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Abstract

We consider the long time behavior of solutions of the d-dimensional linear Boltzmann equa-
tion that arises in the weak coupling limit for the Schrödinger equation with a time-dependent
random potential. We show that the intermediate mesoscopic time limit satisfies a Fokker-Planck
type equation with the wave vector performing a Brownian motion on the (d − 1)-dimensional
sphere of constant energy, as in the case of a time-independent Schrödinger equation. However,
the long time limit of the solution with an isotropic initial data satisfies an equation corresponding
to the energy being the square root of a Bessel process of dimension d/2.

1 Introduction

The linear Boltzmann equation of the form

∂W

∂t
+ k · ∇xW =

∫
Rd
R
(
|k′|2 − |k|2, k′ − k

) [
W (x, k′)−W (x, k)

]
dk′ (1.1)

appears as the weak coupling limit of the random Schrödinger equation as follows. Consider the
Schrödinger equation with a weak time-dependent random potential

i∂tψ +
1
2

∆ψ −
√
σV (t, x)ψ = 0. (1.2)

The Wigner transform of the field ψ is defined as

Wσ(t, x, k) =
∫

Rd
eik·yψσ

(
t, x− σy

2

)
ψ∗σ

(
t, x+

σy

2

) dy

(2π)d
, (1.3)

where ψσ(t, x) = ψ(t/σ, x/σ). Under appropriate assumptions on mixing properties of the potential
field, the expected value of the Wigner transform EWσ(t) converges, as σ ↓ 0, as a Schwartz dis-
tribution, to the solution of the linear transport equation (1.1). The function R(ω, p) is the power
spectrum of the random fluctuations V (t, x) (see the review paper [1] and references therein for
more background). In the particular case when V (t, x) is Markovian and isotropic we have

R(ω, p) =
2γ(|p|)R̂(|p|)
ω2 + γ2(|p|)

. (1.4)

Here, γ(|p|) is the mixing rate, and R̂(|p|) is the spatial power spectrum of the random fluctuations.
Two extreme cases correspond to either V (t, x) being a white noise process in time when R(ω, p) =
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R̂(|p|), or time-independent potential V (x), when R(ω, p) = R̂(|p|)δ(ω). In the former case one can
show that the long time limit of W (t, x, k) is the solution of the Fokker-Planck equation

∂W

∂t
+ k · ∇xW = D∆kW,

with an explicitly computable diffusion coefficient D. In the latter case, the limit satisfies the
Fokker-Planck equation

∂W

∂t
+ k · ∇xW = D∇k · [(I − k̂ ⊗ k̂)∇kW ],

which is the Kolmogorov equation for a diffusion whose k-component is a Brownian motion on
the sphere {|k| = const}, the x-component is its time integral, and k̂ = k/|k|. These regimes are
discussed in detail in [3].

In the present paper, we are interested in the long time limit of the solutions of the linear
Boltzmann equation (1.1) away from these two extremes. We assume that

R̂(·) ∈ S(R) and γ(·) ∈ C1(R) are both even and non-negative, (1.5)

and suppose furthermore that

0 < γ0 ≤ γ(`) ≤ 1
γ0
, ∀ ` ∈ R (1.6)

for some γ0 > 0. The uniform bounds on γ(|p|) separate this regime both from ”white-noise in time
potentials” (γ → +∞) and the ”frozen in time potentials” (γ ↓ 0).

The linear Boltzmann equation (1.1) is the Kolmogorov equation for the process (Xt(x, k),Kt(k)),
where Kt(k) is a jump process, starting at k, with the generator given by

Lf(k) =
∫

Rd

2(γR̂)(|k′ − k|)
(k′2 − k2)2 + γ2(|k′ − k|)

[
f(k′)− f(k)

]
dk, (1.7)

defined on Borel measurable functions f(·) having at most polynomial growth, and

Xt(x, k) = x+
∫ t

0
Ks(k)ds. (1.8)

The questions about the scaled limits of the solutions of the equation (1.1) can be phrased in terms
of the long time limits of such processes, and we will use this tool extensively.

As the above jump process does not preserve |Kt(k)| we expect large k’s to become important,
and accordingly consider k of size ε−1, where ε � 1 is a small parameter. In our first result, see
Theorem 2.5 below, we show that the scaled processes εKt/ε3(k/ε) converge in law to a diffusion
with generator L, which is, up to a constant factor, the Laplace-Beltrami operator on the sphere
of radius |k| – the same result as for a time-independent potential. That is, on the time scale
O(ε−3) solutions of the linear Boltzmann equation that arises from the Scrödinger equation with a
time-dependent random potential behave as those coming from time-independent potentials in the
Schrödinger equation. As a consequence, we have the following.

Theorem 1.1 Suppose that W (t, x, k) satisfies (1.1) with the initial data of the form W (0, x, k) =
W0(x, εk), (x, k) ∈ R2d, where suppW0 ⊂ Rd × (Rd \ {0}) and d ≥ 2. Then, we have

lim
ε↓0

W

(
t

ε3
,
x

ε4
,
k

ε

)
= W̄ (t, x, k),
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where

∂tW̄ (t, x, k) + k · ∇xW̄ (t, x, k) = LW̄ (t, x, k), (1.9)
W̄ (0, x, k) := W0(x, k),

and
Lf(x, k) := ∇k ·

[ b
|k|

(
I − k̂ ⊗ k̂

)
· ∇kf(x, k)

]
, ∀f ∈ C2(R2d), (1.10)

with
b :=

π

2(d− 1)

∫
Rd−1

|p̄|2R̂(|p̄|)dp̄. (1.11)

The fact that the process corresponding to L is restricted to a sphere {|k| = const} reflects the fact
that, on the time scale t ∼ O(ε−3), the process εKt(k/ε) keeps its absolute value constant. However,
unlike for time-independent potentials, on a longer time scale its magnitude does evolve, which is
captured by the following limit theorem for times t ∼ O(ε−4).

Theorem 1.2 Suppose that the assumptions of Theorem 1.1 are in force and the initial data is of
the form W (0, x, k) = W0(x, ε|k|). Then

lim
ε↓0

W

(
t

ε4
,
x

ε9/2
,
k

ε

)
= W̄ (t, x, |k|),

where W̄ (t, x, `) = V̄ (t, x, `1/4) and

∂tV̄ (t, x, `) = L̂V̄ (t, x, `), (t, x, `) ∈ R+ × Rd × R+,

V̄ (0, x, `) = W0(x, `4), (x, `) ∈ Rd × R+. (1.12)

Here R+ := (0,+∞),

L̂f(x, `) := Mf(x, `) +
`5/4

2bd
∆xf(x, `), (1.13)

and
Mf(x, `) := dc∂`f(x, `) + 4c`∂2

` f(x, `), ∀ f ∈ C∞(Rd+1), (1.14)

where
c :=

∫
Rd

(γR̂)(|p|)dp. (1.15)

It is immediate to see that the operator M is the generator of the random process Zt(`) which is a
simple time change of the square of a Bessel process [7]: Zt(`) = b2ct(`). Recall that the square of a
δ-dimensional Bessel process [7] is a unique pathwise solution of the stochastic differential equation
(see e.g. Theorem IX.3.4 of [7])

bt = `+ δt+ 2
∫ t

0

√
|bs|dws. (1.16)

In our case δ := d/2. It is well known, see, for instance, (ii), p. 442 of [7], that when δ ≥ 2, which
in our situation corresponds to d ≥ 4, the square of the Bessel process does not attain the value 0 if
it starts at ` > 0. When d = 2, or 3 we have δ = 1, or 3/2, respectively, so the limiting diffusion is
recurrent and enters 0 infinitely many times. However Lt(0) – its occupation time at 0, up to t, –
vanishes, see [7], Proposition XI.1.5, p. 442.
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The full generator L̂ corresponds to a diffusion (b2ct(`),Xt(x, `)), where

Xt(x, `) = x+
(

1
bd

)1/2 ∫ t

0
b

5/8
2cs (`)dW (s) (1.17)

and W (t) is a d-dimensional, standard Brownian motion. Thanks to uniqueness of solutions of the
S.D.E. system given by (1.16) and (1.17) we conclude that the corresponding martingale problem is
well-posed in the sense of [9], see Corollary 8.1.6, p. 202 of ibid. As a result the Cauchy problem
(1.12) has at most one solution in C1,2,2

b (R̄+×Rd× R̄+), and we do not need to impose a boundary
condition at ` = 0.

By a direct calculation it is easy to see that W̄ (t, x, `) itself satisfies the Cauchy problem

∂tW̄ (t, x, `) = LW̄ (t, x, `), (t, x, `) ∈ R+ × Rd × R+,

W̄ (0, x, `) = W0(x, `), (x, `) ∈ Rd × R+, (1.18)

where

Lf(x, `) := Mf(x, `) +
`5

2bd
∆xf(x, `), (1.19)

and M is the generator of the limiting process for ε|Kt/ε4(k/ε)|, see Theorem 3.1 below, given by

Mf(`) :=
(d− 3)c

4`3
∂`f(`) +

c

4`2
∂2
` f(`). (1.20)

Since the generator L of Kt(k) is symmetric, i.e.∫
Rd
Lf(k)g(k)dk =

∫
Rd
f(k)Lg(k)dk,

for all f, g bounded, the generator of the limiting process needs also to satisfy symmetry condition,
i.e. given an f from the domain of M , we should have∫ +∞

0
Mf(`)g(`)`d−1d` =

∫ +∞

0
f(`)Mg(`)`d−1d`, ∀ g,∈ C2[0,+∞).

This forces the boundary condition f ′(0) = 0 in dimensions d = 2, 3, otherwise there is no need
to impose the boundary condition. For this reason in case d = 2, or 3 the Cauchy problem (1.18)
should be supplemented with the Neumann boundary condition

∂`W̄ (t, x, 0) = 0, (t, x) ∈ R+ × R2,

unlike in the Cauchy problem for V̄ (t, x, `) for which no boundary condition is required at ` = 0.
In dimensions d ≥ 4 we do not need to impose any boundary condition in (1.18). The advantage of
stating the result in terms of V̄ (t, x, `), rather than for W̄ (t, x, `) directly, is that the generator for
V̄ is not singular at ` = 0 and many of the technical issues one would need to address working with
W̄ simply do not arise.

Let us also comment on the spatial diffusion coefficient in (1.19). Recall that the original unscaled
process satisfies (1.8): Ẋt = Kt. As Kt becomes equidistributed over the sphere, the directional
information in the speed of Xt is lost and Xt converges to a Brownian motion. However, |Kt|, which
is the magnitude of |Ẋt|, is a non-trivial process on the time scales O(ε−4), which reflects itself in
the fact that the diffusion coefficient for the Brownian motion in x grows in ` = |K|.

The paper is organized as follows. As we have already hinted in the foregoing the proofs of
Theorems 1.1 and 1.2 are based on probabilistic arguments. The proof of the first result, which is
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much simpler, is contained in Section 2. In Section 3 we consider the energy evolution on time scale
ε−4 arriving at the proof of the spatially homogeneous version of Theorem 1.2. The extension to the
inhomogeneous situation is done in Section 4. Section 5 contains technical results that are used in
the proofs of both theorems.

Acknowledgment. T.K. acknowledges the support of Polish Ministry of Higher Education
grant NN201419139, L.R. acknowledges the support by NSF grant DMS-0908507. This work was
also supported by NSSEFF fellowship by AFOSR.

2 Proof of Theorem 1.1

2.1 Outline of the proof of Theorem 1.1

Let us first briefly sketch the proof. Recall that (1.1) is the Kolmogorov equation for a process
(Xt,Kt), where {Kt, t ≥ 0} is a jump process with the generator (1.7), and Xt given by (1.8) is its
time integral. The jump process starts at k, with jumps occurring at renewal times {Tn, n ≥ 0}.
More precisely, the skeleton chain given by Bn(k) := Kt for t ∈ [Tn, Tn+1) is Markov with the
transition probability densities

P (k, k′) :=
1

Σ(|k|)
· 2γ(|k′ − k|)R̂(|k′ − k|)
γ2(|k′ − k|) + [(k′ − k) · (k′ + k)]2

.

Here the total scattering cross-section is

Σ(r) :=
∫

Rd

2γ(|p|)R̂(|p|)dp
γ2(|p|) + [p · (p+ 2rk̂)]2

, (2.1)

and k̂ := k/|k|. We omit writing the starting point k in the notation when its value is obvious from
the context. Given the chain {Bn(k), n ≥ 0} the times Tn+1−Tn, are independent and exponentially
distributed according to exp (Σ(Bn)), that is,

P (Tn+1 − Tn > s|Bn) = e−Σ(Bn)s.

The generator of the rescaled process

K
(ε)
t (k) := εKt/ε3(k/ε) (2.2)

is given by

Lεf(k) :=
∫

Rd
Q(ε)(k, k′)[f(k′)− f(k)]dk′, (2.3)

with

Q(ε)(k, k′) :=
1

εd+3
· 2γ(ε−1|k′ − k|)R̂(ε−1|k′ − k|)
γ2(ε−1|k′ − k|) + ε−4[(k′ − k) · (k′ + k)]2

. (2.4)

It is defined for all measurable functions f(·) with polynomial growth. The corresponding Markov
chain is given by {εBn, n ≥ 0}. Its transition probability densities are equal

P (ε)(k, k′) :=
1

εdΣ (ε−1|k|)
· 2γ(ε−1|k′ − k|)R̂(ε−1|k′ − k|)
γ2(ε−1|k′ − k|) + ε−4[(k′ − k) · (k′ + k)]2

. (2.5)

The main ingredient in the proof of Theorem 1.1 is Lemma 2.4 below which shows that the
generator Lεf(k) tends to Lf(k) (given by (1.10)) uniformly on annuli

A(ρ) := [ρ ≤ |k| ≤ ρ−1] for ρ ∈ (0, 1). (2.6)
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This convergence of generators allows us both to conclude tightness of the laws of {K(ε)
t (k), t ≥ 0},

as ε ↓ 0 by using Theorem VI.4.13, p. 358 of [4], as well as identify the limit since the limiting
martingale problem for the operator L is well-posed. Convergence of Xt to the correct limit is an
easy consequence.

2.2 Estimates on the cross-section and moments

In order to prove convergence of generators we need, in particular, to compute the limit of the total
scattering cross-section and estimate some moments of the jump process – those will be used to
bound the remainder error terms, and this is what we do in this section.

The limiting cross-section

We first compute the asymptotics of the cross-section for large values of k. For sake of brevity, for
any p ∈ Rd we write p = p1k̂ + p̄ where p̄ = (I − k̂ ⊗ k̂)p. Let us denote also

I(r) := sup
q≥r

∫
Rd−1

(1 + |p̄|2)(γR̂)
(

(q2 + |p̄|2)1/2
)
dp̄. (2.7)

From (1.6) and the assumption that R̂ ∈ S(R) we conclude that

lim
ε↓0

ε−NI(1/ε) = 0, (2.8)

for any N > 0.

Lemma 2.1 There exists C, δ > 0 such that

|ε−1Σ
(
ε−1
)
− πΣ0| ≤ Cε1+δ, ∀ ε ∈ (0, 1], (2.9)

with
Σ0 :=

∫
Rd−1

R̂(|p̄|)dp̄. (2.10)

Proof. Let us substitute p′1 := 2p1/ε and p̄′ := p̄. Then,

ε−1Σ
(
ε−1
)

=
∫

Rd

(γR̂)({(εp1)2 + |p̄|2}1/2)dp
γ2({(εp1)2 + |p̄|2}1/2) + (|p̄|2 + (εp1)2 + p1)2

. (2.11)

Suppose that κ ∈ (0, 1). The right hand side can be written as
∑3

i=1 J
(i)
ε , with each J

(i)
ε , i = 1, 2, 3

corresponding to the regions of integration {|p1| ≤ ε−1−κ}, {ε−1−κ < |p1| ≤ 2ε−2} and {2ε−2 < |p1|},
respectively.

In the first region we change variables p′1 = ψε(p1) := p1 + ε2p2
1 and p′i := pi, i = 2, . . . , d. Note

that |ψ′ε(p1)− 1| ≤ 2ε1−κ for |p1| ≤ ε−1−κ. Then

J (1)
ε =

∫
Rd−1

∫ ε−1−κ+ε−2κ

−ε−1−κ+ε−2κ

(γR̂)({[εψ−1
ε (p1)]2 + |p̄|2}1/2)|(ψ−1

ε )′(p1)|dp1

γ2({[εψ−1
ε (p1)]2 + |p̄|2}1/2) + (|p̄|2 + p1)2

dp̄.

Let also

J (1) :=
∫

R

∫
Rd−1

(γR̂)(|p̄|)dp1dp̄

γ2(|p̄|) + (|p̄|2 + p1)2
. (2.12)
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Since κ ∈ (0, 1) and R̂ ∈ S(R) we obtain

|J (1)
ε − J (1)| ≤ Cε1+δ (2.13)

for some C, δ > 0 and all ε ∈ (0, 1]. We may now integrate in p1 in (2.12) using an elementary
formula ∫

R

Adx

A2 + (B + x)2
= π, ∀A > 0, B ∈ R

and obtain that the right hand side of (2.12) equals πΣ0. Note that |J (2)
ε | can be bounded from

above by Cε−2I(1/εκ) that vanishes, as ε ↓ 0, due to (2.8). Finally, we have

|J (3)
ε | ≤ CI(1/εκ)

∫
|p1|≥2ε2

dp1

1 + (εp1)2
.

Both of these terms can be estimated by Cε1+δ for some C, δ > 0. Summarizing, we have proved
(2.9).�

Combining (2.1) with (2.9) we conclude the following.

Corollary 2.2 There exists C > 0 such that

Σ(r) ≤ C

1 + r
, ∀ r ≥ 0. (2.14)

Estimates of the moments of jumps

Next, we obtain the asymptotics of the following moments:

p̂(n)
ε (k) :=

∫
Rd
|k − k′|nP (ε)(k, k′)dk′

and
q̂(n)
ε (k) :=

∫
Rd
|k − k′|nQ(ε)(k, k′)dk′,

for any n ≥ 0, ε > 0. As we have mentioned, they will be needed to estimate the error terms while
proving the convergence of the respective Dynkin’s martingales. The following lemma identifies the
order of magnitude for these moments and will be used also in the proof of Theorem 1.2. The uniform
bounds (2.15)-(2.16) will be mostly useful in the proof of Theorem 1.2, and even there primarily in
dimension two, when it is possible for the particle to reach zero. On the other hand, (2.17)-(2.18)
are the key to the error estimates for both Theorem 1.1 and Theorem 1.2.

Lemma 2.3 For any n ≥ 3 we have

lim sup
ε↓0

1
εn−1

sup
k
p̂(n)
ε (k) < +∞, (2.15)

lim sup
ε↓0

1
εn−3

sup
k
q̂(n)
ε (k) < +∞, (2.16)

and, in addition, for any ρ ∈ (0, 1) we have

lim
ε↓0

1
εn−1

sup
k∈A(ρ)

p̂(n)
ε (k) = 0 (2.17)

and
lim
ε↓0

1
εn−3

sup
k∈A(ρ)

q̂(n)
ε (k) = 0. (2.18)

Here A(ρ) is the annulus (2.6).
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Proof. First we show (2.16) and (2.18). Using (2.5) and Lemma 2.1 we get, for any ρ ∈ (0, 1) fixed

1
εn−3

sup
k∈A(ρ)

q̂(n)
ε (k) = sup

k∈A(ρ)

1
εn−3

∫
Rd
|k′ − k|nQ(ε)(k, k′)dk′ ≤ C sup

k∈A(ρ)

∫
Rd

|p|n(γR̂)(|p|)dp
γ2

0 + (|p|2 + 2|k|p1/ε)2
.

Formula (2.18) then follows from the Lebesgue dominated convergence theorem.
On the other hand, we also have, now for any k ∈ Rd,

1
εn−3

sup
k∈Rd

q̂(n)
ε (k) ≤ C

γ2
0

∫
Rd
|p|n(γR̂)(|p|)dp

and (2.16) follows.
From Corollary 2.2 we conclude that

p̂(n)
ε (k) ≤ Cε2(|k|+ 1)q̂(n)

ε (k), ∀ k ∈ Rd, ε ∈ (0, 1]. (2.19)

Hence (2.17) follows immediately from (2.18). Next, we deduce from (2.19) and (2.16) that

lim sup
ε↓0

1
εn−1

sup
|k|≤1

p̂(n)
ε (k) < +∞ (2.20)

To finish the proof of (2.15) it suffices to show that we have

lim sup
ε↓0

1
εn−1

sup
|k|≥1

p̂(n)
ε (k) ≤ lim sup

ε↓0
sup
|k|≥1

∫
Rd

C|k|g(|p|)dp
γ2

0 + (|p|2 + 2|k|p1/ε)2
= 0. (2.21)

Here we have defined the non-negative function g(p) = |p|n(γR̂)(|p|). This function satisfies, for
each N ∈ N,

CN := sup
r≥0

(1 + rN )g(r) < +∞, (2.22)

which is the reason why (2.21) holds. To see that (2.22) implies (2.21), divide the domain of
integration into two regions R1 := {|p1| ≥ p(k, ε)}, where p(k, ε) := |k|/(2ε), and its complement R2.
The expression under supremum in (2.21) corresponding to the integration over R1 can be estimated
by

C|k|
∫
|p1|≥p(k,ε)

g(|p|)dp ≤ C|k|
p(k, ε) + 1

, ∀ ε ∈ (0, 1], k ∈ Rd,

for some C > 0, thanks to (2.22), provided we use this condition with a sufficiently large N .
Therefore, we have

lim sup
ε↓0

sup
|k|≥1

∫
R1

|k|g(|p|)dp
γ2

0 + (|p|2 + 2|k|p1/ε)2
= 0. (2.23)

For the integral over R2 we use the change of variables p′1 := ψ(p1), where ψ(p1) = p2
1 + 2|k|p1/ε.

Note that |ψ′(p1)| ≥ |k|/ε, for |p1| < p(k, ε), hence the respective integral equals∫ ψ(p(k,ε))

ψ(−p(k,ε))

|k|dp1

|ψ′(ψ−1(p1))|

∫
Rd−1

g
(
{[ψ−1(p1)]2 + |p̄|2}1/2

)
dp̄

γ2
0 + (|p̄|2 + p1)2

.

From (2.22) the expression above can be estimated by

ε

∫
Rd

Cd+1dp1dp̄

[γ2
0 + (|p̄|2 + p1)2](1 + |p̄|d+1)

.

Therefore, we also have

lim
ε↓0

sup
|k|≥1

∫
R2

|k|g(|p|)dp
γ2

0 + (|p|2 + 2|k|p1/ε)2
= 0, (2.24)

and (2.21) follows. �
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2.3 Asymptotics of the generator Lε
Lemma 2.3 shows that the higher moments with respect to the transition probability measure
Q(ε)(k, k′) vanish as ε → 0, at least on the time scale of Theorem 1.1. We will now compute
the asymptotics of the lower moments that are important in showing the convergence of generators,
both for the proof of Theorem 1.1 and Theorem 1.2: set

bε(k) =
∫

Rd
(k′ − k)Q(ε)(k, k′)dk′, (2.25)

aε(k) =
∫

Rd
(k′ − k)⊗2Q(ε)(k, k′)dk′, (2.26)

and
dε(k) =

∫
Rd

(k′ − k)⊗3Q(ε)(k, k′)dk′. (2.27)

We also define
b(k) = −(d− 1)b

|k|2
k̂, b̄(`) =

(d− 2)c
2`3

(2.28)

and
a(k) =

2b
|k|

(I − k̂ ⊗ k̂), ā1(`) :=
c

2`2
, ā2(`) := − c

2`2
, ∀k ∈ Rd, ` ∈ (0,+∞).

The crucial ingredient in the proof of both our main results is the following asymptotics for the
moments. Since its demonstration relies on rather tedious computations, that might distract the
attention of a reader from the main points of the remaining part of the argument, we postpone its
presentation till Section 5.

Lemma 2.4 For any ρ ∈ (0, 1) we have

lim
ε↓0

1
ε

sup
k∈A(ρ)

∣∣∣bε(k)− b(k)− εb̄(|k|)k̂
∣∣∣ = 0, (2.29)

lim
ε↓0

1
ε

sup
k∈A(ρ)

∣∣∣aε(k)− a(k)− ε
{
ā1(|k|)k̂ ⊗ k̂ + ā2(|k|)

[
I − k̂ ⊗ k̂

]}∣∣∣ = 0, (2.30)

and
lim
ε↓0

1
ε

sup
k∈A(ρ)

|dε(k)| = 0. (2.31)

The asymptotics of the first moment Q(ε)(k, k′) and its covariance matrix will allow us to identify the
drift coefficient and diffusivity matrix of the diffusion which is the limit of K(ε)

t (k). The operator L
appearing in Theorem 1.1 is the generator of this diffusion and has the form

Lf(k) =
1
2
a(k) · ∇2

kf + b(k) · ∇kf. (2.32)

2.4 Convergence of the momentum process

We now use Lemma 2.4, the results contained of Chapter VI of [4] and Chapter 7 of [9] to prove
convergence of the rescaled jump process K(ε)

t (k) defined by (2.2).

Theorem 2.5 The process {K(ε)
t (k), t ≥ 0} converges in law over D[0,+∞), as ε ↓ 0 to a diffusion

{kt(k), t ≥ 0} starting at k and with the generator L given by (1.10).

9



Proof. Fix ρ ∈ (0, 1) and, in order to remove the singularity at k = 0 of the generator (1.10), let

L(ρ)f(k) := φ(ρ)(|k|)Lf(k), f ∈ C2
0 (Rd). (2.33)

Here φ(ρ) ∈ C∞0 (0,+∞) is a C∞ function that satisfies

0 ≤ φ(ρ) ≤ 1, φ(ρ)(x) ≡ 1 for ρ−1 ≥ x ≥ ρ, φ(ρ)(x) ≡ 0 for x ∈ [0, ρ/2] ∪ [2/ρ,+∞). (2.34)

The operator L(ρ) is a generator of a regular diffusion on Rd. We denote by k
(ρ)
t (k) the respective

diffusion starting at k. We also denote by K(ε,ρ)
t (k) the jump process, starting at k with the generator

Lε,ρf(k) =
∫

Rd
Q(ε,ρ)(k, k′)[f(k′)− f(k)]dk′ (2.35)

defined for all measurable f(·) that are of a polynomial growth. The scattering kernel

Q(ε,ρ)(k, k′) = φ(ρ)(|k|)Q(ε)(k, k′), (2.36)

satisfies the analogues of (2.29)–(2.31) with coefficients b(ρ)
ε (k), a(ρ)

ε (k) and d
(ρ)
ε (k) defined by for-

mulas corresponding to (2.25)–(2.27) in which kernel Q(ε)(k, k′) is replaced by Q(ε,ρ)(k, k′), that
is,

lim
ε↓0

1
ε

sup
k

∣∣∣b(ρ)
ε − φ(ρ)(|k|)[b(k) + εb̄(|k|)k̂]

∣∣∣ = 0, (2.37)

lim
ε↓0

1
ε

sup
k

∣∣∣a(ρ)
ε − φ(ρ)(|k|)

{
a(k) + ε

{
ā1(|k|)k̂ ⊗ k̂ + ā2(|k|)

[
I − k̂ ⊗ k̂

]}}∣∣∣ = 0 (2.38)

and
lim
ε↓0

sup
k

∣∣∣d(ρ)
ε

∣∣∣ = 0. (2.39)

Using Taylor’s expansion we conclude from Lemma 2.4 the following.

Proposition 2.6 For a fixed ρ > 0 and f ∈ C∞c (Rd) we have

lim
ε↓0
‖Lε,ρf − L(ρ)f‖∞ = 0.

Convergence of generators implies the following result on convergence in law in the space D[0,+∞)
of cadlag functions.

Proposition 2.7 For a fixed ρ > 0 the process {K(ε,ρ)
t (k), t ≥ 0} converges in law over D[0,+∞),

as ε ↓ 0, to the diffusion {k(ρ)
t (k), t ≥ 0}.

Proof. An Rd-valued process M(ε,ρ)(t) := (M(ε,ρ)
1 (t), . . . ,M(ε,ρ)

d (t)), where

M(ε,ρ)
j (t) := K

(ε,ρ)
t,j (k)− k −

∫ t

0
b
(ρ)
j,ε (K(ε,ρ)

s,j (k))ds, j = 1, . . . , d

is a martingale, whose quadratic variation equals

d∑
j=1

〈M(ε,ρ)
j 〉(t) =

d∑
j=1

∫ t

0
a

(ρ)
jj,ε(K

(ε,ρ)
s,j (k))ds.

10



From (2.37)– (2.39) we conclude that there exists C > 0 such that

d∑
j=1

(∫ t

s
|b(ρ)
j,ε (K(ε,ρ)

s,j (k))|ds+ 〈M(ε,ρ)
j 〉(t)− 〈M(ε,ρ)

j 〉(s)
)
≤ C(t− s)

for all s < t and ε ∈ (0, 1]. Using Theorem VI.5.17, p. 365 of [4] with condition C2) we conclude
tightness of the family of processes {K(ε,ρ)

t (k), t ≥ 0}, as ε ↓ 0. The above means that for any
sequence εn ↓ 0 we can choose a subsequence such that the corresponding processes are convergent
in law over D[0,+∞).

Next, we show that the limiting law is supported on C[0,+∞). For that purpose, let us linearly in-
terpolate the (discontinuous) trajectory of the jump process between the nodal points (T (ε,ρ)

n , B
(ε,ρ)
n )

given by the jump times and positions, to obtain a continuous trajectory process {K̃(ε,ρ)
t (k), t ≥ 0}.

We have the following.

Lemma 2.8 For any δ, T > 0 we have

lim
ε↓0

P

[
sup
t∈[0,T ]

|K̃(ε,ρ)
t (k)−K(ε,ρ)

t (k)| ≥ δ

]
= 0.

Proof. Denote by N (ε,ρ)
T the number of jumps of K(ε,ρ)

t (k) up to time T . We have

EN (ε,ρ)
T =

1
ε3

∫ T

0
E

{
φ(ρ)(|K(ε,ρ)

s (k)|)Σ

(
|K(ε,ρ)

s (k)|
ε

)}
ds ≤ ‖Σ‖∞T

ε3
, ∀ ε ∈ (0, 1].

Suppose that κ ∈ (0, 1). Then, by Chebyshev’s inequality

P[N (ε,ρ)
T ≥ ε−3−κ] ≤ Cεκ, ∀ ε ∈ (0, 1]

for some constant C > 0. On the other hand, we have

P

[
sup
t∈[0,T ]

|K̃(ε,ρ)
t (k)−K(ε,ρ)

t (k)| ≥ δ, N (ε,ρ)
T ≤ ε−3−κ

]

≤ P

[
sup

0≤n≤[ε−3−κ]+1

|B(ε,ρ)
n+1 −B

(ε,ρ)
n | ≥ δ

]
≤ 1
δ5

[ε−3−κ]+1∑
n=0

E|B(ε,ρ)
n+1 −B

(ε,ρ)
n |5.

Using (2.17) in Lemma 2.3 with n = 5, we estimate the right hand side by

C([ε−3−κ] + 1)ε4

δ5
→ 0,

as ε ↓ 0. This finishes the proof of the lemma. �

Finally we need to identify the limiting law for
{
K

(ε,ρ)
t (k), t ≥ 0

}
. Thanks to Proposition 2.6 it

solves the martingale problem that corresponds to the differential operator Lρ. Since the respective
problem is well-posed (this is a conclusion of Corollary 8.1.6 and Theorem 5.2.3 of [9]) this identifies
the weak limit of the laws of

{
K

(ε,ρ)
t (k), t ≥ 0

}
and ends the proof of Proposition 2.7. �
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Removal of the cut-off parameter

We now remove the regularization by ρ > 0. Suppose that τ ε,ρ(k) (resp. τρ(k)) is the exit time of
{K(ε)

t (k), t ≥ 0} (resp. kρ)
t (k)) from A(ρ), understood as equal to +∞ if the process does not leave

the region. A simple consequence of Proposition 2.7 is the following, see e.g. Theorem 2.1 of [2]

P[T ∧ τρ′(k) ≤ h] ≤ lim inf
ε↓0

P[T ∧ τ ε,ρ(k) ≤ h] ≤ lim sup
ε↓0

P[T ∧ τ ε,ρ(k) ≤ h] ≤ P[T ∧ τρ(k) ≤ h] (2.40)

for any T, h > 0 and ρ > ρ′ > 0. We also have the following.

Lemma 2.9 Suppose that d ≥ 2. Then,

lim
ρ↓0

P[τρ(k) ≥ T ] = 1, ∀T > 0, k 6= 0.

Proof. For any α ∈ R we let fα(k) := |k|−α. A straightforward calculation shows that

Lρfα(k) ≡ 0, k ∈ Aρ. (2.41)

Let τρL(k) (resp. τρR(k)) be the exit time of the diffusion from A(ρ) via the sphere |k| = ρ (resp.
|k| = ρ−1). We have of course τρ(k) = τρL(k) ∧ τρR(k). Let α = −2. Using Itô formula we get

ρ−2P
[
τρR(k) ≤ τρL(k) ∧ T

]
≤ E|k(ρ)

T∧τρ(k)(k)|2 = |k|2. (2.42)

Likewise, for α < 0 we get
ρ−αP

[
τρL(k) ≤ τρR(k) ∧ T

]
≤ |k|−α. (2.43)

From (2.42) and (2.43) we conclude that

lim
ρ↓0

P [τρ(k) ≤ T ] = lim
ρ↓0

P
[
τρL(k) ≤ τρR(k) ∧ T

]
+ lim

ρ↓0
P
[
τρR(k) ≤ τρL(k) ∧ T

]
= 0,

so we are done. �

Corollary 2.10 For any k 6= 0 the laws Q(ρ)
k of {k(ρ)

t (k), t ≥ 0} converge, as ρ ↓ 0, to the law Qk
that solves of the martingale problem corresponding to the generator L given by (1.10).

Proof. The convergence part of the theorem follows from Lemma 2.9 and the fact that

Q
(ρ)
k (A ∩ [τρ ≤ T ]) = Q

(ρ′)
k (A ∩ [τρ ≤ T ]), ∀A ∈MT , 0 < ρ′ < ρ.

The limiting law Qk satisfies

Qk(A ∩ [τρ ≤ T ]) = Q
(ρ)
k (A ∩ [τρ ≤ T ]), ∀A ∈MT , 0 < ρ. (2.44)

Since each Q
(ρ)
k solves the martingale problem corresponding to Lρ the limiting measure solves the

problem corresponding to L. �
Denote by G(ε,ρ)

k the law of {K(ε,ρ)
t (k), t ≥ 0}. To finish the proof of Theorem 2.5 observe that

for any f ∈ Cb(D[0,+∞)) that isMT measurable and 0 < ρ the laws G(ε)
k of {K(ε)

t (k), t ≥ 0} satisfy

lim sup
ε↓0

∫
fdG

(ε)
k ≤ lim sup

ε↓0

∫
f1[τρ≥T ]dG

(ε,ρ)
k + ‖f‖∞ lim sup

ε↓0
G

(ε,ρ)
k [τρ ≤ T ] (2.45)

≤ lim sup
ε↓0

∫
fdG

(ε,ρ)
k + 2‖f‖∞Q(ρ)

k [τρ ≤ T ] =
∫
fdQ

(ρ)
k + 2‖f‖∞Q(ρ)

k [τρ ≤ T ].
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The last equality follows from Proposition 2.7, while the preceding inequality follows from (2.40).
Using (2.44) we can further write

lim sup
ε→0+

∫
fdG

(ε)
k ≤

∫
fdQk + 3‖f‖∞Q(ρ)

k [τρ ≤ T ].

Using Lemma 2.9 we obtain that for any σ > 0 we can adjust ρ > 0 in such a way that

lim sup
ε→0+

∫
fdG

(ε)
k ≤

∫
fdQk + σ. (2.46)

A similar argument can be used to show that

lim inf
ε→0+

∫
fdG

(ε)
k ≥

∫
fdQk − σ. (2.47)

This finishes the proof of Theorem 2.5. �
We can also consider the continuous trajectory process {K̃(ε)

t (k), t ≥ 0} defined by interpolation
between the jump points of {K(ε)

t (k), t ≥ 0}. It is easy to show an analogue of Lemma 2.8 for the
above processes. We conclude therefore the following.

Corollary 2.11 The process {K̃(ε)
t (k), t ≥ 0} converges in law over C[0,+∞), as ε ↓ 0 to the

diffusion {kt(k), t ≥ 0}.

2.5 Application to the linear Boltzmann equation: the end of the proof of The-
orem 1.1

Note that

W (ε)(t, x, k) := Wε

(
t

ε3
,
x

ε4
,
k

ε

)
satisfies

∂tW
(ε)(t, x, k) + k · ∇xW (ε)(t, x, k) = LεW (ε)(t, x, k), (2.48)

W (ε)(0, x, k) = W 0(x, k),

with

LεW (x, k) :=
1

ε3+d

∫
Rd

2γ(|p|/ε)R̂(|p|/ε)
γ2(|p|/ε) + [p · (p+ 2k)]2ε−2

[
W (x, p+ k)−W (x, k)

]
dp

for W (·, ·) ∈ L2(Rd × Rd). Taking the partial Fourier transform with respect to the first variable,

Ŵ (ε)(0, p, k) =
∫

Rd
e−ix·pW (x, k)dx,

we obtain the equation

∂tŴ
(ε)(t, p, k) + ik · pŴ (ε)(t, p, k) = LεŴ (ε)(t, p, k), (2.49)

Ŵ (ε)(0, p, k) = Ŵ0(p, k).

The solution of (2.49) can be written as

Ŵ (ε)(t, p, k) = E
[
Ŵ0

(
p,K

(ε)
t (k)

)
exp

{
i

∫ t

0
p ·K(ε)

s (k) ds
}]

≈ E
[
Ŵ0

(
p, K̃

(ε)
t (k)

)
exp

{
i

∫ t

0
p · K̃(ε)

s (k) ds
}]

. (2.50)

The last approximate equality follows from the fact that we have replaced the jump process by the
linear interpolation process. Taking the limit, as ε ↓ 0, we obtain from Corollary 2.11 the conclusion
of the theorem. �
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3 Convergence of the wave-number process on the longer time-
scale

We now turn to the proof of Theorem 1.2. As Theorem 1.1 indicates, by the long time scale of
Theorem 1.2, the direction of the wave vector becomes equidistributed on the sphere. Hence, here
we track only the wave number, the main result being Theorem 3.1. Its proof is different in the case
d ≥ 4 and for d = 2, 3. The former case is simpler since we need not worry about the wave number
reaching the boundary ` = 0, while in two and three dimensions we need also to ensure that the
local time of the wave number at ` = 0 vanishes. The limiting behavior of the spatial component of
the process that is also part of Theorem 1.2 is studied in Section 4.

Limit theorem for the wave numbers in the long time

For a given ` > 0 define
Kt(`) := b

1/4
2ct (`4), t ≥ 0, (3.1)

where bt(`) is the square of the Bessel process of the dimension δ = d/2, see (1.16). We also define
the process K

(ε)
t (k) := |K(ε)

t/ε(k/ε)|. Our aim is to prove the following result.

Theorem 3.1 {K(ε)
t (k), t ≥ 0} converge in law over D[0,+∞), as ε ↓ 0, to {Kt(t), t ≥ 0}.

Proof of Theorem 3.1 for d ≥ 4

Since in this case δ ≥ 2 the process bt never reaches the boundary point 0, see Chapter XI, p. 442
of [7]. Therefore, Kt can be characterized as the solution of the one dimensional SDE on (0,+∞)

dKt =
(d− 3)cdt

4Kt
3 +

c1/2dwt

21/2|Kt|
, K0 = `, (3.2)

and the corresponding martingale problem is well posed.
To show weak convergence, we apply the martingale argument used in Section 2.3 above. For a

given ρ > 0 we introduce the diffusion K̄
(ρ)
t (k), starting at k, with the generator

Mρf(`) := φ(ρ)(`)Mf(`), f ∈ C∞0 (R+), (3.3)

where the operator M is given by (1.20), and φ(ρ) is a cut-off function as in (2.34). We will also use
the process K

(ε,ρ)
t (k) := |K(ε,ρ)

t/ε (k)|. Recall that K(ε,ρ)
t (k) is the jump process with the regularized

generator given by (2.35) that starts at k at t = 0. We will prove that

lim
ε↓0

1
ε

sup
k∈A(ρ)

|Lεf(|k|)−Mf(|k|)| = 0 (3.4)

for any ρ ∈ (0, 1) and f ∈ C∞0 (R+). From that point on we can repeat the argument used in the
proof of Proposition 2.7 and conclude that {K(ε,ρ)

t (k), t ≥ 0} converge in law over D[0,+∞), as
ε ↓ 0, to {K̄(ρ)

t (k), t ≥ 0}. Since the exit time of the diffusion {K̄(ρ)
t (k), t ≥ 0} from [ρ, ρ−1] tends to

+∞, as ρ→ 0+, a.s., we can remove the truncation corresponding to ρ using the argument made in
the course of the proof of Theorem 2.5. The only claim that needs to be shown is, therefore, (3.4),
which we now verify with the help of Lemmas 2.3 and 2.4.
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For a given function f ∈ C∞0 (R+) we have

Lεf(k) =
∫

Rd
[f(|k′|)− f(|k|)]Q(ε)(k, k′)dk′, (3.5)

with the kernel Q(ε)(k, k′) given by (2.4). Let us denote g(k) := f(|k|) and

H2(k, k′) := (k′ − k) · ∇g(k) +
1
2

(k′ − k)⊗2 · ∇2g(k) +
1
6

(k′ − k)⊗3 · ∇3g(k). (3.6)

where

∇g(k) = k̂f ′(|k|), ∇2g(k) = k̂⊗2f ′′(|k|) + (I − k̂⊗2)
f ′(|k|)
|k|

, (3.7)

∇3g(k) = k̂⊗3f ′′′(|k|) + S(k̂)
f ′′(|k|)
|k|

− S(k̂)
f ′(|k|)
|k|2

.

Here S(k̂) = [Sijk(k̂)] is given by

Sijm = δjmk̂i + δimk̂j + δij k̂m − 3k̂ik̂j k̂m.

By Taylor’s expansion we conclude that

f(|k′|)− f(|k|)−H2(k, k′) = Rε(k, k′), (3.8)

with the remainder satisfying

|Rε(k, k′)| ≤ C‖f (4)‖∞|k′ − k|4, ∀ k, k′

and some constant C. Using (3.5) we can write

Lεf(k) =
∫

Rd
H2(k, k′)Q(ε)(k, k′)dk′ +

∫
Rd
Rε(k, k′)Q(ε)(k, k′)dk′. (3.9)

For the first term above we have∫
Rd
H2(k, k′)Q(ε)(k, k′)dk′ = H21f

′(|k|) +H22f
′′(|k|) +H23f

′′′(|k|),

where

H21 =
∫

Rd

[
(k′ − k) · k̂ +

1
2|k|

(k′ − k)⊗2 · (I − k̂⊗2)− 1
6|k|2

(k′ − k)⊗3 · S(k)
]
Q(ε)(k, k′)dk

= bε(k) · k̂ +
1

2|k|
aε(k) · (I − k̂⊗2)− 1

6|k|2
dε(k) · S(k),

H22(k) =
∫

Rd

[
1
2

(k′ − k)⊗2 · k̂⊗2 − 1
6|k|

(k′ − k)⊗3 · S(k)
]
Q(ε)(k, k′)dk

=
1
2
aε(k) · k̂⊗2 − 1

6|k|
dε(k) · S(k),

and, finally,

H23(k) =
∫

Rd

[
1
6

(k′ − k)⊗3 · S(k)
]
Q(ε)(k, k′)dk =

1
6
dε(k) · S(k).
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Using Lemma 2.4 we may rewrite the expressions H21 and H22(k) for the drift and diffusivity as

H21(k) = b(k) · k̂ +
1

2|k|
a(k) ·

(
I − k̂⊗2

)
+ ε

{
b̄(|k|) +

d− 1
2|k|

ā2(|k|)
}

+ o(ε) (3.10)

and
H22(k) =

1
2
a(k) · k̂⊗2 + ε

ā1(|k|)
2

+ o(ε). (3.11)

By the same token H23(k) = o(ε). The above calculations prove that

Lεf(k) = Lf(k) + ε

{[
b̄(|k|) +

d− 1
2|k|

ā2(|k|)
]
f ′(|k|) +

ā1(|k|)
2

f ′′(|k|)
}

+ o(ε)

= Lf(k) + εMf(|k|) + o(ε),

where M is given by (1.20). Since Lf(|k|) = 0 formula (3.4) follows immediately.

Proof of Theorem 3.1 for d = 2 and d = 3

The situation in dimensions two and three differs from the previous one because the dimension of
the squared Bessel process δ = d/2, belongs then to (0, 2), so the limiting diffusion is recurrent and
enters 0 infinitely many times, see [8] Theorem V.48.6, p. 286. Therefore we modify the former
argument truncating the process only for large values. Our presentation deals with the case d = 3,
as the dimension two can be treated in the same fashion. To simplify the notation, we assume also
that 2c = 1 so that bt = K4

t satisfies the equation

bt = `4 +
3t
2

+ 2
∫ t

0

√
|bs|dws. (3.12)

Its generator M is given by (1.14) with c = 1/2. Note that the limiting operator M does not
have a singularity at b = 0, and because of that we will work with the process [K(ε)

t (k)]4, where
K

(ε)
t (k) := |K(ε)

t/ε(k)|, and consider the limit of its generator.

For any ρ ∈ (0, 1) let B(ρ) := [k : |k| ≤ ρ−1]. Let also {K(ε,ρ)
t (k), t ≥ 0} be the jump process

corresponding to the scattering kernel

Q(ε,ρ)(k, k′) := φ(ρ)(|k|)Q(ε)(k, k′), (3.13)

where Q(ε)(k, k′) is given by (2.4). Here φ(ρ) : R→ [0, 1] is a C∞ function that satisfies

φ(ρ)(`) ≡ 1 for ρ−1 ≥ |`| and φ(ρ)(`) ≡ 0 for |`| ≥ 2/ρ. (3.14)

Note, once again, that there is no truncation near ` = 0. Let {K̃(ε)
t (k), t ≥ 0} be the linear interpo-

lation process corresponding to K
(ε)
t (k). Define also the respective truncated processes K

(ε,ρ)
t (k) and

its linear interpolation K̃
(ε,ρ)
t (k). For a function f : R → R belonging to C1(R) ∩ C∞(R \ {0}) we

introduce the norm

‖f‖′CN := ‖f‖C1 + sup
`

N−1∑
i=1

|`if (i+1)(`)| < +∞, ∀N ≥ 1. (3.15)

To prove tightness of {K(ε)
t (k), t ≥ 0}, as ε ↓ 0, and then to identify its limiting law we shall need

the following refinement of Proposition 2.6.
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Proposition 3.2 There exists constant C > 0 such that

sup
k
|Lεg(k)| ≤ Cε‖f‖′C4 , ∀ ε ∈ (0, 1] (3.16)

for all f ∈ C1(R) ∩ C∞(R \ {0}). Here g(k) := f(|k|4). In addition, for any γ ∈ (0, 1) there exists
δ > 0 such that

sup
|k|≥εγ

∣∣∣∣1εLεg(k)−Mf(|k|4)
∣∣∣∣ ≤ Cεδ‖f‖′C4 , ∀ ε ∈ (0, 1] (3.17)

for all f as above.

The proof of the lemma is a bit technical and we postpone its presentation till Section 5.2. In the
meantime, we apply it to finish the proof of Theorem 3.1.

Tightness in d = 2, 3

We use (3.16) to prove tightness of K
(ε)
t (k). Let

g(k) = |k|4. (3.18)

Consider the martingale

mε,ρ(t) := g(K(ε,ρ)
t/ε (k))− g(k)− 1

ε

∫ t

0
Lε,ρg(K(ε,ρ)

s/ε (k))ds,

where Lε,ρ is the generator of {K(ε,ρ)
t (k), t ≥ 0}. Recall that Lε,ρ = φ(ρ)Lε. The quadratic variation

of mε,ρ(t) equals

〈mε,ρ〉(t) =
1
ε

∫ t

0

(
Lε,ρg2 − 2gLε,ρg

)
(K(ε,ρ)

s/ε (k))ds.

With the help of (3.16) we conclude that there exists a constant C > 0 such that

1
ε

∫ t2

t1

|Lε,ρg(K(ε,ρ)
s/ε (k))|ds+ 〈mε,ρ〉(t2)− 〈mε,ρ〉(t1) ≤ C(t2 − t1), ∀ ε ∈ (0, 1], t2 > t1 ≥ 0.

This according to Theorem VI.5.17, p. 365 of [4] implies tightness of the laws of {[K(ε,ρ)
t (k)]4, t ≥ 0}

over D[0,+∞) as ε ↓ 0. We can remove the truncation parameter ρ in the same fashion as it has
been done in the course of the proof of Theorem 2.5 by showing that the limiting diffusion does not
explode, as in our application of Lemma 2.9.

To prove that the limiting law is indeed supported on C[0,+∞) we show that for any δ, ρ, T > 0

P

[
sup
t∈[0,T ]

∣∣∣K̃(ε)
t/ε(k)−K(ε)

t/ε(k)
∣∣∣ ≥ δ] = 0,

which can be done in the same fashion as in the proof of Lemma 2.8 (instead of the 5-th moment of
the respective chain we should consider 6-th one since the scale is now longer by the factor of ε−1).
Summarizing, we have shown so far the following.

Proposition 3.3 The laws of {K(ε)
t (k), t ≥ 0}, and those of {K̃(ε)

t (k), t ≥ 0}, are tight, as ε ↓ 0,
on D[0,+∞) and C[0,+∞), respectively. Moreover, the set of the limiting laws for both of these
families is identical.
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Limit identification

Let us start with some notation. For any path π ∈ C(R+; R+) denote by x(t;π) := π(t). By
(Mt) we denote the canonical filtration on C(R+; R+). Identification of the limiting law is a simple
consequence of the following result.

Proposition 3.4 Suppose that f ∈ C2
0 (R) and Q` is any limiting law of {[K(ε)

t ]4(`1/4), t ≥ 0} that
starts at `. Then,

f(x(t))− f(`)−
∫ t

0
Mf(x(s))ds, t ≥ 0,

is a Q`-martingale.

As we have already mentioned in Section 1 the martingale problem corresponding to M is well-posed,
see Corollary 8.1.6, p. 202 of [9], and is given by the law of the solution of (3.12). Thus establishing
the above proposition would conclude the proof of Theorem 3.1.

Proof of Proposition 3.4

We start with the following.

Lemma 3.5 For any T > 0 there exists 0 < γ < 1 such that for g(k) = f(|k|4), where f ∈ C∞0 (R),
we have

lim
ε↓0

E
[

1
ε

∫ T

0
Lεg

(
K

(ε)
s/ε (k)

)
1[0,εγ)

(
K(ε)
s (k)

)
ds

]2

= 0, ∀ k 6= 0. (3.19)

Proof. Suppose that γ′ ∈ (γ, 1). In light of Proposition 3.2, it suffices to show that

lim
ε↓0

E
[∫ T

0
Mf

(
[K(ε)
s (k)]4

)
1[εγ′ ,εγ)

(
K(ε)
s (k)

)
ds+

1
ε

∫ T

0
Lεg

(
K

(ε)
s/ε (k)

)
1[0,εγ′ )

(
K(ε)
s (k)

)
ds

]2

= 0.

(3.20)
Taking into account that Mf(`) = (3/2)f ′(0) +O(`) as `� 1, the above is equivalent to

lim
ε↓0

E
[

3
2
f ′(0)

∫ T

0
1[εγ

′
,εγ)

(
K(ε)
s (k)

)
ds+

1
ε

∫ T

0
Lεg

(
K

(ε)
s/ε (k)

)
1[0,εγ

′
)

(
K(ε)
s (k)

)
ds

]2

= 0. (3.21)

We claim that in fact it suffices to show that, with g(k) = |k|4:

lim
ε↓0

E
[

3
2

∫ T

0
1[εγ

′ ,εγ)

(
K(ε)
s (k)

)
ds+

1
ε

∫ T

0
L̃εg

(
K

(ε)
s/ε (k)

)
1[0,εγ′ )

(
K(ε)
s (k)

)
ds

]2

= 0. (3.22)

Here
L̃εg(k) :=

∫
|k′|≤εγ

[g
(
k′
)
− g (k)]Q(ε)(k, k′)dk′. (3.23)

This can be seen as follows. Due to the rapid decay of R̂(·), see (1.5), from (2.4) we can conclude
that Q(ε)(k, k′) ∼ ε10R̂1/2(|k′ − k|) when |k′| ≥ εγ and |k| ≤ εγ

′
, since γ < γ′ < 1. Thus, for any

m ≥ 0 there exist C, δ > 0 such that

sup
|k|≤εγ′

∣∣∣∣∣
∫
|k′|≥εγ

|g
(
k′
)
− g (k) |mQ(ε)(k, k′)dk′

∣∣∣∣∣ ≤ Cεδ, ∀ ε ∈ (0, 1]. (3.24)
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Therefore, we can write that for |k| ≤ εγ′ , the generator (1/ε)Lεg (k) is, up to a term of order o(1),
equal to

1
ε

∫
|k′|≤εγ

[g
(
k′
)
− g (k)]Q(ε)(k, k′)dk′ = g′(0)L̃εg(k) +R(k, ε).

The term R(ε), corresponding to the second order Taylor expansion of function f , in dimension
d = 3, can be estimated as follows

sup
|k|≤εγ′

|R(k, ε)| ≤ C

ε
sup
|k|≤εγ′

∫
|k′|≤εγ

[g
(
k′
)
− g (k)]2Q(ε)(k, k′)dk′ ≤ Cε11γ

ε7
. (3.25)

as long as γ > 7/11. From here we see that (3.21) is indeed equivalent with (3.22).
Before proceeding with the proof of the latter we introduce some notation. Suppose that δ > 0

is a parameter to be adjusted later on, and let

fδ(`) := 2
∫ `

0

1[0,δ)(r)
r1/4

(`1/4 − r1/4)dr.

This function satisfies
Mfδ = 1[0,δ), (3.26)

and fδ(0) = 0. In addition, we have

f ′δ(`) :=
1

2`3/4

∫ `

0

1[0,δ)(r)dr
r1/4

,

so f ′δ(`) = 2/3 and fδ(`) = (2/3)` for ` ∈ [0, δ]. For ρ < 1/δ let us define fδ,ρ := fδφ
(ρ). It is

elementary to verify that for a fixed ρ we have

lim
δ→0+

sup
`

(
|fδ,ρ(`)|+ |`|[f ′δ,ρ(`)]2

)
= 0, (3.27)

and
sup
δ∈(0,1]

‖fδ,ρ‖′CN < +∞, ∀N ≥ 1. (3.28)

Let gδ,ρ(k) := fδ,ρ(|k|4), and consider the martingale

mε(t) := gεγ ,ρ

(
K

(ε)
t/ε (k)

)
− gεγ ,ρ(k)− 1

ε

∫ t

0
Lεgεγ ,ρ

(
K

(ε)
s/ε (k)

)
ds. (3.29)

We will show that its second moment vanishes as ε ↓ 0. Combining this with (3.27), we deduce that

lim
ε↓0

E
[

1
ε

∫ t

0
Lεgεγ ,ρ

(
K

(ε)
s/ε (k)

)
ds

]2

= 0. (3.30)

However, (3.24) and the fact that

gεγ ,ρ(k) =
2
3
g(k), |k| ≤ εγ , (3.31)

imply that

lim
ε↓0

sup
|k|≤εγ′

∣∣∣∣Lεgεγ ,ρ(k)− 2
3
L̃εg(k)

∣∣∣∣ = 0. (3.32)
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Hence, the integral

1
ε

∫ t

0
Lεgεγ ,ρ

(
K

(ε)
s/ε (k)

)
ds

that we know to be small (see (3.30)), can be split into the integrals over the regions where
|K(ε)

s/ε (k) | ≤ εγ′ and |K(ε)
s/ε (k) | ≥ εγ′ . In the first region we can use (3.32) so that it becomes

I(t) =
2
3ε

∫ t

0
L̃εg

(
K

(ε)
s/ε (k)

)
1[0,εγ′ )

(
K

(ε)
s/ε (k)

)
ds,

while in the second we can use approximation (3.17), as |K(ε)
s/ε (k) | ≥ εγ′ , to show that it equals

II(t) =
2
3

∫ t

0
Mgεγ ,ρ

(
K

(ε)
s/ε (k)

)
1[εγ′ ,+∞)

(
K

(ε)
s/ε (k)

)
ds+ o(1)

=
2
3

∫ t

0
1[εγ

′
,εγ)

(
K

(ε)
s/ε (k)

)
ds+ o(1).

Adding up the above, we see that the second moment of the sum I(t)+II(t) vanishes as ε ↓ 0, which
is nothing but (3.22).

The only remaining ingredient is to prove that

lim
ε↓0

E[mε(t)]2 = 0. (3.33)

We write the quadratic variation of this martingale in the form

〈mε〉(t) = 〈m(1)
ε 〉(t) + 〈m(2)

ε 〉(t),

where

〈m(1)
ε 〉(t) =

1
ε

∫ t

0
1[0,εγ′ )

(
K(ε)
s (k)

)
ds

∫
R3

[
gεγ ,ρ(k′)− gεγ ,ρ

(
K

(ε)
s/ε (k)

)]2
Q(ε)

(
K

(ε)
s/ε (k) , k′

)
dk′,

〈m(2)
ε 〉(t) =

∫ t

0
1[εγ′ ,+∞)

(
K(ε)
s (k)

)
Qε[gεγ ,ρ](K(ε)

s/ε (k))ds, (3.34)

and
Qε[g](k) :=

1
ε

(
Lεg2 − 2gLεg

)
(k) (3.35)

is the carré du champs operator associated to (1/ε)Lε. We will now split the integral over k′ in
〈m(1)

ε 〉(t) as an integral over {|k′| ≤ εγ} and its complement. The integral over the complement
becomes negligible as ε ↓ 0 as in (3.24) because k′ and K

(ε)
s/ε (k) are well separated. On the other

hand, when both |k′| ≤ εγ and |K(ε)
s/ε (k) | ≤ εγ , we may use the fact that

gεγ ,ρ(k) =
2
3
g(k), |k| ≤ εγ , (3.36)

leading to

〈m(1)
ε 〉(t) =

4
9ε

∫ t

0
1[0,εγ′ )

(
K(ε)
s (k)

)
ds

∫
|k′|≤εγ

[
g(k′)− g

(
K

(ε)
s/ε (k)

)]2
Q(ε)

(
K

(ε)
s/ε (k) , k′

)
dk′ + o(1).

(3.37)
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Now, (3.25) implies that
lim
ε↓0

E〈m(1)
ε 〉(t) = 0. (3.38)

As for 〈m(2)
ε 〉(t), since |K(ε)

s/ε (k) | ≥ εγ
′
, we may use (3.17) to approximate Lε by M, with the

help of the (uniform in ε) bound (3.28), to conclude that there exist C, δ > 0 such that

sup
|k|≥εγ

∣∣Qε[gεγ ,ρ](k)−Q[fεγ ,ρ](|k|4)
∣∣ ≤ Cεδ, ∀ ε ∈ (0, 1] (3.39)

where Q is the carré du champs operator associated to M. Hence, 〈m(2)
ε 〉(t) equals, up to a term of

order o(1) ∫ t

0
1[εγ′ ,+∞)

(
K(ε)
s (k)

)
Q[fεγ ,ρ]

([
K(ε)
s (k)

]4
)
ds,

as ε ↓ 0. Since Q[f ](`) = 2`(f ′)2(`), using (3.27), we conclude that

lim
ε↓0

E〈m(2)
ε 〉(t) = 0. (3.40)

Consequently, combining (3.38) and (3.40) we obtain (3.33). �
To finish the proof of Proposition 3.4 we recall that, given f as in the statement of the proposition

and k such that |k|4 = `, the process

g
(
K

(ε)
t/ε (k)

)
− g(k)− 1

ε

∫ t

0
Lεg

(
K

(ε)
s/ε (k)

)
ds (3.41)

is a martingale. Invoking (3.17) together with Lemma 3.5 we conclude that any limiting law Q` of
{K(ε)

t (k), t ≥ 0}, as ε ↓ 0, is the solution of the martingale problem corresponding to M that is well
posed. This ends the proof of the proposition. �

4 Convergence of the spatial component on the longer time scale

In order to complete the proof of Theorem 1.2 we now consider convergence of the spatial component

Xε
t =

1
ε1/2

∫ t

0
K

(ε)
s/ε(k)ds. (4.1)

Here, for simplicity of notation, we assume that Xε
t starts at x = 0 at t = 0.

This will be done using the familiar techniques of the homogenization theory. The function
(called the corrector)

χj =
|k|3

b(d− 1)
kj , (4.2)

is an explicit solution of the cell problem

−∇k ·
[
b

|k|
(I − k̂⊗2)∇kχj

]
= kj . (4.3)

Consider the martingales

N
(ε)
j (t) := χj(K

(ε)
t/ε(k))− χj(k)− 1

ε

∫ t

0
Lεχj(K(ε)

s/ε(k))ds, t ≥ 0, (4.4)

with the generator Lε given by (2.3). The following analogue of Proposition 3.2 holds for χj . We
present its proof in Section 5.3.
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Lemma 4.1 For any j = 1, . . . , d we have

Lεχj(k) = Lχj(k) + εψj,ε(k) (4.5)

where L is given by (1.10) and

lim sup
ε↓0

sup
k∈B(ρ)

|ψj,ε(k)| < +∞, ∀ ρ ∈ (0, 1), (4.6)

and B(ρ) := [k : |k| ≤ ρ−1].

Using (4.3) and (4.5) we obtain that

1
ε

∫ t

0
K

(ε)
s/ε(k)ds = N

(ε)
j (t) + χj(k)− χj(K(ε)

t/ε(k)) +
∫ t

0
ψj,ε

(
K

(ε)
s/ε(k)

)
ds,

whence

Xε
t =

1
ε1/2

∫ t

0
K

(ε)
s/ε(k)ds = ε1/2N

(ε)
j (t) +O(ε1/2), ε� 1, (4.7)

in probability. The quadratic co-variation of the martingale part {ε1/2N (ε)(t), t ≥ 0} equals

ε〈N (ε)
j , N

(ε)
j′ 〉(t) =

∫ t

0
B(j,j′)
ε (K(ε)

s/ε(k))ds,

where

B(j,j′)
ε (k) :=

∫
Rd

[χj(k′)− χj(k)][χj′(k′)− χj′(k)]Q(ε)(k, k′)dk′

=
2
ε

∫
Rd

(p⊗ p) · ∇χj(k)⊗∇χj′(k)(γR̂)(|p|)dp
γ2(|p|) + (|p|2 + 2p1|k|/ε)2 + o(1),

where
∇χj(k) =

1
b(d− 1)

{
3kj |k|k + |k|3ej

}
.

Calculations made in Lemmas 2.1 and 2.4 can be used to conclude that

lim
ε↓0

sup
k∈B(ρ)

|B(j,j′)
ε (k)−B(j,j′)(k)| = 0, ∀ ρ ∈ (0, 1), (4.8)

where

B(j,j′)(k) :=
π

|k|

∫
Rd−1

R̂(|p̄|)(p̄⊗ p̄) · (∇χj(k)⊗∇χj′(k))dp̄

= δj,j′
π|k|5

(d− 1)2b2

∫
Rd−1

R̂(|p̄|)(p̄ · ej)2dp̄.

Since p̄ · ej = p̄ · fj , where vector fj = (I = k̂⊗2)ej is orthogonal to k̂ and |fj |2 = 1− k̂2
j we obtain

B(j,j′)(k) = δj,j′
|k|5

(d− 1)b
(1− k̂2

j ).

This, in particular implies that the laws of {ε
∑d

j=1〈N
(ε)
j , N

(ε)
j 〉(t), t ≥ 0} are tight in D[0,+∞), as

ε ↓ 0, which in turn yields tightness of the laws of {ε1/2N (ε)(t), t ≥ 0}, see Theorem VI.4.13, p.
358 of [4]. In fact it is clear from (4.7) that the laws are C-tight, i.e. any limiting law is supported
on C[0,+∞). We can also introduce the stopped version of these processes {ε1/2N (ε,ρ)(t), t ≥ 0}
defined via (4.4) with K

(ε)
t/ε(k) replaced there by K(ε,ρ)

t/ε (k) for a given ρ ∈ (0, 1).
In the sequel, we shall need the following two results.
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Lemma 4.2 Suppose that γ, ρ ∈ (0, 1). Then,

lim
ε↓0

sup
k∈A(ρ)

E

{
εγ
∫ ε−γ

0

[
[K̂(ε)

t,j (k)]2 − 1
d

]
dt

}2

= 0, ∀ j = 1, . . . , d. (4.9)

Proof. Let
vj(k) :=

1
2bd
|k|k2

j , j = 1, . . . , d.

After straightforward calculations we obtain

Lvj(k) =
1
d
− k̂2

j

and
Lεvj(k) = Lvj(k) + εθj,ε(k) (4.10)

where
lim sup
ε↓0

sup
k∈A(ρ)

|θj,ε(k)| < +∞, ∀ ρ ∈ (0, 1), (4.11)

by virtue of Lemma 2.4. Therefore, the integral appearing in (4.9) equals

N
(ε)
j

(
1
εγ

)
+ vj(k)− vj(K

(ε)
ε−γ (k)) + ε

∫ ε−γ

0
θj,ε

(
K(ε)
s (k)

)
ds.

Here

N
(ε)
j (t) := vj(K

(ε)
t (k))− vj(k)−

∫ t

0
Lεvj(K(ε)

s (k))ds (4.12)

is a square integrable martingale with the predictable quadratic variation equal to

〈N(ε)
j 〉(t) =

∫ t

0
Dj,j′(K(ε)

s (k))ds, (4.13)

where

D(j,j′)
ε (k) :=

∫
Rd

[vj(k′)− vj(k)][vj′(k′)− vj′(k)]Q(ε)(k, k′)dk′

=
2
ε

∫
Rd

(p⊗ p) · ∇vj(k)⊗∇vj′(k)(γR̂)(|p|)dp
γ2(|p|) + (|p|2 + 2p1|k|/ε)2 + o(1),

and
∇vj(k) = k2

j k̂ + 2kj |k|ej .

With the calculation as in Lemmas 2.1 and 2.4 we conclude that

lim sup
ε↓0

sup
k∈B(ρ)

D(j,j′)
ε (k) < +∞. (4.14)

Let τ (ε,ρ)(k) be the exit time of K(ε)
t (k) from A(ρ). Thanks to Theorem 3.1, for any σ > 0 and

ρ ∈ (0, 1) we can find ε0 > 0 such that

sup
k∈A(ρ)

P
[
τ (ε,ρ/2)(k) ≤ ε−γ

]
< σ, ∀ ε ∈ (0, ε0]. (4.15)
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It is clear, in light of (4.11) and Lemma 2.3, that

sup
k∈A(ρ)

E

{
εγ
∫ ε−γ

0

[
[K̂(ε)

t,j (k)]2 − 1
d

]
dt, τ (ε,ρ/2) ≥ ε−γ

}2

(4.16)

= sup
k∈A(ρ)

E
[
ε2γ〈N(ε)

j 〉
(

1
εγ

)
, τ (ε,ρ/2) ≥ ε−γ

]
+ o(1) = o(1), as ε� 1.

The last equality following from (4.14). Thanks to (4.15), the left hand side of (4.9) is as small as
we wish, thus the conclusion of the lemma follows. �

The next lemma shows that the momentum and the spatial position become asymptotically
independent.

Lemma 4.3 For any ρ ∈ (0, 1) the quadratic covariation between the martingale {ε1/2N (ε)(t), t ≥ 0}
and semi-martingale {K(ε)

t (k), t ≥ 0} satisfies

lim
ε↓0

sup
k∈B(ρ)

sup
t∈[0,T ]

∣∣∣〈ε1/2N (ε),K(ε)(k)〉(t)
∣∣∣ = 0, ∀T > 0 (4.17)

in probability. The above statement holds also for {ε1/2N (ε,ρ)(t), t ≥ 0} and {K(ε,ρ)
t (k), t ≥ 0} for

an arbitrary ρ ∈ (0, 1).

Proof. Denote by ε1/2N
(ε)
1 the components of the martingale in the direction k̂, while by ε1/2N

(ε)
⊥

its orthogonal complement. It can easily be checked via a direct calculation that

〈ε1/2N (ε),K(ε)(k)〉(t) =
∫ t

0
Cε

(
K

(ε)
s/ε(k)

)
ds,

where Cε(k) := (Cε,1(k), . . . , Cε,d(k)) and

Cε,j(k) :=
1
ε1/2

∫
Rd

(|k′| − |k|))[χj(k′)− χj(k)]Q(ε)(k, k′)dk′.

We can write then

〈ε1/2N
(ε)
1 ,K(ε)(k)〉(t) =

∫ t

0
C(1)
ε

(
K

(ε)
s/ε(k)

)
ds, (4.18)

where
C(1)
ε (k) :=

b

(d− 1)ε1/2

∫
Rd

(|k′| − |k|))[|k′|3(k′ · k̂)− |k|4|]Q(ε)(k, k′)dk′

After changing variables p := (k′ − k)/ε (recall that p1 := p · k̂ and p̄ := p− (p · k̂)k̂) the expression
for C(1)

ε (k) can be written as C(1)
ε,1 (k) + C

(1)
ε,2 (k) where

C
(1)
ε,1 (k) :=

b

(d− 1)ε5/2

∫
Rd

2(|k + εp| − |k|)|k + εp|3p1(γR̂)(|p|)dp
γ2(|p|) + (|p|2 + 2|k|p1/ε)

2 ,

(4.19)

C
(1)
ε,2 (k) :=

b|k|
(d− 1)ε7/2

∫
Rd

2(|k + εp| − |k|)(|k + εp|3 − |k|3)(γR̂)(|p|)dp
γ2(|p|) + (|p|2 + 2|k|p1/ε)

2 .

Term C
(1)
ε,1 (k) is of the same order of magnitude, as ε� 1, as

2b|k|3

(d− 1)ε3/2

∫
Rd

p2
1(γR̂)(|p|)dp

γ2(|p|) + (|p|2 + 2|k|p1/ε)
2 .
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Therefore, by virtue of Lemma 2.4 (see in particular (2.30)), we obtain

C
(1)
ε,1 (k) ≤ C|k|3/2

[(
ε

2|k|

)1/2

∧ 1

]
. (4.20)

Considering the martingale (3.41) where g(k) = |k − k0|4 we arrive also at

sup
t∈[0,T ]

sup
k0∈B(ρ)

E[K(ε)
t (k0)]4 < +∞, (4.21)

implying, in particular, a bound on the 3/2-moment. Therefore, (4.20) implies

lim
ε↓0

sup
k∈B(ρ)

sup
t∈[0,T ]

∫ t

0
C

(1)
ε,1

(
K

(ε)
s/ε(k)

)
ds = 0.

In a similar fashion we obtain also that

lim
ε↓0

sup
k∈B(ρ)

sup
t∈[0,T ]

∫ t

0
C

(1)
ε,2

(
K

(ε)
s/ε(k)

)
ds = 0.

The above argument allows us to conclude that the right side of (4.18) is of order of magnitude o(1),
as ε� 1. Note also that

〈ε1/2N
(ε)
⊥ ,K(ε)〉(t) =

∫ t

0
C(2)
ε

(
K

(ε)
s/ε(k)

)
ds,

where

C(2)
ε (k) :=

b

(d− 1)ε5/2

∫
Rd

2(|k + εp| − |k|)|k + εp|3p̄(γR̂)(|p|)dp
γ2(|p|) + (|p|2 + 2|k|p1/ε)

2 ,

which equals, up to a term of order o(1), to

2|k|3b
(d− 1)ε3/2

∫
Rd

p1p̄(γR̂)(|p|)dp
γ2(|p|) + (|p|2 + 2|k|p1/ε)

2 = 0.

The conclusion of the lemma then follows. �

Limit identification

Denote by Q
(ε)
k,x, Q

(ε,ρ)
k,x the laws of {(K(ε)

t (k), x + ε1/2N (ε)(t)), t ≥ 0} and the truncated process

{(K(ε,ρ)
t (k), x+ε1/2N (ε,ρ)(t)), t ≥ 0} on D[0,+∞), respectively. Recall that the truncation in case of

dimension d ≥ 4 corresponds to the kernel Q(ε,ρ)(k, k′) given by (2.36), while in dimensions d = 2, 3
it corresponds to the kernel defined with the help of the cut-off function as in (3.14). From our
previous results it follows that these families are C-tight, as ε ↓ 0, for any ρ ∈ (0, 1). In addition,
let Q`,x and Q

(ρ)
`,x be the respective laws of the diffusion corresponding to the generator L defined by

(1.19). Generator Lρ is defined analogously, except for the fact that M is replaced in (1.19) by Mρ

given by (3.3).
Let π = (π1, π2) be the canonical map, with π1 and π2 corresponding to the K and N components.

By (Ms) we denote the canonical filtration and M the σ-algebra generated by all Ms,
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Let f ∈ C∞0 (R1+d), s < t and tm := mεγ where γ ∈ (0, 1). We partition the interval [s, t] using
the points tm into intervals of size εγ . For any A ∈Ms we can write, using Taylor expansion, (3.4),
(4.7) and (4.8)

E(ε,ρ) [f(π(t))− f(π(s)), A] =
∑
m

E(ε,ρ) [f(π(tm+1))− f(π(tm)), A] + o(1) (4.22)

= E(ε,ρ)

[∫ t

s
Mρf(π(u))du,A

]
+

1
2

∑
m

E(ε,ρ)

[∫ tm+1

tm

B(j,j)(π(s))∂2
2,jjf(π(u))du,A

]
+ o(1),

where E(ε,ρ)
x,k is the expectation with respect to Q

(ε,ρ)
k,x and the summation ranges over m-s such that

tm ∈ [s, t]. Here ∂2
2,jj denotes the second derivative with respect to the j-th component of the

variable π2. We can now make use of Lemma 4.2 and obtain that the utmost right hand side of
(4.22) can be approximated by

E(ε,ρ)

[∫ t

s
Lρf(π(u))du,A

]
+ o(1).

Letting ε→ 0 we conclude that any limiting measure of Q
(ε,ρ)
k,x , as ε ↓ 0, coincides with the solution of

the martingale problem corresponding to the generator Lρ. Thus, it equals to Q
(ρ)
`,x. We can remove

the truncation that corresponds to parameter ρ in the same way as in the proof of Theorem 2.5
and conclude that Q

(ε)
k,x converge weakly, as ε ↓ 0, towards Q`,x finishing in this way the proof of

Theorem 1.2.

5 Proofs of auxiliary results

In this section we prove the technical estimates of Lemmas 2.4 and 4.1, and Proposition 3.2.

5.1 Proof of Lemma 2.4

Convergence of the drift

We first prove (2.29). After a straightforward computation using (2.25), (2.4) and an elementary
change of variables p := (k′ − k)/ε we obtain

bε(k) =
k̂

ε2

∫
Rd

2p1(γR̂)(|p|)dp
γ2(|p|) + (|p|2 + 2|k|ε−1p1)2

. (5.1)

Performing a change of variables p′1 := 2|k|p1/ε, p̄′ := p̄ we get

bε(k) =
b̃ε1 k̂

2|k|2
(5.2)

with ε1 := ε/(2|k|) and

b̃ε :=
∫

Rd

p1(γR̂)({(εp1)2 + |p̄|2}1/2)dp
γ2({(εp1)2 + |p̄|2}1/2) + (|p̄|2 + (εp1)2 + p1)2

,

Take κ ∈ (0, 1) (that will be specified later on), and divide the domain of integration into two regions
given by {|p1| > ε−1−κ

1 }, and {ε−1−κ
1 ≥ |p1|}, respectively. We write, accordingly, b̃ε1 = b̃

(1)
ε1 + b̃

(2)
ε1 ,

where b̃
(i)
ε1 , i = 1, 2 are the integrals corresponding to the aforementioned regions of integration.

Estimate (2.29) is a consequence of the following.
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Lemma 5.1 There exist constants C, δ > 0 such that

|b̃ε + 2(d− 1)b− 2ε(d− 2)c| ≤ Cε1+δ, ∀ ε ∈ (0, 1], (5.3)

with the constants b and c given by (1.11) and (1.15), respectively.

Proof. For the sake of abbreviation we introduce the notation

g1(r) := γ(r)R̂(r), g2(r) := γ2(r), r ∈ [0,+∞), (5.4)

G(q, p̄, p1) := g2

(
(q2 + |p̄|2)1/2

)
+ (|p̄|2 + q2 + p1)2

and

F (q, p) :=
p1g1

(
(q2 + |p̄|2)1/2

)
G(q, p̄, p1)

, q ∈ R, p ∈ Rd. (5.5)

Note that F (q, p) is a function of (d+ 1)-variables. Let us define

D(q) =
∫

Rd−1

g1((q2 + |p̄|2)1/2)dp̄, (5.6)

then, as g1 is rapidly decaying, we have

D(q) ≤ CN
1 + |q|N

, (5.7)

for any N ∈ N. With this notation, in the first region we have

|b̃(1)
ε (k)| ≤ C

∫ +∞

ε−1−κ
|p1|D(εp1)dp1 ≤ CεN , ∀ ε ∈ (0, 1],

due to (5.7), with the constant C that depends on ρ ∈ (0, 1) and N ≥ 1.
To compute the limit of b̃(2)

ε we further divide the domain of integration. Let κ1 ∈ (0, 1) and
consider the regions, where |p̄| ≤ ε−κ1 , or |p̄| > ε−κ1 . The corresponding integrals shall be denoted
by b̃(2,i)ε , i = 1, 2.

To estimate b̃(2,2)
ε note that the rapid decay of the function g1(p) implies that

|b̃(2,2)
ε | ≤ Cε−2−2κ sup

|q|≤ε−κ

∫
|p̄|≥ε−κ1

g1({q2 + |p̄|2}1/2)dp̄ ≤ Cε1+δ

for some C, δ > 0. Finally, we deal with b̃
(2,1)
ε that can be written as

b̃(2,1)
ε =

∫
|p1|≤ε−1−κ

∫
|p̄|≤ε−κ1

F (εp1, p)dp = βε + rε, (5.8)

where
βε :=

∫
|p1|≤ε−1−κ

∫
|p̄|≤ε−κ1

F (0, p)dp

and (since F (q, p) is even in q)

rε :=
∫ ε−1−κ

0
dp1

∫
|p̄|≤ε−κ1

[F (εp1, p)− F (0, p) + F (εp1,−p1, p̄)− F (0,−p1, p̄)]dp̄.
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A simple calculation shows that

βε = −
∫
|p̄|≤ε−κ1

|p̄|2R̂(|p̄|)
[
arctan

(
ε−1−κ + |p̄|2

γ(|p̄|)

)
− arctan

(
−ε−1−κ + |p̄|2

γ(p̄|)

)]
dp̄

+
1
2

∫
|p̄|≤ε−κ1

g1(p̄) log
[
G(0, p̄, ε−1−κ)
G(0, p̄,−ε−1−κ)

]
dp̄.

Hence, there exist C, δ > 0 such that

sup
k∈A(ρ)

|βε + 2(d− 1)b| ≤ Cε1+δ, ∀ ε ∈ (0, 1].

On the other hand

rε = ε

∫ ε−1−κ

0
dp1

∫
|p̄|≤ε−κ1

dp̄

∫ p1

0
{∂qF (εq, p1, p̄) + ∂qF (εq,−p1, p̄)}dq. (5.9)

Note that

∂qF (q, p) =
p1g
′
1({|p̄|2 + q2}1/2)q

{|p̄|2 + q2}1/2G(q, p̄, p1)
− p1g3({|p̄|2 + q2}1/2)q
{|p̄|2 + q2}1/2G2(q, p̄, p1)

(5.10)

−4(|p̄|2 + q2 + p1)g1({|p̄|2 + q2}1/2)
p1q

G2(q, p̄, p1)
,

where g3(r) = g1(r)g′2(r). Substituting (5.10) into (5.9) we can write the above formula as the sum

rε =
3∑
i=1

r(i)
ε ,

with terms r(i)
ε i = 1, 2, 3 corresponding to the respective terms in the right hand side of (5.10).

We can write that (in order to symmetrize r(1)
ε )

r(1)
ε =

3∑
i=1

r(1,i)
ε ,

where

r(1,1)
ε :=

∑
σ=±1

σε2

ε−1−κ∫
0

dp1

∫
|p̄|≤ε−κ1

dp̄

p1∫
0

[p1 + σ(|p̄|2 + (εq)2)]g′1({|p̄|2 + (εq)2}1/2)qdq
{|p̄|2 + (εq)2}1/2G2(εq, p̄, σp1)

(5.11)

and

r(1,2)
ε := −

∑
σ=±1

ε4

ε−1−κ∫
0

dp1

∫
|p̄|≤ε−κ1

dp̄

p1∫
0

q3g′1({|p̄|2 + (εq)2}1/2)dq
{|p̄|2 + (εq)2}1/2G2(εq, p̄, σp1)

(5.12)

while

r(1,3)
ε := −

∑
σ=±1

ε2

ε−1−κ∫
0

dp1

∫
|p̄|≤ε−κ1

dp̄

p1∫
0

|p̄|2qg′1({|p̄|2 + (εq)2}1/2)dq
{|p̄|2 + (εq)2}1/2G2(εq, p̄, σp1)

. (5.13)
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Interchanging the integration in p1 and q, and integrating out p1 variable in (5.11) we get

r(1,1)
ε =

ε2

2

∫ ε−1−κ

0
dq

∫
|p̄|≤ε−κ1

g′1({|p̄|2 + (εq)2}1/2)q
{|p̄|2 + (εq)2}1/2

{
L(εq, ε−1−κ, p̄)− L(εq, q, p̄)

}
dp̄, (5.14)

where

L(q, r, p̄) := log
[
G(q, p̄, r)
G(q, p̄,−r)

]
.

After changing the variables q′ := εq we conclude that the utmost right hand side of (5.11) equals

r(1,1)
ε =

ε

2

∫ ε−κ

0
dq

∫
|p̄|≤ε−κ1

g′1({|p̄|2 + q2}1/2)q
{|p̄|2 + q2}1/2

· L(q, ε−1−κ, p̄)− L(q, q/ε, p̄)
ε

dp̄. (5.15)

We use an elementary estimate. For any κ, κ1 ∈ (0, 1/16) there exist C, δ > 0 such that

sup
γ2
0≤A≤γ

−2
0

sup
εδ≤y≤ε−κ

sup
|a|≤ε−κ1

∣∣∣∣1ε log
[

(y/ε+ a)2 +A

(y/ε− a)2 +A

]
− 4a

y

∣∣∣∣ ≤ Cεδ, ∀ ε ∈ (0, 1].

With this estimate in hand we conclude that for some C, δ > 0 we have∣∣∣∣r(1,1)
ε + ε

∫
Rd
g′1(|p|)|p|dp

∣∣∣∣ ≤ Cε1+δ, ∀ ε ∈ (0, 1],

or equivalently ∣∣∣∣r(1,1)
ε − εd

∫
Rd
g1(|p|)dp

∣∣∣∣ ≤ Cε1+δ, ∀ ε ∈ (0, 1]. (5.16)

On the other hand, changing order of integration between q and p1 and variables according to q′ := εq
we get

r(1,2)
ε = −

∑
σ=±1

ε

∫ ε−κ

0
dq

∫
|p̄|≤ε−κ1

q3g′1({|p̄|2 + q2}1/2)dp̄
{|p̄|2 + q2}1/2

{
1
ε

∫ ε−1−κ

q/ε

dp1

G(q, p̄, σp1)

}
. (5.17)

One can verify the following elementary property of integrals. For any κ, κ1 ∈ (0, 1/16) there exist
C, δ > 0 such that

sup
γ2
0≤A≤γ

−2
0

sup
εδ≤y≤ε−κ

sup
|a|≤ε−κ1

∣∣∣∣∣1ε
∫ ε−1−κ

y/ε

dx

A+ (x+ a)2
− 1
y

∣∣∣∣∣ ≤ Cεδ, ∀ ε ∈ (0, 1]. (5.18)

Hence, there exist C, δ > 0 such that∣∣∣∣r(1,2)
ε +

ε

d

∫
Rd
g′1(|p|)|p|dp

∣∣∣∣ ≤ Cε1+δ, ∀ ε ∈ (0, 1]. (5.19)

Finally, in the same fashion we obtain∣∣∣∣r(1,3)
ε + ε

(
1− 1

d

)∫
Rd
g′1(|p|)|p|dp

∣∣∣∣ ≤ Cε1+δ, ∀ ε ∈ (0, 1]. (5.20)

This together with (5.19) yields∣∣∣∣r(1,2)
ε + r(1,3)

ε − εd
∫

Rd
g1(|p|)dp

∣∣∣∣ ≤ Cε1+δ, ∀ ε ∈ (0, 1] (5.21)
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for some C, δ > 0. Summarizing, from (5.16) and (5.21) it follows that∣∣∣∣r(1)
ε − 2εd

∫
Rd
g1(|p|)dp

∣∣∣∣ ≤ Cε1+δ, ∀ ε ∈ (0, 1] (5.22)

for some C, δ > 0.
Concerning r(2)

ε we can write it as r(2)
ε = r

(2,1)
ε + r

(2,2)
ε , where

r(2,1)
ε =

∑
σ=±1

ε2

2

∫ ε−1−κ

0
qdq

∫
|p̄|≤ε−κ1

g3({|p̄|2 + (εq)2}1/2)
{|p̄|2 + (εq)2}1/2

{
1

G(εq, p̄, σε−1−κ)
− 1
G(εq, p̄, σq)

}
dp̄,

(5.23)
and

r(2,2)
ε =

∑
σ=±1

ε2

∫ ε−1−κ

0
qdq

∫
|p̄|≤ε−κ1

(|p̄|2 + (εq)2)1/2g3({|p̄|2 + (εq)2}1/2)dp̄
∫ ε−1−κ

q

dp1

G2(εq, p̄, σp1)
(5.24)

Changing variables q′ := εq in both formulas expressing J
(ε)
2,1 and J

(ε)
2,2 and using an elementary

estimate

sup
γ2
0≤A≤γ

−2
0

sup
εδ≤y≤ε−κ

sup
|a|≤ε−κ1

∣∣∣∣∣1ε
∫ ε−1−κ

y/ε

dx

[A+ (x+ a)2]2
− 1

3y3

∣∣∣∣∣ ≤ Cεδ, ∀ ε ∈ (0, 1].

to bound r
(2,2)
ε we conclude that ∣∣∣r(2)

ε

∣∣∣ ≤ Cε1+δ, ∀ ε ∈ (0, 1]

for some C, δ > 0.
To estimate r(3)

ε observe that it can be rewritten as r(3)
ε =

∑3
i=1 r

(3,i)
ε , where

r(3,1)
ε := −4

∑
σ=±1

ε2

∫ ε−1−κ

0
dp1

∫
|p̄|≤ε−κ1

dp̄

∫ p1

0

g1({|p̄|2 + (εq)2}1/2)qdq
G(εq, p̄, σp1)

,

r(3,2)
ε := 4

∑
σ=±1

σε2

ε−1−κ∫
0

dp1

∫
|p̄|≤ε−κ1

dp̄

p1∫
0

[p1 + σ(|p̄|2 + (εq)2)]

×g1({|p̄|2 + (εq)2}1/2)(|p̄|2 + (εq)2)
qdq

G2(εq, p̄, σp1)
,

and

r(3,3)
ε := 4

∑
σ=±1

ε2

∫ ε−1−κ

0
dp1

∫
|p̄|≤ε−κ1

dp̄

∫ p1

0
dq
g4({|p̄|2 + (εq)2}1/2)q

G2(εq, p̄, σp1)
,

with g4(·) := g1(·)g2(·). Arguing for r(3,2)
ε as in case of r(2,1)

ε and for r(3,3)
ε as in case of r(2,2)

ε we
conclude that ∣∣∣r(3,2)

ε

∣∣∣+
∣∣∣r(3,3)
ε

∣∣∣ ≤ Cε1+δ, ∀ ε ∈ (0, 1]

for some C, δ > 0. The case of r(3,1)
ε can be argued as r(1,2)

ε and we conclude that∣∣∣∣r(3)
ε + 4ε

∫
Rd
g1(|p|)dp

∣∣∣∣ ≤ Cε1+δ, ∀ ε ∈ (0, 1] (5.25)
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for some C, δ > 0.
Summarizing, we have shown that

|rε − 2(d− 2)cε| ≤ Cε1+δ, ∀ ε ∈ (0, 1], (5.26)

which in turn, upon the substitution of ε1 for ε, implies (2.29). �

Convergence of the covariance: the radial component

Formula for aε(k) can be rewritten in the form

aε(k) =
âε1(k̂)
|k|

, (5.27)

where

âε(k̂) =
1
ε

∫
Rd

(p⊗ p)γ(|p|)R̂(|p|)dp
γ2(|p|) + (|p|2 + ε−1p1)2

.

We set

ãε(k̂) := âε[k̂, k̂] =
1
ε

∫
Rd

p2
1γ(|p|)R̂(|p|)dp

γ2(|p|) + (|p|2 + ε−1p1)2
. (5.28)

Lemma 5.2 There exist C, δ > 0

sup
k̂

∣∣∣ãε(k̂)− cε
∣∣∣ ≤ Cε1+δ, ∀ ε ∈ (0, 1], (5.29)

with c given by (1.15).

Proof. From (5.28) we obtain that for a certain constant C > 0∣∣∣ãε(k̂)− cε
∣∣∣ ≤ ε ∫

Rd

∣∣∣∣ (p1/ε)2

γ2(|p|) + (|p̄|2 + p2
1 + (p1/ε))2

− 1
∣∣∣∣ γ(|p|)R̂(|p|)dp ≤ CεD(ε) (5.30)

with

D(ε) :=
∫

Rd

(|p1/ε|+ |p|2)|p|2γ(|p|)R̂(|p|)dp
γ2

0 + (|p|2 − |p1/ε|)2
. (5.31)

To estimate of D(ε) note that

(|p1/ε|+ |p|2)|p|2γ(|p|)R̂(|p|)
γ2

0 + (|p|2 − |p1/ε|)2
≤ CR̂1/2(|p|)
{γ2

0 + (|p|2 − |p1/ε|)2}1/2
, (5.32)

where

C := sup
u,v>0

γ−1
0 (u+ v2)v2R̂1/2(v)
{γ2

0 + (v2 − u)2}1/2
< +∞, (5.33)

due to the rapid decay of function R̂(·). We can write D(ε) =
∑2

i=1Di(ε), where the terms D1(ε),
D2(ε) correspond to the integration over the regions |p1| ≥ 2εγ and |p1| < 2εγ . In the first case,
(since |p| < εγ−1 ) we can easily conclude from (5.32) that

D1(ε) ≤ Cεδ, ∀ ε ∈ (0, 1],

for some δ > 0, while in the second, again from (5.32), we get

D2(ε) ≤ C

γ0

∫
|p1|≤2εγ

dp1 sup
p1

∫
Rd−1

R̂1/2({p2
1 + |p̄|2}1/2)dp̄ ≤ C1ε

γ ,

for some C1 > 0.�
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Convergence of the covariance: the angular component

We now compute the covariance in the directions orthogonal to k. The main result of this section
can be stated in the following form.

Lemma 5.3 There exist constants C, δ > 0 such that

sup
k̂

∣∣∣âε(k̂) · (I − k̂⊗2)− 2(d− 1)b− εc
∣∣∣ ≤ Cε1+δ, ∀ ε ∈ (0, 1], (5.34)

with b and c given by (1.11) and (1.15), respectively.

Proof. Suppose that k⊥ is orthogonal to k and |k⊥| = 1. We have

ãε(k⊥)− ã(k⊥) = ε

∫
Rd
dp

∫ p1

0
∂qF1(εq, p)dq,

where

F1(q, p) :=
(p̄ · k⊥)2g1({|p̄|2 + q2}1/2)

G(q, p̄, p1)
,

and

ã(k⊥) :=
∫

Rd
F1(0, p)dp = π

∫
Rd−1

(p̄ · k⊥)2R̂(|p̄|)dp̄,

ãε(k⊥) := âε(k)[k⊥, k⊥] =
1
ε

∫
Rd

(p̄ · k⊥)2g1(|p|)dp
γ2(|p|) + (|p|2 + ε−1p1)2

.

The functions g1(·), g2(·) are as in (5.4), while G(q, p̄, p1) is defined in (5.4). Using the truncation
argument we conclude that∣∣∣ãε(k⊥)− ã(k⊥)− r̃ε

∣∣∣ ≤ Cε1+δ, ∀ ε ∈ (0, 1],

where r̃ε is defined as in (5.9), with F1(q, p) replacing F (q, p) and C, δ > 0 are some constants. In
analogy to the calculations done for rε we can write

r̃ε =
3∑
i=1

r̃(i)
ε ,

with terms r̃(i)
ε i = 1, 2, 3 corresponding to the terms of the expression

∂qF1(q, p) =
(p̄ · k⊥)2g′1({|p̄|2 + q2}1/2)q
{|p̄|2 + q2}1/2G(q, p̄, p1)

− (p̄ · k⊥)2g3({|p̄|2 + q2}1/2)q
{|p̄|2 + q2}1/2G2(q, p̄, p1)

− 4(p̄ · k⊥)2q

G2(q, p̄, p1)
(|p̄|2 + q2 + p1)g1({|p̄|2 + q2}1/2). (5.35)

We have

r̃(1)
ε =

∑
σ=±1

ε−κ∫
0

qdq

∫
|p̄|≤ε−κ1

dp̄

ε−1−κ∫
q/ε

(p̄ · k⊥)2g′1({|p̄|2 + q2}1/2)dp1

{|p̄|2 + q2}1/2G(q, p̄, σp1)
, (5.36)

which, upon an application of (5.18), yields∣∣∣∣r̃(1)
ε − ε

∫
Rd

(p̄ · k⊥)2g′1(|p|)dp
|p|

∣∣∣∣ ≤ Cε1+δ.
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We conclude from the symmetry considerations (recall that |k⊥| = 1) that the integral above equals

1
d

∫
Rd
|p|g′1(|p|)dp = −c.

Repeating the calculations concerning r(2)
ε , r

(3)
ε we obtain that∣∣∣r̃(i)

ε

∣∣∣ ≤ Cε1+δ, ∀ ε ∈ (0, 1], i = 2, 3.

Finally, for the mixed component of the diffusivity matrix, let k⊥ ∈ Rd be a vector satisfying
|k⊥| = 1 and k⊥ ⊥ k̂. Integrating out p̄ first and using odd parity of the expression in this variable
we conclude that ãε(k̂, k⊥) = 0, where

ãε(k̂, k⊥) := âε(k)[k̂, k⊥] =
1
ε

∫
Rd

p1(p̄ · k⊥)γ(|p|)R̂(|p|)dp
γ2(|p|) + (|p|2 + ε−1p1)2

.

From the above we conclude (5.29).�
Lemmas 5.2 and 5.3 together imply (2.30).

Estimates of the third moment

Tensor dε(k) := d̂ε1(k̂), where

d̂ε(k̂) =
∫

Rd

2p⊗3γ(|p|)R̂(|p|)dp
γ2(|p|) + (|p|2 + p1/ε)2

, (5.37)

and ε1 = ε/(2|k|). Formula (2.31) is a consequence of the following.

Lemma 5.4 There exist constants C, δ > 0 such that

sup
k̂

|d̂ε(k̂)| ≤ Cε1+δ, ∀ ε ∈ (0, 1]. (5.38)

Proof. Observe that tensor vanishes in a direction (k⊥)⊗3, due to the odd parity of the third
moment in the p̄ variable. We consider only the value of the tensor in the direction k̂⊗3. The proof
is reduced to showing that

|d̃(ε)| ≤ Cεδ, ∀ ε ∈ (0, 1], (5.39)

where

d̃(ε) :=
1
ε

∫
Rd

2p3
1γ(|p|)R̂(|p|)dp

γ2(|p|) + (|p|2 + p1/ε)2
.

Choose γ ∈ (0, 1). We can write d̃(ε) =
∑2

i=1 d̃i(ε), where d̃1(ε), d̃2(ε) correspond to the integration
over the regions |p| ≥ εγ−1 and |p| < εγ−1. Due to the rapid decay of function R̂(·) we can easily
estimate

|d̃1(ε)| ≤ Cεδ, ∀ ε ∈ (0, 1]. (5.40)

To find an estimate of d̃2(ε) we use the following upper bound

1
ε

2|p1|3γ(|p|)R̂(|p|)
γ2(|p|) + (|p|2 + p1/ε)2

≤ 2|p1/ε||p|2γ(|p|)R̂(|p|)
γ2

0 + (|p|2 − |p1/ε|)2
≤ CR̂1/2(|p|)
{γ2

0 + (|p|2 − |p1/ε|)2}1/2
, (5.41)
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where

C := sup
u,v>0

2γ0uv
2R̂1/2(v)

{γ2
0 + (v2 − u)2}1/2

< +∞. (5.42)

due to the rapid decay of function R̂(·). From this point on the estimates are identical with those
done in the course of the proof of Lemma 5.2. We can write d̃2(ε) =

∑2
i=1 d̃2i(ε), where the terms

d̃21(ε), d̃22(ε) correspond to the integration over the regions |p1| ≥ 2εγ and |p1| < 2εγ . In the first
case, (since |p| < εγ−1 ) we can easily conclude from (5.41) that

|d̃21(ε)| ≤ Cεδ, ∀ ε ∈ (0, 1],

while in the second, again from (5.41), we get

|d̃22(ε)| ≤ C

γ0

∫
|p1|≤2εγ

dp1 sup
p1

∫
Rd−1

R̂1/2({p2
1 + |p̄|2}1/2)dp̄ ≤ C1ε

γ ,

for some C1 > 0, and (5.38) follows in the direction k̂⊗3. It is clear that the same argument can be
applied in any other ”mixed” directions formed over k̂ and k⊥. �

5.2 Proof of Proposition 3.2

We first prove (3.16). Let ` := |k|, k̂ := k/`. Recall that g(k) := f(|k|4), where f satisfies the
assumptions of the proposition. With this notation we can write formulas for ∇g(k), ∇2g(k) and
∇3g(k) using (3.7). In addition

∇4g(k) := k̂⊗4 d
4

d`4
f(`4) + 2S(1)(k̂)

1
`

d3

d`3
f(`4) + (S(2)(k̂)− 3S(1)(k̂))

1
`2
d2

d`2
f(`4)

+ (3S(1)(k̂)− S(2)(k̂))
1
`3
d

d`
f(`4). (5.43)

Here S(1)(k̂) = [S(1)
i1i2i3i4

(k̂)], S(2)(k̂) = [S(2)
i1i2i3i4

(k̂)] are given by

S
(1)
i1i2i3i4

(k̂) =
∑

{j,l},{m,n}

(
δimin − k̂im k̂in

)
k̂ij k̂il ,

S
(2)
i1i2i3i4

(k̂) =
∑

{j,l},{m,n}

(
δimin − k̂im k̂in

)
δij ,il .

The summation extends over all partitions of {1, 2, 3, 4} into two element subsets. In addition,

d

d`
f(`4) = 4`3f ′(`4), (5.44)

d2

d`2
f(`4) = 12`2f ′(`4) + 16`6f ′′(`4),

d3

d`3
f(`4) = 24`f ′(`4) + 144`5f ′′(`4) + 64`9f ′′′(`4),

d4

d`4
f(`4) = 24f ′(`4) + 816`4f ′′(`4) + 1152`8f ′′′(`4) + 256`12f (4)(`4).

Recall that H2(k, k′) is given by (3.6). Then, Rε(k, k′) := g(k′)− g(k)−H2(k, k′) can be estimated
by (see (3.15))

|Rε(k, k′)| ≤ C‖f‖′C4 |k′ − k|4.
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The estimate (3.16) will follow from the bound

sup
k

∣∣∣∣∣1εLεg(k)−
2∑
i=1

Ji(k; ε)

∣∣∣∣∣ ≤ C

ε
‖f‖′C4 sup

k
q̂(4)
ε (k), (5.45)

where

J1(k; ε) :=
1
ε
bε(k) · ∇g(k) +

1
2ε
aε(k) · ∇2g(k), (5.46)

J2(k; ε) :=
1
6ε
dε(k) · ∇3g(k).

Recall, see (2.16), that the right hand side of (5.45) stays bounded, as ε ∈ (0, 1]. Hence, in order
to establish (3.16) it suffices to obtain bounds on J1 and J2. To this end, we show that there exist
constants C, δ > 0 such that

sup
k
|J1(k; ε)−Mf(|k|4)| ≤ Cεδ‖f‖′C2 (5.47)

and
sup
k
|J2(k; ε)| ≤ Cεδ‖f‖′C3 , ∀ ε ∈ (0, 1]. (5.48)

The combination of (5.45), (5.47) and (5.48) implies (3.16). In order to prove (5.47), using (5.2)
and (5.27) we write (recall that ε1 = ε/(2|k|))

J1(k; ε) =
b̃ε1

4ε1|k|3
k̂ · ∇g(k) +

1
4ε1|k|2

âε1(k̂) · ∇2g(k). (5.49)

Using formulas (3.7) and (5.44) we can further rewrite the right hand side of (5.49) in the form[
b̃ε1
ε1

+
âε1(k̂)
ε1

· (I − k̂⊗2)

]
f ′(|k|4) +

âε1(k̂)
ε1

· k̂⊗2
[
3f ′(|k|4) + 4|k|4f ′′(|k|4)

]
Estimate (5.47) follows easily from Lemmas 5.1, 5.2 and 5.3. Estimate (5.48) can be derived in a
similar fashion from Lemma 5.4 using formula for ∇3g(k), cf. (3.7).

To prove (3.17) it suffices only to show that for any γ ∈ (0, 1) there exist C, δ > 0 such that

sup
|k|≥εγ

q̂(4)
ε (k) ≤ Cε1+δ, ∀ ε ∈ (0, 1]. (5.50)

Note that

1
ε

sup
|k|≥εγ

q̂(4)
ε (k) ≤ C sup

|k|≥εγ

∫
Rd

|p|4(γR̂)(|p|)dp
γ2

0 + (|p|2 + 2kp1/ε)2
≤ C sup

0<ε1≤ε1−γ

∫
Rd

|p|4(γR̂)(|p|)dp
γ2

0 + (|p|2 − |p1|/ε1)2
.

The right hand side can be estimated by Cεδ for some C, δ > 0 similarly as the expression in the
right hand side of (5.32). �
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5.3 Proof of Lemma 4.1

We proceed as in the proof of Proposition 3.2. Observe that

∇nχj(k) = ∇nh(k)kj + n∇n−1h(k)⊗ ej ,

where h(k) = |k|3. Using formulas (3.7) and (5.43), with the function f(`4) replaced there by `3, we
conclude that

sup
k∈B(ρ)

∣∣∣∣∣1εLεχj(k)−
2∑
i=1

J̃i(k; ε)

∣∣∣∣∣ ≤ C

ε
sup
k∈B(ρ)

|∇4χj(k)|q̂(4)
ε (k) ≤ C1

ε
sup
k∈B(ρ)

q̂(4)
ε (k). (5.51)

Here

J̃1(k; ε) :=
1
ε
bε(k) · ∇χj(k) +

1
2ε
aε(k) · ∇2χj(k),

J̃2(k; ε) :=
1
6ε
dε(k) · ∇3χj(k).

We deal with J̃i(k; ε), i = 1, 2 as with Ji(k; ε), i = 1, 2 defined in (5.46). As in that argument, we
can prove that there exist constants C, δ > 0 such that

sup
k∈B(ρ)

|J̃1(k; ε)− 1
ε
Lχj(k)| ≤ Cεδ (5.52)

and
sup
k∈B(ρ)

|J̃2(k; ε)| ≤ Cεδ, ∀ ε ∈ (0, 1]. (5.53)

This ends the proof of Lemma 4.1.
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