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Abstract

We consider a reaction-diffusion-advection equation with a nonlinearity of the KPP type in
a cellular flow. We show that the minimal pulsating traveling front speed c∗(A) in a flow of
amplitude A satisfies the upper and lower bounds C1A

1/4 ≤ c∗(A) ≤ C2A
1/4 for A� 1. We also

analyze a related eigenvalue problem and establish an “averaging along the streamlines” principle
for the positive eigenfunction when A� 1.

1 Introduction

Recently there has been a lot of mathematical studies of the effects of a fluid flow on the propagation
of the reaction-diffusion fronts: see [4, 23] for recent reviews. One of the simplest models of this
phenomenon is a single reaction-diffusion advection equation

Tt + u · ∇T = ∆T + f(T ). (1.1)

Here T is the temperature of the reactant, 0 ≤ T ≤ 1, and u is a prescribed fluid flow. The
nonlinearity f(T ) is usually taken to be a Lipschitz function either of the KPP type, that is,

f(0) = f(1) = 0, f(T ) > 0 for 0 < T < 1, f(T ) ≤ f ′(0)T, (1.2)

or of the ignition class:

f(T ) = 0 for T ∈ [0, θ0] ∪ {1}, f(T ) > 0 for θ0 < T < 1. (1.3)

This problem is considered in a two-dimensional strip D = Rx × [0, L]y with the periodic

T (x, y) = T (x, y + L),

or Neumann
∂T (x, y)
∂y

= 0, y = 0, L

boundary conditions in y. All our results below are formulated and proved with the periodic bound-
ary conditions. However, the modifications required for the Neumann boundary conditions are
invariably very minor, and the results still apply to that case as well. The boundary conditions at
infinity are front-like:

T → 0 as x→ −∞, T → 1 as x→ +∞.
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The reaction-diffusion fronts propagate from the right to the left end of the strip with these boundary
conditions. It has been shown in [5] and [22] that, when the flow u is spatially periodic and the
nonlinearity f(T ) is either of the KPP or the ignition type, equation (1.1) admits pulsating traveling
front solutions. They are of the form T (t, x, y) = U(x − ct, x, y) with a function U(s, x, y) that
is monotonically increasing in the first variable and periodic in the last two. The speed c of the
pulsating traveling front is unique in the ignition case, while in the KPP case such solutions exists
for all c ≥ c∗ where c∗ is the minimal speed that is not a priori known explicitly. It has been
further shown in [22] in the ignition case and in [6, 21] in the KPP case that the general solutions
of the Cauchy problem with front-like initial conditions travel asymptotically with the speed of the
pulsating traveling front (the minimal speed c∗ in the KPP case).

One of the most physically interesting aspects of this problem is the speed-up of the propagation
of the reaction-diffusion fronts by a strong advection. Mathematically, one is interested in the
dependence of the asymptotic speed of propagation of front-like solutions of (1.1) on the amplitude
and geometry of the flow u. The aforementioned results of [6, 21, 22] show that when the flow is
periodic this question is reduced to the estimates on the speed of the pulsating traveling fronts of

Tt +Au · ∇T = ∆T + f(T ) (1.4)

as the function of the flow amplitude A and geometry of the streamlines of the fixed flow u. In
particular, it has been shown in [8] that if the streamlines of u are open and connect the left and
right ends of the strip, then c∗(A) ∼ O(A), both in the ignition and KPP cases. In the special case
of a shear flow of the form u = (u(y), 0) an elementary proof of this result has been presented in
[13]. Finally, it has been shown in [4] that in the KPP case the limit

c̄ = lim
A→∞

c∗(A)
A

exists for a shear flow.
The situation has been less clear when the flow has closed streamlines. We consider a class of

cellular flows of the form u = ∇⊥H = (Hy,−Hx) with the stream-function H(x, y) that has period
L = 2 both in x and y. Moreover, we assume that the level set {H = 0} contains the union of
the lines {x = 2N} and {y = 2N}, N ∈ N and that the points of the form (2n, 2m) are non-
degenerate saddles of the function H (as depicted on Figure 1.1). Moreover, we assume that other

Figure 1.1: A sketch of the level sets of the stream-function H(x, y).

critical points of the function H are also non-degenerate. A prototype example of such function is
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H(x, y) = sinπx sinπy. It has been conjectured in [3] that

c∗(A) ∼ A1/4 (1.5)

both in the ignition and KPP cases. This prediction has been supported by a homogenization
reasoning in [8] and [15], as well as by the physical arguments and numerical simulations in [1, 2, 20].
However, as far as the rigorous arguments are concerned, the only known estimates for the speed
are the lower bound c∗(A) ≥ CA1/5 obtained in [16] and the upper bound c∗(A) = o(A) shown in
[4, 7]. They hold both for the ignition and KPP nonlinearities. The main result of this paper is the
proof of (1.5) in the KPP case.

Theorem 1.1 Let the nonlinearity f(T ) be of the KPP type (1.2) and the stream function H(x, y)
satisfy the above assumptions. Then there exist two constants C1,2 > 0 and A0 > 0 so that the
minimal pulsating traveling front speed c∗(A) satisfies the upper and lower bounds

C1A
1/4 ≤ c∗(A) ≤ C2A

1/4 (1.6)

for all A > A0.

As an immediate corollary of Theorem 1.1 and the maximum principle we deduce the upper bound
c(A) ≤ CA1/4 for the unique speed of the pulsating traveling front in the ignition case. However,
we do not prove the lower bound in the ignition case.

Theorem 1.1 is the main result of this paper. Its proof relies on the variational principle [5, 10]
for the pulsating traveling front speed that reduces the problem to finding bounds for the principal
eigenvalue of a certain advection-diffusion eigenvalue problem in a cellular flow. We also show that
when the flow amplitude A is high the corresponding eigenfunction becomes approximately constant
along the streamlines of the flow: see Theorem 4.1.

The paper is organized as follows. We first recall the variational principle for the minimal front
speed and the relevant eigenvalue problem in Section 2. We also present some basic properties
of the principle eigenvalue here. Most of the results in this section are not new but we adopt a
slightly different point of view on the problem: the roles of the free parameter and the principle
eigenvalue are reversed. The basic estimates on the principle eigenvalue that imply Theorem 1.1
in a straightforward fashion are presented in Theorem 3.1 in Section 3. Finally, Section 4 contains
the proof of Theorem 4.1, “the oscillation along a streamline estimate” on the eigenfunction. The
methods of [18] are used here. An additional twist in the present problem is that the eigenfunction
satisfies only the maximum principle but not the minimum principle – this difficulty is circumvented
by the introduction of its modification that obeys the minimum principle but not the maximum
principle. A combination of the two functions allows us to control the oscillation over a streamline.

A word on notation: we denote by C all universal constants that do not depend on the flow
amplitude A throughout the paper. The period cell is denoted C = [0, 2]× [0, 2], while x = (x, y).

Acknowledgment. This work was started when both authors were visiting Stanford University.
We thank G. Papanicolaou for his hospitality. The research was supported by NSF grant DMS-
0203537 and ONR grant N00014-02-1-0089. LR was also supported by an Alfred P. Sloan Fellowship.

2 The variational principle for the speed

Let us recall the variational principle for the minimal front speed [5, 6, 7, 10]. It may be obtained
in a quick formal way as follows. Consider the linearized KPP equation ahead of the front where T
is small:

∂T

∂t
+Au · ∇T = ∆T + f ′(0)T (2.1)
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and look for the pulsating traveling front solutions of the form T (t,x) = φ(x) exp(λ(x+ ct)) with a
positive periodic function φ(x). This leads to an eigenvalue problem for φ

M(λ)φ := ∆φ−Au · ∇φ+ 2λ
∂φ

∂x
− λAu1φ = (cλ− λ2 − f ′(0))φ. (2.2)

The Krein-Rutman theorem implies that the operator M(λ) has a unique eigenvalue h(λ) that
corresponds to a positive periodic eigenfunction φ(x;λ):

∆φ−Au · ∇φ+ 2λ
∂φ

∂x
− λAu1φ = h(λ)φ, φ > 0 periodic. (2.3)

The front speed c then satisfies an equation

h(λ) = cλ− λ2 − f ′(0)

that may be re-written as

c =
f ′(0) + λ2 + h(λ)

λ
. (2.4)

It has been shown in [5] that the minimal front speed for the full nonlinear KPP equation (1.4) is
the same as that for the linearized equation (2.1). Moreover, it is given by infimum of the right side
of (2.4).

Theorem 2.1 [5] There exists a constant c∗ so that a pulsating traveling front solution of (1.4)
exists for all c ≥ c∗. The minimal front speed is described by the variational principle

c∗ = inf
λ>0

f ′(0) + λ2 + h(λ)
λ

. (2.5)

We note that the variational principle (2.5) as the characterization of the asymptotic propagation
speed of the solutions of the Cauchy problem for (1.1) goes back to [10].

It is convenient to re-write the eigenvalue problem (2.3) in terms of the function ψ(x, y) =
φ(x, y)eλx. This function is not periodic but rather belongs to the set

E+
λ =

{
ψ(x, y): φ(x, y) = ψ(x, y)e−λx is periodic and ψ > 0

}
.

The corresponding eigenvalue problem for ψ(x) is

Lψ := ∆ψ −Au · ∇ψ = µ(λ)ψ, ψ > 0, ψ ∈ E+
λ (2.6)

with µ(λ) = λ2 + h(λ). Now, the variational principle (2.5) may be re-stated as

c∗ = inf
λ>0

f ′(0) + µ(λ)
λ

, (2.7)

where µ(λ) is the unique eigenvalue of (2.6). Expression (2.7) is the starting point of our analysis.
Let us recall some basic properties of the function µ(λ).

Proposition 2.2 The principal eigenvalue µ(λ) of the problem (2.6) is characterized as follows:

µ(λ) = inf
φ∈E+

λ

sup
x∈C

Lφ
φ

= sup
φ∈E+

λ

inf
x∈C

Lφ
φ
. (2.8)

Here C = [0, 2]× [0, 2] is the period cell and the operator L is defined by (2.6).
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Proof. This proposition has also been proved in [5], we present the proof for the convenience of the
reader. First, it is obvious that with ψ given by (2.6) we have

inf
x∈C

Lψ
ψ

= sup
x∈C

Lψ
ψ

= µ. (2.9)

Let us first assume that there exists a function η ∈ E+
λ so that

inf
x∈C

Lη
η

= µ+ δ, δ > 0.

Then we define qs(x) = ψ(x) − sη(x). The function qs(x, y) > 0 for s sufficiently small while
qs(x, y) < 0 for s sufficiently large. Let τ be the first value of s so that qτ (x0) = 0 at some point
x0 ∈ C. We have qτ (x, y) ≥ 0 – hence qτ attains its minimum at x0. The same is true for the
periodic function wτ = e−λxqτ . We recall that

∆ψ −Au · ∇ψ = µ(λ)ψ

and
∆η −Au · ∇η > (µ(λ) + δ)η,

which implies that
∆qτ −Au · ∇qτ < µ(λ)qτ − δτη.

Therefore, the function wτ satisfies

∆wτ −Au · ∇wτ + 2λ
∂wτ

∂x
+ λ2wτ − λAu1wτ < µ(λ)wτ − δτe−λxη. (2.10)

However, wτ is periodic and attains its minimum equal to zero at x0 so that both wτ (x0) = 0 and
∇wτ (x0) = 0. Thus, it follows from (2.10) that at this point:

∆w(x0) < −δτe−λx0η(x0) < 0.

This contradicts the fact that w attains its minimum at x0. Hence we have

µ(λ) = sup
φ∈E+

λ

inf
x∈D

Lφ
φ
.

The other equality in (2.8) is proved similarly. �

Proposition 2.3 The function µ(λ) is convex.

Proof. The proof is once again from [5]. We will show that

µ(tλ1 + (1− t)λ2) ≤ tµ(λ1) + (1− t)µ(λ2) for all 0 ≤ t ≤ 1.

The min-max principle (2.8) implies that it suffices to show that given any pair of functions f1 ∈ E+
λ1

and f2 ∈ E+
λ2

there exists a function φ ∈ E+
λ , λ = tλ1 + (1− t)λ2, so that

Lφ
φ
≤ t

Lf1

f1
+ (1− t)

Lf2

f2
. (2.11)

We claim that (2.11) holds with
φ = f t

1f
1−t
2 . (2.12)
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Indeed, if f1 ∈ E+
λ1

, f2 ∈ E+
λ2

it is straightforward to check that the function e−λxφ is periodic so
that φ ∈ E+

λ . We verify that

∆φ = ∆(f t
1f

1−t
2 ) = tf t−1

1 f1−t
2 ∆f1 + (1− t)f t

1f
−t
2 ∆f2 − t(1− t)f t

1f
1−t
2

(
|∇f1|
f1

− |∇f2|
f2

)2

≤ f t
1f

1−t
2

[
t
∆f1

f1
+ (1− t)

∆f2

f2

]
.

Furthermore, using the above inequality and the function φ as in (2.12), we obtain

Lφ
φ

=
1

f t
1f

1−t
2

[
∆(f t

1f
1−t
2 )−Au · ∇(f t

1f
1−t
2 )

]
≤ t

∆f1

f1
+ (1− t)

∆f2

f2
−A

[
t
u · ∇f1

f1
+ (1− t)

u · ∇f2

f2

]
= t

Lf1

f1
+ (1− t)

Lf2

f2
.

Thus (2.11) holds and therefore the function µ(λ) is convex. �

Proposition 2.4 The function µ(λ) ≥ 0 is positive and monotonically increasing for λ > 0.

Proof. Since µ(0) = 0 and µ(λ) is a convex function, it suffices to check that µ′(0) = 0. Let
w = e−λxψ be the positive periodic function that satisfies

∆w −Au · ∇w + 2λ
∂w

∂x
− λAu1w + λ2w = µ(λ)w.

Integrating over the period cell C and using the incompressibility of the flow u we obtain

−λA
∫
C
u1wdx + λ2

∫
C
wdx = µ(λ)

∫
C
wdx.

As w(x;λ = 0) ≡ 1, and u1 has mean zero, it follows that

µ′(0) = lim
λ→0

µ(λ)
λ

= − A

|C|

∫
C
u1(x)dx = 0.

This finishes the proof of Proposition 2.4. �
Propositions 2.3 and 2.4 allow us to define the inverse function λ = λ(µ) that is increasing and

concave. The eigenvalue problem (2.6) may re-formulated as follows: given µ ≥ 0 find the eigenvalue
λ so that the problem

∆ψ −Au · ∇ψ = µψ, (2.13)

has a solution ψ ∈ E+
λ . Existence and uniqueness of the eigenvalue λ(µ) follows from the previous

arguments. We will adopt this point of view. The variational principle (2.7) for the minimal front
speed now becomes

c∗ = inf
µ>0

f ′(0) + µ

λ(µ)
. (2.14)

3 The eigenvalue enhancement estimate

The proof of Theorem 1.1 is based on the variational principle (2.14). Namely, we prove the following
“eigenvalue enhancement” estimate.
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Theorem 3.1 There exist two constants µ0 > 0 and A0 > 0 that are independent of the flow
amplitude A and a pair of positive constants C1 and C2 so that

C1

A1/4

√
µ ≤ λ(µ) ≤ C2

A1/4

√
µ (3.1)

for all µ < µ0 and all A > A0.

We first show that Theorem 1.1 follows immediately from Theorem 3.1.
Proof of Theorem 1.1. The variational principle (2.14) implies that

min
{

inf
0<µ<µ0

f ′(0) + µ

λ(µ)
, inf
µ0≤µ

µ

λ(µ)

}
≤ c∗ ≤ inf

0<µ<µ0

f ′(0) + µ

λ(µ)
. (3.2)

Now, for the upper bound we have, using (3.1)

c∗ ≤ inf
0<µ<µ0

(f ′(0) + µ)A1/4

C1
√
µ

≤ CA1/4, (3.3)

which is the upper bound in (1.6). In order to get the lower bound in (1.6) we observe that, first, it
follows from (3.1) that

inf
0<µ<µ0

f ′(0) + µ

λ(µ)
≥ inf

0<µ<µ0

(f ′(0) + µ)A1/4

C2
√
µ

≥ C ′A1/4. (3.4)

Second, as the function µ(λ) is concave and increasing,

inf
µ0≤µ

µ

λ(µ)
=

µ0

λ(µ0)
≥ A1/4

C2
. (3.5)

Using (3.4) and (3.5) in the left side of (3.2) we conclude that c∗ ≥ CA1/4. This finishes the proof
of Theorem 1.1. �

The proof of Theorem 3.1

Let us re-write the eigenvalue problem (2.13) in terms of the function ζ(x) = lnψ(x). We obtain
the following problem

∆ζ −Au · ∇ζ = µ− |∇ζ|2, (x, y) ∈ C = [0, 2]× [0, 2]
ζ(x+ 2, y) = ζ(x, y) + 2λ(µ), (3.6)
ζ(x, y + 2) = ζ(x, y).

Note that ∇ζ is a periodic function and u · n = 0 on the boundary ∂C of the period cell. Therefore,
integrating (3.6) over the period cell we obtain

µ =
1
|C|

∫
C
|∇ζ|2dxdy. (3.7)

Moreover, the log-eigenfunction ζ is defined up to an additive constant, and therefore can be chosen
to be mean-zero. The Poincare inequality implies then

‖ζ‖L2(C) ≤ C
√
µ. (3.8)
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We decompose the function ζ into a linearly growing part and a periodic component as

ζ = T1 + S.

Here the function T1 solves a homogeneous equation with the inhomogeneous boundary conditions

∆T1 −Au · ∇T1 = 0, (3.9)

T1(x+ 2, y) = T1(x, y) + 2λ, T1(x, y + 2) = T1(x, y),
∫
C
T1(x, y)dxdy = 0.

The mean-zero periodic function S solves

∆S −Au · ∇S = µ− |∇(T1 + S)|2. (3.10)

We first look at (3.9). This very problem arises as the cell problem in the computation of the
effective diffusivity for the cellular flows [9, 14, 17, 18, 19]. We recall that the function T1 has the
form T1(x, y) = λ(x − 1 + χ(x, y)) with a mean-zero function χ that is periodic and satisfies the
bounds [17]

C1

√
A ≤

∫
C
|∇χ|2dxdy ≤ C2

√
A, A > A0. (3.11)

It follows that
C1λ

2
√
A ≤

∫
C
|∇T1|2dxdy ≤ C2λ

2
√
A (3.12)

for A > A0. Therefore, the Poincaré inequality implies that

‖T1‖L2(C) ≤ CλA1/4, A > A0. (3.13)

Moreover, we will show that the function T1 satisfies the following uniform upper bound.

Lemma 3.2 There exist constants C > 0 and A0 > 0 so that

‖T1‖L∞(C) ≤ CλA1/4 (3.14)

for all A > A0

We postpone the proof of this lemma for the moment. Note, however, that when the stream-function
H(x, y) is symmetric

H(−x, y) = −H(x, y), (3.15)

then the function T1 satisfies a trivial estimate −λ ≤ T1(x, y) ≤ λ: see [9].

Lemma 3.3 There exists a constant B0 > 0 so that

λ(µ) ≤ B0
√
µ. (3.16)

Proof. This inequality follows immediately from (3.7):

µ =
∫
C
|∇ζ|2dxdy

|C|
≥
∫
C
|ζx|2

dxdy

|C|
≥
(∫

C
ζx
dxdy

|C|

)2

=
λ2

B2
0

(3.17)

with B0 = |C|/2. �
A key ingredient in the proof of Theorem 3.1 is the following lemma.
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Lemma 3.4 There exist constants C > 0 and A0 > 0 so that

ζ(x, y) ≤ C
√
µ (3.18)

for all (x, y) ∈ C and A > A0

The proof of Lemma 3.4 is also postponed for the moment. We first finish the proof of Theorem 3.1.
It follows from (3.14) and (3.18) that

S(x, y) ≤ C
[
λA1/4 +

√
µ
]
. (3.19)

Furthermore, observe that it follows from (3.7) that

µ =
∫
C
|∇ζ|2dxdy

|C|
=
∫
C
|∇(T1 + S)|2dxdy

|C|
.

Now, the triangle inequality implies that

|√µ− ‖∇T1‖L2 | ≤ ‖∇S‖L2 . (3.20)

Next, we multiply equation (3.10) by the periodic function S and integrate over the period C. Using
the fact that S has mean zero and (3.19), we obtain

‖∇S‖2L2
=
∫
C
S|∇(T1 + S)|2dxdy ≤ C

[
λA1/4 +

√
µ
] ∫

C
|∇ζ|2dxdy ≤ C

[
λA1/4µ+ µ

√
µ
]
. (3.21)

Finally, (3.20) and the corrector bound (3.12) imply that we have

√
µ ≤ C

[
λA1/4 +

√
µ
√
λA1/8 + µ3/4

]
≤ C

[
λA1/4 + µ+ µ3/4

]
and √

µ ≥ C−1
[
λA1/4 −√µ

√
λA1/8 − µ3/4

]
≥ C−1

[
λA1/4 − µ− µ3/4

]
.

Hence, (3.1) follows for µ < µ0 with µ0 independent of A. This finishes the proof of Theorem 3.1. �

The proof of Lemmas 3.2 and 3.4

Both Lemma 3.2 and Lemma 3.4 follow from the following Proposition.

Proposition 3.5 Let a mean-zero function q(x, y) be periodic in y and satisfy

∆q −Au · ∇q + |∇q|2 ≥ 0, (x, y) ∈ R2,

q(x+ 2, y) = q(x, y) + 2α, q(x, y + 2) = q(x, y),
∫
C
q(x, y)dxdy = 0, (3.22)

with a fixed number α > 0. Then there exists a constant C > 0 so that

q(x, y) ≤ C[α+ ‖∇q‖L2(C)] (3.23)

for all (x, y) ∈ C = [0, 2]× [0, 2].

9



Proof. Let C = [0, 2]× [0, 2] be the period cell. The function q satisfies the maximum principle and
thus has to attain its maximum over C at the boundary ∂C. Moreover, the periodicity of q(x, y) in
y implies that the maximum of the function q over the period cell is achieved at one of the vertical
boundaries x = 0 or x = 2. However, the boundary condition

q(x+ 2, y) = q(x, y) + 2α

implies that the maximum is actually achieved along the line x = 2, say, at a point x1 = (2, y0).
We denote q(x1) = M := supx∈C q(x). Consider the corresponding point x0 = (0, y0) on the left
boundary of the cell, where q(x0) = M − 2α. The function q attains its maximum over the previous
period cell C−1 = [−2, 0]× [0, 2] at this point. Therefore, according to the strong maximum principle,
the vector ∇q(x0) points out of C−1 and into the cell C. It follows that given any ξ ∈ [0, 2] there
exists s(ξ) ∈ [0, 2] so that q(ξ, s(ξ)) ≥ M − 2α. Indeed, consider the function q in the rectangle
D(ξ) = [0, ξ] × [0, 2]. It has to attain its maximum over D(ξ) on the boundary ∂D(ξ). However,
once again, the y-periodicity of q and the strong maximum principle imply that it cannot do so at
the horizontal boundaries {y = 0} or {y = 2}. Moreover, as ∇q points inside D(ξ) at the point x0,
where q(x, y) attains its maximum over {x = 0}, it has to attain its maximum over D(ξ) along the
line {x = ξ}. In particular, the value of this maximum has to be larger than M − 2α, which is its
maximum over the line {x = 0}. We conclude that

for any ξ ∈ [0, 2] there exists s(ξ) ∈ [0, 2] such that q(ξ, s(ξ)) ≥ sup
x∈C

q(x)− 2α. (3.24)

On the other hand, observe that there exists a constant B1 > 0 and a constant B2 > 0 so that
if we define the set A ⊂ [0, 2] as

A =
{
x ∈ [0, 2] : ∃r(x) ∈ [0, 2] such that |q(x, r(x))| ≤ B1‖q‖L2(C)

}
(3.25)

then
|A| ≥ B2. (3.26)

Now, (3.24) and (3.25)-(3.26) imply that∫ 2

0

∣∣∣∣∂q∂y
∣∣∣∣2 dy ≥ 1

2
(
M − 2α−B1‖q‖L2(C)

)2
for all x ∈ A. Integrating over x ∈ A we obtain∫

C
|∇q|2dxdy

|C|
≥
∫
A

∣∣∣∣∂q∂y
∣∣∣∣2 dxdy|C|

≥ CB2

(
M − 2α−B1‖q‖L2(C)

)2
.

It follows from the above and the Poincaré inequality that

M = sup
x∈C

q(x) ≤ C
[
α+ ‖q‖L2(C) + ‖∇q‖L2(C)

]
≤ C

[
α+ ‖∇q‖L2(C)

]
.

This completes the proof of Proposition 3.5. �
The proof of Lemma 3.2. Equation (3.9) implies that we may apply Proposition 3.5 both to

the function T1(x, y) and T ′1(x, y) = −T1(−x, y) (the latter requires also reflecting the flow u(x, y)
but that is not important) with α = λ. Then (3.14) follows from the gradient bound (3.12). �

The proof of Lemma 3.4. The proof of this lemma is another straightforward application of
Proposition 3.5. Indeed, equations (3.6) and (3.23) imply that (3.18) follows immediately from (3.7)
and (3.16). �
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4 An oscillation bound on the log-eigenfunction

In this section we show that the log-eigenfunction ζ(x) (and hence the eigenfunction ψ(x) itself)
becomes nearly constant along each streamline of the flow away from the flow separatrices. This
phenomenon is familiar from other problems that involve high amplitude cellular flows [11, 12, 17,
18, 19], where solutions of advection-diffusion problems become uniform over the flow streamlines. In
this section we take a particular stream-function H(x, y) = sinπx sinπy – this is not crucial for the
proof but the fact that H is an eigenfunction of the Laplacian does simplify some of the arguments.

Theorem 4.1 Let L(h) = {H(x) = h} be a level set of the function H(x) with h ≥ h0 > 0 and let
M(h) and m(h) be the maximum and minimum of the function ζ(x) over L(h). Then there exist a
constant C > 0 that depends on h0 but not the flow amplitude A, and constants µ0, A0 so that if
0 < µ < µ0 and A ≥ A0, then

M(h)−m(h) ≤ C

[ √
µ

A1/4
+

µ√
A

]
. (4.1)

Proof. We prove that ζ is almost constant along a level-set H = h ≥ h0 > 0, by using the techniques
from [18]. The proof is by contradiction. We assume that

M(h)−m(h) ≥ N

[ √
µ

A1/4
+

µ√
A

]
(4.2)

and show that if the constant N is sufficiently large then we arrive at a contradiction.
The function ζ satisfies the maximum principle: given a domain Ω we have

ζ(x) ≤ max ζ|∂Ω for all x ∈ Ω. (4.3)

However, it might not satisfy the minimum principle. In order to overcome this issue we construct
a new function ζ0 that is close to ζ and satisfies the minimum principle. Here is the construction.
Consider the flow cell [0, 1] × [0, 1], where H > 0 and define the function ζ0 = ζ + ηg, with g =
lnH. Here H = sinπx sinπy is the stream-function for the cellular flow, and the constant η is
to be determined. The function ζ0 is defined away from the separatrices where H = 0. A direct
computation shows that ζ0 satisfies

∆ζ0 −Au · ∇ζ0 + 2η∇g · ∇ζ0 = −|∇ζ0|2 − η2|∇g|2 + µ+ η∆g.

However, we have

∆g =
∆H
H

− |∇H|2

H2
= −2π2 − |∇H|2

H2

so that with the choice η = µ/(2π2) we obtain

∆ζ0 −Au · ∇ζ0 + 2µ∇g · ∇ζ0 = −|∇ζ0|2 −
(
µ2

4π4
+

µ

2π2

)
|∇H|2

H2
≤ 0.

Therefore, the function ζ0 satisfies the minimum principle – it may attain its minimum over a domain
only on the boundary of the domain. Hence, we have inside a level set {H = h0}

ζ(x, y) +
µ

2π2
g(x, y) ≥ min ζ|∂Ω0 +

µ

2π2
g(h0), (x, y) ∈ Ω0,

where Ω0 is the interior of that level set. Another way to write the minimum principle is

ζ(x, y) ≥ min ζ|∂Ω0 +
µ

2π2
ln

h0

H(x, y)
, (x, y) ∈ Ω0. (4.4)
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Let L(α) = {H = α} and L(β) = {H = β} with β ≥ α be two level sets of the stream-function
H, such that L(β) is contained in the interior of L(α). We denote by D(h) = {H ≥ h} the region
bounded by L(h). Then (4.3) and (4.4) imply an oscillation inequality

M(β)−m(β) ≤M(α)−m(α) +
µ

2π2
ln
β

α
. (4.5)

In order to show that the oscillation far away from the separatrices is small we start with a level
set L(h) = {H = h} and consider a pair of gradient curves (see Figure 4.1)

dγm

dt
= −∇ζ0(γm(t)), γm(0) = xm(h), (4.6)

and
dγM

dt
= ∇ζ(γM (t)), γM (0) = xM (h). (4.7)

Here xm and xM are the points on the level set L(h) where the function ζ0 attains its minimum and
maximum, respectively. As the difference of the functions ζ0 and ζ is constant on streamlines, these
points are also the minimum and maximum of the function ζ0 along L(h). Note that the gradient
curve that exits from the maximum is determined by the function ζ, that satisfies the maximum
principle, while the curve exiting from the minimum is determined by the function ζ0, that obeys
the minimum principle. As a consequence of the maximum and the minimum principles both of the
curves γm(t) and γM (t) start in the direction of the outward normal to the region D(h).

In principle, one of these two curves may end at a critical point of the corresponding function, ζ
or ζ0, respectively. In order to avoid this situation we surround those critical points xj , j = 1, . . . , NA

by small circles Uj = U(xj ; r) of the radius r � 1 so small that the oscillations of the functions ζ
and ζ0 over each circle satisfy

oscUjζ + oscUjζ0 ≤
δ(M(h)−m(h))

1 +NA
, j = 1, . . . , NA (4.8)

with a sufficiently small number δ > 0. Then, if one of the gradient curves, say γM , hits one of the
circles Uj , we continue it along Uj , with the speed equal to one, to the point xM

j , where the function
ζM attains its maximum over Uj . The maximum principle implies that ∇ζ points outward of Uj at
this point, hence we may continue γM as a gradient curve that goes out of xM

j . Observe also that γm

and γM may not hit the same circle Uj twice – the sequences of values of ζ0 and ζ at the departure
times from each consecutive circle are strictly decreasing and increasing, respectively.

Note that, as a consequence of their construction, |∇ζ| and |∇ζ0| are bounded away from zero
along γm and γM , hence, for instance,

ζ(γM (t)) ≥ ζ(xM (h)) + CAt−
δ(M(h)−m(h))

1 +NA
, (4.9)

where CA > 0. The last term above accounts for the fact that at time t the curve may be at one of
the circles Uj . The lower bound (4.9) and the continuity of the function ζ imply that t is bounded
above, so that given any level set L(h′) that encloses L(h) both curves γm and γM have to intersect
eventually L(h′).

Next, we make sure that γm and γM do not intersect each other before they intersect a given
level set L(h′). Note that

ζ(γM (t)) ≥M(h)− δ(M(h)−m(h))
1 +NA
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for all t ≥ 0, while

ζ0(γm(s)) ≤ ζ0(xm) +
δ(M(h)−m(h))

1 +NA
.

The latter inequality implies that

ζ(γm(s)) ≤ ζ(xm) +
δ(M(h)−m(h))

1 +NA
+

µ

2π2
ln
[

h

H(γm(s))

]
= m(h) +

µ

2π2
ln
[

h

H(γm(s))

]
+
δ(M(h)−m(h))

1 +NA
.

Therefore, if we take δ > 0 sufficiently small, the curves γm and γM may not intersect, as long as
they stay inside a level set L(h′), with

h′ = h− 1√
A
,

provided that

M(h)−m(h) ≥ Cµ ln
h

h′
≥ Cµ√

A
, (4.10)

with a sufficiently large constant C independent of A. Note that (4.10) follows from (4.2) when the
constant N is sufficiently large. Thus, under the assumption (4.2) with a sufficiently large N , the
curves γm and γM do not intersect in the region D(h, h′) = {x : h′ < H(x) < h} between L(h) and
L(h′).

Observe that if (4.2) holds then not only the curves γm and γM do not intersect in D(h, h′) but
also

ζ(γM (t))− ζ(γm(s)) ≥ C(M(h)−m(h)) (4.11)

for all t and s such that γM (t) and γm(s) are in D(h, h′). As a consequence, neither of the curves
γm or γM may wrap around the level set L(h). Indeed, if one of them did, the fact that they do not
intersect would imply that the other curve would do the same. Then, as the width of D(h, h′) is of
the order C/

√
A, (4.2) and (4.11) would imply a lower bound

µ =
∫
|∇ζ|2dxdy

|C|
≥ C(M(h)−m(h))2

√
A ≥ CN2µ

which is impossible if N is sufficiently large. We conclude that it follows from (4.2) that neither γm

nor γM wrap around the level set L(h).
We now consider two cases: whether one of γm or γM intersects a circle Uj before intersecting

L(h′) or not.
Case 1. Neither γm nor γM intersect any of Uj.
Let R be a domain bounded by the two gradient curves γM , γm, and parts of the level sets

γ = L(h) and γ′ = L(h′) (see Figure 4.1). We integrate (3.6) over R and obtain∫
γ∪γ′

n · ∇ζds− µ

2π2

∫
γm

n · ∇H
H

ds−A

∫
γm∪γM

ζ(n · u)ds = µ|R| −
∫
R
|∇ζ|2dx. (4.12)

For the last integral above we have a simple bound∫
R
|∇ζ|2dx ≤ µ. (4.13)

13



Figure 4.1: The domain R is shaded.

As the curve γm does not wrap around the level set L(h), the second term on the left-hand side may
be bounded, using the fact that h ≥ h0, as follows:∣∣∣∣∫

γm

n · ∇H
H

ds

∣∣∣∣ =
∣∣∣∣∣
∫

γ′m

n · ∇H
H

ds

∣∣∣∣∣+
∣∣∣∣∣
∫

Ωm

(
2π2 +

∣∣∣∣∇HH
∣∣∣∣2
)∣∣∣∣∣ ≤ C. (4.14)

Here γ′m is any other path connecting the endpoints of γm (that we may take to have the length of
order one), while Ωm is the domain bounded by γm and γ′m.

We also recall the following fact (see (3.7) in [18]). Let γ : [0, 1] → D(α, β) be any smooth
curve of finite length that connects the level sets L(α) and L(β): γ(0) ∈ L(α), γ(1) ∈ L(β). Fix the
normal n to γ so that u · n > 0 for t sufficiently small, then u · n(τ(ξ)) > 0 for all ξ between α and
β, with τ(ξ) = sup{t : γ(t) ∈ L(ξ)}. That is, “u · n is positive when a streamline of u intersects γ
for the last time.” Let f(x) ≥ 0 be a continuous function monotonically increasing along γ. Then
we have

F (α, β) inf
x∈γ

f ≤
∫

γ
(u · n)fds ≤ F (α, β) sup

x∈γ
f, (4.15)

where F (α, β) is the flux

F (α, β) =
∫

γo

n · uds.

Here γo is any curve connecting the two level sets L(α) and L(β).
We apply (4.15) to estimate the last term on the left side in (4.12). We have

F (h, h′)M(h) ≤
∫

γM

ζ(u · n)ds (4.16)
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and ∫
γm

ζ0(u · n)ds ≤ F (h, h′)
[
m(h) +

µ

2π2
lnh
]
.

The latter inequality implies that∫
γm

ζ(u · n)ds ≤ F (h, h′)
[
m(h) +

µ

2π2
lnh
]
− µ

2π2

∫
γm

(u · n) ln(H(γm(s))ds

= m(h)F (h, h′) +
µ

2π2

∫
γm

(u · n) ln
(

h

H(γm(s))

)
ds. (4.17)

As a consequence of the balance (4.12), the drop estimate (4.11) and the bounds (4.13), (4.14),
the inequalities (4.16) and (4.17) imply that

(M(h)−m(h))F (h, h′) ≤ µ

A
(|R|+ 1) +

1
A

∫
γ∪γ′

|n · ∇ζ|ds+
Cµ

A
(4.18)

+
µ

2π2

∫
γo

(u · n) ln
[

h

H(γo(s))

]
ds.

Here γo is any curve connecting the two level sets, and F (h, h′) is the flux between the level sets
L(h) and L(h′). We used above the fact that the integral∫

γ
f(H(γ(s))(u · n)ds

is independent of the choice of the curve γ connecting two level sets.
Note that assumption (4.2) implies that

M(h)−m(h) ≥ 10µ ln
h

h′′
(4.19)

for all h′ = h− 1√
A
< h′′ < h, provided that N is sufficiently large. Therefore, in that case the left

side in (4.18) dominates the last integral on the right and it follows that

(M(h)−m(h))F (h, h′) ≤ Cµ

A
+
C

A

∫
γ∪γ′

|n · ∇ζ|ds. (4.20)

We now integrate on a sub-strip strictly inside D(h, h′). We use inequality (4.20) for a pair of

level sets L((h+ h′)/2 +H) and L(h′ +H) with 0 ≤ H ≤ h− h′

2
=

1
2
√
A

to obtain

(
M

(
h+ h′

2
+H

)
−m

(
h+ h′

2
+H

))
F

(
h+ h′

2
+H,h′ +H

)
≤ C

A

∫
L(h+h′

2
+H)

∣∣∣∣∂ζ∂n
∣∣∣∣ ds+

C

A

∫
L(h′+H)

∣∣∣∣∂ζ∂n
∣∣∣∣ ds+

Cµ

A
. (4.21)

However, we have

M(h)−m(h) ≤M

(
h+ h′

2
+H

)
−m

(
h+ h′

2
+H

)
+

µ

2π2
ln

h
h+h′

2 +H
.
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according to the oscillation inequality (4.5). Recalling (4.19) we obtain

M(h)−m(h) ≤ C

(
M

(
h+ h′

2
+H

)
−m

(
h+ h′

2
+H

))
.

Therefore, we get from (4.21)

(M(h)−m(h))F
(
h+ h′

2
+H,β +H

)
≤ C

A

∫
L(h+h′

2
+H)

∣∣∣∣∂ζ∂n
∣∣∣∣ ds+

C

A

∫
L(h′+H)

∣∣∣∣∂ζ∂n
∣∣∣∣ ds+

Cµ

A
. (4.22)

We integrate (4.22) with respect to H ∈ (0, 1/(2
√
A)) to obtain

(M(h)−m(h))
∫ 1/(2

√
A)

0
F

(
h+ h′

2
+H,h′ +H

)
dH ≤ C

A

∫ h

h′

∫
L(H)

∣∣∣∂ζ
∂n

∣∣∣ ds dH +
Cµ

A3/2
. (4.23)

Furthermore, as h > h0, the first integral on the right side of (4.23) may be estimated as∫ h

h′

∫
L(H)

|n · ∇ζ|dsdH ≤ C

∫
D(h,h′)

|n · ∇ζ|dx (4.24)

≤ C|D(h, h′)|1/2

√∫
D(h,h′)

|∇ζ|2dx ≤ C
√
|h− h′|√µ = C

√
µ

A1/4

The left side of (4.23) satisfies

(M(h)−m(h))

(h−h′)/2∫
0

F

(
h+ h′

2
+H,h′ +H

)
dH ≥ C(M(h)−m(h))(h− h′)2 =

C

A
(M(h)−m(h)).

We arrive at
1
A

(M(h)−m(h)) ≤ C[A−5/4√µ+A−3/2µ]

so that

M(h)−m(h) ≤ C

[ √
µ

A1/4
+

µ√
A

]
. (4.25)

This contradicts (4.2) if N is sufficiently large, as the constant C in (4.25) does not depend on the
choice of the constant N in (4.2). Therefore, (4.2) is impossible if N is large enough. Hence the
proof of Theorem 4.1 in the case, when neither of the curves γm and γM intersects any of the circles
Uj , is complete.

Case 2. One of the curves γm or γM intersects one of the circles Uj.
Let R be a domain bounded by the curves γM and γm (that now includes parts of some of the

circles Uj) and parts of the level sets γ = L(h) and γ′ = L(h′). We integrate (3.6) over R and obtain

∫
γ∪γ′

∂ζ

∂n
ds+

NA∑
k=1

∫
γM∩∂Uk

∂ζ

∂n
ds+

NA∑
k=1

∫
γm∩∂Uk

∂ζ

∂n
ds− µ

2π2

NA∑
k=1

∫
γM∩∂Uk

n · ∇H
H

ds

− µ

2π2

∫
γm

n · ∇H
H

ds+A

∫
γm∪γM

ζ(n · u)ds = µ|R| −
∫
R
|∇ζ|2dxdy. (4.26)
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The first integral in the second line of (4.26) still satisfies the estimate (4.14) without any changes.
The last term on the first line in (4.26) satisfies a simple estimate∣∣∣∣∣∣∣

NA∑
k=1

∫
γM∩∂Uk

n · ∇H
H

ds

∣∣∣∣∣∣∣ ≤ CNAr, (4.27)

where r is the radius of each circle Uj . Hence it can be made arbitrarily small by taking a sufficiently
small r > 0.

Similarly, taking r sufficiently small we may ensure that |∇ζ| < δ on all the circles Uj . Then we
have ∣∣∣∣∣∣∣

NA∑
k=1

∫
γM∩∂Uk

∂ζ

∂n
ds

∣∣∣∣∣∣∣ ≤ CNAδr, (4.28)

with an identical estimate for the curve γm.
We may not apply the inequality (4.15) to the function ζ along γM , or ζ0 along γm, as their

monotonicity may be broken along the pieces of the circles Uj . However, we may modify the function
ζM along these segments so as to make the modified function ζ̃ be monotonic along the whole curve
γM . The oscillation estimate (4.8) implies that the error thus created is bounded as∣∣∣∣∫

γM

ζ̃(u · n)ds−
∫

γM

ζ(u · n)ds
∣∣∣∣ ≤ CδNA

1 +NA
≤ Cδ. (4.29)

As δ and r are arbitrarily small, the above estimates allow us to recover (4.20). The proof of Theorem
4.1 then proceeds as in Case 1. �
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