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Abstract

We consider the movement of a particle advected by a random flow of the form v + δF(x),
with v ∈ Rd a constant drift, F(x) – the fluctuation – given by a zero mean, stationary random
field and δ � 1 so that the drift dominates over the fluctuation. The two-point correlation matrix
R(x) of the random field decays as |x|2α−2, as |x| → +∞ with α < 1. The Kubo formula for
the effective diffusion coefficient obtained in [17] for rapidly decorrelating fields diverges when
1/2 ≤ α < 1. We show formally that on the time scale δ−1/α the deviation of the trajectory
from its mean y(t) = x(t) − vt converges to a fractional Brownian motion Bα(t) in this range
of the exponent α. We also prove rigorously upper and lower bounds which show that E[|y(t)|2]
converges to zero for times t � δ−1/α and to infinity on time scales t � δ−1/α as δ → 0 when
α ∈ (1/2, 1). On the other hand, when α < 1/2 non-trivial behavior is observed on the time-scale
O(δ−2).

1 Introduction

The position of a tracer in a random flow is described by the ordinary differential equation

dX(t;x)
dt

= V(t,X(t;x)), X(0;x) = x, (1.1)

where V(t,x) is a random field. This random model is frequently used to describe the motion of
a particle in a turbulent flow of fluid, where V(t,x) is the Eulerian velocity field. The long-time
behavior of solutions of (1.1) has been extensively studied, especially when V(t,x) is sufficiently
rapidly mixing in time and space – see [21] for an extensive overview. Roughly speaking, one
expects that the trajectory X(t;x) behaves diffusively if the velocity field decorrelates sufficiently
fast in time and space while an anomalous behavior is observed if V(t,x) has long range correlations.
This problem remains largely open when V(x) is both time-independent and of zero mean, as then
there is no mechanism to “move the particle around” and employ the decorrelating properties of the
random field. Therefore, to simplify matters, we assume that the flow satisfies the Taylor hypothesis,
that is, it has a non-zero mean drift which dominates over the amplitude of its fluctuations. This
means that we can write V(x) = v + δF(x), where v 6= 0 is a constant vector with, say, |v| = 1,
and the parameter δ � 1. The fluctuation F(x) is spatially homogeneous, of zero mean and is
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divergence-free: ∇ ·F(x) = 0. It has been shown in [17] that if the field F(x) is sufficiently strongly
mixing in space then the scaled trajectories

y(t/δ2;x) := x(t/δ2;x)− vt/δ2, t ≥ 0 (1.2)

converge, as δ ↓ 0, as continuous stochastic processes, to a zero mean Brownian motion starting at
x with the covariance matrix D = [Di,j ] given by the Kubo-Taylor formula

Dij =
1
2

+∞∫
0

[Rij(vt) +Rji(vt)] dt, i, j =, . . . , d. (1.3)

Here R(x) = [Rij(x)] is the covariance matrix of the field F(x), that is, Rij(x) = E[Fi(x)Fj(0)].
In the present paper we are interested in the situation when the correlation tensor decays slowly

in space so that the diffusion matrix given by the Kubo-Taylor formula is infinite and the standard
diffusion limit may fail. More precisely, we consider Gaussian fields which are isotropic and satisfy
locally the self-similarity hypothesis. This means that the two-point correlation tensor satisfies

Rij(x) =
∫

Rd

eik·xR̂ij(k)dk, (1.4)

with the power spectrum

R̂ij(k) =
a(|k|)

|k|2α+d−2
Γij(k̂), i, j =, . . . , d. (1.5)

Here a(|k|) ≥ 0 is a non-negative bounded, measurable function, supported in a finite ball {|k| ≤ K}
for some K > 0, continuous at k = 0 and with a(0) = 1. The factor Γij(k̂) := δij − k̂ik̂j , where
k̂ = (k̂1, . . . , k̂d) := k/|k|, ensures incompressibility of the flow. To guarantee the integrability of the
spectrum we assume that α < 1. The rate of decay of the correlations of the field is then given by

Rij(x) ∼ |x|2α−2, for |x| � 1. (1.6)

A simple calculation shows that in this situation the diffusion matrix given by the Kubo formula
(1.3) is infinite, provided that 1/2 < α < 1. The goal of this paper is to find the proper time scaling
for the tracer trajectory when the Kubo-Taylor formula diverges. In other words we are looking for
H such that for any ρ > 0

lim
δ→0+

E|y(t/δ2H(1+ρ);x)|2 = +∞ and lim
δ→0+

E|y(t/δ2H(1−ρ);x)|2 = 0. (1.7)

The result of Kesten and Papanicolaou, see Theorem 4 of [17], guarantees that for R(x), which is
decaying sufficiently fast, or, equivalently, for α < −N with a large enough N > 0 one has H = 1.
Note, however, that the Kubo–Taylor formula (1.3) itself makes sense for any α < 1/2, that is, in
a much larger range of α. We shall prove rigorously in Section 3 below that then indeed H = 1 for
α < 1/2, with a slightly modified definition of the limit appearing in condition (1.7).

According to (1.6), increasing the value of α leads to strengthening of the correlations of the
corresponding field (and degraded mixing properties). We shall prove, see Theorems 3.1 and 3.2
below, that the level α = 1/2 is critical in the sense that the value of the exponent H changes at
α = 1/2 from H = 1/2 for α < 1/2 to H = 1/(2α) < 1 for 1/2 < α < 1.

We also present a formal argument which provides more refined information on the process y(t)
for α ∈ (1/2, 1). In addition to identifying the time scale t ∼ O(δ−2H), H = 1/(2α) on which y(t)
behaves non-trivially, we are able to compute formally the limit of the process

yδ(t) = y(t/δ2H ;x) = x(t/δ2H ;x)− vt/δ2H .
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as δ → 0. It turns out that the limit of yδ(t) is a super-diffusive fractional Brownian motion Bα(t).
This should be contrasted with a standard Brownian motion limit for the process y(t/δ2) obtained in
[17] for rapidly decorrelating fields F(x). We recall that a Gaussian, continuous trajectory, Rd–valued
process (Bα(t))t≥0 is called a fractional Brownian motion (FBM) with Hurst exponent α ∈ (0, 1) and
the covariance matrix D if for any t, h ≥ 0 the (normal) random vector Bα(t+ h)−Bα(t) has mean
zero and the covariance Dh2α. In particular, E(Bα(t) ⊗ Bα(t)) = Dt2α and the tracer propagation
is close to ballistic as α ↑ 1 and correlations persist at infinity. Note that for α = 1/2 the FBM
becomes the ”usual” Brownian motion matching the result of [17] for rapidly decayng correlations.

Anomalous diffusive behavior of passive scalars has been studied extensively in the physics lit-
erature – we mention [9, 10, 14, 20, 25, 26] without any attempt at completeness. However, the
majority of physical papers consider time-dependent (typically white in time) random flows with a
non-zero diffusivity. Super-diffusive limits for particles in a random flow have been also obtained
rigorously in various situations – for instance, in [2, 3, 4, 5] for the random shear layer flows, in [11]
for time-dependent random flows, in [18] for a mean zero, random flow with a positive molecular
diffusivity and in [7, 22] for multiscale periodic flows. The novel aspect of the present paper is that
the flow is time-independent and the molecular diffusivity is equal to zero.

The paper is organized as follows. The aforementioned formal derivation of the fractional Brow-
nian motion limit for α ∈ (1/2, 1) is presented in Section 2. We describe in Section 3 upper and
lower bounds for the mean square displacement of trajectories that show the super-diffusive scaling
for α ∈ (1/2, 1) and diffusive behavior for α < 1/2. The main results are Theorems 3.1 and 3.2 –
they are proved in Sections 4 and 5. Some auxiliary bounds are proved in Section 6. Appendix A
contains a brief review of multiple stochastic integration.

Acknowledgment. LR was supported in part by an Alfred P. Sloan fellowship. This work has
been also supported by ONR and NSF grant DMS-0604687.

2 A formal limit for the advection equation

The advection equation

We present here a formal computation that leads to a FBM limit for the solution of the advection
equation

∂φδ

∂t
+ (v + δF(x)) · ∇xφδ = 0, φδ(0,x) = u0(x). (2.1)

Here v ∈ Rd is a fixed mean flow with |v| = 1 and F(x) is a spatially homogeneous Gaussian random
field with the two-point correlation tensor [Rij(x)] of the form (1.4) and the power spectrum as in
(1.5). We can write then F(x) =

∫
eix·kF̂(dk), where the spectral measure F̂ (dk) satisfies

E
[
F̂n(dk)F̂m(dp)

]
= R̂nm(k)δ(k + p)dkdp. (2.2)

We will assume in this section that the exponent α ∈ (1/2, 1) as this is the range where we expect
the FBM behavior for a rescaled process in the limit δ → 0. Let us set H = 1/(2α) and introduce
the rescaled time t′ = δ2Ht and the moving frame x′ = x + vt as well as the new unknown function
uδ(t′,x′) = φδ

(
t′

δ2H ,x′ − v t′

δ2H

)
. Then (2.1) becomes in the new variables

∂uδ

∂t′
+ δ1−2HF

(
x′ − v

t′

δ2H

)
· ∇x′uδ = 0, uδ(0,x′) = u0(x′). (2.3)

For convenience we introduce G(t,x) = −F(x− vt) and drop the primes, arriving at

∂uδ

∂t
− δ1−2HG

(
t

δ2H
,x
)
· ∇xuδ = 0, uδ(0,x) = u0(x). (2.4)
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The main goal of this section is to argue formally that E [uδ(t,x)] converges, as δ → 0, to

ū(t,x) = E [u0(x +BD(t))] . (2.5)

Here BD(t) is the FBM with exponent α and covariance matrix D = [Dij ], where

Dij =
1

2α2

∫
eik·v

|k|2α+d−2
Γij(k̂)dk. (2.6)

We will establish this limit by evaluating term-wise the expectation of the formal infinite Duhamel
expansion for the solution of (2.4) and computing the limit of the main term. We will neither attempt
to justify the expansion, nor try to estimate the error produced by the terms in the expansion which
are formally of a smaller order. The main difference with the corresponding calculation in the
case when correlations are rapidly decaying (the Brownian motion limit case) is that all Feynman
diagrams contribute to the limit and not only the so-called ladder diagrams.

An infinite expansion for the solution

We rewrite (2.4) as an integral equation:

uδ(t,x) = u0(x) + δ1−2H

t∫
0

G
( s1
δ2H

,x
)
· ∇xuδ(s1,x)ds1. (2.7)

Iterating (2.7) by substituting for uδ(s1, ·) appearing on the right side we obtain a formal expansion

uδ(t,x) =
+∞∑
n=0

δ(1−2H)n

∫
∆n(t)

G(n)
( s1
δ2H

, . . . ,
sn

δ2H
,x
)
ds1 . . . dsn (2.8)

Here, we have set G(0) (x) := u0(x) and, assuming that G(n) (s1, . . . , sn,x) has been already defined
for some n ≥ 1, we let

G(n+1) (s1, . . . , sn, sn+1,x) := G(sn+1,x) · ∇xG(n) (s1, . . . , sn,x) .

The time integration region appearing in (2.8) is the simplex

∆n(t) := [(s1, . . . , sn) ∈ Rn : 0 ≤ sn ≤ . . . ≤ s1 ≤ t].

Passing to the Fourier transform in the definition of G(n) and using induction we arrive at an explicit
expression

G(n)(s1, . . . , sn,x) = in
∫
e−iv·(k1s1+...+knsn)eix·(k0+...+kn)

n∏
p=1

[(
p−1∑
l=0

kl

)
· F̂(dkp)

]
û0(k0)dk0. (2.9)

Next, we take formally the expectation of the infinite series in (2.8) term-wise and obtain

E[uδ(t,x)] =
+∞∑
n=0

In(δ)(t,x), (2.10)

where

In(δ)(t,x) = δ2(1−2H)n

∫
∆2n(t)

EG(2n)
( s1
δ2H

, . . . ,
s2n

δ2H
,x
) 2n∏

i=1

dsi.

We have used above the fact that the expectation of a product of an odd number of centered Gaussian
variables equals zero. The next step is to evaluate each of the terms In(δ).
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The main term in the expansion

We will compute the individual terms In(δ) using Feynman diagrams. Recall that given Gaussian
random variables Y1, . . . , Y2n the expectation E (Y1Y2 . . . Y2n) is

E (Y1Y2 . . . Y2n) =
∑

F∈F(n)

∏
bpq∈F

E(YpYq). (2.11)

Here F(n) is the set of all permutations (complete Feynman diagrams) of the elements of {1, . . . , 2n}
such that F ◦ F = Id, and F(k) 6= k for all 1 ≤ k ≤ 2n. The notation p̂q ∈ F means that F(p) = q
(or that p and q are connected by an edge in the Feynman diagram F) and p < q.

Using (2.11) in the expression for In(δ) we obtain from (2.9) and (2.10) that

In(δ)(t,x) = (−1)nδ2(1−2H)n
∑

F∈F(n)

d∑
i1,...,i2n=1

∫
. . .

∫
∆2n(t)

e−iv·(k1s1δ−2H+...+k2ns2nδ−2H)

×eix·(k0+k1+...+k2n)
∏
bpq∈F


(

p−1∑
l=0

kl,ip

)q−1∑
j=0

kj,iq

E[F̂ip(dkp)F̂iq(dkq)]

 û0(k0)dk0

2n∏
i=1

dsi.

After evaluating the expectation above, using (2.2), this expression becomes

In(δ)(t,x) = (−1)nδ2(1−2H)n
d∑

i1,...,i2n=1

∑
F∈F(n)

∫
. . .

∫
∆2n(t)

∏
bpq∈F

{
exp

{
iv · kp

sq − sp

δ2H

}
(2.12)

×
(
k0,ip +

p−1∑
l=1

kl,ip

)(
k0,iq +

q−1∑
j=1

kj,iq

)
R̂ipiq(kp)δ(kp + kq)dkpdkq

}
eik0·xû0(k0)dk0

2n∏
i=1

dsi.

The leading order term in (2.12) is

I0
n(δ)(t,x) = (−1)nδ2(1−2H)n

d∑
i1,...,i2n=1

∑
F∈F(n)

∫
. . .

∫
∆2n(t)

∏
bpq∈F

[
exp

{
iv · kp

sq − sp

δ2H

}

×k0,ipk0,iqR̂ipiq(kp)dkp

]
eik0·xû(k0)dk0

2n∏
i=1

dsi (2.13)

= (−1)nδ2(1−2H)n
∑

F∈F(n)

∫
. . .

∫
∆2n(t)

∏
bpq∈F

[
R

(
sq − sp

δ2H
v
)

k0 · k0

]
eik0·xû0(k0)dk0

2n∏
i=1

dsi.

The reason why I0
n(δ)(t,x) is indeed the main contribution to In(δ)(t,x) is as follows. Note that the

two-point correlation function Rij(x) decays algebraically for large |x|:

Rij (vs) = Dij(s)s2α−2, (2.14)

with the matrix Dij(s), which converges, as s→ +∞, to

D̄ij =
∫

1
|k|2α+d−2

Γij(k̂)eik·vdk (2.15)
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(a more explicit expression for D̄ij using Legendre polynomials may be obtained using the Hecke-
Funk theorem (see e.g. [15], p. 181) but we will not need it here). Using the above information in
(2.13) we obtain:

I0
n(δ)(t,x) = (−1)nδ2(1−2H)n

∑
F∈F(n)

∫
. . .

∫
∆2n(t)

eik0·x(D̄k0 · k0)nû(k0)dk0

∏
bpq∈F

∣∣∣∣sq − sp

δ2H

∣∣∣∣2α−2 2n∏
i=1

dsi + o(1).

where D̄ = [D̄ij ]. However, and this is the crucial point in this calculation, as H = 1/(2α) we see
that

2(1− 2H)n− 2Hn(2α− 2) = 0

and the powers of δ exactly cancel each other. We conclude that I0
n(δ)(t,x) = Jn(t,x) + o(1), with

Jn(t,x) = (−1)n
∑

F∈F(n)

∫
. . .

∫
∆2n(t)

eik0·x(D̄k0 · k0)n
∏
bpq∈F

|sq − sp|2α−2 û0(k0)dk0

2n∏
i=1

dsi.

In particular, I0
n(δ)(t,x) is of order O(1), as δ → 0. On the other hand, all the other terms in

(2.12) lead to expressions similar to (2.13) but with Rij(x) replaced by its (possibly higher order)
derivatives with respect to some of the spatial variables. However, derivatives of Rij(x) decay faster
than |x|2−2α for large |x| – hence these terms produce a too high power of δ as a factor, and vanish
(at least, term-wise) in the limit δ → 0.

Interpretation in terms of the fractional Brownian motion

It remains now to relate Jn(t,x) to the fractional Brownian motion and sum all these terms. Note
that the function

f(s1, . . . , s2n) :=
∑

F∈F(n)

∏
bpq∈F

|sp − sq|2α−2

is symmetric in all of its arguments, that is, f(s1, . . . , s2n) = f(sπ(1), . . . , sπ(2n)), where π is an
arbitrary permutation of {1, 2. . . . , n}. Using this fact we can rewrite Jn(t,x) in the form

Jn(t,x) =
(−1)n

(2n)!

∑
F∈F(n)

∫ t

0
. . .

∫ t

0

∏
bpq∈F

|sp − sq|2α−2
2n∏
i=1

dsi

∫
eik0·x(D̄k0,k0)nû0(k0)dk0. (2.16)

A simple but useful observation is that

∑
F∈F(n)

∏
bpq∈F

|sp − sq|2α−2 = c2n
α E

 2n∏
p=1

∫ ∞

−∞

eikpsp

|kp|α−1/2
w(dkp)

 ,
where w(dk1), . . . , w(dk2n) are independent Gaussian white noises and cα > 0 is given by

cα :=
(

Γ(2α− 1) sin(πα)
π

)1/2

.

This follows from the fact that

E
[∫ ∞

−∞

eik1s

|k1|α−1/2
w(dk1)

∫ ∞

−∞

eik2r

|k2|α−1/2
w(dk2)

]
=
∫ ∞

−∞

eik1(s−r)

|k1|2α−1
dk1 = c−2

α |s− r|2α−2
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for ∫ ∞

−∞

eik

|k|2α−1
dk = 2

∫ +∞

0

cos k
k2α−1

dk =
π

Γ(2α− 1) sin(πα)
.

The last equality follows e.g. from 3), [539] of [13]. Hence, Jn(t,x) has a representation

Jn(t,x) =
(−1)n

(2n)!

∫ t

0
. . .

∫ t

0
E

 2n∏
p=1

∫
eikpsp

|kp|α−1/2
w(dkp)

 2n∏
i=1

dsi

∫
eik0·x|cα|2n(D̄k0,k0)nû0(k0)dk0.

Performing now the integrations with respect to si on the right side we conclude that

Jn(t,x) =
(−1)n

(2n)!
E

 2n∏
p=1

∫
eikpt − 1

ikp|kp|α−1/2
w(dkp)

∫ |cα|2n(D̄k0,k0)nû0(k0)eik0·xdk0.

Next, using the harmonizable representation of the standard fractional Brownian motion, see Propo-
sition 7.2.8, p. 328 of [24], we obtain

Jn(t,x) =
(−1)n

(2n)!
c2n|cα|2nEBα(t)2n

∫
eik0·x(D̄k0,k0)nû0(k0)dk0.

Here Bα(t) is a fractional Brownian motion with the Hurst exponent α and

c :=
(

π

αΓ(2α) sin(απ)

)1/2

=
(

π

2α2Γ(2α− 1) sin(απ)

)1/2

Setting b := ccα = 1/(α
√

2) we may now re-write Jn as

Jn(t,x) =
(−1)n(2n− 1)!!

(2n)!
t2nαb2n

∫
eik0·x(D̄k0,k0)nû0(k0)dk0

=
1
n!

∫
eik0·x

[
−b

2t2α

2
(D̄k0,k0)

]n

û0(k0)dk0.

Coming back to (2.10) we see that, as δ → 0,

Euδ(t,x) → ū(t,x) =
∞∑

n=0

Jn(t,x) =
∫

exp
{
ik0 · x−

b2t2α

2
(D̄k0,k0)

}
û0(k0)dk0

=
∫

exp {i(x + BD(t)) · k0} û0(k0)dk0 = E [u0(x + BD(t))] ,

where BD(t) is a d–dimensional fractional Brownian motion with the exponent α and the covariance
matrix D = D̄/(2α2). Therefore, we have formally established that (2.5) gives the limit of Euδ(t,x).

In terms of the characteristics
dX(t;x)

dt
= v + δF(X(t;x)), X(0;x) = x, (2.17)

for the original advection problem (2.1) we have formally argued that the one dimensional statistics
of the process

y(t;x) = X
(

t

δ2H
;x
)
− vt
δ2H

,

with H = 1/(2α), converge, as δ → 0, to the corresponding statistics of a fractional Brownian
motion with the exponent α and diffusion matrix D given by (2.6). In the next section we will
show rigorously that indeed the process y(t) behaves trivially (either vanishes or E[|y(t)|2] tends to
infinity) on all time scales but t ∼ O(δ−2H).
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3 The main results: rigorous bounds for the trajectories

Preliminaries

The probability space. Suppose that m is a positive integer and ϑρ(x) := (1 + |x|2)−ρ, x ∈ Rd,
where ρ > d/2. Let Ω be the Hilbert space of d-dimensional incompressible vector fields that is the
completion of the space C∞

0,div := {ω ∈ C∞
0 (Rd; Rd) : ∇x · ω = 0} with respect to the norm

‖ω‖2
Ω :=

∫
Rd

(|ω(x)|2 + |∇xω(x)|2 + · · ·+ |∇m
x ω(x)|2)ϑρ(x) dx.

We shall assume that m > d/2 + 1 so that any ω ∈ Ω is of C1 class of regularity by the Sobolev
embedding theorem.
The random field. The random field is set to be simply F(x;ω) := ω(x). Denote also F(ω) =
(F1(ω), . . . , Fd(ω)) := ω(0). We suppose that P is a Borel measure given on Ω that satisfies the
following hypotheses:

(H1) it is Gaussian, that is, for any N ≥ 1, x1, . . . ,xN ∈ Rd we have F(x1), . . . ,F(xN ) is a
Gaussian, Nd–dimensional random vector,

(H2) it is centered and homogeneous, that is, F is of mean zero and the two-point correlation
matrix depends only on the relative position of the points:∫

Fi(z;ω)Fj(y;ω)dP(ω) = Rij(z− y),

where R(x) = [Rij(x)] is given by (1.4). As the measure P is Gaussian, this condition guarantees
that P is invariant with respect to any spatial shift transformation τx : Ω → Ω, x ∈ Rd defined
by τxω(z) := ω(x + z). The existence of such a measure on Ω is guaranteed e.g. by the results of
[12], see Section 2.3. Thanks to the assumed form of the power spectrum we may suppose that the
realizations of the velocity field are P–a.s. analytic in the x variable, see e.g. [6]. We will denote by
E the mathematical expectation with respect to the measure P.

The main results

We consider the particle trajectory given as the solution to (2.17) with the starting point x = 0 and
with the random field F(x) constructed in the previous section, and define the particle deviation
from the mean position y(t) = X(t;0)− vt. We also introduce

Yi(t) :=
∫ t

0
E[yi(s)]2ds, i = 1, . . . , d. (3.1)

Suppose that the times Tδ > 0 are such that limδ→0+ Tδ = +∞. Define the Cesaro limit of the mean
square of the fluctuation amplitude as

C- lim
δ→0+

E |y (Tδ)|2 := lim
δ→0+

1
Tδ
Y (Tδ) , (3.2)

provided that the limit on the right hand side exists, whether it is finite, or not.
We will distinguish two cases: as we have mentioned in the Introduction, when α ∈ (1/2, 1) the

Kubo-Taylor formula (1.3) diverges and we expect a behavior different from the usual diffusive limit.
On the other hand, when α < 1/2 the diffusion coefficient given by (1.3) remains finite and the usual
diffusive behavior would not be surprising.
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The case α ∈ (1/2, 1)

We have argued formally in Section 2 that in this range the process y(t) converges on the time scale
t ∼ O(δ−2H), H = 1/(2α) to a fractional Brownian motion with the exponent α. Our first result
confirms the predicted time-scale in this range of the parameter α.

Theorem 3.1 Suppose that t > 0, α ∈ (1/2, 1) and ρ > 0. Let T+
δ := δ−2H(1+ρ)t1+ρ and T−δ :=

δ−2H(1−ρ)t1−ρ. Under the above assumptions about the random field F(x) we have

C- lim
δ→0+

E
∣∣y (T+

δ

)∣∣2 = +∞ (3.3)

and
lim

δ→0+
E
∣∣y (T−δ )∣∣2 = 0. (3.4)

The case α < 1/2

In this case we expect that y(t) behaves diffusively on the time scale t ∼ O(δ−2), as in the situation
when the correlation tensor decays rapidly in space, that is, when α is very negative. This time scale
is confirmed by the next theorem.

Theorem 3.2 Suppose that α < 1/2. Then, for arbitrary t, ρ > 0 we have

C- lim
δ→0+

δ−ρE
∣∣y (tδ−2

)∣∣2 = +∞ (3.5)

and
lim

δ→0+
E
∣∣∣y (tδ−2(1−ρ)

)∣∣∣2 = 0. (3.6)

Theorems 3.1 and 3.2 are proved in Sections 4 and 5, respectively.

4 The proof of Theorem 3.1

The lower bound

We prove the lower bound (3.3). This is done with the help of a general lower bound, which relates
the long time behavior of the trajectory to the behavior of the resolvent near the border of the
spectrum λ = 0. In order to formulate it let us begin with some preliminary definitions.

The basic spaces. For any p ∈ [1,+∞) and φ ∈ Lp(P) we adopt the notation Dkφ :=
d
dhφ(τhek

ω)|h=0, where ek, k = 1, · · · , d is the k-th vector of the canonical basis in Rd. The derivatives
are understood in the Lp sense. Let W p,m be the Banach space consisting of those elements φ ∈
Lp(P), for which

‖φ‖p
p,m :=

∑
i1+···+id≤m

‖Di1
1 · · ·D

id
d φ‖

p
Lp < +∞.

We set
C :=

⋂
1<p<+∞

W p,2. (4.1)

The spectral measure. The spectral theorem (see e.g. Theorem 1.4.2, p. 18 of [23]) implies
that there exists a complex vector valued spectral measure F̂(·) = (F̂1(·), . . . , F̂d(·)) defined over
(Rd,B(Rd)) whose components take values in L2(P) such that

F(x) =
∫

eix·kF̂(dk). (4.2)
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The spectral measure is Gaussian, that is, for any set A ∈ B(Rd) the 2d–dimensional random vector
(Re F̂(A), Im F̂(A)) is Gaussian. Since the random field (4.2) is real vector valued we must have
F̂∗(dk) = F̂(−dk). The corresponding structure measure equals

E[F̂i(dk)F̂ ∗
j (dk′)] = R̂ij(k)δ(k− k′)dk dk′, i, j = 1, . . . , d. (4.3)

The Hermite polynomials. Suppose that ψ = (ψ1, . . . , ψd), where ψi ∈ C∞
0 (Rd), i = 1, . . . , d

are complex valued, even functions, that is, ψi(−k) = ψ∗i (k). We write

∫
ψ(k) · F̂(dk) :=

d∑
i=1

∫
ψi(k)F̂i(dk). (4.4)

Denote by H the subspace of L2(P) obtained by taking the closure of the linear span of the elements
of the form (4.4). It is a Gaussian Hilbert space in the sense of Definition 1.2 p. 4 of [16]. We can
define then, see Definition 2.1 of ibid., the space of the n-th degree polynomials Pn as the L2–closure
of all the elements of the form p(φ1, . . . , φk), where p(·) is polynomial of at most n-th degree with real
valued coefficients and φi ∈ H, i = 1, . . . , k. It can easily be seen that Pn can be also characterized
as the L2–closure of the space spanned by∫

. . .

∫
ψ(k1, . . . ,kn) · F̂(dk1)⊗ . . .⊗ F̂(dkn), (4.5)

where ψ : (Rd)n → (Cd)n is even, that is, ψ(−k1, . . . ,−kn) = ψ∗(k1, . . . ,kn), – see the Appendix
for the definition of the multiple stochastic integral. For any n ≥ 0 we denote by H :n: := Pn	Pn−1

the space of the n–th degree Hermite polynomials, see Definition 2.1 of [16]. Here P−1 := {0}. It is
well known, see Theorem 2.6 of ibid., that L2(P) =

⊕
n≥0H

:n:

A variational principle for the resolvent

We define the random field V(x;ω) := v + δF(x;ω) and let X(t) be the solution of (1.1) with
the initial condition x set at 0. The environment process is given by η(t) := τX(t)ω. It is an Ω–
valued, deterministic, dynamical system, with P as its invariant measure. The corresponding group
of Koopman operators P tf(ω) = fηt(ω), t ≥ 0 extends then to a C0–continuous, unitary group on
L2(P). Its generator L is given by

Lφ = (v + δF) · ∇φ, for φ ∈ C.

Here ∇φ := (D1φ, . . . ,Ddφ). One can show, in the same way as it was done in see Lemma 4.1 of
[19], that C is invariant under the action of the group (P t) and, since it is dense in L2(P), it is a core
of the generator.

Denote by Rλφ := (λ− L)−1φ the resolvent operator defined for any λ > 0 and φ ∈ L2(P). We
can formulate now the variational principle that will be crucial for us in the sequel, cf. Lemma 2.1
of [8].

Proposition 4.1 For any f ∈ L2(P) and λ > 0 we have

〈Rλf, f〉L2(P) = sup
[
2〈f, φ〉L2(P) −

1
λ
‖Lφ‖2

L2(P) − λ‖φ‖2
L2(P) : φ ∈ C

]
. (4.6)
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Proof. Let Rs
λ := (λ−L)−1

s be the symmetric part of the (bounded) operator Rλ and let R be the
range of Rs

λ. As L is anti-selfadjoint, Rs
λ is given explicitly by

Rs
λf =

1
2
[
(λ− L)−1 + (λ+ L)−1

]
f = λ(λ− L)−1(λ+ L)−1f, for any f ∈ L2(P). (4.7)

An elementary calculation shows that for any f ∈ L2(P) we have, as R ∈ D(L),

〈Rλf, f〉L2(P) = 〈Rs
λf, f〉L2(P) = sup[2〈f, φ〉L2(P) − 〈φ, (Rs

λ)−1φ〉L2(P) : φ ∈ R] (4.8)

= sup
[
2〈f, φ〉L2(P) −

1
λ
〈(λ− L)φ, (λ− L)φ〉L2(P) : φ ∈ R

]
= sup

[
2〈f, φ〉L2(P) − λ‖φ‖2

L2(P) −
1
λ
‖Lφ‖2

L2(P) : φ ∈ R
]
.

The last equality above uses anti-selfadjointness of L. As C is a core of L we can use it instead of R
as the set of test functions in the variational principles (4.8) – thus, (4.6) follows. �

A lower bound on the variance of trajectory fluctuations

The variational principle (4.6) for the resolvent is used as follows. Let G = (G1, . . . , Gd) ∈ L2(P),
the next result concerns the lower bound of the second absolute moment of z(t) :=

∫ t
0 G(η(s))ds

(here η(t) is the environment process), cf. Lemma 2, p. 655 of [18]. To formulate it we introduce

Zi(t) :=
∫ t

0
E[zi(s)]2ds = 2

∫ t

0

 s∫
0

 s1∫
0

〈P s2Gi, Gi〉L2(P)ds2

 ds1

 ds (4.9)

and Z(t) =
∑d

i=1 Zi(t). Note that from (4.9) we obtain, in particular that

Zi(t) ≤ t3‖Gi‖2
L2(P)/3. (4.10)

The following proposition relates the small λ behavior of the resolvent to the large time behavior of
the process Z(t).

Proposition 4.2 Let λ > 0 and define

G(λ) :=
d∑

i=1

〈RλGi, Gi〉L2(P). (4.11)

Assume that t, β, ρ > 0 are given. Let Tδ := tδ−β. Then, there exist constants C∗, δ0 > 0 such that

Z
(
T 1+ρ

δ

)
≥ C∗ T

2
δ G(T−1

δ ), ∀ δ ∈ (0, δ0]. (4.12)

Proof. Using (4.9) and integration by parts we find that

+∞∫
0

e−λ tZi(t) dt = 2
∫ ∫ ∫ ∫

0≤s2≤s1≤s≤t

e−λt〈P s2Gi, Gi〉L2(P)ds1ds2dsdt (4.13)

= 2λ−3

+∞∫
0

e−λs2〈P s2Gi, Gi〉L2(P)ds2 = 2λ−3〈RλGi, Gi〉L2(P).
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On the other hand, since t 7→ Zi(t) is an increasing function, we can write that the utmost left hand
side of (4.13) is bounded from above as

+∞∫
0

e−λ tZi(t) dt ≤ Zi

(
λ−(1+ρ)

) λ−(1+ρ)∫
0

e−λt dt+

+∞∫
λ−(1+ρ)

e−λtZi (t) dt. (4.14)

≤λ−1Zi

(
λ−(1+ρ)

)
+

1
3
‖Gi‖2

L2(P)

+∞∫
λ−(1+ρ)

e−λtt3 dt ≤ λ−1Zi

(
λ−(1+ρ)

)
+
C‖Gi‖2

L2

3λ3

+∞∫
λ−(1+ρ)

e−(λt)/2dt

for some absolute constant C > 0. We have used (4.10) in the second inequality above. Performing
now the integration on the utmost right hand side of (4.14) and recalling (4.13) we obtain that

2λ−3〈RλGi, Gi〉L2(P) ≤ λ−1Zi

(
λ−(1+ρ)

)
+
Ce−λ−ρ‖Gi‖2

L2(P)

3λ4
. (4.15)

Summing up over i we obtain (4.12) upon choosing λ := T−1
δ . �

The proof of the lower bound

The lower bound (3.3) in Theorem 3.1 is proved as follows: note that

y(t) = δ

∫ t

0
F(η(s))ds

is of the form of the functionals considered in Proposition 4.2 (with G = δF). Therefore, to prove
(3.3) we will first use suitable test functions in the variational principle (4.6) for the resolvent, and
then use (4.12) to obtain the lower bound for Y (t) given by (3.1).

The test functions are chosen as follows: suppose that ψ(k) ∈ C∞
0 (Rd) is a smooth complex

valued, even vector function: ψi(−k) = ψ∗i (k), i = 1, . . . , d and denote by P1 the family of all
random elements of the form

φ(ω) =
∫
ψ(k) · F̂(dk;ω). (4.16)

By virtue of (4.6) we have a lower bound

〈RλFi, Fi〉L2 ≥ sup
[
2〈Fi, φ〉L2 −

1
λ
‖Lφ‖2

L2 − λ‖φ‖2
L2 : φ ∈ P1

]
. (4.17)

Observe that
2〈Fi, φ〉L2 = 2

∫
Rd

ψ(k) · Γ(k̂)ei
a(|k|)dk
|k|2α+d−2

, (4.18)

where Γ(k̂) = [Γij(k̂)]. Since we have

Djφ = i

∫
Rd

kj ψ(k) · F̂(dk), (4.19)

the operator L acts as

Lφ = (v + δF) · ∇φ = i

 ∫
Rd

v · k ψ(k) · F̂(dk) + δ

∫
Rd

∫
Rd

ψ(k) · F̂(dk)k · F̂(dk′)

 (4.20)
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and
‖φ‖2

L2(P) =
∫
Rd

[Γ(k̂)ψ(k) · ψ(k)]
a(|k|)dk
|k|2α+d−2

(4.21)

we have

‖Lφ‖2
L2(P) =

∫
Rd

(v · k)2[Γ(k̂)ψ(k) · ψ(k)]a(|k|)dk
|k|2α+d−2

(4.22)

+δ2
∫
Rd

∫
Rd

[Γ(k̂)ψ(k) · ψ(k)][Γ(k̂′)k · k]a(|k|)a(|k′|)dkdk′

(|k||k′|)2α+d−2

+δ2
∫
Rd

∫
Rd

[Γ(k̂)ψ(k) · k′][Γ(k̂′)k · ψ(k′)]a(|k|)a(|k′|)dkdk′

(|k||k′|)2α+d−2
.

Using an elementary estimate

(Γ(k̂)ψ(k) · k′) ≤ (Γ(k̂)ψ(k) · ψ(k))1/2(Γ(k̂)k′ · k′)1/2 (4.23)

we conclude that
〈RλFi, Fi〉L2 ≥ sup[Ji(φ) : φ ∈ P1], (4.24)

where Ji(φ) is a quadratic functional given by

Ji(φ) := 2
∫
Rd

[ψ(k) · Γ(k̂)ei]
a(|k|)dk
|k|2α+d−2

− λ

∫
Rd

[Γ(k)ψ(k) · ψ(k)]
a(|k|)dk
|k|2α+d−2

(4.25)

− 1
λ

∫
Rd

(v · k)2[Γ(k̂)ψ(k) · ψ(k)]a(|k|)dk
|k|2α+d−2

− 2δ2

λ

∫
R2d

[Γ(k̂)ψ(k) · ψ(k)][Γ(k̂′)k · k]a(|k|)a(|k′|)dkdk′

(|k||k′|)2α+d−2
.

The maximizer of the functional given above equals

ψ∗(k) = Γ(k̂)ei

{
λ+

1
λ

[
(v · k)2 + δ2|k|2H

]}−1

, (4.26)

where

H := 2
∫
Rd

Γ(k̂′)e1 · e1
a(|k′|)dk′

|k′|2α+d−2
= 2

(
1− 1

d

)∫
Rd

a(|k′|)dk′

|k′|2α+d−2
> 0.

Thus, from (4.24) we obtain

P (λ) :=
d∑

i=1

〈RλFi, Fi〉L2 ≥ m(δ), (4.27)

where

m(δ) := (d− 1)
∫
Rd

{
λ+

1
λ

[
(v · k)2 + δ2|k|2H

]}−1 a(|k|)dk
|k|2α+d−2

. (4.28)

We claim that m(δ) ≥ Cλ1−2α for 0 < λ ≤ 1. To show this we will assume with no loss of
generality that v = e1. The expression in (4.28) is of the same order of magnitude as∫

|k|≤1

λdk
(λ2 + k2

1 + 2δ2|k|2H)|k|2α+d−2
≥ Cλ

∫
|k|≤1

dk
(λ2 + k2

1 + δ2|k|2)|k|2α+d−2
(4.29)
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for some C > 0. Writing k = (k1, l) we can further transform the right hand side of (4.29). It equals

Cλ

∫
k2
1+l2≤1

ld−2dk1dl

[λ2 + (1 + δ2)k2
1 + δ2l2](k2

1 + l2)α+d/2−1
, (4.30)

where l = |l|. Introducing the polar coordinates l = % cos θ, k1 = % sin θ we can estimate (4.30) from
below by

Cλ

1∫
0

π/2∫
0

cosd−2 θd%dθ

(λ2 + %2 sin2 θ + %2δ2)%2α−1
≥ C1λ

1∫
0

π/4∫
0

d%dθ

[λ2 + %2(θ2 + δ2)]%2α−1
. (4.31)

Substituting %′ := λ−1%
√
θ2 + δ2 we see that the right hand side of (4.31) equals

C1λ
1−2α

π/4∫
0

dθ

(θ2 + δ2)1−α

 (θ2+δ2)1/2λ−1∫
0

d%

(1 + %2)%2α−1

 .
Since 2− 2α < 1, the first integral above converges even for δ = 0, and the second also has a finite
limit as λ→ 0. We conclude from the above and (4.27) that

P (λ) ≥ C2λ
1−2α, ∀λ ∈ (0, 1] (4.32)

and some C2 > 0.
With the lower bound (4.32) at hand we are ready to finish the proof of Theorem 3.1. Let ρ′ > 0

be arbitrary and let T+
δ be as in the statement of the theorem. We apply Proposition 4.2 with

Tδ := (T+
δ )1/(1+ρ′). Then, for sufficiently small δ0 we have

Y
(
T+

δ

)
= Y

(
T 1+ρ′

δ

)
≥ C3 δ

2T 2
δ P (T−1

δ )
(4.32)

≥ C4δ
2T 2α+1

δ

for all δ ∈ (0, δ0] and some C3, C4 > 0. Hence,

1
T+

δ

Y
(
T+

δ

)
≥ C4δ

2T 2α−ρ′

δ = C4δ
2−2H(1+ρ)(2α−ρ′)/(1+ρ′)t(1+ρ)(2α−ρ′)/(1+ρ′)

and (3.3) follows, provided that ρ′ > 0 is chosen sufficiently small.

The upper bound

The upper bound (3.4) in Theorem 3.1 is proved using an approximation of the trajectory by the
correctors.

The corrector fields

Let F(1)
λ := F and for any λ > 0 we define the corrector field of the first order in the direction of ~ep

χ
(1)
p,λ :=

∫
1

λ− iv · k
F̂p(dk), p = 1, . . . , d. (4.33)

Note that χ(1)
p,λ satisfies

(λ− v · ∇)χ(1)
p,λ = F

(1)
p,λ , p = 1, . . . , d.
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Let us define F(2)
λ = (F (2)

1,λ , . . . , F
(2)
d,λ), where

F
(2)
p,λ := F · ∇χ(1)

p,λ = i

∫ ∫
k1 · F̂(dk2)
λ− iv · k1

F̂p(dk1). (4.34)

Then, we may write, using the definition of the first order corrector

xp(t)− vpt = δ

t∫
0

Fp(η(s))ds = δλ

t∫
0

χ
(1)
p,λ(η(s))ds− δ

t∫
0

v · ∇χ(1)
p,λ(η(s))ds. (4.35)

On the other hand, we also have

χ
(1)
p,λ(η(t))− χ

(1)
p,λ(ω) =

t∫
0

(v + δF(η(s))) · ∇χ(1)
p,λ(η(s))ds (4.36)

=

t∫
0

v · ∇χ(1)
p,λ(η(s))ds+ δ

t∫
0

F(2)(η(s)) · ∇χ(1)
p,λ(η(s))ds.

so that (4.35) becomes

xp(t)− vpt = δ2
t∫

0

F
(2)
p,λ (η(s))ds+ δλ

t∫
0

χ
(1)
p,λ(η(s))ds+ δχ

(1)
p,λ(ω)− δχ

(1)
p,λ(η(t)) (4.37)

Now, we may iteratively define F (n)
p,λ := F · ∇χ(n−1)

λ,p and let χ(n)
λ,p be the solution of

(λ− v · ∇)χ(n)
λ,p = F

(n)
p,λ . (4.38)

Then, for any n ≥ 1 we have a decomposition

xp(t)− vpt = δn

t∫
0

F
(n)
p,λ (η(s))ds+ λ

n−1∑
l=1

δl

t∫
0

χ
(l)
p,λ(η(s))ds+

n−1∑
l=1

δl[χ(l)
p,λ(ω)− χ

(l)
p,λ(η(t))]. (4.39)

Technically, the most important results of this section are the following bounds for the correctors.

Proposition 4.3 Suppose that α ∈ (1/2, 1). Then, for each n ≥ 1 we have

‖χ(n)
λ ‖L2 ≤

C

λnα
(1 + |log λ|)n/2 , λ ∈ (0, 1] (4.40)

for some constant C > 0. When, on the other hand α < 1/2 we have

‖χ(n)
λ ‖L2 ≤

C

λn/2
(1 + |log λ|)n/2 , λ ∈ (0, 1]. (4.41)

As a consequence we obtain the following.

Corollary 4.4 For some constant C > 0 we have

‖F(n)
λ ‖L2 ≤

C

λnα
(1 + |log λ|)n/2 , λ ∈ (0, 1] (4.42)

for α ∈ (1/2, 1) and

‖F(n)
λ ‖L2 ≤

C

λn/2
(1 + |log λ|)n/2 , λ ∈ (0, 1] (4.43)

for α < 1/2.
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The proof of Proposition 4.3 is rather technical and we postpone it until Section 6, where the proof
of Corollary 4.4 can also be found.

In what follows we shall also need the following lemma which shows that the inner products of
correctors with F are of a smaller order than one would naively expect from the Cauchy-Schwartz
inequality and Proposition 4.3.

Lemma 4.5 Suppose that α < 1/2. Then, for a given n ≥ 1 there exists a constant C > 0 such that

|〈χ(n)
λ,p, Fp〉L2 | ≤

C

λ(n−1)/2
(1 + | log λ|)(n+1)/2 , ∀λ ∈ (0, 1]. (4.44)

This lemma is also proved in Section 6.

The proof of the upper bound

We now prove (3.4). Using (4.39) we estimate

E
∣∣y (T−δ )∣∣2 ≤ C

[
δ2n(T−δ )2‖F(n)

λ ‖2
L2 +

n−1∑
l=1

δ2l(λT−δ )2
d∑

p=1

‖χ(l)
p,λ‖

2
L2 +

n−1∑
l=1

δ2l
d∑

p=1

‖χ(l)
p,λ‖

2
L2

 (4.45)

Recall that T−δ = δ−2H(1−ρ)t1−ρ. This together with estimates (4.40) and (4.42) imply that the right
hand side of (4.45) can be estimated by

C

[
(δλ−α)2n(T−δ )2 +

n−1∑
l=1

(δλ−α)2l(λT−δ )2 +
n−1∑
l=1

(δλ−α)2l

]
.

Choose λ := δ2H(1−ρ), we obtain then

E
∣∣y (T−δ )∣∣2 ≤ Ct2(1−ρ)

(
δnρδ−4H(1−ρ) +

n−1∑
l=1

δlρ

)
. (4.46)

For an arbitrary ρ > 0 we can choose n sufficiently large so that the right hand side of (4.46) is of
order of magnitude o(1) so that (3.4) follows. �

5 The proof of Theorem 3.2

For the most part the proof of the upper bound (3.6) in Theorem 3.2 is a repetition of what has
been done in the corresponding situation in the previous case. Observe that (4.45) still holds with
T−δ := tδ−2(1−ρ). We can choose now λ := (T−δ )−1 and easily convince ourselves that (3.6) holds.

The heuristic reason why this direction is simpler once the upper bound in Theorem 3.1 has been
obtained is that the time δ−2 is much shorter that δ−2H , H = 1/(2α) for α < 1/2. Therefore the
fact that “nothing happens until the time O(δ−2)” is not very surprising in Theorem 3.2. The lower
bound in Theorem 3.2 is more informative – it tells that something happens at the time O(δ−2)
which is much earlier than the time scale δ−2H .

We now prove the lower bound (3.5). Let ρ′ > 0 and Tδ := (tδ−2)1/(1+ρ′). We shall further
specify the parameter ρ′ later on. By virtue of Proposition 4.2 we conclude that for a certain C > 0
and sufficiently small δ > 0

Y
(
T 1+ρ′

δ

)
≥ Cδ2T 2

δ P (T−1
δ ), (5.1)
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where P (λ) is given by (4.27). Recall that the correctors χ(n)
λ,p are the solutions of (4.38) for an

arbitrary λ > 0 and N ≥ n ≥ 1. Let the remainders r(N)
λ,p be given by

[λ− (v + δF) · ∇]r(N)
λ,p = F

(N+1)
p,λ . (5.2)

Multiplying both sides of (5.2) by r(N)
λ,p and integrating out we get an obvious bound

‖r(N)
λ,p ‖L2 ≤

1
λ
‖F (N+1)

p,λ ‖L2

(4.43)

≤ C

λ1+(N+1)/2
(1 + | log λ|)N/2. (5.3)

Observe also that

RλFp =
N∑

n=1

δn−1χ
(n)
λ,p + δNr

(N)
λ,p

and therefore

〈RλFp, Fp〉L2 ≥ 〈χ(1)
λ,p, Fp〉L2 − C

N−1∑
n=1

δn|〈χ(n+1)
λ,p , Fp〉L2 | − Cλ−3/2(δλ−1/2)N (1 + | log λ|)N/2.

Lemma 4.5 allows us to obtain the following estimate

〈RλFp, Fp〉L2 ≥ 〈χ(1)
λ,p, Fp〉L2 − C

N−1∑
n=1

(δλ−1/2)n|(1 + | log λ|)n/2 − Cλ−3/2(δλ−1/2)N (1 + | log λ|)N/2.

(5.4)
Choosing λ := T−1

δ we obtain from (5.1) and (5.4), with sufficiently large N chosen, that

δ2−ρY
(
tδ−2

)
≥ Ct2/(1+ρ′)δ−ρ+4ρ′/(1+ρ′), (5.5)

which clearly implies (3.5), provided that −ρ+ 4ρ′/(1 + ρ′) < 0. �

6 The proofs of the corrector bounds

In this section we prove the technical bounds on the correctors stated in Proposition 4.3, Corollary 4.4
and Lemma 4.5.

The Feynman diagrams

The proofs of the corrector bounds make an extensive use of the Feynman diagrams. Let us recall
now the corresponding basic notions. Let Zn := {1, . . . , n}, a Feynman diagram F (of order n ≥ 0
and rank r ≥ 0) based on Zn is a graph consisting of a set B(F) ⊂ Zn of vertices from Zn, and a set
E(F) of e(F) edges connecting points in Zn without common endpoints. So there are e(F) pairs of
vertices, each joined by an edge, and a(F) := n − 2e(F) unpaired vertices, called free vertices. An
edge whose endpoints are m,n ∈ B is denoted by m̂n (unless otherwise specified, we always assume
m < n). A diagram F is said to be based on B(F). Denote the set of free vertices by A(F), so
A(F) = F \ E(F). The diagram is complete if A(F) is empty and incomplete, otherwise. Also for
a given 1 ≤ p ≤ n let us denote by Ap(F) the set of all free vertices that are less or equal to p
and by Lp(F) the union of Ap(F) and all the left vertices of edges m̂n for which m ≤ p < n. Let
L(F) := Ln(F) denote the left vertices of all edges belonging to E(F).
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Expressions for correctors

We begin with some explicit expressions for the correctors χ(n)
m,λ. Recall that the functions χ(n)

m,λ,
m = 1, 2 . . . , d, are defined iteratively as the solutions of

(λ− v · ∇)χ(n)
m,λ = F

(n)
m,λ, F

(n)
m,λ := F · ∇χ(n−1)

m,λ , (6.1)

with χ(1)
m,λ, the solution of

(λ− v · ∇)χ(1)
m,λ = Fm,λ, m = 1, . . . , d,

given explicitly by

χ
(1)
m,λ :=

∫
1

λ− iv · k
F̂m(dk), m = 1, . . . , d. (6.2)

Let us introduce auxiliary functions

h̃n(k1, . . . ,kn) :=
∑n

l=1 kl

λ− iv · (
∑n

l=1 kl)

for n ≥ 1 and

h
(m)
1 (k1) :=

em

λ− iv · k1
, hn(k1, . . . ,kn) :=

∑n−1
l=1 kl

λ− iv · (
∑n

l=1 kl)
, n ≥ 2.

Then, a simple induction argument shows that the n–th order corrector in the direction of the vector
ep is given by

χ
(n)
m,λ := in−1

∫
h

(m)
1 (k1) ⊗ h2(k1,k2) ⊗ . . .⊗ hn(k1, . . . ,kn) · F̂(dk1) ⊗ F̂(dk2) . . .⊗ F̂(dkn) (6.3)

and the fields F(n)
λ defined in (6.1) are F(n)

λ = (F (n)
1,λ , . . . , F

(n)
d,λ ), where

F
(n)
m,λ := in−2

∫
em ⊗ h̃1(k1) ⊗ . . .⊗ h̃n−1(k1, . . . ,kn−1) · F̂(dk1) ⊗ F̂(dk2) . . .⊗ F̂(dkn). (6.4)

The proof of Proposition 4.3

The Feynman diagrams expansion

We now prove Proposition 4.3, an L2-bound for the correctors. Using the Feynman diagram expan-
sion (A.7) of a multiple stochastic integral from the Appendix we can write that

χ
(n)
λ =

∑
F
χ

(n)
λ (F), (6.5)

where the summation extends over all Feynman diagrams F of the set Zn. For a given diagram F
with free vertices A(F) = {n1, . . . , na} and edges E(F) = {p̂q} we set

χ
(n)
m,λ(F) :=:

∫
. . .

∫
fm,λ(kn1 , . . . ,kna) · F̂(dkn1) ⊗ . . .⊗ F̂(dkna) :,
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where : · : denotes the orthogonal projection onto the space of a–th degree Hermite polynomials
H :a:, cf Definition 3.1 of [16], and fm,λ : (Rd)a → (Rd)a is given by

fm,λ
in1 ,...,ina

(kn1 , . . . ,kna) :=
∫
h

(m)
1,i1

(k1) . . . hn,in(k1, . . . ,kn)
∏

bpq∈E(F)

Γip,iq(k̂p)
a(|kp|)δ(kp + kq)

|kp|2α+d−2
dkpdkq.

Using Theorem 3.9 p. 26 of [16] one concludes that

‖χ(n)
m,λ(F)‖2

L2 =
∑
π

∫
fm,λ(kn1 , . . . ,kna)f

m,λ(k′π(n1), . . . ,k
′
π(na))

a∏
p=1

Γnp,nπ(p)
(k̂np)

a(|knp |)
|knp |2α+d−2

× δ(knp + k′π(np))dknpdk
′
π(np), (6.6)

where the summation extends over all permutations π : A(F) → A(F). We assume with no loss of
generality that v = e1. Also we write ki = (ki, li) ∈ R× Rd−1, splitting out the first component of
the vector ki. Then, with this notation we have

|fm,λ
in1 ,...,ina

(kn1 , . . . ,kna)| ≤
K∫

−K

. . .

K∫
−K

n∏
j=1

1∣∣∣∣∣λ− i
j∑

l=1

kl

∣∣∣∣∣
∏

bpq∈E(F)

δ(kp + kq)
|kp|2α−1

dkpdkq

×


∫
. . .

∫
|lp|≤K

∏
bpq∈E(F)

δ(lp + lq)dlpdlq
(k2

p + |lp|2)(d−1)/2

 .

The last integral can be estimated by C
∏ bpq∈E(F)(1 + log+ |kp|) so we conclude that the right hand

side of (6.6) can be estimated by

a(F)!
∫
|fm,λ|2(kn1 , . . . ,kna)

a∏
p=1

a(|knp |)dknp

|knp |2α+d−2
(6.7)

≤ C

K∫
−K

. . .

K∫
−K

f̃2
λ(kn1 , . . . , kna)

a∏
p=1

(1 + log+ |knp |)dknp

|knp |2α−1
,

where

f̃λ(kn1 , . . . , kna) :=

K∫
−K

. . .

K∫
−K

n∏
j=1

1∣∣∣∣∣λ− i
j∑

l=1

kl

∣∣∣∣∣
∏

bpq∈E(F)

(1 + log+ |kp|)δ(kp + kq)
|kp|2α−1

dkpdkq.

The proof of (4.40)

Suppose first that α ∈ (1/2, 1) – we need to prove the estimate (4.40) from Proposition 4.3. Note
that after changing variables kj = λk′j and dropping the primes we get the estimate of the left hand
side of (6.7) as

‖χ(n)
m,λ(F)‖2

L2 ≤ Cλ−2αn(1 + | log λ|)nI,
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where

I :=
∫ ∞

−∞
. . .

∫ ∞

−∞
g2(kn1 , . . . , kna)

a∏
p=1

(1 + log+ |knp |)dknp

|knp |2α−1
,

with

g(kn1 , . . . , kna) :=

∞∫
−∞

. . .

∞∫
−∞

n∏
j=1

1

1 + |
j∑

l=1

kl|

∏
bpq∈E(F)

(1 + log+ |kp|)δ(kp + kq)
|kp|2α−1

dkpdkq.

We shall show by an elementary calculation that I < +∞ – this is all that remains to prove the
estimate (4.40). We present the details for the convenience of the reader: note that

I =
∫
. . .

∫
Ra+4e

n∏
j=1

1

1 + |
∑j

l=1 kl|
×

n∏
j′=1

1

1 + |
∑j′

l′=1 k
′
l′ |
×

a∏
m=1

(1 + log+ |knm |)dknm

|knm |2α−1

×
∏

bpq∈E(F)

(1 + log+ |kp|)δ(kp + kq)dkpdkq

|kp|2α−1
×

∏
dp′q′∈E(F)

(1 + log+ |kp′ |)δ(kp′ + kq′)dk′p′dkq′

|kp′ |2α−1

=
∫

Rn

n∏
j=1

1

1 + |
∑j

l=1 kl|
×

n∏
j′=1

1

1 + |
∑j′

l′=1 k
′
l′ |
×

a∏
m=1

(1 + log+ |knm |)dknm

|knm |2α−1

×
∏

p∈L(F)

(1 + log+ |kp|)dkp

|kp|2α−1
×

∏
p′∈L(F)

(1 + log+ |kp′ |)dk′p′
|kp′ |2α−1

.

We adopt the rule that in the sums above kr + ks = 0 and k′r + k′s = 0, if r̂s is an edge. Now, the
integration over |k| ≤ 1 is not a problem so in order to show that I < +∞ it suffices only to prove
that

I ′ =
∫

Rn

n∏
j=1

1

1 + |
∑j

l=1 kl|
×

n∏
j′=1

1

1 + |
∑j′

l′=1 k
′
l′ |

×
a∏

m=1

(1 + log+ |knm |)dknm

1 + |knm |2α−1
×

∏
p∈L(F)

(1 + log+ |kp|)dkp

1 + |kp|2α−1
×

∏
p′∈L(F)

(1 + log+ |kp′ |)dk′p′
1 + |kp′ |2α−1

< +∞.

Using Hölder inequality with p̄ such that p̄(2α−1) = 2 and q = 2/(3−2α) > 1 such that 1/p̄+1/q = 1
leads to I ′ ≤ C(II)1/q, with

II =
∫

Rn

n∏
p=1

1
1 + |

∑p
l=1 kl|q

×
n∏

p′=1

1

1 + |
∑p′

l′=1 k
′
l′ |q

×
∏

r∈A(F)

dkr ×
∏

m∈L(F)

dkm ×
∏

r′∈L(F)

dk′r′ .

Now, we introduce new variables η1, . . . , ηn as follows: first, we look at the sums Sm =
∑m

j=1 kj with
m = 1, . . . , n, with the terms kr + ks = 0 if r̂s is an edge. We say that η1 = k1, then we take j2
that is the smallest number larger than one which is either free or a left vertex, and let η2 = Sj2 .
Note that either η2 = k2 if k2 is not a right end, or η2 = k3 if (k1k2) is an edge. We continue in
the same way: having defined ηl−1 = Sjl−1

we take jl to be the first index larger than jl−1 which
is not a right end of an edge, and take ηl = Sjl

. In this way we will pick n − e(F) = a(F) + e(F)
sums out of Sm, m = 1, . . . , n and will define η1, η2, . . . , ηn−e(F). Note that the change of variables is
lower-triangular. Then, we do a similar procedure with the k′-variables – we look at Pm =

∑m
j=1 k

′
j
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and set ηn−e+l = Pql
, l = 1, . . . , e, where q1 < . . . < qe are the left vertices. This defines all ηl,

l = 1, . . . , n and keeps the change of variables lower-triangular. Hence, it is invertible with the
Jacobian equal to 1. As a consequence, we may drop all sums in the denominator which are not
equal to one of ηj and we have

II ≤
∫

Rn

n∏
j=1

1
1 + |ηj |q

dηj < +∞.

It follows that I < +∞ and the proof of (4.40) is complete.

The proof of (4.41)

It remains to prove the estimate (4.41) in Proposition 4.3. Suppose now that α < 1/2. The right
hand side of (6.6) can be estimated by

I := C

K∫
−K

. . .

K∫
−K

f̃2
λ(kn1 , . . . , kna)

a∏
p=1

dknp , (6.8)

where

f̃λ(kn1 , . . . , kna) :=

K∫
−K

. . .

K∫
−K

n∏
j=1

1∣∣∣∣∣λ− i
j∑

l=1

kl

∣∣∣∣∣
∏

bpq∈E(F)

δ(kp + kq)dkpdkq.

We have

I ≤ C

∫ K

−K
. . .

∫ K

−K

n∏
j=1

1

λ+ |
∑j

l=1 kl|
×

n∏
j′=1

1

λ+ |
∑j′

l′=1 k
′
l′ |

×
a∏

m=1

dknm ×
∏

bpq∈E(F)

δ(kp + kq)dkpdkq ×
∏

dp′q′∈E(F)

δ(kp′ + kq′)dk′p′dkq′ .

We introduce the new variables η1, . . . , ηn as in the previous case. With the help of this transforma-
tion and replacing the remaining n of the denominators above by 1/λ we conclude that

‖χ(n)
λ (F)‖2

L2 ≤
C

λn

∫ nK

−nK
. . .

∫ nK

−nK

n∏
j=1

1
λ+ |ηj |

dηj ≤
C

λn

[
log
(

1
λ

)
+ 1
]n

(6.9)

for some C > 0 and all λ ∈ (0, 1]. Thus (4.41) follows. �

The proof of Corollary 4.4

We now prove the estimate (4.43) in Corollary 4.4. Using the Cauchy-Schwartz inequality we obtain

‖F(n)
λ ‖L2 ≤ ‖F‖L4‖∇χ(n)

λ ‖L4 .

However, since all the Lp norms, 1 ≤ p < +∞ on Pn are equivalent, see Theorem 5.10 p. 62 of [16],
and F ∈ P1, ∇χ(n)

λ ∈ Pn we conclude that

‖F(n)
λ ‖L2 ≤ C‖F‖L2‖∇χ(n)

λ ‖L2

for some constant C > 0. Thanks to the fact that the spectral measure F̂ has a compact support
the gradient operator ∇ restricted to Pn is bounded (this can be seen by a direct calculation Dp on
elements of the form (4.5)). This in turn implies (4.43). �
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The proof of Lemma 4.5

Finally, we prove the estimate (4.44) in Lemma 4.5. We only need to be concerned with n odd, for
otherwise the left hand side of (4.44) vanishes. Using expansion (6.5) we can write that

〈χ(n)
λ,p, Fp〉L2 =

∑
F
〈χ(n)

λ,p(F), Fp〉L2 (6.10)

and the summation extends over those Feynman diagrams F for which a(F) = 1. Suppose that q is
the only free vertex of F . Then,

〈χ(n)
λ,p(F), Fp〉L2 =

∑
i1,...,in

∫
. . .

∫
h

(p)
1,i1

(k1) . . . hn,in(k1, . . . ,kn)Γiq ,p(k̂q)

× a(|kq|)
|kq|2α+d−2

δ(kq + kn+1)dkqdkn+1

∏
brs∈E(F)

Γir,is(k̂r)
a(|kr|)

|kr|2α+d−2
δ(kr + ks)dkrdks.

Using the change of variables made in the course of the proof of Proposition 4.3 we conclude therefore
that

|〈χ(n)
λ,p(F), Fp〉L2 | ≤

C

λe
(1 + | log λ|)e+1,

which yields (4.44) because 2e+ 1 = n. �

A Multiple stochastic integration

Suppose that P is a Gaussian, homogeneous, Borel measure over the space Ω, introduced in Section
3. Denote by F̂ the corresponding Gaussian vector valued spectral measure on (Rd,B(Rd)). We
suppose that the structure measure R̂(dk) has the density r(k) = [rij(k)] w.r.t. the Lebesgue
measure. Let r(k) :=tr r(k)∨ 1. For a given integer n ≥ 1 we consider the Borel measure on (Rd)2n

M2n(dk1, . . . , dk2n) :=
∑
F∈Fn

∏
bpq∈F

δ(kp + kq)
2n∏

j=1

r(kj)dkj .

By L2
n we denote the completion of the space of all complex valued, bounded Borel measurable

functions ψ : (Rd)n → (Cd)n in the norm

‖ψ‖2
L2

n
:=
∫
. . .

∫
(Rd)2n

(|ψ(k1, . . . ,kn)|2 + |ψ(kn+1, . . . ,k2n)|2)M2n(dk1, . . . , dk2n).

Suppose that i ∈ Zd and N ≥ 1. We define

�N (i) := [k ∈ Rd : 2−N ij ≤ kj < 2−N (ij + 1), ∀ j = 1, . . . , d]. (A.1)

For i := (i1, . . . , in) ∈ (Zd)n we let

�N (i) := �N (i1)× . . .×�N (in). (A.2)

By D we denote the family of all such boxes. Its subfamily Π is called an admissible dyadic partition
of (Rd)2n if

(P1)
⋃

�∈Π � = (Rd)2n,
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(P2) for any two boxes � 6= �′ ∈ Π we have � ∩�′ = ∅,
(P3) there exists d0 > 0 such that |�| ≥ d0 for all � ∈ Π.
A set function c : Π → (Cd)n is called admissible if c(�) = 0 for all but finitely many boxes from

an admissible Π. We denote by A the family of all admissible set functions.
For any multi-index j := (j1, . . . , jn) ∈ {1, . . . , d}n and �(N)(i) given by (A.2) we let

F̂j[�N (i)] =
n∏

p=1

F̂jp [�N (ip)]. (A.3)

Suppose that c : Π → (Cd)n is admissible. We define then ψ(k) := c(�) for all k ∈ �. With
some abuse of notation we call such a function admissible and denote by An ⊂ L2

n the space of all
admissible functions. For any admissible function ψ ∈ An we define the n–tuple stochastic integral
letting

I(ψ) :=
∑
�∈Π

∑
j

cj(�) · F̂j[�]. (A.4)

We shall also write
∫
. . .
∫
ψ(k1, . . . ,kn)F̂(dk1) ⊗ . . . ⊗ F̂(dkn) to denote I(ψ). Below, we list some

of the properties of I(ψ). They are elementary and their verification relies on the application of the
definition so we leave this task to a reader.

Proposition A.1 (i) An is dense in L2
n in the norm ‖ · ‖L2

n
.

(ii) The stochastic integral given by (A.4) is well defined, i.e. if there exist two admissible set
functions c1, c2 corresponding to a given ψ then the respective definitions of the stochastic integrals
are identical.

(iii) We have I(a1ψ1 + a2ψ2) = a1I(ψ1) + a2I(ψ2)
(iv) Suppose that ψ1, . . . , ψn ∈ A1. Then ψ1 ⊗ . . .⊗ ψn ∈ An and

I(ψ1 ⊗ . . .⊗ ψn) =
n∏

j=1

I(ψj).

(v) We have

E[I(ψ(1))I∗(ψ(2))] =
∑
F∈Fn

d∑
j1,...,j2n=1

∫
. . .

∫
(Rd)2n

ψ
(1)
j1,...,jn

(k1, . . . ,kn)(ψ(2)
jn+1,...,j2n

)∗(kn+1, . . . ,k2n)

×
∏
bpq∈F

R̂pq(kp)δ(kp − kq)
2n∏

j=1

dkj . (A.5)

As a direct consequence of property (v) and the definition of the norm on Ln we obtain.

Corollary A.2 An 3 ψ 7→ I(ψ) is a continuous functional that extends to the entire L2
n. The

extension shall be called an n-tuple stochastic integral w.r.t. the spectral measure F̂(dk). It has
properties (iii)-(v) from Proposition A.1.

Proposition A.3 For any ψ ∈ L2
n we let

Uxψ(k1, . . . ,kn) := exp

i
 n∑

p=1

kp

 · x

ψ(k1, . . . ,kn).

Then, for any x ∈ Rd we have Uxψ ∈ L2
n and

I(ψ)(τxω) = I(Uxψ)(ω), P− a.s. (A.6)
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Proof. We have

F(τx+yω) =
∫
eik·(x+y)F̂(dk;ω) = F(τx(τyω)) =

∫
eik·xF̂(dk; τyω)

for all x,y ∈ Rd. Hence F̂(dk; τyω) = eik·yF̂(dk;ω) and (A.6) follows. �
Remark A different construction of a multiple stochastic integral can be obtained using the

approach of Chapter 7.2 of [16]. Denote the stochastic integral, defined there, by∫
. . .

∫ (J)

ψ(k1, . . . ,kn) · F̂(dk1)⊗ . . .⊗ F̂(dkn).

Let F be a Feynman diagram labelled by {1, . . . , n}. Let n1 < . . . < na be all the free vertices of F
and let p̂q ∈ E(F) denote the remaining e := (n− a)/2 edges. Set T (F)ψ : (Rd)a → (Cd)a

T (F)ψin1 ...ina
(kn1 , . . . ,kna) :=

∑
ipiq

∫
. . .

∫
ψi1...in(k1, . . . ,kn)

∏
bpq∈E(F)

ripiq(kp)δ(kp + kq)dkpdkq

for all in1 , . . . , ina = 1, . . . , d. Let

I(F) :=
∫
. . .

∫ (J)

T (F)ψ(kn1 , . . . ,knl
)F̂(dkn1)⊗ . . .⊗ F̂(dknl

).

Using Theorem 7. 25 p. 99 and Corollary 3. 17 p. 28 of ibid. one can conclude that∫
. . .

∫
ψ(k1, . . . ,kn)F̂(dk1)⊗ . . .⊗ F̂(dkn) =

∑
F
I(F), (A.7)

where the summation extends over all Feynman diagrams labelled by {1, . . . , n}. We could use then
equality (A.7) as the definition of the multiple stochastic integral.
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