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Abstract

We establish the Harnack inequality for advection-diffusion equations with divergence-
free drifts of low regularity. While our previous work [IKR] considered the elliptic case, here
we treat the more challenging parabolic problem by adapting the classical Moser technique
to parabolic equations with drifts with regularity lower than the scale-invariant spaces.

1 Introduction

In this paper, we address the qualitative properties of solutions to the parabolic equation

ut −∆u+ b · ∇u = 0 in Ω, (1.1)

where b is a given divergence free vector field of low regularity, and Ω is a space-time domain. The

study of such equations with non-smooth drifts b(x, t) is motivated by the need to understand

the qualitative and quantitative properties of nonlinear partial differential equations, where the

drift depends on the solution u and its first derivatives and for which we often do not have a priori

bounds available except in some very low regularity spaces. Advection-diffusion equations of the

form (1.1) often arise in applications with the additional divergence-free condition div b = 0, in

particular, in problems involving incompressible fluids. Several important recent papers have

addressed regularity of the solutions of the linear advection-diffusion equations with very little

smoothness assumptions on the divergence free drift [CV1, CV2, FV, KNSS, NU, SSSZ, Z]. Here,

we study this problem for the parabolic equation (1.1) with a divergence-free “supercritical”

drift b. Criticality here referes to the following property: the usual parabolic rescaling x→ λx,

t → λ2t leaves the norm of the drift term in the equation invariant in a space b ∈ LqtL
p
x if

2/q + n/p = 1. Accordingly, we say that the drift is critical if this relation holds, is subcritical

if 2/q + n/p < 1 and is supercritical if 2/q + n/p > 1.
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Our main result is the Harnack-type inequality for parabolic advection-diffusion equations

with “supercritical” drifts. We use the notation

Q∗R(x0, t0) = {(x, t) ∈ Rn+1 : |x− x0| < R, t0 < t < t0 +R2} (1.2)

for the parabolic cylinder centered at the bottom and

QR(x0, t0) = {(x, t) ∈ Rn+1 : |x− x0| < R, t0 −R2 < t < t0} (1.3)

for the parabolic cylinder centered at the top, while we denote QR = QR(0, 0).

Theorem 1.1. Let u be a nonnegative Lipschitz solution to the parabolic equation

ut −∆u+ b · ∇u = 0 in Ω, (1.4)

that is, ∫
Ω

(∂tu)ϕ+

∫
Ω

(∂ju)(∂jϕ) +

∫
Ω
bj(∂ju)ϕ = 0 (1.5)

for any Lipschitz function ϕ ≥ 0 in Ω and ϕ = 0 in Ωc. Assume that b ∈ Lq̄(Ω)∩L∞L2(Ω) with

n/2 + 1 < q̄ ≤ n+ 2 and div b = 0 in the sense of distributions. Then for any Q2R ⊂ Ω,

sup
QR/2(0,−3R2)

u ≤
(
C + C(R1−(n+2)/q̄‖b‖Lq̄)1/(2−(n+2)/q̄)

)C(n)/p0

inf
QR

u, (1.6)

where p0 = 1/(CMC
R ) and MR = 1 + (R1−n/2‖b‖L∞L2)2 +R1−(n+2)/q̄‖b‖Lq̄ .

Here, and elsewhere in this paper, the symbol C denotes a large constant which depends

on the parameters q̄ and n, and on the domain Ω ⊂ Rn+1. Also, we denote the anisotropic

Lebesque spaces by LpLq(Ω) = LptL
q
x(Ω), and in the case when p = q, by Lq(Ω) = Lqx,t(Ω).

The qualitative properties of solutions to the equation (1.1) have been extensively studied

in the past. In particular, Harnack’s inequality for the second order parabolic equation

ut − ∂i(aij(x, t)∂ju) = 0

in the self-adjoint form, with measurable strongly elliptic coefficients aij was obtained in the

seminal work of Moser [M] for subctricical drifts and no lower order terms. In [L], Liebermann

established the Harnack inequality in the case of non-zero lower-order coefficients, when the drift

belongs to a subcritical space.

Recently, Nazarov and Ural’tseva proved in [NU] that the assumptions on the divergence free

drift b can be significantly relaxed to allow it to lie in the scale invariant (critical) Morrey spaces

M
n/q+2/l−1
l,q for all q and l satisfying 1 ≤ n/q + 2/l < 2. Seregin et al. (c.f. [SSSZ]) established

the Harnack inequality when b belongs to L∞(BMO−1), which is also a critical (scale-invariant)

space. In our previous paper [IKR], we obtained a Harnack inequality for elliptic equations with

supercritical divergence-free drifts. The purpose of the present paper is to relax the assumptions

2



on the drift in the parabolic case to lie in a supercritical space. Note that the approach from

[IKR] does not apply here and the proof in the parabolic case is different.

The paper is organized as follows. In Section 2, we establish the local boundedness of

nonnegative Lipschitz subsolutions to (1.1) by using Moser’s iteration. This result of independent

interest was previously obtained in [NU]. However, the bound (2.2) with an explicit dependence

on the parameters is needed for establishing the validity of Theorem 1.1, thus we provide our

proof here for completeness. The rest of the paper, Section 3, is devoted to the lower bound of

the infimum of Lipschitz supersolutions to (1.1), stated in Lemma 3.1. We proceed by deriving

consecutive estimates on the nonnegative supersolution w = log+(u/K), where the constant K

is determined in the initial step (c.f. Lemma 3.2) and depends on the values of the supersolution

u to (1.1). Here, we follow the approach of Liebermann [L]. We emphasize that this initial step

requires the additional assumption on the drift b ∈ L∞L2(Ω) which was not needed in the elliptic

case (see [IKR]). In Lemma 3.3, we establish an estimate which allows us to bootstrap the initial

bounds on w from Lemma 3.2 to higher Lσ-norms for any σ ∈ [1, (n+ 2)/n). Using Lemma 3.3,

we also obtain a bound on ‖∇w‖L2 in Subsection 3.3, which is essential for estimating higher

norms. Then, the aforementioned estimates on all the higher norms are deduced by using Moser’s

iteration technique (see Subsection 3.4). The lower bound on the infimum then follows from the

auxiliary assertion in Lemma 3.4. Our main result is a consequence of Lemmas 2.1 and 3.1.

Acknowledgments. I.K. was supported in part by the NSF grant DMS-1009769, L.R. was

supported in part by the NSF grant DMS-0908507, and both M.I and L.R. were supported in

part by NSF FRG grant DMS-115893.

2 Local boundedness

In this section, we show that any nonnegative Lipschitz subsolution of (1.1) is locally bounded

when the divergence free drift belongs to the anisotropic Lebesgue spaces LlLq̄(Ω) for all l and

q̄ satisfying 1 ≤ 2/l + n/q̄ < 2.

Lemma 2.1. Assume that u is a nonnegative Lipschitz subsolution to the equation

ut −∆u+ b · ∇u = 0 (2.1)

with b ∈ LlLq̄(Ω) for 1 ≤ 2/l + n/q̄ < 2 and div b ≤ 0 in the sense of distributions. Then for

any QR ⊂ Ω, p > 0, and 0 < θ < τ < 1

sup
QθR

u ≤ C
(

1 +
(
R1−2/l−n/q̄‖b‖Ll(Lq̄(Ω))

)1/(2−2/l−n/q̄)
)(n+2)/p

R−(n+2)/p‖u‖Lp(QτR), (2.2)

where C = C(n, p, l, q̄, θ, τ) is a positive constant.

Proof of Lemma 2.1. Let u be a nonnegative Lipschitz subsolution of (2.1) in Ω, that is,∫
Ω

(∂tu)ϕ+

∫
Ω

(∂ju)(∂jϕ) +

∫
Ω
bj(∂ju)ϕ ≤ 0 (2.3)
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for any Lipschitz function ϕ ≥ 0 in Ω and ϕ = 0 in Ωc.

We assume without loss of generality that R = 1. We will use in (2.3) test functions of the

form

ϕ =

(
β

2
+ 1

)
uβ+1η2γχ{t≤T},

with a Lipschitz cut-off function η in Qτ , such that 0 ≤ η ≤ 1, and the constants β > 0 and

γ > 0 to be set later – we will let β → +∞ while γ will remain fixed. This gives, for T ∈ (−τ2, 0)(
β

2
+ 1

)∫
Qτ

(∂tu)(uβ+1)η2γχ{t≤T} +

(
β

2
+ 1

)∫
Qτ

(∂ju)[∂j(u
β+1)]η2γχ{t≤T} (2.4)

+

(
β

2
+ 1

)∫
Qτ

uβ+1[∂ju][∂j(η
2γ)]χ{t≤T} +

(
β

2
+ 1

)∫
Qτ

bju
β+1[∂ju]η2γχ{t≤T} ≤ 0.

Set w = uβ/2+1, so that

∂jw =

(
β

2
+ 1

)
uβ/2∂ju.

Using (2.4), we get, integrating the first term by parts in time:

1

2

∫
Bτ

w2η2γ
∣∣∣
t=T

+
β + 1

β/2 + 1

∫
Qτ

|∇w|2η2γχ{t≤T} ≤ −2γ

∫
Qτ

(∂jw)wη2γ−1(∂jη)χ{t≤T} (2.5)

−
∫
Qτ

bj(∂jw)wη2γχ{t≤T} + γ

∫
Qτ

w2η2γ−1(∂tη)χ{t≤T}.

Here, we have utilized the fact that η(x,−τ2) = 0. For the first term in the right side of (2.5)

we have

−2γ

∫
Qτ

(∂jw)wη2γ−1(∂jη)χ{t≤T} = γ

∫
Qτ

w2
(
η2γ−1∆η + (2γ − 1)η2γ−2|∇η|2

)
χ{t≤T}, (2.6)

while for the second term:

−
∫
Qτ

bj(∂jw)wη2γχ{t≤T} =
1

2

∫
Qτ

(∂jbj)w
2η2γχ{t≤T} + γ

∫
Qτ

bjw
2η2γ−1(∂jη)χ{t≤T} (2.7)

≤ γ
∫
Qτ

bjw
2η2γ−1(∂jη)χ{t≤T},

since div b ≤ 0.

Next, let γ0 = 2/l + n/q̄. Then, by assumption, we have γ0 ∈ [1, 2). We also choose

γ = 1/(2− γ0), so that γγ0 = 2γ − 1. By Hölder’s inequality we have the following estimate for

the right side in (2.7):∫
Qτ

bjw
2η2γ−1(∂jη)χ{t≤T} ≤

∫
Qτ

|bj ||wηγ |γ0 |w|2−γ0 |∂jη|χ{t≤T} (2.8)

≤ ‖b‖LltLq̄x‖wη
γχt≤T ‖γ0

LstL
r
x
‖w|∇η|1/(2−γ0)χt≤T ‖2−γ0

L2
t,x
.
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Here s and r are determined by
1

q̄
+
γ0

r
+

2− γ0

2
= 1,

and
1

l
+
γ0

s
+

2− γ0

2
= 1.

It is easy to verify that 2/s + n/r = n/2 – this is how γ0 was chosen. Now, Young’s and the

interpolation inequality

‖f‖LstLrx ≤ C‖f‖
1−α
L∞t L

2
x
‖∇f‖αL2

t,x
(2.9)

with 2/s+ n/r = n/2 and α = n/2− n/r, applied to the right side of (2.8), imply∫
Qτ

bjw
2η2γ−1(∂jη)χ{t≤T} ≤ ε‖wηγχt≤T ‖2LstLrx + C‖b‖2/(2−γ0)

LltL
q̄
x
‖w|∇η|1/(2−γ0)χt≤T ‖2L2

t,x
(2.10)

≤ 1

2

(
‖wηγχt≤T ‖2L∞t L2

x
+ ‖∇(wηγ)χt≤T ‖2L2

t,x

)
+ C‖b‖2/(2−γ0)

LltL
q̄
x
‖w|∇η|1/(2−γ0)χt≤T ‖2L2

t,x
.

By (2.5), (2.6), and (2.10), we obtain, for any −τ2 < T < 0:∫
Bτ

uβ+2(T )η2γ(T ) +

∫
Qτ

|∇(uβ/2+1ηγ)|2χ{t≤T} (2.11)

≤ C
∫
Qτ

uβ+2η2γ−1|∆η|χ{t≤T} + C

∫
Qτ

uβ+2η2γ−2|∇η|2χ{t≤T} + C

∫
Qτ

uβ+2η2γ−1|∂tη|χ{t≤T}

+ C‖b‖2/(2−γ0)

LltL
q̄
x
‖uβ/2+1|∇η|1/(2−γ0)χt≤T ‖2L2

t,x
+

1

2
‖uβ/2+1ηγχt≤T ‖2L∞t L2

x
.

As this inequality holds for all −τ2 < T < 0, we may take the supremum over T to eliminate

the L∞t L
2
x-norm in the right side. Namely, from (2.11), we have

sup
T∈[−τ2,0]

∫
Bτ

uβ+2(T )η2γ(T ) ≤ C
∫
Qτ

uβ+2η2γ−1|∆η|+ C

∫
Qτ

uβ+2η2γ−2|∇η|2 + C

∫
Qτ

uβ+2η2γ−1|∂tη|

+ C‖b‖2/(2−γ0)

LltL
q̄
x
‖uβ/2+1|∇η|1/(2−γ0)‖2L2

t,x
+

1

2
‖uβ/2+1ηγ‖2L∞t L2

x
(2.12)

and∫
Qτ

|∇(uβ/2+1ηγ)|2 ≤ C
∫
Qτ

uβ+2η2γ−1|∆η|+ C

∫
Qτ

uβ+2η2γ−2|∇η|2 + C

∫
Qτ

uβ+2η2γ−1|∂tη|

+ C‖b‖2/(2−γ0)

LltL
q̄
x
‖uβ/2+1|∇η|1/(2−γ0)‖2L2

t,x
+

1

2
‖uβ/2+1ηγ‖2L∞t L2

x
. (2.13)

Adding the last two estimates and absorbing the L∞t L
2
x-norm, we obtain

sup
−τ2≤T≤0

∫
Bτ

uβ+2(T )η2γ(T ) +

∫
Qτ

|∇(uβ/2+1ηγ)|2 (2.14)

≤ C
∫
Qτ

uβ+2η2γ−1|∆η|+ C

∫
Qτ

uβ+2η2γ−2|∇η|2 + C

∫
Qτ

uβ+2η2γ−1|∂tη|

+ C‖b‖2/(2−γ0)

LltL
q̄
x
‖uβ/2+1|∇η|1/(2−γ0)‖2L2

t,x
,
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with an increased constant C > 0. By the interpolation inequality (2.9), used on the left side of

(2.14) with r = s = 2(n + 2)/n, and α = n/(n + 2), used together with Young’s inequality, we

get the following estimate:

‖uβ/2+1ηγ‖L2χ(Qτ ) ≤ C
(∫

Qτ

uβ+2η2γ−1|∆η|
)1/2

+ C

(∫
Qτ

uβ+2η2γ−2|∇η|2
)1/2

(2.15)

+ C

(∫
Qτ

uβ+2η2γ−1|∂tη|
)1/2

+ C‖b‖1/(2−γ0)

LlLq̄
‖uβ/2+1|∇η|1/(2−γ0)‖L2 ,

with χ = (n+ 2)/n.

We will now use (2.15) iteratively. We take a decreasing sequence ri > 0, and at each step

choose the cut-off function η ∈ C∞0 (Ω) such that

η ≡ 1 in Qri+1 , and η ≡ 0 in Qcri ,

and

|∇η| ≤ C

ri − ri+1
, |∆η| ≤ C

(ri − ri+1)2
, |∂tη| ≤

C

(ri − ri+1)2
.

Then (2.15) gives

‖uβ/2+1‖L2χ(Qri+1 ) ≤
C

ri − ri+1
‖uβ/2+1‖L2(Qri )

+
C‖b‖1/(2−γ0)

LlLq̄(Qri )

(ri − ri+1)1/(2−γ0)
‖uβ/2+1‖L2(Qri )

. (2.16)

Let us choose βi in (2.16) so that χi = βi/2 + 1. In addition, we set

ri = θ +
(τ − θ)

2i
for i = 0, 1, 2, . . . ,

so that ri − ri+1 = (τ − θ)/2i+1. Thus, we obtain

‖u‖
L2χi+1 (Qri+1 )

≤
(C2i+1

τ − θ
+
C2(i+1)/(2−γ0)

(τ − θ)1/(2−γ0)
‖b‖1/(2−γ0)

LlLq̄(Qri )

)1/χi

‖u‖
L2χi (Qri )

(2.17)

≤ C1/χi2(i+1)/(γ1χi)
(

(τ − θ)−1 +
(

(τ − θ)−1‖b‖LlLq̄(Qri )
)1/(2−γ0) )1/χi

‖u‖
L2χi (Qri )

,

where γ1 = min{2 − γ0, 1}. By iteration, starting from i = 0, we conclude that the estimate

(2.2) holds for p ≥ 2.

Now, let p ∈ (0, 2). The previous argument has shown that

sup
Qθ

u ≤ C
(

(τ − θ)−1 +
(

(τ − θ)−1‖b‖LlLq̄(Qτ )

)1/(2−γ0)
)(n+2)/2

‖u‖L2(Bτ ) (2.18)

≤ C
(

(τ − θ)−1 +
(

(τ − θ)−1‖b‖LlLq̄(Qτ )

)1/(2−γ0)
)(n+2)/2

‖u‖1−p/2L∞(Qτ )‖u‖
p/2
Lp(Qτ ),
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which implies

sup
Qθ

u ≤ 1

2
‖u‖L∞(Qτ ) + C

(
(τ − θ)−1 +

(
(τ − θ)−1‖b‖LlLq̄(Qτ )

)1/(2−γ0)
)(n+2)/p

‖u‖Lp(Qτ ).

(2.19)

Now, the iteration argument of [HL, Lemma 4.3] can be applied to complete the proof of

Lemma 2.1 for 0 < p < 2. �

3 The lower bound

The goal of this section is to establish a lower bound of the infimum of a Lipschitz supersolution

to (2.1), given in Lemma 3.1 below. Then, from Lemmas 2.1 and 3.1, we obtain the Harnack

inequality

sup
QR/2(0,−3R2)

u ≤
(
C + C(R1−(n+2)/q̄‖b‖Lq̄)1/(2−(n+2)/q̄)

)C(n)/p0

inf
QR

u (3.1)

for any Lipschitz solutions u to (2.1), where p0 = 1/(CMC
R ) and

MR = 1 + (R1−n/2‖b‖L∞L2)2 +R1−(n+2)/q̄‖b‖Lq̄ . (3.2)

Recall (see (1.2) and (1.3)) that we use the notation Q∗R(x0, t0) for the cylinder centered at

the bottom and QR(x0, t0) for the cylinder centered at the top, and QR = QR(0, 0).

Lemma 3.1. Assume that u is a nonnegative Lipschitz supersolution to (2.1), and b ∈ Lq̄(Ω)∩
L∞L2(Ω) with n/2 + 1 < q̄ ≤ n+ 2 and div b = 0 in the sense of distributions. Then there exists

a small positive number p0 = p0(n, q̄, R,MR) such that(
CR−n−2

∫
Q∗R(0,−4R2)

up0

)1/p0

≤ exp
(

1 + (R1−(n+2)/q̄‖b‖Lq̄)1/(2−(n+2)/q̄)
)C(n)

inf
QR

u,

(3.3)

with MR given by (3.2).

We establish the proof of Lemma 3.1 in several steps, successively improving the estimate.

We will primarily work with the function

v = log(u/K),

with a constant K to be determined. If u is a supersolution to (2.1), then v is also a supersolution

to (2.1). More precisely, v satisfies the inequality

|∇v|2 ≤ vt −∆v + b · ∇v, in Ω. (3.4)

We will obtain various bounds on w = v+ below.
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3.1 A bound on

∫
wα for α ∈ (0, 1).

We begin with the following initial estimate on w. Note that the constant K we choose in (3.5)

below does depend on the solution u(x, t).

Lemma 3.2. Let η(x) = C(1− |x|2/(9R2))+ be normalized so that

∫
Rn
η2(x) dx = 1, and set

K = exp

(∫
B3R

η2(x) log u(x, 4R2) dx

)
. (3.5)

Then for α ∈ (0, 1) we have ∫
Q∗2R

wα dx dt ≤ CM0R
n+2 (3.6)

with M0 = 1 + (R1−n/2‖b‖L∞L2)2.

Proof of Lemma 3.2. Again, without loss of generality, we assume that R = 1. We multiply

(3.4) by the cut-off η2(x) and integrate over B3× (t1, t2) with 0 ≤ t1 < t2 ≤ 4 in order to obtain∫ t2

t1

∫
B3

|∇v(x, t)|2η2(x) dx dt ≤
∫
B3

v(x, t2)η2(x) dx−
∫
B3

v(x, t1)η2(x) dx (3.7)

+ 2

∫ t2

t1

∫
B3

(∂jv(x, t))η(x)(∂jη(x)) dx dt+

∫ t2

t1

∫
B3

bj(x, t)(∂jv(x, t))η2(x) dx dt.

After rearranging the terms and using the Cauchy-Schwarz inequality, we have∫
B3

v(x, t1)η2(x) dx−
∫
B3

v(x, t2)η2(x) dx+

∫ t2

t1

∫
B3

|∇v(x, t)|2η2(x) dx dt (3.8)

≤ 2

∫ t2

t1

∫
B3

(∂jv(x, t))η(x)(∂jη(x)) dx dt+

∫ t2

t1

∫
B3

bj(x, t)(∂jv(x, t))η2(x) dx dt

≤ 1

2

∫ t2

t1

∫
B3

|∇v(x, t)|2η2(x) dx dt+ C‖∇η(x)‖2L2(B3×(t1,t2)))

+ C‖b‖2L∞t L2
x(B3×(t1,t2))‖η‖

2
L2
tL
∞
x (B3×(t1,t2)).

Absorbing the first term on the far right, (3.8) leads to∫
B3

v(x, t1)η2(x) dx−
∫
B3

v(x, t2)η2(x) dx+
1

2

∫ t2

t1

∫
B3

|∇v(x, t)|2η2(x) dx dt (3.9)

≤ C
(

1 + ‖b‖2L∞L2(Ω)

)
(t2 − t1),

since 0 ≤ η ≤ 1. Now, we set M0 = 1 + ‖b‖2L∞L2(Ω). Using weighted Poincaré’s inequality

(c.f. [Lieberman, Lemma 6.12]) in the left side of (3.9), we get∫
B3

v(x, t1)η2(x) dx−
∫
B3

v(x, t2)η2(x) dx (3.10)

+
1

C

∫ t2

t1

∫
B3

∣∣∣∣v(x, t)−
∫
B3

v(x, t)η2(x) dx

∣∣∣∣2 η2(x) dx dt ≤ CM0(t2 − t1).
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For the rest of the proof we may proceed as in the proof of Lemma 6.21 from Lieberman.

Consider the function

p(x, t) = v(x, t)− CM0t,

defined as a translation of v in time by the factor coming from the right side of (3.10). Note

that the constant K in (3.5) was chosen so that∫
B3

v(x, 4)η2(x) dx = 0, (3.11)

and (3.10) and (3.11) imply that∫
B3

v(x, t)η2(x) dx ≤ CM0(4− t), for all 0 ≤ t ≤ 4. (3.12)

As η(x) is uniformly positive for |x| ≤ 2, we deduce the upper bound

|{(x, t) ∈ Q∗2 : p(x, t) > µ}| ≤ |Q
∗
2|

Cµ
, (3.13)

on the size of the level sets of p that holds for any µ ≥ 1. This leads to the bound∫
{(x,t)∈Q∗2 : p(x,t)>1}

pα dx dt = α

∫ ∞
1

µα−1|{(x, t) ∈ Q∗2 : p(x, t) > µ}| dµ (3.14)

≤ α|Q∗2|
C

∫ ∞
1

µα−2 dµ = C|Q∗2|

since α ∈ (0, 1). We conclude the proof of (3.6) by noticing that the function w satisfies

wα ≤ Cpα + CMα
0

if p ≥ 1 and wα ≤ C + CMα
0 if p < 1. �

3.2 Bound on

∫
wσ for any σ ∈ [1, (n+ 2)/n).

From now on, without loss of generality, we assume that R = 1. As before, we will work with

w = log+(u/K) with a constant K defined as in (3.5). The function w = v+ is a supersolution

to the equation for v, that is,

|∇w|2 ≤ wt −∆w + b · ∇w, (3.15)

since it is a maximum of two supersolutions, v1 = v(x, t) and v2 ≡ 0. We need the follow-

ing bound that will bootstrap bounds for the Lα-norms with α ∈ (0, 1) we have obtained in

Lemma 3.2, to higher norms.
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Lemma 3.3. For any σ ∈ [1, (n+ 2)/n) and any α ∈ (0, 1), we have

‖w‖Lσ(Q∗1) ≤ C(1 + ‖b‖Lq̄)C‖w‖Lα(Q∗2), (3.16)

where C = C(α, σ, n, q̄).

Proof of Lemma 3.3. Let η be a Lipschitz cut-off in Q∗2 with 0 ≤ η ≤ 1 – note that unlike in

the proof of Lemma 3.2 we use a cut-off that also depends on time. We multiply (3.15) by the

function

(w + 1)2βη2γχ{t≥T}

with β ∈ (−1/2, 0), γ > 1 to be determined, and T ∈ (0, 4), and integrate over Q∗2 to obtain

1

2β + 1

∫
B2

(w + 1)2β+1η2γ
∣∣∣
t=T

+

∫
Q∗2

|∇w|2(w + 1)2βη2γχ{t≥T} (3.17)

≤ 2β

∫
Q∗2

|∇w|2(w + 1)2β−1η2γχ{t≥T} + 2γ

∫
Q∗2

(∂jw)(w + 1)2βη2γ−1(∂jη)χ{t≥T}

− 2γ

2β + 1

∫
Q∗2

bj(w + 1)2β+1η2γ−1(∂jη)χ{t≥T} −
2γ

2β + 1

∫
Q∗2

(w + 1)2β+1η2γ−1(∂tη)χ{t≥T}.

Here we have used the condition div b = 0. The first term on the right side is negative since

β ∈ (−1/2, 0), while integration by parts in the second term on the right gives

2γ

∫
(∂jw)(w + 1)2βη2γ−1(∂jη)χ{t≥T} =

2γ

2β + 1

∫
∂j

(
(w + 1)2β+1

)
η2γ−1(∂jη)χ{t≥T} (3.18)

= −2γ(2γ − 1)

2β + 1

∫
(w + 1)2β+1η2γ−2|∇η|2χ{t≥T} −

2γ

2β + 1

∫
(w + 1)2β+1η2γ−1(∆η)χ{t≥T}.

This, together with (3.17) leads to

1

2β + 1

∫
B2

(w + 1)2β+1η2γ
∣∣∣
t=T

+

∫
Q∗2

(w + 1)2β|∇w|2η2γχ{t≥T} (3.19)

≤ − 2γ

2β + 1

∫
Q∗2

bj(w + 1)2β+1η2γ−1(∂jη)χ{t≥T}

− 2γ

2β + 1

∫
Q∗2

(w + 1)2β+1
(
η2γ−1∂tη + (2γ − 1)η2γ−2|∇η|2 + η2γ−1∆η

)
χ{t≥T}.

We may use the inequality

|∇((w + 1)β+1/2ηγ)|2 ≤ 2(β + 1/2)2(w + 1)2β−1|∇w|2η2γ + 2γ2(w + 1)2β+1η2γ−2|∇η|2 (3.20)

in the left side of (3.19). In addition, as w > 0, we have (w+1)2β−1 ≤ (w+1)2β, which altogether

gives ∫
B2

(w + 1)2β+1η2γ |t=T +

∫
Q∗2

|∇((w + 1)β+1/2ηγ)|2χ{t≥T} (3.21)

≤ Cγ
∫
Q∗2

|bj |(w + 1)2β+1η2γ−1|∂jη|χ{t≥T}

+ Cγ2

∫
Q∗2

(w + 1)2β+1
(
η2γ−1|∂tη|+ η2γ−2|∇η|2 + η2γ−1|∆η|

)
χ{t≥T}.
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An application of the interpolation inequality (2.9) with r = s = 2(n+ 2)/n leads to

‖(w + 1)β+1/2ηγ‖2
L2(n+2)/n ≤ C‖(w + 1)β+1/2ηγ‖2L∞L2 + C‖∇((w + 1)β+1/2ηγ)‖2L2 (3.22)

≤ Cγ
∫
Q∗2

|bj |(w + 1)2β+1η2γ−1|∂jη|χ{t≥T}

+ Cγ2

∫
Q∗2

(w + 1)2β+1
(
η2γ−1|∂tη|+ η2γ−2|∇η|2 + η2γ−1|∆η|

)
χ{t≥T}.

Next, we may estimate the drift term in (3.22) with the help of Hölder’s inequality as follows

Cγ

∫
Q∗2

|b|(w + 1)2β+1η2γ−1|∇η| = Cγ

∫
Q∗2

|b|(w + 1)(2β+1)(1−λ)(w + 1)(2β+1)λη2γ−1|∇η| (3.23)

≤ Cγ‖b‖Lq̄‖(w + 1)(2β+1)(1−λ)‖L1/(1−λ)‖(w + 1)(2β+1)λη2γ−1‖L(n+2)/(nλ)‖∇η‖L∞ ,

where
1

q̄
+ 1− λ+

nλ

n+ 2
= 1.

Therefore, λ is given by λ = (n+ 2)/(2q̄) and λ ∈ [1/2, 1), as 1 ≤ (n+ 2)/q̄ < 2 by assumption.

Using Young’s inequality, this leads to

Cγ

∫
Q∗2

|b|(w + 1)2β+1η2γ−1|∇η| ≤Cγ‖b‖Lq̄‖(w + 1)2β+1‖1−λ
L1 ‖(w + 1)2β+1η(2γ−1)/λ‖λ

L
n+2
n
‖∇η‖L∞

≤ 1

2
‖(w + 1)β+1/2η(2γ−1)/(2λ)‖2

L2(n+2)/n + (Cγ‖b‖Lq̄‖∇η‖L∞)1/(1−λ) ‖(w + 1)β+1/2‖2L2 . (3.24)

Setting γ = 1/(2(1− λ)) ≥ 1 so that (2γ − 1)/2λ = γ and using (3.22) and (3.24), we obtain

‖(w + 1)β+ 1
2 ηγ‖2

L
2(n+2)
n

≤ 1

2
‖(w + 1)β+ 1

2 ηγ‖2
L

2(n+2)
n

+ (C‖b‖Lq̄‖∇η‖L∞)2γ ‖(w + 1)β+ 1
2 ‖2L2

+C

∫
Q∗2

(w + 1)2β+1
(
η2γ−1|∂tη|+ η2γ−2|∇η|2 + η2γ−1|∆η|

)
. (3.25)

The first term on the right can be absorbed into the left side:

‖(w + 1)β+ 1
2 ηγ‖2

L
2(n+2)
n (Q∗2)

≤ (C‖b‖Lq̄‖∇η‖L∞)2γ ‖(w + 1)β+ 1
2 ‖2L2

+ C

∫
Q∗2

(w + 1)2β+1
(
η2γ−1|∂tη|+ η2γ−2|∇η|2 + η2γ−1|∆η|

)
. (3.26)

We will now once again use an iteration procedure, applied to a decreasing sequence of

parabolic cylinders Qri with ri+1 < ri. Choosing the cut-off η such that η ≡ 1 in Q∗ri+1
and

η ≡ 0 in (Q∗ri ∪Qri)
c, we have, from (3.26):

‖(w+1)β+ 1
2 ‖2
L

2(n+2)
n (Q∗ri+1

)
≤
(
Cγ‖b‖Lq̄
ri − ri+1

)2γ

‖(w+1)β+ 1
2 ‖2L2(Q∗ri )

+
C

(ri − ri+1)2
‖(w+1)β+ 1

2 ‖2L2(Q∗ri )

11



or equivalently

‖(w + 1)2β+1‖L(n+2)/n(Q∗ri+1
) ≤ C(ri − ri+1)−2γ(‖b‖2γLq̄ + 1)‖(w + 1)2β+1‖L1(Q∗ri )

, (3.27)

since γ ≥ 1. Set χ = (n + 2)/n, pick α ∈ (0, 1), and consider σ ∈ [1, (n + 2)/n). Possibly

increasing σ and decreasing α we may assume that σ = χjα with j ∈ N. We will use (3.27) with

βi =
χiα− 1

2
,

for i = 0, . . . , j so that 2β0 + 1 = α and 2βj + 1 = σ, and ri = 1 + 2−i. Then (3.27) implies the

recursive relation

‖w + 1‖
Lχi+1α(Q∗ri+1

)
≤ C22γ(i+1)/χi(‖b‖2γLq̄ + 1)1/χi‖w + 1‖

Lχiα(Q∗ri )
(3.28)

and a finite number of iteration gives (3.16). �

3.3 An estimate for

∫
|∇w|2

The next step is to obtain bounds on ‖∇w‖L2 . Recall that w satisfies

|∇w|2 ≤ wt −∆w + b · ∇w, (3.29)

Multiplying (3.29) by η2χ{t≥T} and integrating over Q∗2 gives∫
B2

wη2
∣∣∣
t=T

+

∫
Q∗2

|∇w|2η2 ≤ 2

∫
Q∗2

(∂jw)η(∂jη)− 2

∫
Q∗2

bjwη∂jη − 2

∫
Q∗2

wη∂tη, (3.30)

where we used div b = 0. After estimating the right side, we get∫
B2

wη2
∣∣∣
t=T

+

∫
Q∗2

|∇w|2η2 ≤ C‖∇η‖2L2 + C‖b‖Lq̄‖wη‖Lq̄∗‖∇η‖L∞ + C‖ηt‖L∞‖wη‖L1 (3.31)

≤ C(1 + ‖b‖2L∞L2 + ‖b‖Lq̄)C = CMC ,

where M = 1+‖b‖2L∞L2 +‖b‖Lq̄ . In the last inequality, we used Lemmas 3.2 and 3.3 with σ = q̄∗

and σ = 1, respectively, where q̄∗ < (n+ 2)/n, as 1/q̄ + 1/q̄∗ = 1 and (n+ 2)/2 < q̄ ≤ n+ 2.

Note that with the bound (3.31) in hand we may extend the argument in the proof of

Lemma 3.3 to include β ∈ [0, 1/2]. Namely, in that proof we have considered β ∈ (−1/2, 0) and

dropped the first term in the right side of (3.17) simply because β was negative. Now, we can

rely on (3.31) to bound this term in (3.17). The rest of the argument in the proof of Lemma 3.3

did not rely on the negativity of β. As the aforementioned term in (3.17) involves the product

|∇w|2(w + 1)2β−1 while (3.31) estimates |∇w|2, we would still need the restriction β ≤ 1/2.
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3.4 Bound on
∫
w2β+1 for β ≥ 1/2

We now extend the bound for ∫
w2β+1

to β ≥ 1/2. As in the proof of Lemma 3.3, we let η be a Lipschitz cut-off in Q∗2 with 0 ≤ η ≤ 1.

This time, we multiply (3.15) by the function

w2βη2γχ{t≥T},

with β ≥ 1/2 and T ∈ (0, 4), and integrate over Q∗2, using the divergence-free condition on b:

1

2β + 1

∫
B2

w2β+1η2γ
∣∣∣
t=T

+

∫
Q∗2

|w|2β|∇w|2η2γ ≤ 2β

∫
Q∗2

|∇w|2w2β−1η2γ + 2γ

∫
Q∗2

(∂jw)w2βη2γ−1∂jη

− 2γ

2β + 1

∫
Q∗2

bjw
2β+1η2γ−1∂jη −

2γ

2β + 1

∫
Q∗2

w2β+1η2γ−1∂tη. (3.32)

For the first term in the right side of (3.32), we use the inequality

2β|w|2β−1 ≤ 1

2
|w|2β + (4β)2β−1, (3.33)

and for the second:

2γ

∫
(∂jw)w2βη2γ−1∂jη =

2γ

2β + 1

∫
∂j(w

2β+1)η2γ−1∂jη (3.34)

= −2γ(2γ − 1)

2β + 1

∫
w2β+1η2γ−2|∇η|2 − 2γ

2β + 1

∫
w2β+1η2γ−1∆η.

Together with (3.32) this gives

1

2β + 1

∫
B2

w2β+1η2γ
∣∣∣
t=T

+
1

2

∫
Q∗2

|w|2β|∇w|2η2γ ≤ (4β)2β−1

∫
Q∗2

|∇w|2η2γ (3.35)

− 2γ

2β + 1

∫
Q∗2

bjw
2β+1η2γ−1∂jη −

2γ

2β + 1

∫
Q∗2

w2β+1
(
η2γ−1∂tη + (2γ − 1)η2γ−2|∇η|2 + η2γ−1∆η

)
.

Applying the estimate (3.33) for the second term on the left side of (3.35), we obtain

1

2β + 1

∫
B2

w2β+1η2γ |t=T + 2β

∫
Q∗2

|w|2β−1|∇w|2η2γ (3.36)

≤ 2(4β)2β−1

∫
Q∗2

|∇w|2η2γ +
2γ

2β + 1

∫
Q∗2

|bj |w2β+1η2γ−1|∂jη|

+
2γ

2β + 1

∫
Q∗2

w2β+1
(
η2γ−1|∂tη|+ (2γ − 1)η2γ−2|∇η|2 + η2γ−1|∆η|

)
.
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Next, we multiply (3.36) by (2β + 1) and use the inequality

|∇(|w|β+1/2ηγ)|2 ≤ 2(β + 1/2)2|w|2β−1|∇w|2η2γ + 2γ2|w|2β+1η2γ−2|∇η|2 (3.37)

for the left side to get∫
B2

w2β+1η2γ
∣∣∣
t=T

+

∫
Q∗2

|∇(|w|β+1/2ηγ)|2 ≤ C(4β)2β

∫
Q∗2

|∇w|2η2γ + Cγ

∫
Q∗2

|bj |w2β+1η2γ−1|∂jη|

+ Cγ2

∫
Q∗2

w2β+1
(
η2γ−1|∂tη|+ η2γ−2|∇η|2 + η2γ−1|∆η|

)
. (3.38)

We use the interpolation inequality (2.9) with r = s = 2(n+ 2)/n to write

‖wβ+1/2ηγ‖2
L2(n+2)/n ≤ C‖wβ+1/2ηγ‖2L∞L2 + C‖∇(wβ+1/2ηγ)‖2L2 (3.39)

≤ C(4β)2β

∫
Q∗2

|∇w|2η2γ + Cγ

∫
Q∗2

|bj |w2β+1η2γ−1|∂jη|

+ Cγ2

∫
Q∗2

w2β+1
(
η2γ−1|∂tη|+ η2γ−2|∇η|2 + η2γ−1|∆η|

)
.

First, we note that unlike in the proof of Lemma 3.3 we now have the uniform estimate (3.31)

for the gradient: ∫
Q∗2

|∇w|2 ≤ CMC . (3.40)

Next, we estimate the drift term in (3.39) similarly to what we did in the proof of Lemma 3.3.

Namely, we may write

Cγ

∫
Q∗2

|b|w2β+1η2γ−1|∇η| = Cγ

∫
Q∗2

|b|w(2β+1)(1−λ)w(2β+1)λη2γ−1|∇η| (3.41)

≤ Cγ‖b‖Lq̄‖w(2β+1)(1−λ)‖L1/(1−λ)‖w(2β+1)λη2γ−1‖L(n+2)/(nλ)‖∇η‖L∞ ,

with λ = (n+ 2)/(2q̄) ∈ [1/2, 1). An application of Young’s inequality gives

Cγ

∫
Q∗2

|b|w2β+1η2γ−1|∇η| ≤ Cγ‖b‖Lq̄‖w2β+1‖1−λ
L1 ‖w2β+1η(2γ−1)/λ‖λ

L(n+2)/n‖∇η‖L∞ (3.42)

≤ 1

2
‖wβ+1/2η(2γ−1)/(2λ)‖2

L2(n+2)/n + (Cγ‖b‖Lq̄‖∇η‖L∞)1/(1−λ) ‖wβ+1/2‖2L2 .

As before, choosing γ = 1/(2(1 − λ)), we may absorb the first term in the right side of (3.42)

into the left side of (3.39). Thus, we obtain

‖(wη)β+1/2‖2
L2(n+2)/n ≤ CMC(4β)2β + (Cγ‖b‖Lq̄‖∇η‖L∞)2γ ‖wβ+1/2‖2L2 (3.43)

+ Cγ2

∫
Q∗2

w2β+1
(
η2γ−1|∂tη|+ η2γ−2|∇η|2 + η2γ−1|∆η|

)
.
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We are ready to do the iteration process. We set ri = 1 + 2−i for i = 0, 1, 2, . . . and choose

the cut-off η such that η ≡ 1 in Q∗ri+1
and η ≡ 0 in (Q∗ri ∪ Qri)

c. Then (3.43) gives at each

iteration step:

‖wβ+1/2‖2
L2(n+2)/n(Q∗ri+1

)
≤ CMC(4β)2β +

(
Cγ

ri − ri+1
‖b‖Lq̄

)2γ

‖wβ+1/2‖2L2(Q∗ri )
(3.44)

+
Cγ2

(ri − ri+1)2
‖wβ+1/2‖2L2(Q∗ri )

≤ CMC(4β)2β +

(
Cγ

ri − ri+1

)2γ

(‖b‖2γLq̄ + 1)‖wβ+1/2‖2L2(Q∗ri )
,

since γ ≥ 1. Thus, we have the following relation between consecutive scales:

‖wβ+1/2‖2
L2(n+2)/n(Q∗ri+1

)
≤ CMC

(
Cγ

ri − ri+1

)2γ (
(4β)2β + ‖wβ+1/2‖2L2(Q∗ri )

)
. (3.45)

As in the proof of Lemma 3.3 we will use it with βi = (χi − 1)/2 where χ = (n+ 2)/n but this

time we may allow β (and thus i) to be arbitrarily large. We obtain

‖w‖χ
i

Lχi+1 (Q∗ri+1
)
≤ CMC2γ(i+1)

(
(2χi)χ

i
+ ‖w‖χ

i

Lχi (Q∗ri )

)
≤ CMC2γ(i+1)

(
2χi + ‖w‖

Lχi (Q∗ri )

)χi
,

(3.46)

for i = 0, 1, 2, . . . Iterating the inequality

‖w‖
Lχi+1 (Q∗ri+1

)
≤ (CM)C/χ

i
22γ(i+1)/χi

(
2χi + ‖w‖

Lχi (Q∗ri )

)
, (3.47)

obtained from (3.45) by taking 1/χi power on both sides, we get

‖w‖
Lχi+1 (Q∗ri+1

)
≤ CMC

(
χi+1 + ‖w‖L1(Q∗1)

)
. (3.48)

By Lemma 3.2 and Lemma 3.3, we have

‖w‖L1(Q∗1) ≤ CMC‖w‖Lα(Q∗2) ≤ CMC (3.49)

which together with (3.48) implies

‖w‖
Lχi+1 (Q∗ri+1

)
≤ CMCχi+1. (3.50)

Thus, we may conclude (∫
Q∗1

w2β+1

)1/(2β+1)

≤ CMC(2β + 1) (3.51)

for all β > 0, and ∫
Q∗1

(p0w)2β+1

(2β + 1)!
≤ (Cp0M

Ce)2β+1 ≤ 1

22β+1
(3.52)

15



provided p0 = (2CMCe)−1. The last inequality leads to the estimate∫
Q∗R

( u
K

)p0

≤ CRn+2, (3.53)

where the constant K is defined in (3.5) and

MR = 1 + (R1−n/2‖b‖L∞L2)2 +R1−(n+2)/q̄‖b‖Lq̄ .

We apply Lemma 3.2 and (3.53) to the translated in time cylinder Q∗R(0,−4R2) and obtain∫
Q∗R(0,−4R2)

( u
K

)p0

≤ CRn+2 (3.54)

with K = exp(
∫
B3R

η2(x) log u(x, 0) dx).

If u is a supersolution to (2.1), then log+(K/u) is a subsolution to (2.1). The last ingredient

in the proof of Lemma 3.1 is the following result.

Lemma 3.4. We have

sup
QR

log+

(
K

u

)
≤ C

(
1 + (R1−(n+2)/q̄‖b‖Lq̄)1/(2−(n+2)/q̄)

)C(n)
, (3.55)

where

K = exp

(∫
B3R

η2(x) log u(x, 0) dx

)
. (3.56)

Proof of Lemma 3.4. We apply Lemma 2.1 for the positive subsolution log+(K/u) to (2.1) with

p ∈ (0, 1) to obtain

sup
QR

log+

K

u
≤ C

(
1 + (R1−(n+2)/q̄‖b‖Lq̄)1/(2−(n+2)/q̄)

)(n+2)/p
R−(n+2)/p

∥∥∥∥log+

K

u

∥∥∥∥
Lp(Q2R)

.

(3.57)

Now, let v = log(u/K) with K given by (3.56). We have v = − log(K/u) and log+(K/u) =

log−(u/K). The choice of K implies that∫
B3R

η2(x)v(x, 0) dx = 0.

We may proceed as in the proof of Lemma 3.2 to conclude∥∥∥∥log+

K

u

∥∥∥∥
Lp(Q2R)

≤ CR(n+2)/p, (3.58)

which, combined with (3.57) proves (3.55). �
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Lemma 3.4 is, actually, an upper bound on K, or a lower bound on infQR u:

K ≤ C exp

((
1 + (R1−(n+2)/q̄‖b‖Lq̄)1/(2−(n+2)/q̄)

)C(n)
)

inf
QR

u, (3.59)

which together with (3.53) gives(
CR−n−2

∫
Q∗R(0,−4R2)

up0

)1/p0

≤ K ≤ C exp
(

1 + (R1−(n+2)/q̄‖b‖Lq̄)1/(2−(n+2)/q̄)
)C(n)

inf
QR

u.

(3.60)

Thus, the proof of Lemma 3.1 is complete. �
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