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Abstract. Many processes in biology involve both reactions and chemotaxis. However, to
the best of our knowledge, the question of interaction between chemotaxis and reactions has
not yet been addressed either analytically or numerically. We consider a model with a single
density function involving diffusion, advection, chemotaxis, and absorbing reaction. The model
is motivated, in particular, by studies of coral broadcast spawning, where experimental observa-
tions of the efficiency of fertilization rates significantly exceed the data obtained from numerical
models that do not take chemotaxis (attraction of sperm gametes by a chemical secreted by
egg gametes) into account. We prove that in the framework of our model, chemotaxis plays a
crucial role. There is a rigid limit to how much the fertilization efficiency can be enhanced if
there is no chemotaxis but only advection and diffusion. On the other hand, when chemotaxis
is present, the fertilization rate can be arbitrarily close to being complete provided that the
chemotactic attraction is sufficiently strong.

1. Introduction

Our goal in this paper is to study the effect chemotactic attraction may have on reproduction
processes in biology. A particular motivation for this study comes from the phenomenon of coral
broadcast spawning. Broadcast spawning is a fertilization strategy used by various benthic
invertebrates (sea urchins, anemones, corals) whereby males and females release sperm and egg
gametes into the surrounding flow. The gametes are positively buoyant, and rise to the surface
of the ocean. The sperm and egg are initially separated by the ambient water, and effective
mixing is necessary for successful fertilization. The fertilized gametes form larva, which is
negatively buoyant and tries to attach to the bottom of the ocean floor to start a new colony.
For the coral spawning problem, field measurements of the fertilization rates are rarely below
5%, and are often as high as 90% [8, 15, 24, 28]. On the other hand, numerical simulations based
on the turbulent eddy diffusivity [4] predict fertilization rates of less than 1% due to the strong
dilution of gametes. The turbulent eddy diffusivity approach involves two scalars that react
and diffuse with the effective diffusivity taking the presence of the flow into account. It is well
known, however, that the geometric structure of the fluid flow lost in the turbulent diffusivity
approach can be important for improving the reaction rate (in the physical and engineering
literature see [22, 26, 27]; in the mathematical literature see [16, 3, 13, 9, 14] for further
references). Recent work of Crimaldi, Hartford, Cadwell and Weiss [6, 7] employed a more
sophisticated model, taking into account the instantaneous details of the advective transport
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not captured by the eddy diffusivity approach. These papers showed that vortex stirring can
generally enhance the reaction rate, perhaps accounting for some of the discrepancy between
the numerical simulations and experiment.

However, there is also experimental evidence that chemotaxis plays a role in coral fertilization:
eggs release a chemical that attracts sperm [1, 2, 18, 19]. Mathematically, chemotaxis has been
extensively studied in the context of modeling mold and bacterial colonies. Since the original
work of Patlak [23] and Keller-Segel [11, 12] where the first PDE model of chemotaxis was
introduced, there has been an enormous amount of effort devoted to the possible blow up and
regularity of solutions, as well as the asymptotic behavior and other properties (see [25] for
further references). However, we are not aware of any rigorous or even computational work on
the effects of chemotaxis for improved efficiency of biological reactions.

In this paper, we take the first step towards systematical study of this phenomenon, by
analyzing rigorously a single partial differential equation modeling the fertilization process:

∂tρ+ u · ∇ρ = ∆ρ+ χ∇(ρ∇(∆)−1ρ)− ρq, ρ(x, 0) = ρ0(x), x ∈ Rd. (1.1)

Here, in the simplest approximation, we consider just one density, ρ(x, t) ≥ 0, corresponding
to the assumption that the densities of sperm and egg gametes are identical. The vector field u
in (1.1) models the ambient ocean flow, is divergence free, regular and prescribed, independent
of ρ. The second term on the right is the standard chemotactic term, in the same form as it
appears in the (simplified) Keller-Segel equation (see [25]). This term describes the tendency
of ρ(x, t) to move along the gradient of the chemical whose distribution is equal to −∆−1ρ.
This is an approximation to the full Keller-Segel system based on the assumption of chemical
diffusion being much faster than diffusion of gamete densities. The term (−ρq) models the
reaction (fertilization). We do not account for the product of the reaction – fertilized eggs –
which drop out of the process. We are interested in the behavior of

m0(t) =

∫
Rd
ρ(x, t)dx,

which is the total fraction of the unfertilized eggs by time t. It is easy to see that m0(t) is
monotone decreasing. High efficiency fertilization corresponds to m0(t) becoming small with
time, as almost all egg gametes are fertilized. We prove the following results.

Theorem 1.1. Let ρ(x, t) solve (1.1) with a divergence free u(x, t) ∈ C∞(Rd × [0,∞)) and
initial data ρ0 ≥ 0 ∈ S(Rd) (the Schwartz class). Assume that qd > d+ 2, and the chemotaxis
is absent: χ = 0. Then there exists a constant µ0 depending only on q, d and ρ0(x) but not on
u(x, t) such that m0(t) ≥ µ0 for all t ≥ 0.

Remarks. 1. Observe that the constant µ0 does not depend on u. No matter how strong
the flow is or how it varies in time and space, it cannot enhance the reaction rate beyond a
certain definitive limit. Moreover, some flows may have a negative effect on the reaction rate,
increasing the leftover L1-norm of ρ.
2. The condition qd > d+2 does not include the most natural case of d = q = 2. Dimension two
corresponds to the surface of the ocean, and q = 2 corresponds to the product of egg and sperm
densities. Our preliminary calculations show, however, that the mathematics of d = q = 2 case
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is different and more subtle. Then the L1 norm of ρ for sufficiently rapidly decaying initial data
goes to zero but only very slowly in time. The difference between chemotactic and chemotactic-
free equation (1.1) in this case is likely to manifest itself in the time scales of the fertilization
process: in the presence of chemotaxis the L1 norm goes to zero much faster. We will address
this issue in a separate publication, to keep the present paper as transparent as possible.
3. The condition that ρ0 ∈ S can of course be weakened. What we need is the initial data
that is decaying sufficiently quickly and is minimally regular. Similarly, the condition that u is
smooth can be weakened to, say, C1 without much difficulty.
4. By u ∈ C∞(R× [0,∞)) we mean that bounds on every derivative of u are uniform over all
x ∈ Rd × [0, t], for every t > 0.

On the other hand, in the presence of chemotaxis, we have

Theorem 1.2. Let ρ(x, t) solve (1.1) with a divergence free u(x, t) ∈ C∞(Rd× [0,∞)) and fixed
initial data ρ0 ≥ 0 ∈ S. Assume that d = 2, and q is a positive integer greater than 2. Then we
have that m0(t) → c(χ, ρ0, u) > 0 as t → ∞, but c(χ, ρ0, u) → 0 as χ → ∞, with q, ρ0 and u
fixed.

Remarks. 1. We prove more (see Theorem 4.2). Here we stated the result in the simplest
form to avoid technicalities.
2. In general, solutions of the chemotaxis equation are known to form singularities in a finite
time for some initial data (see [25] for references). However, we will prove that in the presence
of the reaction term −ρq with q > 2, solutions always remain regular for regular initial data.
3. The case d > 2 is mathematically different and it is not clear that the L1 norm may become
arbitrarily small in this case even with strong chemotaxis aid. There appears to be a genuine
mathematical reason why coral gametes rise to the surface instead of trying to find each other
in the three-dimensional ocean!

Hence our model implies that the chemotactic term, as opposed to the flow and diffusion
alone, can account for highly efficient fertilization rates that are observed in nature. Moreover,
Theorems 1.1 and 1.2 suggest that the presence of chemotaxis may be a necessary and crucial
aspect of the fertilization process. Of course, a more realistic model of the process is a system
of equations involving two different densities. We will show that even for the system case, the
flow can only have a limited effect on fertilization efficiency, similarly to our simple model. It
is possible that in the system case the flow and chemotaxis can play supplementary role, with
flow acting on larger and chemotaxis on smaller length scales. The influence of chemotaxis in
the system setting, and investigation of quadratic reaction term are left for a later study.

2. The reaction-advection-diffusion case

In this section, we prove Theorem 1.1. Consider equation (1.1) with χ = 0 :

∂tρ+ u · ∇ρ = ∆ρ− ρq, ρ(x, 0) = ρ0(x). (2.1)

As the first step, observe that by comparison principle, ρ(x, t) ≤ b(x, t), where

∂tb+ u · ∇b = ∆b, b(x, 0) = ρ0(x). (2.2)
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Also, note that since ρ(x, t) ≥ 0,

∂t‖ρ(·, t)‖L1 = ∂t

∫
Rd
ρ(x, t) dx = −

∫
Rd
ρq(x, t) dx ≥ −

∫
Rd
bq(x, t) dx.

Therefore, the behavior of the Lq norm of b can be used for estimating decay of the L1 norm
of ρ. We have the following lemma, similar in spirit (and proof) to Lemma 3.1 of [9].

Lemma 2.1. There exists C = C(d) that, in particular, does not depend on the flow u, such
such that

‖b(·, t)‖L2 ≤ min(‖b0‖L2 , Ct−d/4‖b0‖L1), ‖b(·, t)‖L∞ ≤ min(‖b0(x)‖L∞ , Ct−d/2‖b0‖L1). (2.3)

Proof. By Nash inequality [20], we have

‖b‖1+ 2
d

L2 ≤ C(d)‖b‖2/d

L1 ‖∇b‖L2 .

Multiplying (2.2) by b, integrating, and using incompressibility of u, we get

1

2
∂t‖b‖2

L2 = −‖∇b‖2
L2 ≤ −C

‖b‖2+ 4
d

L2

‖b‖
4
d

L1

= −C
‖b‖2+ 4

d

L2

‖b0‖
4
d

L1

.

We used the conservation of the L1-norm of b in the last step. Set z(t) = ‖b(·, t)‖2
L2 . Then

z′(t) ≤ −Cz(t)1+ 2
d‖b0‖

− 4
d

L1 .

Solving this differential inequality, we get

z(t) ≤

(
2Ct

d‖ρ0‖4/d

L1

+
1

‖ρ0‖4/d

L2

)−d/2
,

implying
‖b(·, t)‖2

L2 ≤ min
(
‖b0‖2

L2 , C(d)t−d/2‖b0‖2
L1

)
since the Lp norms of b are non-increasing. This gives the first inequality in (2.3).

The second inequality in (2.3) follows from a simple duality argument using incompressibility
of u. Indeed, consider θ(x, s), a solution of

∂sθ + u(x, t− s) · ∇θ = ∆θ, θ(x, 0) = θ0(x) ∈ S.
A direct calculation shows that

d

ds

∫
Rd
b(x, s)θ(x, t− s) dx = 0.

When s = t, we get∣∣∣∣∫
Rd
b(x, t)θ0(x) dx

∣∣∣∣ ≤ ‖b(x, t)‖L2‖θ0‖L2 ≤ C(d)t−d/4‖b0‖L1‖θ0‖L2 .

For s = 0, this implies ∣∣∣∣∫
Rd
b0(x)θ(x, t) dx

∣∣∣∣ ≤ C(d)t−d/4‖b0‖L1‖θ0‖L2
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for every b0, θ0 ∈ S. Hence
‖θ(x, t)‖L∞ ≤ C(d)t−d/4‖θ0‖L2 (2.4)

for every θ0 ∈ L2. To finish the proof of the Lemma, given t > 0, note that

‖b(x, t)‖L∞ ≤ C(d)(t/2)−d/4‖b(x, t/2)‖L2 ≤ C(d)t−d/2‖b0‖L1 .

Here in the second step we used (2.4) and adjusted C(d).
�

For a more precise estimate on the residual mass µ0, we need one more lemma.

Lemma 2.2. Assume that ρ(x, t) solves (2.1) with a smooth bounded incompressible u and
ρ0 ∈ S. Then for every t > 0 we have

‖ρ(x, t)‖Lp
‖ρ(x, t)‖L1

≤ ‖ρ0‖Lp
‖ρ0‖L1

,

for all 1 ≤ p ≤ ∞.

Proof. For p = 1 the result is immediate. Consider some 1 < p <∞, and look at

∂

∂t

( ∫
Rd ρ

p dx(∫
Rd ρ dx

)p
)

= p

(∫
Rd
ρ dx

)−p−1

×
[∫

Rd
ρp−1(−u · ∇ρ+ ∆ρ− ρq) dx

∫
Rd
ρ dx−

∫
Rd
ρp dx

∫
Rd

(−u · ∇ρ+ ∆ρ− ρq) dx
]

Consider the term in the second line above, which after integration by parts simplifies to(
−(p− 1)

∫
Rd
ρp−2|∇ρ|2 dx−

∫
Rd
ρq+p−1 dx

)∫
Rd
ρ dx+

∫
Rd
ρp dx

∫
Rd
ρq dx.

This does not exceed

−
∫

Rd
ρq+p−1 dx

∫
Rd
ρ dx+

∫
Rd
ρp dx

∫
Rd
ρq dx,

which is less than or equal to zero by an application of Hölder’s inequality.
The p =∞ case follows by a limiting procedure since ρ(x, t) ∈ S for all t. �

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. The idea of the proof is very simple. We will show that if L1-norm of
ρ at some time t0 is sufficiently small then for all times t > t0 the L1-norm of ρ(x, t) can not
drop below ‖ρ(t0)‖L1/2. This shows that ρ(x, t) can not tend to zero as t→ +∞.

Recall that for every t,

∂t

∫
Rd
ρ(x, t) dx = −

∫
Rd
ρ(x, t)q dx ≥ −

∫
Rd
b(x, t)q dx,

where b is given by (2.2). By Lemma 2.1 and Hölder’s inequality,∫
Rd
b(x, t)q dx ≤ Cmin

(
‖ρ0‖qLq , t

− d(q−1)
2 ‖ρ0‖qL1

)
.
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Thus, for every τ > 0,∫ ∞
t0

dt

∫
Rd
b(x, t)q dx ≤ C(d)

(
‖ρ(·, t0)‖qLqτ + ‖ρ(·, t0)‖L1

∫ ∞
t0+τ

t−
d(q−1)

2 dt

)
≤ C(d, q)

(
‖ρ(·, t0)‖q−1

L∞ ‖ρ(·, t0)‖L1τ + ‖ρ(·, t0)‖qL1τ
d+2−qd

2

)
. (2.5)

We used the assumption qd > d+ 2 when evaluating integral in time.
Assume, on the contrary, that the L1 norm of ρ does go to zero for some u. Consider some time

t0 > 0 when ‖ρ(·, t0)‖ is sufficiently small (we’ll have a precise bound later). Using Lemma 2.2
and (2.5), we see that further decrease of the L1 norm from that level is bounded by

‖ρ(·, t0)‖L1 − ‖ρ(·, t)‖L1 ≤ C(d, q)

(
‖ρ0‖q−1

L∞

‖ρ0‖q−1
L1

‖ρ(·, t0)‖qL1τ + ‖ρ(·, t0)‖qL1τ
d+2−qd

2

)
, (2.6)

for all τ > 0. Choosing τ to minimize the expression (2.6), we find that for every t > t0,

‖ρ(·, t0)‖L1 − ‖ρ(·, t)‖L1 ≤ C(q, d)‖ρ(·, t0)‖qL1

(
‖ρ0‖L∞
‖ρ0‖L1

) qd−d−2
d

. (2.7)

If ‖ρ(t)‖L1 → 0 as t→ +∞, we may choose t0 so that

C(q, d)‖ρ(·, t0)‖q−1
L1

(
‖ρ0‖L∞
‖ρ0‖L1

) qd−d−2
d

≤ 1

2
.

Then we get that

‖ρ(·, t)‖L1 ≥ 1

2
‖ρ(·, t0)‖L1 ≥ µ0(q, d, ρ0) ≡ min

(
1

2
‖ρ0‖L1 ,

1

2
q
q−1C(q, d)

1
q−1

(
‖ρ0‖L1

‖ρ0‖L∞

)1− 2
d(q−1)

)
for every t > t0. This is a contradiction to the assumption ‖ρ(t)‖L1 → 0 as t → +∞. This
argument can also be used to define µ0 in the statement of the theorem. �

3. The reaction-advection-diffusion case: a system

In this section we show that the results of Section 2 largely extend to a more general model.
Consider the following system

∂ts = (u · ∇)s+ κ1∆s− (se)q/2, s(x, 0) = s0(x) (3.1)

∂te = (u · ∇)e+ κ2∆e− (se)q/2, e(x, 0) = e0(x). (3.2)

Here s(x, t) and e(x, t) are sperm and egg densities respectively. The following analog of The-
orem 1.1 holds.

Theorem 3.1. Let s(x, t), e(x, t) solve (3.1),(3.2) with divergence free u(x, t) ∈ C∞(Rd×[0,∞))
and initial data s0, e0 ∈ S. Assume that qd > d+ 2, q > 2 and the chemotaxis is absent: χ = 0.
Then there exists a constant µ1 depending only on q, d and e0(x), s0(x) such that the L1 norms
of s(x, t) and e(x, t) remain greater than µ1 for all times.

Remark. The condition q > 2 can be omitted if ‖s0‖L1 = ‖e0‖L1 .
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Proof. As before, we know that s(x, t) ≤ s(x, t) and e(x, t) ≤ e(x, t) where s, e solve (2.2) the
with initial data s0 and e0, and the diffusion coefficients κ1 and κ2, respectively. Lemma 2.1
can still be used to control s, e. Instead of Lemma 2.2, we will use a cruder bound.

Observe that if ‖e0‖L1 6= ‖s0‖L1 , then the L1 norm that is larger initiallly remains larger
than the other norm. Hence, assume without loss of generality that ‖e0‖L1 ≤ ‖s0‖L1 and focus
on the decay of ‖e(·, t)‖L1 . Let us estimate the decay after some time t0 :∣∣∣∣∫ ∞

t0

dt

∫
Rd
s(x, t)q/2e(x, t)q/2 dx

∣∣∣∣ ≤∣∣∣∣∫ t0+τ

t0

dt

∫
Rd
s(x, t)q/2e(x, t)q/2 dx

∣∣∣∣+

∣∣∣∣∫ ∞
t0+τ

dt

∫
Rd
s(x, t)q/2e(x, t)q/2 dx

∣∣∣∣
≤ τ‖s(·, t0)‖q/2L∞‖e(·, t0)‖

q
2
−1

L∞ ‖e(·, t0)‖L1 +

∫ ∞
t0+τ

‖s(·, t)‖q/2Lq ‖e(·, t)‖
q/2
Lq dt

≤ τ‖s0‖q/2L∞‖e0‖
q
2
−1

L∞ ‖e(·, t0)‖L1 + Cτ 1− d(q−1)
2 ‖s0‖q/2L1 ‖e(·, t0)‖q/2L1 . (3.3)

Choosing τ to minimize (3.3) leads to

‖e(·, t0)‖L1 − ‖e(·, t)‖L1 ≤ C(q, d)‖s0‖
q(qd−d−2)
2d(q−1)

L∞ ‖s0‖
q

d(q−1)

L1 ‖e0‖
(q−2)(qd−d−2)

2d(q−1)

L∞ ‖e(·, t0)‖
1+ q−2

d(q−1)

L1 . (3.4)

Suppose that ‖e(·, t)‖L1 does go to zero as t → ∞. Choose t0 so that C‖e(x, t0)‖
q−2
d(q−1)

L1 < 1
2

(where C is the constant in front of ‖e(·, t0)‖
1+ q−2

d(q−1)

L1 in (3.4)). In this case, due to (3.4), the L1

of e(x, t) can never drop below half of its value at t0. This is a contradiction. �

4. Reaction enhancement by chemotaxis

In this section, we will show that chemotaxis, as opposed to a divergence free fluid flow, can,
in principle, make reaction as efficient as needed. We consider the equation

∂tρ = ∆ρ− (u · ∇)ρ+ χ∇(ρ∇(∆)−1ρ)− ρq, ρ(x, 0) = ρ0(x). (4.1)

We will prove that the large time limit of the L1 norm of ρ(x, t) goes to zero as chemotaxis
coupling increases. On the other hand, we will also prove lower bounds showing that the
L1 norm does not go to zero as t → ∞ for each fixed coupling. Before we state the main
results of this section, there is an auxiliary issue we need to settle. In general, solutions to the
chemotaxis equation may lose regularity in a finite time (see e.g. [25] for further references).
As Theorem 4.1 below shows, this does not happen with the additional negative reaction term
−ρq, q > 2 in the right hand side: solutions with smooth initial data stay smooth. We will
work with initial data which is concentrated in a finite region, in particular, with a finite second
moment. As we will see, this property is also preserved by the evolution. Let us define

‖f‖Mn =

∫
Rd

(|∇f |+ |f(x)|)(1 + |x|n) dx.

Let Hs denote the standard Sobolev spaces in Rd. Define a Banach space Ks,n with the norm
‖f‖Ks,n = ‖f‖Hs + ‖f‖Mn . Then we have
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Theorem 4.1. Assume that q > 2, n > 0 and s > d/2 + 1 are integers and ρ0 ∈ Ks,n. Suppose
that u ∈ C∞(Rd × [0,∞)) is divergence free. Then there exists a unique solution ρ(x, t) of the
equation (4.1) in C(Ks,n, [0,∞)) ∩ C∞(Rd × (0,∞)).

The proof of Theorem 4.1 uses fairly standard techniques; we sketch it in Appendix I.
First, we prove the bound showing reaction enhancement by chemotaxis. Let us define

m2 = minx0

∫
Rd
|x− x0|2ρ0(x) dx.

Theorem 4.2. Let d = 2, and suppose that u ∈ C∞(Rd × [0,∞)) is divergence free. Assume
that q > 2, s > d/2+1 and n ≥ 2 are integers and ρ(x, t) solves (4.1) with ρ0 ≥ 0 ∈ Ks,n. Then

a. If u = 0, then limt→∞ ‖ρ(·, t)‖L1 ≤ 2χ−1. More precisely, for every τ > 0, we have

‖ρ(·, τ)‖L1 ≤ 2

χ

(
1 +

√
1 +

χm2

4τ

)
. (4.2)

b. If u 6= 0, then limt→∞ ‖ρ(·, t)‖L1 ≤ C(u,m2)χ−2/3. Moreover, for 0 ≤ τ ≤ χ1/3 we have

‖ρ(·, τ)‖L1 ≤ C(u,m2)(χτ)−1/2. (4.3)

Remark. Note, in particular, that if u = 0, the level ‖ρ(·, τ)‖L1 ∼ χ−1 will be reached in at
most τ ∼ χ, while the level ∼ χ−1/2 in at most τ ∼ 1. If u 6= 0, the upper bound on the time
scale to reach the L1 norm level ∼ χ−1/2 is also τ ∼ 1.

Proof. Since ρ0 ∈ Ks,n, there exists x0 such that
∫

R2 |x − x0|2ρ0(x) dx = m2. Set x0 = 0 for
simplicity. Consider

∂t

∫
R2

|x|2ρ dx =

∫
R2

|x|2(u · ∇)ρ dx+

∫
R2

|x|2∆ρ dx+ χ

∫
R2

|x|2∇(ρ∇∆−1ρ) dx−
∫

R2

|x|2ρq dx.

(4.4)
Observe that due to ∇ · u = 0,∫

R2

|x|2(u · ∇)ρ dx = −2

∫
R2

(x · u)ρ dx,

and in dimension two ∫
R2

|x|2∆ρ dx = 4

∫
R2

ρ dx.

For the chemotaxis term, we have∫
R2

|x|2∇(ρ∇∆−1ρ) dx = −2

∫
R2×R2

∫
R2

x · (x− y)

|x− y|2
ρ(x, t)ρ(y, t) dxdy = −

(∫
R2

ρ dx

)2

.

In the last step, we used symmetrization in x, y. Due to Theorem 4.1, all integrations by parts
are justified for all t ≥ 0. Therefore, we can recast (4.4) as

∂t

∫
R2

|x|2ρ dx = −2

∫
R2

(x · u)ρ dx+ 4

∫
R2

ρ dx− χ
(∫

R2

ρ dx

)2

−
∫

R2

|x|2ρq dx. (4.5)
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First let us set u = 0 in (4.5). Suppose that ‖ρ(·, t)‖L1 ≥ Y for all t ∈ [0, τ ], and Y ≥ 4/χ.
It follows from (4.5) that we need τY (χY − 4) ≤ m2 to avoid contradiction. This quadratic
inequality translates into (4.2).

Now, assume that u is an arbitrary smooth divergence free vector field. In this case, we
further estimate ∣∣∣∣∫

R2

x · uρ dx
∣∣∣∣ ≤ ‖u‖2

L∞χ
β

∫
R2

ρ dx+ χ−β
∫

R2

|x|2ρ dx,

with β > 0 to be chosen. Then, it follows from (4.5) that

∂t

∫
R2

|x|2ρ dx < 2χ−β
∫

R2

|x|2ρ dx+

(
4 + 2χβ‖u‖2

L∞ − χ
∫

R2

ρ dx

)∫
R2

ρ dx,

and thus

∂t

(
e−2χ−βt

∫
R2

|x|2ρ dx
)
< e−2χ−βt

(
4 + 2χβ‖u‖2

L∞ − χ
∫

R2

ρ dx

)∫
R2

ρ dx. (4.6)

Assume now that for all t ∈ [0, τ ], we have ‖ρ(·, t)‖L1 ≥ Y > 0, and that

Y ≥ 2

χ
(2 + χβ‖u‖2

L∞).

Then, the integral in time of the right hand side in (4.6) over [0, τ ] can be estimated from above
by∫ τ

0

e−2χ−βtY
(
4 + 2χβ‖u‖2

L∞ − χY
)
dt =

(
1− e−2χ−βτ

)
Y χβ

(
2 + χβ‖u‖2

L∞ − χY/2
)
. (4.7)

Setting τ = χβ, we see that to avoid a contradiction, we need

(1− e−2)χβY
(
χY − 4− 2χβ‖u‖2

L∞

)
≤ 2m2. (4.8)

An elementary computation shows that the optimal choice that makes Y the smallest is β = 1/3.
Solving this quadratic inequality, we find that ‖ρ(·, τ = χ1/3)‖L1 cannot exceed c(u,m2)χ−2/3.
More generally, for 0 < τ < χ1/3, we get from (4.7) the bound

‖ρ(·, τ)‖L1 ≤ C(u,m2)(χτ)−
1
2 .

�

Next we prove a result in the opposite direction, showing that at least some estimates of
Theorem 4.2 scale sharply in χ.

Theorem 4.3. Let d = 2, and suppose that u ∈ C∞(Rd × [0,∞)) is divergence free. Assume
that q > 2, s > d/2+1 and n ≥ 2 are integers and ρ(x, t) solves (4.1) with ρ0 ≥ 0 ∈ Ks,n. Then
limt→∞ ‖ρ(·, t)‖L1 > 0. Moreover, for some initial data ρ0, ‖ρ(·, t)‖L1 remains above c(q, ρ0)χ−1

for all times.

Proof. Recall that ∂t
∫

R2 ρ(x, t) dx = −
∫

R2 ρ(x, t)q dx. Let us derive estimates on ‖ρ‖Lq . Multi-
plying (4.1) by ρq−1 and integrating, we obtain

1

q
∂t

∫
R2

ρq dx =

∫
R2

ρq−1∆ρ dx+ χ

∫
R2

ρq−1∇ · (ρ∇∆−1ρ) dx−
∫

R2

ρ2q−1 dx. (4.9)
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Observe that∫
R2

ρq−1∇ · (ρ∇∆−1ρ) dx = −(q − 1)

∫
R2

ρq−1∇ρ · ∇∆−1ρ dx =
q − 1

q

∫
R2

ρq+1 dx.

The last equality is obtained by integration by parts. Thus, we can rewrite (4.9) as

∂t

∫
R2

ρq dx = −4(q − 1)

q

∫
R2

|∇ρq/2|2 dx+ χ(q − 1)

∫
R2

ρq+1 dx− q
∫

R2

ρ2q−1 dx. (4.10)

Let us introduce v = ρq/2, and recall a Gagliardo-Nirenberg type inequality

‖v‖L2+α ≤ C(d, α)‖∇v‖
2

2+α

L2 ‖v‖
α

2+α

L
αd
2
, (4.11)

which is valid for all α > 0, d ≥ 1. In our case, we set α = 2/q, and inequality (4.11) translates
into ∫

R2

ρq+1 dx ≤ C(q)

∫
R2

|∇ρq/2|2 dx
∫

R2

ρ dx.

Observe that αd/2 < 1. While inequalities of this kind are well known to the experts [17],
the references that include the case of exponents less than one are not common. For the sake
of completeness, we provide a sketch of a simple proof of inequality (4.11) in Appendix II.
Therefore, from (4.10) we can conclude that

∂t

∫
R2

ρq dx ≤ −q − 1

q

∫
R2

|∇ρq/2|2 dx
(

4− C(q)χ

∫
R2

ρ dx

)
− q

∫
R2

ρ2q−1 dx.

Now, suppose that C(q)χ
∫

R2 ρ(x, t) dx drops below 2 at some time t0. Then, for all later times,
we get

∂t

∫
R2

ρq dx ≤ −C(q)

∫
R2

|∇ρq/2|2 dx (4.12)

(we use C(q) for a positive constant depending only on q that may change from line to line).
Let us recall another Gagliardo-Nirenberg inequality

‖v‖
1+ 2

d(q−1)

L2 ≤ C(q, d)‖∇v‖L2‖v‖
2

d(q−1)

L2/q . (4.13)

Applying it in (4.12) with v = ρq/2 in d = 2 leads to

∂t

∫
R2

ρq dx ≤ −C(q)

(∫
R2

ρq dx

)1+ 1
q−1
(∫

R2

ρ dx

)− q
q−1

.

Solving this differential inequality, and using the fact that
∫

R2 ρ dx is monotone decreasing,
leads to ∫

R2

ρ(x, t)q dx ≤ min

(∫
R2

ρ(x, t0)q dx, C(q)(t− t0)−q+1

(∫
R2

ρ(x, t0) dx

)q)
.

Then the argument identical to that in the proof of Theorem 1.1 implies that

inft

∫
R2

ρ(x, t) dx ≥ min

(
1

2
‖ρ(·, t0)‖L1 , C(q)

(
‖ρ(·, t0)‖L1

‖ρ(·, t0)‖L∞

)q−2
)

(4.14)
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(observe that the proof of Lemma 2.2 goes through when C(q)χ
∫

R2 ρ(x, t) dx < 2). Since we
have a uniform upper bound for ‖ρ(x, t)‖L∞ (see Lemma 5.6 below), (4.14) implies the first
statement of the theorem. Moreover, we can always take initial data such that t0 = 0, and the
L∞ norm of ρ0 is sufficiently small, making the bound on the right hand side of (4.14) equal
to c(q)χ−1. This proves the second statement of the theorem. �

5. Appendix I: Global existence of smooth solutions

Here we prove Theorem 4.1. We begin with the construction of a local solution in an appro-
priate space. We will consider arbitrary dimension d. Recall that

‖f‖Mn =

∫
Rd

(|ρ(x)|+ |∇ρ(x)|)(1 + |x|n) dx,

and the Banach space Ks,n is defined by the norm ‖f‖Ks,n = ‖f‖Mn + ‖f‖Hs . First, we need a
simple lemma on the heat semigroup action in this space.

Lemma 5.1. Assume that ρ0 ∈ Ks,n, with s ≥ 0, n ≥ 0. Then we have

‖et∆ρ0‖Mn ≤ C(1 + tn/2)‖ρ0‖Mn , ‖∇et∆ρ0‖Mn ≤ C(t−1/2 + t(n−1)/2)‖ρ0‖Mn ; (5.1)

‖et∆ρ0‖Hs ≤ ‖ρ0‖Hs , ‖∇et∆ρ0‖Hs ≤ Ct−1/2‖ρ0‖Hs . (5.2)

As a consequence,

‖et∆ρ0‖Ks,n ≤ C(1 + tn/2)‖ρ0‖Ks,n , ‖∇et∆ρ0‖Ks,n ≤ C(t−1/2 + t(n−1)/2)‖ρ0‖Ks,n . (5.3)

The proof of Lemma 5.1 is elementary and we omit it.
Next, we set up the contraction mapping argument for local existence. We will use the

Banach space XT
s,n ≡ C(Ks,n, [0, T ]) with a sufficiently small T > 0. Let us rewrite the equation

(4.1) in an integral form using the Duhamel principle.

ρ(x, t) = et∆ρ0(x) +

∫ t

0

e(t−s)∆ (∇ · (uρ)− ρq +∇ · (ρ∇∆−1ρ)
)
ds. (5.4)

Let us denote

Bt(ρ) ≡
∫ t

0

e(t−s)∆ (∇ · (uρ)− ρq +∇ · (ρ∇∆−1ρ)
)
ds.

We need the following auxiliary estimates.

Lemma 5.2. Assume that q, s, n are positive integers and s > d
2

+ 1. Let f, g ∈ Ks,n. Then

‖f q − gq‖Hs ≤ C(‖f‖q−1
Hs + ‖g‖q−1

Hs )‖f − g‖Hs (5.5)

‖f∇∆−1f − g∇∆−1g‖Hs ≤ C(‖f‖Hs + ‖g‖Hs)‖f − g‖Hs (5.6)

‖f q − gq‖Mn ≤ C(‖f‖q−1
Hs + ‖g‖q−1

Hs )‖f − g‖Mn (5.7)

‖f∇∆−1f − g∇∆−1g‖Mn ≤ C(‖f‖Hs + ‖g‖Hs)(‖f − g‖Mn + ‖f − g‖Hs). (5.8)

All constants in the inequalities may depend only on q, d, s and n.
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Proof. All these estimates are fairly straightforward. The estimate (5.5) follows from writing
f q − gq = (f − g)(f q−1 + · · ·+ gq−1) and the fact that Hs is an algebra when s > d/2 (see, e.g.
[29]). The estimate (5.6) follows from a similar argument. The third inequality (5.7) is proved
by the same expansion and use of Sobolev imbedding implying ‖f‖L∞ + ‖∇f‖L∞ ≤ C‖f‖Hs

and similar bounds for g. Finally, to prove the last inequality (5.8), write

f∇∆−1f − g∇∆−1g = (f − g)∇∆−1f + g(∇∆−1f −∇∆−1g).

Integral of the right hand side expression against (1 + |x|n) does not exceed

‖f−g‖Mn‖∇∆−1f‖L∞+‖g‖Mn‖∇∆−1(f−g)‖L∞ ≤ C(‖f‖Hs +‖g‖Hs)(‖f−g‖Mn +‖f−g‖Hs).

For the case of the gradient, observe that

∇ · (f∇∆−1f − g∇∆−1g) = (∇f · ∇∆−1f −∇g · ∇∆−1g) + (f 2 − g2).

The first two terms are then controlled similarly to the previous estimate, while the last two
terms are easy to handle. �

Now we can prove a key Lemma setting up contraction mapping.

Lemma 5.3. Suppose that u ∈ C∞(Rd × [0,∞)) and ∇ · u = 0. Let s, q and n be positive
integers, s > d

2
+ 1. Let f, g ∈ XT

s,n. Then

‖BT (f)−BT (g)‖XT
s,n
≤ α‖f − g‖XT

s,n
, (5.9)

where for T ≤ 1, we have

α ≤ C(d, q, n) max
0≤t≤T

(
‖u(·, t)‖Cs + ‖f(·, t)‖q−1

Hs + ‖g(·, t)‖q−1
Hs + ‖f(·, t)‖Hs + ‖g(·, t)‖Hs

)
T 1/2.

(5.10)

Proof. Consider

Bt(f)−Bt(g) =

∫ t

0

e∆(t−r) (∇(u(f − g))− (f q − gq) +∇(f∇∆−1f − g∇∆−1g)
)
dr.

Using Lemmas 5.1 and 5.2, we find

‖Bt(f)−Bt(g)‖Ks,n ≤ C

∫ t

0

[(
(t− r)−1/2 + (t− r)(n−1)/2

)
(‖u‖Cs + ‖f‖Hs + ‖g‖Hs)

+
(
1 + (t− r)n/2

) (
‖f‖q−1

Hs + ‖g‖q−1
Hs

)]
‖f − g‖Ks,n dr

≤ C
[(
t1/2 + t(n+1)/2

)
max0≤r≤t (‖u‖Cs + ‖f‖Hs + ‖g‖Hs)

+
(
t+ t(n+2)/2

)
max0≤r≤t

(
‖f‖q−1

Hs + ‖g‖q−1
Hs

)]
max0≤r≤t‖f − g‖Ks,n . (5.11)

Therefore, we obtain (5.9). For T ≤ 1 we can ignore the higher powers of T and the estimate
(5.10) for α follows from (5.11). �

In a standard way, Lemma 5.3 implies existence of local solution via the contraction mapping
principle.
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Theorem 5.4. Assume q, s, n are positive integers and s > d
2

+ 1, u ∈ C∞(Rd × [0,∞)),
∇ · u = 0. Suppose ρ0 ∈ Ks,n. Then there exists T = T (q, d, u, s, ‖ρ0‖Hs) such that there exists
a unique solution ρ(x, t) ∈ XT

s,n of the equation (5.4) satisfying ρ(x, 0) = ρ0(x).

Remark. Higher regularity of the solution in space and time (in particular implying ρ(x, t) ∈
C(Hm, (0, T ]) for every m > 0) follows from Theorem 5.4 and standard parabolic regularity
estimates applied iteratively.

Proof. The only feature of the theorem that is not completely standard is the fact that T
depends only on ‖ρ0‖Hs and not on ‖ρ0‖Kn,s . This is a consequence the fact that only Hs norms
of f and g enter in the estimate (5.10) for the contraction constant α, and only Hs norms
appear on the right hand side of (5.6), (5.5). Then the statement can be checked by tracing
through the standard proof of the solution existence via contraction mapping principle. �

Corollary 5.5. If under conditions of Theorem 5.4 we prove a uniform in time estimate on
‖ρ(·, t)‖Hs , then the local solution can be extended globally to XT

n,s with arbitrary T.

Indeed, if the Hs norm of the solution does not grow, we can just extend it by uniform time
steps as far as we want. To prove uniform in time bound for the Hs norm of solution, we first
establish control of the L∞ norm.

Lemma 5.6. Assume that ρ(x, t) is the local solution guaranteed by Theorem 5.4. Then

‖ρ(·, t)‖L∞ ≤ N0 ≡ max
(
χ

1
q−2 , ‖ρ0‖L∞

)
(5.12)

for all 0 ≤ t ≤ T.

Proof. Assume this is false, and there exists N1 > N0 and 0 < t1 ≤ T such that we have
‖ρ(x, t1)‖L∞ = N1 for the first time (that is, for all x and 0 ≤ t ≤ t1, |ρ(x, t1)| ≤ N1). We claim
that in this case there exists x0 such that ρ(x0, t1) = N1. Indeed, the only alternative is that
there exists a sequence xk such that ρ(xk, t1) → N1 as k → ∞. If xk has finite accumulation
points, set one of them as x0. By continuity ρ(x0, t1) will be equal to N1. Thus it remains to
consider the case where xk →∞ and passing to a subsequence if necessary we can assume that
unit balls around xk, B1(xk), are disjoint. By a version of Poincare inequality (see e.g. [29]),
we have ‖ρ− ρ‖2

L∞(B1(xk)) ≤ C‖ρ‖2
Hs(B1(xk)). Since

∑
k ‖ρ‖2

Hs(B1(xk)) ≤ C(t1) <∞, we get that

ρk ≡
1

|B1(xk)|

∫
B1(xk)

ρ dx
k→∞−→ N1.

But this is a contradiction with
∫

Rd |ρ(x)|(1 + |x|n) dx ≤ C(t1).
Therefore, there exists x0 such that ρ(x0, t1) = N1 (we consider the case of a maximum; the

case of minimum equal to −N1 is considered similarly). Then

∂tρ(x0, t)|t=t1 = (u · ∇)ρ(x0, t1) + ∆ρ(x0, t1) + χ∇ρ(x0, t1) · ∇∆−1ρ(x0, t1)

+χρ(x0, t1)2 − ρ(x0, t1)q ≤ ρ(x0, t1)2(χ− ρ(x0, t1)q−2).

By assumption on N1, we see that ∂tρ(x0, t1) < 0, contradiction with our choice of t1. �

Now we are ready to prove uniform in time bounds on the Hs norm of the solution.



14 ALEXANDER KISELEV AND LENYA RYZHIK

Lemma 5.7. Let ρ(x, t) be the local solution whose existence is guaranteed by Theorem 5.4.
Suppose that ‖ρ(·, t)‖L∞ does not exceed N0 for all 0 ≤ t ≤ T. Then

‖ρ(·, t)‖Hs ≤ max (‖ρ0‖Hs , C(u, d, q, s,N0)) . (5.13)

Proof. Consider for simplicity the case where s is even (the odd case is very similar). Apply
∆s/2 to (4.1), multiply by ∆s/2ρ(x, t) and integrate. We obtain

1

2
∂t‖ρ‖2

Hs =

∫
Rd

[∆s/2(u · ∇)ρ](∆s/2ρ) dx−
∫
Rd

(∆s/2ρq)(∆s/2ρ) dx− ‖ρ‖2
Hs+1

+

∫
Rd

[∇ ·∆s/2(ρ∇∆−1ρ)](∆s/2ρ) dx. (5.14)

Using ∇ · u = 0, we obtain∣∣∣∣∫
Rd

[∆s/2((u · ∇)ρ)](∆s/2ρ) dx

∣∣∣∣ ≤ C‖u‖Cs‖ρ‖2
Hs .

Next, the second integral on the right hand side of (5.14) can be written as a sum of a finite
number of terms of the form

∫
Rd D

sρ
∏q

i=1D
siρ dx, s1 + · · · + sq = s, si ≥ 0. Here Dl denotes

any partial derivative operator of the lth order. By Hölder’s inequality, we have∣∣∣∣∣
∫

Rd
Dsρ

q∏
i=1

Dsiρ dx

∣∣∣∣∣ ≤ ‖Dsρ‖L2

q∏
i=1

‖Dsiρ‖pi ,∑q
i=1 p

−1
i = 1/2. Take pi = 2s/si, and recall the Gagliardo-Nirenberg inequality ([10, 21, 17])

‖Dsiρ‖L2s/si ≤ C‖ρ‖1− si
s

L∞ ‖D
sρ‖

si
s

L2 . (5.15)

Then we get ∣∣∣∣∫
Rd

∆s/2ρq∆s/2ρ dx

∣∣∣∣ ≤ C‖ρ‖q−1
L∞ ‖ρ‖

2
Hs .

Finally, we claim that the third integral on the right hand side of (5.14) can be written as a
sum of a finite number of terms of the form

∫
Rd D

sρDkρDs+2−k∆−1ρ dx, where k = 0, . . . , s.
The only term one gets from the direct differentiation that does not appear to be of this form
is
∫

Rd ∆s/2ρ∇∆s/2ρ∇∆−1ρ dx. However, integrating by parts, we find that this term is equal to

−1
2

∫
Rd |∆

s/2ρ|2ρ dx. Now∣∣∣∣∫
Rd
DsρDkρDs+2−k∆−1ρ dx

∣∣∣∣ ≤ C‖Dsρ‖L2‖Dkρ‖Lp1‖Ds−kρ‖Lp2 ,

p−1
1 + p−1

2 = 1/2, p2 <∞. Here we used boundedness of Riesz transforms on Lp2 , p2 <∞. Set
p1 = 2s

k
, p2 = 2s

s−k . By Gagliardo-Nirenberg inequality (5.15) with si = k, s− k, we get∣∣∣∣∫
Rd
DsρDkρDs+2−k∆−1ρ dx

∣∣∣∣ ≤ C‖ρ‖L∞‖ρ‖2
Hs .
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Putting all the estimates into (5.14), we find that

1

2
∂t‖ρ‖2

Hs ≤ C‖ρ‖L∞‖ρ‖2
Hs − ‖ρ‖2

Hs+1 ≤ C‖ρ‖L∞‖ρ‖2
Hs − ‖ρ‖

2+ 2
s−d/2

Hs ‖ρ‖
− 2
s−d/2

L∞ . (5.16)

We used another Gagliardo-Nirenberg inequality in the last step. The differential inequality
(5.16) implies the result of the lemma. �

6. Appendix II: The Gagliardo-Nirenberg inequality with p < 1

Twice in the paper, we needed to apply Gagliardo-Nirenberg inequalities with one of the
summation exponents less than one (see (4.11), (4.13)). Such inequalities are certainly known
and can be found in mathematical literature (see e.g. encyclopedic [17]). However, it was
not easy for us to find a reference with a transparent self-contained proof, and for the sake
of completeness we provide a sketch of an elegant and simple proof here. The idea of this
argument has been communicated to us by Fedor Nazarov. We will prove a slightly more
general inequality containing both (4.11) and (4.13).

Theorem 6.1. Let v ∈ C∞0 (Rd), d ≥ 2. Then

‖v‖Lq ≤ C(q, d)‖∇v‖aL2‖v‖1−a
Lr , a =

1
r
− 1

q

1
d
− 1

2
+ 1

r

. (6.1)

The inequality holds for all q, r > 0 such that q > r and 1
d
− 1

2
+ 1

r
> 0.

Proof. Let Ak denote regions in Rd such that |Ak| = 2kd, k ∈ Z, the boundary of Ak coincides
with a level set of |v(x)| ≡ vk+1, and |v(x)| ≥ vk+1 inside Ak. Then

‖v‖qLq ≤
∑
k∈Z

|Ak|vqk.

Fix a small ε > 0. Let us call k ”important” if vk+1 < (1− ε)vk. Denote the set of all important
k by I. Observe that ∑

k∈Z

|Ak|vqk ≤ C(ε)
∑
k∈I

|Ak|vqk.

Indeed, a sequence of not important consequent k contributes at most
∑

l>0 2−dl(1−ε)−ql|Ak+1|vqk+1

compared to the contribution |Ak+1|vqk+1 of the single next term.
For the Lr norm, we have the estimate

‖v‖(1−a)q
Lr ≥ C

(∑
k∈Z

|Ak|vrk

)(1−a)q/r

.

For the gradient term, by the co-area formula (see e.g. [5]) we have∫
vk+1≤v(x)≤vk

|∇v| dx =

∫ vk+1

vk

Hd−1(x : |v(x)| = s) ds,

where Hd−1 is the d− 1-dimensional Hausdorff measure. By the isoperimetric inequality,

Hd−1(x : |v(x)| = s) ≥ C|Ak|1−
1
d
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if s ≥ vk+1 (see e.g. [5]). Therefore,∫
vk+1≤v(x)≤vk

|∇v| dx ≥ C|Ak|1−
1
d (vk − vk+1).

By Cauchy-Schwartz,∫
vk+1≤v(x)≤vk

|∇v|2 dx ≥ 1

|Ak|

(∫
vk+1≤v(x)≤vk

|∇v| dx

)2

≥ C|Ak|1−
2
d (vk − vk+1)2.

Therefore, ∫
Rd
|∇v|2 dx ≥ C

∑
k∈Z

(vk − vk+1)2|Ak|1−
2
d ≥ Cε2

∑
k∈I

v2
k|Ak|1−

2
d .

Thus, it remains to prove that∑
k∈I

|Ak|vqk ≤ C

(∑
k∈Z

|Ak|vrk

)(1−a)q/r(∑
k∈I

v2
k|Ak|1−

2
d

)aq/2

. (6.2)

Observe that, if d ≥ 3, then we have(∑
k∈I

v2
k|Ak|1−

2
d

)aq/2

≥

(∑
k∈I

v
2d
d−2

k |Ak|

)aq(d−2)
2d

(since
∑

k b
s
k ≥ (

∑
k bk)

s for bk ≥ 0, 0 < s ≤ 1). Write

|Ak|vqk =
[
|Ak|(1−a)q/rv

(1−a)q
k

] [
vaqk |Ak|

aq(d−2)
2d

]
. (6.3)

Apply Hölder inequality on the left hand side of (6.2), rasing the first term in (6.3) to the power
r

q(1−a)
, and the second term to the power 2d

aq(d−2)
. Notice that the inverses of these powers sum

to one due to the definition of a in (6.1). The resulting inequality coincides with (6.2). Finally,
when d = 2, we have a = 1− q/r, and (6.2) follows from a more elementary consideration. �
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