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Abstract

We consider a stationary solution of the Poisson equation (λ − Lω)φλ(x;ω) = −∂∗b(x;ω),
where λ > 0 and Lω is a random, discrete, elliptic operator given by Lωu(x) := ∂∗ [a(x;ω)∂u(x)],
x ∈ Z. Here ∂f(x) := f(x + 1) − f(x) and ∂∗f(x) := f(x − 1) − f(x) for an arbitrary function
f : Z → R. The coefficients {(a(x;ω), b(x;ω)), x ∈ Z} form a stationary random field over a
probability space (Ω,F ,P). We prove that if the field of coefficients is sufficiently strongly mixing
then ‖φλ(0)‖P - the L2 norm of w.r.t. the probability measure P - behaves as Ĉλ−1/4, as λ� 1 for
some constant Ĉ > 0. In addition ‖∂φλ(0)− ∂φ0(0)‖P ≤ Cλ1/4 for λ ∈ (0, 1] and some constant
C > 0. These results complement those of [6] and [8] that hold for an analogous problem in the
multidimensional setting.

1 Introduction

Suppose that {(a(x;ω), b(x;ω))x ∈ Z} is a stationary random field over a probability space (Ω,F ,P).
We shall be concerned with the stationary solutions of the equation

(λ+ Lω)φλ(x;ω) = −∂∗b(x;ω), (1.1)

where λ > 0 is small,
Lωu(x) := ∂∗ [a(x;ω)∂u(x)] , x ∈ Z

where u : Z → R, ∂u(x) := u(x + 1) − u(x) is the discrete difference operator and ∂∗u(x) :=
u(x − 1) − u(x) is its adjoint. We assume that there exist constants 0 < a∗ < a∗ < +∞ and
b∗ < +∞, so that

a(x;ω) ∈ [a∗, a∗], |b(x;ω)| ≤ b∗, ∀x ∈ Z, P a.s. in ω. (1.2)

Note that the operator Lω is positive-definite and is the discrete version of (−∇ · (a(x)∇)) in the
continuous case, thus all λ > 0 belong to its resolvent set. This observation allows to find a (unique)
stationary solution of (1.1) for any λ > 0, see e.g. [7] for a details. On the other hand since Lω1 = 0,
λ0 = 0 belongs to the spectrum of the operator. We shall be concerned with the limiting behavior
of φλ(x), as λ ↓ 0.

It has been shown recently (somewhat surprisingly) in [6] (see also [8] for another, more proba-
bilistic, argument) that when d ≥ 3 (d ≥ 9 in [8]), and the coefficients a(x) = b(x) (in [8] a(x) and
b(x) are allowed to be different) are i.i.d., ‖φλ(0)‖P stays bounded, as λ ↓ 0. We denote here by ‖ ·‖P
the L2 norm with respect to the probability measure P:

‖f‖P =
[∫

f2(ω)dP
]1/2

.
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When d = 2 one can prove, see ibid., a logarithmic bound ‖φλ(0)‖P ≤ C logγ λ−1, for λ ∈ (0, 1]. In
the present note we complete the picture by proving that in one dimension ‖φλ(0)‖P ∼ Ĉλ−1/4, with
an explicit constant Ĉ > 0, as λ ↓ 0, see Theorem 1.1 below, provided that the field a(x) is sufficiently
strongly mixing. The case when a(x) = b(x) is of particular interest in the homogenization theory as
the respective field φλ(x), called the corrector, can be used to show the convergence of solutions of
equations with fast varying coefficients. A somewhat related question of determining the convergence
rate for homogenization in one dimension has been considered in [1].

Our second result concerns the rate of convergence of the gradient of the λ-corrector in one
dimension. It has been shown in [13] (see also [2] for the discrete setting) that in the continuum
case when d ≥ 3 and the coefficients are sufficiently strongly mixing there exist constants C, γ > 0
such that ‖∇φλ(0) − ∇φ0(0)‖P ≤ Cλγ , λ ∈ (0, 1]. In fact, in the discrete setting, for an i.i.d.
field a(x) one can show that γ can be chosen arbitrarily in the interval (0, (d − 2)/(d + 8)), see
[2]. When d = 2 the corresponding result is slightly weaker, see [10], Lemma 7.1 – it asserts that
‖∇φλ(0) − ∇φ0(0)‖P ≤ Cλγ/ log log(λ−1), λ ∈ (0, 1] for some C, γ > 0. We prove that in the case
d = 1, under the aforementioned mixing assumption, ‖∂φλ(0)− ∂φ0(0)‖P ≤ Cλ1/4 for all λ ∈ (0, 1],
where C > 0 is a constant.

Finally, we use our approach to obtain estimates of the convergence rate of solutions of parabolic
equations with random coefficients and random initial data towards the expected value of the initial
data, see Theorem 3.1. This property is known as stabilization of solutions of the heat equation and
has been introduced by Zhikov in [14]. Our contribution is to establish the rate of convergence to
equilibrium.

The method of the proof relies on a Feynman-Kac type of representation of the gradient of the
corrector given by formula (2.4) below. This representation in turn allows us to write the corrector
itself in terms of the Green’s function of the symmetric, simple random walk, which is given explicitly.
These formulas together allow us to describe the precise asymptotics of both φλ(0) and φ′λ(0), as
λ ↓ 0, see Theorem 1.1.

The main result

We assume that the field {(a(x), b(x)), x ∈ Z} satisfies (1.2), and the following:

(1) Stationarity: for any N ≥ 1, x1, . . . , xN and x ∈ Z the laws of (a(x1), b(x1), . . . , a(xN ), b(xN ))
and (a(x1 + x), b(x1 + x), . . . , a(xN + x), b(xN + x)) are identical. Under this hypothesis there
exists a unique stationary solution to (1.1) for each λ > 0, see [7].

(2) Mixing: denote by
∫

Z the summation over all integers, B(x) := b(x)/a(x) and

α(x) :=
1

a(x)
− 1
â
, β(x) = B(x)− b̂,

where â := 〈a−1(0)〉−1
P , and b̂ = 〈B(0)〉P, so that 〈α(0)〉P = 〈β(0)〉P = 0. We require that the

two point statistics satisfy∫
Z
x2[|〈α(x)α(0)〉P|+ |〈β(x)β(0)〉P|]dx < +∞, (1.3)

and, in addition, the higher moments satisfy

IN := sup
x2,...,x2n

∫
[x1≥x2≥...≥x2N−1≥x2N ]

∣∣∣∣∣
〈

2N∏
i=1

γk(xi)

〉
P

∣∣∣∣∣ dx1dx3 . . . dx2N−1 < +∞ (1.4)

for N = 1, . . . , 5, k = 0, 1, and γ0(x) = α(x), γ1(x) = β(x).
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The main result of this note is the following.

Theorem 1.1 Under the foregoing hypotheses we have

‖φλ(0)‖P = C∗λ−1/4 +O(1) as λ ↓ 0, C∗ = â1/4G
1/2
0 /2 (1.5)

where
G0 :=

∫
Z
〈Γ(x)Γ(0)〉Pdx

and
Γ(x) := âb̂α(x) + β(x). (1.6)

In addition, there exists Ĉ > 0 such that

‖∂φλ(0)− ∂φ0(0)‖P ≤ Ĉλ1/4 for all λ ∈ (0, 1]. (1.7)

Acknowledgment. This work was supported by NSF grants DMS-0854952 and DMS-0908507,
and would be impossible without the assistance of the Eyjafjallajokull volcano enabling TK’s visit
to Stanford University.

2 The proof of Theorem 1.1

2.1 The proof of (1.5)

In order to obtain a precise asymptotics in (1.5) we will split the field φλ into several terms (see
decomposition (2.7) below), and estimate each of them separately. Denote ψλ(x) := a(x)∂φλ(x).
Using equation (1.1) we obtain

φλ(x) = − 1
λ
∂∗fλ(x), (2.1)

where
fλ(x) := ψλ(x)− ψ0(x). (2.2)

Here ψ0(x) := âb̂ − b(x). Note that the field ψλ(x) converges, as λ → 0+, in L2(P) to ψ0(x). This
can been seen as follows. Using Theorem 2.4 of [11] one can deduce that ∂φλ(x) converges to some
stationary, zero mean, field Φ∗(x) in L2(P). From (1.1) we get ∂∗[a(x)Φ∗(x)] = −∂∗b(x) hence
Φ∗(x) = −B(x) +Ca−1(x) for some deterministic constant C. Since 〈Φ∗(x)〉P = 0 we conclude that
C = âb̂ and the assertion follows due to the fact that ψ0(x) = a(x)Φ∗(x).

Observe that ψλ(x) satisfies

(λ/2)a−1(x)ψλ(x) + (1/2)∂∗∂ψλ(x) = −(1/2)∂∗∂b(x), ∀λ > 0. (2.3)

Therefore, it can be written as

ψλ(x) = −1
2

∫ +∞

0
E [eλ(t, x)∂∗∂b(Xx

t )] dt, (2.4)

where

eλ(t, x) := exp
{
−(λ/2)

∫ t

0
a−1(Xx

s )ds
}
.
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Here {Xt, t ≥ 0} is a symmetric, simple random walk on Z with continuous time starting at x, given
over another probability space (Σ,A,Q), and E denotes the expectation with respect to Q. We shall
drop the superscipt x in the case wen the walk starts at the origin. Using the fact that

Mt = b(Xx
t )− b(x) +

1
2

∫ t

0
∂∗∂b(Xx

s )ds

is a mean zero martingale, we conclude that (recall B(x) = b(x)a−1(x)),

ψλ(x) =
∫ +∞

0
E [eλ(t, x)db(Xx

t )] =
λ

2

∫ +∞

0
E[eλ(t, x)B(Xt)]dt− b(x) (2.5)

= ψ0(x)− âb̂+
n∑
i=0

D
(i)
λ (x) +R

(n)
λ (x),

where

D
(i)
λ (x) :=

1
i!

(
λ

2

)i+1 ∫ +∞

0
E

{
B(Xt)

[∫ t

0
α(Xs)ds

]i}
exp

{
−tâ−1λ/2

}
dt,

and

R
(n)
λ (x) :=

λ

2

∫ +∞

0
E

{
B(Xt)

[
eλ(t, x)− exp

{
−tâ−1λ/2

} n∑
i=0

1
i!

{
λ

2

∫ t

0
α(Xs)ds

}i]}
dt. (2.6)

Substituting (2.5) into the right hand side of (2.1) we obtain

φλ(x) =
n∑
i=0

φ
(i)
λ (x) + r

(n)
λ (x), (2.7)

where

φ
(0)
λ (x) =

1
λ
∂∗
[
âb̂−D(0)

λ (x)
]
, (2.8)

φ
(i)
λ (x) = − 1

λ
∂∗D

(i)
λ (x), for i = 1, . . . , n

and
r

(n)
λ (x) = − 1

λ
∂∗R

(n)
λ (x). (2.9)

As we will see, the main contribution to φλ comes from φ
(0)
λ (x)+φ(1)

λ (x) that is of the order O(λ−1/4),
while the other terms are of the size at most O(1), provided that n ≥ 3.

Before we proceed to the estimates, note that simple symmetry considerations give for i ≥ 1

D
(i)
λ (x) =

(
λ

2

)i+1 ∫ +∞

0
exp

{
−tâ−1λ/2

}
dt

∫
∆i(t)

E

{
B(Xt)

[
i∏

k=1

α(Xsk)

]}
ds1 . . . dsi

=
(
λ

2

)i+1 ∫ +∞

0
ds1

∫ +∞

s1

ds2 . . .

∫ +∞

si−1

dsi

∫ +∞

si

dsi+1 exp
{
−si+1â

−1λ/2
}

(2.10)

×
∫

Zi+1

B(xi+1)p(si+1 − si, xi+1 − xi)

[
i∏

k=1

α(xk)p(sk − sk−1, xk − xk−1)

]
dx1 . . . dxi,
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where ∆i(t) := [(s1, . . . , si) : 0 ≤ s1 ≤ . . . ≤ si], s0 := 0, and x0 := x. Recall that the Green’s
function corresponding to the operator µ+ (1/2)∂∗∂ is

Gµ(x) :=
∫ +∞

0
e−µtp(t, x)dt,

where p(t, x) := Q[Xt = x] for t > 0, x ∈ Z. It is explicitly given by (see, e.g. (3.134) p. 141 of [4])

Gµ(x) = ξ(1− ξ2)−1/2q
|x|
ξ , x ∈ Z (2.11)

with ξ := (1 + µ)−1 and qξ := (1−
√

1− ξ2)ξ−1. Observe that for small µ we have

ξ1 = 1− µ+ o(µ), (2.12)

and

qξ1 =
1−

√
1− ξ2

1

ξ1
= 1−

√
2µ+ o(

√
µ). (2.13)

Integrating out the si+1-variable in (2.10) and using the definition of the Green’s function we
can write

D
(i)
λ (x) =

(
λ

2

)i+1 ∫
Zi+1

i∏
k=1

[
α(xk)Gλ/(2â)(xk−1 − xk)

]
(2.14)

×B(xi+1)Gλ/(2â)(xi − xi+1)dx1 . . . dxi+1, i ≥ 1. (2.15)

When i = 0 we can write

D
(0)
λ (x)− âb̂ =

λ

2

∫
Z
Gλ/(2â)(x− x1)β(x1)dx1, (2.16)

where, as we recall, β(x) = B(x)− b̂.

Asymptotics of r(n)
λ

The begin the proof of (1.5) with the estimate of r(n)
λ since some elements of the proof of this bound

will be used later in estimating the other terms.

Lemma 2.1 Suppose that n ≥ 3. Then, there exists a constant Cr such that

‖r(n)
λ ‖P ≤ Crλ

(n+1)/4−1, ∀λ ∈ (0, 1]. (2.17)

Proof. It suffices to prove that here exists a constant C > 0 so that

‖R(n)
λ ‖P ≤ Cλ

(n+1)/4, ∀λ ∈ (0, 1], (2.18)

with R
(n)
λ (x) given by (2.6), and R

(n)
λ := R

(n)
λ (0). We use an elementary inequality∣∣∣∣∣e−a −

n∑
i=0

e−b
(b− a)i

i!

∣∣∣∣∣ ≤ 1
(n+ 1)!

max{e−a, e−b}|b− a|n+1

valid for any a, b > 0. This inequality and the ellipticity assumption (1.2) together imply that

|R(n)
λ | ≤ C1λ

n+2

∫ +∞

0
V (t) exp

{
−(λ/2)(a∗)−1t

}
dt (2.19)
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where

V (t) := E
∣∣∣∣∫ t

0
α(Xs)ds

∣∣∣∣n+1

,

with a deterministic constant C1 > 0. Calculations similar to those leading to (2.14) yield

|Rλ| ≤ C2λ
n+1

∫
Zn+1

n+1∏
k=1

[α(xi)Gλ1(xi − xi−1)] dx1 . . . dxn+1, (2.20)

where λ1 := a∗λ/2, and thus

〈R2
λ〉P ≤ C2

2λ
2n+2

∫
Z2n+2

∣∣∣∣∣
〈

2n+2∏
k=1

α(xi)

〉
P

∣∣∣∣∣ (2.21)

×
n+1∏
i=1

[Gλ1(xi − xi−1)Gλ1(xi+n+2 − xi+n+1)] dx1 . . . dx2n+2,

where x0 = x2n+3 = 0. Using (2.11), we conclude that

〈R2
λ〉P ≤ C3λ

n+1

∫
Z2n+2

∣∣∣∣∣
〈

2n+2∏
k=1

α(xi)

〉
P

∣∣∣∣∣
n+1∏
i=1

[
q
|xi−xi−1|
ξ1

q
|xi+n+2−xi+n+1|
ξ1

]
dx1 . . . dx2n+2, (2.22)

and ξ1 := (1 + λ1)−1.
We divide Z2n+2 into simplicies ∆σ := [xσ(2n+2) ≥ . . . ≥ xσ(1)], where σ is a permutation of the

set {1, . . . , 2n + 2}. Each simplex is further split as ∆σ = ∆(1)
σ ∪ ∆(2)

σ . Here (x1, . . . , x2n+2) is in
∆(1)
σ if 0 ∈ [xσ(2), xσ(2n+2)), and in ∆(2)

σ if 0 6∈ [xσ(2), xσ(2n+2)).

Lemma 2.2 We have

n+1∏
i=1

[
q
|xi−xi−1|
ξ1

q
|xi+n+2−xi+n+1|
ξ1

]
≤ qxσ(2n+2)+|xσ(2)|

ξ1
on ∆(1)

σ , (2.23)

n+1∏
i=1

[
q
|xi−xi−1|
ξ1

q
|xi+n+2−xi+n+1|
ξ1

]
≤ qxσ(2n+2)

ξ1
on ∆(2)′

σ := ∆(2)
σ ∩ [xσ(2n+2) > 0], (2.24)

and
n+1∏
i=1

[
q
|xi−xi−1|
ξ1

q
|xi+n+2−xi+n+1|
ξ1

]
≤ q|xσ(2)|

ξ1
on ∆(2)′′

σ := ∆(2)
σ ∩ [xσ(2n+2) < 0]. (2.25)

Proof of Lemma 2.2. In order to show (2.23), suppose that xσ(2) = xj and xσ(2n+2) = xk. If
j ≤ n+ 1 and k ≥ n+ 2, as x2n+3 = x0 = 0, and

xσ(2) ≤ 0 ≤ xσ(2n+2) on ∆(1)
σ , (2.26)

it is clear that

xσ(2n+2) + |xσ(2)| ≤ |xk − xk+1|+ . . .+ |x2n+2 − x2n+3|+ |x0 − x1|+ . . .+ |xj−1 − xj | (2.27)

and (2.23) holds since qξ1 ∈ (0, 1). When j, k ≤ n+ 1 we can write, using (2.26),

xσ(2n+2) + |xσ(2)| = |xσ(2n+2) − xσ(2)| ≤ |x0 − x1|+ . . .+ |xn − xn+1|, (2.28)

6



whence (2.23) holds. The case j, k ≥ n+ 2 can be verified analogously.
In order to verify that (2.24) and (2.25) hold, we simply note that, say, for (2.24) if σ(2n+ 2) ≤

n+ 1 then we would use the fact that

xσ(2n+2) = |xσ(2n+2) − x0| ≤ |x1 − x0|+ · · ·+ |xn+1 − xn|,

and the other cases are very similar. �
We now finish the proof of Lemma 2.1. The integral in (2.22) can be written as∫

∆σ

∣∣∣∣∣
〈

2n+2∏
k=1

α(xi)

〉
P

∣∣∣∣∣
n+1∏
i=1

[
q
|xi−xi−1|
ξ1

q
|xi+5−xi+4|
ξ1

]
dx1 . . . dx2n+2 = I1 + I2,

where I` correspond to the integration over domains ∆(`)
σ , ` = 1, 2. Using the mixing condition (1.4)

for N = n+ 1 and (2.23) we conclude that, with

A(1)
σ :=

{
[xσ(2n+2) ≥ xσ(2n) ≥ . . . ≥ xσ(2)], 0 ∈ [xσ(2), xσ(2n+2)]

}
,

we have

I1 ≤
∫
A

(1)
σ

q
xσ(2n+2)+|xσ(2)|
ξ1

dxσ(2) . . . dxσ(2n+2) sup
xσ(2n+2),...,xσ(2)

 ∫
Zn+1

∣∣∣∣∣
〈

2n+2∏
k=1

α(xi)

〉
P

∣∣∣∣∣ dxσ(1) . . . dxσ(2n+1)


≤ In+1

∫
A

(1)
σ

q
xσ(2n+2)+|xσ(2)|
ξ1

dxσ(2) . . . dxσ(2n+2) ≤ In+1

∫
Zn+1

q
(
Pn+1
i=1 |xi|)/n+1

ξ1
dx1 . . . dxn+1

≤ In+1

(
1− q1/(n+1)

ξ1

)−(n+1)
≤ C

λ(n+1)/2

for some constant C > 0. We have used (2.13) in the last step. On the other hand the mixing
condition (1.4) and (2.24), (2.25) yield

I2 ≤ C
∫

[xσ(2n+2)≥xσ(2n)≥...≥xσ(2)≥0]
q
xσ(2n+2)

ξ1
dxσ(2) . . . dxσ(2n+2) ≤

C

λ(n+1)/2

Coming back to (2.22) we conclude that

〈[R(n)
λ ]2〉P ≤ Cnλ(n+1)/2, (2.29)

which in turn implies (2.18). This finishes the proof of Lemma 2.1. �

Asymptotics of φ
(0)
λ (0) + φ

(1)
λ (0)

Here, we identify the leading order contribution in (1.5).

Lemma 2.3 We have

‖φ(0)
λ (0) + φ

(1)
λ (0)‖P = C∗λ−1/4 +O(1) as λ ↓ 0, (2.30)

with the constant C∗ as in (1.5).

7



Proof. From (2.8) and (2.16) we conclude that

φ
(0)
λ (0) = −1

2

∫
Z
∂∗Gλ/(2â)(x1)β(x1)dx1 =

1
2

∫
Z
g(x1; ξ1)q|x1|

ξ1
β(x1)dx1, (2.31)

where ξ1 := [1 + λ/(2â)]−1, and

g(x; ξ) :=


1 +

√
1− ξ
1 + ξ

, when x ≥ 1, |ξ| ≤ 1,

−

(
1−

√
1− ξ
1 + ξ

)
, when x ≤ 0, |ξ| ≤ 1.

There exists a constant C > 0 such that

|g(x; ξ)− sgn(x)| ≤ C
√
λ, ∀x ∈ Z, λ ∈ (0, 1], |ξ| ∈ [1/2, 1], (2.32)

with the convention sgn(x) := 1 for x ≥ 1 and sgn x := −1 for x ≤ 0. Likewise, using (2.8) and
(2.10) we obtain that

φ
(1)
λ (0) = −λ

4

∫
Z2

∂∗Gλ/(2â)(x1)Gλ/(2â)(x2 − x1)α(x1)B(x2)dx1dx2 (2.33)

=
λξ1

4
√

1− ξ2
1

∫
Z2

g(x1; ξ1)q|x1|
ξ1

q
|x1−x2|
ξ1

α(x1)B(x2)dx1dx2,

Using decompositionB(x) = b̂+β(x), we obtain from (2.31) and (2.33) that φ(0)
λ (0)+φ(1)

λ (0) = J1+J2,
with

J1 =
1
2

∫
Z
g(x1; ξ1)q|x1|

ξ1
Γ(x1)dx1dx2,

and

J2 =
(âλ)1/2

2
√

2

(
ξ1

1 + ξ1

)1/2 ∫
Z2

g(x1; ξ1)q|x1|
ξ1

q
|x1−x2|
ξ1

α(x1)β(x2)dx1dx2.

Here Γ(x) is given by (1.6).

Asymptotics of J1

By virtue of (1.3) and (2.32), we deduce that, as λ ↓ 0,

‖J1‖2P =
1
4

∫
Z2

g(x; ξ1)g(x′; ξ1)q|x|+|x
′|

ξ1
〈Γ(x− x′)Γ(0)〉Pdxdx′ (2.34)

=
1
4

∫
Z2

sgn x sgn x′ q
|x|+|x′|
ξ1

〈Γ(x− x′)Γ(0)〉Pdxdx′ +O(1)

=
1

8π

2π∫
0

|F (qξ1e
iζ)|2G(ζ)dζ +O(1),

where

F (z) = −1 + 2iIm
[∫

x≥1
zx
]

= 2i(Imz)|1− z|−2 − 1,
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and
G(ζ) :=

∫
Z
eiζx〈Γ(x)Γ(0)〉Pdx. (2.35)

Bochner’s theorem implies that

0 ≤ G(ζ) ≤ G∗ :=
∫

Z
|〈Γ(x)Γ(0)〉P|dx < +∞,

due to (1.3). In order to pass to the limit λ ↓ 0 we use (2.12) and (2.13), and obtain that

ξ1 = 1− λ

2â
+ o(λ),

and

qξ1 =
1−

√
1− ξ2

1

ξ1
= 1−

√
λ

â
+ o(
√
λ).

Thanks to (1.3) we have |G(ζ)−G(0)| ∼ ζ2 for ζ � 1. One can conclude that

C2
∗ := lim

λ↓0

√
λ‖J1‖2P =

1
4

lim
λ↓0

√
λ

2π∫
0

|F (qξ1e
iζ)|2G(ζ)

dζ

2π
(2.36)

=
G(0)

4
lim
λ↓0

√
λ

2π∫
0

|F (qξ1e
iζ)|2 dζ

2π
.

However, we have

1
2π

∫ 2π

0
|F (qξ1e

iζ)|2dζ =
1

2π

∫
Z2

∫ 2π

0
sgn x sgn x′ q

|x|+|x′|
ξ1

eiζx−iζx
′
dxdx′dζ

=
∫

Z
q

2|x|
ξ1

dx =
1 + q2

ξ1

1− q2
ξ1

,

whence

C2
∗ =

G(0)
4

lim
λ↓0

λ1/2
1 + q2

ξ1

1− q2
ξ1

=
â1/2G(0)

4
, (2.37)

which is the constant appearing in (1.5) in Theorem 1.1.

Asymptotics of J2

The L2-norm of J2 satisfies

‖J2‖2P ≤ Cλ
∫

Z4

q
|x1|
ξ1

q
|x3|
ξ1

q
|x1−x2|
ξ1

q
|x3−x4|
ξ1

|〈α(x1)α(x3)β(x2)β(x4)〉P| dx1dx2dx3dx4,

with some constant C > 0. To estimate the right side we use the mixing condition (1.4) in the
same way as in the proof of Lemma 2.1. We divide the domain of integration Z4 into subdomains
of the form ∆σ := [xσ(1) ≥ xσ(2) ≥ xσ(3) ≥ xσ(4)] where σ is a permutation of (1, 2, 3, 4). In case the
permutation equals identity we can estimate it by

C ′λ

∫
x2,x4

q
|x2|
ξ1

q
|x4|
ξ1

dx2dx4

{
sup
x2,x4

∫
[x1≥x2≥x3≥x4]

|〈α(x1)α(x3)β(x2)β(x4)〉P| dx1dx3

}

9



This expression can be further estimated by

C ′′λ(1− qξ1)−2 ≤ C1, ∀ ∈ λ ∈ (0, 1]

with some C ′′, C1. The cases corresponding to other domains can be dealt with similarly. This
completes the proof of Lemma 2.3. �

Asymptotics of φ
(i)
λ for i ≥ 2

Next, we show that the contribution of both φ
(2)
λ and φ

(3)
λ in φλ is small.

Lemma 2.4 There exist constants C(i)
∗ , i = 2, 3 such that

‖φ(i)
λ (0)‖P ≤ C

(i)
∗ λ

i/2−1 for λ ∈ (0, 1]. (2.38)

Proof. We start with the argument for i = 2. A simple calculation, using (2.1) and (2.14) shows
that

φ
(2)
λ (0) = −λ

2

8

∫
Z

[
∂∗Gλ/(2â)(x1)

]
Gλ/(2â)(x2 − x1)Gλ/(2â)(x3 − x2)

×α(x1)α(x2)B(x3)dx1dx2dx3 = K1 +K2, (2.39)

where

K1 := 23/2ξ
1/2
1 (1 + ξ1)−1/2λ

1/2â3/2b̂

8

∫
Z2

g(x1; ξ1)q|x1|
ξ1

q
|x1−x2|
ξ1

α(x1)α(x2)dx1dx2,

K2 :=
âλξ1

4(1 + ξ1)

∫
Z3

g(x1; ξ1)q|x1|
ξ1

q
|x1−x2|
ξ1

q
|x2−x3|
ξ1

α(x1)α(x2)β(x3)dx1dx2dx3.

The L2 norm of K1 satisfies

‖K1‖2P ≤ Cλ
∫

Z4

g(x1; ξ1)g(x3; ξ1)q|x1|
ξ1

q
|x1−x2|
ξ1

q
|x3|
ξ1

q
|x3−x4|
ξ1

∣∣∣∣∣
〈

4∏
i=1

α(xi)

〉
P

∣∣∣∣∣ dx1dx2dx3dx4

≤ C ′λ
∫

Z4

q
|x1|
ξ1

q
|x3|
ξ1

q
|x1−x2|
ξ1

q
|x3−x4|
ξ1

∣∣∣∣∣
〈

4∏
i=1

α(xi)

〉
P

∣∣∣∣∣ dx1dx2dx3dx4, (2.40)

with some constants C,C ′ > 0. To estimate the utmost right side of (2.40) we use the mixing
condition (1.4) with N = 2. We divide the domain of the integration Z4 into the subdomains of
the form ∆σ := [xσ(1) ≥ xσ(2) ≥ xσ(3) ≥ xσ(4)], where σ is a permutation of (1, 2, 3, 4) and use an
argument detailed in the proof of Lemma 2.2 below. When the permutation equals identity we can
estimate this term by

C ′λ

∫
Z2

q
|x2|
ξ1

q
|x4|
ξ1

dx2dx4

{
sup
x2,x4

∫
[x1≥x2≥x3≥x4]

∣∣∣∣∣
〈

4∏
i=1

α(xi)

〉
P

∣∣∣∣∣ dx1dx3

}
.

The last expression can be further estimated by

C ′′λ(1− qξ1)−2 ≤ C1, ∀ ∈ λ ∈ (0, 1]

for some C ′′, C1. The other domains of integration can be dealt with similarly. The considerations
for ‖K2‖2P are similar. Finally, to estimate ‖φ(i)

λ (0)‖2P, for i ≥ 3 we can easily generalize the above
argument applying the mixing condition (1.4) for N = i. �

To finish the proof of Theorem 1.1 we use expansion (2.7) for n = 3. The result is a direct
consequence of Lemmas 2.1, 2.3 and 2.4.
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2.2 The gradient estimate

We now prove (1.7). It suffices to show that

‖ψλ(0)− ψ0(0)‖P ≤ Cλ1/4, ∀λ ∈ (0, 1] (2.41)

for some constant C > 0. Using (2.5) it is enough to estimate

‖D(0)
λ +D

(1)
λ − âb̂‖P,

‖D(i)
λ ‖P for i = 2, 3 and ‖Rλ‖P. We have used a shorthand notation D(i)

λ := D
(i)
λ (0). From (2.14) we

obtain after elementary calculations the decomposition D
(1)
λ = L1 + L2, where

L1 :=
λ

2

∫
Z

Γ(x1)Gλ/(2â)(x1)dx1

L2 :=
λâξ2

1

4(1 + ξ1)

∫
Z2

α(x1)β(x2)q|x1−x2|
ξ1

q
|x1|
ξ1

dx1dx2.

Thus,

‖L1‖2P =
ξ2

1λ
2

4(1− ξ2
1)

∫
Z2

q
|x|+|x′|
ξ1

〈Γ(x− x′)Γ(0)〉Pdxdx′ =
λâ

24π

∫ 2π

0
|F1(qξ1e

iζ)|2G(ζ)dζ +O(λ),

where G(ζ) is given by (2.35), F1(z) := (1− |z|2)|1− z|−2 is the Poisson kernel in dimension d = 2.
Since |G(ζ)−G(0)| ∼ ζ2 for ζ � 1 one can easily deduce that

‖L1‖2P =
G(0)λâ

24π

∫ 2π

0
|F1(qξ1e

iζ)|2dζ +O(λ).

We have ∫ 2π

0
|F1(qξ1e

iζ)|2dζ ≤ C1

∫
R

dζ

1− qξ1 + ζ2

for λ ∈ (0, 1] and some constant C1 > 0 and 1− qξ1 ∼ λ1/2. Hence, after elementary computations,
we get

‖L1‖2P ≤ C2λ
1/2

for λ ∈ (0, 1] and some constant C2 > 0.
To estimate ‖L2‖2P we repeat essentially the estimates of ‖J2‖2P and obtain

‖L2‖2P ≤ Cλ

for λ ∈ (0, 1] and some constant C > 0.
The computation that ‖D(i)

λ (0)‖2P ≤ Ciλ1/2 for i = 2, 3 (in fact both these quantities are of order
o(λ1/2)) is quite routine taking into account the arguments contained in the proofs of Lemmas 2.1
and 2.4. This ends the proof of (1.7) and that of Theorem 1.1. �
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3 Asymptotics of transition semigroup of the environment process.

Expansion (2.8) can be used to describe the asymptotics of the solution of the initial value problem

(∂t + Lω)Φ(t, x;ω) = 0 (3.1)
Φ(0, x;ω) = c(x;ω),

as t→ +∞, where {(a(x;ω), c(x;ω)), x ∈ Z} is a stationary field satisfying assumptions (1) and (2)
from Section 1. In addition, we assume 〈c(0)〉P = 0.

We obtain, in the one dimensional situation, estimate of the rate of convergence in the stabiliza-
tion problem. Namely, the following result holds.

Theorem 3.1 Under the above assumptions there exists a constant C > 0 such that

1
T

∫ T

0
‖Φ(t, x)‖2P dt ≤

C

T 1/2
, ∀x ∈ Z, T > 1. (3.2)

Remark. Property expressed in (3.2) is known as the stabilization (in the mean) of solutions of
the heat conduction equation, see [14], and has been considered in various versions in a number of
papers, see e.g. [15, 16, 3] and the references therein.

Proof of Theorem 3.1. The proof of this result shall be done in a number of steps.

Step 1: representation of Φ(t, x)

Suppose that {Y x,ω
t , t ≥ 0} is a random walk, starting at x and corresponding to the generator −Lω.

We have
Φ(t, x;ω) = E[c(Y x,ω

t )] = c(x;ω)− Lt(x;ω), (3.3)

where

Lt(x;ω) :=
∫ t

0
ELωc(Y x,ω

s )ds.

Let

ϕ(t) :=
∫ t

0
‖Φ(s, 0)‖2Pds.

Since
‖Φ(t, x)‖2P = ‖Φ(t, 0)‖2P = ‖c(0)‖2P − 2〈c(0), Lt(0)〉P + ‖Lt(0)‖2P

we obtain,

ϕ̂(λ) :=
∫ +∞

0
e−λtϕ(t)dt =

1
λ2

[
‖c(0)‖2P − 2〈φλ(0), c(0)〉P + 〈φλ(0), φλ/2(0)〉P

]
, λ > 0 (3.4)

with φλ(x) the solution of (1.1) corresponding to b(x) := a(x)∂c(x). Indeed, denote F (t, x;ω) :=
−ELωc(Y x,ω

t ;ω) and F (t) := F (t, 0). Then,

φλ(x;ω) =
∫ +∞

0
e−λtF (t, x;ω)dt.

A direct application of the integration by parts formula gives

−2
∫ +∞

0
e−λtdt

∫ t

0
〈c(0), Ls(0)〉Pds = − 2

λ2
〈c(0), φλ(0)〉Pds. (3.5)
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For any t > t′ ≥ 0 we have

〈F (t, x), F (t′, x)〉P = 〈F (t), F (t′)〉P = 〈F (t− t′), F (2t′)〉P. (3.6)

We prove this identity momentarily but first use it to verify (3.4). We have∫ +∞

0
e−λtdt

∫ t

0
‖Ls(0)‖2Pds = 2

∫
[t≥s≥s1≥s2≥0]

e−λt〈F (s2), F (s1)〉Pdtdsds1ds2

(3.6)
=

2
λ2

∫
[s1≥s2≥0]

e−λs1〈F (s1 − s2), F (2s2)〉Pds1ds2

=
2
λ2

∫
[s2≥0]

e−λs2〈φλ(0), F (2s2)〉Pds2 =
1
λ2
〈φλ(0), φλ/2(0)〉P

and the second equality in (3.4) follows.

The proof of (3.6)

To show (3.6) we use the notation pω(t, x, y) to denote transition probabilities corresponding to
Y x,ω
t . The first equality follows easily from stationarity of the environment so we only need to use

the second one. Because the generator −Lω is in a divergence form and counting measure is invariant
and reversible we have pω(t, x, y) = pω(t, y, x) for all x, y ∈ Z. The middle term in (3.6) equals∫

Z2

Lωc(y)Lωc(y′)pω(t, 0, y)pω(t′, 0, y′)dydy′

=
∫

Z2

Lωc(y)Lωc(y′)pω(t, 0, y)pω(t, 0, z)pω(t′ − t, z, y′)dydy′

=
∫

Z3

Lωc(y)Lωc(y′)pω(t, 0, y)pω(t, 0, z)pω(t′ − t, z, y′)dydy′dz.

Using stationarity of the environment we can rewrite the right hand side as being equal to∫
Z3

Lωc(y − z)Lωc(y′ − z)pω(t,−z, y − z)pω(t,−z, 0)pω(t′ − t, 0, y′ − z)dydy′dz.

Changing variables y := y− z, y′ := y′− z, z := −z and using symmetry of pω(t, z, 0) we obtain that
the above expression equals∫

Z3

Lωc(y)Lωc(y′)pω(t, z, y)pω(t, 0, z)pω(t′ − t, 0, y′)dydy′dz

=
∫

Z2

Lωc(y)Lωc(y′)pω(2t, 0, y)pω(t′ − t, 0, y′)dydy′.

and the last equality in (3.6) follows.

Step 2: estimates of the resolvent

We make use of computations made in Section 2.1 with b(x) = a(x)∂c(x). Notice that B(x) = ∂c(x)
and b̂ = 〈B(0)〉P = 0. We prove the following.

Proposition 3.2 Under the above assumptions there exist C1, C2 > 0 such that

‖φλ(0)− φ(0)
λ (0)‖P ≤ C1λ

1/2, (3.7)

and
‖c(0) + φ

(0)
λ (0)‖P ≤ C2λ

1/2, λ ∈ (0, 1] (3.8)
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Proof. The argument is very similar to what has been done in Section 2.1. This time however we
use the expansion (2.5) with n = 6. From Lemma 2.1 we can estimate ‖r(6)

λ ‖P ≤ Crλ
1/2. To estimate

‖φ(1)
λ (0)‖P we use representation (2.33). Because b̂ = 0 we get (recall that B(x) = ∂c(x))

φ
(1)
λ (0) = −λ

4

∫
Z2

∂∗Gλ/(2â)(x1)∂∗Gλ/(2â)(x2 − x1)α(x1)c(x2)dx1dx2 (3.9)

= −λ
4

∫
Z2

g(x1; ξ1)g(x2; ξ1)q|x1|
ξ1

q
|x2−x1|
ξ1

α(x1)c(x2)dx1dx2.

Using mixing assumption in the same way as in the proof of Lemma 2.3 we conclude that

‖φ(1)
λ (0)‖P ≤ C1λ

1/2, λ ∈ (0, 1]. (3.10)

A slight modification of the proof of estimates of φ(i)
λ for i ≥ 2 is also possible due to the fact that

B(x) is a gradient of a zero mean field c(x). In that case we can write

φ
(i)
λ (0) = − λi

2i+1

∫
Zi+1

∂∗Gλ/(2â)(x1)
i−1∏
k=1

Gλ/(2â)(xk+1 − xk)∂∗Gλ/(2â)(xi+1 − xi)

×
i∏

k=1

α(xk)c(xi+1)dx1 . . . dxi+1 (3.11)

= −λ
(i+1)/2

2i+1

∫
Zi+1

g(x1; ξ1)g(xi+1; ξ1)q|x1|
ξ1

i∏
k=1

[
q
|xk+1−xk|
ξ1

α(xk)
]
c(xi+1)dx1 . . . dxi+1.

Using the mixing lemma for N = i+ 1 we arrive at the estimate

‖φ(i)
λ (0)‖P ≤ C1λ

i/2, λ ∈ (0, 1]. (3.12)

This, and expansion (2.33) implies (3.7). To show (3.8) observe, see (2.31), that

φ
(0)
λ (x) = −1

2

∫
Z
∂∗Gλ/(2â)(x− x1)∂c(x1)dx1 = −1

2

∫
Z
∂∗∂Gλ/(2â)(x− x1)c(x1)dx1

=
λ

2â

∫
Z
Gλ/(2â)(x− x1)c(x1)dx1 − c(x) =

λξ1

2â(1− ξ2
1)1/2

∫
Z
q
|x−x1|
ξ1

c(x1)dx1 − c(x).

Hence,

‖φ(0)
λ (0) + c(0)‖2P ≤ Cλ

∥∥∥∥∫
Z
q
|x1|
ξ1

c(x1)dx1

∥∥∥∥2

P
.

The L2 norm on the right hand side is of order of magnitude λ−1/2, which can be seen analogously
to the estimates of J1 done previously, see (2.34) and following estimates. �

Step 3: the end of the proof of Theorem 3.1

Note also that, directly from the definition in (3.4), it follows that λ−1ϕ
(
λ−1

)
≤ ϕ̂(λ) hence

λϕ
(
λ−1

)
≤ λ2ϕ̂(λ), ∀λ ∈ (0, 1]. (3.13)

This in turn implies that, with λ = T−1,

1
T

∫ T

0
‖Φ(t, x)‖2Pdt ≤ T−2ϕ̂(T−1). (3.14)

By virtue of (2.34) and Theorem 3.2 we conclude that the right hand side of (3.14) can be estimated
by CT−1/2, which implies (3.2). �
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