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Abstract

We analyze behavior of solutions of the steady advection-diffusion problems in bounded do-
mains with prescribed Dirichlet data when the Péclet number Pe > 1 is large. We show that
solution converges to a constant in each flow cell outside a boundary layer of width O(g!/?),
e = Pe ! around the flow separatrices. We construct an e-dependent approximate “water-pipe
problem” purely inside the boundary layer that provides a good approximation of the solution
of the full problem but has numerical e-independent cost. We also define an asymptotic problem
on a graph, and show that solution of the water-pipe problem itself may be approximated by an
asymptotic, e-independent problem on the graph of flow separatrices. Finally, we show that the
effective diffusivity of the ”water-pipe’ problem approximates the true effective diffusivity with
an error independent of the flow outside the boundary layers.

1 Introduction

1.1 The advection-diffusion problem

We consider the steady advection-diffusion problem
eAP" —u-Ve¢* =0 (1.1)

in a simply connected bounded domain Q C R?. The flow u is incompressible: V -« = 0, and
non-penetrating through the boundary of Q: u-n =0 at 0Q (see Figure 1.1). The small parameter
e = Pe™! <« 1 is the inverse of the Péclet number. Equation (1.1) is supplemented by the Dirichlet
boundary data:

¢°(x) =Tp(x), x € N, (1.2)

The problem of the qualitative behavior of solutions of (1.1)-(1.2) has been considered by Zel-
dovich in [20] in the opposite case Pe < 1 by the perturbative methods. It has been since studied
in various areas where passive scalar advection arises, such as oceanography, meteorology, etc. One
of the main interesting effects is the non-trivial coupling of the effects of diffusion and strong advec-
tion at a high Péclet number. Numerical and physical evidence [6, 17, 18, 19] suggest the following
qualitative structure of the solution ¢° inside each flow cell: there exists a boundary layer of the
width O(4/€) along the separatrices between different flow cells C;. Outside this layer solution is
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approximately equal to a constant K in each cell C; (see Figure 1.2 for a numerical illustration).
The total dissipation rate scales in the corresponding fashion:

| IV odx ~ 0= 2)
Q

The advection-diffusion problem is closely related to that of effective diffusion in a periodic
cellular flow. The effective diffusivity in such flow is given by [4]

Dj; = e/ Vx; (%) - Vx;(x)dx.
Q
The vector corrector x¢(x) is the mean-zero periodic solution of
eAx; +u- Vx5 = uj.

The latter problem may be reduced to (1.1) with appropriate boundary conditions by representing
Xj = = + p;j- Most of the mathematical studies [8, 12, 13] of the advection-diffusion problem have
been devoted to the problem of bounds on the effective diffusivity. It has been shown formally in [6]
and later in [17, 18, 19], and finally proved in [8] using variational methods that in this setting the
effective diffusivity scales as

Df ~ D* /e, (1.3)

in the special case of symmetric square cells. This asymptotic estimate for the effective diffusivity
has been recently extended to general non-square periodic cells in [13] using probabilistic techniques
that have their origin in [10]. Furthermore, uniform bounds of the type

(&)
NG

on the effective diffusivity in the periodic case have been proved in [12], generalizing the asymptotic
result of [8] to finite € > 0. We recall that the case when the flow has no separatrices has been
considered previously in [9, 10] including the flow effect on the reaction-diffusion equations.

The general problem (1.1)-(1.2) has been recently analyzed in [1] in the context of the possibility
of passive scalar energy cascade in a turbulent flow. In particular, the upper bound in (1.4) has been
obtained. Such bounds are of interest as they impose conditions on the scales of the turbulent flow
that would allow the scaling law £(|V¢?|?) ~ O(1) that is necessary for the Obukhov [16], Corrsin
[7] and Batchelor [2, 3] passive scalar theory to hold.

The purpose of this paper is to consider the general problem (1.1) with a large but finite Péclet
number and to establish rigorously and quantitatively the above mentioned properties of the solution
of the advection-diffusion problem for a small but finite ¢ < 1 without any assumption on the
periodicity or symmetry of the flow. Our results are, qualitatively, as follows. We prove the upper
and lower bounds on the dissipation rate as in the second bound in (1.4) in the general case.
The upper bound is obtained first, using a slight modification of the technique of [12]. Next we
establish convergence of the solution to a constant K7 inside each cell C; at a distance N+/e from
the separatrices and obtain bounds on the rate of convergence as N — oo. The proof of this fact
employs some of the ideas of integration and averaging along streamlines used in [14] to obtain
bounds on the speed of a reaction-diffusion front in a cellular flow. The fact that solution is nearly
constant at a distance O(y/¢) away from the boundary, where the prescribed data is non-constant,
implies the lower bound on the dissipation rate in (1.4). Next we show that the full problem (1.1) may
be restricted to an e-dependent ”water-pipe” problem inside a boundary layer of width N4/¢ around

C1vE < DF < Co, % < [19xGPax < (1.4)
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Figure 1.2: The temperature distribution for periodic cellular flows computed in MATLAB. u =
V1H, H = sin(nz) sin(ny); four cells, Pe = 20.

the separatrices with an error decreasing as N — oc. The ”water-pipe” problem has a computational
cost independent of ¢ < 1 and provides an effective numerical tool to solve the problem at a high
Péclet number. Solution of the ”water-pipe” problem itself is then shown to be well approximated
by yet another asymptotic e-independent problem. The latter represents a many-cell generalization
of a single cell problem introduced by Childress in [6] in the periodic case and is closely related to
the limit Markov chain constructed in the periodic case in [13]. In particular this allows us to show
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that the interior constants K H have a limit as € — 0 and identify this limit in terms of the solution
of the modified Childress problem. It also allows us to show that for any given boundary data Tp(x)
that is different from a constant, and any flow u there exists a positive finite limit of the dissipation
rate

\/E/Q V¢ (x)2dx — D* > 0,

as € — 0. Finally, by means of variational principles similar to those in [5, 8, 15] we show that for
any ¢ the dissipation rate can be determined from the solution of the water-pipe problem with an
error independent of the flow away from the separatrices.

We note that all our results are directly applicable if homogeneous Neumann boundary conditions
are prescribed on a part of the boundary, while non-uniform Dirichlet boundary conditions are
prescribed on the rest of 9. The generalization to that case is straightforward.

1.2 The main results

We recall that the flow u is assumed to be incompressible, thus a stream function H(z,y) exists so
that u = VIH = (Hy,—Hj). Furthermore, since we assume that the normal component of u at the
boundary 0f2 vanishes, 02 has to be contained in a level set of H: 9Q C {H = Hj}. Hence either Q
is bounded by a closed streamline of the flow u or by a collection of separatrices of u that connect
a finite number of singular points of H lying on the level set {H = Hy}. The latter case is of the
most interest to us. We will assume without loss of generality that the critical value Hy = 0. All the
critical points of H are assumed to be non-degenerate. Then the set {2 is a union of finite number
of flow cells C; bounded by separatrices of u, as in Figure 1.1. We will also assume throughout the
paper that the boundary data
To(x) # const, x € 0N

is sufficiently smooth but is not uniform to avoid the trivial case of the constant solution. The
streamlines of the flow (level sets of the stream function) are assumed to be sufficiently regular
inside each flow cell away from the saddle points of H(x).

1.2.1 Bounds for the dissipation rate

Our first result provides general bounds on the dissipation rate.

Theorem 1.1 Let us assume that 02 is a piecewise smooth curve and the boundary data Ty in (1.2)
is sufficiently smooth. Then there exists a constant C > 0 so that

1 2, C
C\ES/QIWS(X)I t<

Moreover, for any given boundary data Ty(x) # const and flow u there exists a positive finite limit

lim D(e)/Ve = D" > 0, (1.6)

(1.5)

where D(e) = 5/ |V ¢ (x)|dx.
Q

Here and below we denote by C all various constants C = C(u,Tp,2) that may depend on the
geometry of the streamlines of w, various norms of the boundary data 7Ty and the domain 2 but
nothing else, unless explicitly specified. In particular they are independent of the Péclet number.
The upper bound above is proved in Theorem 2.1 in Section 2. The proof of the lower bound in
(1.5) is contained in Proposition 3.6 in Section 3. Existence of the limit (1.6) is proved in Theorem
7.1.



1.2.2 Convergence to a constant inside flow cells

Convergence of solution to a constant inside is quantified as follows. Let D(h) = {x: |H(x)| > h},
h > 0 be a domain strictly inside the flow cells, at distance O(h) away from the separatrices.

Theorem 1.2 There exist constants K; so that we have inside each cell C;

C
sup |¢°(x) — Ki| < .
xED(N V) | i< wr

(1.7)

Moreover, the constants KJE converge as € — 0 to certain constants KJ.

The proof of the first part of this theorem is contained in Section 3 in Theorem 3.4. Convergence of
K7 to their limit values and identification of the limit follow from the approximation of ¢ by the
solution of the Childress problem: see Theorem 6.3 in Section 6.

1.2.3 Approximation by the water-pipe problem

The water-pipe problem consists of the advection-diffusion equation (1.1) in the narrow domain
%= O\DINVE) = {x € Q: |H(x)| < NV&}

around the separatrices with the Dirichlet boundary conditions (1.2) on the outer boundary 92 and
the Neumann boundary conditions on the level set L(Ny/e) = {x € Q : |H(x)| = N+/e} This
problem has a computational cost independent of . We show that its solution ¢% is close to ¢°.
Denote by x(s) a smooth even function, monotonic on s > 0, so that

X(5) = {1, s| < 1/2,

0, |s| > 1.

The following result describes the L*°-approximation of the solution of the full problem by the
solution of the water-pipe problem.

Theorem 1.3 Let ¢° solve (1.1) and let ¢5 be the solution of the water-pipe problem. Then there
ezist constants Ky,  so that ¢y satisfies

- C
o (%) = Kol < 5750 % € Li(NVE) = LINVE) N Cin. (1.8)

Let J)‘jv be an extension ¢ to the whole domain ) as

v (x) = x (%\2) PN (x) + K5 (1 - X (i(j/g)) ; X €Cnp.

with the constants f(fn’N defined above. Then we have

~ C ~ C
16— B llrei@) < w1~ Kiunl < 7oy (1.9
Moreover, the constants converge to finite limits:
31_1}(1) KN = Km,n, ]\}E)noo Knpn=Kp (1.10)
and B
lim K, = K, (1.11)

e—0

with K, as in (1.10).



The proofs of the convergence of the water-pipe solution to a constant as in (1.8) and of the error
bound (1.9) are contained in Section 4: see Theorem 4.2 and Proposition 4.1. Convergence of the
constants K& ., K&, to the corresponding limits in (1.10) and (1.11) is shown in Theorem 6.3.

The next result describes the approximation of the dissipation rate by the solution of the water-
pipe problem.

Theorem 1.4 The dissipation rate of the solution of the water-pipe system has a limit
lim\/E/ |Vé% (x)|?dx = Dy, lim Dy = D* (1.12)
e—=0 Qs N—00

with D* as in (1.6). Moreover, the error

Errory = /e

[ et [ [vgrax <
Q?V o)

is bounded by a constant K that depends on the flow u in 5, only.

This theorem is proved in Section 7 in Theorems 7.1 and 7.2.

Our final set of results concerns the approximation of the solution of (1.1)-(1.2) by the solution
of the asymptotic Childress problem. As the formulation of the latter is rather lengthy we postpone
its discussion and the precise statement of the corresponding result until later.

The paper is organized as follows. The upper bound on the dissipation rate is presented in The-
orem 2.1 in Section 2. Section 3 contains the proof of the corresponding lower bound in Proposition
3.6. Convergence of solution to a constant is proved first in Theorem 3.4 in the same section. The
?water-pipe” boundary layer problem is introduced in Section 4, where we also prove in Theorem
4.2 that the solution of this problem approximates the solution of the full problem. The asymptotic
Childress problem is introduced and its solutions are studied in Theorem 5.2 in Section 5. We show
that the solution of the Childress problem approximates the solution of the water-pipe model in
Theorem 6.3 in Section 6. We also show in this section that the values of the constants inside each
flow cell for the full problem converge to those given by the asymptotic Childress problem. Finally,
the variational principles for the total dissipation rate and estimates on the error in the effective
diffusivity of the water-pipe model are obtained in Section 7.
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2 A uniform upper bound

We prove in this section the uniform upper bound on the total dissipation rate in the inequality
(1.5) in Theorem 1.1.

Theorem 2.1 Let us assume that 0S) is a piecewise smooth curve and Ty is sufficiently smooth. Let

0
M = sup sup (ﬂfunvm) ,
€N veSst Oz

then there ezists a constant C = C(M, Ty, Q) so that

/ V() Pdx % (2.1)



Proof. We use a modification of the proof of an upper bound for the effective diffusivity in [12].
Let 9° be a test function to be specified later. We multiply (1.1) by the function ¢° = ¢ — ¢° and
obtain after integration by parts:

£
5/ ki dS—s/(VqSE—Viﬁs)-V¢6dx—/(¢5—¢5)u-v¢5dx:0
s On Q
Using incompressibility of the flow u we get

6/Q|V¢E|2dx§6/n ¢€d5+e/w¢5|2d + - /|v¢f| dx+a/|¢5 [dx + — /| - V¢©|2dx
(2:2)

with the constant « to be chosen. We now multiply (1.1) by u - V¢* and integrate to get

a £
6"; s —e /Q V(u- V) - Vgdx.

/Q\u-ngg\de:6/9(u-V¢E)A¢de:e/an(u-VqﬁE)

Once again using incompressibility of v and the definition of the constant M we obtain from the
above

9¢* 1

—dS - —e/(u-v(|v¢€\2))dx—e Oun 04" 0°
Q

q 0%, 0Ty, Oxy,

dx

/ lu - V¢ |2dx = s/aQ(u V(]SE)

Se/aﬂ(u V)

We insert (2.3) into (2.2) to get

s/Q|V¢5|2dee/aQ ; ¢6dS+e/ IV 2dx + & /\wf 2dx+a/ 1 2dx
+= </m( V¢5)a¢6dS+M/ V| 2d>c>

(67

¢E

—dS +eM / |V |2dx. (2.3)

With the choice @ = 4M the above becomes

1 0¢°
c / |V¢©|%dx < 5/ ¢+ ——(u-Vg¢°) 99" 15 +e / | V¥ |2dx + 4M/ |4 |2dx.
2 /o o0 4M on Q
1
It remains to require that ¢°+ Vi (u-V¢f) = 0 on the boundary 0Q2. However, 0f2 is a streamline of
u so that u - V¢* = u- VT is a given function. That imposes a boundary condition on the function
¥

¥ lon(x) = To(x) + g2 (v- VTo(x). (24

Then, provided that (2.4) holds we obtain

f/ |V¢F|?dx < e/ |V¢5|2dx+4M/ |9° % dx. (2.5)
2 Ja Q Q

We may choose a function ¢ so that it satisfies the boundary conditions (2.4), vanishes identi-
cally at distances larger that /e away from 0 and satisfies the uniform bounds ||9°||p~(q) < C,
IV4)*|| Lo () < C/+/€. Using such a test function in (2.5) we obtain the upper bound (2. 1) D
Theorem 2.1 implies that the boundary layer along the boundary 02 has to extend to the distance
at least of the order of O(4/€). This is made precise in Proposition 2.2: oscillations of ¢ have to



be present at such distances from the boundary — we will later see that this is actually the correct
boundary layer scale.

In order to make this precise we let Cy be a flow cell adjacent to the boundary such that T} is not
constant along 1o = 0Cy N 9. Such a cell exists as Ty is continuous and non-constant on 9€2. We let
1 be a part of 1y that is separated away from the end-points of 1y and such that To(x) is not constant
on Iy. We may then introduce the following orthogonal system of coordinates in a neighborhood of
lp. The coordinate H(z,y) is “the label of the streamline”. The coordinate @ orthogonal to H is
normalized so that V6| = [VH| on Iy and 1y may be represented as

loy={H=0, 6, <6<86}. (2.6)

We may consider a sufficiently small tubular neighborhood Uy = {|H| < Hy, 61 < 0 < 6,} of Iy so
as to have |VH|,|V8| > C > 0.

Proposition 2.2 Let Cy be a flow cell as above adjacent to the boundary and Lo(y) = {(z,y) €
Co : H(z,y) = v+/c} be the level set of H(x,y) inside the cell Cy. Then there erists a constant
C > 0 so that we have an inequality

02 02
/9 V0 - F Rl > [ @) - T - o (2.7)

01

— 02
for all v < Hy/+\/€ and with 0,5 as in(2.6). Here ¢*(p) = (0 — 0;)~" ¢°(p,0)d is the average
01

— 02
of ¢° over the corresponding part of the streamline and Ty = (62 — 01)1/ To(0)dO is the average
~ 91
of Ty along 1.
Proof. We have a simple bound
4°(0,6) — (I O)P < %f/

Integrating the above in # and using the boundary data for qSE we obtain

02 L E
/9 ITo(6) — ¢° (7V/z, 0)2d0 < y+/e /'7 3¢

2

£
8¢ dH.

7 (H:0)

2

(H,0)| dHd9. (2.8)

The Jacobian
J = D(H,0)/D(z,y) (2.9)

is uniformly bounded from above and below away from zero in Uy. Hence we may re-write the right
side as an integral over U, = {|H| < v+/g, 61 <0 < 65}

2

1VE €
/ / 3¢ (H,0)| dHdO < C/ |V¢(x)|2dx.
01 U,
Using Theorem 2.1 and (2.8) we obtain
2
/ T0(6) - ¢ (1VE0)d0 < OrE [ V(o) dsdy < O, (2.10)
91 U’Y

Therefore we have for any constant a € R:

02 02 B
/ 16 (1, 0) —afdd > /6 To(6)—af?d0— / ITo(6)— ¢ (12, 0)[2d8 > / Ty (6)—ToPdo—Cy
61

01

so that (2.7) follows. O



3 Convergence to constants

In this section we obtain the lower bound of the inequality (1.5) in Theorem 1.1 and prove Theorem
1.2: we show that solution of (1.1)-(1.2) is close to a constant inside each cell of the flow when ¢ is
small. As before we denote by £;(vy) = {(z,y : H(z,y) =~} the level set of H(z,y) inside a cell ;.
We will usually omit the subscript j to simplify the notation as long as we consider one cell and this
does not cause any confusion. We denote by D;(y) the region bounded by £;(7) inside each cell and
by Dj(a, 8) = Dj(B)\D;(c) the annulus between two level sets. We have the following proposition.

Proposition 3.1 Let ¢°(x) be solution of (1.1)-(1.2) and let M5 () = sup ¢°(x), and mi(a) =
XEEJ'(OL)

inf ¢°(x). Then there ezists a constant C > 0 so that
XELJ'(C\!)

- . £\ 3/4

M () —m(a) < C (ﬁ) . (3.1)
This proposition states the converse of Proposition 2.2: while the meaning of the latter is that the
width of the boundary layer is at least O(;/¢), the former shows that it is not larger than O(+/¢), as
the oscillation on the level set H = N+/¢ is bounded by C/N 3/2_ The proof is based on the following

key lemma.

Lemma 3.2 (The level-set oscillation inequality) Let Lj(c) and L;() be two level sets of the stream
function H(z) in a cell C; with Dj(o) C Dj(B). Then we have

_ 6¢5 a¢€
(M.(@) ~ me(a))IF(a )] < | oo+ / » ‘ 7 g, (32)
where F(a, ) is the flur between two level sets
F(a,f) = [(w mds, y=1(0), te0.1), 2(0) € Li(a), W) €Li(H): (33
gl

Here vy is any smooth curve that connects the level sets L;(a) and L;(B) and does not intersect itself.

We will assume without loss of generality that F(«,3) > 0. Note that the flux between two level
sets is independent of the choice of the curve v because of the incompressibility of the flow .

We now prove the level-set oscillation inequality (Lemma 3.2). As we restrict our analysis to one
cell we drop the subscript j in all the involved quantities. The idea of the proof is to construct a set
R bounded by a pair of gradient curves of ¢ and parts of the streamlines £(«) and £(f) if possible.
The gradient curves would be chosen so that the difference in the values of the function ¢* between
these curves is at least as large as the oscillation of ¢° along L(«a). Integrating equation (1.1) over
R we get then (3.2). The main technicality is the construction of the set R: see Figures 3.1 and 3.2
below for a geometric depiction of R.

We turn now to the construction of R. Let us define the oscillation function d(y) = M¢(y) —
m2(y). The maximum principle implies that if the level set L£(v) is contained inside the region
D(v') bounded by the level set C(v'), then d(y) < d(7'). We denote by x,,(a) and xps(c) the
points where ¢¢ attains its minimum and maximum on the level set £(«): M¢(a) = ¢ (xp()) and
me(a) = ¢ (xm ().

Consider the gradient curves
dYm

T = =Vé* (vm(t)), Ym(0) = xpm(a), (3-4)



and

d’;—f = V(v (t), vm(0) = xnr(a). (3-5)

The function ¢° may have critical points in D(c, 3) and the gradient curves s and 7, potentially
may tend to those points as t — +00. However, all critical points of ¢° are isolated saddle points as
it may have neither internal maxima nor minima according to the maximum principle. Moreover, as
¢° satisfies an elliptic problem in 2 it may have only finitely many critical points in the interior away
from the boundary. Thus there are only finitely many critical points of ¢° inside D(a, 8) that we
denote by &1,...,&n.. Note that both xps(a),xpm, () # & for all k£ because of the strong maximum
principle [11]. Let us consider the disks UJ’-" ={|x—-¢&;| <r},j=1,..., N centered at the singular
points, and let U" = U;V:EIUJ’-". Note also that |V¢*(x)| > C(e,r) for x € D" (o, ) = D(a, B)\U".
Therefore ¢ (yar(t)) > M(a) + C(e)t if ypr(s) € D" (v, B) for 0 < s < ¢t and hence the curve y,,(t)
must leave the set D" («, 8) at a finite time since the function ¢¢ is uniformly bounded. However, the
curve yps(t), t > 0 may not intersect the level set L(«) because ¢°(vyar(t)) is strictly increasing for
t < to provided that it stays inside D" (a, ) for all ¢t < ty. Hence there are two possibilities: either
both yar and v, exit the set D"(a, 8) at L(B) or one of them crosses D" (e, 8) at one of OUT. We
consider these two cases separately. First, we assume that we may choose r > 0 so small that the
curves yu and ¥y, do not intersect the circles UT = {|z — ;| =r}, j = 1,..., N, and then we treat
the other case.

Case 1: There exists 1 > 0 so small that both v, (t) and ya(t) exit D" (a,B) at L(B). We
denote the corresponding exit times by t,, and tp;, that is v, (tn) € L(8) and vy (ta) € L(B),
while y,,(s) € D"(«,B) for 0 < s < tp, and yu(s) € D"(«,B) for 0 < s < tpr. With a slight
abuse of notation we denote v, = {yn(s), 0 < s <t} and yir = {ym(s), 0 < s < tar}. The
curves 7, and 7js both have a finite length since |V¢¢| is uniformly bounded above and below
in D"(a,8) (by constants that may depend on € and r). These curves may not intersect since
¢°(x) > Me > m® > ¢°(y) for all x € vy and y € 7,,. Let R be a domain bounded by 7, yar and
parts of the streamlines v, € L(a) and 3 € L(S) (see Figure 3.1). There are two such domains, R
and D(a, f)\R. We fix R so that u-n > 0 on 7y (t) for ¢ sufficiently small — this guarantees that
“each streamline of u goes out of R when it intersects s for the last time.” Furthermore, we have
u-n < 0 on v, for ¢t sufficiently small so that “each streamline of u goes into R when it intersects
Ym for the first time.” Here n is the outward normal to 9R. Integrating (1.1) over R we obtain

Oz/R(sAqSE—u-VqSE)dxze 8¢Eds+£[m a¢sds—Lm(u-n)qﬁsds—[m(u-n)qﬁgds, (3.6)

Y on on

£

because u - n =0 on v,, v and = 0 on ,,, yu since the latter are gradient curves of ¢°.

We will use the following fact.

Lemma 3.3 Lety: [0,1] — D(a, ) be any non-self intersecting smooth curve that connects L(c)
and L(B): v(0) € L(), v(1) € L(B), has a finite length and is not tangent to L(c) at t = 0. Fiz the
unit normal n to v so that n(t) is continuous and u-n is non-negative when a streamline of u intersects
«y for the last time, that is, u-n(7(£)) > 0 for all £ between « and 8, with 7(§) = sup{t: v(t) € L(£)}.
Let f(x) > 0 be a continuous function monotonically increasing along v. Then we have

Fla.f) i ] < / (u-n)fds < F(a, B)sup f, (3.7)

0% XeEy

where F(a, ) is the fluz (3.3).

10



Proof. First, we observe that u - n(7(£)) > 0 for all £ € [a, 5] provided that w - n(t) > 0 for ¢
sufficiently small. The inequality (3.7) is shown as follows. For any N € N we may approximate f
along v by two piecewise constant (along ) monotonically increasing functions fy and fy so that

1 ; = 1
/(u-n)fds— —< /(u-n)des < /(u-n)fds < /(u-n)des < /(u-n)fds+— (3.8)

v N v v v v N
and |f — fx| < 1/N, |f — f| < 1/N. Therefore it suffices to prove (3.7) for a step function f that has
finitely many discontinuities, the general case follows after passing to the limit N — oo in (3.8). We
assume below that f is a step function. Let o, ..., o) be values of the stream function H such that
f has jumps only on the level sets L(ag), k = 1,...,p. We order them so that L(ay) C D(agi1).

Then we may represent -y as the union

v =U_ Yk Yk C Dok, 1)

Here 7y, is the part of v contained in the annulus D(ay, ag41). We may further split the subset vy as
a union -y, = 7}, Uy, . Here the set 7}, = U}*,v;, is a union of finitely many curves v}, that connect
the level sets L£(ax) and L(ak+1). There can be only finitely many of such curves since 7 has a
finite length and the distance between L(ay) and L(cy41) is positive. The set «; = Uy}, consists
of curves that start and end on the same level set L(ay) or L(ag41). We note that the function f
is constant on each curve vy;; and ~y};,. Therefore we have using incompressibility of u

Aﬂﬂwnﬂs:%:L f(u-n)ds = 0.

"
kl
We also have

[ mds = (0" fuF (o, ),
ReY

where fj; is the constant value of f on the curve 7},. This implies that

Sk

flu-n)ds = [ f(u-n)ds = F(ag, ap1) > (=D fu
Tk V& =1

However, fi; is an increasing function of I and the total number of times s; that v crosses from
L(ay) to L(ag+1) must be odd. Thus the above may be bounded below by

flu-n)ds > friF(ak, agi1) > Flog, agi1) inf f.
Tk

Summing the above over k we obtain the first inequality in (3.7). The second inequality is proved
in the same way. [
We now apply (3.7) to the curves 7, and vy with f = ¢°. Since max ¢* = m®(a) and min ¢* =
Tm

M*(«), we have ™
/ (u-n)¢ds > —m*(a)F (e, B), / (u-n)p°ds > M*(a)F (e, B), (3-9)

so that
/(wm¢@+/(wmw@zmﬁ@—mmmmmm

m ™
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Figure 3.1: The non-critical case

Figure 3.2: The critical case

Clearly we also have

99 ds S/ 99 ds,
L(B)

g on on

and iy iy
¢ ds g/ ¢ ds.

M on L(a) on

The claim of Lemma 3.2 now follows from the last three inequalities and (3.6) in the case when ¢°
has no critical points in D(a, §) or when 7, and 7, exit D" (a, 8) along L().

Case 2: It remains to consider the second case when 7y, or vy ezxit the set D"(a, ) at the
boundary U™ for all r > 0. Then we pick r > 0 sufficiently small to be specified below. In
particular we require that the starting points xp(«) and xp, () are not contained in any of U7,
j =1,..., N, — this is possible since x,,(«) and xp;(«) are not critical points of ¢* as implied by

12



the strong maximum principle. Then one (or both) of the curves ~,, and ;s defined by (3.4) and
(3.5) should exit D" («, 8) at the boundary oU" = U;-szlf)U]T. Let us assume that this happens to yas

and that it exits D], 5 ata point on BUJTI at a time t~11v[. We continue 7,s past the time f}\/[ as follows

(see Figure 3.2). Let ﬁg\}l = ym(%},) be the point where ;s intersected oUj and let also ng\}f be the
point where ¢° reaches its maximum over 9Uj,

¢*(mlh) = sup ¢°(x).

xE@UJT1

The vector V(;Ss(ng\}f) points in the direction of the outer normal to OU], by the maximum principle.
We stop yum at 73, and continue'it along the circle BU]’-‘1 to n%; in either direction Wii?h the speed
equal to one, so that yas(th,) = my- Then s follows the gradient curve going out of 7} for ¢ > th,
until it hits either £(8) or another circle U7, at a point ﬁf\ff at a time #2,. In the former case we
stop the curve a7, while in the latter we continue it in the same fashion as at OUj,, connecting vy
to n3;, the maximum of ¢ along oU7,, etc. Eventually vy has to cross the level set L(B) at some
finite time t’il. Indeed, we have qSE(ﬁf\f[) < (,bg(ng\f[) < G (FET) < ¢° (') which implies that the
curve 7y may not hit the same circle OU; twice. Given that the total number of critical points N,
is finite and that ~,; may not stay inside D" (e, 3) for an infinite time we conclude that the exit time
tﬁ/[ is finite. A similar construction may be applied to the curve 7, with n%“ being the point where
¢ attains its minimum on U7 .

In order to guarantee that the curves 7, and s constructed in such way do not intersect, we
require that r is so small that

(¢ (zm(a)) = ¢°(zm(a))), J=1,...,N; (3.10)

€ _ inf ¢
0 <supg élr};¢ ST

our
where § is a small parameter. Observe that the sequence ¢¢ (ng\’j[) is increasing in k, ¢° (nﬁ,) >
¢°(zar(a)) and ¢°(y(s)) > ¢°(nlk) for th, < s < 1. We also have

¢ (ru(s)) > 6 () = 5 f . (¢ (@0 (@) = ¢ (@m(@))
for t%, < s < tk,. That implies a lower bound
¢ (u (s)) > ¢ (zn(@)) — 1 f . (97 (@a(@) = ¢ (zm(e)) (3.11)
for all 0 < s < t4,. Similarly we have
9" (m(9)) < ¢ (2m (@) + 177 (# (@ (@)) = ¢ (2m(@)))
for all 0 < s < t5,. That implies an estimate
F ) = 0@ > (1= 1o ) (@ lou(@) = #on(a) (3.12)

for all s and s’ so that yas and v, may not intersect provided that § < 1/2.
We may now proceed as in the first part of the proof. Let R be the domain bounded by v, var
and parts of the level sets L£(a) and L(53), as depicted on Figure 3.2, chosen so that w-n > 0 for ¢

13



sufficiently small, that is, so that each streamline of u goes out of R when it crosses s for the last
time. Integrating (1.1) over R we now obtain instead of (3.6):

0= [ (eadru vz [ Fdste > [ o > [ ot

Te 8 'yMﬂ auy 'ymﬂ auy

— / (u-n)d°ds — / (u-n)pds, (3.13)
m ™
where 7, = OR N L(a) and similarly for y3. The function ¢°(ya(s)) is no longer necessarily
monotonically increasing in s, as monotonicity might be broken for t] <s < t7 However, we may
adjust its values on these intervals, interpolating linearly between ¢*(77%) and ¢ (n%), to make the
new function ¢¢(s) monotonic in s. The oscillation bound (3.10) implies that

Ne

<> [ ww@ -l @

k=1

/ (u-n)¢sds — / (u-n)pds
Y™ Y™ Y OUT

< [lullooNe (¢*(zm (@) — ¢*(zm())) < C9.

14+ N,

The estimate (3.7) may be applied to ¢° which together with (3.11) and (3.14) implies:

/ (- n)gtds > / (- n)@ds — C8 > [M*(a) — CO|F(a, B) — C5 = M*(a)F(a, §) — C5. (3.15)
Y™

Y™

Similarly we obtain

/ (u-n)¢Fds > / (u-n)§ds — C8 > —[m*(a) + C]F (a, B) — C5 = —m () F(ax, B) — C5. (3.16)

Furthermore, we may choose r < 1 so small that [V¢*| < /(14 N,) on all 9U7, j =1,..., N, — this
is possible since the centers of U]’-" are singular points of V¢°. Then we obtain

Ne

ol )
Z / an ds| < N.27r +N€§C<5.

k=1 MmN 3UT

Using the above estimates in (3.13) we get
o¢°

e/ ds+€/ ‘6(}5 d Ze/ o¢ ds-l—/ 09 ds
L(a) | On c(B) | On L(a) On £(p) On

= / ¢6d3—|— 25: / %qssds—Lm(u-n)d)gds—‘[m(u-n)qﬁgds

7Mﬁ 8U’" _lvmﬂ Uy

(M*(a) — m®())F(a, ) —

This proves Lemma 3.2 in case 2, as ¢ is arbitrary, and thus the proof of this lemma is complete. [

Vv
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We now prove Proposition 3.1. We use inequality (3.2) for a pair of level sets L((a+ ()/2+ H)
and £(8+ H) with0 < H < 2~

(M5<a;ﬁ+H>—m5<a;ﬁ+H>>F(—;ﬁ+Hﬂ+H)

O¢° a¢°
< .
<e / ‘Bn ds+e¢ / ‘an ds
c(te 1) L(B+H)

to obtain

However, we have

ME(a)—mf(a)ng(“;fMH) e (“;MH)

according to the maximum principle. Therefore we get

el e a+f o¢° 0¢°
(M*(a) —m (a))F< 5 —{—H,ﬂ—i-H) <e / ‘ o ds +¢ / ‘ o ds. (3.17)
(18 +H) L(B+H)
We integrate (3.17) with respect to H to obtain
(a=p)/2 £
(M*(a) — mf(a))/ F (a : b i mp+ H) dH < g/ / a¢ dsdH.  (3.18)
0

The integral on the right side of inequality (3.18) may be re-written in the curvilinear coordinates

// 8¢ P //‘8(]5 dOdH / ‘¢6|\J\dacdy:/ V||V Hdody
£(h) D(a,p) D(a,p)

Vel = V0
1/2 1/2 a2
< / \VH [2dzdy ( / |V¢5\2dwdy> < % / \VH|dzdy | < M
D(f) c et/ \ Jp(ap) et/

where J = |[VH||V0)| is the Jacobian (2.9).
The left side of (3.18) satisfies

@-B)/2 /4
(M(a) — m*(a) /0 F ( P mpe H) dH > C(M*(a) — m*())(a — ).

The above estimates imply that

] ) e(a — /3)1/2 €\ 3/4
M (@) — m*(e) SO pran SC(E)

with the choice 8 = /2. This finishes the proof of Proposition 3.1. [
Proposition 3.1 shows that the variation of ¢*(z) on a level set L(N+/¢) is bounded by

ME(NVE) = m* (NVE) € ~o7s.

The maximum principle then implies the following theorem.
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Theorem 3.4 There exist constants K; so that we have inside each cell C;

sup  |¢°(x) - K| < —

. (3.19)
x€D(N+/E) N3/2

This shows that the function ¢° is close to a constant inside each cell C;. The next proposition is
another manifestation of this fact.

Theorem 3.5 We have an upper bound

C /e \3/8

€2

dx < — | = 2
L 179 < 57 (57) (3.20)
for H > \/e.

This estimate is shown as follows. Integrating (1.1) over D(H) we obtain

/ |V¢5\2dx:/ ¢€a¢ ds.
D(H) cy  On

Integrating this equation in H € (Hy, Hy + 1) we get

Ho+l1 Ho+l1 8¢€

/ |V ¢°|*dxdH = dsdH. (3.21)
D(H)

Ho Ho L(H) ¢ on

The left side of (3.21) is bounded below by

Ho+1
/ |V¢©|?dxdH > 1 / |V ¢°|?dx,
Hy D(H) D(H0+l)

as D(Hy+ 1) C D(H) for Hy < H < Hy + I. The right side of (3.21) may be estimated as

1/2
Hop+l £
/ / 9% dsan |V¢5|2dx) .
Hy L(h) on

We denote F(H) = / |V¢°|?dx. Then the above estimates with Hy = [ = H imply that
D(H)

< O (M*(Ho) — m"(Ho)) I'/* (/D(

Ho)

€ \3/4
HF(@2H) < C (ﬁ) (HF(H))Y2.
That is, F(H) = HF(H) satisfies F(H) < C for /e < H < 2y/¢ and

F(2mH) < (%)3/4 FU2().

N 3/8
This implies that F(H) < C (%) for H > /e so that

£12 g i 3/8

which is (3.20). O
Theorem 3.4 implies a lower bound on the L2-norm of the gradient of solution.
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Figure 4.1: The water-pipe model

Proposition 3.6 There exists a constant C = C(Ty,Q,u) so that
/ IV () [2dx > 2. (3.22)
Q Ve

We choose the boundary cell Cy as in the proof of Proposition 2.2 and recall the first inequality in
(2.10) (with the notation as in the same proof):

0>
/0 ITh(6) — 67 (1, 0)%d6 < Cryv/e /Q V() dx.
1
The left side may be bounded from below by
0o (D) ) 9
/9 ITo(0) — ¢ (1E, 0) 26 > /H To(6) — K[2d0 — /9 K — ¢ (1/E, 0)do
1 1 1

0>
> / ITo(0) — Tol?d6 — Cr~3/* > (1 — y~3/%)
01

with the constant K§ as in (3.19) in Theorem 3.4 for the cell Cy. Combining the last two inequalities
and using v > 1 we obtain (3.22). O
This completes the proof of Theorems 1.1 and 1.2.

4 The water-pipe network

The previous arguments show that there exist constants K so that solution of (1.1) is well approx-
imated by solution of the following water-pipe problem (see Figures 4.1 and 4.2). As before, we
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Z\

Figure 4.2: One cell

denote by Q% = {|H(x)| < Ny/e} the domain consisting of narrow pipes (boundary layers) near
the separatrices. Its boundary consists of €2 and finitely many level set curves l,]cV = Li(N+/e),
k=1,...,pso that |H(z)| = Ny/e on I} . The results of Section 3 show that ¢¢, solution of (1.1) is
uniformly close to solution of

eAY* —u-Vy* =0, x€Qy (4.1)
with the boundary conditions
Vloa="To, ¥ |y =Kg, m=1....p (4.2)
with the constants K7, as in Theorem 3.4. More precisely we have a uniform bound
C
|9°(x) =" (X)| < <375 (4.3)

This shows that in a numerical computation of ¢° it suffices to consider the pipe-problem (4.1)-(4.2)
with the correct constants K, in order to obtain a good approximation of the solution. However,
the constants K, are not known a priori and their computation is part of the problem. As we have
seen the function ¢° is very close to a constant near the level sets lT]X. Therefore we should expect
that we may replace the Dirichlet boundary data on l% by the homogeneous Neumann boundary
conditions in the water-pipe problem (4.1) and obtain an approximation that has the same order of
error. In particular this would provide an efficient numerical way to find the constants K¢, as the
boundary value of the solution of (4.1) with the Neumann boundary conditions. This is confirmed
by the following results.

Proposition 4.1 Let ¢5 be solution of the water-pipe model:

eAdy —u-Voy =0, x €0y (4.4)

18



on the domain Q5 = QN {|H(x)| < Ny/e} with the boundary conditions
05

% loa = To a—glﬁzo, m=1,...,p. (4.5)
Then there exist constants f(fn’N so that
€ 743 c
lp7v (%) — Kp v | < N3z (4.6)

for all z € LY.

Proof. The proof of this proposition is essentially the same as of Theorem 3.4. One only has to
observe that the strong maximum principle implies that the maximum and minimum of the function
¢% over any sub-domain {a < |H(x)| < N4/} NCp, is achieved on the boundary {|H (x)| = a} NCp,
and not on the interior level set l'y. Therefore all arguments in the proof of the level-set oscillation
inequality (Lemma 3.2) are applicable verbatim, and we do not repeat them. O

Theorem 4.2 Let ¢° solve (1.1) and let x(s) be a smooth even function, monotonic on s > 0, so

that || /
1, |s| < 1/2,
X(s)_{ 0, |s| >1

Let us extend ¢5% to the whole domain Q as

Pv(x) = (ﬁif)) Hv () + K (1 X (Z(j;)) o

with the constants K¢ m,N given by Proposition 4.1. Then we have

16° ~ B llmie) < o (47)
where ¢° solves (1.1).
Proof. Let (* = ¢° — ¢5 be the error that we need to estimate. It satisfies the equation
eAl* —u-V(=¢°, x€Q, (4.8)

with

500 = (Re — 65) | A0 (302 ) + 3z VP (3op )]
2 (69

o) V) - V)

and the boundary condition ¢* = 0 on 9. We multiply (4.8) by (¢ and integrate over €:
/\VCE )|Pdx = — /CE x)dx =1+ 11+ 1I1.

The first term on the right may be estimated using Proposition 4.1 as

—— [ O - g6 Y ArGoY (7 ) dx

CVe|C Lo (as,) H(x) Cye
< N5/2 . /QXI<N\@>‘d SN5/2“C oo (2,)-
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The second term is bounded in a similar way as

= [ LR - 63 60) g PHOIPY (B2 ) dx < SR e

The last term we bound integrating by parts as

117 = / e (x 2‘[ ( N£[)> Vo (x) - VH (x)dx

NQf/cf (5 = K (o )\VH () dx
3 e (N )
cye cye

2 [ - ( %)) Ve - VH(x < Y o) + 1 o

(2 )

We choose A = 1/eN®/2/(2C) to obtain the bound

. C . Cye
o [ 196 Pax < S e + S (4.9)

/|VCE \dx—l—

N5/2 (x)|2dx] .

Recall that (* = 0 on 02 and
C

660 = (K = Ke)| €

- 2
on the level set 1. Then if |[K5, — K&,| =6 > NTC/; we have, on one hand,

Cye C \?
€ 2 _
e [, 1weeoax > GF (5555 )

while on the other ||([|r~(ns,) < 0+ Putting these bounds into (4.9) we obtain

C
N3/2

OV (5 Y <O (54 C ). O

N N3/2 — Nb5/2 N3/2 N4 -

We denote 7y =46 — N2 and rewrite the above as

C\/52< Cve +fo Cve

N — N5/2 N4 N4
so that
< C
7= N3/2°
Therefore 920
|Krsn - | =d< = N3/2

An application of the maximum principle on Q% finishes the proof of Theorem 4.2. [J
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T(9,) £

T(g,)

Figure 5.1: The two-cell problem

Note that Proposition 4.1 and Theorem 4.2 do not imply existence of the limits
lim K}, = K. (4.10)

e—0

The proof of (4.10) requires a separate argument based on the analysis of the asymptotic limit £ — 0
in the next two Sections. We will present first the asymptotic analysis, and then return to the proof
of (4.10) at the end of Section 6.

5 The asymptotic problem

It turns out that in the limit ¢ — 0 the asymptotic behavior of the solution to the advection-diffusion
problem may be described in terms of a model that is essentially a system of one-dimensional heat
equations on a graph. This section is concerned with the construction of this model.

5.1 The two-cell case

We describe the asymptotic problem first on the simplest example of a domain € that consists of
two cells C; and Cy depicted in Figure 5.1. We denote by ejo = 02N dC;, j = 1,2, the part of the
boundary of € along the cell C; and by ej2 the common edge of the two cells. We also introduce the
boundary layer coordinates h and 612, 60, 7 = 1,2. The coordinate 0 represents parameterization
along the edge e;o = {h = 0} N {0 < 612 < 12}, while the coordinates 6;y parameterize along the
boundaries ejo = {h = 0} N {l12 < 00 < ljo}. We first solve the heat equation ”along ej”:

dfiz _ 0o

0 = R h € [=N,N], 0<612 <l (5.1)

with a prescribed initial data f% and the Neumann boundary conditions at h = +N:
0f12(012, £N)
Oh

Then we solve two half-space problems ”along the outer boundaries e;o” with the prescribed Dirichlet
data that comes from (1.2):

dfi _ 9fio
00,y  OR?’

= 0. (5.2)

—N<h<0, lig<b10<lpo (5.3)
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Figure 5.2: The gluing procedure

and
dfa _ 9% fa
00y  Oh?’
with the Neumann boundary condition (5.2) at h = —N, and h = N, respectively, and with the
Dirichlet data f;o(6;0,0) = To(fj0) at h = 0. The initial data for (5.3) and (5.4) comes from (5.1):

0<h<N, lig <0y <ly (5.4)

fio(liz, h) = fia(li2,h), — N < h <0, (5.5)
foo(l12,h) = fi2(l12,h), 0<h < N.

Finally we glue together the functions fi9(l19,5h), h < 0 and foo(l2g, k), A > O:

flo(llo,h)a - N S h S 0

fiah) = { f20(l20,h), 0<h <N (5:6)

The asymptotic problem is to construct a periodic solution of the above, that is, find a function
1% (h) so that f(h) = f{,(h), h € [-N, N]. This problem is described schematically in Figure 5.2.

Proposition 5.1 There ezists a unique function fY% € L?>(—N, N) such that f% = f7,.

Proof. Let us define the operator L1 : L?(—N,N) — L?(—N,N) by Lis : f — fi2(l12), that is,
the solution operator of (5.1). The operator L2 is bounded and compact, since || f12(l12) || g1 (- n,n) <
ClIf%]l 12(—N,n)- We also let Lig and Lo be solution operators for (5.3) and (5.4), respectively with
homogeneous boundary data Ty = 0. The operators R restrict a function defined on [—N, N] to
the positive and negative semi-axes, respectively, while the gluing operator G glues together two
functions defined on those axes:

Gf-. f+](h) = {§;§Z§ "0

as in (5.6). We denote by g(h) the function obtained by solving (5.1)-(5.6) with f2 = 0 and
inhomogeneous boundary conditions. Then equation f{, = f{, is equivalent to:

G(L1oR_Liafty, LogR+ Liafis) + g = fia, (5.7)
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or
’Cf& - f{)Z =9, ’Cf& = g(LloR—me{)zaL20R+L12f?2)- (5-8)

The operator K is a compact operator on L?(—N, N). Furthermore, we have ||Lig||z2_,z2 < 1 and
I L2o||z2— 12 < 1, while ||L12||z2_,z2 = 1. This implies easily that ||K||;2_,72 < 1 so that solution of
(5.8) exists and is unique by the Fredholm alternative since K is compact.

An alternative approach to the proof of existence of a periodic solution of (5.1)-(5.6), that is
somewhat less transparent in the two-cell case but is easier to generalize to the case of N cells is as
follows. We introduce an operator £ = Lis ® L1g ® Loy defined on L2(R) x L?(R_) x L?(R,) as

fi2 Lo fio
L fio] = | Liofio
f20 Lo fao

We also define a re-distribution operator R on the same space L?(R) x L2(R_) x L%(Ry) as

fi2 G[f10, f20]

Rlfio] = R fi2
fa0 R+ fi2
Then we may re-write (5.7) as
fia(R) g(h) fia(h)
fao(li2, h) 0 fao(li2, h)

In a sense, (5.9) views (5.1)-(5.6) as a boundary value problem while (5.7) treats it is a periodic ”in
time” solution. The operator @ = RL is compact since £ is compact. Observe that Q2 may be
written as

fi2 G[L10.f10, L2o f20] GlL10(R—(L12f12)), Lao(R+ (L12f12))]
Q*| fio | =RL R—_(L12f12) = R_(L12(G[L10 f10, L2o f20])) . (5.10)
f20 R4 (Li2fi2) R4 (L12(G[L1o fro, L2o f20]))

The norms || Lig|| 2,12 and || Lag|| 2, 1.2 are both less than one, as we have noted before. This implies
immediately that ||Q?|| < 1 and thus (5.9) has a unique solution by the Fredholm alternative. This
approach has a straightforward generalization to the case of more than two cells.

5.2 The general N-cell case

We now consider the general case when the domain ) consists of a finite number of cells. The
asymptotic model is described in terms of an oriented graph constructed using the stream function
H as shown on Figures 5.3 and 5.4. The vertices of this graph are associated with the saddle points
of H. The edges e;; of the graph are associated with the separatrices of the the stream function.
The direction of an edge is determined by the direction of the velocity field on the corresponding
separatrix. The length of an edge is determined by the length of the separatrix in the boundary
layer coordinate @ associated with H. The boundary edges are those that are associated with the
separatrices at the boundary of the domain. The cells C; are quadrangles bounded by minimal cycles
of the graph. The interior edges (drawn as solid arrows on Figure 5.4) are indexed so that a common
edge of two cells C; and C; is denoted by e;;. The boundary edges (drawn as dotted arrows on Figure
5.4) are indexed so that the outer part of a boundary cell C; is denoted by e;o. The boundary value
problem is:
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Figure 5.3: The velocity profile

Figure 5.4: The graph

e [i] Given the values of the temperature T on the boundary edges e;y, determine the values of
the temperature f;; on all the edges. Note that the value of f;; may vary along each edge.
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e [ii] Given the values of f. on all the edges, find the solutions f; of the Childress’ problem for
each cell C;:

(0%f;  Ofi _ 0
Oh? a0 —
h €[0,N], 6 €] — oo, +o0],
§ fi(h =0,8) = fu(0), (5.11)

 fi(h,0) = f(Rh,0 + 1),
where the index k takes four values of the adjacent cells, I; = l;x, + - -- + li, is the length in

6 of the four edges e, ,. .. €ik,, bounding C; and fix(0) = fir, (6), ..., fi(0) = fir,(0) are the
values of the temperature on respective edges.

e [iii] When any two cells C; and C; share a common edge, the normal derivatives from the left
and from the right match point-wise on this edge:

ofi 9f;
Oh lh=0  Oh |lh=0

=0on €ij-

Theorem 5.2 There ezists a unique solution of the boundary value problem [i], [ii], [iii].

Proof. The proof generalizes the construction in two-cell case considered in Proposition 5.1 to the
general situation in a fairly straightforward albeit somewhat tedious manner. Assume that a solution
to the boundary value problem [i],[ii],[iii] is found. Then the solutions f; and f; on two adjacent
cells C; and C; are such that they can be glued together into one function f;;(0,h), h € [-N,N],
0 € [0,1;;] so that (possibly after an appropriate shift of § by a constant)

fij(0,h) = fi(0,h) for h > 0, andf;;(8,h) = f;(8,—h) for h <O0.

The function f;; satisfies the heat equation

0*fiy _ Ofiy _
onz 96 (5.12)
Ofi;
= 4+ =
T4 (h = +N,0) =0

on (h,8) € [-N, N] x [0,;;]. Equation (5.12) can be solved uniquely as a Cauchy problem, provided
that the initial data

F5(h) = fij(h,6 = 0) (5.13)

is given. Therefore, we may define a linear operator
0 1
Lij : fij(h) — fi;(h),

which maps the function f2(h), assigned to the beginning of an interior edge eij, to its value

zlj(h) = fij(lij, h) at the end of this edge by solving the heat equation (5.12),(5.13). For boundary
edges the operator L;p and, hence, f}(h) are defined by solving the homogeneous heat equation in
half-space:

*fin _ Ofio _ 0
Oh? 00 ’

Of;

Bho (h = Na 0) = 07 (514)
fio(h =0,0) =0,

fio(h = 0,0) = fiy(h),
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on (h,8) € [0,N] x [0,l;0]. We denote by g;o(h) h € [0,+00) solutions of the inhomogeneous heat
equation ”along the boundary edge e;y”

0%gi0  Ogio _
Oh? 00 ’
Jg;
gio(h = 0,0) = fin(0),
gio(h = 0,9) =0,

on (h,8) € [0,N] x [0,l;0]. Hence, if f solves the boundary value problem [i],[ii],[iii], then the
corresponding vector-valued function f0 = (f9,,..., Z-Oj, ey f,?m) solves

RLfO+g=f° (5.16)

similar to (5.9) where g = (g10,920,920;---,9m0,0,...,0) and £ = Q®L;;. The first (non-zero)
components of the vector g (and those of f) correspond to the vertices at the boundary where the
flow u is incoming: there is only one such vertex in the two-cell case and hence g has only one
non-zero component in (5.9). The operator R
R:fl— fO

1
ij
constructs the values fzgj, at the beginnings of the edges at each vertex in a natural way: f must
be a continuous function in each cell. Given the problem (5.16) is solved uniquely, the boundary
value problem [i],[ii],[iii] is equivalent to (5.16) as both amount to solving the heat equations (5.12),
(5.14), (5.15). Therefore it remains to show that

is a linear redistribution operator. Given the values at the ends of the edges the operator R

(RL-I)f° = -y, (5.17)

has a unique solution. However, the unique solvability of (5.17) follows from the Fredholm alterna-
tive. Indeed, the operator R is clearly bounded on [L?([—N, N])]* (here k is the number of edges) by
construction. The operator £ is compact on [L%([—N, N])]* for the same reason as in the case of two
cells; it is associated with the solution of the heat equation. Moreover, A = 1 is not an eigenvalue of
the compact operator RL. Indeed, each boundary operator L;y has norm less than one: ||L;l|| < 1.
Therefore, if we let M be the total number of edges, we have ||[(RL)M| < 1 and thus RL may not
have eigenvalue equal to one. [J

6 Approximation by the asymptotic problem

We now compare the function ¢%, solution of the approximate water-pipe problem (4.4), to the
stretched asymptotic boundary layer solution f¢(z,y) = f(H(x)/v/€,0(x)). Here f(h,0) is the
unique solution of the Childress’ problems described in Section 5.2 and Theorem 5.2. The function
f(h,0) is smooth except at the points (h = 0,6;;) that correspond to saddle points of the stream
function H, where f is discontinuous. This necessitates a careful local analysis near the corners. We
build our approximation as close to the Chilcress solution f away from the corners — at distances
larger than Mel/* with M > N. We will use an orthogonal system (h = H/+/€,0;;) along each
edge e;; that separates cells C; and Ci, and at indicated distances away from the corners. However,
a different coordinate system and a different approximation are needed near the corners. We begin
with the introduction of suitable local coordinate systems.
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6.1 The local coordinates

Observe that the advection-diffusion equation (1.1) has the following form in an orthogonal system
of coordinates of the form (h = H/ /¢,0):

of of
on T2

2
+ 8|V9|2ﬂ _g9% (6.1)

20
V| 06? 06

2 + VEAH =
with J = V1 H -V = |[VH||V6|. Therefore, in order to have at least a formal approximation of (6.1)
by (5.11) as € — 0 we should have J =~ |VH|?, or, equivalently, |VH| ~ |V6| in the boundary layer
|H| < Ny/e. We impose the condition |VH| = |V#6;;| along the edge e;;. However, the coordinate
0jr introduced in such way may have a singularity at the end-points of e;jz. Therefore we will use
these coordinates only away from the corners.

In order to perform a local analysis near the corners we may introduce the local orthogonal
coordinates (X,Y) in a d-neighborhood of a corner that we fix at x = 0, so that near the saddle

point we have
H= X% kY2 (6.2)

Moreover, we may assume that the change of variables satisfies
DX =U + O(x), AxX =0(x) (6.3)

with U a unitary matrix. Such change of coordinates always exists according to the Morse lemma
in a ball |x| < § near the saddle point with § > 0 sufficiently small. We may assume without loss of
generality that the constant k > 1. Then the separatrices are given by X = +v/kY in the variables
(X,Y). In order to simplify the notation we will assume that actually at the corner the function
H has the form (6.2) in the old coordinate system (z,y) and no change of variables is required.
Extension to the general case using the coordinates (X,Y’) is straightforward, with the help of the
estimates (6.3), at the expense of slightly lengthier calculations. We omit them for the sake of
readability. Under our assumptions, the coordinate €, orthogonal to H, is defined along the whole
edge eji, and is given explicitly near the corner by

6 = By(a*y) ¥

The normalizing constant is chosen to be By = (k+ 1)k~ (*¢~D/(*k+1) Tt is fixed by the requirement
that we have |V@| = |VH| along the separatrices |z| = v/k|y|. With such a choice of By, we obtain

k—1
k+1

Vo =2 ( \/_y) (ky, z). (6.4)

We will use the following three regions inside the boundary layer (see Figure 6.1):
1= {(x,y) €O O(z,y) < MZ\/ke} (6.5)

is the region around the corner. The region

1T = {(z,) € O : M*Vke <0(z,y) < 4M*Vke} (6.6)
is the next closest, and
II] = {(g;,y) €0y AM*Vke < H(w,y)} (6.7)

27



Figure 6.1: The regions near the corner

is the farthest from the corner. Region II] extends all the way to the adjacent corner along the
edge. The constant vk is included for convenience in the definition of these regions, because

2
6] = (k+1) (xk\/Ey) V(2 + 92 (6.8)
vk

inside the boundary layer {|H| < Nv/e}, as = ~ Vky. Hence the boundaries of the three regions are
approximately parts of the circles: /722 + y2 & Me'/* and /22 + y2? ~ 2Mel/2.

We now show that for distances larger than M e!/* away from the corner inside the boundary
layer (regions I1 and I11) the desired approximation J = V@-V+H ~ |VH|? is valid. An elementary
geometric calculation shows that in region IT U I1] we have

.’L‘2

ky?

Ch h
<— < (OC— < .
1‘_M2_h_cM2, h <N, (6.9)

as M > N. Combining the last inequality with (6.4), and using the form (6.2) of the stream function
H near the corner we have

IVH]> = J| < C (2” + K*y?) % (6.10)

Similarly, we have that A# is uniformly bounded in the same region (regions IT and III):

N
|Af] < Cprs- (6.11)
Observe also the following uniform bounds:
|J — |VHP| h  |VHP 7]
<C—s5, <C, & <C 6.12
o =u 0 (0:12)

that we will need later. Here @ = 0 is the coordinate of the saddle point. Indeed, inequalities (6.12)
are trivially true, when [f| > 4. In the d-neighborhood of the saddle point we have (6.12) by using
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(6.10) and > C(x? + y?) in the boundary layer. Note that these estimates may not be pushed all
the way to the corner x = 0, that is, inside region I, as (6.9) breaks down, and |V6| blows up at
the saddle point except in the special case k = 1. This is another reason why the Childress solution
may not be used at the corner.

6.2 Bounds for the Childress solution

We present now some bounds for the Childress solution. We may decompose the function f at the
corner X, into a smooth and a discontinuous component as

0, for h <0,
J O, 1) = Jom(je, 1) + Byas(h), s(h) = {1, s (6.13)

With the convention of Section 6.1 we have 6;; = 0. Here s(h) is the Heaviside function, Bjy, is the
magnitude of the jump of f that appears because of gluing together of two solutions that come from
different cells, and fs,, is a smooth function, except for the corners, where f,, is continuous. Hence

N 0fm\?
/_N< 1 ) dh < C. (6.14)

The function f solves the boundary value Childress’ problem inside each cell, hence f;; converges
exponentially to the corresponding constants K; and K; away from the separatrix

|fij(h) — Ki| < exp(—c|h]), h >0, |fi;(h) — Kj| < exp(—cl|h]), h < 0.
Decomposition (6.13) implies that f satisfies the following bounds:

<

s
902

o
U

(6.15)

These estimates follow from the explicit expression for the solution of the heat equation on the
interval —N < h < N with the Neumann boundary conditions at h = £ N, and with the initial data
f(h,0) as in (6.13). We can also estimate in a similar fashion, for € close to zero,

1£8) — F(O)2( n.x) < CVE, (6.16)

where the main contribution comes from the discontinuous part of f in (6.13). Similar considerations
lead to a better bound for fg,:

| Fsm (6, h) — fo(R)| < CV8, where fo(h) = fsm(h,0). (6.17)
for all h € (=N, N).

6.3 The approximate solution

The approximation to the solution of the full problem is constructed as follows. Let x be a smooth
cut-off function such that x(r) = 0 for 0 < r <1 and x(r) = 1 for r > 4. We denote by x;;, the
saddle points of H and let

S0 Zfs <M2 1/2) +Z[ <M2 1)/|2>] T (), (6.18)

" (x) = ¢§v“””( ) — ¢ ().
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Here ¢, is the solution of the water-pipe problem (4.4), f*(x) = f(H (x)/+/€,8(x)) is the stretched
solution of the Childress problem, and the function ij satisfies the exact problem

eAfi —u-V =0 (6.19)

on the domain G = I U II near the corner (see (6.5), (6.6)), that we again fix to be at x;;, = 0 in
the local analysis that follows, so that

o~ fea(idt) 1)

The boundary 0G consists of two parts: 0G,, that is part of the level set |[H(x)| = N+/e, and 0Gy
that consists of pieces of the curve || = 4M?v/ke, which is close to the circle |x| = 2Me'/*. We
prescribe the homogeneous Neumann boundary conditions for f¢ on 0G,, and the Dirichlet boundary
condition f7(x) = f*(x) on 0G4. That is, f¢ coincides with f¢(x) on 8Gy.

Quahtatlvely, since the Childress solution is not smooth near the corners, we cut the approxima-
tion f at a distance Me'/4, M > N away from the corners and glue into the corners solution of the
true original equation that coincides with the approximation on the gluing set. For the distances
between Mel/* and 2Me'/* we interpolate the two functions.

The error function ®¢ defined by (6.18) satisfies an equation inside the boundary layer Q5% =
{|H(x)| < Ny/e} of the form

eAD® —u - VO = g°. (6.20)

1/4

The function ¢g¢ = 0 for distances less than Me'/* away from the corner, that is, in region I:

g° =0 in region (6.21)

as both ¢%; and fi; are exact solutions of (6.20). Furthermore, for distances larger than 2M gl/4

away from the corner, that is, in region IT1, the function ¢g° may be written in the h = H/ /¢, 0
coordinates as

of of 2f  _of
VH-Z AH L ceAG—L v 2Y J
4 [' |8h2 VeaHzy b96 +eIVO 50z ~ 75
of of of & f
2_ 2
= [(|VH| T) 55+ VEAH o0 + D=5 + | VO =g |

It may be now estimated as follows. Using the first inequalities in (6.12) and (6.15) we bound the
first term in the first bracket as 3f

h
‘( ~ [VHP) 35| < ot

Similarly, using the bound 1/]0] > CMe!/* we estimate the other terms in the first bracket:

of gl/4 of Ve

and 55 Ve
2 9
Therefore we have in region 1711
1/4 N 1/4
€ €
< - < -— 4+ .22
I<ClaE 3| <C\aEt (6.22)
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It remains to estimate the error term in region /1. There we have
9 =X[eAf —u-VfT]+2e [Vf* - Vx = V- Vx| +(f = f) [eAx —u- Vx| = g1 +92+g3 (6.23)

The first term can be estimated as above:

h 61/4
wt

N 81/4
< = 4=
<C e + i

lgi| < C in region IT (6.24)

since estimates (6.12) hold in region IT as well. In order to estimate the second term we prove the
following lemma.

Lemma 6.1 Solution of (6.19) with the boundary conditions as above satisfies the following bound:
e/ |VF2dx < CN /. (6.25)
G

Proof. We write f = q + fen(0/(M?\/g/2)), that is we cut-off f at distance Me'/*/2 from the
corner. Here 7 is a cut-off function of the same kind as . Then the function ¢ satisfies

eAq—u-Vqg=—p°, p°=-neAf* —u-Vf] - feAn—u-Vn] -2Vf*-Vn=pi1+ps+p3

with the homogeneous Dirichlet boundary conditions on G4 and the homogeneous Neumann bound-
ary conditions on G,,. Note that |p;| < CN/M? - this term is estimated as the first term in g*. The
second term is bounded as |ps| < C, while the last one is estimated by |ps| < Ce%/4|V f¢|/M, because
|Vn| < C/(Me'/*). However, we have in the region where V7 # 0:

CMet 1 C _C
\/g Mel/d M51/4_\/§

|VH]| |of of
Vi< —|= Vo||=| < 6.26
Vo < S |G|+ 15 < (6.26)
so that |ps| < Ce'/*/M. Observe that the area of the region where 7 # 0 is bounded by CN+/e,
where the constant C' is independent of M. Therefore we obtain, since ¢ is uniformly bounded as a
difference of two bounded functions:

N 1/4
8/|Vq|2dx:/ gp°dx < C —2+1+€— N+ye < CNy/e.
G Gn£0 M M
This estimate, combined with the bound (6.26) in the region where n # 0 proves (6.25). O
Lemma 6.1 and the estimate (6.26) in region I7 allow us to bound the second term in ¢° in
this region. Indeed, we again have that the area where Vyx # 0 is bounded by CN+/e. Hence go is

bounded as s
CE 1 1/2 CE 1/2 \/NE
l92llz2rry < EIENG (Nve) ' + Y (NVe) " < 0 (6.27)

It remains to estimate g3, the third term in region /1. This is done by the following lemma.

Lemma 6.2 Solution of (6.19) satisfies the following bound:

N2
‘2/5 + CMNe¥* + CeM?. (6.28)

||jT_ f”%ﬂ([}) S c M

where f is the Childress solution.
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Figure 6.2: The incoming and outgoing parts at the corner

Proof. The boundary 0G4 consists of four parts: BGQ, j =1,...,4, one in each of the coordinate
quadrants. The flow u = (2ky, 2z) is incoming on G = 8G3’4 and outgoing on Gt = 8G2’3
(see Figure 6.2). We will show that the first term in (6.28) comes from the Heaviside function s(h)
in decomposition (6.13) while the second and the third terms in (6.28) come from the continuous
piecewise smooth part in (6.13). Hence we first prove inequality (6.28) in the special case when
f=1on BGZ and f = —1 on 8G§. The values of f on 8G3"t are determined by solving the heat
equation with the Neumann boundary conditions at k = + N, for a time § = 4M?vke and the initial
data fin(0 = 0,h) = sgn(h).

We claim that both the function f¢ and the function f for such data are very well approximated
by an exact solution of (6.19) with v = (2ky, 2z) in the form fy = fo(t), t = z — Vky. It mimics
very precisely the behavior of f® with the discontinuous data as we are considering. The function
fo satisfies

(1+k)efy +2VEtfy =0 (6.29)
so that . ,
fo(t) = -1+ a(k) /Oo exp (—%) ds. (6.30)

The constant a(k) is chosen so that fo(+oo) = 1. Observe that fo approximately satisfies the
Neumann boundary conditions on the 0G, part of the boundary:

afo N
-2 < —C— _ .
‘an < Cexp( C 2\/5) on 0G, (6.31)
Note also that
|f2 — £7] < Cexp{-CM*c™/?} (6.32)

on the inflow boundary, as follows immediately from (6.30), as [t| ~ CMe'/* on G, In order to
show that fo is close to f¢ on the outflow boundary G}j’?’ we first observe that the value of f° on
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G1,3 are very well approximated by the anti-derivative of the heat-kernel on the whole real line. Let

£(0,R) F ~(E=h/Wsgn (£)de
be the solution of -
af 8 .
=0T hem f(0,n) =)
Then we have
N2
1£(0 = 4M*Vke, h) — f(0 = 4M?*Vke, h)| < Cexp( 132\/9 , |h| <N

on the outgoing boundary. The function f satisfies an equation along a curve € = const of the form

0% - h 0 ;

ozl = —sgand F)=-1 flreo) =1. (6:33)

Now, in order to show that fy is uniformly close to f (and hence to f¢ and f) on the curve {|f] =
4M?,/e} we observe that fy also satisfies an equation along this curve of the form

P . alh)Ve+h(l+em) o

— o = — =H .34
with N
et ()] < G lex(h)] < O3 (6.35)

This is shown as follows. Introducing the variable s = = + v/ky we note that along the outflow
boundary 6 = const. Parametrizing 0G}"* as s = s(t) we have

ds  (1+kt—(k—1)s
dt ~ (1+k)s—(k—1)t

A straightforward estimate shows that

t| < CNe'/*/M, |s| ~ CMe'/* along OG%. 6.36
d
Hence we obtain p
Cr < d—j < Oy, along dGS. (6.37)

We also verify by a direct calculation

2
C; < Silit < Cy along OG™. (6.38)

Parametrizing now 0G9! in terms of H = H(t) we may re-write (6.29) along G*" as

dH\? &? d’H\ d
e(1 +k)(dt> dh];; (2\/_t—+ e(1 +k)dt2)d%:

Using the relation H = ts(t) we obtain

d>f d df
e(1+k) <5+t%> de (2\” <s+dt>+6(1+k) <2d_i+tﬁ>>d_13_0'
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This may re-stated as

a2 fy 2vk s dfs
H € — = .
a2 T 1+ k)s? ( stis C (t)) air = ° (6:39)
with )
Clt) = —~ <L> (2s¢ + tsu).
2k \ s+ tsy
Using the estimates (6.36), (6.37) and (6.38) we obtain
S N
—1l<Cc=—, ()| <
1| <O ) <60
However, we have along the outflow boundary, using (6.8) and (6.9)
vk vk 1 1
= =—(1+c(H) = ———(14+c,(H 6.40
A+R2 110 @t Vig)? 16" (H)) 16MQ\/E( (H)) (6.40)

with |c,(H)| < CN/M?. Then (6.34) and (6.35) follow from (6.39), (6.40) and the bounds on ¢, and
(¢ above.

Equations (6.33), (6.34) and the bounds (6.35), together with the boundary conditions for f and
fo at infinity imply that

A N 61/4
o= FI<SCl3m+ 37 (6.41)

on the outflow boundary. We now let 7(x) be a function such that

_on
oG, on

on
on

06100
» nlle2 @y < ——

oGy,

This is possible because the bound in (6.31) is exponentially small in €. Then the function s =
fo — f — n satisfies

100 N /4
T

0s
T On

eAs —u-Vs|=|—-eAn+u-Vp| < =0.
| 7 n

Gn

) |3|6Gd <C

The maximum principle implies that then |s(x)| < C [N/M? + £!/4/M] for all x € G. This is the
first contribution in (6.28).
Let us now discuss the contribution of fg,,. We assume that

ffk|6Gd = fsm-

Inequality (6.17) implies that the boundary conditions for (6.19) on the Dirichlet’s part differ from
fo(h) no more than C'Me'/* point-wise. Hence by the maximum principle

/5% — fallzzqey < CMNe™.
where f3 solves (6.19) with the boundary conditions

f3(x) = fo(x), x € 8Ga-
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The function f,(h) is well-defined on the whole G so that u-V f, = 0 and it satisfies the homogeneous
Neumann boundary conditions everywhere on 9G,,. This allows to estimate the H' norm of f3-
Multiplying the equation

eAfs —u-Vf3=0 (6.42)

by f3 — f, and integrating by parts we have, using (6.10),

4M2el/2 oN 2 2
VH? (0f,
IV F3l 72 = / Vs Vodzdy < C||Vfol[72(q) = C / / [VHT (910} VE 419
0 -N 9 Ooh J

AM?\/e AM? /e
/ / (af"> dhdf < %/0 do < CM?, (6.43)

We now once again multiply (6.42) by f3 — f, and integrate over each of the four disconnected parts
fs ,1=1,2,3,4, of the domain

Gs = {(z,y) € Oy : AM*Ve — 0 <0 <AM*Ve} = UL,G5 C 11

On each Gfs we have

Ofs (w-n)(fs = fo)® o _
/”(f fo) g dS—e/ IV f3] dx+s/ Vs Vfodx+/ 5 dS =0, (6.44)

where I{ = {(z,y) € Q% NOG% : O(z,y) = 4M?\/e — §}. Since (u-n) = %|u| with the same sign in
each of the four connected components, (6.43) implies

_ 2
Mdsgs/%us—fo\

of 2
a_n‘ dS + CeM>. (6.45)

ls

Changing variables, (6.45) may be re-written as

NVE Jul(fs — fo)? dp Ve af dp
TR 29 (p, AM?\e — §)—— / fs—f 21 (p, AM%\fe — §)—L— + CeM?.
(6.46)
Integrating in § € (0,3M?2./€) and adding up the resulting four inequalities we obtain
|ul(fz = fo)? dpd9 / 8f3 dde &3/2 prt
———=(p,0) —1(p, 0 M*=. A4
Once again using (6.10) we may re-write this as
/ M( )| VH|dx < e/ |f3 = fol af3 (x)|VH|dx 4+ Ce3/2M*, (6.48)
1

However, we have C; Me'/* < |u| = |VH| < CyMe'/* in region IT so that the above together with
(6.43) imply

1
MZ\/E/ \fs — fol?dx < Ce¥2M* + CeMe'/ [a/ \f = fol?dx + —/ |Vf|2dx] .
IT I1 a Jrr
We choose o = M/(2Ce3/*) and obtain

. |f3 — fol?dx < CeM? + Ce3/? < CeM? (6.49)
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which is the third contribution in (6.28). This finishes the proof of Lemma 6.2 since || f, — f¢||? 12(11)

CM¢e'/*N+/e - that contribution is included in the second term in (6.28). O
Lemma 6.2 implies that the third term in (6.23) may be estimated as

_ N2,/e
lgsllz2czry < If = fllzeapllleAx +uw- Vx]|lze < C\/ M\Q[ +COMNe3/* + CeM?2. (6.50)

By construction ®° is approximately constant (within C/N3/2) on each level set |H (x)| = N+/e
and it satisfies homogeneous boundary conditions. Our goal is to show that these constants are
small. Using (6.22), (6.24) , (6.27), (6.50) we obtain for ®°:

N g/t N , \/NZ\/E
< - 4z 3/ 3/4 2
6/1>(Nf |V®, [2dx (JN\/_( + M) C'Me + Cy/Ny/e e + CMNe3/* + CeM

Choosing
M=¢“°N,0<a<1/4,

we have

8/ \V<I>1|2dx < C\/E (8204 —|—61/4+a + \/N&??a + N3(€1/47a +€1/22a)) .
D(NVE)

This implies the following theorem.

Theorem 6.3 The boundary layer approrimation ¢ PP given by (6.18) approzimates the water-pipe
solution ¢% of (4.4) in the sense that there exists a constant C > 0 so that

/ ‘V(]ﬁv(x) Eapp| dx < ? (6205 +81/4+0¢ + \/N62a +N3(81/4—a + 61/2—204)) (651)
D(NVE) ©

Moreover, the interior constants I?fn,N for the water-pipe solution ¢° and the constants Ky, y ob-
tained from the asymptotic problem satisfy

Ry = K| < OVE (2 /110 4 [Nt 4 No(et/ima g ctami) ) (652)

Finally, the asymptotic constants Ky, y converge to certain constants K, as N — oo, and, moreover,
the interior constants K. of the true solution converge as € = 0 to Kp,.

We note, first, that the right side in the gradient bound (6.51) is of the order smaller than O(e~1/2),
the size of the gradient of the solution itself. Second, (6.52) shows that for each N fixed the interior
value of the solution of the water-pipe converges as ¢ — 0 to that given by the asymptotic solution
of the Childress problem at this V.

It remains only to verify the last statement in Theorem 6.3. However, it follows immediately
from (6.52) and the uniform in € error bounds (4.7). Indeed, we have from these estimates

IKE, = Kov| <~z + ofe). (6.53)

C
N3/2
This implies that the sequence K, x converges as N — oo in an elementary way. Indeed, if it has
two limit points A,, and By, then given any § > 0 we may choose € so small that ||K;, — Kp n| < ¢
for all N > Ny. This in particular implies that |A,, — By,| < 20 and hence K,, y converges to a
limit K, as N — oo. Then (6.53) implies that K}, converges to the same limit as ¢ — 0. O
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7 Approximation of the effective diffusivity by the water-pipe net-
work

We show in this section that the effective diffusivity (the total dissipation rate) of the full advection-
diffusion problem

eAT® —u-VT® =0, in Q C R?, (7.1)
T¢(x) = To(x), x € 09, '
may be approximated by the effective diffusivity for the water-pipe model
eATy —u-VTy =0, in Q5 C Q,
TR (x) = To(x), x €09, (72)

OT5(x)/0n =0, x e L(Nye),
L(NVE) = {x € Q: |H(x)| = Ny},
posed in the smaller domain:
v ={x€Q: [Hx)| < NV}

While this result is not surprising in itself, given that the water-pipe network provides an L*°-
approximation of the full problem, remarkably, the error of approximation of the effective diffusivity
is independent of the flow inside the cell, that is, outside the water-pipe model itself. This is the
main result of this section.
Recall that for the solution of the advection-diffusion problem (7.1) the effective diffusivity is
defined as
D¢ (u, Tp) = €{|VT¢|*)a

where

Umzéﬂ@w-

Similarly, we define the effective diffusivity for the solution of the water-pipe network problem (7.2)
as the total dissipation rate:
Dy (u,To) = (| VT*|*)qs, -

The effective diffusivity for the full advection-diffusion problem and for the water-pipe model have
the same limit:

Theorem 7.1 For any u, Ty, there exists a finite limit
lim DF (u,Ty)/+/e = D*. (7.3)
e—0

Moreover, if N = N(g) = oo, as € — 0 then
lim DY (u, Ty)/+/e = D*. (7.4)
e—0

The existence and equality of finite limits (7.3) (7.4) can be obtained from the construction of the
approximate solution in Section 6. The main result of this section is the following statement about
the error. Theorem 7.1 implies that

|D§:V_DE‘/\/ES CE(T(),U,N), (75)

with C* - 0 ase¢ — 0 and N = N(e) — oco. However, a priori the error C* may depend on the flow
inside the cell, away from the separatrices. The next theorem shows that this is not the case.
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Theorem 7.2 The water-pipe model approzimates the effective diffusivity with an error that is
independent of the flow u outside of Q5.

The proof relies on variational techniques. We construct variational minimum and maximum prin-
ciples for the effective diffusivity. Using solutions of the water-pipe model, we construct trial fields
which depend on the flow u only in Q%. These trial fields give upper and lower bounds on the
effective diffusivity, and as ¢ — 0, N — oo, these bounds have the limit D*. We conclude that the
error of the water-pipe model is determined by the flow u in Q% only. For example, if we choose
N =% 0 < a < 1/2, then the error is determined by u in the neighborhood of the separatrices
|H| <&, 8=1/2—a>0.

We now turn to the two main technical details of the argument: the variational principles and
the trial fields.

7.1 Variational principles

We derive here saddle-point variational principles for the effective diffusivity D*. The method follows
the general ideas of [5, 8]. The first step is to introduce the adjoint problems for (7.1) and (7.2), which
are [8, 15] the same advection-diffusion equations but with the reversed advection: u is replaced by
—u. The adjoint problem for the advection-diffusion problem (7.1) is:

eAT® +u-VTe =0, in Q C R?, (76)
T¢(x) = To(x), x € Q. '
Let us use the ”symmetrization” [5, 8]:
T +7T¢
T+ = —5 (7.7)

and define E* = VT*. We dropped the superscript ¢ in the notation of the symmetrized temperature
to simplify the notation. The functions T and T~ satisfy the boundary conditions

Tt (x) =Ty(x), T (x) =0, x € .

The gradients ET obey
V- (E*+HEF) =0 (7.8)

1/0 H
I
H_s<—H O>'

It is easy to check that (7.8) are the Euler-Lagrange equations of the functional

where

WET,E") = (|E* Yo —2(B -HE)q — (|E e (7.9)
The effective diffusivity can be determined as the the value of this functional at its saddle-point:

Df=¢ min max We(ET E7),
EteVt E-eV-

vt ={Et =vrt, Tt ¢ H'(Q), TT(x) = To(x), x € N}, (7.10)
V- ={E =VT", T €H(Q), T"(x) =0, x€0Q}.

Indeed, if E* solve (7.8), then

D = (B [)a+ (|B ")), (7.11)
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and X
(‘E“ Yo=—(E~ -H°E")q,

hence for such E*
Df =cWE(ET,E7).

Following the technique of [5] we use the partial Legendre transform to reformulate the min-max
variational principle (7.10) as a min-min and a max-max principles. The max-max principle is

br=e JYEW+ B V- Wnax( T, E7),

Whax(J T E7) = 2/39 ToJ* -nds — (|J* —HE~ )Y — (| B~ e, (7.12)

wt={Jt, v.Jt =0, J" € L?(Q)},
while the min-min variational principle is

D= I T W5 )
fn(B5,T7) = (B ) + (|77 - B ), (7.13)

W-={J", V-J =0, J € L*(Q)}.

The former allows us to obtain the lower bounds for D while the latter produces the upper bounds.
As a consequence we have

6W]§18‘X(JI—|O—1U67" El;wer) S Ds S EWlf’liIl(El—li;)pe’l" Ju_pper) (7']‘4)
for any trial fields E},.. € VY, E € V™, Jf € Wt and Jg,., € W™.

7.2 The trial fields

The classical approach to variational bounds is to find some “good” trial functions E'ﬂl},pe,, Bl yers
S Jupper and apply inequality (7.14). A successful choice of the trial functions leads to tight
bounds, and it usually relies on specific features of the problem. We construct the trial fields based
on the solution of the water-pipe problem.

Let T5, solve (7.2) and Tﬁ, be the solution of the adjoint water-pipe network problem:

eATS, +u- VT =0, in Q5 C Q,
T (x) = To(x), x € 99, (7.15)
0T (x)/0n =0, x € L(NE).

We define the constants K and K 5 as the averages of T}, and T%, over the streamline Lij(Ny/e) =
L(N+e)NCj:

x)dl, K;

K -1 7{
7L (NVE) S v v

1 .
= A vy ™ T

As we have shown previously, T (x) and Ty (x) are uniformly close to K < and f{; , respectively,
along L£;(N+/€). Let T% and T§ be the solutions of the Poisson equation in Q5 with constant
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Dirichlet boundary conditions on the interior boundaries:

AT} =eATy =u-VTg, x €05,
T5 (x) = To(x), x € 09,

Tk (x) = Kj, x € Lj(NVe),

EATIE( = €AT§ =—u- VT]%, x € 0%,
Tf (x) = To(x), x € 09,

Ti(x) = Kj, x € Li(NVe).

(7.16)

Let us denote the symmetrized temperatures as

. TRETR . TR+Tg
N — 9 Y TK T 2 .

We can now define the trial fields for the upper and lower bounds. For the upper bound we take

Efper = VT3, Jipper = VTy .+ H°VT,, in QF, (7.17)
Efper = 0, Jupper = 0, otherwise.

and for the lower one
El;we'r = VTI;’ Jl_gwe'r = VT]—\il— + HEVTI;’ in Q}:V’ (7 18)
Eler=0,J =0, otherwise. )

By construction, the trial fields E and J given by (7.17) and (7.18) satisfy ET € V*, J* ¢ W+
(here we dropped the subscripts upper/lower). Indeed, the only nontrivial property we have to check
is that V - J* = 0 weakly. Equations (7.16) imply that J* are indeed divergence-free away from
the level set |H(x)| = Ny/e. We have to verify that the normal components of J* agree on the two
sides of this level set. The inner normal component n - J* = 0. The outer normal component is

H(x)

CJE . (OTE cUTF(x)) = n . HEVTF (x) = — 2% orF —
n-J*=n. (VIy(x) + HVT}(x)) =n HVTE(x) |VH(x)|u VTE =0,

eWwt,andJ_ €W~

as TI:(IE is constant on the level set. Hence J; upper

lower

Lemma 7.3 There exist the finite limits

: + = — D* Ti . + - — D*
1im /eWomax (Siwers Bgwer) = D> M VeWnin(Brppers Jupper) = D

lower upper? * upper

where N = N(g) — oo.

The proof of Lemma, 7.3 again follows from our previous asymptotic analysis and we do not repeat
the details. O

It remains to show that the error between D3, and D® depends on the flow near the separatrices
only. However, since

(Wnin (B ers Jimper) — DF| < Winin(BE ors Jimoer) — Winax (45 Er-

upper’ Yupper upper’ Yupper lower? lowe’r)’

and all J " E Ef Jupper depend only on the flow inside (2%, the error

lower?® ~lower? ~—~upper: “upper

|Wmin(E1_1;Jpera Jl?pper) - DE|
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also has this property. Finally, multiplying the equation

EAT]_VF—U-VTJGZO

by T\, and integrating by parts we obtain

(VTy - VTy)as, =0,

and therefore

v = (VT o, + (VT P0g,) = Wiia Bppers Tapper

+26(VT5E - (VTy, — VT ) )as, + (| VTS — VTH [ )as,

Hence we have

_ D#
|DS - §V|/\/E < |\/EWmiH(E1_1|—pper’ Jupper) - %'

D€
ny \g\/\/g(\vm = VT3 Yas, + VE(VTR = VT3] as,-

Since all the terms on the right-hand side of the last inequality tend to zero as ¢ — 0 and depend
only on the flow u inside Q%;, Theorem 7.2 holds. [
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