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Abstract

We consider an elliptic equation with a divergence-free drift b. We prove that an inequality
of Harnack type holds under the assumption b ∈ Ln/2+δ ∩L2 where δ > 0. As an application
we provide a one sided Liouville’s theorem provided that b ∈ Ln/2+δ(Rn) ∩ L2(Rn).

1 Introduction

In this paper, we consider elliptic equations of the form

−∆u+ b · ∇u+ au = 0 (1.1)

in a domain Ω ⊂ Rn. Here a(x) is a given function and b(x) is a prescribed divergence free
vector field, that is, div b = 0. The qualitative properties of solutions to elliptic and parabolic
equations in divergence form with low regularity of the coefficients have been studied extensively,
starting with the classical papers of De Giorgi [DG], Nash [N], and Moser [M]. We are mostly
interested in the improved regularity for divergence free drifts b, which arise in fluid dynamics
models (c.f. [BKNR, CV1, FV, K, SSSZ, KNSS, Z]).

As can be easily seen from a simple scaling argument, the natural Lebesgue spaces for
the coefficients in the equation for the local regularity theory to hold are a ∈ Ln/2, b ∈ Ln,
and, indeed, regularity properties of solutions in this case have been known since the work of
Stampaccia [S]. It is well known that a strong divergence free flow may induce better regularity
and decay of solutions of elliptic and parabolic problems by means of improved mixing—see, for
instance [CKRZ] and references therein. It is also known that a divergence free-drift of relatively
low regularity can still lead to regular solutions [CV1, CV2]. The question we study in this paper
is whether the divergence free condition on b allows to relax the regularity assumptions on b
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Let us recall some recent results in this direction. In a recent paper [NU], Nazarov and
Ural’tseva significantly relaxed the classical regularity assumptions for divergence-free b by es-
tablishing the Harnack inequality and the Liouville theorem for weak solutions to (1.1) if b
belongs to a Morrey space Mn/q−1

q with n/2 < q ≤ n, which lies between Ln and BMO−1.
In [FV], Friedlander and Vicol proved the Hölder continuity of weak solutions to drift-diffusion
equations with a drift in BMO−1. In [SSSZ], Seregin et al. established the Liouville theorem
and the Harnack inequality for elliptic and parabolic equations with divergence free drifts b lying
in the scale invariant space BMO−1. All these spaces share the same scaling properties as Ln

and are thus the natural candidates for good regularity theory.
In the present paper, we establish the Harnack inequality and the one-sided Liouville theorem

for Lipschitz generalized solutions to (1.1) when a(x) and b(x) lie in the space Lq(Ω) with
n/2 < q ≤ n, and b is divergence free. Our results also hold for weak solutions provided that
the drift b satisfies certain additional assumptions (c.f. equation (27) in [NU]). More precisely,
we establish a Harnack-type inequality

sup
y∈BR(x)

u(y) ≤ C inf
y∈BR(x)

u(y), (1.2)

for all R > 0 (see Theorem 2.1), and use this estimate to establish the one-sided Liouville
theorem when a = 0 in Theorem 2.3. The constant C in (1.2) depends on the Lq-norms of a and
b, where q > n/2, but not on the solution u. Note that the Ln/2-norm is not scale invariant: if
we set bl(x) = (1/l)b(x/l) then ‖bl‖Ln/2 = ln/2‖b‖Ln/2 . Because of that, one can not expect the
constant C to be independent of R, and, indeed, the constant given explicitly in Theorem 2.1
blows up as R→ 0.

The paper is organized as follows. In Section 2, we state our main results, Theorems 2.1
and 2.3. The proof is based on two auxiliary results, Lemmas 2.4 and 2.5. We first show
(see Lemma 2.4) that weak solutions of (1.1) are locally bounded by employing the classical
Moser iteration technique. Then, in Lemma 2.5, we derive a weak Harnack inequality, the
proof of which is inspired by the proof of Han and Lin [HL, Theorem 4.15] for elliptic equations
without lower-order coefficients. Our main results, Theorems 2.1 and 2.3, are direct consequences
of Lemma 2.4 and 2.5.

Acknowledgment. I.K. was supported in part by the NSF grant DMS-1009769, L.R. was
supported in part by the NSF grant DMS-0908507, and both M.I and L.R. were supported in
part by NSF FRG grant DMS-115893.

2 The main results

Our first result is the Harnack inequality.

Theorem 2.1. (Harnack inequality) Let u be a nonnegative Lipschitz solution to the elliptic
equation (1.1). Assume that a ∈ Lq(Ω), b ∈ Lq̄(Ω) for n/2 < q, q̄ ≤ n and q̄ ≥ 2, and that
div b = 0 in the sense of distributions. Then for any BR ⊂ Ω we have

sup
BR

u ≤ C inf
BR

u. (2.1)
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Here C is a constant depending on n, q, q̄, R, and M1 = 1 + ‖a‖Lq + ‖b‖2L2 + ‖b‖Lq̄ .

Remark 2.2. From the proof we can deduce that

C = C(n, q, q̄)
(
R−1 + (R−1‖a‖Lq)1/(1−n/2q) + (R−1‖b‖Lq̄)1/(1−n/2q̄)

)C(n)R−1M1

, (2.2)

where M1 is as in the statement of Theorem 2.1. �

Theorem 2.1 has the following consequence when Ω = Rn.

Theorem 2.3. (One-sided Liouville’s theorem) Let a(x) ≡ 0 and b(x) as in Theorem 2.1. Then
any nonnegative Lipschitz solution u to the elliptic equation (1.1) in Rn is equal to a constant.

We note that [NU] provides a two-sided Liouville’s theorem under the same assumptions, that
is, the only solutions of (1.1) that are bounded both from above and from below are constants.
However, the one-sided Liouville’s theorem in [NU] requires b to belong to a Morrey space which
is in the same scaling class as Ln.
Proof of Theorem 2.3. Without loss of generality, we may assume that u is a nonnegative Lip-
schitz solution to (1.1) with infRn u = 0. Then for every ε > 0, we have infBR u ≤ ε for any
sufficiently large ball BR. By Theorem 2.1, supBR u ≤ C infBR u ≤ Cε for all sufficiently large
R > 0. Observe that the constant C given explicitly by (2.2) depends on R but remains bounded
as R→∞. Therefore, the assertion is established. �

Theorem 2.1 is an immediate consequence of the following two lemmas that compare supBθR u
and infBθR u to ‖u‖Lp(BτR) with some small p > 0 and 0 < θ < τ < 1.

Lemma 2.4. Assume that u is a nonnegative Lipschitz subsolution to the equation

−∆u+ b · ∇u+ au = 0 (2.3)

with a ∈ Lq(Ω), b ∈ Lq̄(Ω) for n/2 < q, q̄ ≤ n and div b ≤ 0 in the sense of distributions. Then
for any BR ⊂ Ω, p > 0, and 0 < θ < τ < 1

sup
BθR

u ≤ C
(
R−n/p +

(
R−1/(2−n/q)‖a‖1/(2−n/q)Lq(Ω)

)n/p
+
(
R−1/(2−n/q̄)‖b‖1/(2−n/q̄)Lq̄(Ω)

)n/p)
‖u‖Lp(BτR),

(2.4)

where C = C(n, p, q̄, θ, τ) is a positive constant.

Lemma 2.5. Assume that u is a nonnegative Lipschitz supersolution to (1.1) satisfying the
assumptions of Theorem 2.1. Then for any BR ⊂ Ω and 0 < θ < τ < 1 there exists a small
positive number p0 = p0(n, q, q̄, θ, τ, R,M1) such that

inf
BθR

u ≥ C
(∫

BτR

up0

)1/p0

(2.5)

where C = C(n, q, q̄, θ, τ, R,M1) is a positive constant and M1 = 1 + ‖a‖Lq + ‖b‖2L2 + ‖b‖Lq̄ .

The rest of the paper contains the proofs of Lemmas 2.4 and 2.5. Both lemmas are proved
using the Moser iteration, with the general strategy based on the proof of the Harnack inequality
in [HL].
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3 The proof of Lemma 2.4

Let u be a nonnegative Lipschitz subsolution of (2.3) in Ω, that is,∫
Ω

(∂ju)(∂jϕ) +
∫

Ω
bj(∂ju)ϕ+

∫
Ω
auϕ ≤ 0 (3.1)

for any Lipschitz function ϕ ≥ 0 in Ω such that ϕ = 0 in Ωc.
For simplicity of presentation, we assume a = 0. The proof consists of a priori estimates

which can be made rigorous as in [G, HL]. First, we obtain an a priori bound on the Lp1-norm
of u on a smaller ball Br1 , in terms of an Lp2-norm of u on a larger ball BR2 with r1 < r2 but
p1 > p2. Then an iterative procedure is used to bring the gap between r1 and r2 to zero and
simultaneously send p1 to infinity.

Let β ≥ 0 and η(x) be a Lipschitz cut-off in the ball BτR such that 0 ≤ η(x) ≤ 1. We use
(β/2 + 1)uβ+1η2γ as a test function in (3.1) to obtain(
β

2
+ 1
)∫

(∂ju)∂j(uβ+1)η2γ +
(
β

2
+ 1
)∫

uβ+1(∂ju)∂j(η2γ) +
(
β

2
+ 1
)∫

bju
β+1(∂ju)η2γ ≤ 0.

(3.2)

Let w = uβ/2+1 so that ∂jw = (β/2 + 1)uβ/2∂ju. By (3.2), we get

β + 1
β/2 + 1

∫
|∂jw|2η2γ ≤ −2γ

∫
w(∂jw)η2γ−1(∂jη)−

∫
bjw(∂jw)η2γ . (3.3)

For the first term in the right side we have

−2γ
∫
w(∂jw)η2γ−1∂jη = γ

∫
w2
(
η2γ−1∆η + (2γ − 1)η2γ−2|∂jη|2

)
, (3.4)

while for the second

−
∫
bjw(∂jw)η2γ =

1
2

∫
(∂jbj)w2η2γ + γ

∫
bjw

2η2γ−1∂jη ≤ γ
∫
bjw

2η2γ−1∂jη, (3.5)

as div b ≤ 0.
Next, set γ0 = n/q̄. Then, as q̄ > n/2, we have γ0 ∈ (0, 2) and, in addition

1
q̄

+
γ0

2∗
+

2− γ0

2
= 1 (3.6)

for n ≥ 3. Note that if n = 2 then γ0 can be also chosen so that (3.6) is satisfied.
Assume also that γ is sufficiently large so that γγ0 ≤ 2γ − 1. Then, by Hölder’s inequality

we have, using (3.6)∫
bjw

2η2γ−1∂jη ≤
∫
|bj ||wηγ |γ0 |w|2−γ0 |∂jη| ≤ ‖b‖Lq̄‖wηγ‖γ0

L2∗‖w|∇η|1/(2−γ0)‖2−γ0

L2 , (3.7)

as 0 ≤ η ≤ 1. By Young’s and the Gagliardo-Nirenberg inequalities, this leads to∫
bjw

2η2γ−1∂jη ≤
1
2
‖∇(wηγ)‖2L2 + C‖b‖1/(1−n/2q̄)Lq̄ ‖w|∇η|1/(2−n/q̄)‖2L2 . (3.8)
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By (3.3), (3.4), and (3.8), we obtain∫
|∇(uβ/2+1ηγ)|2 ≤ C

∫
uβ+2η2γ−1|∆η| (3.9)

+ C

∫
uβ+2η2γ−2|∇η|2 + C‖b‖1/(1−n/2q̄)Lq̄ ‖uβ/2+1(∇η)1/(2−n/q̄)‖2L2 .

By Sobolev embedding used in the left side of (3.9), we get

‖uβ/2+1ηγ‖L2χ ≤ C
(∫

uβ+2η2γ−1|∆η|
)1/2

+ C

(∫
uβ+2η2γ−2|∇η|2

)1/2

(3.10)

+ C‖b‖1/(2−n/q̄)Lq̄ ‖uβ/2+1(∇η)1/(2−n/q̄)‖L2

where χ = n/(n− 2) if n ≥ 3 and χ > 2 is arbitrary if n = 2. Now, let η ∈ C∞0 (Ω) be such that
η ≡ 1 in BθR, η ≡ 0 in Bc

τR, |∇η| ≤ C/[R(τ − θ)] and |∆η| ≤ C/[R2(τ − θ)2]. Then, we have

‖uβ/2+1‖L2χ(BθR) ≤
C

R(τ − θ)

(∫
BτR

uβ+2

)1/2

+
C

(R(τ − θ))1/(2−n/q̄) ‖b‖
1/(2−n/q̄)
Lq̄(BτR) ‖u

β/2+1‖L2(BτR).

(3.11)
The main point of (3.11) is that, since χ > 1, we have a bound on a higher norm of u on

a smaller ball in terms of the lower norm of u on a larger ball. We now apply the estimate
(3.11) iteratively on pairs of balls Bri+1 ⊂ Bri , and also let βi → +∞. More precisely, we choose
βi = 2(χi− 1) and ri = θR+ (τ − θ)R2−i for i = 0, 1, 2, . . . , so that ri− ri+1 = (τ − θ)R2−(i+1).
We obtain

‖u‖
L2χi+1 (Bri+1 )

≤ C1/χi2i/χ
i
(R(τ − θ))−1/χi‖u‖

L2χi (Bri )
(3.12)

+
(
C2i/(2−n/q̄)(R(τ − θ))−1/(2−n/q̄)‖b‖1/(2−n/q̄)Lq̄(Bri )

)1/χi

‖u‖
L2χi (Bri )

.

By iteration, letting i→ +∞, we conclude that the estimate (2.4) holds for p ≥ 2.
Now, let p ∈ (0, 2). We have just shown that

sup
BθR

u ≤ C
(

(R(τ − θ))−n/2 +
(

(R(τ − θ))−1/(2−n/q̄)‖b‖1/(2−n/q̄)Lq̄(Bri )

)n/2)
‖u‖L2(BτR) (3.13)

≤ C
(

(R(τ − θ))−n/2 +
(

(R(τ − θ))−1/(2−n/q̄)‖b‖1/(2−n/q̄)Lq̄(Bri )

)n/2)
‖u‖1−p/2L∞(BτR)‖u‖

p/2
Lp(BτR)

which implies

sup
BθR

u ≤ 1
2
‖u‖L∞(BτR) + C

(
(R(τ − θ))−n/p +

(
(R(τ − θ))−1/(2−n/q̄)‖b‖1/(2−n/q̄)Lq̄(Bri )

)n/p)
‖u‖Lp(BτR).

A standard iteration argument (c.f. [HL, Lemma 4.3]) then implies

sup
BθR

u ≤ C
(

(R(τ − θ))−n/p +
(

(R(τ − θ))−1/(2−n/q̄)‖b‖1/(2−n/q̄)Lq̄(Bri )

)n/p)
‖u‖Lp(BτR) (3.14)

and the proof of Lemma 2.4 is complete. �
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4 Proof of Lemma 2.5

We assume without loss of generality that R = 1. The proof is similar in spirit to that of
Lemma 2.4: we obtain an a priori bound and use it iteratively.

Assume that u is a nonnegative Lipschitz supersolution to (1.1), and consider v = 1/u. The
function v satisfies

−∆v + b · ∇v − av ≤ 0 in Ω (4.1)

or equivalently ∫
(∂jv)(∂jϕ) +

∫
bj(∂jv)ϕ−

∫
avϕ ≤ 0 (4.2)

for any function ϕ ∈ C∞0 (Ω) such that ϕ ≥ 0 in Ω. By Lemma 2.4, it follows that for any
0 < θ < τ < 1 and p > 0, we have

sup
Bθ

v ≤ C‖v‖Lp(Bτ ) (4.3)

with C = C(n, p, q, q̄, τ, θ,M1). Therefore, we have

inf
Bθ
u ≥ 1

C

(∫
Bτ

u−p
∫
Bτ

up
)−1/p(∫

Bτ

up
)1/p

. (4.4)

We claim that there exists p0 > 0 such that∫
Bτ

u−p0

∫
Bτ

up0 ≤ C (4.5)

with a constant C = C(n, q, q̄, τ,M1), which would finish the proof of Lemma 2.5.

Reduction to an exponential bound

In order to prove (4.5) for some sufficiently small p0 > 0, denote

(log u)Bτ =
1
|Bτ |

∫
Bτ

log u,

and set

w = log u− (log u)Bτ . (4.6)

We shall show that there exists p0 > 0 such that∫
Bτ

ep0|w| ≤ C (4.7)

where C = C(τ), which in turn implies (4.5). Indeed, if we assume that (4.7) holds, then∫
Bτ

ep0(log u−(log u)Bτ ) ≤ C (4.8)

and ∫
Bτ

e−p0(log u−(log u)Bτ ) ≤ C. (4.9)

Therefore, we have e−p0(log u)Bτ
∫
Bτ
ep0 log u ≤ C and ep0(log u)Bτ

∫
Bτ
e−p0 log u ≤ C. Multiplying

these two inequalities then leads to (4.5).
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An L2-bound for w

We now prove (4.7). First, we establish bounds on the L2-norm of w. The function w satisfies

|∇w|2 ≤ −∆w + b · ∇w + a in B1. (4.10)

Fix τ ∈ (0, 1), and let η ∈ C1
0 (Ω) with 0 ≤ η ≤ 1 be a cutoff such that η ≡ 1 on B(1+τ)/2, η ≡ 0

on Bc
1, and |∇η| ≤ C/(1− τ). Multiplying (4.10) by η2 and integrating over B1, we obtain∫

B1

|∇w|2η2 ≤ 2
∫
B1

(∂jw)η(∂jη) +
∫
B1

bj(∂jw)η2 +
∫
B1

aη2 (4.11)

≤ 2‖η∇w‖L2‖∇η‖L2 + ‖b‖L2‖η∇w‖L2‖η‖L∞ + ‖a‖Lq‖η2‖Lq′

where 1/q + 1/q′ = 1. Absorbing the factors ‖η∇w‖L2 on the right using the term on the left,
we get ∫

B(1+τ)/2

|∇w|2 ≤ CτM0 (4.12)

where M0 = 1 + ‖a‖Lq + ‖b‖2L2 , and the constant Cτ may depend on τ ∈ (0, 1). Also, since∫
Bτ

w = 0,

and (1 + τ)/2 ≥ τ , we have by the Poincaré inequality∫
B(1+τ)/2

w2 ≤ C
∫
B(1+τ)/2

|∇w|2 ≤ CτM0. (4.13)

Bounds on the higher norms of w

Next, we need to estimate
∫
Bτ
|w|β for all β ≥ 1. As in the proof of Lemma 2.4 the idea is to

bound first the higher norms of w on smaller balls in terms of the lower norms of w on larger
balls and then use the iteration process.

We multiply (4.10) by |w|2βη2γ and integrate over B1 in order to obtain∫
B1

|w|2β|∇w|2η2γ ≤ 2β
∫
B1

|w|2β−2w|∇w|2η2γ + 2γ
∫
B1

|w|2β(∂jw)η2γ−1(∂jη) (4.14)

− 2γ
2β + 1

∫
B1

bj |w|2βwη2γ−1(∂jη) +
∫
B1

a|w|2βη2γ .

Here we utilized div b = 0 and ∂j |w| = w∂jw/|w|. For the first term in the right side of (4.14)
we use

2β|w|2β−1 ≤ 1
4
|w|2β + (8β)2β, (4.15)

while for the second

2γ
∫
B1

|w|2β(∂jw)η2γ−1(∂jη) ≤ 1
4

∫
B1

|w|2β|∇w|2η2γ + Cγ2

∫
B1

|w|2βη2γ−2|∇η|2. (4.16)
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This leads to∫
B1

|w|2β|∇w|2η2γ ≤ C(8β)2β

∫
B1

|∇w|2η2γ + Cγ2

∫
B1

|w|2βη2γ−2|∇η|2 (4.17)

+
Cγ

β + 1

∫
B1

|b||w|2β+1η2γ−1|∇η|+ C

∫
B1

|a||w|2βη2γ .

Let τ ≤ r ≤ R ≤ (1 + τ)/2. We now choose a cutoff η ∈ C1
0 (Ω) with 0 ≤ η ≤ 1 such that η ≡ 1

on Br, η ≡ 0 on Bc
R, and |∇η| ≤ C/(R − r). By (4.11), for the first term in the right side of

(4.17) we have

(8β)2β

∫
B1

|∇w|2η2γ ≤ (8β)2β

∫
B(1+τ)/2

|∇w|2 ≤ Cτ (8β)2βM0. (4.18)

On the other hand, for the left side of (4.17), we use∣∣∣∇(|w|β+1ηγ)
∣∣∣2 ≤ 2γ2|w|2β+2η2γ−2|∇η|2 + 2(β + 1)2|w|2β|∇w|2η2γ . (4.19)

Hence, we obtain∫
B1

∣∣∣∇(|w|β+1ηγ)
∣∣∣2 ≤ Cγ2

∫
B1

|w|2β+2η2γ−2|∇η|2 + C(β + 1)2(8β)2βM0 (4.20)

+ Cγ2(β + 1)2

∫
B1

|w|2βη2γ−2|∇η|2

+ Cγ(β + 1)
∫
B1

|b||w|2β+1η2γ−1|∇η|+ C(β + 1)2

∫
B1

|a||w|2βη2γ .

For the third term in the right side we utilize

(β + 1)2|w|2β ≤ (β + 1)2β+2

β + 1
+

(
|w|2β

)(β+1)/β

(β + 1)/β
≤ (8β)2β + |w|2β+2 (4.21)

which gives

Cγ2(β + 1)2

∫
B1

|w|2βη2γ−2|∇η|2 ≤ C(8β)2βγ2

∫
B1

η2γ−2|∇η|2 + Cγ2

∫
B1

|w|2β+2η2γ−2|∇η|2

≤ C(8β)2βγ2M0

(R− r)2
+ Cγ2

∫
B1

|w|2β+2η2γ−2|∇η|2, (4.22)

as M0 ≥ 1. The last two terms in (4.20) are estimated as follows. First, we have∫
B1

|a||w|2βη2γ =
∫
B1

|a|(|w|β+1ηγ)2β/(β+1)η2γ/(β+1) ≤ ‖a‖Lq‖|w|β+1ηγ‖2β/(β+1)

L2βq′/(β+1)
(4.23)

where 1/q + 1/q′ = 1. Now, we use the Gagliardo-Nirenberg inequality

‖|w|β+1ηγ‖L2βq′/(β+1) ≤ C‖|w|β+1ηγ‖1−α
L2 ‖∇(|w|β+1ηγ)‖αL2 (4.24)
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with α = n/2−n/(2βq′/(β+1)) if 2βq′/(β+1) ≥ 2, and α = 0 otherwise. By Young’s inequality,
we obtain∫

B1

|a||w|2βη2γ ≤ C‖a‖Lq‖|w|β+1ηγ‖2(1−α)β/(β+1)
L2 ‖∇(|w|β+1ηγ)‖2αβ/(β+1)

L2 (4.25)

≤
(

1
(2(β + 1))2αβ/(β+1)

‖∇(|w|β+1ηγ)‖2αβ/(β+1)
L2

)(β+1)/αβ

+ C
(

(2(β + 1))2αβ/(β+1)‖a‖Lq‖|w|β+1ηγ‖2(1−α)β/(β+1)
L2

)(β+1)/(β(1−α)+1)
.

As α ∈ (0, 1), this implies∫
B1

|a||w|2βη2γ ≤ 1
(2(β + 1))2

‖∇(|w|β+1ηγ)‖2L2 + C(β + 1)2α1‖a‖α1
Lq‖|w|

β+1ηγ‖α2

L2 . (4.26)

Here we denoted α1 = (β + 1)/(β(1− α) + 1) and α2 = 2β(1− α)/(β(1− α) + 1). Observe that
α1 ≥ 1 and α1 is smaller than a constant independent of β, while 0 < α2 < 2 with α2 → 2 as
β →∞.

For the last remaining term in (4.20), we have

Cγ(β + 1)
∫
B1

|b||w|2β+1η2γ−1|∇η| = Cγ(β + 1)
∫
B1

|b|
(
|w|β+1ηγ

)(2β+1)/(β+1)
ηγ/(β+1)−1|∇η|.

(4.27)
Let us choose γ = β + 1. Then, the above expression becomes

Cγ(β + 1)
∫
B1

|b|
(
|w|β+1ηγ

)(2β+1)/(β+1)
|∇η| ≤ C(β + 1)2‖b‖Lq̄‖|w|β+1ηγ‖(2β+1)/(β+1)

L(2β+1)q̄′/(β+1)
‖∇η‖L∞

(4.28)

where 1/q̄ + 1/q̄′ = 1. Once again we apply the Gagliardo-Nirenberg inequality

‖|w|β+1ηγ‖L(2β+1)q̄′/(β+1) ≤ C‖|w|β+1ηγ‖1−ᾱ
L2 ‖∇(|w|β+1ηγ)‖ᾱL2 (4.29)

with ᾱ = n/2− n/((2β + 1)q̄′/(β + 1)) if (2β + 1)q̄′/(β + 1) ≥ 2 and ᾱ = 0 otherwise.
Thus, by Young’s inequality, we have

Cγ(β + 1)
∫
B1

|b|
(
|w|β+1ηγ

)(2β+1)/(β+1)
|∇η| (4.30)

≤ C(β + 1)2‖b‖Lq̄‖|w|β+1ηγ‖(1−ᾱ)(2β+1)/(β+1)
L2 ‖∇(|w|β+1ηγ)‖ᾱ(2β+1)/(β+1)

L2 ‖∇η‖L∞

≤ 1
4
‖∇(|w|β+1ηγ)‖2L2 +

C(β + 1)2ᾱ1

(R− r)ᾱ1
‖b‖ᾱ1

Lq̄‖|w|
β+1ηγ‖ᾱ2

L2 .

Here we denoted ᾱ1 = (2β+2)/(2β(1− ᾱ)+2− ᾱ) and ᾱ2 = 2(2β+1)(1− ᾱ)/(2β(1− ᾱ)+2− ᾱ).
Note that, as in (4.24), we have ᾱ1 ≥ 1 and ᾱ1 is less than a constant independent of β, while
0 < ᾱ2 < 2, and ᾱ2 → 2 when β →∞.
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Putting together (4.20), (4.21), (4.24), and (4.30), we obtain

‖∇(|w|β+1ηγ)‖2L2(Br)
≤ C(β + 1)2

(R− r)2
‖|w|β+1‖2L2(BR) +

C(β + 1)2(8β)2βM0

(R− r)2
(4.31)

+ C(β + 1)2α1+2‖a‖α1

Lq(BR)‖|w|
β+1‖α2

L2(BR)
+
C(β + 1)2ᾱ1

(R− r)ᾱ1
‖b‖ᾱ1

Lq̄(BR)‖|w|
β+1‖ᾱ2

L2(BR)
.

Using Sobolev embedding, we may rewrite (4.31) in the form

‖|w|β+1‖2L2χ(Br)
≤ C(β + 1)2κ

(R− r)ᾱ1+2

(
‖|w|β+1‖2L2(BR) + (8β)2βM0 (4.32)

+ ‖a‖α1

Lq(BR)‖|w|
β+1‖α2

L2(BR)
+ ‖b‖ᾱ1

Lq̄(BR)‖|w|
β+1‖ᾱ2

L2(BR)

)
where κ = max{α1 + 1, ᾱ1} and χ = n/(n− 2) if n ≥ 3 and χ > 2 if n = 2. Estimate (4.32) is
analogous to (3.11): a higher norm of w on a smaller ball is bounded in terms of a lower norm
of w on a larger ball.

The iteration process

Next, we consider the iteration process. Let βi = χi−1 and ri = τ+(1+τ)/2i+1 for i = 0, 1, 2, . . . .
From (4.32), we get

‖|w|χi‖2L2χ(Bri+1 ) ≤ Cχ
2κi2(ᾱ1+2)(i+2)

(
‖|w|χi‖2L2(Bri )

+ (8χi)2χiM0 (4.33)

+ ‖a‖α1

Lq(Bri )
‖|w|χi‖α2

L2(Bri )
+ ‖b‖ᾱ1

Lq̄(Bri )
‖|w|χi‖ᾱ2

L2(Bri )

)
for all i = 0, 1, 2, . . . . Taking 1/(2χi) power on both sides of (4.33) gives

‖w‖
L2χi+1 (Bri+1 )

≤ C1/(2χi)χκi/χ
i
2(ᾱ1+2)(i+2)/(2χi)

(
‖w‖

L2χi (Bri )
+ 8χiM1/(2χi)

0 (4.34)

+ ‖a‖α1/(2χi)
Lq(Bri )

‖w‖α2/2

L2χi (Bri )
+ ‖b‖ᾱ1/(2χi)

Lq̄(Bri )
‖w‖ᾱ2/2

L2χi (Bri )

)
.

This leads to the inequality

‖w‖
L2χi+1 (Bri+1 )

≤ (CM1)eα/(2χi)(2χ)κi/χ
i

(
‖w‖

L2χi (Bri )
+ 8χi + ‖w‖α2/2

L2χi (Bri )
+ ‖w‖ᾱ2/2

L2χi (Bri )

)
≤ (CM1)eα/(2χi)(2χ)κi/χ

i
(
‖w‖

L2χi (Bri )
+ 8χi

)
, (4.35)

for all i = 0, 1, 2, . . . , with α̃ = max{α1, ᾱ1} and M1 = 1 + ‖a‖Lq + ‖b‖2L2 + ‖b‖Lq̄ . For

the second inequality in (4.35) we also used α2, ᾱ2 ≤ 2, so that ‖w‖α2/2
Lp ≤ 1 + ‖w‖2Lp and

‖w‖ᾱ2/2
Lp ≤ 1 + ‖w‖2Lp .
Note that if a sequence Yi satisfies Yi+1 ≤ Ci(Yi + χi) with Ci ≥ 1 and

∏∞
i=1Ci ≤ K̄, then

by induction we have

Yi ≤ CK̄(Y0 +
i∑

j=0

χi−1) ≤ C(Y0 + χi), (4.36)
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for all i = 0, 1, 2, . . . . Thus, iterating (4.35), we obtain

‖w‖
L2χi+1 (Bri+1 )

≤ CMC(n)
1

(
CM1 + χi+1

)
≤ CMC(n)

1 χi+1. (4.37)

for all i = 0, 1, 2, . . . , as
∑i

j=1 j/χ
j ≤ C and

∑i
j=1 χ

j ≤ χi+1 for χ > 1.
Finally, for any β ≥ 1 there exists i = 0, 1, 2, . . . such that

2χi ≤ β + 1 ≤ 2χi+1. (4.38)

Thus, in particular, we have(∫
Bτ

|w|β+1

)1/(β+1)

≤ C‖w‖
L2χi+1 (Bri+1 )

≤ CMC(n)
1 (β + 1). (4.39)

Therefore, for all β ≥ 1, we obtain∫
Bτ

(p0|w|)(β+1)

(β + 1)!
≤ pβ+1

0

(
CM

C(n)
1 e

)(β+1)
≤ 1

2(β+1)
(4.40)

by taking

p0 =
1

CM
C(n)
1 e

(4.41)

sufficiently small. By (4.13), we also have∫
Bτ

|w| ≤ C
∫
Bτ

w2 ≤ CM0 (4.42)

which gives (4.40) for β = 0 as well. It follows from (4.40) that (4.7) holds, and therefore the
proof of the lemma is complete. �
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ential Equations 252 (2012), no. 1, 505–540.

[Z] Q.S. Zhang, A strong regularity result for parabolic equations, Comm. Math. Phys. 244
(2004), no. 2, 245–260.

12


