orthonormal basis {vn} of L2
(s)(m) there is a sequence of independent

standard real-valued Wiener processes {B(n)
t , t ≥ 0} such that

Bt =
∑
n

B
(n)
t F̃ (vnm) , t ≥ 0, (2.16)

where the series converges in the L2 sense and P-a.s in E.

It is easy to calculate that

E [B(t, x)B(s, y)] = [F̃m](x− y)(t ∧ s) , x, y ∈ Rd, t, s ≥ 0.

Stochastic differential equation for the random potential

Let f = F̃(ϕµ), then we define So(t) : Hµ → Hµ by

So(t)f :=
∫
eip·x−γ(p)tϕ(p)

µ(dp)
(2π)d

.

The family of mappings {So(t), t ∈ R} forms a uniformly strongly continuous group on Hµ with the
generator Co : Hµ → Hµ given by Cof = −F̃(γϕµ). Let S(t) := JSo(t)J∗U, then {S(t), t ≥ 0}
form a group that is continuous in the uniformly strong operator topology on E with the generator
C := JCoJ∗U. Since the process {Vt, t ≥ 0} is Gaussian, equality (2.14) implies that

E
[
〈Vt, ψ〉

∣∣∣Fs] = 〈S(t− s)Vs, ψ〉 (2.17)

for any ψ ∈ E∗ and t ≥ s. Here {Ft, t ≥ 0} is the natural filtration corresponding to the process.
One can directly verify the following.

Proposition 2.3 The process Bt := Vt − V0 −
∫ t

0 CVsds, t ≥ 0 is homogeneous, Wiener on E,
non-anticipative w.r.t. the filtration {Ft, t ≥ 0}, with the spectral measure ν(dp) := 2γ(p)µ(dp).

Let ēn(p) := (2γ(p))−1/2en(p). It is an orthonormal base in L2
(s)(ν). Thanks to Proposition 2.2

there exists a family of i.i.d. standard Brownian motions {B(n)
t , t ≥ 0} such that

Vt − V0 −
∫ t

0
CVsds =

∑
n

B
(n)
t F (ēnν) , t ≥ 0. (2.18)

The process {Vt, t ≥ 0} is Markovian, see e.g. [7] chapter 5, with an invariant measure π. The
L2(π) extension of the transition semigroup is strongly continuous and we denote its generator by
Q : D(Q)→ L2(π). To abbreviate the notation we shall write

V̂ (s, dp) :=
∑
n≥0

V (n)
s en(p)µ(dp) and B̂(ds, dp) :=

∑
n≥0

ēn(p)dB(n)
s ν(dp). (2.19)
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Generator of the process

Denote by Π the class of polynomials in L2(π), defined as the span over the random variables of the
form

Φ :=
n∏
i=1

ζvi , (2.20)

where v1, . . . , vn ∈ E∗ and n ≥ 0. In case n = 0 we adopt the convention Φ(ζ) ≡ 1. Elements of
the form (2.20) are called monomials of degree n. It is well known, see e.g. Chapter 2 of [11], that
Π is dense in L2(π) and forms a core of the generator Q (see Theorem 13.15, p. 207 of ibid.), i.e.
Π ⊂ D(Q) and {(Φ,QΦ) : Φ ∈ Π] is a dense subset of the graph of the generator in the epigraph
norm.

Using (2.18) we can calculate easily, via an application of the Itô formula, the generator on Π.
Namely for Φ of the form (2.20) we have

dΦ(Vt) = QΦ(Vt)dt+
n∑
k=1

dζvk(Bt)
∏
i 6=k

ζvi(Vt) (2.21)

and

QΦ =
n∑
k=1

ζC∗vk
∏
i 6=k

ζvi +
1
2

∑
k 6=`
〈Rvk, v`〉E∗

∏
i 6=k,`

ζvi . (2.22)

Here
∏
i 6=k (resp.

∏
i 6=k,`) denotes the product over all i = 1, . . . , n-s excluding k (resp. k, `), the

summation
∑

k 6=` extends over all distinct 1 ≤ k, ` ≤ n. In addition, J∗C∗vk = −F̃(γv̂kµ), if
J∗vk = F̃ (v̂kµ),

〈Rvk, v`〉E∗ = 2
∫

Rd
γ(p)v̂k(p)v̂`(p)

µ(dp)
(2π)d

.

and (ζv1(Bt), . . . , ζvn(Bt)) is an n dimensional Brownian motion with the covariance matrix [〈Rvk, v`〉E∗ ],
k, ` = 1, . . . , n. In particular for the first degree polynomial given by (2.10) we obtain

Qζv = −
∫

Rd
γ(p)v̂(p)V̂ (dp). (2.23)

2.3 Definition of the scattering operator

We define an operator valued function

K : C(R3d)× Rd → L(Hµ, C(R2d))

assigning to a function ψ ∈ C(R3d) and z ∈ Rd an operator K[ψ, z] ∈ L(Hµ, C(R2d)) setting

K[ψ, z]u(x, k) := −i
∑
σ=±1

σ

∫
Rd
eip·zψ

(
x, z, k +

σp

2

)
û(p)

µ(dp)
(2π)d

(2.24)

for u := F̃(ûµ), where û ∈ L2
(s)(µ). We let

Kε[ψ]u(x, k) = K[ψ,
x

ε
]u(x, k).
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Proposition 2.4 Suppose that for a given ε > 0 and s ∈ R

aε :=2 sup
q∈Rd

∫
Rd
θ−s

(
q +

p

ε

)
θs(q)µ(dp) < +∞. (2.25)

Then, ∑
n≥0

‖Kε[ψ]fn‖2Hs,0 ≤ aε‖ψε‖2Hs,0 , (2.26)

where ψε(x, k) := ψ(x, x/ε, k) ∈ Hs,0 and ψ ∈ C(R3d). Moreover,∑
n≥0

‖K[ψ, z]fn‖2Hs,0 ≤ 2µ(Rd)‖ψ(·, z; ·)‖2Hs,0 (2.27)

for any z ∈ Rd and ψ ∈ C(R3d), such that ψ(·, z; ·) ∈ Hs,0.

Proof. We only prove (2.27), the proof of (2.26) is given in [13]. Note that

∑
n≥0

‖K[ψ, z]fn‖2Hs,0 =
∑
n

∫
R2d

∣∣∣∣∫
Rd
Φ(z, p, q, k)en(p)µ(dp)

∣∣∣∣2 θs(q)dqdk, (2.28)

where
Φ(z, p, q, k) :=

∑
σ=±1

∫
Rd
σei(q·x+p·z)ψ(x, z; k − σp

2
)dx.

We have∑
n

∣∣∣∣∫
Rd
Φ(z, p, q, k)en(p)µ(dp)

∣∣∣∣2 =
∑
n

∫
Rd
Φ(z, p, q, k)en(p)µ(dp)

∫
Rd
Φ∗(z, p′, q, k)en(−p′)µ(dp′)

=
∑
n

∫
R2d

Φ(z, p, q, k)Φ∗(z,−p′, q, k)en(p)en(p′)µ(dp)µ(dp′). (2.29)

Therefore, by Proposition 2.1, we obtain∑
n

∣∣∣∣∫
Rd
Φ(z, p, q, k)en(p)µ(dp)

∣∣∣∣2 =
∫

Rd
|Φ(z, p, q, k)|2 µ(dp),

and, consequently, the utmost left hand side of (2.28) equals∫
R2d

|Φ(z, p, q, k)|2 θs(q)µ(dp)dq.

Now, write

Φ±(z, p, q, k) := ±
∫

Rd
e−i(q·x+p·z)ψ(x, z, k ± p

2
)dx,

so that Φ = Φ− + Φ+, and, moreover,∫
Rd
|Φ±(z, p, q, k)|2 dk =

∫
Rd

∣∣∣∣∫
Rd
ei(q·x+p·z)ψ(x, z, k)dx

∣∣∣∣2 dk.
Hence, the sum on the utmost left hand side of (2.28) is bounded by

2
∫

R3d

∣∣∣∣∫
Rd

ei(q·x+p·z)ψ(x, z, k)dx
∣∣∣∣2 θs(q)µ(dp)dkdq = 2µ(Rd)‖ψ(·, z, ·)‖2Hs,0 , (2.30)
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hence (2.27) holds. �
The above result shows in particular that for each ε > 0 and such that ψε ∈ Hs,0 operator

u 7→ Kε[ψε]u can be extended to a Hilbert-Schmidt operator from Hµ to Hs,0.
Let us fix ψ ∈ S(R3d) and define Hs,0-valued, square integrable random element on E as follows

Koε[ψ]U :=
∑
n≥0

ξn(U)Kε[ψ]fn, for π a.s. U ∈ E . (2.31)

Thanks to Proposition 2.4 the right hand side of (2.31) is L2(π) convergent in Hs,0 and the limiting
object is defined as an element of L2(π;Hs,0) - the space of all square integrable, Hs,0-valued, random
elements with the appropriate norm. Formally speaking Koε[ψ]Ju = Kε[ψ]u for u ∈ Hµ (the left hand
side needs not really be defined on Ju). For that reason and to simplify matters whenever it will
not lead to a confusion we drop the superscript in the notation of the random element appearing on
the right hand side of (2.31).

Similarly, when ψ(·, z, ·) ∈ Hs,0 for any z ∈ Rd we can define

K[ψ, z]U :=
∑
n≥0

ξn(U)K[ψ, z]fn. (2.32)

Note also that for any 0 < t1 < t2 < T and z ∈ Rd

K[ψ, z]Vt2 −K[ψ, z]Vt1 =
∑
n≥0

(V (n)
t2
− V (n)

t1
)Kε[ψ]fn.

Hence,

E‖K[ψ, z]Vt2 −K[ψ, z]Vt1‖2Hs,0 =
∑
n,m≥0

E
[
(V (n)
t2
− V (n)

t1
)(V (m)

t2
− V (m)

t1
)
]
〈Kε[ψ]fn,Kε[ψ]fm〉Hs,0

=
∑
n,m≥0

E
[
(V (n)
t2
− V (n)

t1
)(V (m)

t2
− V (m)

t1
)
]∫
R4d

Φ(z, p, q, k)Φ∗(z, p′, q, k)en(p)e∗m(p′)θs(q)µ(dp)µ(dp′)dqdk

= (2π)d
∑
n,m≥0

∫
[e−γ(p1)|t2−t1| − 1]en(p1)em(−p1)µ(dp1)

×
∫

R4d

Φ(z, p, q, k)Φ∗(z, p′, q, k)en(p)e∗m(p′)θs(q)µ(dp)µ(dp′)dqdk

= (2π)d
∫

R3d

[e−γ(p1)|t2−t1| − 1]|Φ(z, p, q, k)|2θs(q)µ(dp)µ(dp′)dqdk ≤ C|t2 − t1|‖ψ‖2Hs,0 .

This, according to Corollary 11. 8 of [Ledoux-Talagrand], and due to properties of Gaussian elements,
see Lemma 3. 7 and Corollary 3.9 of ibid. suffices to find an Hs,0 valued, Hölder continuous
modification of {K[ψ, z]Vt, t ≥ 0}.

2.4 The solution of the Wigner equation with a random potential

Denote by {S0(t), t ∈ R} a group of operators S0(t)f(x, k) := f(x − kt, k) that corresponds to
generator A

Aψ(x, k) := −k · ∇xψ(x, k). (2.33)

It can be shown, see [13], that

Proposition 2.5 The group {S0(t), t ∈ R} is strongly continuous on any space Hs,u for s, u ∈ R.
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Equation(1.1) can be recast in the following form (recall that Wε(t, x, k) is real valued)

∂tWε(t) = AWε(t) + ε−1/2Kε[Wε(t), Vt/ε], (2.34)
Wε(0, x, k) = W0(x, k).

This, in turn, leads to a mild formulation

Wε(t) = S0(t)W0 +
∫ t

0
S0(t− s)Kε[Wε(s), Vs/ε]ds (2.35)

for a.s. realization of {Vt, t ≥ 0}, n ≥ 0 satisfying (2.11). Performing the Fourier transform on both
sides of (2.35) we get

Ŵε(t, q, k) = e−iq·ktŴ0(q, k) + ε−1/2i
∑
σ=±1

σ

∫ t

0

∫
e−iq·k(t−s)Ŵε(s, q − p/ε, k + σp/2)

V̂ (s/ε, dp) ds
(2π)d

,

(2.36)
Iterating the right hand side of (2.36) we obtain that, at least formally, the solution should be given
by the following series:

Wε(t, x, k) =
∑
n≥0

Wn,ε(t, x, k), (2.37)

where W0,ε(t) := S0(t)W0 and Ŵn,ε(t, q, k) = F1(Wn,ε(t))(q, k) is given by

Ŵ0,ε(t, q, k) = e−ik·qtŴ0(q, t), (2.38)

Ŵn,ε(t, q, k) =

(
ε−1/2i

(2π)d

)n ∑
σ1,...,σn=±1

σ1 . . . σn

∫
∆n(t)

∫
exp

−i
n∑
j=0

Qj ·Kj(sj − sj+1)


×

n∏
j=1

V̂
(sj
ε
, dpj

)
Ŵ0(Qn,Kn)ds(n),

for n ≥ 1. Here,

Qj := q − 1
ε

j∑
m=1

pm Kj := k +
1
2

j∑
m=1

σmpm, (2.39)

with the conventions of writing Q0 := Q, K0 := K, s0 := t, sn+1 := 0 and ds(n) := ds1 . . . dsn
and dp(n) := dp1 . . . dpn and ∆n(t, s) := [(s1, . . . , sn) : t ≥ s1 ≥ . . . ≥ sn ≥ s] is an n-dimensional
simplex. In case s = 0 we shall simply write ∆n(t). The Duhamel solution of (2.34) is defined as
the sum of the series (2.37) in Hs,0.

Another notion of solution that can be introduced in the context of equation (2.34) is a weak
solution. A stochastic process {Wε(t), t ≥ 0} with trajectories belonging to C([0,+∞);Hs,0) is
called a weak solution if

〈Wε(t), φ〉 = 〈W0, φ〉 −
∫ t

0

〈
Wε(s),

{
Aφ+ ε−1/2Kε[φ]Vs/ε

}〉
ds (2.40)

for any φ ∈ H−s,0. Here 〈·, ·〉 denotes the duality pairing between H−s,0 and Hs,0.

Theorem 2.6 For a given W0 ∈ Hs,0 there exists a unique mild solution of (2.34). In addition,
it is also a weak soltuion of the equation. In addition, the series appearing on the right hand side
of (2.37) is convergent in Hs,0 in the Lp(P) sense for any p ∈ [1,+∞). There exists a version of
{Wε(t), t ≥ 0} whose paths belong to C([0,+∞);Hs,0). It is also a unique weak solution of (2.34).

The proof is standard and can be done following the methods of [7].
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2.5 The kinetic scattering operator

Given a function λ ∈ Hs,0 we define λ1(x, z, k;U) for π a.s. U ∈ E as a random element belonging
to the domain of the generator Q for each (x, z, k) that is differentiable in the L2(π) sense w.r.t. z
variable such that

K[λ, z]U(x, k) = [k · ∇z + Q]λ1(x, z, k;U) (2.41)

and
〈λ1(x, k, z)〉π = 0. (2.42)

Suppose that λ(x, k) is such that π-a.s. λ1(·, z, ·) ∈ Hs,0. Let

Lλ(x, k) := 〈K[λ1, z; ·]〉π . (2.43)

It might look that the right hand side of (2.43) depends on z, but as the calculation below shows it
is not the case. Indeed, using (2.23), we obtain

λ1(x, k, z) =
∫
eip·zα(x, k, p)V̂ (dp).

Here, as we recall (see (2.9)), V̂ (dp) :=
∑

n≥0 ξn(U)en(p)µ(dp) and

α(x, k, p) = i(2π)−d[γ(p)− ip · k]−1
∑
σ=±1

σλ(x, k + σp/2). (2.44)

As a result we obtain

Lλ(x, k) = −i

〈∑
σ=±1

σ

∫
R2d

ei(p+p
′)·zα

(
x, k + σp/2, p′

)
V̂ (dp)V̂ (dp′)

〉
π

.

A simple application of (2.4) shows that the right hand side equals

−i
∑
σ=±1

σ

∫
Rd
α (x, k + σp/2,−p) µ(dp)

(2π)d
. (2.45)

and substituting for α(·) from (2.44) we obtain that

Lλ(x, k) = −(2π)−2d

∫
Rd

{[
γ(p)− ip ·

(
k +

p

2

)]−1
[λ (x, k)− λ (x, k + p)]

+
[
γ(p)− ip ·

(
k − p

2

)]−1
[λ (x, k)− λ (x, k − p)]

}
µ(dp).

Changing variables in the last expression, p := k+p for the term corresponding to the first summand,
p := k − p for the other one we obtain that

Lλ(x, k) = (2π)−2dΣ(k)
∫

Rd
σ(k, p) [λ (x, p)− λ (x, k)] dp, (2.46)

where

σ(k, p) :=
1

Σ(k)
R̂

(
|p|2 − |k|2

2
, p− k

)
,
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and Σ(k) - the scattering cross-section corresponding to a wavevector k – is chosen in such a way
that

∫
σ(k, p)dp = 1. Here

R̂(ω, p) :=
∫

Rd+1

e−i(ωt+p·x)R(t, x)dtdx =
2γ(p)R̂(p)
ω2 + γ2(p)

.

A simple calculation shows that

Σ(k) =
∫

Rd

2γ(p)R̂(p)dp
(p · k + |p|2/2)2 + γ2(p)

. (2.47)

2.6 Probabilistic representation of the radiative transport equation

Define by {W̄ (t), t ≥ 0} the solution of the linear kinetic equation

∂tW̄ (t, x, k) + k · ∇xW̄ (t, x, k) = LW̄ (t, x, k),
W̄ (0, x, k) = W0(x, k),

(2.48)

where W0 ∈ Hs,0. Let

T0(t)f(x, k) := e−tΣ(k)f(x− kt, k), ∀ f ∈ Hs,u, t ≥ 0

for an arbitrary s, u ∈ R. By the solution of (2.48) we mean here a function {W̄ (t), t ≥ 0} that
belongs to C([0,+∞), Hs,0) and such that

W̄ (t) = T0(t)W0 +
∫ t

0
T0(t− s)LW̄ (s)ds. (2.49)

One can show by a standard application of Gronwall’s inequality that such a solution is unique.
Below we give a probabilistic formula for the solution to (2.48) treating it as the solution of

Kolmogorov’s equation for a certain Markov jump process. The results of this section are standard
and their proofs can be found e.g. in Apppendix 2 of [12]. Let t(k) := Σ−1(k). The scattering kernel
σ(k, p) corresponds to the transition probability density of a certain Markov chain K0,K1, . . .. Let Pk
and Ek be respectively the path measure and its expectation corresponding to the chain satisfying
K0 = k. Let σ0, σ1, . . . be i.i.d. exponential random variables with intensity 1. Let t0 := 0 and
tn :=

∑n−1
i=0 σit(Ki) for n ≥ 1. Define then K(t) := Kn, t ∈ [tn, tn+1). Since R̂(−ω,−p) = R̂(ω, p)

the Lebesgue measure on Rd is invariant for the process {K(t), t ≥ 0}.
The solution of (2.48) has a representation given by

W̄ (t, x, k) = Ek
{
W0(x−

∫ t

0
K(s)ds,K(t))

}
. (2.50)

We can rewrite (2.50) more explictly. Iterating (2.49) we obtain

W̄ (t, x, k) =
+∞∑
n=0

Wn(t, x, k), (2.51)

where W0(t) := T0(t)W0 and

Wn(t, x, k) :=
∫ +∞

0
. . .

∫ +∞

0
dτ0,n

∫
. . .

∫
dk1,n

n∏
i=1

σ(ki−1, ki)

×

{
exp

{
−

n∑
i=0

τi

}
W0 (x−Xn, kn) 1[

n−1∑
i=0

t(ki)τi ≤ t <
n∑
i=0

t(ki)τi]

}

13



for n ≥ 1. Here k0 := k,

X̃n :=
n−1∑
i=0

kit(ki)τi + kn

(
t−

n−1∑
i=0

t(ki)τi

)
and dτ0,n := dτ0 . . . dτn, dk1,n := dk1 . . . dkn. Integrating over τn and changing remaining variables
according to τ ′i := t(ki)τi, i = 0, . . . , n− 1 we get

Wn(t, x, k) =
∫ +∞

0
. . .

∫ +∞

0
dτ0,n

∫
. . .

∫
dk1,n

n∏
i=1

[σ(ki−1, ki)Σ(ki−1)] (2.52)

×

{
exp

{
−

n∑
i=0

Σ(ki)τi

}
W0 (x−Xn, kn) δ

(
t−

n∑
i=0

τi

)}

Here Xn :=
∑n

i=0 kiτi.
Define Bp1,p2 as the Banach spaces that is the completion of S(R2d) under the norm

|‖φ‖|p1p1,p2 :=
∫

Rd

[∫
Rd
|φ̂(q, y)|p2dy

]p1/p2
dq.

The definition can be easily extended to cover the case when one, or both of the indices equal +∞.
Denote Ŵ (t, q, k) := F1(W (t))(q, k).

Proposition 2.7 Suppose that W0(x, k) = δ⊗f(x, k), where f ∈ S(Rd). Then, for any p ∈ [1,+∞]

W∗,p := sup
t≥0
‖Ŵ (t)‖∞,p < +∞. (2.53)

Proof. Estimate (2.53) follows immediately from the invariance of the Lebesgue measure under the
process {K(t), t ≥ 0} and the formula

Ŵ (t, q, k) = Ek
{

exp
{
−iq ·

∫ t

0
K(s)ds

}
f(K(t))

}
. (2.54)

that is a consequence of (2.50). �
Using (2.52) we can write that

Ŵ (τ, q, k) =
∑
m≥0

Ŵm(τ, q, k), (2.55)

where Ŵ0(τ, q, k) := e−iτq·ke−Σ(k)τf(k) and

Ŵm(τ, q, k) :=
∫ +∞

0
. . .

∫ +∞

0
dτ0,m

∫
. . .

∫
dk1,m

m−1∏
i=0

[σ(ki, ki+1)Σ(ki)] (2.56)

× exp

−
m∑
j=0

Σ(kj)τj

 exp

−i
m∑
j=0

q · kjτj

 f(km)δ

τ − m∑
j=0

τj

 .

Here k0 := k.
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2.7 The formulation of the main result

Let us recall that the initial data for the Wigner transform is assumed to be of the form W0(x, k) =
δ(x)f(k), where f ∈ C∞0 (Rd) is a smooth energy distribution in directions k. Consider the rescaled
fluctuations of the solution of the Wigner equation around its mean, that is,

Zε(t) := ε−1/2[Wε(t)− W̄ (t)].

It satisfies the equation

∂tZε(t) = AZε(t) + ε−1Kε[W̄ (t);Vt/ε] + ε−1/2
{
Kε[Zε(t);Vt/ε]− LW̄ (t)

}
,

Zε(0) = 0.
(2.57)

Suppose also that s, u > d/2 and Z̄(t) is the solution in H−s,−u of (2.48) with the initial data
Z̄(0, x, k) = δ(x)X(k). Here X is a real valued Gaussian H−u-valued element given by

X(k) := i
∑
σ=±1

σ

∫ +∞

0

∫
exp {iKσ · ps} [γ(p)− ip · k]−1 f(Kσ)

B̂(ds, dp)
(2π)d

(2.58)

that is, for any collection ψj ∈ S(Rd), j = 1, . . . , N , the pairings 〈X,ψj〉, j = 1, . . . , N are jointly
Gaussian of mean zero and with the covariance given by

C(ψi, ψj) := E[〈X,ψi〉〈X,ψj〉] =
∑

σ,σ′=±1

σσ′
∫

ν(dp)
(2π)2d

∫ +∞

0
eis(σ−σ

′)|p|2/2gσ,σ′(ps, p)ds, (2.59)

where

gσ,σ′(q, p) :=
∫

R2d

eiq·(k−k
′)ψi(k)ψj(k′)

[
(γ(p)− ip · k)(γ(p) + ip · k′)

]−1
f(Kσ)f(K ′σ′)dkdk

′.

We use above the notation
Kσ(k, p) := k + σp/2, (2.60)

and K ′σ′ := k′+σ′p′/2. Using (2.51) and (2.52) we obtain that for any θ ∈ S(R2d) we have a Duhamel
series for Z̄:

〈Z̄(t), θ〉 =
+∞∑
n=0

〈Z̄n(t), θ〉, (2.61)

where

〈Z̄n(t), θ〉 =
∫ +∞

0
. . .

∫ +∞

0
dτ0,n

∫
. . .

∫
dk0,n

n∏
i=1

σ(ki−1, ki)
n∏
i=1

Σ(ki−1) (2.62)

×

{
exp

{
−

n∑
i=0

Σ(ki)τi

}
θ (Xn, k0)X (kn) δ

(
t−

n∑
i=0

τi

)}
,

The following theorem is the main result of the article.

Theorem 2.8 Suppose that
R̂ ∈W∞,[d/2]+1(Rd) (2.63)

and
sup
q

∫
|p+ q|−2R̂(p)dp < +∞. (2.64)

Assume also that θ ∈ S(Rd). Under the above assumptions the finite dimensional laws of the pro-
cesses {〈Zε(t), θ〉, t > 0} converge in law, as ε ↓ 0, to those of {〈Z̄(t), θ〉, t > 0}.
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Outline of the proof

The strategy of the proof is to gradually simplify the terms on the right side of the equation (2.57)
for Zε. The first step is to eliminate the term of the apparent order O(ε−1) in (2.57) in Section 3.
This is done by adding a corrector Λε(t, x, k), in the spirit of the perturbed test function method.
The crucial step here is Proposition 3.1 that shows that the corrector needed to eliminate the
”apparently largest” term in (2.57) is actually small (as a distribution). This is done using the
Duhamel expansion for the deterministic kinetic equation. This step reduces the asymptotics of Zε
to those of Z̃ε, solution of (3.1) below. The latter equation has three forcing terms, of which one
is a martingale, and the other two are not but all come about because of the corrector Λε. The
next step is to eliminate the non-martingale forcing terms from (3.1). This is done in Section 4, see
Theorem 4.1. The asymptotics of Zε is, therefore, reduced to those of Zoε , the solution of (5.1), which
is the ”standard” Wigner equation (in particular, with the ”apparently largest” term of the order
O(ε−1/2), not O(ε−1) as in (2.57)), with a martingale forcing. In Section 5 we formulate Theorem 5.2
that allows us to replace the ”Wigner equation” part of (5.1) with a kinetic equation and the same
martingale forcing, see (5.5). The proof of this theorem is contained in Section 6. All that remains
to do in Section 7 in order to finish the proof of Theorem 2.8 is to show that the solution of (5.5)
converges to the solution of the kinetic equation with a random initial datum.

3 Eliminating the largest term

Definition of the corrector

We represent the solution to (2.57) in the form

Zε(t) = Z̃ε(t) + Λε(t),

where Λε(t, x, k) = Λ(t, Vt/ε;x, x/ε, k) and the corrector Λ : [0,+∞)× E → C(R2d;L2
(s)(µ)) is linear

in the E-variable and shall be specified in (3.5) below. We can write

dZ̃ε(t) =

{
AZ̃ε(t) + ε−1/2Kε[Z̃ε(t);Vt/ε] +

2∑
i=0

ε−i/2W̃ε
i (t)

}
dt+ dMε(t)

Z̃ε(0) = −Λε(0) (3.1)

Here, we have defined
W̃ε
i (t, x, k) = W̃i(t, x, k, x/ε;Vt/ε) (3.2)

with

W̃0(t, x, k, z;U) := −[∂t + k · ∇x]Λ(t, U ;x, k, z), (3.3)
W̃1(t, x, k, z;U) := −LW̄ (t, x, k) +K[Λ(t, U), z;U ](x, k),
W̃2(t, x, k, z;U) := −[k · ∇z + Q]Λ(t, U ;x, z, k) +K[W̄ (t), z;U ](x, k)

while {Mε(t), t ≥ 0} is a certain Hs,0-valued martingale, which we describe below. The function
Λ(t) is chosen in such a way that W̃2(t) = 0, or, equivalently,

[k · ∇z + Q]Λ(t, x, z, k;U) = K[W̄ (t), z;U ](x, k). (3.4)

This of course implies that Wε
2(t) ≡ 0, eliminating the largest term in (3.1).
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Using the same argument as the one below (2.41) we obtain that

Λ(t, x, z, k;U) =
∫
eip·zα̃(t, x, k, p)V̂ (dp), (3.5)

where
α̃(t, x, k, p) = i(2π)−d[γ(p)− ip · k]−1

∑
σ=±1

σW̄ (t, x, k + σp/2).

Note that we have, cf. (2.41) and (2.43),〈
K[Λ(t, U), z;U ](x, k)− LW̄ (t, x, k)

〉
π

= 0.

From (2.57) and Proposition 2.3, cf. also (2.19), we conclude that

Mε(t, x, k) := i
∑
σ=±1

σ

∫ t/ε

0

∫
eip·x/ε[−γ(p) + ip · k]−1W̄ (εs, x, k + σp/2)

B̂(ds, dp)
(2π)d

. (3.6)

The martingale is, therefore, Gaussian, adapted to the natural filtration corresponding to the Brow-
nian motion.

The following crucial estimate shows that the weak limits of Zε and Z̃ε (if they exist) are the same
– recall, once again, that working with Z̃ε is simpler since the leading order term in the equation for
Z̃ε has an apparent order O(ε−1/2) rather than O(ε−1).

Proposition 3.1 For any t > 0 there exists a constant C > 0 such that for all θ ∈ S(R2d) we have

E
[
〈Λε(t), θ〉2

]
≤ C

(
ε log

1
ε

)2

|‖θ|‖21,1,B.

Proof of Proposition 3.1

We have

Λε(t, x, k) = i
∑
σ=±1

σ

∫
eip·x/ε[−γ(p) + ip · k]−1W̄ (t, x,Kσ)

V̂ (t/ε, dp)
(2π)d

,

where Kσ is given by (2.60). The process Λε(t) is Gaussian, of zero mean. The variance of 〈Λε(t), θ〉
equals

E
[
〈Λε(t), θ〉2

]
=
∑

σ,σ′=±1

σσ′
∫
e
ip·(x−x′)

ε Γ(p, k, k′)θ(x, k)θ(x′, k′)W̄ (s, x,Kσ)W̄ (s, x′,K ′σ′)
dxdx′dkdk′µ(dp)

(2π)2d
,

(3.7)
where,

Γ(p, k, k′) :=
{

[γ(p)− ip · k][γ(p) + ip · k′]
}−1

. (3.8)

The right side of (3.7) can be further transformed by using expansion (2.51) for W̄ leading to

E
[
〈Λε(t), θ〉2

]
=
∑
n,n′≥0

Λ(n,n′)
ε ,

with Λ(n,n′)
ε given by formulas similar to (3.7), with the product of W̄ (s, x,Kσ) and W (s, x′,K ′σ′)

replaced by the respective product of Wn(s, x,Kσ) and Wn′(s, x′,K ′σ′) defined in (2.52). Using those
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definitions and the representation δ(t) = (2π)−1
∫
eiβtdβ we can write

E
[
〈Λε(t), θ〉2

]
= (2π)−2d−1

∑
n,n′≥0

∑
σ,σ′=−1,1

σσ′
∫ +∞

0
. . .

∫ +∞

0︸ ︷︷ ︸
n+1−times

dτ0,n

∫ +∞

0
. . .

∫ +∞

0︸ ︷︷ ︸
n′+1−times

dτ ′0,n

×
∫
ei(β+β′)t exp

{
−i

(
β

n∑
i=0

τi − β′
n′∑
i=0

τ ′i

)}
exp

{
i(

n∑
i=0

p · kiτi −
n′∑
i=0

p · k′iτ ′i)/ε

}

× exp

{
−i

(
n∑
i=0

q · kiτi −
n′∑
i=0

q′ · k′iτ ′i

)}
F1(θ)(q, k)F1(θ)(q′, k′) (3.9)

×
n∏
i=0

e−Σ(ki)τi

n′∏
i=0

e−Σ(k′i)τ
′
iIn,n′(p,k(n),k′(n

′))
dβdβ′dqdq′dk(n)dk′(n

′)µ(dp)
(2π)d+2

.

Here,

In,n′(p,k(n),k′(n
′)) := Γ(p, k, k′)f(kn)f(k′n′)

n∏
i=1

[Σ(ki−1)σ(ki−1, ki)]
n′∏
i=0

[
Σ(k′i−1)σ(k′i−1, k

′
i)
]
,

k0 := Kσ, k′0 := K ′σ′ and for abbreviation sake we write dτ := dτ0 . . . dτn, dτ ′ := dτ ′0 . . . dτ
′
n′ ,

dk(n) := dkdk1 . . . dkn, dk′(n
′) := dk′dk′1 . . . dk

′
n′ . Integrating out the τ variables we get

E
[
〈Λε(t), θ〉2

]
= (2π)−2d−2

∑
n,n′≥0

∑
σ,σ′=−1,1

σσ′
∫
ei(β+β′)tF1(θ)(q, k)F1(θ)(q′, k′)In,n′(p,k(n),k′(n

′))

×

[
n∏
i=0

[Σ(ki) + i[β + (q +
p

ε
)] · ki]

]−1[ n′∏
i=0

[Σ(k′i) + i[β′ + (q′ +
p

ε
)] · ki]

]−1

dβdβ′dqdq′dk(n)dk′(n
′)µ(dp).

Using the fact that êA(β) = (A+ iβ)−1 is the Fourier transform of the function

eA(t) :=


e−At, t > 0

0, t < 0

we can rewrite

E
[
〈Λε(t), θ〉2

]
= (2π)−2d−2

∑
n,n′≥0

∑
σ,σ′=−1,1

σσ′
∫ ∫

eA0 ∗ . . . ∗ eAn(t)eA′0 ∗ . . . ∗ eA′n′ (t),

×F1(θ)(q, k)F1(θ)(q′, k′)In,n′(p,k(n),k′(n
′))dqdq′dk(n)dk′(n

′)µ(dp) (3.10)

where Ai := Σ(ki) + i(q+ (p/ε)) · ki and A′i := Σ(k′i) + i(q′ + (p/ε)) · k′i. Computing the convolution
on the right hand side of (3.10) we obtain that this expression equals

(2π)−2d−2
∑
n,n′≥0

∑
σ,σ′=−1,1

σσ′
∫

∆n(t)
dτ1,n

∫
∆n′ (t)

dτ ′1,n′

∫ ∫
exp {−A0τ1} exp

{
−A′0τ ′1

}
F1(θ)(q, k)

×F1(θ)(q′, k′)Γ(p, k, k′)f(kn)f(k′n′)×
n∏
i=1

[exp {−Ai(τi+1 − τi)}Σ(ki−1)σ(ki−1, ki)] (3.11)

×
n′∏
i=0

[
exp

{
−A′i(τ ′i+1 − τ ′i)

}
Σ(k′i−1)σ(k′i−1, k

′
i)
]
dqdq′dk(n)dk′(n

′)µ(dp),
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where τn+1 = τ ′n′+1 := t. We can further rewrite (3.11) as being equal to

(2π)−2d−2
∑
n,n′≥0

∑
σ,σ′=−1,1

σσ′
∫

∆n(t)
dτ1,n

∫
∆n′ (t)

dτ ′1,n′

∫ ∫
dqdq′dkdk′µ(dp) (3.12)

×Σ(k0) exp {−Σ(k0)τ1}Σ(k′0) exp
{
−Σ(k′0)τ1

}
F1(θ)(q, k)F1(θ)(q′, k′)Γ(p, k, k′)

×F(Gn(·; k)) ((p/ε+ q)(τ1 − τ0), . . . , (p/ε+ q)(τn+1 − τn))
×F(Gn′(·; k′))

(
(p/ε+ q′)(τ ′1 − τ ′0), . . . , (p/ε+ q′)(τ ′n+1 − τ ′n)

)
,

where

Gn(k1, . . . , kn; k) := g(kn)
n−1∏
i=1

exp {−Σ(ki)(τi+1 − τi)}
n∏
i=1

R̂

(
|ki|2 − |ki−1|2

2
, ki − ki−1

)
and

g(kn) := Σ−1(kn)f(kn) exp {−Σ(kn)(τn+1 − τn)} .
We have

R1 := sup
k

∫
R̂

(
|l|2 − |k|2

2
, l − k

)
dl = sup

k

∫
R̂ (l − k)
γ(l − k)

dl ≤ 2
γ∗

∫
R̂ (l) dl < +∞. (3.13)

Since Σ(kn) is continuous and strictly positive for all kn and f(kn) is compactly supported we have
‖g‖∞ < +∞ and as a result

G1 := sup
k

∫
|Gn(k1, . . . , kn; k)|dk1,n ≤ ‖g‖∞Rn1 < +∞. (3.14)

Here dk1,n := dk1 . . . dkn. We can also easily estimate

sup
y1,...yn

|yiF(Gn(·; k)) (y1, . . . , yn) | ≤
∫
|∇kiGn(k1, . . . , kn; k)|dk1,n.

Lemma 3.2 We have

G∗ :=
n∑
i=1

sup
k

∫
|∇kiGn(k1, . . . , kn; k)|dk1,n ≤ C∗Rn−1

1 ,

where the constant C∗ depends on R∗, G1, t but not on R1 and n.

We postpone the proof of Lemma 3.2 for the moment. Returning to (3.12) we obtain E
[
〈Λε(t), θ〉2

]
=∑

n,n′≥0 Λ(n,n′)
ε and

Λ(n,n′)
ε = (2π)−2d−2

∑
σ,σ′=−1,1

σσ′
∫

∆n(t)
dτ1,n

∫
∆n′ (t)

dτ ′1,n′

∫ ∫
dqdq′dkdk′µ(dp)

×Σ(k0) exp {−Σ(k0)τ1}Σ(k′0) exp
{
−Σ(k′0)τ1

}
F1(θ)(q, k)F1(θ)(q′, k′)Γ(p, k, k′)

×

(
1 +

n∑
i=1

|(p/ε+ q)|(τi+1 − τi)

)
F(Gn(·; k)) ((p/ε+ q)(τ1 − τ0), . . . , (p/ε+ q)(τn+1 − τn))

×

(
1 +

n′∑
i=1

|(p/ε+ q′)|(τ ′i+1 − τ ′i)

)
F(Gn′(·; k′))

(
p/ε+ q′)(τ ′1 − τ ′0), . . . , (p/ε+ q′)(τ ′n+1 − τ ′n)

)
×

[(
1 +

n∑
i=1

|(p/ε+ q)|(τi+1 − τi)

)(
1 +

n′∑
i=1

|(p/ε+ q′)|(τ ′i+1 − τ ′i)

)]−1
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and, by virtue of Lemma 3.2, the right hand side can be estimated by

C2
∗ (n+ 1)(n′ + 1)|‖θ‖|21,1,B

R∞n+n′−2

n!(n′)!

× sup
q,q′

∫ t

0

∫ t

0

∫ [(
1 +

n∑
i=1

|(p/ε+ q)|τ

)(
1 +

n′∑
i=1

|(p/ε+ q′)|τ ′
)]−1

dτdτ ′µ(dp).

Observe that ∫ t

0
[1 + |(p/ε+ q)|τ ]−1 dτ ≤ ε+

∫ t

ε
[1 + |(p/ε+ q)|τ ]−1 dτ

≤ ε+ ε|p+ εq|−1

∫ t

ε
τ−1dτ ≤ C

(
ε log

1
ε

)
[1 + |p+ εq|−1]

for some constant C > 0 and all ε ∈ (0, 1). Therefore,

E
[
〈Λε(t), θ〉2

]
≤ C

(
ε log

1
ε

)2

|‖θ‖|21,1,BeCΣ∗

(
1 + sup

q

∫
|p+ q|−2µ(dp)

)
for some constant C > 0. The constant on the right hand side is finite thanks to (2.64). �

The proof of Lemma 3.2

In order to prove Lemma 3.2 we shall need the following estimate.

Lemma 3.3 We have

R∗ := sup
k

∫
|l|
∣∣∣∣∂ωR̂( |l|2 − |k|22

, l − k
)∣∣∣∣ dl < +∞. (3.15)

Proof of Lemma 3.3. Let us first explain the rough balance leading to (3.15). Let f(k, ω) be
a bounded function supported inside the set {|k| ≤ 1, |ω| ≤ 1}. Then the support of the function
f((k + p)2 − k2, p) (as function of p) lies inside the set {|p| ≤ 1, |(k · p)| ≤ 10}. It follows that∫

|l|f(k2 − l2, k − l)dl ≤ C(1 + |k|) |{|p| ≤ 1, |(k · p)| ≤ 10}| ≤ C,

which is the spirit of (3.15).
We now prove (3.15) more carefully. Assume that |k| ≥ 1. We have

∂ωR̂(ω, p) = − 4γ(p)ωR̂(p)
(γ2(p) + ω2)2

.

For n ≥ 0 we let An(k) := [n ≤ |k − l| ≤ n+ 1]. Since, for any M > 0 there exists C > 0 such that
R̂(p) ≤ C〈p〉−M , we can easily see that∫

An(k)
|l|
∣∣∣∣∂ωR̂( |l|2 − |k|22

, l − k
)∣∣∣∣ dl ≤ C(|k|+ n)2

〈n〉M

∫
An(k)

||k| − |l||dl
1 + |k|4||k| − |l||4

.

We change variables ` := l/|k|. The right hand side of the above estimate equals

C(|k|+ n)2|k|d+1

〈n〉M

∫
Ãn(k)

|1− |`||d`
1 + |k|8|1− |`||4

, (3.16)
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where Ãn(k) := [n|k|−1 ≤ |k̂ − `| ≤ (n + 1)|k|−1] and k̂ := k|k|−1. Note that Dn(k) ⊃ Ãn(k) for
|k| ≥ C1(C, ρ) ∨ 1, where C1(C, ρ) is a certain constant depending only on C, ρ and

Dn(k) := [` : |ˆ̀− k̂| ≤ (n+ 1)|k|−1, |`| ∈ ([1− (n+ 1)|k|−1] ∨ 0, 1 + (n+ 1)|k|−1)].

The expression in (3.16) can be estimated by

C(|k|+ n)2|k|d+1

〈n〉M

∫
Dn(k)

|1− |`||d`
1 + |k|8|1− |`||4

≤ C2(|k|+ n)2|k|d+1|k|−d+1nd−1

〈n〉M

∫ 1+(n+1)|k|−1

0

xd−1|1− x|dx
1 + |k|8|1− x|4

≤ C3(|k|+ n)2|k|2(1 + n|k|−1)d−1

〈n〉M−d+1

∫ 1+(n+1)|k|−1

0

|1− x|dx
1 + |k|8|1− x|4

. (3.17)

After the change of variables x′ := |k|2x the utmost right hand side of (3.17) can be estimated by

C3(1 + n|k|−1)d+1

〈n〉M−d+1

∫ +∞

0

|1− x|dx
1 + |k|8|1− x|4

. (3.18)

Therefore we can estimate

sup
|k|≥1

∫
|l|
∣∣∣∣∂ωR̂( |l|2 − |k|22

, l − k
)∣∣∣∣ dl ≤ sup

|k|≥1

∑
n≥0

C4(1 + n|k|−1)d+1

〈n〉M−d+1
≤
∑
n≥0

C4

〈n〉M−2d
< +∞,

provided M > 2d. �
Proof of Lemma 3.2. Suppose first that i 6= n. Then,

∇kiGn(k1, . . . , kn; k) = −∇Σ(ki)(τi+1 − τi)Gn(k1, . . . , kn; k)

+g(kn)
n−1∏
j=1

exp {−Σ(kj)(τj+1 − τj)}
∏

j 6=i,i+1

R̂

(
|kj |2 − |kj−1|2

2
, kj − kj−1

)

×


1∑
j=0

(−1)j−1

[(
ki+j∂ωR̂+∇R̂

)( |ki+j |2 − |ki+j−1|2

2
, ki+j − ki+j−1

)]

× R̂
(
|ki+1−j |2 − |ki−j |2

2
, ki+1−j − ki−j

)}
.

We obtain therefore ∫
|∇kiGn(k1, . . . , kn; k)|dk1,n ≤ R∗G1t+ ‖g‖∞Rn−1

1 R∗.

On the other hand when i = n we get

∇knGn(k1, . . . , kn; k) = ∇kng(kn)
n−1∏
i=1

exp {−Σ(ki)(τi+1 − τi)}
n∏
i=1

R̂

(
|ki|2 − |ki−1|2

2
, ki − ki−1

)

+g(kn)
n−1∏
j=1

[
exp {−Σ(kj)(τj+1 − τj)} R̂

(
|kj |2 − |kj−1|2

2
, kj − kj−1

)]

×
[(
kn∂ωR̂+∇R̂

)( |kn|2 − |kn−1|2

2
, kn − kn−1

)]
.
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Note that

∇kng(kn) := −Σ−1(kn)∇knΣ(kn)f(kn) exp {−Σ(kn)(τn+1 − τn)} [Σ−1(kn) + τn+1 − τn]
+Σ−1(kn)∇knf(kn) exp {−Σ(kn)(τn+1 − τn)} .

and

‖∇kng‖∞ ≤ (R∗ + 1) sup
kn

{
Σ−1(kn)|f(kn)|[Σ−1(kn) + t] + Σ−1(kn)|∇knf(kn)|

}
< +∞.

Hence, ∫
|∇knGn(k1, . . . , kn; k)|dk1,n ≤ ‖∇kng‖∞Rn1 + ‖g‖∞Rn−1

1 R∗

and the conclusion of the lemma follows. �

4 Elimination of the non-martingale forcing

Proposition 3.1 shows that the weak limits of Zε and Z̃ε are the same. We will now further write
Z̃ε = Uε + Zoε , where Uε satisfies (3.1) without the martingale term dMε and the same initial data
as Z̃ε, while Zoε satisfies (3.1) without the terms involving Wi (but with dMε), and with zero initial
data. It will turn out that the weak limit of Uε vanishes, while Zoε converges to Z̄.

More precisely, let {Uε(t), t ≥ 0} be the solution of the equation

∂tUε(t) = AUε(t) + ε−1/2Kε[Uε(t);Vt/ε] +
1∑
i=0

ε−i/2W̃ε
i (t),

Uε(0, x, k) = −Λε(0).

(4.1)

Equation (4.1) can be rewritten in the mild form.

Uε(t) =
2∑
i=0

G(i)
ε (t) + ε−1/2

∫ t

0
S0(t− s)K[Uε(s);Vt/ε]ds, (4.2)

where

G(0)
ε (t) := −S0(t)Λε(0), (4.3)

G(1)
ε (t) :=

∫ t

0
S0(t− s)W̃ε

0(s)ds,

G(2)
ε (t) := ε−1/2

∫ t

0
S0(t− s)W̃ε

1(s)ds.

Here W̃ε
i (s) and Λε(t) are given by (3.2) and (3.5), respectively.

Let Ûε(t, q, k) = F1(Uε(t))(q, k). Performing the Fourier transform in the x variable and writing
the Duhamel series as in Section 2.4 we obtain

Ûε(t, q, k) =
2∑
i=0

∑
n≥0

Ĝ(i,n)
ε (t, q, k), (4.4)
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where Ĝ(i,0)
ε (t) = Ĝ(i)

ε (t) := F1(G(i)
ε (t)) and

Ĝ(i,n)
ε (t, q, k) := (ε−1/2i)n

∑
σ1,...,σn=±1

σ1 . . . σn

∫
∆n(t)

∫
exp

i
n∑
j=1

Qj ·Kj(sj−1 − sj)

 (4.5)

×
n∏
j=1

V̂
(sj
ε
, dpj

)
Ĝ(i)
ε (sn, Qn,Kn) ds(n)dp(n),

with i = 0, 1, 2, and n ≥ 1. Here Kn, Qn, s(n),p(n) are given by (2.39). The main result of this
section concerns the behavior of Uε(t), as ε ↓ 0.

Theorem 4.1 For any t > 0 and θ ∈ S(R2d) we have

lim
ε→0+

E
[
〈Uε(t), θ〉2

]
= 0.

Proof of Theorem 4.1

Let
G(i,n1,n2)
ε (t, θ) := E

[
〈G(i,n1)
ε (t), θ〉〈G(i,n2)

ε (t), θ〉
]
.

From (4.4) we obtain that

E [〈Uε(t), θ〉]2 ≤ 3
2∑
i=0

∑
n1,n2≥0

G(i,n1,n2)
ε (t, θ). (4.6)

The theorem in question is a simple conclusion of the following.

Proposition 4.2 There exist constants G(i)
n1,n2(T ) such that

sup
t∈[0,T ]

|G(i,n1,n2)
ε (t, θ)| ≤ εG(i)

n1,n2
(T )‖θ‖21,1, ∀ ε ∈ (0, 1] (4.7)

and
+∞∑

n1,n2=0

G(i)
n1,n2

(T ) < +∞.

for i = 0, 1, 2.

Proof. We consider only the case when i = 2. The other cases, i.e. i = 0, 1, can be deals similarly
(in fact they are simpler). Observe that then estimate (4.7) needs to be checked only for n = n1 +n2

even (otherwise its left hand side vanishes). Using (4.5) (for i = 2) and (2.53) we conclude that the
left hand side of (4.7) can be estimated by

Cnε−n/2−1‖θ‖21,1W 2
∗,1 (4.8)

×
∫ ∫

Dtn1+1,n2+1

ds1ds2

∫ ∣∣∣∣∣∣E


2∏
i=1

 ni∏
j=1

V̂ (
sij
ε
, dpij)

 V̂2(
sini+1

ε
, dpini+1, dpini+2)


∣∣∣∣∣∣

Here Dt
n,k := ∆n(t)×∆k(t),

V̂2(t, dp, dq) = V̂ (t, dp)V̂ (t, dq)− R̂(p)δ(p+ q)dpdq (4.9)
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We shall also denote Dt,s
n,k := ∆n(t, s)×∆k(t, s).

Symmetry consideration concerning the first ni variables sij for i = 1, 2 respectively allow us to
rewrite the right hand side of (4.8) as being equal to

Cn‖θ‖21,1W 2
∗,1

n1!n2!εn/2+1

∫ t

0

∫ t

0
ds1,n1+1ds2,n2+1

∫ t

s1,n1+1

∫ t

s2,n2+1

ds1ds2 (4.10)

×
∫ ∣∣∣∣∣∣E


2∏
i=1

 ni∏
j=1

V̂ (
sij
ε
, dpij)

 V̂2(
sini+1

ε
, dpini+1, dpini+2)


∣∣∣∣∣∣ ,

where si = (si1, . . . , sini). Using the rules of computing joint moments of mean zero Gaussian random
variables we conclude that the right hand side of (4.8) equals

Cn‖θ‖21,1W 2
∗,1

n1!n2!εn/2+1

∣∣∣∣∣∑
F

∫ t

0

∫ t

0
ds1,n1+1ds2,n2+1

∫ t

s1,n1+1

∫ t

s2,n2+1

ds1ds2

∫
(4.11)

×
∏

(jk;lm)∈F

E
[
V̂ (

sjk
ε
, dpjk)V̂ (

slm
ε
, dplm)

]
ds1ds2

∣∣∣∣∣∣ ,
where the summation extends over pairings formed over the pairs ((i1j1); (i2, j2)), (ik, jk) ∈ V :=
{(1, 1), . . . , (1, n1 +1), (2, 1), . . . , (2, n2 +1)} that contain at least one bond of the form ((i, j), (1, n1 +
1)) (then it has to contain a bond ((i, j), (2, n2 + 1))), for some (i, j) ∈ V \ {(1, n1 + 1), (2, n2 + 1)}
(then it has to contain a bond ((i′, j′), (2, n2 + 1)) for some (i′, j′) ∈ V \ {(1, n1 + 1), (2, n2 + 1)}).
Applying the relation

E
[
V̂ (t, dp)V̂ (s, dq)

]
= (2π)de−γ(p)|t−s|δ(p+ q)R̂(p)dpdq, (4.12)

we can estimate the expression in (4.11) by

Cn‖θ‖21,1W 2
∗,1

n1!n2!εn/2+1

∑
F

∫ t

0
. . .

∫ t

0

∫ ∏
(jk;lm)∈F

e−γ(pjk)|sjk−slm|/εδ(pjk + plm)R̂(pjk)ds1ds2dp1dp2, (4.13)

Here pj = (pj1, . . . , pjnj ) and the range of summation extends over all pairings between elements of
V.

Changing variables s′jk := sjk/ε we obtain that expression (4.13) equals

Cn‖θ‖21,1W 2
∗,1ε

n1!n2!

∑
F

∫ ∏
(k,l)∈F

[
ε

∫ t/ε

0

∫ t/ε

0
e−γ(pjk)|sjk−slm|dsjkdslm

]
(4.14)

×δ(pjk + plm)R̂(pjk)dp1dp2

≤
Cntn/2+1‖θ‖21,1W 2

∗,1ε

n1!n2!

∑
F

∫ ∏
(k,l)∈F

δ(pjk + plm)
R̂(pjk)
γ(pjk)

dp1dp2

=
Cntn/2‖θ‖21,1W 2

∗,1ε(n+ 1)!!
n1!n2!

[∫
R̂(p)
γ(p)

dp

]n/2+1

.

In the last step above we used the fact that the total number of pairings for a set of n+2 = n1+n2+2
elements equals (n+ 1)!!. �
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5 The term with the martingale forcing

We have now got rid of the largest apparent order term in (2.57) with the help of the corrector, as
well as of the non-martingale forcing terms that arose after the addition of the corrector. Therefore,
the problem is now reduced to the Wigner equation with a martingale forcing, see (5.1) below. Our
next task is to replace the Wigner equation with the kinetic equation with the same martingale
forcing, and we formulate that result in this section.

The stochastic equation with the martingale forcing

Let us define Zoε (t) := Z̃ε(t)− Uε(t). It satisfies the stochastic equation

dZoε (t) =
{
AZoε (t) + ε−1/2Kε[Zoε (t);Vt/ε]

}
dt+ dMε(t),

Zoε (0) = 0,
(5.1)

where the additive noise {Mε(t), t ≥ 0} is given by (3.6). We can perform the Fourier transform in
the first variable on both sides of (5.1) and obtain, as in Section 4, that Ẑoε (t, q, k) = F1(Zoε (t))(q, k)
is given by

Ẑoε (t, q, k) =
∑
n≥0

Ẑn,ε(t, q, k). (5.2)

Here,

Ẑ0,ε(t, q, k) :=
∫ t

0
eiq·k(t−s)dM̂ε(s, q, k), (5.3)

Ẑn,ε(t, q, k) = (ε−1/2i)n
∫ t

0

∫
V̂n(t, sn+1, q, k, dp(n))dM̂ε(sn+1, Qn,Kn),

for n ≥ 1. Here,

V̂n(t, s, q, k, dp(n)) :=
∑

σ1,...,σn=±1

σ1 . . . σn

∫
∆n(t,s)

exp

i
n∑
j=0

Qj ·Kj(sj − sj+1)


n∏
j=1

V̂
(sj
ε
, dpj

)
ds(n),

where ∆n(t, s) := [t ≥ s1 ≥ . . . ≥ sn ≥ s], s0 := t, sn+1 = s and M̂ε(t, q, k) is a Gaussian maringale
given by

M̂ε(t, q, k) := F1(Mε(t))(q, k) = i
∑
σ=±1

σ

∫ t/ε

0

∫
[−γ(p)+ip·k]−1Ŵ

(
εs, q − p

ε
,Kσ

)
B̂(ds, dp) (5.4)

and Ŵ (t, q, k) := F1(W̄ )(t, q, k). The next proposition says that, for a fixed ε > 0, we can, indeed,
represent the solution of (5.1) as a convergent series (5.2).

Proposition 5.1 For any s ∈ R, p ≥ 1 the series in (5.2) is convergent in the Lp(P) sense in Hs,0.
In addition, we have Ẑoε (t, q, k) = F1(Zoε (t))(q, k).

The proof is standard and is, therefore, omitted. The simple reason for convergence is that integra-
tion over the simplex ∆n(t) provides sufficient decay for the terms of the series.
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The kinetic equation with the martingale forcing

We shall define {Z̄ε(t), t ≥ 0} as the Duhamel solution of

dZ̄ε(t) =
{
AZ̄ε(t) + LZ̄ε(t)

}
dt+ dMε(t),

Z̄ε(0) = 0.
(5.5)

Using (2.52) we can write

Ẑε(t, q, k) := F1(Z̄ε(t))(q, k) =
∑
n≥0

Z̄n,ε(t, q, k). (5.6)

Here,

Z̄0,ε(t, q, k) :=
∫ t

0
eiq·k(t−s)dM̂ε(s, q, k), (5.7)

Z̄n,ε(t, q, k) =
∫ t

0

∫
V̄n(t, s, q,k0,n)dM̂ε(sn+1, q, kn)dk1,n,

for n ≥ 1 and

V̄n(t, s, q, k0,n) :=
∫

∆n(t,s)
exp

i
n∑
j=0

q · kj(sj − sj+1)


×

n∏
i=1

[σ(ki−1, ki)Σ(ki−1)] exp

{
−

n∑
i=0

Σ(ki)(sj − sj+1)

}
ds(n)dk1,n.

Here kj,n = (kj , . . . , kn) and dkj,n = dkj . . . dkn for any j ≤ n.
The next theorem shows that solutions of (5.1) an (5.5) are asymptotically close to each other.

This is the most difficult step in the proof of Theorem 2.8.

Theorem 5.2 Suppose that {Zoε (t), t ≥ 0} and {Z̄ε(t), t ≥ 0} are the solutions of (5.1) and (5.5)
respectively. Then,

lim
ε→0+

E
[
〈Zoε (t), θ〉 − 〈Z̄ε(t), θ〉

]2 = 0

for any t > 0 and θ ∈ S(R2d).

6 The proof of Theorem 5.2

6.1 Some preliminary results and terminology

We start with the following.

Proposition 6.1 For any ε > 0 we have

E
[
〈Zoε (t), θ〉 − 〈Z̄ε(t), θ〉

]2 =
∑
n≥1

An(ε) +
∑
n≥1

Bn(ε), (6.1)

where
An(ε) := E〈Ẑo2n,ε(t), θ̂〉2 − E〈Z̄n,ε(t), θ̂〉2

and
Bn(ε) := −2

{
E
[(
〈Ẑo2n,ε(t), θ̂〉 − 〈Z̄n,ε(t), θ̂〉

)
〈Z̄n,ε(t), θ̂〉

]}
.
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Once again, for ε > 0 this propostion is quite standard so we do not present it here.
A direct calculation shows that

E〈Ẑon,ε(t), θ̂〉2 =
(−1)n+1

εn+1

∑
σ1,σ2,ρ

∑
F
σ1σ2

∫ t

0
dτ

∫
V(σ,F ,p(n)

1 ,p(n)
2 ; t, τ) (6.2)

×θ̂∗(q1, k1)θ̂∗(q2, k2)Γ(p,K(1)
n ,K(2)

n )Ŵ
(
τ,Q(1)

n −
p

ε
,K(1)

n,σ1

)
Ŵ
(
τ,Q(2)

n −
p

ε
,K(2)

n,σ2

)
dpdkdq

cf. formula (3.8) for the definition of Γ(·). Here p(n)
i := (pi1, . . . , pin), dpdkdq is an abbreviation for

the volume element ν(dp)dq1dq2dk1dk2dp
(n)
1 dp(n)

2 , and we set

Q(i)
n := qi −

1
ε

n∑
m=1

pi,m, K(i)
n := ki +

1
2

n∑
m=1

σimpim, K(i)
n,σ := K(i)

n +
σ

2
p for i = 1, 2, (6.3)

and

V(ρ,F ,p(n)
1 ,p(n)

2 ; t, τ) := σ̄

∫
Dn(t,τ)

exp

i∑
ij

Qij ·Kij(sij − sij+1)


×

∏
(jk,j′m)∈F

[
e−γ(pjk)|sjk−sj′m|/εR̂(pjk)δ(pjk + pj′m)

]
ds(n)

1 ds(n)
2 . (6.4)

The first summation in (6.2) extends over σ1, σ2, σij = ±1, σ̄ :=
∏

(ij) σij , Dn(t, τ) := ∆n(t, τ) ×
∆n(t, τ), and

p(n)
i = (pi1, . . . , pin), Qij := qi −

1
ε

j∑
m=1

pim,

Kij := ki +
1
2

j∑
m=1

σimpim for i = 1, 2.

The second summation there extends over all pairings formed over pairs of integers (ij), with i = 1, 2,
and j = 1, . . . , n. The pairs are ordered lexicographically, that is, we say that (ij) ≺ (i′j′) if i < i′,
or if i = i′ then j ≤ j′. If (e, f) is an edge we say that e, f are left and right vertices respectively if
e ≺ f . Also, given a vertex e = (ij) we will use the notation s(e) = sij , p(e) = pij . We say that an
edge v = (e, f) straddles over v′ = (e′, f ′) if v 6= v′ and e ≺ e′ ≺ f ′ ≺ f . Edges v = (e, f) and v′ are
said to intersect each other if they are different, not straddled by each other and one of the vertices,
say e′, satisfies e ≺ e′ ≺ f . A mixed edge is of the form ((1j1), (2j2)).

For a given pairing F let h1(·;F) be a function defined over its edges assigning to each v ∈ F its
vertex in such a way that the number of v, for which h1(v;F) = (1j) equals [n/2]. Let h2(v;F) be
the other edge of v. We shall omit writing F in the notation of these functions if it is obvious from
the context.

A pairing is called time-ordered if all edges are of the form ((i; 2j − 1), (i; 2j)) for some i = 1, 2
and j = 1, . . . , n. A pairing F is said to be negligible if it does not contain mixed edges and belongs
to either of three classes of pairings: 1) E1 consisting of pairings containing an edge ((ij), (ij′)) such
that |j′− j| ≥ 4, 2) E2 pairings with at least two edges ((ikjk), (ikj′k)) ∈ F , k = 1, 2 with |j′1− j1| ≥ 3
and |j′2 − j2| ≥ 2, or 3) E3 pairings with at least three edges ((ij), (ij′)) ∈ F such that |j′ − j| ≥ 2.
An almost time-ordered pairing is defined as a pairing that contains no mixed edges and is neither
ladder, nor negligible. Observe that the pairings considered in this case can be divided into two
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classes: 1) E4 - those that contain an edge of the form ((i, j), (i, j+ 3)) and all other edges are of the
form ((i, j), (i, j + 1)), 2) E5 - containing edges ((i, j), (i, j + 2)), ((i, j + 1), (i, j + 3)) and all other
edges are of the form ((i, j), (i, j+1)). By E6 we denote the class of pairings containing mixed edges.
Such pairings are called mixed.

Similarly, with K̄n,σ := kn + σp/2, we can write

E〈Z̄n,ε(t), θ̂〉2 = −1
ε

∑
σ,σ′=±1

σσ′
∫ t

0
dτ

∫ ∫
V̄n(t, τ, q,k0,n)V̄n(t, τ, q′,k′0,n)θ̂∗(q, k)θ̂∗(q′, k′)

×Γ(p, k, k′)Ŵ
(
τ, q − p

ε
, K̄n,σ

)
Ŵ
(
τ, q′ − p

ε
, K̄ ′n,σ′

)
dpdqdk, (6.5)

with dpdqdk := ν(dp)dqdq′dk0,ndk′0,n and

E
[
〈Ẑo2n,ε(t), θ̂〉〈Z̄n,ε(t), θ̂〉

]
=

(−1)n+1

ε1+n

∑
σ,σ′,ρ=±1

∑
F
σσ′

∫ t

0
dτ

∫ ∫
V(ρ,F ,p(n); t, τ)V̄n(t, τ, q′,k′0,n)

×θ̂∗(q, k)θ̂∗(q′, k′)Γ(p,K2n, k
′)Ŵ

(
τ,Q2n −

p

ε
,K2n,σ

)
Ŵ
(
τ, q′ − p

ε
, K̄ ′n,σ′

)
dpdqdk. (6.6)

The second summation on the right hand side extends over all pairings formed over vertices {1, . . . , 2n},

V(σ,F ,p(n); t, τ) := σ̄

∫
∆2n(t,τ)

exp

i
2n∑
j=1

Qj ·Kj(sj − sj+1)

 ∏
(j,j′)∈F

[
e−γ(pj)|sj−sj′ |/εR̂(pj)δ(pj + pj′)

]
ds(n).

6.2 Estimates of An(ε)

We define A(1)
n (ε), A(2)

n (ε), A(4)
n (ε) by expressions analogous to (6.2) except for the fact that the

summation extends only over negligible, almost time-ordered and mixed pairings correspondingly.
By Ã(3)

2n (ε) we denote the respective expression corresponding to the time-ordered pairing. We let

A(3)
n (ε) := Ã(3)

2n (ε)− E〈Z̄n,ε(t), θ̂〉2.

The following result holds.

Proposition 6.2 There exist constants C1, C2 > 0 and κ ∈ (0, 1) such that

|A(1)
n (ε)| ≤ Cn1

n!
ε+ (C2ε

κ)n, (6.7)

|A(3)
n (ε)| ≤ Cn1

n!
εκ, (6.8)

|A(i)
n (ε)| ≤ Cn1

n!
, (6.9)

for all n ≥ 1, ε > 0 and i = 2, 4.

The proof of (6.7). Observe that

A(1)
n (ε) ≤ Cn

εn+1

3∑
i=1

∑
F∈Ei

∫
Dn(t,0)

∏
(e,f)∈F

e−γ∗|sf−se|/εds(n)
1 ds(n)

2 , (6.10)
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where the constant C > 0 depends on θ, W , γ∗ and the measure µ. Suppose that n is even,
consideration for n odd is almost identical. Fix a negligible pairing F ∈ E1. The term corresponding
to E1 in (6.10) can be estimated by

Cn+1

εn+1

∑
i=1,2

∑
|j−j′|≥4

∫
Dn(t,0)

e−γ∗|sij−sij′ |/εE

 ∏
e 6=(ij),(ij′)

w
(se
ε

) ds(n)
1 ds(n)

2 , (6.11)

where C > 0 is some constant indpendent of n and ε > 0, {w(s), s ≥ 0} is a stationary, one
dimensional, linear diffusion described by

dw(s) = −γ∗w(s)ds+
√

2γ∗dB(s)

and {B(s), s ≥ 0} is a one dimensional, standard Brownian motion. Let us choose an arbitrary
κ ∈ (0, 1) and denote v0 := ((ij), (ij′)). Divide the domain of integration into two sets D1 and D2

depending on whether |sij − sij′ | ≥ εκ, or not. The expression in (6.11) can be written as I1 + I2

corresponding to each domain of integrtion. We have then

I1 ≤
Cn+1

(n!)2εn+1

∑
i=1,2

∑
|j−j′|≥4

∫ t

0
. . .

∫ t

0︸ ︷︷ ︸
2n−times

e−γ∗|sij−sij′ |/εE

 ∏
e 6=(ij),(ij′)

w
(se
ε

) ds(n)
1 ds(n)

2 (6.12)

=
Cn+1

(n!)2εn+1

∑
i=1,2

∑
|j−j′|≥4

∑
F

∫ t

0
. . .

∫ t

0︸ ︷︷ ︸
n−times

e−γ∗|sij−sij′ |/εE

 ∏
e6=(ij),(ij′)

w
(se
ε

) ds(n)
1 ds(n)

2 ,

where the summation
∑
F extends over all pairings formed over all vertices (kl) 6∈ {(ij), (ij′)}.

In the case of integration over D1 for v 6= v0 we let s̃h1(v) := sh1(v)/ε. We can estimate then

I1 ≤
Cn

(n!)2ε2
e−γ∗ε

κ−1
∑
F

∫ t

0
. . .

∫ t

0︸ ︷︷ ︸
n−1−times

∫
Rn−1

∏
v∈F ,v 6=v0

e−γ∗|sh2(v)/ε−s̃h1(v)|dsh2(v)ds̃h1(v) (6.13)

≤ Cn1 t
n−1(2n− 3)!!
(n!)2ε2

e−γ∗ε
κ−1 ≤ Cn1

n!
ε.

The expression corresponding to integration over D2 can be estimated using the fact that |sij−sij′ | ≤
εκ. Let r, u denote the respective numbers of edges of F that are straddled by v0 := ((ij), (ij′)) or
intersect v0. Obviously, |j − j′| = 1 + 2r + u. Denote by V the set of vertices of those edges that
neither intersect, straddle, nor coincide with v0 and Vc the remaining ones. Let m1 := #V and
m2 := 2n−m1 − 2 = 2(r + u). We have then,

I2 ≤
1

m1!εn+1

∑
i=1,2,

|j−j′|≥4

∑
F1

∫
. . .

∫
∆m2+2(t,0),
|sij−sij′ |≤ε

κ

∏
(e,f)∈F1

e−γ∗|se−sf |/εdsVc
∫ t

0
. . .

∫ t

0︸ ︷︷ ︸
m1−times

E

[∏
e∈V

w
(se
ε

)]
dsV . (6.14)

Here dsV :=
∏

(kl)∈V dskl and likewise dsVc . The summation
∑
F1

extends over all pairings formed
over all vertices belonging to Vc \ {(ij), (ij′)}. For v 6= v0 that does not intersect v0 we change
variable s̃h1(v) := sh1(v)/ε. Also for an edge v = (e, f) that intersects v0 and e lies between vertices
of v0 we let s̃f := sf/ε. We can write then

I2 ≤
∑

i=1,2,|j−j′|≥4

Cnεκ|j
′−j|εm1/2εu

(m1/2)!εn+1
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The exponent of ε appearing in the expression above equals

κ|j′ − j|+ u+m1/2− n− 1 = κ|j′ − j| − r − 2 ≥ (κ− 1/2)|j′ − j| − 3/2.

We can choose κ ∈ (0, 1) such that the above expression is positive since |j′ − j| > 3. In fact, since
m1 + 2|j′ − j| ≥ 2n we have

I2 ≤ (C2ε
κ)n (6.15)

for some constant C2 > 0. Considerations in the remaining two cases, i.e. pairings belonging to Ei,
i = 2, 3 are similar and we conclude in this way that (6.7) follows.

The proof of (6.9) for i = 2. One can obtain then a bound for A(2)
n (ε) analogous to (6.10) with

Ei, i = 4, 5. Since the expressions (si,j − si,j+3) + (si,j+1− si,j+2) and (si,j − si,j+2) + (si,j+1− si,j+3)
are comparable with

∑2
K=0(si,j+K − si,j+K+1) on the set si,j ≥ si,j+1 ≥ si,j+2 ≥ si,j+3 it suffices

only to consider the pairings belonging to the classes E4. The bound obtained for the this class can
be used also to estimate the expression containing pairings from E5. The term corresponding to E4

can be estimated by

Cn+1

εn+1

∑
i=1,2

n−3∑
j=1

∫
Dn(t,0)

2∏
K=0

exp {−γ1(si,j+K − si,j+K+1)/ε}E

[∏
e

′w
(se
ε

)]
ds(n)

1 ds(n)
2 , (6.16)

where C, γ1 > 0 are some constants indpendent of n and ε > 0 and
∏′
e denotes the product over all

vertices except (i, j), (i, j + 1), (i, j + 2), (i, j + 3). Changing variables s̃K+j := sK+j/ε, K = 1, 2, 3
and dealing with the expectation term as above we obtain that the expression in (6.16) is bounded
from above by Cn1 /n!.

Bound of (6.9) for i = 4. The case of mixed pairings. Consider now the case when F is of
class E6. Suppose that the edge (e, f) := ((1, j1), (2, j2)) corresponds to the smallest values of such
”mixed” s, that is, all smaller times come from the same simplex, say from the one corresponding to
the first index 2: s(e) ≥ s(f) ≥ s2,j2+1 ≥ . . . ≥ s2,n. The other case, i.e. when the first index equals
1, can be argued in the same way. Let Vj1,j2 := {(1, 1), . . . , (1, n), (2, 1), . . . , (2, j2 − 1)} \ {(1, j1)}.
In case j2 = 1 we suppose that Vj1,1 := {(1, 1), . . . , (1, n)} \ {(1, j1)}. Let also ∆(t, s1,j1 , τ) :=
∆j1−1(t, s1,j1) ×∆n−j1(s1,j1 , τ) and Dt,τ := ∆n−1(t, τ) ×∆j2−1(t, s2,j2−1). The term corresponding
to E6 can be estimated by

Cn+1

εn+1

n∑
j1,j2=1

∫ t

0
dτ

∫
Dt,τ

dsVj1,j2

∫
E

 ∏
e∈Vj1,j2

V̂
(se
ε
, dpe

) |θ̂(q2, k2)|R̂(p1,j1)δ(p1,j1 + p2,j2)

×
(n−j2)/2∏
k=1

[
R̂(p2,j2+2k−1)δ(p2,j2+2k−1 + p2,j2+2k)

]
|Gε(s1,j1−1, s1,j1+1, s2,j2−1)|dpdq2dk2, (6.17)

where dp is the volume element corresponding to the integration over all relevant p variables,

Gε(s1,j1−1, s1,j1+1, s2,j2−1) :=
∫ s1,j1−1

s1,j1+1

∫ s2,j2−1

τ

2∏
i=1

[
exp

{
iC(i)
ε (qi,p

(n)
i )

si,ji
ε

}
I(i)
ε (si,ji)

]
× exp

{
−γ(p1,j1)

|s1,j1 − s2,j2 |
ε

}
ds1,j1ds2,j2 (6.18)
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with

C(1)
ε (q1,p

(n)
1 ) :=

1
2

{(
εq1 −

j1∑
m=1

p1m

)
·

(
j1∑
m=1

ρ1mp1m

)
−

(
εq1 −

j1−1∑
m=1

p1m

)
·

(
j1−1∑
m=1

ρ1mp1m

)}
,

C(2)
ε (q2,p

(n)
1 ) := −εQ2,j2−1 ·K2,j2−1,

and

I(1)
ε (s1,j1) :=

∫
θ̂∗(q1, k1) exp

{
iC(3)
ε (q1,p

(n)
1 ) · k1

}
Ŵ
(
τ,Q(1)

n −
p

ε
,K(1)

n,σ1

)
[γ(p)− ip ·K1,n]−1dk1,

I(2)
ε (s2,j2) :=

∫
∆n−j2 (s2,j2 ,τ)

exp

i
n∑

j=j2

Q2,j ·K2,j(s2,j − s2,j+1)


×

(n−j2)/2∏
k=1

exp {−γ(p2,j2+2k−1)(s2,j2+2k−1 − s2,j2+2k)/ε} ds
(2)
j2+1,n,

where ds(2)
j2+1,n := ds2,j2+1 . . . ds2,n and

C(3)
ε (q1,p

(n)
1 ) := q1(t− τ)/ε−

n∑
m=1

p1m(s1m − τ)/ε.

By the Plancherel formula we can write

I(1)
ε (s1,j1) :=

∫
F(θ)∗(q1, z + C(3)

ε (q1,p
(n)
1 )) exp {iz · P}F

(
τ,Q(1)

n −
p

ε
, z
)
dz, (6.19)

where

P :=
1
2

n∑
j=1

σ1,mp1,m +
σ1

2
p,

F (τ, q, z) :=
∫

e−iz·kŴ (τ, q, k + σ1p/2) [γ(p)− ip · k]−1dk.

Using (2.52) we can write I(1)
ε (s1,j1) =

∑
l≥0 I

(1)
l,ε (s1,j1), where

I(1)
l,ε (s1,j1) :=

∫ +∞

0
. . .

∫ +∞

0
dτ0,l

∫
. . .

∫
dk

(1)
1,l

∫
dz

l−1∏
i=1

[
σ(k(1)

i , k
(1)
i+1)Σ(k(1)

i )
]

(6.20)

× exp

{
−

m∑
m=1

Σ(k(1)
m )τm

}
K̂
((
Q(1)
n −

p

ε

)
τ0 − z

)
F(θ)∗(q1, z + C(3)

ε (q1,p
(n)
1 )) exp {iz · P}

× exp

{
−i

l∑
m=1

(
Q(1)
n −

p

ε

)
· k(1)

m τm

}
f(k(1)

l )δ

(
τ −

l∑
m=0

τm

)
.

Here k(1)
0 := k1. We apply here the convention of writing dxk,m := dxk . . . dxm for any indexed

variable xk. Here K̂(z) is the Fourier transform of

K(k) := R̂
(

(|k(1)
1 |

2 − |k|2)/2, k(1)
1 − k

)
exp {−Σ(k)τ0} [γ(p)− ip · (k − σ1p/2)]−1.
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Using the expansion of I(1)
ε (s1,j1) we can write Gε =

∑
l≥0 Gl,ε, where Gl,ε is given by (6.18) in which

I(1)
ε is replaced by I(1)

l,ε .
From formula (2.47) one can conclude that

(1 + |z|2)[d/2]+1|K̂(z)| ≤ C,

where the constant C depends only γ∗, d and
∑[d/2]+1

m=0 supp |∇mR̂(p)|, cf assumption (2.63). Thus,∫
|K̂(z)|dz =: K∗ < +∞. (6.21)

Changing variables s̃2,j2+2k := s2,j2+2k/ε, k = 0, . . . , (n− j2)/2 and s̃1,j1 := s1,j1/ε and using (6.21)
we obtain

|Gl,ε(s1,j1−1, s1,j1+1, s2,j2−1)| ≤ Cn−j2+l

l!
ε(n−j2)/2+2K∗

(
sup

y∈Rd,ω∈Sd−1

∫ +∞

−∞
|F(θ)(q1, y + |p1,j1 |ωs)|ds

)
,

(6.22)
which, after summing up over l-s, leads to an upper bound

|Gε(s1,j1−1, s1,j1+1, s2,j2−1)| ≤ Cn−j2ε(n−j2)/2+2, (6.23)

which in turn leads to an estimate of (6.17) by

Cn+1

εn+1

n∑
j1,j2=1

∫ t

0
dτ

∫
Dt,τ

dsVj1,j2

∫
E

 ∏
e∈Vj1,j2

V
(se
ε
, dpe

) |θ̂(q2, k2)|R̂(p1,j1)δ(p1,j1 + p2,j2)

×ε(n−j2)/2+2K∗

(
sup

y∈Rd,ω∈Sd−1

∫ +∞

−∞
|F(θ)(q1, y + |p1,j1 |ωs)|ds

)
(6.24)

(n−j2)/2∏
k=1

[
R̂(p2,j2+2k−1)δ(p2,j2+2k−1 + p2,j2+2k)

]
dpdqdk2.

Estimating E
[∏

e∈Vj1,j2
V (se/ε, dpe)

]
in the same way as in previous cases we conclude that expres-

sion (6.24) can be bounded from above by

Cn+1

(∫
R̂(p)
|p|

dp

)
n∑

j2=1

1
[(n+ j2)/2]!

for some constant C > 0 and (6.9) follows, cf (2.64).
The proof of (6.8). Using(6.2) we can write that

Ã(3)
2n (ε) = −ε−(2n+1)

∫ t

0
dτ

{∑
σ,ρ

σ

∫ ∫
θ̂∗(q1, k1)Ŵ

(
τ, q1 −

p

ε
, K̄2n,σ(ρ)

)
dq1dk1dp

×[γ(p) + iK̄2n(ρ) · p]−1R̄(p)ρ̄
∫

∆2n(t,τ)

[
n∏
k=0

exp
{
iq1 · K̄2k(ρ)(s2k − s2k+1)

}
(6.25)

×
n∏
k=1

exp
{
−[γ(p2k−1)− iqε,k · K̄2k−1(ρ)](s2k−1 − s2k)/ε

}]
ds1,2n

}2
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where ρ̄ :=
∏2n
k=1 ρk, R̄(p) :=

∏n
k=1 R̂(p2k−1), dp := ν(dp)dp1 . . . dp2n−1 and K̄0(ρ) := k1,

qε,k := εq1 − p2k−1,

K̄2k−1(ρ) := K̄2k−2(ρ) +
1
2
ρ2k−1p2k−1,

K̄2k−2(ρ) := k1 +
1
2

k−1∑
m=1

(ρ2m−1 − ρ2m)p2m−1, k = 1, 2, . . . , n+ 1,

K̄2n,σ(ρ) := K̄2n(ρ) +
σ

2
p, i = 1, 2.

We change variables s̃k := sk/ε, i = 1, 2, k = 1, . . . , 2n. As a result

Ã(3)
2n (ε) = −ε2n−1

∫ t

0
dτ

{∑
σ,ρ

σ

∫ ∫
θ̂∗(q1, k1)Ŵ

(
τ, q1 −

p

ε
, K̄2n,σ(ρ)

)
dq1dk1dp

× [γ(p) + iK̄2n(ρ) · p]−1R̄(p)ρ̄Dε(t/ε, τ/ε)
}2
,

where

Dε(t/ε, τ/ε) :=
∫

∆2n(t/ε,τ/ε)

[
n∏
k=0

exp
{
iεq1 · K̄2k(ρ)(s2k − s2k+1)

}
×

n∏
k=1

exp
{
−[γ(p2k−1)− iqε,k · K̄2k−1(ρ)](s2k−1 − s2k)

}]
ds1,2n.

We can integrate out the s-variables with odd indices using an elementary formula∫ s2

s0

eiA(s0−s1)e−(B+iC)(s1−s2)ds1 = [B + i(A+ C)]−1[eiA(s0−s2) − e−(B+iC)(s0−s2)]

valid for all A,C ∈ R, B > 0, s2 > s1 we obtain, after changing variables s2k := εs2k, that

Dε(t/ε, τ/ε) := ε−n
∫

∆n(t,τ)

n∏
k=1

{[
γ(p2k−1) + i

(
εq1 · K̄2k−2(ρ)− qε,k · K̄2k−1(ρ)

)]−1

×
[
exp

{
iq1 · K̄2k−2(ρ)(s2k−2 − s2k)

}
− exp

{
−[γ(p2k−1)− iqε,k · K̄2k−1(ρ)](s2k−2 − s2k)/ε

}]
ds(e)

1,2n,

where ds(e)
1,2n = ds2 . . . ds2n. Choose κ ∈ (1/2, 1). Considering the cases s2k−2 − s2k ≥ εκ and

0 < s2k−2 − s2k < εκ we conclude that

Ã(3)
2n (ε) = −ε−1

∫ t

0
dτ

∫
ν(dp)

{∑
σ,ρ

σ

∫ ∫
θ̂∗(q1, k1)Ŵ

(
τ, q1 −

p

ε
, K̄2n,σ(ρ)

)
dq1dk1dp

× [γ(p) + iK̄2n(ρ) · p]−1R̄(p)ρ̄ D̄(t, τ)
}2

+ Cn(ε), (6.26)

where

D̄(t, τ) :=
∫

∆n(t,τ)

n∏
k=1

{[
γ(p2k−1) + ip2k−1 · K̄2k−1(ρ)

]−1 exp
{
iq1 · K̄2k−2(ρ)(s2k−2 − s2k)

}}
ds(e)

1,2n,

Cn(ε) ≤ Cn

n!
ε2κ−1

for some constant C > 0. A simple calculation shows that the term of order ε−1 on the right hand
side of (6.26) coincides with E〈Z̄n,ε(t), θ̂〉2 and the conclusion of the proposition follows. �
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6.3 Estimates of Bn(ε)

For the most part the argument one can use to estimate Bn(ε) is a simplified version of the argument
from the previous section. From (6.6) we obtain that

E
[
〈Ẑo2n,ε(t), θ̂〉〈Z̄n,ε(t), θ̂〉

]
=

(−1)n+1

ε1+n

∑
σ,σ′,ρ=±1

∑
F
σσ′ρ̄

∫ t

0
dτ

∫ ∫
θ̂∗(q, k)θ̂∗(q′, k′)V̄n(t, sn+1, q

′,k′0,n)

×
∫

∆2n(t,τ)
exp

i
n∑
j=0

Qj ·Kj(sj − sj+1)

 ∏
(j,j′)∈F

[
e−γ(pj)|sj−sj′ |/εR̂(pj)δ(pj + pj′)

]
ds1,2n (6.27)

×Γ(p,K2n, k
′)Ŵ

(
sn+1, Q2n −

p

ε
,K2n,σ

)
Ŵ
(
sn+1, q

′ − p

ε
, K̄ ′n,σ′

)
ν(dp)dqdq′dk′0,n.

Here for a given sequence ρ = (ρ1, . . . , ρ2n) ∈ {−1, 1}2n we let ρ̄ :=
∏2n
j=1 σj

p(2n)
i = (p1, . . . , p2n), Qj := q − 1

ε

j∑
m=1

pm, Kj := k +
1
2

j∑
m=1

ρmpm.

The summation
∑
F extends over all pairings formed over integers j = 1, . . . , 2n. In analogy with

the previous notation we say that an edge v = (i, j) straddles over v′ = (i′, j′) if v 6= v′ and
i ≤ i′ ≤ j′ ≤ j. Edges v = (i, j) and v′ are said to intersect each other if they are different, not
straddled by each other and one of the vertices, say i′, satisfies i ≺ i′ ≺ j.

A pairing is called time-ordered if all edges are of the form (j − 1, j) and j = 1, . . . , 2n. A
pairing F is said to be negligible if it belongs to either of three classes of pairings: 1) E1 consisting
of pairings containing an edge (j, j′) such that |j′ − j| ≥ 4, 2) E2 pairings with at least two edges
(jk, j′k) ∈ F , k = 1, 2 with |j′1 − j1| ≥ 3 and |j′2 − j2| ≥ 2, or 3) E3 pairings with at least three
edges (j, j′) ∈ F such that |j′ − j| ≥ 2. An almost time-ordered pairing is defined as a pairing that
is neither time-ordered, nor negligible. We can divide the summation over pairings appearing in
(6.27) into three sums B(i)

n (ε), i = 1, 2 and B̃(3)
n (ε) according to the classes Ei, i = 1, 2, 3 described

above. We let B(3)
n (ε) := B̃(3)

n (ε) − E〈Z̄n,ε(t), θ̂〉2. Repeating almost literally the argument used in
the previous section we obtain the following.

Proposition 6.3 There exist constants C1, C2 > 0 and κ ∈ (0, 1) such that

|B(1)
n (ε)| ≤ Cn1

n!
ε+ (C2ε

κ)n, (6.28)

|B(3)
n (ε)| ≤ Cn1

n!
εκ, (6.29)

|B(2)
n (ε)| ≤ Cn1

n!
, (6.30)

for all n ≥ 1, ε > 0.

6.4 The end of the proof of Theorem 5.2

In light of the results of Propositions 6.2 and 6.3 to finish the proof of the theorem we need to show
that for each n ≥ 1 we have

lim
ε→0

ε−(1+n)

∫ t

0
dτ

∫ ∫
V(ρ,F ,p(n)

1 ,p(n)
2 ; t, τ)θ̂∗(q1, k1)θ̂∗(q2, k2)Γ(p,K1,n,K2,n) (6.31)

×Ŵ
(
τ,Q(1)

n −
p

ε
,K(1)

n,σ1

)
Ŵ
(
τ,Q(2)

n −
p

ε
,K(2)

n,σ2

)
dpdqdk = 0,
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for an almost time-ordered, or mixed type pairing F , according to the terminology of Section 6.1.
Here dpdqdk is an abbreviation for the volume element ν(dp)dq1dq2dk1dk2dp

(n)
1 dp(n)

2 . The definition
of the terms appearing in expression (6.31) are the same as those given in Section 6.2.

In addition we also need to prove that

lim
ε→0+

ε−(1+n)

∫ t

0
dτ

∫ ∫
θ̂∗(q, k)θ̂∗(q′, k′)V̄n(t, τ, q′,k′0,n) (6.32)

×
∫

∆2n(t,τ)
exp

i
2n∑
j=0

Qj ·Kj(sj − sj+1)

 ∏
(j,j′)∈F

[
e−γ(pj)|sj−sj′ |/εR̂(pj)δ(pj + pj′)

]
ds1,2n

×Γ(p,K2n, k
′)Ŵ

(
τ,Q2n −

p

ε
,K2n,σ

)
Ŵ
(
τ, q′ − p

ε
, K̄ ′n,σ′

)
ν(dp)dqdq′dk′0,n = 0

for an almost time-ordered pairing, according to the terminology of Section 6.3. We start with the
proof of (6.31).

The case of an almost time-ordered pairing. In this case n = 2`. Suppose first that F ∈ E4.
It contains an edge of the form ((i0, 2`0 − 1), (i0, 2`0 + 2)) and all other edges are of the form
((i, j), (i, j+1)). With no loss of generality we may assume that i0 = 1. It suffices therefore to prove
that

lim
ε→0+

ε−(1+n)

∫ t

0
dτ

∫ ∫
θ̂∗(q1, k1)Ŵ

(
τ, q1 −

p

ε
,K(1)

n,σ1

) 2∏
i=1

Di(τ)
∏̀
m=1
i=1,2

R̂(pi,2m−1)dk1dqdp = 0, (6.33)

where dqdp is the abbreviation for the volume element ν(dp)dq1dq2dk1dp
(n)
1 dp(n)

2 and

D1(τ) :=
∫

∆n(t,τ)

∏
m6=`0+1

exp {[i(εq1 − p1,2m−1) ·K1,2m−1 − γ(p1,2m−1)] (s1,2m−1 − s1,2m)/ε}

× exp {i [(εq1 + p1,2`0+1 − p1,2`0−1) ·K1,2`0 − 2γ(p1,2`0−1)] (s1,2`0 − s1,2`0+1)/ε}
× exp {[i(εq1 − p1,2`0−1) ·K1,2`0+1 − γ(p1,2`0+1)] (s1,2`0+1 − s1,2`0+2)/ε}

×
∏
m 6=`0

exp {iq1 ·K1,2m(s1,2m − s1,2m+1)} ds(n)
1

and

D2(τ) :=
∫

∆2`(t,τ)

∫
Γ(p,K1,2`,K2,2`)θ̂∗(q2, k2) exp

i
2∑̀
j=0

Q2,j ·K2,j(s2,j − s2,j+1)


×Ŵ

(
τ, q2 −

p

ε
,K

(2)
2`,σ2

) ∏̀
m=1

exp {−γ(p2,2m−1)(s2,2m−1 − s2,2m)/ε} ds(2`)
2 dk2

To estimate D1(τ) we rewrite it in the form

D1 :=
∫

∆2`(t,τ)
Jε(s(2`)

1 )
∏

m 6=`0+1

exp {−γ(p1,2m−1)(s1,2m−1 − s1,2m)/ε}

× exp {−2γ(p1,2`0−1)(s1,2`0 − s1,2`0+1)/ε} exp {−γ(p1,2`0+1)(s1,2`0+1 − s1,2`0+2)/ε} ds(2`)
1 ,

where sup |Jε(s(n2`)
1 )| < +∞ and Pm := 1

2

∑m
j=1 ρ1,jp1,j + σ1p/2. Changing variables s1,2m :=

s1,2m/ε, s1,2`0−1 := s1,2`0−1/ε we obtain supτ∈[0,t] |D1(τ)| ≤ Cε`+1.
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We can use the change of variables s2,2j := s2,2j/ε, j = 1, . . . , ` to obtain that |D2(τ)| ≤ Cε`

uniformly in all variables that are left after integrating out s2.j-s.
Using (2.55) we can write that D2 =

∑
m≥0D

(m)
2 , where

D(0)
2 (τ) :=

∫
∆2`(t,τ)

∫
J0

((
q2 −

p

ε

)
τ0

) ∏̀
j=1

exp {−γ(p2,2j−1)(s2,2j−1 − s2,2j)/ε} ds(2`)
2

and

D(m)
2 (τ) :=

∫
∆2`(t,τ)

∫ +∞

0
. . .

∫ +∞

0

∫
J
((
q2 −

p

ε

)
τ0

)
(6.34)

×
m−1∏
i=1

[
σ(k(2)

i , k
(2)
i+1)Σ(k(2)

i )
]

exp

−
m∑
j=1

Σ(k(2)
j )τj

 exp

−i
m∑
j=1

(
q2 −

p

ε

)
· k(2)

j τj

 f(k(2)
m )

×
∏̀
j=1

exp {−γ(p2,2j−1)(s2,2j−1 − s2,2j)/ε} δ

τ − m∑
j=0

τj

 dτ0,mds
(2`)
2 .

Here

J0(z) :=
∫

Γ(p,K1,2`,K2,2`)θ̂∗(q2, k2) exp

i
2∑̀
j=0

Q2,j ·K2,j(s2,j − s2,j+1)

 (6.35)

× exp
{
−iz ·K(2)

2`,σ2

}
f(K(2)

2`,σ2
) exp

{
−Σ(K(2)

2`,σ2
)τ0

}
dk2

and

J (z) :=
∫

Γ(p,K1,2`,K2,2`)θ̂∗(q2, k2) exp

i
2∑̀
j=0

Q2,j ·K2,j(s2,j − s2,j+1)

 (6.36)

× exp
{
−iz ·K(2)

2`,σ2

}
R̂

 |k(2)
1 |2 − |K

(2)
2`,σ2
|2

2
, k

(2)
1 −K

(2)
2`,σ2

 exp
{
−Σ(K(2)

2`,σ2
)τ0

}
dk2

Then, with the assumptions made one can easily verify that

|J0(z)|+ |J (z)| ≤ C

|z|2 + 1
. (6.37)

With that estimate we conclude easily that

|D(m)
2 (τ)| ≤ Cm

∫
∆2`(t,τ)

∫
. . .

∫
τ≥

Pm
i=1 τi,τi≥0

[
1 +

(
τ −

∑m
i=1 τi
ε

)2
]−1

(6.38)

×
∏̀
j=1

exp {−γ(p2,2j−1)(s2,2j−1 − s2,2j)/ε} dτ0,mds
(2`)
2

for m ≥ 1. Changing variables τm := τm/ε+ ε−1(
∑m−1

i=1 τi − τ) and s2j := s2j/ε we obtain

|D(m)
2 (τ)| ≤ Cm+`ε`+1

∫ +∞

−∞

dτm
1 + τ2

m

∫
. . .

∫
τ≥

Pm−1
i=1 τi,τi≥0

dτ1,m−1 ≤
Cm+`

1

m!
ε`+1
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for some constant C1 > 0. Since we also have

|D(0)
2 (τ)| ≤ C2`

1 + (τ/ε)2

we can estimate the expression under the limit in (6.33) by

ε−(1+n)

C2`ε2`+1

∫ t

0

dτ

1 + (τ/ε)2
+
∑
m≥1

Cm+`

m!
ε2`+2

 ≤ C1ε

for some constant C1 > 0. What remains yet to be shown is estimate (6.37). We perform substitution
k2 := K

(2)
2`,σ2

in (6.35). The case when F ∈ E5 can be dealt with similarly.
Mixed pairings. Consider a mixed pairing F whose last mixed bond is ((1, j1), (2, j2)) (as in

Section 6.2). According to (6.2) the term corresponding to E6 can be estimated by

Hε :=
1

εn+1

∣∣∣∣∣∣
∫ t

0
dτ

∫
D
j1,j2
t,τ

dsVj1,j2

∫
exp

i ∑
(ij),(i,j+1)∈Vj1,j2

Qij ·Kij(sij − sij+1)


×E

 ∏
e∈Vj1,j2

V
(se
ε
, dpe

) θ̂∗(q2, k2)(γ(p)− ip ·K2,n)−1

× Ŵ
(
τ,Q(2)

n −
p

ε
,K(2)

n,σ2

)
Gε(s1,j1−1, s1,j1+1, s2,j2−1)dpdqdk2

∣∣∣∣ . (6.39)

Here Gε(s1,j1−1, s1,j1+1, s2,j2−1) is defined by (6.18) and

Dj1,j2
t,τ := [t ≥ s1,1 . . . sj1−1 ≥ s1,j1+1 . . . ≥ s1,n ≥ 0, t ≥ s2,1 . . . s2,j2−1 ≥ 0].

Using (2.55) we obtain Hε ≤
∑

m≥0H
(m)
ε , where

H(m)
ε :=

1
εn+1

∣∣∣∣∣
∫ t

0
dτ

∫
D
j1,j2
t,τ

dsVj1,j2

∫ +∞

0
. . .

∫ +∞

0
dτ0,m

∫
dk

(2)
1,m

∫
exp

{
−Σ(K(2)

n,σ2
)τ0

}
×R̂

(
|k(2)

1 |2 − |K
(2)
n,σ2 |2

2
, k

(2)
1 −K

(2)
n,σ2

)
exp

{
−i
(
Q(2)
n −

p

ε

)
·K(2)

n,σ2
τj

}
m−1∏
i=1

[
σ(k(2)

i , k
(2)
i+1)Σ(k(2)

i )
]

exp

−
m∑
j=1

Σ(k(2)
j )τj

 exp

−i
m∑
j=1

(
Q(2)
n −

p

ε

)
· k(2)

j τj


×f(k(2)

m )δ

τ − m∑
j=0

τj

 exp

i ∑
(ij),(i,j+1)∈Vj1,j2

Qij ·K(2)
ij (sij − sij+1)

E

 ∏
e∈Vj1,j2

V
(se
ε
, dpe

)
×θ̂∗(q2, k2)(γ(p)− ip ·K2,n)−1 Gε(s1,j1−1, s1,j1+1, s2,j2−1)dpdqdk2

∣∣∣∣ . (6.40)

This expression can be estimated in the same way as in (6.34). We obtain then

|H(m)
ε | ≤

Cm

εn+1

∫ t

0
dτ

∫
D
j1,j2
t,τ

dsVj1,j2

∫
. . .

∫
τ≥

Pm
i=1 τi,τi≥0

[
1 +

(
τ −

∑m
i=1 τi
ε

)2
]−1

×
∏

(e,f)∈F
e,f∈Vj1,j2

exp {−γ(pe)|se − se|/ε} |Gε(s1,j1−1, s1,j1+1, s2,j2−1)|dτ0,mds
(2`)
2
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Changing variables τm := τm/ε+ ε−1(
∑m−1

i=1 τi − τ) and se := se/ε we conclude, using (6.23),

|H(m)
ε | ≤

Cm

m!
ε(n+j2−2)/2+1ε(n−j2)+2,

which in turn implies that |Hε| ≤ Cε. This ends the proof of (6.31). The proof of (6.32) is obtained
essentially in the same way. Actually, in this case we do not have to consider the mixed type pairings,
so it suffices only to use the same argument as the one applied in the proof of (6.33).

7 The proof of Theorem 2.8

Suppose that {Z̄(t), t ≥ 0} that is the solution of (2.48) with the initial condition Z̄(0) = δ ⊗ X.
The result in uqestion follows from.

Theorem 7.1 Suppose that t0 > 0 and θ ∈ S(Rd). Then, the finite dimensional distributions of
{〈Z̄ε(t), θ〉 t ≥ t0} converge in law, as ε→ 0+, to the respective distributions of {〈Z̄(t), θ〉 t ≥ t0}.

Proof. To simplify notation we shall show only the convergence in law of one dimensional marginals.
The proof in the general case is almost identical. From (5.4) and (2.55) we can write that M̂ε(t, q, k) =
M̂(0)

ε (t, q, k) +Rε(t, q, k), where

M̂(0)
ε (t, q, k) :=

i

ε1/2

∑
σ=±1

σ

∫ t

0

∫
[−γ(p) + ip · k]−1Ŵ0

(
s, q − p

ε
,Kσ

)
B̂(ds, dp) (7.1)

and

R̂ε(t, q, k) :=
i

ε1/2

∑
m≥1

∑
σ=±1

σ

∫ t

0

∫
[−γ(p) + ip · k]−1Ŵm

(
s, q − p

ε
,Kσ

)
B̂(ds, dp). (7.2)

Correspondingly, 〈Z̄ε(t), θ〉 = Iε(t) +Rε(t), where Iε(t) =
∑

n≥0 I
(n)
ε (t) with

I(0)
ε (t) :=

∫ t

0

∫
eiq·k(t−s)θ̂∗(q, k)dM̂(0)

ε (s, q, k)dqdk, (7.3)

I(n)
ε (t) =

∫ t

0

∫
θ̂∗(q, k0)V̄n(t, sn+1, q,k0,n)dM̂(0)

ε (sn+1, q, kn)dk0,ndq.

Likewise we let Rε(t) =
∑

n≥0R
(n)
ε (t), where R(n)

ε (t) is defined by equation analogous to (7.3), in

which martingale M(0)
ε (t) should be replaced by Rε(t).

Lemma 7.1 We have
ER2

ε(t) ≤ Cε (7.4)

for some C > 0 and all ε ∈ (0, 1].

Proof. We have Rε(t) =
∑

n≥0,m≥1R
(n,m)
ε (t), where

R(n,m)
ε (t) :=

i

ε1/2

∑
σ=±1

σ

∫ t

0

∫
∆n(t,sn+1)

∫ +∞

0
. . .

∫ +∞

0

∫
G(p, q,k, l, τ, s)

×ds(n)B̂(dsn+1, dp)dτ0,mdl1,mdk0,ndq.
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Here l0 := kn + σp/2 and

G(p, q,k, l, τ, s) := θ̂∗(q, k0) exp

i
n∑
j=0

q · kj(sj − sj+1)


×[−γ(p) + ip · kn]−1

n∏
i=1

[σ(ki−1, ki)Σ(ki−1)] exp

{
−

n∑
i=0

Σ(ki)(sj − sj+1)

}

×
m−1∏
i=0

[σ(li, li+1)Σ(li)] exp

−
m∑
j=0

Σ(lj)τj

 exp

−i
m∑
j=0

(
q − p

ε

)
· ljτj

 f(lm)

×δ

sn+1 −
m∑
j=0

τj

 .

We define

Jε(z) :=
∫

exp {iq · kn(sn − sn+1)} [−γ(p) + ip · kn]−1

×R̂
(

1
2

(|kn−1|2 − |kn|2, kn−1 − kn
)

exp {−Σ(kn)(sn − sn+1)}

×R̂
(

1
2

(|l1|2 − |l0|2, l1 − l1
)

exp {−Σ(l0)τ0} exp {−iz · l0} dkn.

Mimicking the argument used to obtain (6.37) we conclude that

|Jε(z)| ≤
C

|z|2 + 1
(7.5)

for some constant C > 0. The second moment of R(n,m)
ε (t) equals

E[R(n,m)
ε (t)]2 =

−1
ε

∑
σ,σ′=±1

σσ′
∫ t

0
dsn+1

∫
Dn(t,sn+1)

∫ +∞

0
. . .

∫ +∞

0

∫
G(p, q,k, l, τ, s)

×G(p′, q′,k′, l′, τ ′, s′)dpdp′dτ0,mdτ
′
0,mdl1,mdl

′
1,mdk0,ndk′0,ndqdq

′.

This leads to the following estimate

E[R(n,m)
ε (t)]2 ≤ Cn+m

ε

∫ t

0
dsn+1

∫
Dn(t,sn+1)

ds1,n

×


∫
sn+1≥

Pm
i=1 τi,τi≥0

[
1 +

(
sn+1 −

∑m
i=1 τi

ε

)2
]−1

dτ1,m


2

.

Changing variables τm := τm/ε we conclude that{
E[R(n,m)

ε (t)]2
}1/2

≤ Cn+mε1/2

m!n!
,

which in turn implies (7.4) �
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From (7.1) we obtain that

I(0)
ε (t) :=

i

ε1/2

∑
σ=±1

σ

∫ t

0

∫
eiq·k(t−s)θ̂∗(q, k)

×[−γ(p) + ip · k]−1 exp
{
−is

(
q − p

ε

)
·Kσ

}
e−Σ(Kσ)sf(Kσ)B̂(ds, dp)dqdk,

I(n)
ε (t) =

i

ε1/2

∑
σ=±1

σ

∫ t

0

∫
∆n(t,s)

∫
θ̂∗(q, k0) exp

i
n∑
j=0

q · kj(sj − sj+1)


×[−γ(p) + ip · kn]−1

n∏
i=1

[σ(ki−1, ki)Σ(ki−1)] exp

{
−

n∑
i=0

Σ(ki)(sj − sj+1)

}
× exp

{
−is

(
q − p

ε

)
·Kn,σ

}
e−Σ(Kn,σ)sf(Kn,σ)ds(n)B̂(ds, dp)dk0,ndq.

The following result holds.

Lemma 7.2 There exists a sequence of non-negative numbers {Cn, n ≥ 0} such that

E[I(n)
ε (t)]2 ≤ C2

n, ∀ ε ∈ (0, 1], n ≥ 0,

and
∑

n≥0Cn < +∞.

Proof. We have

E|I(n)
ε (t)|2 ≤ C

ε

∑
σ=±1

∫ t

0

∫ ∣∣∣∣∣∣
∫

∆n(t,s)

∫
θ̂∗(q, k0) exp

i
n−1∑
j=0

q · kj(sj − sj+1)

 (7.6)

×
n−1∏
i=1

[σ(ki−1, ki)Σ(ki−1)] exp

{
−
n−1∑
i=0

Σ(ki)(sj − sj+1)

}

× J
(
s
(
q − p

ε

))
ds(n)dk0,n−1dq

∣∣∣∣∣
2

ν(dp)ds,

where

J (z) :=
∫ ∫

[−γ(p) + ip · kn]−1 exp {−[Σ(kn) + iq · kn](sn − s)}

×R̂
(

1
2

(|kn−1|2 − |kn|2), kn−1 − kn
)

exp {−iz ·Kn,σ} e−Σ(Kn,σ)sf(Kn,σ)dkn

Since J(z) ≤ C(1 + |z|2)−1 for some constant C > 0 we can estimate the right hand side of (7.6) by

Cn

n!ε

∫ t

0

∫ [∫
|θ̂(q, k)|[1 + |s(p/ε− q)|2]−1dqdk

]2

ν(dp)ds,

which after an application of Jensen’s inequality and a subsequent change of variables s′ := s|p−εq|/ε
can be estimated by

Cn‖θ‖1,1
n!

∫ t|p−εq|/ε

0

∫ ∫
|θ̂(q, k)|(1 + s2)−2|p− εq|−1dqdkν(dp)ds ≤

Cn1 ‖θ‖21,1
n!
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for some C1 > 0, cf (2.64). �
Let Bε(t, dp) := ε1/2B(t/ε, dp) and

Xε(t, k) := i
∑
σ=±1

σ

∫ t/ε

0

∫
[−γ(p) + ip · k]−1 exp {isp ·Kσ} f(Kσ)B̂ε(ds, dp).

Define also

Ĩ(0)
ε (t) :=

∫
eiq·ktθ∗(q, k)Xε(t, k)dqdk,

Ĩ(n)
ε (t) =

∫
∆n(t,0)

∫
θ∗(q, k0) exp

i
n∑
j=0

q · kj(sj − sj+1)


×

n∏
i=1

[σ(ki−1, ki)Σ(ki−1)] exp

{
−

n∑
i=0

Σ(ki)(sj − sj+1)

}
Xε(t, kn)dk0,ndq.

Using an argument very similar to the one used to demonstrate Lemma 7.2 we can also conclude
that there exists a sequence of non-negative numbers {Cn, n ≥ 0} such that

E[Ĩ(n)
ε (t)]2 ≤ C2

n, ∀ ε ∈ (0, 1], n ≥ 0 (7.7)

and
∑

n≥0Cn < +∞. Moreover, we also have.

Lemma 7.3

lim
ε→0+

E[I(n)
ε (t)− Ĩ(n)

ε (t)]2 = 0, ∀n ≥ 0. (7.8)

Proof. Define

L(k, l, %) := exp {% {−Σ(l) + i[ξ − q · (l + k)]}} .

A simple calculation shows that

E[I(n)
ε (t)− Ĩ(n)

ε (t)]2 ≤ 1
ε

∑
σ=±1

∫ t

0

∫ ∣∣∣∣∫ +∞

0
. . .

∫ +∞

0

∫
[J (kn,Kn,σ, s)− 1] (7.9)

× exp

{
−iξ(t−

n∑
i=0

τi)

}
θ̂∗(q, k0) exp

{
n∑
i=0

[−Σ(ki) + iq · ki]τi

}
[−γ(p) + ip · kn]−1

×
n−1∏
i=1

[σ(ki−1, ki)Σ(ki−1)] exp
{
−is
ε
p ·Kn,σ

}
f(Kn,σ)dτ0,ndk0,ndqdξ

∣∣∣∣∣
2

dsν(dp).

Writing

L(k, l, s)− 1 = {−Σ(l) + i[ξ − q · (l + k)]}
∫ s

0
exp {% {−Σ(l) + i[ξ − q · (l + k)]}} d%.

and changing variables s := s/ε we can rewrite the right hand side of (7.9) as being equal to

ε
∑
σ=±1

∫ t/ε

0

∫ ∣∣∣∣∫ +∞

0
. . .

∫ +∞

0

∫ s

0

∫
(L1 + L2 + L3)J (ps) (7.10)

× exp

{
−iξ(t−

n∑
i=0

τi − ε%)

}
θ̂∗(q, k0) exp

{
n−1∑
i=0

[−Σ(ki) + iq · ki]τi

}

×
n−1∏
i=1

[σ(ki−1, ki)Σ(ki−1)] dτ0,ndk0,n−1dqdξd%

∣∣∣∣∣
2

dsν(dp),
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where

J (z) :=
∫

exp {[−Σ(kn) + iq · kn]τn} [−γ(p) + ip · kn]−1 exp {−iε%q · (kn +Kn,σ)}

×R̂
(

1
2

(|kn−1|2 − |kn|2), kn−1 − kn
)

exp {−iz ·Kn,σ} e−εΣ(Kn,σ)%f(Kn,σ)dkn

and L1 := −Σ(l), L2 := iξ, L3 := −iq · (l+k). As in (6.37) we can argue that |J (z)| ≤ C(1 + |z|2)−1

uniformly in all parameters, i.e. p, ε, kn−1. From that we obtain that the expression in (7.10) is of
order of magnitude O(ε) and (7.8) follows. �

Let

Ĩ(0)(t) :=
∫

eiq·ktθ∗(q, k)X(k)dqdk,

Ĩ(n)(t) =
∫

∆n(t,0)

∫
θ∗(q, k0) exp

i
n∑
j=0

q · kj(sj − sj+1)


×

n∏
i=1

[σ(ki−1, ki)Σ(ki−1)] exp

{
−

n∑
i=0

Σ(ki)(sj − sj+1)

}
X(kn)dk0,ndq,

where X(k) is given by (2.58), and
In light of (7.7) to finish the proof of convergence in law of 〈Z̄ε(t), θ〉 it suffices only to show that

lim
ε→0+

E[Ĩ(n)(t)− Ĩ(n)
ε (t)]2 = 0 (7.11)

for each n ≥ 0. Let

gn(kn) :=
∫

∆n(t,0)

∫
θ̂∗(q, k0) exp

i
n∑
j=0

q · kj(sj − sj+1)


×

n∏
i=1

[σ(ki−1, ki)Σ(ki−1)] exp

{
−

n∑
i=0

Σ(ki)(sj − sj+1)

}
ds(n)dk0,n−1

A direct calculation shows that the expression under the limit can be estimated by

C
∑

σ,σ′=±1

∫
ν(dp)

∣∣∣∣∣
∫ +∞

t/ε
eis(σ−σ

′)|p|2/2gσ,σ′(ps, p)ds

∣∣∣∣∣ ,
where

gσ,σ′(q, p) :=
∫

R2d

eiq·(k−k
′)gn(kn)gn(k′n)

×
[
(γ(p)− ip · kn)(γ(p) + ip · k′n)

]−1
f(Kn,σ)f(K ′n,σ′)dkndk

′
n.

Expression in (7.12) tends to 0, as ε→ 0+. This ends the proof of convergence in law of 〈Z̄ε(t), θ〉.
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