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Abstract

We investigate the qualitative behavior of solutions of a Burgers-Boussinesq system – a
reaction-diffusion equation coupled via gravity to a Burgers equation – by a combination of
numerical, asymptotic and mathematical techniques. Numerical simulations suggest that when
the gravity ρ is small the solutions decompose into a traveling wave and an accelerated shock wave
moving in opposite directions. There exists ρcr1 so that, when ρ > ρcr1, this structure changes
drastically, and the solutions become more complicated. The solutions are composed of three
elementary pieces: a wave fan, a combustion traveling wave, and an accelerating shock, the whole
structure traveling in the same direction. There exists ρcr2 so that when ρ > ρcr2, the wave fan
catches up with the accelerating shock wave and the solution is quenched, no matter how large
was the support of the initial temperature. We prove that the three building blocks (wave fans,
combustion traveling waves and shocks) exist and we construct asymptotic solutions made up of
these three elementary pieces. We finally prove, in a mathematically rigorous way, a quenching
result irrespective of the size of the region where the temperature was above ignition – a major
difference with what happens in advection-reaction-diffusion equations where an incompressible
flow is imposed.

1 Introduction

In his pioneering papers [15, 16], Ya. I. Kanel made the following discovery: consider an initial value
problem

Tt = Txx + f(T ),

on the real line, x ∈ R, with the initial data T (0, x) = χ[−L,L](x) which is the characteristic function
of an interval [−L,L]. The nonlinearity f(T ) is Lipschitz and of the ignition type: there exists
θ ∈ (0, 1) such that

f(T ) ≡ 0 on [0, θ] ∪ {1} (1.1)

f(T ) > 0 on (θ, 1),

the range of T being the interval (0, 1). Kanel has shown that there exists L0 so that if the initial
”hot spot” size L satisfies L < L0 then there exists a time t0 > 0 so that 0 < T (t0, x) ≤ θ for all
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x ∈ R – hence, the reaction ceases at this time and solution decays to zero as t→ +∞. We say that
the solution quenches in that case. On the other hand, there exists L1 so that if L > L1 then the
solution develops two traveling fronts, one going to the left, another to the right and T (t, x) → 1 as
t→ +∞, uniformly on compact sets. Very recently A. Zlatos has shown that L0 = L1 [24].

The mathematical modeling of issues concerning flame propagation or quenching have received
renewed attention recently, mainly regarding the effect that fluid flow has on the behavior discovered
by Kanel: see, for instance, the direct simulations and formal asymptotic analysis in [12, 13, 14, 21].
A number of mathematically rigorous results generalizing Kanel’s results to ignition type reactions
in the presence of a fluid flow are also available. Here is a typical example of a result of this kind:
suppose that T (t, x, y) solves an advection-reaction-diffusion equation

Tt + u(x, y) · ∇T − ∆T = f(T ), (1.2)

∂νT = 0, for (x, y) ∈ R × ∂Ω,

T (0, x, y) = T0(x, y),

in a cylinder Σ = {x, y ∈ R × Ω} where Ω ⊂ R
n is bounded and where f is a smooth ignition-type

source term as in (1.1). Assume for simplicity that the initial datum T0(x, y) = χ[−L,L](x) depends
only on the variable x, as in Kanel’s problem. Then there exists a constant L0(u, f) > 0 such that,
if L < L0(u, f), then T (t, x, y) becomes uniformly smaller than θ in finite time. This is an example
of a finite time quenching. There also exists a constant L1(u, f) ≥ L0(u, f) such that, if L > L1,
then T (t, x, y) → 1 as t → +∞, uniformly on compact sets in (x, y) ∈ Σ. It is not known whether
L0 = L1 when u 6≡ 0. The main interest in these problems is in estimating the dependence of the
quenching length L0 on the amplitude and geometry of the flow u(x, y). In particular, precise results
are known in advection-reaction-diffusion equations when a strong incompressible flow is imposed:
see, for instance, [5, 17] for quenching by a strong shear flow and [11] for quenching by a strong
cellular flow. In both cases the critical size L0 of an initially ”hot” region that can be quenched
by the flow grows with the flow amplitude A, albeit at a rate depending on the flow geometry –
L0 ∼ CA for generic shear flows and L0 ∼ CA1/4 in cellular flows. The increase in L0 is due to
improved mixing by the incompressible flow.

The goal of the present paper is to investigate what happens when the fluid flow is no longer
imposed, but rather obeys a hydrodynamic equation. What we wish to understand in this study is
the following: what are the quenching rules when the reaction-diffusion is coupled to hydrodynamics?
In particular, is quenching still a matter of the size of the zone where the temperature exceeds the
ignition temperature? Such an investigation was initiated for reaction-diffusion equations coupled
to incompressible hydrodynamics in the Boussinesq approximation in the spirit of [1, 2, 4, 6, 7, 9,
10, 18, 22, 23]. This was done in [8] for a bounded domain with Dirichlet boundary conditions. The
cases of Neumann boundary conditions and of unbounded domains are still under investigation.

In this paper we are interested in the effects of a compressible flow on the quenching phenomenon,
a subject that seems to not have been yet addressed in the mathematical literature. Studying
this problem for the full compressible reactive Navier-Stokes problem is beyond our reach at the
moment. We investigate therefore a drastically simplified model of a Boussinesq system, where the
Navier-Sokes equation is replaced by the one dimensional Burgers equation coupled to a temperature
equation by a gravity force:

Tt − Txx + uTx = f(T ) (1.3)

ut − νuxx + uux = ρT.

Here T (t, x) is the temperature and u(t, x) the velocity of the fluid. The reaction term f(T ) satisfies
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the assumptions (1.1), and moreover we require that

f ′(1) < 0. (1.4)

The coefficient ρ > 0 represents the gravity, and the coefficient ν ≥ 0 the kinematic viscosity.
The system (1.3) has another physical interpretation for a one-dimensional system of discrete

excitable particles. The particles are mobile and inertial, can mix by diffusion, and can exchange
momentum. A particle converts to an excited state if there is a high enough concentration of excited
particles in its vicinity. Excited (and only excited) particles feel the presence of a force; all other
properties of excited and non-excited particles are identical. Under some conditions the initially
small excited region grows with time, as the excited particles spread around by diffusion and excite
their neighbors. In addition, the driving force accelerates the excited particles and speeds up the
process. However, if the force is too strong, the particles quickly spread around over a large area,
their concentration drops below the threshold limit, and transition of new particles to the excited
state terminates. Even though the particles excited earlier are still present in the system, we call
this event extinction or quenching.

The continuum representation of the problem is the system (1.3); T (x) is the fraction of excited
particles (0 ≤ T ≤ 1), and u(x) is the locally averaged velocity. The system of Burgers and
advection-reaction-diffusion equations describes the transport of momentum and the transport of
excited species, ρ is the driving force, and f(T ) is the reaction term which accounts for the transition
of particles from non-excited to excited state.

The outcome of the present study is that the qualitative behavior of the reactive system under
investigation is markedly different from that of a reactive system in a passive incompressible flow.
In particular, if the parameter ρ is sufficiently large, then quenching may occur irrespective of the
size of the set where T (0, x) ≥ θ. We note that, as in the case of an imposed flow, the temperature
goes to zero as t→ +∞ as soon as it drops below θ everywhere, provided that the flow is decaying
at infinity.

The paper is organized as follows. In Section 2, we carry out a numerical investigation of the
system (1.3). The subsequent mathematical analysis is based on these numerical computations: it
would be very difficult for us to find the correct qualitative behavior of the solutions without them.
A feature of the numerical simulations is that they are not very sensitive to the viscosity ν; therefore
we set ν = 0 in the rest of the paper. Namely, we concentrate on the system

Tt − Txx + uTx = f(T ) (1.5)

ut + uux = ρT

Briefly, the numerical simulations show the following picture for solutions with a sufficiently large
set where initially T (0, x) = 1: there exists a critical value ρcr1 > 0 so that for ρ ∈ (0, ρcr1) such
solutions develop a left going traveling wave which moves with a constant speed. On the right
boundary they have a shock wave accelerating in time to the right. When ρ > ρcr1 the gravity
does not permit a left-going traveling wave to develop. Instead, the solution is made up of three
elementary building blocks pieced together: a wave fan in the back, followed by a traveling wave,
and finally an accelerated shock. This whole structure propagates to the right. Finally, there exists a
second critical threshold ρcr2 so that for ρ > ρcr2 the wave fan catches up with the shock, no matter
how large was the support of T (0, x) and the reaction stops from this time onward: it is quenched.
This seems to be the main difference between active compressible and passive incompressible flows –
when a compressible flow is sufficiently strong, all solutions are quenched, regardless of their initial
size. It would be very interesting to investigate this phenomenon in more realistic reactive flow
models. The numerical results are presented in Section 2.
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The next three sections are devoted to the mathematical study of the elementary solutions of
the system (1.5). In Section 3 we establish the existence of wave fans, that is, self-similar solutions
of (1.5) with f(T ) ≡ 0. Suppressing the diffusivity in the temperature equation yields explicit wave
fans; these can be seen in Section 2. Establishing their existence when the temperature diffusivity is
positive turns out to be a surprisingly difficult task: the whole program is carried out in full details
in Section 3.

In Section 4 we prove existence and study qualitative properties of the combustion traveling
waves. We expect similar results to hold for ν 6= 0 as well, although the equations are different.

In Section 5, we construct asymptotic solutions to the full system (1.5). We point out that what
we prove here is that the ’solutions’ that we have constructed only satisfy the system up to an error
that is O(t−1), and not that they are true solutions to the system. However, they are constructed
by matched asymptotic expansions, and we believe that it is possible to construct true solutions to
(1.5) on the basis of these asymptotic solutions. This latter investigation is not, however, in the
scope of this paper, and will be carried out elsewhere. The constructed solutions fully account for
what we saw in the numerics of Section 2.

In Section 6 we prove a quenching result. For ρ sufficiently large there is numerical evidence
from Section 2 that the formal solution constructed in Section 5 will quench. We prove rigorously
that taking the asymptotic solution as the initial data, the temperature will drop below the ignition
temperature in a finite time that we are able to estimate.

Acknowledgment. This work has been supported by ASC Flash Center at the University of
Chicago. PC was supported by NSF grant DMS-0504213, and LR by NSF grant DMS-0604687.
This work was completed during visits by PC and LR to Université Paul Sabatier and by JMR to
the University of Chicago. We thank these institutions for their hospitality.

2 Numerical simulations

In this section we investigate numerically the system (1.3) with ν = 1; in other words, we consider

Tt − Txx + uTx = f(T ) (2.1)

ut − uxx + uux = ρT.

To be specific, we choose the following piecewise linear reaction rate:

f(T ) =
θ(1 − T )

(1 − θ)2
, θ < T < 1; (2.2)

f(T ) = 0, otherwise,

where θ is the ignition temperature. We set θ = 1/2 in most simulations below. Our analysis does
not depend on this particular choice of reaction – it is important only that the ignition cutoff exists
and the reaction vanishes for T > 1 and T < 0. In the absence of advection (ρ = 0, u = 0) the
reaction-diffusion equation for temperature with reaction rate (2.2) has a traveling wave solution
moving with unit speed,

T ∗(x, t) = 1 − (1 − θ)e
1−θ

θ
(x−t), x < t; (2.3)

T ∗(x, t) = θe−(x−t), x > t.

Here the location x = t corresponds to the point where temperature equals to the ignition threshold
value θ.
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Figure 1: Quenching of small hot spot by diffusion alone. Thick solid lines represent the initial
profiles with h = h∗ = 1.50 and k = 0.75 (left), and with h = h∗ = 1.00 and k = 1.50 (right). Thin
dashed lines correspond to the solutions at time t = 2 with the initial widths just below and just
above critical (∆h = ±0.01). The dotted line is the threshold value θ = 0.5.

As an initial condition for T we use a smooth localized distribution of width h and steepness k,

T (x, 0) =
1

2
tanh [k (x+ h/2)] − 1

2
tanh [k (x− h/2)] . (2.4)

We use mostly k = 0.75, which corresponds to a profile with a more gradual slope compared to the
traveling wave (2.3), but that overall better matches the theoretical solution. In a few cases we use
a steeper interface with k = 1.5. The initial velocity is zero in the majority of our simulations with
the exception of the case where we study quenching by a prescribed initial velocity.

We solve the system (2.1) with the reaction rate (2.2) numerically, using fourth-order central
differences discretization and third-order Adams-Bashforth integration in time. The simulations are
done at resolution ∆x0 = 1/16 with an adaptive patch of highly resolved mesh (∆x1 = ∆x0/64) in
the vicinity of the shock.

2.1 Quenching without gravity

We first consider the simple case ρ = 0. If initially u = 0, then the problem is reduced to a single
scalar reaction-diffusion equation. If u(0, x) 6= 0 then the equation for T (t, x) is driven by the flow
u(t, x) that satisfies the viscous Burgers equation. Much of the material of this section is well-known,
and has received an extensive mathematical treatment. It is, however, instructive to put it here: it
will serve as a comparison basis for more sophisticated effects appearing when the gravity is present.

2.1.1 Zero velocity - Kanel’s length

In the absence of gravity and initial velocity, initial data (2.4) evolve in agreement with the the-
oretical predictions [16, 24]. Namely, initially sufficiently large hot regions, h > h∗, develop two
outward propagating traveling waves of the form (2.3), while initially small hot regions, h < h∗, are
extinguished.

The critical length of the initially hot region h∗ – Kanel’s length– can be determined numerically.
For the given θ, the critical width depends on the the steepness of the interface. We show in Figure 1
the initial profiles corresponding to the Kanel’s lengths h∗ = 1.50, for k = 0.75, and h∗ = 1.00, for
k = 1.50 (in both cases θ = 0.5). Note that for k = 0.75, the maximum in the profile only slightly
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exceeds the ignition temperature, Tmax = 0.51, while for steeper k = 1.50 the maximum is higher,
Tmax = 0.64. The solution with critical width h∗ is unstable. The solution with h just below critical
decays with time, while the one just above critical grows and eventually develops into a pair of
outward propagating fronts.

2.1.2 Stationary compression

When ρ = 0, the Burgers equation for u(t, x) is uncoupled from the advection-reaction-diffusion
equation for T (t, x) and has a stationary solution,

u∗(x) = −U tanh
Ux

2
, (2.5)

where U is the absolute velocity at x = ±∞. The stationary solution represents compression, in the
sense that u∗ < 0 for x > 0 and and u∗ > 0 for x < 0. Although the velocity remains unaffected by
temperature, it changes the temperature distribution and can facilitate quenching.

In this exercise, we study the quenching of initial data with different h by the stationary ve-
locity (2.5) with different intensities, U . Both u(x) and T (x) are aligned at x = 0, so that the
compression is symmetric with respect to the center of the hot spot.

We find that there exists a critical velocity, Ucr, that quenches any initial distribution of tem-
perature, no matter how wide it is. The independence of initial size is not surprising: if the initial
distribution is wide, both fronts are located in the region where the velocity is nearly constant,
u(x) ≈ ±U . The fronts are advected toward the center with the speed V ≈ U − 1, and eventually
reach the center. Near the center the absolute velocity is lower, and the decrease of temperature
due to compression might or might not be balanced by reaction. We found that if U > Ucr = 1.40
the maximum of temperature drops below the ignition threshold, that is, the hot spot completely
extinguishes. For 1 < U < Ucr, the solution converges to a stationary profile T̃ (x). The shape of the
stationary profile depends on the compression velocity; the profile is wider for lower U (see Figure 2,
left panel). When U < 1, the hot spot grows outwards.

The above discussion applies to initially wide profiles, h ≫ 1, or more specifically, to profiles
wider than T̃ (x). Narrower profiles converge to a narrower stationary solution. We performed a test
where we kept the same U = 1.3 and k = 0.75 and varied h. For h > 2.8, all solutions converge
to T̃ (x). For 1.66 > h > 2.7, the solutions converge to different profiles (see Figure 2, right panel).
If h < 1.65, the solutions become extinct; recall that the Kanel size for this steepness at U = 0 is
h = 1.50.

2.1.3 Non-stationary stretching

If compression facilitates quenching, stretching facilitates burning: it increases the area where T is
above the reaction threshold. We consider the no-gravity case, ρ = 0, with the initial velocity profile
u(x, 0) = −u∗(x), where u∗(x) is given by (2.5). We found that the critical size of the hot spot
decreases with stretching velocity U (see table below). Note that the stretching solution evolves
even in the absence of gravity.
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Figure 2: Stationary profiles of temperature in prescribed, compressing velocity. On the left panel,
the profiles are shown for compression U = 1.1, 1.2, 1.3, and 1.39; initial width of hot spot h ≫ 1.
On the right panel, the profiles are shown for different initial widths, h > 2.8 (solid) and h = 2.5,
h = 2.5, 2.5, 2.0, and 1.66 (dashed), for U = 1.3.
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Figure 3: Left: the profiles of temperature and velocity at time t = 2 for stretching U = 0.2 and
U = 0.3; the initial profile has the width h = 1.00 with k = 1.50. Right: the profiles of T and
velocity at time t = 1 for stretching U = 4.2 and U = 4.3; initial profile has width h = 0.80 with
k = 1.50. The initial profiles are shown with dashed lines.
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U hcr hcr
(k = 0.75) (k = 1.50)

0 1.50 1.00
1 1.48 0.94
2 1.48 0.87
4 1.47 0.80

Finally, we point out that the above statement, “compression facilitates quenching while rar-
efication (stretching) facilitates burning”, sounds counter-intuitive from the point of view of gas
thermodynamics. We remind that in our model T has a physical meaning of fraction of “hot par-
ticles” rather than temperature, and the reaction rate is the function of T only. Compression and
stretching affect the density of both hot and cold particles but preserve their fractions. For instance,
squeezing the region with T = 0.5 does not result in the increase of the temperature and the reaction
rate. A better model would include a reaction rate that depends on the density of the hot particles
rather than their fraction. However implementing such model involves introducing the concepts of
density and pressure and an equation of state.
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Figure 5: Profiles of velocity and concentration at times t = 8, 16, 24, 32 for g = 4 and θ = 0.5.
The dashed lines on the top panel show evolution uf (xf ) as suggested by Eq. (2.7) and velocity
given by Eq. (2.10) at the times matching simulation data. On the bottom panel, dashed line shows
φ0 = 0.195.
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2.2 Quenching by the gravity force

Here we study the growth of an initially small hot spot with constant non-zero gravity in an initially
quiescent fluid, u(x, 0) = 0. In the tested range, 1 ≤ ρ ≤ 8, the gravity has no influence on the
critical size of the initial hot spot. All solutions with h higher that the Kanel’s length grow, at least
initially. For hot spots with initial size above Kanel’s length, the effect of the initial size is noticeable
only at times t ∼ 1. For t ≫ 1, the difference in the initial size shows only as an offset in initial
time. The growth of hot spots at later times depends only on the gravity ρ. And, depending on ρ,
we observe three kinds of solutions.

When the gravity is small the left boundary of the hot spot moves to the left with a constant speed
(see Figure 4). The solution at large negative x resembles a traveling wave. The right boundary
is extremely sharp and moves to the right accelerating. We will from now on refer to the right
boundary of the hot region as “the shock” – because that is what it is when the viscous term uxx is
not present. As both boundaries move in opposite directions the hot spots at small gravities never
quench.

As the gravity is increased, the solution becomes more complicated (Figure 5). The right bound-
ary is still sharp, in the form of a shock, while the left boundary is stretched in the form of long tail
of partially burned fluid with temperature below the ignition threshold. This part of the solution
will be referred to as ”the ramp” or the ”wave fan”. Its analogue in the inviscid case is a rarefaction
wave.

In the region between the ramp and the shock (or, for lower gravities, between two opposite
moving fronts) the temperature mostly exceeds the ignition threshold. This is the only region where
the reaction occurs; we refer to it as the “combustion wave”, or simply “the wave”.

Even when both boundaries of the combustion wave move to the right, their dynamics are
different and depend on the gravity. For moderate gravities, the shock moves faster that the right
border of the ramp; such combustion waves do not quench. For high gravities, the ramp eventually
catches up with the shock and the hot spot quenches. This kind of quenching can occur at times
significantly exceeding the laminar front self-crossing time, and after the hot region reaches the sizes
significantly exceeding the Kanel’s length. The object of the following two subsections is to get some
intuition on how it happens as well as to obtain formally some orders of magnitude.

2.2.1 Ramp-wave-shock structure of the velocity profile

The solution shown in Figure 5 consists of three parts: a cold stationary fluid ahead of the shock,
the combustion wave with T above the ignition temperature, and the ramp where T < θ. Initially
the hot spot is located at x = 0. We denote by xf the location of the shock and by xb the location
of the transition point between the ramp and the combustion wave. (The subscript “f” refers to the
“front”, and the subscript “b” refers to the “back” of combustion wave.) Similarly, we denote the
local velocity at corresponding points as uf ≡ u(xf ) and ub ≡ u(xb), and the phase velocities as
vf ≡ ẋf and vb ≡ ẋb.

Below we construct an approximate solution at the ramp, the wave, and the shock. Combining
them together we find the speed of the shock, vf , and the growth rate of the ramp, vb. Comparing
vb and vf in the next subsection, we estimate criterion for quenching.

The ramp. In Figure 5, both T (x) and u(x) appear to be linear in the ramp. In comparison
with advection, dissipation effects are negligible on the scale of the ramp. Indeed, if L is the length
of the ramp and U is the typical velocity in the ramp, then Txx ∼ 1/L2 ≪ uTx ∼ U/L and
uxx ∼ U/L2 ≪ uux ∼ U2/L for large L and U . Neglecting dissipation and taking into account that
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Figure 6: Rescaled profiles of temperature and velocity from Figure 5 zoomed on the ramp region.
The dashed lines correspond to Eq. (2.6).

f(T ) = 0 in the ramp, we may find approximate solutions to (2.1) as

T (t, x) =
2x

ρt2
, u(t, x) =

2x

t
, 0 < x < xb. (2.6)

In the ramp region, equations (2.6) agree with numerical simulations: see Figure 6.
We return to Figure 5. The transition between the ramp and the wave occurs at the same value

of T = φ0 < θ which does not depend on time. Assuming that we know φ0 we can estimate the
location of the transition to the ramp xb, and corresponding velocities,

xb =
1

2
ρφ0t

2, ub = ρφ0t, vb = ρφ0t. (2.7)

In this case, ub = vb, but in general it does not have to be this way. This aspect will be investigated
further in Section 5.

The wave. Consider now the velocity in the wave part of the solution, xb < x < xf . In Figure 5,
the solutions at different times appear to have the same form u2(x), only shifted in time. We can
assume that the origin is located at xb. If we substitute velocity in the form u(t, x) = u2(x−xb)+ub,
where xb and ub are some functions of time, into (2.1), with T = 1 – we of course do not have T = 1
everywhere, but this will at least give us some order of magnitude, we obtain

[

(ub − x′b)u
′
2 + u′b

]

+ u2u
′
2 = u′′2 + ρ. (2.8)
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We see from here that u2 is time-independent only if ub is linear in time and x′b = ub. And luckily
xb and ub given by (2.7) satisfy this condition. The other possible combination is

xb = ct, ub = c, vb = c, (2.9)

which corresponds to a solution shifting with some constant velocity c.
When xb and ub are given by (2.7), the expression in square brackets in (2.8) is equal to ρφ0

and (2.8) can be solved. Neglecting the dissipation terms (the same dimensional argument as for
the ramp can be applied here), we obtain u2(x) =

√

2ρ(1 − φ0)x. The velocity profile in the wave
is thus, approximately,

u(t, x) = ρφ0t+

√

2ρ(1 − φ0)(x− 1

2
ρφ0t2),

xb < x < xf . (2.10)

Similarly, when xb and ub are given by (2.9), the velocity in the wave is

u(t, x) = c+
√

2ρ(x− ct), xb < x < xf . (2.11)

In the numerical simulations we have examples of both types of solutions. For lower gravities,
the left boundary of the combustion wave shifts to the left with constant speed; shown in Figure 4
numerical solution agrees with (2.11). For higher gravities, the left side of the combustion wave
shifts to the right accelerating; in Figure 5 the numerical solution is compared to (2.10). In both
cases, the numerical data is fitted with one unknown parameter — the shift velocity c in the first
case, and temperature at the transition to the ramp φ0 in the second case. Both parameters c and
φ0 are functions of gravity as seen in Figure 7.

Figure 7 also shows numerical evidence of the existence of a first critical parameter, ρcr1, such
that:

• for ρ < ρcr1, the solution is of the constant shift type, with c < 0. When gravity approaches
zero the left boundary of the combustion wave moves to the left with laminar speed, |c| = 1.
For very small gravities ρ≪ 1, the speed is c = ρ− 1.

• For gravities ρ > ρcr1 the solution is of the accelerated shift type, with φ0 > 0. At ρ = ρcr1
both parameters c and φ0 are equal to zero, and the solution in the wave is stationary, u(t, x) =√

2ρx, T (t, x) = 1.

The shock.
The front ahead of the combustion wave is driven by a Burgers shock, the mechanism for which

is much stronger than the front propagation due to reaction. Moreover, at high shock speeds, the
shock is extremely narrow; the reaction region is narrow as well, and the role of the reaction is
reduced. In the vicinity of the shock we can neglect the reaction term in the temperature equation;
then the solution is the classical Burgers shock of strength uf propagating with speed vf = uf/2.

On the scale of the problem, the shock can be considered as a discontinuity located at xf and
moving with the speed vf = ẋf . Then, according to (2.10), the location of the shock is given by the
following differential equation:

dxf
dt

=
1

2
u(xf , t) =

1

2

[

ρφ0t+

√

2ρ(1 − φ0)(xf −
1

2
ρφ0t2)

]

. (2.12)
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Figure 7: Parameters φ0 and c as functions of ρ. Dashed lines correspond to the fits of the form
φ0(ρ) = a + b/(c − ρ). Symbols in the insert diagram represent numerical solutions in different
regimes while the lines are schematic borders between regimes.
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2ρt for ρ = 1/4 and ρ = 1/2, velocity uf = 1
2ρt(1 − φ0) for ρ = 1 and ρ = 2, and

velocity given by solving (2.12) for ρ = 4 and ρ = 8.

We compare the expected uf to the results on numerical simulations in Figure 8. The agreement
between the analytical approximation for uf and the numerical simulations, while not perfect, shows
the correct qualitative behavior of the analytical prediction. Notice that the decrease of velocity
(slowing down of the shock) and abrupt termination of the curves (quenching) are observed only for
high gravities. Thus, the numerical simulations suggest the existence of a critical value ρcr2 such
that, for ρ < ρcr2, the shock solution exists for all time. We also may infer that

• For gravities ρ > ρcr2 the temperature drops below the ignition threshold θ everywhere in
space in a finite time. After this reaction ceases and the solution is quenched.

Notice that in construction of our approximate solution we do not rely on the functional form
of reaction rate f(φ). This is not surprising. The reaction rate is non-zero at only two narrow
regions in the vicinity of xf and xb. As we discussed earlier, the reaction is negligible in the shock
region because of the compression. The only region where the reaction is important is the transition
between the ramp and the wave, the point whose behavior is controlled by φ0 and c. Although the
reaction rate does not appear in the discussion, it is implicitly present in the model in the form of
empirical parameters φ0 and c.

2.2.2 Burning or quenching?

In order to identify the regimes of burning and quenching we compare the speed of the transition
point between the ramp and the wave, vb, and the shock speed, vf , in the limit t → ∞. When
ρ < ρcr1, the end of the ramp moves with the speed vb = c < 0, and the velocity at the shock uf can
be approximated as uf ≈ 1

2ρt. The shock speed, vf = 1
2uf , is positive. Two sides of the combustion

wave move in the opposite directions and quenching never happens.
When ρ > ρcr1, the ramp extends with the speed vb = ρtφ0. The distance between the end of

the ramp and the shock is then xf − xb := yf , and an equation for yf is, from (2.12):

ẏf =
1

2

(

√

2ρ(1 − φ0)yf − ρφ0t

)

, (2.13)
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where φ0 is the value of the temperature at the transition point. Note first that equation (2.13) has
no global in time solution if φ0 > 1/9. Here is the reason: if we write yf = ρt2z, then we have

2z + tż =
1

2

[

√

2(1 − φ0)z − φ0

]

.

Changing the time variable τ = ln t (for t ≥ 1) this becomes

dz

dτ
=

1

2
q(
√
z), (2.14)

q(s) =
√

2(1 − φ0)s− φ0 − 4s2.

An elementary study of q(s) on for s > 0 reveals that

• For φ0 < 1/9, there is zφ0
> 0 such that q > 0 on [0, zφ0

) and q < 0 on (zφ0
,+∞);

• for φ0 > 1/9 we have q(s) < 0 for s > 0.

In order for (2.14) to have a global solution we need z to be non-negative and q(s) not to be
uniformly negative for all s ≥ 0. This is true only as long as 2(1 − φ0) − 16φ0 > 0, or φ0 < 1/9.
Therefore, (2.14) has no global in time solutions and quenching occurs if φ0(ρ) > 1/9. The transition
temperature φ0 increases with the gravity ρ, and for large ρ exceeds the critical value 1/9. More
precisely, as we show in Theorem 4.1 below, φ0 approaches the ignition threshold θ as ρ tends to
infinity. Therefore, quenching happens for a sufficiently large ρ provided that θ > 1/9.

Dependence on the ignition threshold θ. To illustrate the above quenching/propagation
analysis, we show in Figure 7 the dependence of φ0(ρ) and c(ρ) for three values of the ignition
threshold θ in the reaction rate (2.2).

As θ decreases, a stronger force (larger ρ) is needed to reach the quenching value φ0 = 1/9. Since
φ0 < θ, reactions with θ < 1/9 cannot be quenched by any force. The dashed lines in Figure 7 are
functions of the form φ0(ρ) = a + b/(c − ρ) fitted to the data. For the case of θ = 1/10 the fit is
bounded by asymptote a = 0.0677 < 1/9, which suggests that the quenching is impossible for this
threshold value.

The value ρcr1 with φ0 = 0 corresponds to the transition to a stationary left front; further
reduction of ρ results in the opposite propagation of fronts, characterized by the speed of the left-
going front c(ρ) rather than by the value of φ0. The speed c < 0 decreases with ρ down to c = −1 at
ρ = 0, which corresponds to the speed of the undisturbed reaction-diffusion shock. It is interesting
that the stationary left shock, when both c(ρ) = 0 and φ0 = 0, is observed for a range of ρ, rather
than for a single value ρcr1.

To summarize, with the increase of forcing (see insert diagram in Figure 7) the system with
a particular reaction rate can exhibit the following regimes: (i) two shocks moving in opposite
directions, ub < 0 < uf , no quenching; (ii) stationary left shock and right-propagating right shock,
ub = 0 < uf , no quenching; (iii) both shocks move to right, first shock faster, 0 < ub < uf , no
quenching; (iv) both shocks move to right, second shock faster, 0 < uf < ub, quenching.

In the rest of the paper we construct the building blocks of the observed numerical solutions –
the ramp (the wave fan), the combustion wave and the shock – and show that they may be used to
build an asymptotic solution. Moreover, we show that for a sufficiently large gravity, a solution that
has reached the wave fan-combustion wave-shock structure will ultimately quench.
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3 Wave fans

In this section we search for non-reactive solutions of (1.5), that is, solutions of

Tt − Txx + uTx = 0 (3.1)

ut + uux = ρT.

If we additionally suppress the temperature diffusion, the sought-after solution would be an analogue
of a rarefaction wave. The correct self-similarity scaling is

T (t, x) =
1

ρt3/2
φ

(

x√
t

)

, u(t, x) =
1

t1/2
ψ

(

x√
t

)

. (3.2)

Setting the self-similar variable η = x/
√
t, we obtain the following system satisfied by φ(η) and ψ(η):

−φ′′ + (ψ − η

2
)φ′ − 3φ

2
= 0

(ψ − η

2
)ψ′ − ψ

2
= φ .

(3.3)

We require φ to be zero at (−∞) – remember that, without the heat diffusion, the rarefaction wave
is equal to zero for large negative η. In addition, as we will need to match it with a traveling wave
at large positive η, the function φ should have a bounded derivative on the whole domain. Also,
we want φ and ψ to be positive. We will see that positivity plus a strong decay at infinity implies
integrability plus a global Lipschitz bound.

The equation for the function ψ may be rewritten as
(

ψ2 − ηψ

2

)′
= φ,

which implies the following quadratic equation for ψ:

ψ2 − ηψ = 2

∫ η

−∞
φ(η′) dη′. (3.4)

Choosing the positive root in the above equation we get

ψ(η) =
η

2
+

1

2

√

η2 + 8

∫ η

−∞
φ(η′) dη′. (3.5)

Using this expression in the first equation in (3.3) leads to the following problem for the function
φ(η) which we are now going to investigate:

−φ′′ + 1

2

[

η2 + 8

∫ η

−∞
φ(ξ)dξ

] 1

2

φ′ − 3φ

2
= 0 (3.6)

φ > 0, φ ∈ L1(R−), φ′ ∈ L∞(R).

First, a definition: we say that φ has a Gaussian decay at −∞ with exponent λ if η 7→ eλη
2

φ(η) has
at most polynomial growth as η → −∞. We have the following result for (3.6).

Theorem 3.1 Equation (3.6) has at least one positive solution φ(η), having Gaussian decay at −∞
with any exponent λ ∈ (0, 1/4). For any such solution, there exists a number b ∈ R such that we
have in addition, as η → +∞:

φ(η) = 2η + b(1 + o(1))η1/3, φ′(η) = 2 +O(η−2/3). (3.7)
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We note here that the Gaussian decay has to be imposed. At this stage we do not know whether
there are waves that have no Gaussian decay. On the other hand, there is no need to impose any
bound on the growth of φ at +∞: the Gaussian decay plus positivity implies a global Lipschitz
bound, with a linear growth that will allow matching with another elementary solution.

Let us now explain why imposing a Gaussian decay is relevant. Equation (3.6), linearized around
the rest state φ0 = 0 at η = −∞ becomes

−φ′′ − η

2
φ′ − 3φ

2
= 0 (3.8)

This equation has two integrable solutions:

h(η) =

(

η2

4
− 1

2

)

e−η
2/4 =

d2

dη2

(

e−η
2/4
)

, k(η) = −1

5

d2

dη2

(

e−η
2/4

∫ η

0
eζ

2/4dζ

)

∼ −η−3. (3.9)

A solution φ of (3.6), having no Gaussian decay, would satisfy

φ(η) ∼ Ak(η) as η → −∞. (3.10)

Using (3.4) with the fact that ψ ≥ 0 in mind, we see that then

ψ(η) ∼ η ±
√

η2 +A/2η2

2
∼ A

8|η|3 as η → −∞.

But then, let us come back to the functions T (t, x) and u(t, x) defined by (3.2) – we have, by (3.10):

T (t, x) ∼ 1

ρ|x|3 , u(t, x) ∼ t

ρ|x|3 . (3.11)

However, this would mean that for large t, the flow grows in any compact region in x, which
contradicts the numerics in Section 2. On the other hand, solutions which have a Gaussian decay of
φ as η → −∞ and grow linearly in η as η → +∞ do not have this problem. It is interesting to note
that the Gaussian decay is impossible without the presence of diffusion in the temperature equation.

The proof of Theorem 3.1 is via a shooting argument: we first construct a solution φδ to (3.3)
on a half-line of the form (−∞,−η1) for some large η1, having a given value δ > 0 at the end-point:
φδ(−η1) = δ. The real number δ is then adjusted to get φδ(η) = O(η) as η → +∞.
Step 1. Solution on a left half line. Take any η1 ≥

√
6. We claim that, given δ > 0, the

Dirichlet problem

−φ′′δ +
1

2

[

η2 + 8

∫ η

−∞
φδ(ξ) dξ

] 1

2

φ′δ −
3φδ
2

= 0 on (−∞,−η1), φδ(−η1) = δ (3.12)

with an additional constraint that φδ has a Gaussian decay as η → −∞ has a positive solution.
Indeed, let h(η) be defined by (3.9) and define the operator

L0 = − d2

dη2
− η

2

d

dη
− 3

2
.

We have L0h = 0. Moreover, on the half-line R−, the function h is positive and increasing on
(−∞,−

√
6), decreasing on (−

√
6, 0) and negative on (−

√
2, 0). Now, take r > 0 and η1 ≥

√
6. Let

φr be the solution of the boundary value problem

−φ′′r + 1
2

[

η2 + 8
∫ η
−r |φr(ξ)| dξ

] 1

2

φ′r − 3φr

2 = 0 on (−r,−η1)

φr(−r) = δh(−r)
h(−η1) , φr(−η1) = δ

(3.13)
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Let us show that (3.13) has a nonnegative solution that satisfies

0 ≤ φr(η) ≤ h̄(η) =
δh(η)

h(−η1)
. (3.14)

Given a function q(η) ∈ C([−r,−η1]) define the nonlinear mapping φ = Mq, where φ is the
unique solution of the linear boundary value problem

−φ′′ + 1

2

[

η2 + 8

∫ η

−r
|q(ξ)| dξ

] 1

2

φ′ − 3φ

2
= 0 on (−r,−η1), (3.15)

φ(−r) =
δh(−r)
h(−η1)

, φ(−η1) = δ.

In order to see that (3.15) indeed has a unique solution we write φ = h̄ + w and observe that
existence of a strictly positive solution of L0h = 0 implies that the operator L0, defined on the space
Wr = {w ∈ C((−r,−η1)) : w(−r) = w(−η1) = 0} with the standard domain D(L0) is invertible
with a compact inverse. Upon defining ζ(η) = eη

2/8φ(η) and

a(η, q) =
1

2

[

η2 + 8

∫ η

−a
|q(ξ)| dξ

] 1

2

we obtain :

−ζ ′′ +
(

a(η, q) − η

2

)

ζ ′ +

(

η2

16
+

|η|
4
a(η, q) − 7

4

)

ζ = 0. (3.16)

Note that, for |η| ≥ 6 we have
η2

16
+

|η|
4
a(η, q) − 7

4
≥ η2

8
. (3.17)

Then the maximum principle implies that ζ can not attain a negative minimum inside the interval
(−r,−η1) and hence ζ ≥ 0, which, in turn, implies that φ ≥ 0.

Let us now show that in addition φ satisfies φ ≤ h̄(η). The function h̄(η) is monotonically
increasing and is thus a super-solution to (3.15) in the sense that:

−h̄′′ + 1

2

[

η2 + 8

∫ η

−r
|q(ξ)| dξ

] 1

2

h̄′ − 3h̄

2
≥ 0 on (−r,−η1), h̄(−r) =

δh(−r)
h(−η1)

, h̄(−η1) = δ. (3.18)

Given any M ≥ 1 the difference wM = Mh̄− φ satisfies

−w′′
M +

1

2

[

η2 + 8

∫ η

−r
|q(ξ)| dξ

] 1

2

w′
M − 3wM

2
≥ 0 on (−r,−η1), (3.19)

wM (−r) ≥ 0, wM (−η1) ≥ 0.

Another consequence of the maximum principle is that wM cannot attain an interior minimum in
(−r,−η1) at a point where wM = 0. This, combined with the fact that wM > 0 for a sufficiently
large M , and decreasing M until we do not have wM > 0, yields that

M̄ := inf{M > 0 : wM (η) ≥ 0 for all η ∈ (−r,−η1)} = 1.

Therefore, we have 0 ≤ φ(η) ≤ h̄(η) for all functions q(x) ∈ C([−r,−η1]). As a consequence, the
nonlinear operator M sends the closed set E = {φ ∈ C([−r,−η1]) : 0 ≤ φ(η) ≤ h̄(η)} to itself.
The elliptic regularity theory implies that the mapping M is compact. The Schauder fixed point

18



theorem implies that it has a fixed point in E which is a solution of (3.13). In addition, the limit
has to satisfy (3.14).

An unpleasant fact in the construction of φδ is that – as is usual with applications of the Schauder
theorem – it yields no information on the uniqueness of the solution φδ, or on the continuity of φδ
with respect to δ. This inconvenient will be fixed later in the course of the proof of the proposition,
by adjusting the shooting point η1.
Step 2. Some estimates for φδ. Still assume that η1 ≥ 6 is fixed. Let us consider the functions
h(η) and k(η) defined by (3.9) and introduce the following quantities:

u(η) =

∫ η

−∞
φδ(ξ) dξ, a(η) =

1

2

√

η2 + 8u(η), (3.20)

The starting point of this step is the following

Lemma 3.2 For every η1 ≥ 6, any solution φ of (3.12) with a Gaussian decay satisfies

φ(η) ≤ δ
h(η)

h(−η1)
. (3.21)

Proof. Upon defining ζ(η) = eη
2/8φ(η), as in Step 1, we obtain – recall that a(η) is defined by

(3.20):

L̃ζ := −ζ ′′ +
(

a(η) − η

2

)

ζ ′ +

(

η2

16
+

|η|
4
a(η) − 7

4

)

ζ = 0. (3.22)

Note again that, for |η| ≥ 6, we have

η2

16
+

|η|
4
a(η) − 7

4
≥ η2

8
. (3.23)

For every ε > 0, the function

ζε(η) =

(

δ
h(η)

h(−η1)
+ εk(η)

)

eη
2/8

satisfies L̃ζε ≥ 0. Moreover, we have, because of the Gaussian decay of φ: ζε(η) − ζ(η) > 0 for
a sufficiently large negative η. Therefore, if it gets negative inside (−∞,−η1) it has to reach a
minimum – a situation precluded by (3.23). Hence, we have ζε(η)− ζ(η) > 0 for all η < −η1 and all
ε > 0 – thus, (3.21) holds. �

Let us now examine what happens to φδ as δ becomes large. It follows from the upper bound in
(3.14) that

∫ η

−∞
φδ ≤

√
6δ/2 < 2δ

and φ′δ(−η1) > 0. Therefore, as φδ > 0 and

φ′δ(η) = φ′(−η1) exp (A(−η1) −A(η)) +
3

2

∫ −η1

η
exp (A(ξ) −A(η))φδ(ξ)dξ ≥ 0,

where

A′(η) = −1

2

[

η2 + 8

∫ η

−∞
φ(ξ) dξ

] 1

2

,
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the function φδ is increasing. Hence, we have

−φ′′δ +
1

2

(

4
√
δ − η

)

φ′δ −
3

2
φδ ≥ −φ′′δ +

1

2

√

η2 + 16δφ′δ −
3

2
φδ ≥ 0.

Then, just as in Lemma 3.2, we may get a lower bound φδ ≥ φ
δ
, where

−φ′′
δ

+
1

2
(4
√
δ − η)φ′

δ
−

3φ
δ

2
= 0

φ
δ
(−η1) = δ.

(3.24)

The function φ
δ

is given explicitly by

φ
δ
(η) =

δh(η − 4
√
δ)

h(−η1 − 4
√
δ)
.

Hence, for η ∈ [−η1 − 1,−η1] we have for a sufficiently large δ > 0:

∫ −η

−∞
φ
δ
(ξ)dξ ∼ Cδ(η + 4

√
δ)

(η1 + 4
√
δ)2

∼ C
√
δ, as δ → +∞,

where C > 0 is independent of δ. Using this information, we integrate (3.12) on (−∞,−η1], and
obtain

φ′δ(−η1) =
1

2

∫ −η1

−∞

(

η2 + 8

∫ η

−∞
φδ(ξ)dξ

) 1

2

φ′δ(η) dη −
3

2

∫ −η1

−∞
φδ(η)dη

≥ C1δ
5/4 − C2δ ∼ C1δ

5/4 as δ → +∞.

The following estimates are therefore true for large δ:

C1

√
δ ≤

∫ −η1

−∞
φδ ≤ C2δ, φδ(−η1) = δ, φ′δ(−η1) ≥ C3δ

5/4. (3.25)

Step 3. Extension of φδ and its behavior for η > −η1. Estimates (3.25) and equation (3.20)
enable us to extend φδ past −η1, on a maximal interval [−η1, η

δ
∞) – with, possibly, ηδ∞ = +∞. Let

us define the sets

Xη1
− = {δ > 0 : ∃η2 > −η1 such that φδ(η2) = 0} (3.26)

Xη1
+ = {δ > 0 : φδ > 0 and lim sup

η→ηδ
∞

φ′δ(η) = +∞}.

It is clear that φδ also depends on η1, but this dependence is not going to be indicated by a sub or
a subscript, to keep the notations readable.

We begin the analysis for δ /∈ Xη1
− with the following lemma.

Lemma 3.3 Assume that δ /∈ Xη1
− , then φ′δ > 0.

Proof. Let us recall that if φδ ≥ 0 (which is the case for δ /∈ Xη1
− ) then the inequality

φ′′δ − a(η)φ′δ ≤ 0,

holds, with the function a(η) defined in equation (3.20) above. It follows that

(

exp

(

−
∫

a(η) dη

)

φ′δ

)′
≤ 0. (3.27)
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Therefore, for any η2 and η3 larger than η1, with η3 > η2, we have

exp

(

−
∫ η3

η2

a(ξ)dξ

)

φ′δ(η3) ≤ φ′δ(η2).

It follows that if there exists a point η2 where φ′δ(η2) < 0 then φ′δ(η) ≤ φ′δ(η2) < 0 for all η ≥ η2.
Hence φδ(η) has to vanish at some point. This contradicts the assumption that δ /∈ Xη1

− and finishes
the proof of Lemma 3.3. �

The main result of this step is the characterization of Xη1
+ .

Lemma 3.4 Let δ ∈ Xη1
+ , then ηδ∞ < +∞.

Proof. Consider δ ∈ Xη1
+ ; it is convenient to work with the logarithmic derivative of φδ:

ξδ =
φ′δ
φδ
. (3.28)

Let us drop the subscript δ for the moment. The equation for ξ is

ξ′ = a(η)ξ − ξ2 − 3

2
. (3.29)

The term (−ξ2) would, in principle, prevent a blow-up; it is the role of the – seemingly linear – term
a(η)ξ to force it. Assume, therefore, that η∞ = +∞, and let us try to reach a contradiction.

Case 1. Assume that there exists a sequence (ηn)n going to +∞ such that lim
n→+∞

ξ(ηn) = +∞.

We claim that then ξ′(η) > 0 for all sufficiently large η > 0. Indeed, there exists η0 > 0 such that
ξ′(η0) > 0. If h := ξ′ we have, by Lemma 3.3

h′ + (−a(η) + 2ξ)h =
1

2

η + 4φ

a(η)
ξ > 0, h(η0) > 0. (3.30)

This implies h(η) > 0 for η ≥ η0.
To prove that we have blow-up, we use an elementary numerical analysis procedure: pick η0 > 0

so that ξ′ > 0 on (η0,+∞) and φδ(η0) ≥ 10. The value of ξ(η0) may be taken arbitrarily large,

because ξ(ηn) → +∞. Let λn = 1/(n+ 1)2 and set ζn = η0 +
∑

k≤n
λk. First, we have

ξ(ζn+1) − ξ(ζn) =

∫ ζn+1

ζn

[

a(ζ)ξ(ζ) − ξ2(ζ)
]

dζ − 3λn
2
.

The function a(ζ) for ζ ∈ (ζn, ζn+1) may be bounded as

a(ζ) =
1

2

(

ζ2 + 8

∫ ζ

−∞
φδ(ξ)dξ

)1/2

≥ 1

2

(

8

∫ ζ

ζn

φδ(ξ)dξ

)1/2

≥
(

2

∫ ζ

ζn

φδ(η0) exp

(

∫ ζ′

η0

ξ(x)dx

)

dζ ′
)1/2

.
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Therefore, using positivity and monotonicity of ψ we have

ξ(ζn+1) − ξ(ζn) ≥
∫ ζn+1

ζn





√

2φδ(η0)

[

∫ ζ

ζn

exp

(

∫ ζ′

η0

ξ(x)dx

)

dζ ′
]1/2

ξ(ζ) − ξ2(ζ)



 dζ − 3λn
2

≥
∫ ζn+1

ζn

√

2φδ(η0)

[

∫ ζ

ζn

exp

(

∫ ζn

ζn−1

ξ(ζn−1)dx

)

dζ ′
]1/2

ξ(ζn)dζ − λnξ
2(ζn+1) −

3λn
2

=
√

2φδ(η0)ξ(ζn)e
(ζn−ζn−1)ξ(ζn−1)/2

∫ ζn+1

ζn

√

ζ − ζndζ − λnξ
2(ζn+1) −

3λn
2

≥ λ3/2
n ξ(ζn)e

λnψ(ζn−1)/8 − λnξ(ζn+1)
2 − 3λn

2
.

As λn ≤ 1/2 and we may take ξ(η0) ≥ 10 (and thus ξ(ζn) ≥ 10 for all n) it follows that

ξ(ζn+1)
2 ≥ Cλ3/2

n ξ(ζn)e
λnξ(ζn−1)/8,

or

ξ(ζn+1) ≥
eξ(ζn−1)/(16(n+1)2)

(n+ 1)3/2
.

Now, choose r > 0 so that er(n−1)4/[16(n+1)2]/(n+ 1)3/2 ≥ r(n+ 1)4 for all n ∈ N. An easy induction
shows that, if ξ(η0) is large enough we have ξ(ζn) ≥ rn4. This contradicts the assertion η∞ = +∞.

Case 2. Assume that ξ is bounded. Then (3.29) may be integrated from +∞ to yield

ξ(η) =

∫ +∞

η
(
3

2
+ ψ2)e−

R ζ
η
a(ζ′) dζ′ dζ,

which, as ξ ≤ C, implies ξ ≤ Ca(η)−1, where C does not depend on η. This implies in turn

0 ≤ φ′δ
φδ

≤ C
√
∫ η

0
φδ(ζ) dζ

, (3.31)

which, after integration, yields

0 ≤ φδ(η) ≤ C

(

1 +

√

∫ η

0
φδ(ζ) dζ

)

. (3.32)

Integrating (3.32) we obtain

∫ η

0
φδ(ζ) dζ ≤ C(1 + η2), which by (3.32) again, translates into the

bound φδ(η) ≤ C(1 + η). But now, we may start again from the inequality ξ ≤ C/a(η), use the
definition of ξ and the just obtained information: it follows that

φ′δ(η) ≤
Cφ

a(η)
≤ C(1 + η)

η
≤ C.

This contradicts the fact that δ ∈ Xη1
+ . We conclude that ηδ∞ < +∞ for all δ ∈ Xη1

+ . �

One important consequence of Lemma 3.4 is the following

Corollary 3.5 There exists δ0 > 0 such [δ0,+∞) ⊂ Xη1
+ .
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Proof. Let us recall that the logarithmic derivative ξ = φ′δ/φδ satisfies equation (3.29). Moreover,
if φδ(η

′) ≥ 0 for all η′ < η then a(η) ≥ a0 = a(−η1). It follows that under this assumption and if
ξ(η) > 0 we have

ξ′ ≥ a0ξ − ξ2 − 3

2
. (3.33)

In addition, for large enough δ > 0 we have, by estimate (3.25) of Step 2:

ξ(−η1) =
φ′δ(−η1)

φδ(−η1)
≥ Cδ1/4.

As the smallest root q0 of the right side of (3.33) is smaller than ξ(−η1) and φδ may not become
negative before so does the function ξ, it follows from the above that ξ(η) > q0 for all η > −η1. As
a consequence, we have φ′δ > q0φδ and thus φδ blows up at infinity (or at a finite distance) together
with its derivative and so δ ∈ Xη1

+ . �

Step 4. Choice of the shooting point. Take, for definiteness, η1 = 7. Corollary 3.5 implies the
existence of δ0 > 0 such that: if φ is a solution of (3.6) with Gaussian decay at −∞, then φ(−7) ≤ δ0.
By Lemma 3.2 we have φ(η) ≤ δ0h(η)/h(−7), a quantity that decays to 0 as η → −∞. Pick any
λ0 ∈ (1/8, 1/4), that will remain fixed until the end of the proof of Theorem 3.1. By elementary
elliptic regularity we may find a constant η0 > 7 such that: if φ is a solution of (3.6) with Gaussian
decay at −∞, then

∀η ≤ −η0, 0 ≤ φ(η), φ′(η) ≤ e−λ0η2

. (3.34)

For η1 > η0, let us go back to problem (3.12). We may now prove the uniqueness and continuity
with respect to δ that were lacking.

Lemma 3.6 If η1 > 0 is large enough, and δ ∈ [0, e−λ0η2
1 ], the problem (3.12) has exactly one

solution, that we still call φδ.

Proof. Let φ1 and φ2 two such solutions; define ζ(η) = eη
2/8(φ1(η) − φ2(η)), and

ai(η) =
1

2

√

η2 + 8

∫ η

−∞
φi. (3.35)

The equation for ζ is

−ζ ′′ +
(

a1(η) −
η

2

)

ζ ′ +

(

η2

16
+

|η|
4
a(η) − 7

4

)

ζ = eη
2/8(a2 − a1)(η)φ

′
2(η). (3.36)

Note again that, for η ≥ 6, we have

η2

16
+

|η|
4
a1(η) −

7

4
≥ η2

8
. (3.37)

By the definition (3.35) of the ai’s, we have

4eη
2/8 |a2(η) − a1(η)| = eη

2/8

∣

∣

∣

∣

∫ η

−∞
(φ2 − φ1)dx

∣

∣

∣

∣

a1(η) + a2(η)
≤
eη

2/8

∫ η

−∞
e−x

2/8 dx

a1(η) + a2(η)
‖ζ‖∞ ≤ 4

‖ζ‖∞
η3
1

.

Combining the above inequality with estimate (3.34) and inequality (3.37), we obtain from (3.36)

‖ζ‖∞ ≤ 8e−λ0η2
1

η5
1

‖ζ‖∞.
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This implies ζ ≡ 0 as soon as η1 is large enough. �

Step 5. Existence of the wave fan. We have to prove two things: first, the existence of a solution
to (3.12) with Gaussian decay; second, the asymptotic behavior of the constructed solution. Let us
first worry about the existence: for this we fix any η1 large enough such that

• Lemma 3.6 holds, and

• e−λ0η2
1 ∈ Xη1

+ .

The second condition above is realizable because if δ0 ∈ Xη1
+ then, as φδ satisfies the Gaussian

decay bound φδ(η) ≤ δh̄(η)/h̄(−η1), then when we increase η1 the ”critical” δ0 from Corollary 3.5
is approximately multiplied by the factor e−λ0η2

1 .
We now redefine the sets Xη1

± by restricting the values of δ to the interval [0, e−λ0η2
1 ]. For

small δ > 0, the function φδ is close on compact intervals to δh(η)/h(−η1). Hence, it vanishes at
some point η < 0 close to (−

√
2) – the negative point where h(η) vanishes. This says that the

set Xη1
− is nonempty. Moreover, the functions φδ may not attain a local minimum equal to zero.

Therefore, the continuity of δ 7→ φ′δ(η) on compact sets implies that Xη1
− is open. On the other

hand, we know that Xη1
+ is nonempty. By the arguments in the proof of Case 1 in Lemma 3.4

and the continuity of δ 7→ φδ(η) on compact intervals, it is also open. Consequently, there exists
δ ∈ [0, e−λ0η2

1 ]\(Xη1
+ ∪Xη1

+ ). This δ generates our desired solution φ(η) of (3.12).
Step 6: Behavior of φ at +∞: the first term in expansion (3.7). If u(η) and a(η) are defined
by the expressions (3.20) above, then the equation for u is

−u′′′ + a(η)u′′ − 3

2
u′ = 0,

and there exists C > 0 so that
u(η) ≤ Cη2 for η > 0 (3.38)

as φ′ ∈ L∞(R). This implies by integration from η to +∞, with η > 0:

u′′(η) =
3

2

∫ +∞

η
exp

(

−
∫ ξ

η
a(ζ) dζ

)

u′(ξ) dξ (3.39)

=
3u′(η)
2a(η)

+
3

2

∫ +∞

η
exp

(

−
∫ ξ

η
a(ζ) dζ

)(

u′(ξ)
a(ξ)

)′
dξ :=

3u′(η)
2a(η)

− f(η),

the last line being obtained by integration by parts. The uniform bound for φ′ = u′′ and positivity
of u imply that C1η ≤ a(η) ≤ C2η, and f(η) satisfies for η > 0:

|f(η)| ≤ C

∫ +∞

η
exp

{

−C
∫ ξ

η
ζdζ

}

dξ

ξ
=

∫ +∞

η
exp

{

−C(ξ2 − η2)
} dξ

ξ

= CeCη
2

∫ +∞

η
exp(−Cξ2)ξdξ

η2
≤ C

η2
,

so that f(η) = O(η−2) as η → +∞.
Let us show that

u(η) = η2 + o(η2), (3.40)

where C is a constant depending on u. Note that the function φ(η) is increasing since it satisfies

−φ′′ + a(η)φ′ =
3φ

2
,
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and integrating this equation from η to +∞ we obtain

φ′(η) =
3

2

∫ +∞

η
exp

(

−
∫ ξ

η
a(ζ) dζ

)

φ(ξ) dξ ≥ 0.

It follows that
lim

η→+∞
u(η) = +∞. (3.41)

In order to improve this estimate to (3.40) we start with the inequality

u′′(η) ≥ 3u′(η)
√

8u(η)
− C

η2
,

which follows from (3.39) and holds for η > 0, and integrate it from 1 to η:

u′(η) ≥ 3
√

u(η)√
2

− C.

Using (3.41) we conclude that u(η) ≥ Cη2 with C > 0 and in particular

l = lim inf
η→+∞

u(η)

η2
> 0.

Then for any δ > 0 we can find η(δ) so that u(η) ≥ (l − δ)η2 for all η > η(δ). Going back to (3.39)
we observe that for η > η(δ) we have

u′′(η) ≥ 3u′(η)
√

η2 + 8u
− f(η) ≥ 3u′(η)

√

η2

u
u+ 8u

− C

η2
≥ 3u′(η)
√

u

l − δ
+ 8u

− C

η2
.

Integrating this inequality between η(δ) and η we obtain for η sufficiently large:

u′(η) ≥ 6
√

u(η)
√

8 + 1
l−δ

− C(δ) ≥ (6 − δ)
√

u(η)
√

8 + 1
l−δ

. (3.42)

We used (3.41) in the last step above. Therefore, we have

u(η) ≥





(6 − δ)

2
√

8 + 1
l−δ

η − C(δ)





2

,

as η → +∞. It follows that for any δ > 0 we have

l ≥ (6 − δ)2

4
(

8 + 1
l−δ

) .

Passing to the limit δ → 0 we see that

l ≥ 9
(

8 + 1
l

) ,

and hence l ≥ 1.
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On the other hand, it follows from (3.38) that

L = lim sup
η→+∞

u(η)

η2
< +∞.

Then (3.39) implies for any δ > 0 and η > η(δ):

u′′(η) =
3u′(η)

√

η2 + 8u
− f(η) ≤ 3u′(η)

√

u

L+ δ
+ 8u

+
C

η2
.

Integrating this inequality between 1 and η we obtain

u′(η) ≤ 6
√

u(η)
√

1

L+ δ
+ 8

+ C(δ) ≤ (6 + δ)
√

u(η)
√

1

L+ δ
+ 8

(3.43)

for η > η(δ). Therefore, we have

u(η) ≤









(6 + δ)η

2

√

1

L+ δ
+ 8

+ C(δ)









2

.

In the limit η → +∞ we obtain

L ≤ (6 + δ)2

4

(

1

L+ δ
+ 8

) ,

which in the limit δ → 0 becomes L ≤ 1. As 1 ≥ L ≥ l ≥ 1, we conclude that L = l and

lim
η→+∞

u(η)

η2
= 1,

so that (3.40) indeed holds. Moreover, as φ = u′, it follows now from (3.42) and (3.43) that

lim
η→+∞

φ(η)

η
= 2.

Step 7: The second term in expansion (3.7). Going back to u(η) defined by the expression
(3.20), and f(η) defined by (3.39), we set

u(η) = η2 + v(η). (3.44)

The equation for v is

v′′ − v′

η
+

8v

9η2
= −4vv′

9η3
− f(η) +

v′ + 2η

η
g(
v

η2
), (3.45)

where g(η) is a smooth function such that g(0) = g′(0) = 0. An asymptotic equation for (3.44) is

v′′ − v′

η
+

8v

9η2
= 0, (3.46)

which has two solutions: η4/3 and η2/3. We expect the function v to be asymptotic to η4/3 and
v′ = φ− 2η to be asymptotic to 4η1/3/3, which would essentially finish the proof: the behavior of φ′

would be obtained by looking at (3.44).
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Lemma 3.7 If v = u(η)− η2 is our sought for solution of (3.45), consider the differential equation
with unknown w:

w′′ −
(

1 + g

(

v

η2

))

w′

η
+

8

9η2

(

1 +
v′

2η

)

w = 0. (3.47)

For every small enough ε > 0, there exists ηε ≥ η0 and a solution of (3.47), denoted by wε(η), such
that the following inequalities hold on [ηε,+∞):

η4/3−ε ≤ |wε(η)| ≤ η4/3+ε, |w′
ε(η)| ≤ η1/3+ε,

∣

∣

∣

∣

w′
εη)

wε(η)
− 4

3η

∣

∣

∣

∣

≤ ε

η
. (3.48)

Proof. We drop for simplicity the subscripts and superscripts, and use once again the (slightly
adjusted) logarithmic derivative of w: q(η) = w′(η)/w(η) − 4/(3η). We have, using (3.47):

q′ +
5 − 3g(v/η2)

3η
q = −q2 +

4

3η2
g

(

v

η2

)

− 4

9η2

v′

η
:= −q2 +

h0(η)

η2
. (3.49)

If h were identically equal to zero we could take q = 0 (recall that we are simply looking for one
solution w of (3.47)) – this is, of course, not the case. Let us pick ε > 0. From Step 6 we know that
there exists ηε > 0 such that

∀η ≥ ηε, 3

∣

∣

∣

∣

g

(

v

η2

)∣

∣

∣

∣

+ |h0(η)| ≤ ε2. (3.50)

Let us look for a solution of (3.47) which has q(ηε) = 0, then there exists a constant C > 0
independent of ε such that

|q(η)| ≤ C

∫ η

ηε

(

η′

η

)5/3−Cε2(

q2 +
ε2

η′2

)

dη′. (3.51)

We conclude by a classical stability argument: let η1 be the first point where the inequality q(η) ≤√
εη−1 is violated; if η1 < +∞ equation (3.49) implies – for ε small enough: q(η1) ≤ Cε/η1, a

contradiction. Therefore η1 = +∞, proving the desired inequality for w. The estimate for w′ is
obtained in a similar way. �

A similar argument shows that the other fundamental solution of (3.47) satisfies the estimate
|w̃ε(η)| ≤ Cεη

2/3+ε – we leave the details for the reader.
End of the proof of Theorem 3.1. We apply Lemma 3.7 twice, by suitably varying the right
hand side and the coefficients in the equation (3.45). Let us first observe that, if h ∈ C(R+) and a
small ε > 0, and ηε > 0 are given so that Lemma 3.7 holds, the problem

w′′ − (1 + g(
v

η2
))
w′

η
+

8

9η2
(1 +

v′

2η
)w = h(η), w(ηε) and w′(ηε) given, (3.52)

has a unique solution of the form

w(η) = wfree(η) + wε(η)

∫ η

ηε

∫ η′

ηε

exp

(∫ η′′

η′

(

2
w′
ε(ζ)

wε(ζ)
− 1 + g(v/ζ2)

ζ

)

dζ

)

h(η′′)
wε(η′′)

dη′′dη′, (3.53)

where wfree(η) is the solution of (3.47) with the data (w(ηε), w
′(ηε), and wε is the particular solution

found in Lemma 3.7. However, if h = f we have w = v and h(η) = O(η−2). From Lemma 3.7 we
have

2
w′
ε(ζ)

wε(ζ)
− 1 + g(v/ζ2)

ζ
≥
(

5

3
− Cε

)

1

ζ
,
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with a constant C > 0 independent of ε. Lemma 3.7 and the remark following its proof imply that
we have |wfree(η)| ≤ Cεη

4/3+ε. Now, it follows from (3.53) with h = f that

|v(η)| ≤ Cεη
4/3+ε + η4/3+ε

∫ η

ηε

∫ η′

ηε

(

η′′

η′

)5/3−Cε |f(η′′)|
η′′4/3−ε

dη′′dη′ ≤ Cεη
4/3+Cε. (3.54)

In a similar way we may obtain
|v′(η)| ≤ Cεη

1/3+Cε. (3.55)

We set now

h1(η) = −4vv′

9η3
− f(η) +

v′ + 2η

η
g

(

v

η2

)

.

We have just proved the existence of C > 0 such that, for every small ε > 0 there are two large
constants ηε and Cε for which we have

∀η ≥ ηε, |h1(η)| ≤
Cε

η4/3−Cε . (3.56)

Fix now ε > 0 once and for all such that

5

3
− Cε > 1, i.e. ε <

2

3C
. (3.57)

We have:

v(η) = vfree(η) + η4/3

∫ η

ηε

∫ η′

ηε

(

η′′

η′

)5/3h1(η
′′)

η′′4/3
dη′′dη′ (3.58)

v′(η) = v′free(η) +
4

3
η1/3

∫ η

ηε

∫ η′

ηε

(

η′′

η′

)5/3h1(η
′′)

η′′4/3
dη′′dη′ + η4/3

∫ η

ηε

(

η′

η

)5/3h1(η
′)

η′4/3
dη′,

where vfree(η) is the solution of (3.46), with (vfree(ηε), v
′
free(ηε)) = (v(ηε), v

′(ηε)); hence it is a linear
combination of η4/3 and η2/3. As for the integral term, we observe that

(

η′′

η′

)5/3h1(η
′′)

η′′4/3
= O(η′−5/3

η′′Cε−1
).

Hence, because of (3.57), the integral
∫ +∞

ηε

∫ η′

ηε

(

η′′

η′

)5/3h(η′′)

η′′4/3
dη′′dη′

is finite; call it I. We have therefore v(η) − vfree(η) = (I + o(1))η4/3, and a similar identity may be
proved for v′(η) − v′free(η) by examining the equation for v′(η) = φ(η) − 2η in (3.58). This ends the
proof of Theorem 3.1. �

4 Combustion waves

In this section we seek traveling wave profiles that will play the role of the inner waves observed in
Section 2. Recalling that θ > 0 is the ignition temperature, let us pick φ0 ∈ [0, θ) and investigate
the following differential system, with unknowns (c, φ, ψ):

−φ′′ + (c+ ψ)φ′ = f(φ)
(c+ ψ)ψ′ = ρ(φ− φ0)

φ(−∞) = φ0, φ(+∞) = 1
ψ(−∞) = 0, ψ(+∞) = +∞

(4.1)
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In Theorem 4.1 below we’ll present the two cases (c > 0, φ0 = 0) and (c = 0, φ0 > 0). The
first case, described in part (i) of the theorem, represents the left-going traveling waves that were
observed numerically in Section 2 when the gravity ρ ∈ (0, ρcr1) is sufficiently small. The second case
corresponds to the numerically observed profiles that connect the wave fan on the left to a shock
on the right, for ρ ∈ (ρcr1, ρcr2). The critical threshold ρcr2 appears in the numerical simulations
because the initial data vanishes far on the right: this leads to a shock, and opens the way to
quenching for large ρ. If the initial data for temperature have the value T → 1 as x→ +∞ at t = 0,
the solutions would have the form of a wave fan followed by a traveling wave for all ρ > ρcr1. This
is reflected in part (ii) of the following theorem.

Theorem 4.1 (i). Assume that φ0 = 0. Then there exists ρmax > 0 such that system (4.1) has no
solution (c, φ, ψ) with c ≥ 0 for all ρ ≥ ρmax. If ρ is small enough, there exists c > 0 such that the
system (4.1) has a solution (φ, ψ).
(ii). Assume that c = 0. If ρ > 0 is large enough, there exists φ0 ∈ (0, θ) such that system (4.1) has
a solution. If φ0(ρ) is the smallest of all φ0 ∈ (0, θ) such that system (4.1) has a solution, then we
have

lim
ρ→+∞

φ0(ρ) = θ. (4.2)

The second statement in part (ii) is essential for the quenching phenomenon – if the wave fan does
catch up with the shock, the temperature drops below the value φ0 everywhere and it is important
that this value be close to θ.

Note that if the smooth reaction term is replaced by the Dirac mass δφ=1, the proof of existence
of a traveling wave is much simpler. Recall that this regime (see, for instance, [3]) is the limit of a
sequence of reaction terms with high activation energies. Then, we have an explicit expression for a
travelling wave

φ(x) =

{

φ0ρ
−1/2φλ(x) on R−

1 on R+
,

where λ = (16/[(θ − φ0)
√
ρ])1/3, the family φλ(x) is defined by (4.4) below, while φ0 is adjusted to

satisfy the derivative jump [φ′](0) = 1. We will not pursue this direction. The price to pay for this
very simple existence proof is indeed a more difficult study of the quenching – where we crucially
use the fact that the reaction term is globally Lipschitz.

Before we start proving anything about (4.1), let us note that any of its solutions satisfies ψ′ > 0,
hence, it may be reduced to

−φ′′ +
[

c2 + 2ρ

∫ x

−∞
(φ(y) − φ0) dy

] 1

2

φ′ = f(φ)

φ(−∞) = φ0, φ(+∞) = 1.

(4.3)

As in the proof of Proposition 3.1 in the previous section, we proceed in several steps.
Step 1. Nonexistence. Our primary concern here is what happens as x → −∞ in (4.3), for
different values of φ0. For this we need a Liouville type lemma.

Lemma 4.2 Consider the family of functions (φ−λ )λ∈R – the dependence on ρ is omitted, for sim-
plicity:

∀x < λ, φ−λ (x) = − 16

(x− λ)3
. (4.4)

The only increasing solutions φ of the equation

−φ′′ +
(

2ρ

∫ x

−∞
φ(y) dy

) 1

2

φ′ = 0, φ(−∞) = 0 (4.5)
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have the form ρ−1/2φ−λ .

Proof. It suffices to set ρ = 1, the complete result then follows by scaling. Set

u(x) =

∫ x

−∞
φ(y) dy, φ(x) = η(u(x)), (4.6)

where φ is a solution of (4.5). An equation for η(u) is

− d

du

(

η
dη

du

)

+
√

2u
dη

du
= 0, η(0) = 0,

dη

du
> 0. (4.7)

An explicit solution of (4.7), derived from φ−λ , is η(u) = u3/2/
√

2. Inspired by this explicit solution
we introduce the new unknown

p(u) = η(u)2/3, (4.8)

which in turn satisfies
−(p2p′)′ +

√
2up1/2p′ = 0, p(0) = 0, p′ > 0. (4.9)

Claim 1. The function p′ is locally bounded on R+. To see this, observe that since φ is

increasing, and φ′ > 0, we have φ′′ ≤ Cφ′ for x < 0, with C =
(

2
∫ 0
−∞ φ(y)dy

)1/2
. This implies

φ′ ≤ Cφ or, equivalently,
√
pp′ ≤ C. Equation (4.9) may then be integrated from 0 to yield

p2p′ =

∫ u

0

√

2vpp′ dv. (4.10)

Because p′ > 0 it follows that

p2p′ ≤
√

2up

∫ u

0
p′ dv =

√
2up3/2. (4.11)

Hence, we have p3/2 ≤ Cu3/2, or p ≤ Cu. We may use this information in (4.10) and infer that

p2p′ ≥ C

∫ u

0
pp′ dv =

3

4
√

2
p2,

so that p′ ≥ C > 0 and p(u) ≥ Cu. Now, we may go back to (4.11) and conclude that p′ ≤ C2 < +∞.
Claim 2. The derivative p′(u) has a limit as u→ 0. Expand (4.9) to get

−pp
′′

2
− p′2 +

√

u

2p
p′ = 0, p(0) = 0, (4.12)

and set
l = lim inf

u→0
p′(u), l = lim sup

u→0
p′(u).

Assume that l < l; then there exist two sequences un and un, going to 0 as n → +∞, such that
(i) we have lim

n→+∞
p′(un) = l, and lim

n→+∞
p′(un) = l; (ii) un and un are, respectively, a local maximum

and a local minimum for p′. Equation (4.12) implies

p′(un) =

√

un
2p(un)

, p′(un) =

√

un
2p(un)

.
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By the mean value theorem, there is (vn, vn) such that 0 ≤ vn ≤ un, 0 ≤ vn ≤ un, so that

p′(un) =

√

1

2p′(vn)
, p′(un) =

√

1

2p′(vn)
,

yielding in turn

l ≥
√

1

2l
, l ≤

√

1

2l

and, finally – l ≥ l, a contradiction. As a consequence, we have l = l = p′(0) = 2−1/3.
Claim 3. We have p(u) = u/21/3. Assume first p′ to have both a global minimum u0 and a global
maximum u0 on an interval (0, r). Equation (4.12) and the mean value theorem imply that

p′(u0) ≥
√

1

2p′(u0)
, p′(u0) ≤

√

1

2p′(u0)

and thus p′(u0) = p′(u0). If p′ has neither a minimum nor a maximum on intervals of the form (0, r),
then p′′ has a constant sign; assume p′′ ≥ 0. Equation (4.12) then implies

p′(u) ≤
√

u

2p(u)
≤
√

1

2p′(0)
= p′(0).

Hence, in this case we have p′(u) = p′(0). The case p′′ ≤ 0 is treated in the same fashion. The only
cases that remain to be treated are (i) when p′ has a global minimum but no global maximum, and
(ii) the converse case. Assume for instance that (i) holds. Then there exists u1 > 0 such that p′′ ≤ 0
on (0, u1) and p′′ ≥ 0 on {u ≥ u1}. Once again, we apply at that point both equation (4.9) and the
mean value theorem: there exists u2 ∈ (0, u1) such that

p′(u1) =

√

1

2p′(u2)
≥ 2−1/3 = p′(0).

Consequently, p′ is constant on [0, u1], hence everywhere else. �

Proof of the nonexistence part of Theorem 4.1. Let us first take φ0 = 0 and prove that when
ρ > 0 is sufficiently large, equation (4.3) has no solution for any c > 0. If φ is a solution, note that
we have, classically: φ′ > 0. This is seen by the standard integration of (4.3) from x to +∞, taking
f(φ) as a non-negative right side.

Let us multiply (4.3) by φ′ and integrate on R. This yields

∫ 0

−∞

(

c2 + 2ρ

∫ x

−∞
φ(y) dy

)1/2

φ′2(x) dx ≤
∫ 1

0
f(φ) dφ := M. (4.13)

We always may assume that φ(0) = θ. Therefore, as φ is increasing, φ(x) ≤ θ for x ≤ 0 so that
f(φ) = 0 there and we have:

−φ′′ +
(

c2 + 2ρ

∫ x

−∞
φ(y) dy

)1/2

φ′ = 0, for x ≤ 0 and φ(0) = θ. (4.14)

Hence
(

c2 + 2ρ

∫ x

−∞
φ(y) dy

)1/2

=
φ′′

φ′
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and inequality (4.13) becomes:
(φ′(0))2 ≤ 2M. (4.15)

We therefore have to estimate φ′(0) in terms of ρ. Let us first note that φ(x) ≤ θecx, which, as
φ(0) = θ, implies

φ′(0) ≥ cθ, hence, by (4.15) : c ≤
√

2M

θ
. (4.16)

To proceed further let us make the following change of the unknown variable, as in the proof of
Lemma 4.2:

u(x) =

∫ x

−∞
φ(y) dy, φ(x) = η(u(x)) (4.17)

where φ is a solution of (4.14). An equation for η(u) is

− d

du

(

η
dη

du

)

+
(

c2 + 2ρu
)1/2 dη

du
= 0, η(0) = 0,

dη

du
> 0. (4.18)

Then we set
p(u) = η(u)2/3, (4.19)

which in turn satisfies

−(p2p′)′ +
(

(c2 + 2ρu)p
)1/2

p′ = 0, p(0) = 0, p′ > 0. (4.20)

As in the proof of Claim 1 in Lemma 4.2, we have

p2p′ =

∫ v

0

√

(c2 + 2ρw)p(w)p′(w) dw, (4.21)

and hence – by the same argument as in the proof of Claim 1 in Lemma 4.2 we get

p2p′ =

∫ u

0

√

(c2 + 2ρw)p(w)p′(w) dw ≤
√

(c2 + 2ρu)p(u)p(u).

It follows that

p(u)3/2 ≤ K

∫ u

0

√

c2 + 2ρwdw ≤ K
√
ρ

[

(

c2

2ρ
+ u

)3/2

−
(

c2

2ρ

)3/2
]

≤ K

ρ
(c2 + 2ρu)3/2. (4.22)

As a consequence, we have

p(u) ≤ K

ρ2/3
(c2 + 2ρu).

This, in turn, implies

p2p′ =

∫ u

0

√

(c2 + 2ρw)p(w)p′(w) dw ≥ Kρ1/3

∫ u

0
p(w)p′(w)dw = Kρ1/3p2(u)

so that p(u) ≥ Kρ1/3u. The function φ(x) thus satisfies the inequality

φ(x) ≥ Kρ1/2u3/2,

which may be re-written as
u′(x) ≥ Kρ1/2u3/2. (4.23)
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The second inequality in (4.22) implies also the following upper bound for u′(x):

u′(x) ≤ K

ρ

[

(c2 + 2ρu)3/2 − c3
]

. (4.24)

Recall that φ(0) = u′(0) = θ – hence, we have from (4.23):

u(0) ≤ K

(

θ

ρ1/2

)2/3

≤ K

ρ1/3
, (4.25)

while from (4.24) we obtain

u(0) ≥ K

ρ1/3
− c2

2ρ
≥ K

2ρ1/3
(4.26)

for ρ > ρ0. We used (4.16) in the last step above. Another consequence of (4.23) is that for x ≤ 0
we have

1
√

u(x)
− 1
√

u(0)
≥ Kρ1/2|x|,

so that

u(x) ≤ u(0)

(1 +
√

u(0)Kρ1/2|x|)2
.

With the help of (4.25) and (4.26) this becomes

u(x) ≤ K

ρ1/3

(

1 +
K

ρ1/6
ρ1/2|x|

)−2

≤ K

(ρ1/6 + ρ1/2|x|)2 .

As a consequence, we have u(−ρ−m) ≤ K/ρ1−2m for m ∈ (0, 1/3) and thus we get from (4.24):

φ(ρ−m) ≤ K

ρ
ρ3m = Kρ3m−1 ≪ 1.

As φ(0) = θ, there exists a point ξ ∈ (−ρ−m, 0) so that φ′(ξ) ≥ Kρm. However, the function φ is
convex, thus φ′(0) ≥ Kρm which contradicts (4.15) if ρ is large enough. This contradiction shows
that no solution may exist for a sufficiently large ρ.
Step 2. Existence for small ρ. The reason why solutions may exist when ρ is small is quite easy
to understand: when ρ = 0, (4.3) reduces to

−φ′′ + cφ′ = f(φ), φ(−∞) = 0, φ(+∞) = 1,

which, of course, has a unique solution (c0, φ̄), up to translation, when the nonlinearity f is of the
ignition type. The idea is that the standard non-degeneracy property of this solution allows its
continuation for tiny values of ρ. However, there is a technical point that makes the program not

completely trivial: the term ρ

∫ x

−∞
φ(y) dy grows linearly as x → +∞, whereas we would like to

treat it as a small perturbation. This forces us to work a little more with the a priori estimates.
The main element that will make a perturbation argument work is the following

Lemma 4.3 There exists ρ0 > 0 such that, for all ρ ≤ ρ0, for every h(x) ∈ BUC(R+) – the space
of all bounded, uniformly continuous functions on R+ – there exists a unique u(x) ∈ BUC(R+)
satisfying the boundary value problem

Lρu := −u′′ +
(

c20 + 2ρ

∫ x

−∞
φ̄(y) dy

) 1

2

u′ − f ′(φ̄)u = h (x > 0), u(0) = 0. (4.27)
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Moreover there exists C > 0 independent of ρ such that

‖u‖∞ ≤ C‖h‖∞, (4.28)

and the map ρ 7→ (u(0), u′(0)) is continuous on [0, ρ0]. Finally, if in addition h ∈ L1(R+), we have

‖u‖W 1,1(R+)∩W 1,∞(R+) ≤ C‖h‖L1(R+)∩L∞(R+). (4.29)

Proof. What really matters is the estimate (4.28). Once this property is at hand, (4.27) may be
approximated by the following sequence of problems

Lnu := −u′′ +
(

c20 + 2ρ

∫ max(x,n)

−∞
φ̄(y) dy

) 1

2

u′ − f ′(φ̄)u = h (x > 0), u(0) = 0. (4.30)

The operator Ln is Fredholm, and estimate (4.28) is – as will become clear in the proof of the lemma
– still valid for the solutions of (4.30). One then concludes by a standard compactness argument.
The continuity of the map ρ 7→ (u(0), u′(0)) is also inferred from compactness. The estimate (4.29),
which is the main result, will easily follow.

Let us therefore assume that we have constructed a solution u(x) to (4.27), and let us estimate
it. Let us re-write (4.27) as

−u′′ + c0u
′ − f ′(φ̄)u = l[u] := h−

2ρ

∫ x

−∞
φ̄(y) dy

c0 +

√

c20 + 2ρ

∫ x

−∞
φ̄(y) dy

u′ (x > 0), u(0) = 0.

This problem has an explicit solution

u(x) =

∫ x

0

φ̄′(x)

φ̄′(y)

∫ +∞

y

φ̄′(z)

φ̄′(y)
ec0(y−z)l[u](z) dydz.

Using integration by parts to eliminate the derivative of u in the function l and the exponential
decay of φ̄′(x), we deduce that there exists a constant C > 0 independent of ρ such that

|u(x)| ≤ C(‖h‖∞ +
√
ρx‖u‖∞). (4.31)

Consider now x0 > 0 and δ > 0 such that −f ′(φ̄) ≥ δ on [x0,+∞). On that interval equation
(4.27) and the maximum principle yield that u(x) can not attain a maximum at a point where its
value is larger than ‖h‖∞/δ. On the other hand, if u(x) is monotonic on an infinite half-interval we
set uε(x) = u(x) − εū(x), where ū(x) is

ū(x) =

∫ x

0
exp

(∫ y

0
a(z)dz

)

dy, a(x) =

(

c20 + 2ρ

∫ x

−∞
φ̄(y) dy

) 1

2

.

As the function a(y) tends to +∞ as x → +∞, it follows that uε(+∞) = −∞ and thus has to
attain a local maximum. Applying the maximum principle to uε and passing to the limit ε→ 0 we
conclude that

∀x ≥ x0, |u(x)| ≤ |u(x0)| +
‖h‖∞
δ

.

Combining this with (4.31) yields

‖u‖L∞([x0,+∞)) ≤ C(‖h‖∞ +
√
ρx0‖u‖∞) +

‖h‖∞
δ

. (4.32)
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But then, (4.31) implies that

‖u‖L∞([0,x0]) ≤ C(‖h‖∞ +
√
ρx0‖u‖∞). (4.33)

Adding up (4.32) and (4.33), then choosing ρ so that C
√
ρx0 < 1 yields (4.28). We note that the

above argument is valid for the family of operators Ln given by (4.30): inequality (4.32) does not
change as long as x0 ≤ n, and this inequality does not use any bound on the first order term of Ln.

Finally, let us assume in addition that h ∈ L1(R+). We set for convenience

a(x) =

√

c20 + 2ρ

∫ x

−∞
φ̄(y) dy;

then we have
|a′(x)| ≤ ρc−1

0 . (4.34)

With this fact in mind, we multiply (4.27) by sgnu(x) and integrate it over (0,+∞). We get, after
integration by parts:

∫ +∞

x0

(δ − a′(x))|u(x)| dx ≤ ‖h‖L1 +

∫ x0

0
|f ′(φ̄)u| dx.

Here x0 and δ are chosen as in the previous step of the proof. The upper bound (4.34) and the L∞

bound for u that we have already obtained imply that for a sufficiently small ρ we have an L1-bound
for u: ‖u‖L1 ≤ C‖h‖L1∩L∞ . In order to improve it to an W 1,1 bound we note that the L1-estimate
for u and the fact that h ∈ L1 imply that

u′(x) = −
∫ +∞

x
g(y) exp

(

−
∫ y

x
a(z)dz

)

dy,

with a function g ∈ L1. As a(x) is uniformly bounded from below by a positive constant, it follows
that u′ ∈ L1 ∩ L∞. �

The construction of a solution (c, φ) to (4.3) can now be done: it is a classical derivative matching
problem. First, let us add to (4.3) the normalization condition φ(0) = θ. We know that a solution
φ(x) of (4.3) has to be increasing – therefore, f(φ) ≡ 0 for x ≤ 0. The equation for φ is thus

−φ′′ +
(

c2 + 2ρ

∫ x

−∞
φ(y) dy

) 1

2

φ′ = 0 for x < 0; φ(−∞) = 0, φ(0) = θ. (4.35)

We pick any µ ∈ (0, c0/5), and c such that |c− c0| < 2µ. The implicit function theorem in the space
{u ∈ BUC(R), e−µxu ∈ BUC(R−)} yields, for ρ > 0 small enough, the existence of a unique solution
φ−c,ρ to (4.35). Moreover we have

dφ−c,ρ
dx

(0) = cθ +O(ρ). (4.36)

The details are standard and are therefore omitted.
Let us turn to the problem on the right half line:

−φ′′ +
[

c2 + 2ρ

∫ x

−∞
(φ(y) − φ0) dy

] 1

2

φ′ = f(φ) (4.37)

φ(0) = θ, φ(+∞) = 1,
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with the additional constraint φ′(0) = φ−c,ρ(0). We look for a solution (c, φ) to (4.37) in the form
(c0 + d, φ̄ + u). We also extend φ to φ−c,ρ on R− – this is only necessary to assign a value to the
integrals between −∞ and x in (4.37). Write the problem as

Lρu = g[u],

u(0) = 0, u ∈W 1,1(R+), (4.38)

with the operator Lρ defined in (4.27),

g[u] = K[φ]u2 −
(c+ c0)d+ 2ρ

∫ x
−∞ u(y) dy

√

c20 + 2ρ
∫ x
−∞ φ̄(y) dy +

√

c2 + 2ρ
∫ x
−∞ φ̄(y) dy

(u′ + φ̄′)

−
2ρ
∫ x
−∞ u(y) dy

√

c20 + 2ρ
∫ x
−∞ φ̄(y) dy +

√

c2 + 2ρ
∫ x
−∞ φ̄(y) dy

φ̄′

and K[φ]u2 = f(φ̄+u)−f(φ̄)−f ′(φ̄)u. Lemma 4.3 asserts that Lρ is invertible, and that L−1
ρ sends

L1(R+) ∩ L∞(R+) to W 1,1(R+) ∩W 1,∞(R+) and thus equation (4.38) is equivalent to

u = L−1
ρ (g[u]). (4.39)

The Banach fixed point theorem yields the existence of two positive numbers ρ0 and δ0 such that,
for each (d, ρ) ∈ [−δ0, δ0]× [0, ρ0], equation (4.39) has a unique solution u+

c,ρ of the size |d|+ ρ – and
therefore the resulting φ+

c,ρ = φ̄+ u+
c,ρ is |d| + ρ-close to φ̄.

Now, the problem (4.3) reduces to the following equation: given ρ in some subinterval of [0, ρ0]
containing 0, find c close to c0 so that the equation

dφ+
c,ρ

dx
(x = 0) =

dφ−c,ρ
dx

(x = 0). (4.40)

Now, a well-known Melnikov-type computation gives

∂2φ+
c,ρ

∂c∂x

∣

∣

∣

∣

x=0,ρ=0,c=c0

= − 1

c0θ

∫ +∞

0
e−c0xφ̄′2(y) dy.

This, combined with (4.36), implies that (4.40) can be solved uniquely, provided that ρ is chosen
small enough. This ends the small ρ construction part and the proof of part [i] of Theorem 4.1.

Step 3. Proof of part [ii] of Theorem 4.1: the large values of ρ. Recall that we are looking
for a pair (φ0, φ) satisfying (4.3) with c = 0. We may impose the normalization condition φ(0) = θ,
and the solution φ is increasing on R. This implies, by Lemma 4.2 that

φ = φ0 + ρ−1/2φλ for x ≤ 0, (4.41)

with λ = (16/(θ − φ0)
√
ρ)1/3. In particular, we have

∫ 0

−∞
[φ(y) − φ0] dy = 21/3(θ − φ0)

2/3ρ−1/6 := cρ(φ0), φ′(0−) =
3

24/3
(θ − φ0)

4/3ρ1/6. (4.42)

The strategy is, once again, a shooting argument: we are going to solve the following Cauchy
problem:

−φ′′ +
(

cρ(φ0) + 2ρ

∫ x

0
φ

) 1

2

φ′ = f(φ) (4.43)

φ(0) = θ, φ′(0+) =
3

24/3
(θ − φ0)

4/3ρ1/6
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and adjust φ0 so that
lim

x→+∞
φ(x) = 1. (4.44)

For all ρ > 0 and φ0 > 0 the Cauchy problem (4.43) has a unique maximal solution φρ,φ0
defined

on an interval of the form [0, xmax(ρ, φ0)). Exactly as in Section 3, for each ρ > 0 we define the
following subsets of [0, θ]:

Xρ
− = {φ0 ∈ [0, θ] : ∃x0 > 0 such that φρ,φ0

= θ} (4.45)

Xρ
+ = {φ0 ∈ [0, θ] : φρ,φ0

> 0 and xmax(ρ, φ0) < +∞},

Lemma 4.4 For every ρ > 0 there exists φ0(ρ) > 0 such that every φ0 ∈ (φ0(ρ), θ] belongs to Xρ
−.

Proof. Given ρ > 0, the Cauchy Problem

−φ′′ = f(φ) (4.46)

φ(0) = θ, φ′(0+) =
3

24/3
(θ − φ0)

4/3ρ1/6

has – by an easy explicit computation – a unique solution φ which is larger than θ exactly on a finite
interval (0, x(ρ, φ0)) provided that φ0 > 0 is close enough to θ. The difference between φ and φρ,φ0

is easily estimated via the Gronwall lemma for large ρ since both cρ(φ0) and x(ρ, φ0) are small. �

Because a solution φ to (4.3) is increasing in x, we are not really interested in the values of f
outside the interval (0, 1). Therefore we may extend f by 0 outside (0, 1).

Lemma 4.5 For every φ0 < θ there exists ρ0 > 0 so that we have φ0 ∈ Xρ
+ for all ρ > ρ0.

Proof. Quite the same as in Lemma 3.4. The logarithmic derivative of φ = φρ,0, denoted by ζ,
satisfies

ζ ′ = a(x)ζ − ζ2 − f(φ)

φ
. (4.47)

where we have suppressed the subscripts, and where we have set

a(x) =

√

cρ(φ) + 2ρ

∫ x

0
φ(y) dy. (4.48)

This equation, due to the boundedness of f(φ)/φ, is essentially the same as (3.29). In particular,
if ζ(0) is large enough we have ζ > 0 on its existence interval, and xmax(ρ, 0) < +∞. This implies
that φ0 ∈ Xρ

+ if ζ(0) is sufficiently large. However, as ζ(0) is proportional to ρ1/6, this is the case
for a sufficiently large ρ. �

End of the proof of Theorem 4.1. Take ρ > 0 large enough so that Lemma 4.5 holds. As opposed
to the construction of the wave fan-rarefaction wave, where the fact that the sets X± were open was
nontrivial, it is here very easy to infer from the continuity of the solution of the Cauchy Problem
(4.43) with respect to its initial values, that the sets Xρ

± are open and non-empty. Consequently,
there exists at least one φ0 not in Xρ

+∪Xρ
− – we need now to show that the solution generated by φ0

tends to one as x→ +∞. The strong maximum principle implies that the corresponding solution φ
cannot have a local minimum in R+ and hence it is increasing. Assume that φ goes over the value
1 and let x0 be such that φ(x0) = 1. Setting cρ(φ0) = cρ(φ0) + 2ρ

∫ x0

0 φ(y) dy, the equation for φ is

−φ′′ +
(

cρ(φ0) + 2ρ

∫ x

x0

φ

) 1

2

φ′ = 0 (4.49)

φ(x0) = 1, φ′ > 0.
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Equation (4.49) implies that φ′ > 0 and φ is convex on (x0,+∞). Hence, the derivative φ′(x) has a
limit l > 0 as x→ +∞. This implies, once again by (4.49):

φ′′(x) ∼ l
√

ρlx

and thus l can not be finite. Therefore, repeating the argument in the proof of Lemma 3.4 we
conclude that φ becomes infinite at a finite distance, which is a contradiction. Therefore, we have
φ < 1, hence, (4.44) is true. Finally, Lemma 4.5 implies that (4.2) holds. �

Asymptotic behavior of the traveling wave at +∞
We end this section by additional information on the behavior of a traveling wave solution of (4.3).
The last lemma of this section is an estimate of how the wave solution converges to its rest state at
+∞ which we will need in the construction of an asymptotic solution when we match the traveling
wave to the back of the shock. Due to the linear growth of the advection term, it is not a standard
version of the stable manifold theorem. We could, at a not too high cost, derive a precise asymptotic
expansion. The following weaker version will be sufficient for our purpose.

Lemma 4.6 Let φ(x) be a solution of (4.3) and set α0 = (−f ′(1))
√

2/ρ. There exists B(ρ) > 0 so
that for each ε > 0, there exist Cε(ρ), C

′
ε(ρ) > 0 such that

1 − Cε exp
(

−(α0 −Bε)
√
x
)

≤ φ(x) ≤ 1 − C ′
ε exp

(

−(α0 +Bε)
√
x
)

(4.50)

and
0 ≤ φ′(x) ≤ Be−α0

√
x/2.

Proof. The function q(x) = 1 − φ(x) satisfies

NL(q) := −q′′ + a(x)q′ + f(1 − q) = 0, q(−∞) = 1, q(+∞) = 0, (4.51)

where

a(x) =

(

c2 + 2ρ

∫ x

−∞
φ(y)dy

)1/2

.

Let us choose xε > 1/ε2 so that for all x ≥ xε we have

(−f ′(1) − ε)q ≤ f(1 − q) ≤ (−f ′(1) + ε)q,

and
√

2ρx(1 − ε) ≤ a(x) ≤
√

2ρx(1 + ε).

Let us find a supersolution q̄(x) ≥ 0 such that q̄(xε) = q(xε), q̄
′ ≤ 0, q̄(+∞) = 0 and NL[q̄] ≥ 0.

This will imply that q(x) ≤ q̄(x) and thus provide the lower bound on φ(x) in (4.50). For the last
condition to hold it is sufficient to require that

L̄[q̄] := −q̄′′ +
√

2ρx(1 + ε)q̄′ + (−f ′(1) − ε)q̄ ≥ 0.

For a function of the form s(x) = q(xε) exp(−α√x− xε) we have

L̄[s] = s(x)

(

O

(

1

x

)

+ (−f ′(1) − ε) − α
√
ρ√
2

(1 + ε)

)

.
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Hence, for such function to be a supersolution it is sufficient to take

α <

√

2

ρ

(−f ′(1) − ε

1 + ε

)

,−ε

so α ≤ α0−B(ρ)ε with B(ρ) sufficiently large will suffice. The upper bound on φ in (4.50) is proved
similarly. The bound on the derivative φ′ in Lemma 4.6 is obtained by differentiating (4.51):

−(q′)′′ + a(x)(q′)′ + (−f ′(1 − q) + a′(x))q′ = 0.

As a′(x) = O(1/
√
x) for large x, the exponential bound for q′ = −φ′ follows by the same construction

of subsolutions and supersolutions. �

5 Large-time evolution: asymptotic solutions

The numerical simulations of Section 2 indicate that, if the support of the initial data for temperature
T (0, x) – or, at least, the measure of the set where it is above ignition – is very large, the solution
has the following structure: it has the form of a ramp on the left, followed by a combustion wave,
which is itself terminated by a shock that brings back both temperature and velocity to their rest
states. This structure appears after some transient behavior that we will not study in this paper, and
remains valid almost all the time before quenching occurs. In this section we derive an asymptotic
relation for the shock position, and discuss the time interval on which the above picture is valid.
What happens after this time is the subject of Section 6.

It is clear from the numerical simulations that quenching will be provoked by the dissipation
at the accelerated shock, and that the shock location is really what will eventually tell us the
dynamics of our solution. In order to get an equation for the shock motion we have to construct the
whole asymptotic solution, gluing together asymptotically the ramp, combustion wave and the shock
constructed in the previous sections. First, we should identify the small parameter that controls the
asymptotics – this is the object of Section 5.1. In Section 5.2, we will see how to glue the ramp to
the combustion wave; the role of the ramp being played by the selfsimilar solution constructed in
Section 3, and the role of the combustion wave will be played by the traveling wave constructed in
Section 4. In Section 5.3 we will place the shock, thus terminating the description of the asymptotic
solution.

5.1 Devising a length and time scale

Let us recall that if yf (t) is the position of the shock relative to the end point of the ramp, that
is the transition point in the temperature profile between the ramp and the combustion wave, an
asymptotic equation for yf (t) is given by (2.13):

ẏf =
1

2
(
√

2ρ(1 − φ0)yf − ρφ0t). (5.1)

Here φ0 is the value of the temperature at the transition. We will assume that φ0 > 1/9 – recall
that this ensures that (5.1) has no global in time solution yf (t), hence yf (t) reaches zero in a finite
time – this is the time when quenching occurs since the transition value φ0 is below the ignition
temperature θ. Let us now worry about how large we should choose the support of the temperature
for the solution to maintain the ”ramp-wave-shock” structure for a long time – this length will be
our large parameter with respect to which we shall expand our solution.
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Let us set

Q(z) = 2

∫ z

0

dz′

f(
√
z′)

;

and choose a pair of large positive numbers: (t0, x0). We specify the initial datum of yf as yf (t0) = x0.
The reason why we wish to start the integration of (5.1) from a large time t0 will become clear in
Section 5.3. In a few words: we want to make sure that the transition layer (the shock width) in
which the temperature goes from 1 to 0 is very narrow. From (2.14) we have, for t ≥ t0, using
expression (2.14) for f(

√
z):

yf (t) = ρt2Q−1(ln
t

t0
+Q(

x0

ρt20
)) ∼x0/(ρt0)2→+∞ ρt2Q−1(ln

t
√

ρ−1x0

). (5.2)

Thus, for t ∼
√

ρ−1x0 we have yf (t) ∼ 0, meaning that the shock has been caught up by the ramp
- thus, presumably, that quenching has occurred around that time. The parameter x0 will from
then be the large parameter; we call it ε−1, with ε > 0. The time interval over which we want to
construct an approximate solution to (1.5) runs from t0 to approximately (ρε)−1/2. Recall that we
want t0 also very large; call it δ−1 and δ will be another small parameter. Our sole requirement for
the moment is x0/ρt

2
0 ≫ 1; hence δ ≫ √

ε.
Before we proceed to the actual construction of the asymptotic solution, let us set the following

definitions and notations: from now on, and until the end of this section, let us give the following
names to the wave fan and travelling wave solutions to (1.5):

• A selfsimilar solution of (3.1) will be denoted by t−3/2(φ−, ψ−)(x/
√
t). Hence, the pair (φ−, ψ−)

is a solution of (3.2).

• We assume that the ignition threshold θ > 1/9 and ρ is sufficiently large. Then, according to
Theorem 4.1, a traveling wave solution of (1.5) with c = 0 and the temperature that converges
to a value φ0 ∈ (0, θ) as x → −∞ exists, and will be denoted by (φ+, ψ+)(x). Recall that
(φ+, ψ+) is a solution of

−φ′′+ + ψ+φ
′ = f(φ+)

φ+(−∞) = φ0, φ+(+∞) = 1 (5.3)

ψ+(x) =

√

2ρ

∫ x

−∞
(φ(y) − φ0) dy.

Theorem 4.1 also implies that for a sufficiently large ρ we have φ0 > 1/9, since θ satisfies this
strict inequality.

• We denote by (T app(t, x), uapp(t, x)) the approximate solution that we wish to construct. It
will therefore NOT be an exact solution to (1.5); it will satisfy (1.5) up to a small error –
typically, of the order O(

√
ε+

√
δ) over a time interval O(

√

ρ−1ε).

We now have all the ingredients: a set of elementary pieces (wave fan, traveling wave, shock) and
two small parameters.

5.2 Gluing a wave fan to a combustion wave

Recall that we are not interested at this stage in the transients leading to the development of our
composite wave. Hence, we let a pure wave fan of the nonreactive equation (3.1) evolve until we are
satisfied with the size of its support and of its derivatives. Then, we translate the profile so that the
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temperature at x = 0 is equal (perhaps up to some δ-correction) to φ0. This will provide our initial
datum to the left. To glue it to a combustion wave at later times, we proceed as follows: we resume
the evolution of the wave fan and consider the place where it reaches the value φ0 – modulo, once
again, a δ-correction. If the δ-correction is chosen carefully enough, it will be possible to translate the
wave profile, then slightly modify the temperature, in such a way that the temperature component
of the modified combustion wave matches exactly the wave fan and its slope. The velocity will then
be set according to the equation for ψ+ in (5.3). This will provide a δ-approximate solution to (1.5),
over a large time interval.

The reference frame. Let us therefore consider a solution (φ−, ψ−) of (3.2). Choose τ− > 0
such that

τ− ≥ δ−1 and ∀τ ≥ τ−, ∀x,
1

ρτ3/2
φ′−(

x√
τ
) ≤ min(δ2, τ−2). (5.4)

This is possible since φ′− ∈ L∞(R). For τ ≥ τ−, set

T̃−(τ, x) := (ρτ3/2)−1φ−(x/
√
τ), ũ−(t, x) = τ−1/2ψ−(x/

√
τ). (5.5)

We consider the places where T̃− reaches values close to φ0. For that obviously we must have x/
√
τ

very large. This implies T−(τ, x) ∼ 2x/ρτ2 – hence, the gluing point x ∼ ρφ0τ
2/2. We could try

to directly consider the moving point x̃b(τ) = ρφ0τ
2/2. This is not, however, the most convenient

choice. Instead, let us set:

x̃b(τ) =
ρφ0τ

2

2
+ ατ.

The subscript ”b” above stands for ”back”. Let us choose α according to the strategy that we have
proposed above. The function φ− comes with a function ψ− accounting for the velocity, given by
(3.5)

ψ−(η) =
η

2
+

1

2

√

η2 + 8

∫ η

−∞
φ−(η′) dη′. (5.6)

By the expansion (3.7) of Theorem 3.1, we have, with η = x̃b/
√
τ :

ũ−(τ, x̃b(τ)) =
1

2
√
τ

[

η +

√

η2 + 8

(

η2 +
3

4
aη4/3 + o

(

η4/3
)

)

]

=
1

2
√
τ

[

4η + aη1/3 + o
(

η1/3
)]

=
1

2
√
τ

[

4√
τ

(

ρφ0τ
2

2
+ ατ

)

+
a

τ1/6

(

ρφ0τ
2

2
+ ατ

)1/3

+ o
(

τ1/2
)

]

.

We conclude that

ũ−(τ, x̃b(τ)) = ρφ0τ + 2α+
a

2

(

ρφ0

2

)1/3

+ o(1)

∂τ ũ−(τ, x̃b(τ)) = ρφ0 +O

(

1

τ

)

.

(5.7)

We choose α to ensure that
ũ−(τ, x̃b(τ)) = ˙̃xb(τ) + o(1), (5.8)

hence α = −a (ρφ0/16)1/3.
Let us now set the initial time to be t = 1; then for all t ≥ 1 we choose:

xb(t) = x̃b(τ− + t) =
ρφ0(τ− + t)2

2
− a

(

ρφ0

16

)1/3

(τ− + t). (5.9)

41



Then, we change the reference frame by setting x = xb(t)+x
′ and drop the prime in order to alleviate

the notations: set x′ := x. This will be our reference frame until the end of this section. The system
(1.5) becomes, in this new reference frame:

Tt − Txx + (u− ẋb)Tx − f(T ) = 0
ut + (u− ẋb)ux − ρT = 0

(5.10)

The asymptotic solution on the left. Let µ be a smooth nonnegative function, equal to 1 on
the interval [2φ0/3, 1] and equal to 0 on [0, φ0/2]. Our choice for (T app, uapp) for x < 0 (in the new
moving frame) is:

T−(t, x) = T̃−(τ− + t, xb(t) + x) + γ(t)µ
(

T̃−(τ− + t, xb(t) + x)
)

(5.11)

u−(t, x) = ũ−(τ− + t, xb(t) + x) + ẋb(τ− + t). (5.12)

The function γ is a correction of the order o(1), to be chosen in a more precise fashion below and T̃−
is defined in (5.5). The multiplicative correction µ(T̃ ) is non-zero only in the region where we have
T̃−(τ− + t, xb(t) + x) ∈ (φ0/2, φ0]. We have chosen to multiply the already small term γ(t) by the
cut-off µ in order to keep the correction of the same order as the main term T− for large negative
x where T− decays as a Gaussian.

Let us define

NL[T, u] = (NL1, NL2) := (Tt − Txx + (u− ẋb)Tx − f(T ), ut + (u− ẋb)ux − ρT ).

Then, as φ0 < θ, we have f(T−) = 0 for x < 0 and δ sufficiently small, so that

NL1(T
−, u−) = T−

t − T−
xx + (u− − ẋb)T

−
x

= T̃−
t − T̃−

xx + ũ−T̃−
x + γµ′(T̃ )[T̃−

t − T̃−
xx + ũ−T̃−

x ] − γµ′′(T̃−)(T̃−
x )2 + µ(T̃ )γ̇

= −γµ′′(T̃−)(T̃−
x )2 + µ(T̃ )γ̇

and

NL2(T
−, u−) = u−t + (u−− ẋb)u

−
x − ρT− = ũ−t + ũ−ũ−x − ρT̃−− ργ(t)µ(T̃−) = −ρT̃−− ργ(t)µ(T̃−).

We have therefore:

∀x ≤ 0, ∀t ≥ 1 : NL[T, u](x) = (γ̇(t)µ(T ) − γµ′′(T̃−)(T̃−
x )2,−ργ(t))µ(T̃−).

Provided that γ is o(1) as announced, the pair (T−, u−) is then an asymptotic solution on the left.
The asymptotic solution on the right. Let us now consider what happens for x ∈ R+.

We seek our solution in the form (T app, uapp)(t, x) = (T+, u+)(t, x) = (T+, u−(t, 0) + v+(t, x)) where
(T+, u+) satisfies (5.10) up to a small error, and in addition satisfies the matching conditions

T+(t, 0) = T−(t, 0) = φ0 + γ(t) +O((δ−1 + t)−1), (5.13)

∂xT+(t, 0) = ∂xT−(t, 0) = 2(δ−1 + t)−2 + o((δ−1 + t)−2)

v+(t, 0) = 0.

Recall that, because of (5.7) and (5.8), the system for (T+, v+) that we wish to satisfy approximately
is – we drop the subscripts for convenience:

Tt − Txx + (v + o(1))Tx = f(T )

vt + (v + o(1))vx = ρ(T − φ0 + o(1)).
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Hence, it is enough to find a pair (T+, v+) satisfying

NL1[T, v] := Tt − Txx + vTx − f(T ) (5.14)

NL2[T, v] := vt + vvx − ρ(T − φ0),

up to an o(1) error. Now, if (φ+, ψ+) is a solution of (5.3) normalized so that φ+(0) = θ, we look
for T+ in the form

T+(t, x) = φ+(x− x+(t)), (5.15)

the shift x+(t) being adjusted to satisfy the boundary condition for ∂xT+(t, 0) in (5.13). Using
representation (4.41) this equation reduces to

φ′+(−x+(t)) = 2(δ−1 + t)−2 + o((δ−1 + t)−2) =
48

√
ρ(x+(t) + (16θ

√
ρ)−1/3)4

,

which defines a unique x+(t) satisfying

x+(t) ∼
(

24√
ρ
(t+ δ−1)

)1/2

. (5.16)

Let us recall from Section 4 that we have

if φ+ ≤ θ, φ+ − φ0 =
2

33/4
ρ−1/8(φ′+)3/4 := h(φ′+). (5.17)

Now, the function γ(t) is chosen to satisfy the first equation in (5.13), namely:

γ(t) = h

(

48
√
ρ(x+(t) + (16θ

√
ρ)−1/3)4

)

+o(1) = o(1).

This fully determines T+(t, x). Now, v+(t, x) is just computed as

v+(t, x) =

√

2

∫ x

0
(T+(t, y) − φ0) dy. (5.18)

We have NL[T+, v+] = o(1), and thus NL[T+, u+] = o(1). This ends the construction of the right
solution (T+, u+).

5.3 Terminating the combustion wave with a shock

The numerical simulations of Section 2, show that the combustion wave terminates on the right by a
hydrodynamic shock, that is, a moving point yf (t) across which the unknown u jumps from a large
value u+(t, yf (t)) to approximately 0. The temperature profile is slaved to the velocity profile, and
undergoes a transition from (approximately) 1 to 0 inside a δ-wide layer. Let us recall that at time
t0 = δ−1 the shock is located at a position x0 = ε−1 with the restriction δ ≫ √

ε. Note that this
condition also ensures that the shock is far removed initially from the wave fan to combustion wave
transition which has initial width x+ = O(δ−1/2) ≪ ε−1 – consequently the shock does not interact
with the wave fan at t = 1.

Let us now find the shock location at later times. From (5.18) we have

v+(t, yf (t)) =

√

2

∫ yf (t)

0
(T+(t, y) − φ0) dy =

√

2(1 − φ0)yf (t) +O(1);
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the quantity O(1) referring to the time t and the small parameter ε, and coming from the integrability
of 1 − T ensured by Lemma 4.6. Assuming that 0 is a good approximation of u(t, x) to the right of
yf (t), the Rankine-Hugoniot condition for the equation for u yield

ẏf (t) =
1

2





√

2

∫ yf (t)

0
(T+(t, y) − φ0) dy − ẋb(t)



 =
1

2

[

√

2(1 − φ0)yf (t) − ρφ0(δ
−1 + t)

]

+O(1).

(5.19)
This is almost the same equation as (5.1), were it not for the O(1) term. This is, however, not such
a problem: a time shift t+ δ−1 → t, change of the unknown yf (t) = ρt2z(t), and of the independent
variable t = eτ yields the equation

dz

dτ
=

1

2
q(
√
z) +O(e−2τ ),

which has exactly the same dynamics as (2.14).
The above analysis completes, in principle, the asymptotic analysis, because it describes the

dynamics of the two transition layers: the first connects the wave fan to the combustion wave, and
the second is the hydrodynamic shock. However, because we wish to pursue our analysis in Section 6
beyond the time of validity of the fan-wave-shock picture, we also have to say something about the
temperature profile. The crucial zone is around the shock: in this area we look for an expression for
T app(t, x) in the form

T app(t, x) = Ts(t, (δ
−1 + t)(x− yf (t))).

Define v(t, x) as v+(t, x) to the left of the shock, that is, for x < yf (t), and as −ẋb(t) to the right of
the shock, for x > yf (t). The equation to be satisfied by Ts(t, y) is

−∂yyTs +
v(t, yf (t) + (δ−1 + t)−1y) − ẏf

δ−1 + t
∂yTs =

f(Ts) − ∂tTs − y(δ−1 + t)−1∂yTs
(δ−1 + t)2

. (5.20)

An approximate equation for Ts is, therefore,

−∂yyTs + c(t, y)∂yTs = 0, (5.21)

with the function c(t, y) which is an odd function of y, discontinuous at y = 0, and which takes
values c−(t) for y < 0 and c+(t) = −c−(t) for y > 0. To the left of the shock, that is, for y < 0, we
have, using expression (5.2) for yf (t):

c(t, y) =
ẋb +

√

2(1 − φ0)yf
2(δ−1 + t)

=
1

2

(

2ρ(1 − φ0)Q
−1

[

ln
δ−1 + t
√

ρ−1x0

]

)1/2

+
ρφ0

2
:= cδ(t)

An important feature of cδ(t) is that we have

ċδ(t) = O(δ−1 + t)−1. (5.22)

If we additionally impose the conditions Ts(t,−∞) = 1 and Ts(t,+∞) = 0, an expression for Ts(t, y)
is

Ts(t, y) = 1 − cδ(t)

2

∫ y

−∞
e−cδ(t)|z| dz. (5.23)

The final expression for the approximate temperature in the reference frame of the location xb(t) of
the wave fan is therefore taken as

T app(t, x) =







T−(t, x) for x < 0
inf

(

T+(t, x), Ts(t, (δ
−1 + t)(x− yf (t)))

)

if 0 < x < yf (t)
Ts(t, (δ

−1 + t)(x− yf (t))) if x > yf (t)
(5.24)
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and for approximate velocity as

uapp(t, x) =







u−(t, x) for x < 0
u−(t, 0) + v+(t, x) if 0 < x < yf (t)
0 if x > yf (t)

(5.25)

The function T−(t, x) in (5.24) is given by (5.11) and T+(t, x) by (5.15), while in (5.25) the function
u−(t, x) is given by (5.12) and v+(t, x) by (5.18).

Since ∂xT+ > 0 and ∂xTs < 0, there is only one point where both coincide, and this is a point
of discontinuity for Tx. However, it occurs at a point xd(t) where T is very close to 1. Hence, we
know from Lemma 4.6 that the jump in Tx at xd(t) is exponentially small: there exist two positive
constants k1 and k2 such that:

k1e
−k1

√
xd(t) ≤ e(t+δ

−1)cδ(t)(xd(t)−yf (t)) ≤ k2e
−k2

√
xd(t).

This implies that yf −xd = O(
√
y
f
), thus the jump in Txx produces a negligible Dirac mass – which

one even may regularize by modifying T+ and Ts by suitable cut-offs near xd(t) where solution is
very close to a constant. Therefore, we have

T appt − T appxx + vappT appx − f(T app) = O
(

(t+ δ−1)−1
)

,

except in an O
(

(t+ δ−1)−1
)

layer around yf (t), where T is neither close to 1 nor to 0, and where
therefore f(T ) is not close to 0. We have set here vapp = uapp − u−(t, 0). In the same fashion, we
have

vappt + vappvappx − ρ(T app − φ0) = O((t+ δ−1)−1),

once again except in the same layer where T app is neither close to 1 nor to 0. However we may write
for all t ∈ [0,

√

ρ−1ε]:

‖NL(T app(t, .), vapp(t, .))‖L1([yf (t)−1,yf (t)+1]) = O((t+ δ−1)−1). (5.26)

Thus we still get an approximate solution albeit not in the pointwise sense. This analysis is valid
as long as the transition layers between the wave fan and the combustion wave, and the wave and
the rest state are well separated. In the next section we will consider what happens to the ”wave
fan-combustion wave-shock” solution when the wave starts catching up with the shock.

6 The final quenching

The analysis of the previous sections shows that after a long time solution consists of a wave fan on
the left, followed by a combustion wave, which in turn ends with a shock. Here we consider such
profile as initial data and show that it can quench in a certain regime even when the data is large.
We make the following assumptions on the initial data:
Assumptions on T0. We assume that T0(0) = φ0 – this is the value “in the back of the combustion
wave”, where transition from the ramp on the left to the wave on the right occurs. To the left of
x = 0 the initial data for T0 looks like a ramp, that is, we assume that

0 ≤ T ′
0(x) ≤

1

β2
for all x ≤ 0, (6.1)

with some β ≫ ρ. The parameter β plays the role of the time it took the original solution to reach
the profile that we are now taking as the initial data. The function T0 looks like a combustion wave,
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connecting the values T = φ0 on the left and T = 1 on the right, between the points x = 0 and
x0 = O(βδ0) with 0 ≤ δ0 < 1/2, where the shock is located, and falls off over a distance lf after x0:

T ′
0 > 0 on (0, x0); T ′

0 < 0, on (x0,+∞); T0(x0) = 1 −O(e−ρ
α

), T0(x0 + lf ) ≤
1

β
(6.2)

with some α > 0. We assume that lf ≤ Cβγf with γf < δ0 < 1/2.
Assumptions on u0. We assume that to the left of x = 0 the flow profile looks like a ramp and
we have u′0(x) ∼ O(ρ/β) for x < 0, while u0(0) = β. The function u0(x) grows as in the combustion
wave between x = 0 and y0 = x0 + C0β

−1, where u0(x) has its shock, so that

|u′0(x)| ≤ C < +∞, u′0 > 0 on (0, y0); u0 = 0 on (y0,+∞), (6.3)

and, moreover
umax = u0(y0) = β +O(

√
ρy0). (6.4)

Recall that u and T satisfy
Tt − Txx + uTx = f(T )

ut + uux = ρT.
(6.5)

Let us solve the Cauchy problem for (6.5) with the initial data (T0, u0) satisfying the above assump-
tions. The main result of this section is the following

Theorem 6.1 Under the above assumptions on T0 and u0, let (T, u) be the solution of (6.5) with
the Cauchy data (T0, u0). There exists t > 0 such that ‖T (t, ·)‖∞ ≤ θ for t ≥ t̄.

In particular, assumptions on T0 and u0 in Theorem 6.1 are satisfied if we take the approximate
solution (T app, uapp) constructed in Section 5 at the time t0 = ε−1/2 − ε−1/3 and set β ∼ t0.

The strategy is the following: first, we prove that u(t, .) is well approximated by a time-shift of
the solution of the pure Burgers equations, at least for a time much larger than 1/β. This property
of u is then exploited in the structure of the equation for T , which is proved to be quenched in a
time of order

t̄ = Kβδ0−1,

except in a zone of very small size. Quenching by diffusion is finally proved in this very small zone.

Before starting the construction we change the reference frame: we set x′ = x − ρφ0t
2

2
so that

equations become

Tt − ρφ0tTx′ + uTx′ = Tx′x′ + f(T )

ut − ρφ0tux′ + uux′ = ρT.

Next, we set
v(t, x′) = u(t, x′) − ρφ0t (6.6)

and drop the primes to get the following equations in the new frame

Tt + vTx = Txx + f(T )

vt + vvx = ρ[T − φ0].

The functions v and T in the new variables have the same initial values u0(x) and T0(x).
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Step 1. An explicit approximation for v(t, x). The maximum principle for entropy solutions
of the inviscid Burgers equations implies that v(t, x) ≤ v(t, x) ≤ v(t, x) with the functions v and v
that satisfy

vt +
1

2

(

v2
)

x
= −ρ, vt +

1

2

(

v2
)

x
= ρ, (6.7)

with the initial data v(0, x) = v(0, x) = u0(x). Let us also introduce w(t, x) which is the entropy
solution of the unforced Burgers equation

wt +
1

2

(

w2
)

x
= 0, w(0, x) = u0(x). (6.8)

Observe that we have

v(t, x) = ρt+ w

(

t, x− ρt2

2

)

, v(t, x) = −ρt+ w

(

t, x+
ρt2

2

)

.

Therefore, the function v(t, x) is bounded above and below as follows:

−ρt+ w

(

t, x+
ρt2

2

)

≤ v(t, x) ≤ ρt+ w

(

t, x− ρt2

2

)

,

and for small times the problem is essentially reduced to understanding the behavior of w(t, x).
As u0(x) is smooth and increasing on the interval (−∞, y0) and is equal to zero for x > y0 the

function w(t, x) remains smooth on an interval (−∞, yf (t)) and is equal to zero for x > yf (t), where
yf (t) is the shock location for the function w at the time t ≥ 0. The Rankine-Hugoniot condition
implies that

ẏf =
1

2
w(t, y−f (t)).

We define the characteristics on the left of the shock:

Ẋ(t;x) = w(t,X(t;x)), X(0) = x.

The map X(t;x) is well-defined and increasing both in t and x as long as x < y0 and until the
characteristic hits the shock. In addition we have w(t,X(t;x)) = u0(x) and therefore

X(t;x) = x+ tu0(x).

For x < yf (t) we may define the inverse map y(t;x) = X−1(t, x) so that x = y + tu0(y). Now, we
can compute almost explicitly the shock location: set ys(t) = X−1(t, yf (t)), then

ẏf =
1

2
u0(ys(t)), yf (0) = y0 (6.9)

yf (t) = ys(t) + tu0(ys(t)). (6.10)

Differentiating (6.10) in time we obtain

ẏs = − u0(ys)

2(1 + tu′0(ys))
, ys(0) = y0. (6.11)

Note that ys(t) < y0 for all t > 0 and u′0(x) > 0 for x < y0 so that the solution of (6.11) exists for
all t > 0. Moreover, as |u′0| ≤ C and 0 ≤ t ≤ t̄ = Kβδ0−1 we have

−u0(ys)

2
≤ ẏs ≤ − u0(ys)

2(1 + Cβδ0−1)
,
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so that for 0 ≤ t ≤ t̄ we have ys(t) ≥ y0 −Cumaxβ
δ0−1. It follows that (at the expense of increasing

the constant C in the last inequality below)

u0(y0) ≥ u0(ys(t)) ≥ u0

(

y0 − Cumaxβ
δ0−1

)

≥ u0

(

y0 − C(β + C
√
ρy0)β

δ0−1
)

≥ u0

(

y0 − Cβδ0
)

.

Now, as |u′0(x)| ≤ Cρ/β for x < 0 we conclude that (again, at the expense of increasing the constant)

β + C
√

ρβδ0 ≥ u0(y0) ≥ u0(ys(t)) ≥ β − Cρ

β1−δ0 for 0 ≤ t ≤ t̄.

As a consequence, we obtain that

β

2
− Cρ

β1−δ0 ≤ ẏf (t) ≤
β

2
+ C

√

ρβδ0 for 0 ≤ t ≤ t̄. (6.12)

To summarize, we have shown that v(t, x) ≤ ρt for x ≥ yf (t) + ρt2/2 and v(t, x) ≥ w(t, x) − ρt for
x ≤ yf (t) − ρt2/2 with ẏf satisfying (6.12).

Furthermore, for all x < yf (t) we have w(t, x) = u0(y(t, x)) and 0 ≤ x − y(t, x) ≤ umaxt.
Therefore, w(t, x) is large for all −

√
β ≤ x ≤ yf (t) and 0 ≤ t ≤ t̄:

w(t, x) ≥ u0

(

−
√

β − Cumaxβ
δ0−1

)

≥ u0

(

−
√

β − Cβδ0
)

≥ β − Cρ

β

√

β ≥ β − Cρ√
β
.

We have proved the following lemma.

Lemma 6.2 There exists a “shock location” function yf (t) satisfying (6.12) with yf (0) = y0 such
that for any K > 0 there exists β0 > 0 and C > 0 so that for all 0 ≤ t ≤ t̄ = Kβδ0−1 we
have for β > β0: (i) v(t, x) ≤ ρt for x ≥ yf (t) + ρt2/2, and (ii) v(t, x) ≥ β − Cρβ−1/2 − ρt for
−
√
β ≤ x ≤ yf (t) − ρt2/2.

Step 2. A uniform bound for temperature on the left. Now, in order to establish quenching
we consider the coordinate system that moves with the speed ẏf (t): set x′′ = x − yf (t). The
temperature equation takes the form (we drop the primes):

Tt + [v − ẏf (t)]Tx = Txx + f(T ), T (0, x) = T0(x). (6.13)

The first step is to bound the temperature “far on the left”.

Lemma 6.3 In the new coordinate system for any K > 0 there exists C(K) > 0 so that we have
T (t,−

√
β) ≤ φ0 + C(K)/

√
β for 0 ≤ t ≤ t̄ = Kβδ0−1.

Proof. First, note that f(T ) ≤ ΛT and thus T (t, x) ≤ Φ(t, x)eΛt with the function Φ that satisfies

Φt + [v − ẏf ]Φx − Φxx = 0, Φ(0, x) = T0(x). (6.14)

We can write T (t, x) = E {T0(X(t;x))} where the process X(t;x) solves

dZ = (ẏf − v)dt+
√

2dW.

However, as |v| ≤ umax ≤ β+C
√
ρy0 and |ẏf (t)| ≤ β, it follows that the probability that Z(t) starting

at x = −
√
β exits the (very long) interval (−3

√
β/2,−

√
β/2) before the (very short) time Kβδ0−1

with a sufficiently large K > 0 is smaller than the probability that max0≤t≤Kβδ0−1 W (t) ≥ K
√
β,
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which is exponentially small in β as δ0 ∈ (0, 1/2). The claim of Lemma 6.3 now follows since
T0(x) ≤ φ0 + C/β3/2 for all x ∈ (−3

√
β/2,−

√
β/2). �

Step 3. Quenching in the middle and on the right. Lemmas 6.2 and 6.3 are really the piece
of information that will lead us to quenching. Clearly, they do not use all the information provided
by the construction of our subsolutions and supersolutions for v; however they will be sufficient –
and it is not obvious that they could have been obtained in a simpler way.

By Lemma 6.3 and the maximum principle, we have T (t, x) ≤ φ0 +C(K)/
√
β ≤ θ for the points

x ∈ (−∞,−β1/2), as long as t ≤ t̄ = Kβδ0−1. We want to prove that T falls under θ on the interval
(−β1/2,+∞) at some time τ ≤ t̄. We will split this interval intro three sub-intervals: (−β1/2,−N/β),
(−N/β,N/β) and (N/β,+∞) with a sufficiently large N .
1. The interval (N/β,+∞). We use the fact that the advection term in equation (6.13) is less than
−β/4 for x > 1/β and 0 ≤ t ≤ t̄ by part (i) in Lemma 6.2 since β2δ0−2 ≪ 1/β because δ0 ∈ (0, 1/2).
Let

A(t, x) =
1

β
+ exp(−µ(x+ β(t− t̄)/16 − z0))

with z0 = 1/β be the exponentially decaying solution of the problem

At −Axx −
3β

16
Ax = Λ

[

A− 1

β

]

, − µ2 +
β

8
µ = Λ,

with the constant Λ chosen so that Λ(s − 1/β) ≥ f(s) for s ≥ 1/β – this is possible as 1/β ≤ θ/2
for a sufficiently large β. The constant µ is chosen so that

µ =
β

16
+

1

2

√

β2

64
− 4Λ ≥ β

16
. (6.15)

Note that, since Ax(t, x) ≤ 0 and v ≤ Cρβδ0−1 for x > z0 and 0 ≤ t ≤ t̄, we have for x ≥ z0:

At −Axx + [v − ẏf ]Ax ≥ At −Axx −
β

8
Ax = Λ(A− β−1) ≥ f(A). (6.16)

Moreover, at the endpoint x = z0 we have

T (t, z0) ≤ 1 ≤ exp(−µβ(t− t̄)/16) ≤ A(t, z0) (6.17)

for all 0 ≤ t ≤ t̄. In order to apply the maximum principle we compare the initial data T0(x) and
A(0, x). First, for x ≥ x0 − y0 + lf we have T0(x) ≤ 1/β ≤ A(0, x). Now, at x = x0 − y0 + lf we have

A(0, x0 − y0 + lf ) =
1

β
+ exp(−µ(x0 − y0 + lf − βt̄/16 − z0)) ≥ 1,

provided that
x0 − y0 + lf − βt̄/16 − z0 ≤ 0. (6.18)

As |x0 − y0| ≤ C/β, z0 = 1/β and lf ≤ Cβγf , the inequality (6.18) indeed holds since γf < δ0. The
function A(0, x) is decreasing in x – therefore, we also have

T0(x) ≤ 1 ≤ A(0, x) for all x ≤ x0 − y0 + lf .

We conclude that T0(x) ≤ A(0, x) for all x ≥ z0. The maximum principle together with the
inequalities (6.16) and (6.17) implies that T (t, x) ≤ A(t, x) for all x ≥ z0 and all 0 ≤ t ≤ t̄.
Therefore, at the points x ≥ z0 + (N − 1)/β we have at the time t̄:

T (t̄, x) ≤ A(t̄, x) ≤ A(t̄, z0 + (N − 1)/β) =
1

β
+ exp(−µ(N − 1)/β) ≤ θ + φ0

2
, (6.19)
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for a sufficiently large N > 0 since µ ≥ β/16.
2. The interval (−

√
β,−N/β). We set z1 = −1/β and construct a supersolution for temperature

on the interval (−
√
β, z1) using part (ii) of Lemma 6.2 in a similar fashion. Take µ as in (6.15) and

set

B(t, x) = eµ(x−β(t−t̄)/16−z1) + φ0 +
C√
β

so that

Bt −Bxx +
3β

16
Bx = Λ

(

B − φ0 −
C√
β

)

with Λ > 0 chosen so that Λ(s − φ0 − C/
√
β) ≥ f(s) for s ≥ φ0 – such Λ exists for a sufficiently

large β > 0 because φ0 < θ. Then, as B(t, x) is increasing in x for all t ≥ 0 and v(t, x) ≥ 3β/4 for
x ≤ z1 and 0 ≤ t ≤ t̄, we have

Bt −Bxx + [v − ẏf ]Bx ≥ Bt −Bxx +
3β

16
Bx = Λ

(

B − φ0 −
C√
β

)

≥ f(B) for −
√

β ≤ x ≤ z1

for all 0 ≤ t ≤ t̄. At the two endpoints: x1 = −
√
β and x2 = z1 we have T (t, xj) ≤ B(t, xj), j = 1, 2

for all 0 ≤ t ≤ τ simply because T (t, x1) ≤ φ0 + C/
√
β ≤ B(t, x1) according to Lemma 6.3, and

T (t, x2) ≤ 1 ≤ B(t̄, x2) ≤ B(t, x2) since B is decreasing in t. Moreover, at the time t = 0 we have

B(−y0, 0) = (1 − φ0)e
µ(−y0+1/β+βt̄/16) + φ0 +

C√
β
> 1,

as soon as K is sufficiently large, since y0 = Cβδ0 and t̄ = Kβδ0−1. As the function B(0, x)
is increasing in x it follows that we have T (0, x) ≤ 1 < B(0, x) for all x ≥ −y0. However, for
−
√
β ≤ x ≤ −y0 we have T (0, x) ≤ φ0 < B(0, x) – we conclude that T (0, x) ≤ B(0, x) for all

x ≥ −
√
β. Therefore, B(t, x) is a supersolution for T (t, x) and T (t, x) ≤ B(t, x) for all 0 ≤ t ≤ τ

and all x ∈ (−
√
β, z1). However, at the time t = t̄ we have then for all x ≤ −N/β:

T (t̄, x) ≤ B(t̄, x) ≤ B(t̄,−N/β) = (1 − φ0)e
µ(−N/β−βt̄/16−z1+βt̄/16) + φ0 +

C√
β

≤ (1 − φ0)e
µ(−(N−1)/β) + φ0 +

C√
ρ
≤ θ + φ0

2

since µ ≥ β/16 and φ0 < θ.
We conclude from the above that at the time t̄ the function T (t, x) is below the value θ everywhere

except on the interval x ∈ (−N/β,N/β). A slight generalization of that argument shows that (after
increasing N) the same statement can be proved for all t ∈ (t̄/2, t̄).

3. The interval (−N/β,N/β). This is now just quenching by diffusion. It follows from the
previous calculations that on the slightly larger interval (−2N/β,+2N/β) itself and for any time
t ∈ (t̄/2, t̄) the function T may be bounded from above as

T (t, x) ≤
[

φ0 + θ

2
+ Φ(t, x)

]

eΛt.

The function Φ(t, x) is the solution of the Dirichlet problem

Φt + [v − ẏf ]Φx = Φxx, Φ(t,−2N/β) = Φ(t,+2N/β) = 0

with the Cauchy data

Φ(t̄/2, x) =

{

1, for −N/β ≤ x ≤ N/β
0, for − 2N/β ≤ x < −N/β and N/β < x ≤ y0 + 2N/β.
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As |v| + |ẏf | ≤ Cβ we have the inequality

Φt − Φxx ≤ Cβ|Φx|.

Let now Φ̄ solve
Φ̄t − Φ̄xx = Cβ|Φ̄x|, Φ̄(t,−2N/β) = Φ̄(t,+2N/β) = 0

with Φ̄(t̄/2, x) = Φ(t̄/2, x). The maximum principle implies that Φ̄(t, x) ≥ Φ(t, x). However, the
function Φ̄ is symmetric about y0 and solves the half-interval problem

Φ̄t − Φ̄xx = CβΦ̄x, − 2N/β < x < 0, Φ̄(t,−2N/β) = Φ̄x(t, y0) = 0.

Consider the principal eigenfunction ξ(x) of this problem with the eigenvalue λ(β):

−ξxx = Cβξx − λ(β)ξ, − 2N/β < x < y0, ξ(−2N/β) = ξx(y0) = 0.

After rescaling: x = z/β this becomes

−β2ξzz = Cβ2ξz − λ(β)ξ, − 2 < z < 0, ξ(−2) = ξz(0) = 0.

and thus λ(β) = −λ0β
2 with λ0 > 0. It follows that Φ̄(t, x) ≤ C0e

−λ0β2t and in particular Φ̄(t, x) ≤ θ
for all −2N/β ≤ x ≤ 2N/β at the time t̄ = Cδ0

δ0−1. The proof of Theorem 6.1 is now complete. �
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[24] A. Zlatoš, Sharp transition between extinction and propagation of reaction. J. Amer. Math.
Soc. 19 (2006), pp. 251–263

52


