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Abstract

We study a nonlocal reaction-diffusion-mutation equation modeling the spreading of a cane
toads population structured by a phenotypical trait responsible for the spatial diffusion rate.
When the trait space is bounded, the cane toads equation admits traveling wave solutions [7].
Here, we prove a Bramson type spreading result: the lag between the position of solutions with
localized initial data and that of the traveling waves grows as (3/(2λ∗)) log t. This result relies on
a present-time Harnack inequality which allows to compare solutions of the cane toads equation
to those of a Fisher-KPP type equation that is local in the trait variable.

1 Introduction

The cane toads spreading

Cane toads were introduced in Queensland, Australia in 1935, to control the native cane beetles
in sugar-cane fields. Initially, about one hundred cane toads were released, and by now, their
population is estimated to be about two hundred million, leading to disastrous ecological effects.
Their invasion has interesting features different from the standard spreading observed in most other
species [31]. Rather than invade at a constant speed, the annual rate of progress of the toad invasion
front has increased by a factor of about five since the toads were first introduced: the toads expanded
their range by about 10 km a year during the 1940s to the 1960s, but were invading new areas at a
rate of over 50 km a year by 2006. Toads with longer legs move faster and are the first to arrive to
new areas, followed later by those with shorter legs. In addition, those at the front have longer legs
than toads in the long-established populations – the typical leg length of the advancing population
at the front grows in time. The leg length is greatest in the new arrivals and then declines over a
sixty year period. The cane toads are just one example of a non-uniform space-trait distribution –
one other is the expansion of the bush crickets in Britain [34]. There, the difference is between the
long-winged and short-winged crickets, with similar conclusions. In all such phenomena, modelling
of the spreading rates has to include the trait structure of the population.

The cane toads equation

We consider here a model of the cane toads invasion proposed in [3], based on the classical Fisher-
KPP equation [18, 23]. The population density n(t, x, θ) is structured by a spatial variable x,
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and a motility variable θ. This population undergoes diffusion in the trait variable θ, with a
constant diffusion coefficient, representing mutation, and in the spatial variable, with the diffusion
coefficient θ, representing the effect of the trait on the spreading rates of the species. In addition,
each toad competes locally in space with all other individuals for resources. If the competition is
local in the trait variable, then the corresponding Fisher-KPP model is

ut = θuxx + uθθ + u(1− u). (1.1)

It is much more biologically relevant to consider a non-local in trait competition (but still local in
space), which leads to

nt = θnxx + nθθ + rn(1− ρ), (1.2)

where

ρ(t, x) =

ˆ
Θ
n(t, x, θ)dθ (1.3)

is the total population at the position x. Here, Θ is the set of all possible traits. It is either an
infinite semi-interval: Θ = [θ,+∞), or an interval Θ = [θ, θ]. For simplicity, we consider the one-
dimensional case: x ∈ R. Both (1.1) and (1.2) are supplemented by Neumann boundary conditions
at θ = θ and θ = θ (in the case when Θ is a finite interval):

nθ(t, x, θ) = nθ(t, x, θ) = 0, t > 0, x ∈ R. (1.4)

The cane toads equation is but one example among other non-local reaction models that have
been extensively studied recently [1, 4, 10, 17, 22, 26, 27]. Mathematically, non-local models are
particularly interesting since their solutions do not obey the maximum principle and standard
propagation results for the scalar local reaction-diffusion equations do not apply. Rather, on the
qualitative level they behave as solutions of systems of reaction-diffusion equations, for which
much fewer spreading results are available. The study of the spreading of solutions to the cane
toads equations started with a Hamilton-Jacobi framework that was formally developed in [8], and
rigorously justified in [35] when Θ is a finite interval. Existence of the travelling waves for (1.2) in
that case has been proved in [7].

As far as unbounded traits are concerned, a formal argument in [8] using a Hamilton-Jacobi
framework predicted front acceleration, observed in the field, and the spreading rate of O(t3/2). A
rigorous proof of this spreading rate has been given in [6, 9].

The main results

In this paper, we consider the spreading rate of the solutions of the non–local cane toads equa-
tion (1.2)-(1.3), with x ∈ R and θ ∈ Θ = [θ, θ], and the Neumann boundary conditions (1.4). The
initial condition n(0, x, θ) = n0(x, θ) 6≡ 0 is non-negative and has localized support in a sense to be
made precise later. The classical result of [18, 23] says that solutions of the scalar KPP equation

vt = vxx + v(1− v) (1.5)

with a non-negative compactly supported initial condition v0(x) = v(0, x) propagate with the
speed c∗ = 2 in the sense that

lim
t→+∞

v(t, ct) = 0, (1.6)

for all c > c∗, and
lim

t→+∞
v(t, ct) = 1, (1.7)
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for all c ∈ [0, c∗]. The corresponding result for the solutions of (1.2) follows from the Hamilton-
Jacobi limit in [35]. The Fisher-KPP result for the solutions of (1.5) has been refined by Bramson
in [11, 12]. He has shown the following: for any m ∈ (0, 1), let

Xm(t) = sup{x : v(t, x) = m},

with s ∈ (0, 1). This level set has the asymptotics

Xm(t) = 2t− 3

2
log t+ xm + o(1), as t→ +∞. (1.8)

Here, xm is a constant that depends on m and the initial condition v0. Bramson’s original proof
was probabilistic. A shorter probabilistic proof can be found in a recent paper [32], while the PDE
proofs can be found in [24, 36] and, more recently, in [20]. Various extensions to equations with
inhomogeneous coefficients have also been studied in [14, 15, 21, 25, 28]. In this paper, we establish
a version of (1.8) – but with the weaker O(1) correction rather than o(1) as in (1.8) – for the
solutions of the non-local cane toads equation (1.2). We will assume that the initial condition is
compactly supported on the right: there exists x0 such that n0(x) = 0 for all x ≥ x0. It has been
shown in [7] that (1.2)-(1.4) admits a travelling wave solution of the form n(t, x, θ) = φ(x− c∗t, θ).
It is expected that the function φ(ξ, θ) has the asymptotic decay

φ(ξ, θ) ∼ ξe−λ∗ξQ(θ), (1.9)

with a uniformly positive function Q(θ) > 0. While [7] does not show that travelling waves exist
for all c > c∗, this is expected. This would imply that c∗ is the minimal speed of propagation for
the cane toads equation, in the same sense as c̃∗ = 2 is the minimal speed of propagation for the
Fisher-KPP equation (see also [7, Remark 4]). A precise characterization of the minimal speed c∗

and the decay rate λ∗ from [7] is recalled in Section 4.1. Here is our main result.

Theorem 1.1. Let n(t, x, θ) satisfy the system (1.2)-(1.4), with the initial condition n0(x) ≥ 0
satisfying the assumptions above. There exists m0 such that for all ε ∈ (0,m0), there is a positive
constant Cε such that

lim inf
t→∞

inf
x≤c∗t− 3

2λ∗ log(t)−Cε
n(t, x) ≥ m0 − ε,

lim sup
t→∞

sup
x≥c∗t− 3

2λ∗ log(t)+Cε

n(t, x) ≤ ε.

The main difficulty in the proof of Theorem 1.1 is the lack of the maximum principle. In
order to circumvent this, we obtain a present-time Harnack inequality for n, described below,
which is of an independent interest. Using this, we reduce the problem to showing the logarithmic
delay for the local Fisher-KPP system (1.1), a much simpler problem, as it obeys the maximum
principle. The analysis for the local equation follows the general strategy of [21], with some non-
trivial modifications.

A parabolic Harnack inequality

We will make use of the following version of the Harnack inequality, that is new, to the best of our
knowledge. Consider an operator

Lu =
∑
ij

aij(x)
∂2u

∂xi∂xj
. (1.10)
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Here, A(x) := (aij(x)) is a Hölder continuous, uniformly elliptic matrix: there exist λ > 0 and Λ > 0
such that

∀x ∈ Rn, λI ≤ A(x) ≤ ΛI,

in the sense of matrices.

Theorem 1.2. Suppose that u is a positive solution of

ut − Lu = 0, t > 0, x ∈ Rn. (1.11)

For any t0 > 0, R > 0, and p > 1, there exists a constant C such that if t ≥ t0 and |x − y| ≤ R,
then

u(t, x) ≤ C‖u0‖1−1/p
∞ u(t, y)1/p. (1.12)

Moreover, C depends only on λ, Λ, n, t0, R, and p.

We point out that Theorem 1.2 does not hold with p = 1. Indeed, when n = 1 and (aij) = I,
the solution u(t, x) = t−1/2 exp

{
−x2/4t

}
does not satisfy (1.12).

The paper is organized as follows. First, we prove Theorem 1.2 in Section 2. Then, in Section 3,
we use the Harnack inequality to reduce the spreading rate question for the non-local cane toads
equation to that for the local problem (1.1). Section 4 contains the proof of the corresponding
result for the local equation, with its most technical part presented in Section 5.
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ported by NSF grant DMS-1311903. Part of this work was performed within the framework of the
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ments dAvenir (ANR-11- IDEX-0007) operated by the French National Research Agency (ANR). In
addition, CH has received funding from the European Research Council (ERC) under the European
Unions Horizon 2020 research and innovation programme (grant agreement No 639638).

2 A present-time parabolic Harnack inequality

In this section, we prove Theorem 1.2. It is a consequence of a small time heat kernel estimate due
to Varadhan [37]. Let G(t, x, y) be the fundamental solution to (1.11):{

Gt = LxG, t > 0, x, y ∈ Rn,
G(0, ·, y) = δ(· − y),

(2.1)

so that the solution of {
ut − Lu = 0, t > 0, x ∈ Rn,
u(0, x) = u0(x),

can be written, for all t > 0 and x ∈ Rn, as

u(t, x) =

ˆ
Rn
G(t, x, y)u0(y)dy.

The notation Lx in (2.1) means that the operator L acts on G in the x variable. There are well-
known Gaussian bounds for G (see e.g. [2, 13]) of the type

c1

tn/2
e−c2

|x−y|2
t ≤ G(t, x, y) ≤ C1

tn/2
e−C2

|x−y|2
t ,
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for (t, x, y) ∈ R+×Rn×Rn. However, these are not precise enough in their dependence on x and y
for our purposes, as they do not control the constants c2 and C2 very well.

To state Varadhan’s estimate, we introduce some notation. Given a matrix A(x) = (aij(x)),
the associated Riemannian metric dA is

dA(x, y) = inf
p∈C1([0,1]),
p(0)=x,p(1)=y

ˆ 1

0

√
ṗ(τ)A−1(p(τ))ṗ(τ)dτ.

The ellipticity condition on the matrix A implies that dA and | · | yield equivalent metrics.

Theorem 2.1 (Theorem 2.2 [37]). The limit

lim
t→0

(−4t logG(t, x, y)) = dA(x, y)2

holds uniformly for all x and y such that |x− y| is bounded.

This agrees with the usual heat kernel when L = ∆ since then A = I and dA(x, y) = |x − y|.
We may not use this result as stated as we will require a uniform estimate over all x and y, without
a restriction to a compact set. However, it is easy to check that the proof in [37], with a few
straightforward modifications, implies the following.

Theorem 2.2. Given any ε > 0, the following inequalities hold uniformly over all x, y ∈ Rn:

lim inf
t→0

[
− 4t logG(t, x, y)

]
≥ (1− ε)dA(x, y)2, (2.2)

lim sup
t→0

[
− 4t logG(t, x, y)

]
≤ (1 + ε)dA(x, y)2.

We can now proceed with the proof of Theorem 1.2.

Proof of Theorem 1.2. Without loss of generality we may assume that y = 0 and |x| ≤ R
in (1.12). Let us take t0 > 0 and write, for all t > t0 and x ∈ Rn:

u(t, x) =

ˆ
Rn
G(t0, x, y)u(t− t0, y)dy.

We have, using the maximum principle, with some s ∈ (0, 1), to be specified later:

u(t, x) =

ˆ
Rn
G(t0, x, z)u(t− t0, z)dz

≤ ‖u(t− t0, ·)‖1/q∞
ˆ
Rn

(u(t− t0, z)G(t0, x, z)
sp)1/p

(
G(t0, x, z)

(1−s)q
)1/q

dz

≤ ‖u0‖1/q∞
(ˆ

Rn
u(t− t0, z)G(t0, x, z)

spdz

)1/p(ˆ
Rn
G(t0, x, z)

(1−s)qdz

)1/q

≤ C‖u0‖1/q∞
(ˆ

Rn
u(t− t0, z)G(t0, x, z)

spdz

)1/p

.

(2.3)

Here, we have chosen q ∈ (1,∞) satisfies

1

p
+

1

q
= 1,

5



and the constant C > 0 depends on t0 (in particular, it blows up as t0 ↓ 0). The last inequality
in (2.3) is an application of the bounds in (2.2) since s < 1. Our next step is to show and use the
following inequality: there exist a constant C > 0 and s > 1/p that both depend on t0, R, and p
such that

G(t0, x, y)sp ≤ CG(t0, 0, y), (2.4)

for all y ∈ Rn and |x| ≤ R.
Before proving (2.4), we shall conclude the proof of Theorem 1.2. Using (2.4) in (2.3) gives

u(t, x) ≤ C‖u0‖1/q∞
(ˆ

Rn
u(t− t0, y)G(t0, 0, y)dy

)1/p

= C‖u0‖1/q∞ u(t, 0)1/p, (2.5)

which is (1.12) with y = 0.
To establish (2.4), we choose s ∈ (0, 1), ε > 0 and θ ∈ (0, 1) such that

sp(1− ε) > 1 + ε, (2.6)

and

1− θ =
(1 + ε)

sp(1− ε)
.

We may now use Theorem 2.2 to choose t0 small enough so that

− 4t0 logG(t0, x, y) ≥ (1− ε)dA(x, y)2 − ε,
− 4t0 logG(t0, x, y) ≤ (1 + ε)dA(x, y)2 + ε,

(2.7)

for all x, y ∈ Rn. Using (2.7) and the triangle inequality

dA(x, y) ≥ |dA(x, 0)− dA(0, y)|,

we get

log[G(t0, x, y)sp]− spε

4t0
≤ −sp(1− ε)dA(x, y)2

4t0

≤ −sp(1− ε)dA(x, 0)2 − 2dA(x, 0)dA(y, 0) + dA(y, 0)2

4t0
.

Young’s inequality yields that

log[G(t0, x, y)sp]− spε

4t0
≤
(

1

θ
− 1

)
sp(1− ε)dA(x, 0)2

4t0
− sp(1− ε)(1− θ)dA(y, 0)2

4t0
.

Using the definition of θ and that the Euclidean metric and dA are equivalent, we deduce

log[G(t0, x, y)sp]− spε

4t0
≤ CR2

t0
− (1 + ε)dA(y, 0)2

4t0
,

with a constant C > 0 that depends on θ, p and ε. Applying the bounds in (2.7) again, we obtain

log[G(t0, x, y)sp]− spε

4t0
≤ CR2

t0
+ logG(t0, 0, y) +

ε

4t0
.

Exponentiating, we get (2.4), finishing the proof.
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3 A reduction to the local cane toads problem

In this section, we show how to compare solutions of the non-local cane toads equation to the
solutions of a local cane toads problem, of a more general form than (1.1). To do this, we use
Theorem 1.2 to eliminate the non-local term in (1.2). This will allow us to find two local cane toads
equations to which the solution of (1.2) is a sub- and super-solution, respectively.

It has been shown in [35], that solutions of (1.2) satisfy a uniform bound

n(t, x, θ) ≤M (3.1)

for all (t, x, θ) ∈ [0,∞)×R×Θ with a constant M depending only on θ and θ. With this in hand,
we first show that we may bootstrap Theorem 1.2 to hold for n as well.

Proposition 3.1. For any t0 > 0, R > 0, and p > 1, there is a constant C > 0 such that if t ≥ t0
and |θ − θ′|+ |x− x′| ≤ R, and n is a solution of (1.2)-(1.4), then

n(t, x, θ) ≤ Cn(t, x′, θ′)1/p. (3.2)

Proof of Proposition 3.1. The proof is by comparing n to a solution to an associated linear heat
equation. Take t1 ≥ t0 and let h be the solution to

ht = θhxx + hθθ,

with the Neumann boundary conditions

hθ(t, x, θ) = hθ(t, x, θ) = 0,

and the initial condition
h(0, x, θ) = n(t1 − δ, x, θ),

with δ = min{1, t0/2}. Theorem 1.2 implies1 that there is a constant C depending only on M , δ, R
and p such that, for any |x− x′| ≤ R and θ ∈ [θ, θ], we have

h(t, x, θ) ≤ Ch(t, x′, θ)1/p,

for all t ≥ δ.
On the other hand, as

n(1−M |Θ|) ≤ n(1− ρ) ≤ n,

the comparison principle implies that

e(1−M |Θ|)th(t, x) ≤ n(t1 − δ + t, x) ≤ eth(t, x).

Hence, we may pull the Harnack inequality from h to n: for all (x, θ) ∈ R×Θ and (x′, θ′) ∈ R×Θ
such that |x− x′|+ |θ − θ′| ≤ R we have

n(t1, x, θ) ≤ eδh(δ, x, θ) ≤ Ceδh(δ, x′, θ′)1/p ≤ Ceδ
(
e(M |Θ|−1)δn(t1, x

′, θ′)
)1/p

.

This finishes the proof.

1Strictly speaking, to apply Theorem 1.2, we need n to be defined on R2, not on R× Θ. This obstacle, however,
may be avoided considering a periodic extension of n to R2; see [35, Section 2.1] for more details.
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We now construct two local cane toads problems for which n is a sub- and super-solution. We
fix p ∈ (1, 3/2) and find C > 0 so that we may apply Proposition 3.1 with t0 = 1 and R = |Θ|, to
obtain (after integration)

n(t, x, θ)p

Cp
≤ ρ(t, x) ≤ Cn(t, x, θ)1/p.

for all t ≥ 1, x ∈ R and θ ∈ Θ. It follows that

n
(

1− Cn1/p
)
≤ n(1− ρ) ≤ n

(
1− np

Cp

)
. (3.3)

This implies that for t ≥ 1 the function n(t, x, θ) is a super-solution to the equation

ut − θuxx − uθθ = u(1− Cu1/p), (3.4)

and a sub-solution to the equation

ut − θuxx − uθθ = u
(
1− C−pup

)
. (3.5)

Here, u and u satisfy the same Neumann boundary conditions (1.4) as n.
We now choose the initial conditions at t = 0: u0(x, θ) = u(0, x, θ) and u0(x, θ) = u(0, x, θ), so

that the ordering
u(t = 1, x, θ) ≤ n(t = 1, x, θ) ≤ u(t = 1, x, θ) (3.6)

holds for all x and θ. This will guarantee that

u(t, x, θ) ≤ n(t, x, θ) ≤ u(t, x, θ) (3.7)

for all t ≥ 1 and all x and θ, because of (3.3). We only describe how u0 is chosen, but the process
is similar for u0.

To this end, let h be a solution to the equation

ht − θhxx − hθθ = 0, (3.8)

with the initial condition h0(x, θ) = n0(x, θ). Define the function h = e(1−M |Θ|)th, which satisfies

ht = θhxx + hθθ + (1−M |Θ|)h,

where M is the upper bound for n from (3.1). Notice that n is a super-solution to h. Hence

n(t = 1, x, θ) ≥ h(t = 1, x, θ) = e(1−M |Θ|)h(t = 1, x, θ), (3.9)

for all x and θ. On the other hand, for any a > 0, the function

h = aeth (3.10)

is a super-solution for the equation for u (3.4). Hence, if u is the solution of (3.4) with the initial
condition u0 = an0, then

u(t = 1, x, θ) ≤ aeh(t = 1, x, θ). (3.11)

Putting (3.9) and (3.11) together gives us

u(t = 1, x, θ) ≤ aeM |Θ|n(1, x, θ)

for all x and θ. Thus, if we choose a = exp(−M |Θ|) then the first inequality in (3.6) holds.
Similarly, we may choose an initial condition ū0 so that the second inequality in (3.6) holds as well.
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4 The logarithmic correction in the local cane toads fronts

We have shown that there exist functions u and u, satisfying the local cane toads equations (3.4)
and (3.5), respectively, such that the solution n of (1.2)-(1.4) satisfies the lower and upper bounds
in (3.7). Therefore, Theorem 1.1 is a consequence of the corresponding result for the Fisher-KPP
equations. We present the local Fisher-KPP result in a slightly greater generality than what is
needed for Theorem 1.1, as the extra generality introduces no extra complications in the proof.

Let D be a uniformly positive and bounded function on a smooth domain Θ ⊂ Rd, and let A
be a C1 function on Θ. Let u be the solution to the Fisher-KPP equation

ut −Duxx −∆θu+Aux = f(u), (4.1)

with the Neumann boundary conditions:

∂u

∂νθ
(t, x, θ) = 0, (4.2)

and the initial condition u(0, ·) = u0. Here, νθ is the normal to ∂Θ. We assume that

lim inf
x→−∞

u0(x, θ) > 0, (4.3)

uniformly in θ ∈ Θ, that u0 ≥ 0, and that there is some x0 such that u0(x, θ) = 0 for all x ≥ x0.
The nonlinearity f is of the Fisher-KPP type: there exist um > 0, M > 0 and δ > 2/3 such that

f(0) = f(um) = 0, f(u) > 0 for all u ∈ [0, um], (4.4)

and
u−Mδu

1+δ ≤ f(u) ≤ u, for all u ∈ [0, um]. (4.5)

A classical result of Berestycki and Nirenberg [5] shows that (4.1) admits travelling wave solu-
tions of the form u(t, x, θ) = Φ(x− ct, θ), with Φ(x, θ) such that

−cΦx −DΦxx −∆θΦ +AΦx = f(Φ), (4.6)

and Φ(−∞, ·) = um, and Φ(+∞, ·) = 0. In addition, Φ satisfies the Neumann boundary condi-
tions (4.2), and 0 < Φ(x, θ) < um for all x and θ. Such travelling waves exist for all c ≥ c∗, with
the same c∗ as in Theorem 1.1, and the travelling wave corresponding to the minimal speed has
the asymptotics

Φ(ξ, θ) ∼ αξe−λ∗ξQ(θ), as x→ +∞,

with the same exponential decay rate λ∗ and profile Q as in (1.9). Once again, a precise description
of c∗ and λ∗ in terms of an eigenvalue problem will be given in Section 4.1. What is important for
us is that, as far as the function f is concerned, both c∗ and λ∗ depend only on f ′(0) but not, say,
on um or δ.

By translating and scaling and by changing to a constant speed moving reference frame, if
necessary, we may assume without loss of generality that um = 1, f ′(0) = 1, that the drift A
has mean-zero, and, finally, that the initial condition u0 is not identically equal to zero on the
half-cylinder {x > 0, θ ∈ Θ}.
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Theorem 4.1. Suppose that D and A are as above and f satisfies (4.4)-(4.5). There exist c∗ > 0
and λ∗ > 0 that, as far as f is concerned, depend only on f ′(0), with the following property. Let
u satisfy (4.1)-(4.2), with the initial condition u0 as above (4.3). Then, for any m ∈ (0, um), there
exist xm > 0 and Tm > 0, depending on m, such that if t ≥ Tm we have

{x ∈ R : ∃θ ∈ Θ, u(t, x, θ) = m} ⊂
[
c∗t− 3

2λ∗
log(t)− xm, c∗t−

3

2λ∗
log(t) + xm

]
. (4.7)

Theorem 1.1 follows from Theorem 4.1 and the bounds on n in (3.7), in terms of the solutions of
the Fisher-KPP equations (3.4) and (3.5). The reason is that c∗ and λ∗ for the two non-linearities
in (3.4) and (3.5) coincide, hence the level sets of the corresponding solutions u and u of these
two equations stay within O(1) from each other, and (3.7) means that so do the level sets of the
solution of (1.2).

The proof of Theorem 4.1 mostly follows the strategy of [21] where a similar result has been
proved in the one-dimensional periodic case. A general multi-dimensional form of the Bramson
shift is a delicate problem [33]. However, the particular form of the present problem allows us to
streamline many of the details and modifies some of the steps in the proof. Typically, the spreading
speed c∗ of the solutions of the Fisher-KPP type equations can be inferred from the linearized
problem, that in the present case takes the form

ut +Aux = Duxx + ∆θu+ f ′(0)u. (4.8)

The main qualitative difference between the solutions of (4.8) and those of the nonlinear Fisher-
KPP problem is that the former grow exponentially in time on any given compact set, while the
latter remain bounded. A remedy for that discrepancy is to consider (4.8) in a domain with a
moving boundary: x > X(t), with

X(t) = c∗t− r(t), (4.9)

with the Dirichlet boundary condition u(t,X(t), θ) = 0. Then the shift r(t) is chosen so that
the solutions of the moving boundary problem remain O(1) as t → +∞. It turns out that such
“correct” shift is exactly

r(t) =
3

2λ∗
log t, (4.10)

as in (4.7). This allows to use them as sub- and super-solutions to the nonlinear Fisher-KPP
equation, to prove that the front of the solutions to (4.1) is also located at a distance O(1) from X(t)
given by (4.9)-(4.10), which is the claim of Theorem 4.1.

4.1 The eigenvalue problem defining c∗ and λ∗.

Let us first recall from [5] how c∗ and λ∗ are defined in Theorems 1.1 and 4.1. We look for
exponential solutions of the linearized cane toads equation (4.8), with f ′(0) = 1, of the form

u(t, x, θ) = e−λ(x−ct)Qλ(θ). (4.11)

This leads to the following spectral problem on the cross-section Θ for the unique positive eigen-
function Qλ > 0: 

∆θQλ + (λ2D + λA− λc(λ) + 1)Qλ(θ) = 0, in Θ,

∂Qλ
∂νθ

= 0, on ∂Θ.
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We will use the normalization ˆ
Θ
Qλ(θ)dθ = 1. (4.12)

In other words, given λ > 0, we solve the eigenvalue problem
∆θQλ + (λ2D + λA)Qλ(θ) = µ(λ)Qλ, in Θ,

∂Qλ
∂νθ

= 0, on ∂Θ.
(4.13)

It has a unique positive eigenfunction Qλ corresponding to its principal eigenvalue µ(λ) – this is
a standard consequence of the Krein-Rutman theorem. The positivity of µ(λ) easily follows by
dividing (4.13) by Qλ, integrating, and using the positivity of Qλ and the boundary conditions,
along with the normalization ˆ

Θ
A(θ)dθ = 0.

Then, the speed c(λ) is determined by

µ(λ) = λc(λ)− 1, (4.14)

that is,

c(λ) =
1 + µ(λ)

λ
. (4.15)

We will use the notation, well-defined by the following proposition,

c∗ = min
λ>0

c(λ), λ∗ = argmin
λ>0

c(λ), (4.16)

and denote by Q∗ the corresponding eigenfunction.

Proposition 4.2. The function λ 7→ c(λ) has a minimum c∗, and

c∗
ˆ

Θ
(Q∗)2 dθ =

ˆ
Θ

[2λ∗D(θ) +A(θ)] (Q∗)2 dθ. (4.17)

Further, we have c′′(λ∗) > 0.

Proof of Proposition 4.2. Since Qλ ∈ C2(Θ) and satisfies Neumann boundary conditions,
there exists θ0 such that ∆Qλ(θ0) = 0. We deduce from (4.12):

c(λ) =
1

λ
+A(θ0) + λD(θ0).

As the functions A(θ) and D(θ) are bounded, and D(θ) is uniformly positive, c(λ) satisfies

c(λ) ∼
λ→0

1

λ
, λc(λ) = Oλ→+∞(λ2).

The continuity of the function c(λ) implies the existence of a positive minimal speed c∗ and a
smallest positive minimizer λ∗.

Differentiating (4.12) with respect to λ, we obtain

(
−λc′(λ)− c(λ) +A+ 2λD

)
Qλ +

(
λ2D + λA− λc(λ) + 1

) ∂Qλ
∂λ

+ ∆θ

(
∂Qλ
∂λ

)
= 0.
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Let us multiply by Qλ and integrate. We obtain, for all λ > 0,

ˆ
Θ

(
−λc′(λ)− c(λ) +A(θ) + 2λD(θ)

)
Q2
λdθ = 0. (4.18)

In particular, for λ = λ∗, we have c′(λ∗) = 0, and (4.17) follows. Finally, for the last claim, it is
easy to see by differentiating twice (4.14) and using c′(λ∗) = 0 that

c′′(λ∗) =
µ′′(λ∗)

λ∗
.

In addition, the variational principle for the principal eigenvalue µ(λ) of (4.13) implies that µ(λ) is
a convex function. A straightforward computation shows that actually µ′′(λ∗) > 0, thus c′′(λ∗) > 0.

4.2 A “heat equation” bound for the local cane toads equation

Motivated by the exponential solutions, we may decompose a general solution u(t, x, θ) of the
linearized Fisher-KPP equation (4.8) as

u(t, x, θ) = e−λ
∗(x−c∗t)Q∗(θ)p(t, x, θ). (4.19)

The function p(t, x, θ) then satisfies

pt = Dpxx + ∆θp− (2λ∗D +A) px +
2

Q∗
∇θQ∗θ · ∇θp, (4.20)

with the Neumann boundary conditions

∂p

∂νθ
= 0, on ∂Θ. (4.21)

If D ≡ 1 and A ≡ 0, then Q∗ ≡ 1 and c∗ = 2λ∗, meaning that (4.20) is simply the standard
heat equation in the frame moving with speed c∗. As we have mentioned, in order to keep the
solutions of the linearized problem bounded, we need to impose the Dirichlet boundary condition
at a moving boundary. The next proposition shows that, in general, the special form of the drift
terms in (4.20) balances exactly so that the solutions decay as those of the heat equation, with
the Dirichlet boundary condition imposed. We formulate it for a slightly more general equation
than (4.20), which we will need below.

Proposition 4.3. Let ω : R+ 7→ R+, ω, C, and T be such that

τω(τ)→ ω as τ → +∞, |ω′(τ)τ2|, (τ + T )ω(τ) ≤ C (4.22)

and let p0 be a non-zero, non-negative function such that that p0(x) = 0 for all x > x0 and such
that 1[0,∞)p0 is non-zero. Suppose that p satisfies

(1− ω)pτ = Dpxx + ∆θp− (2λ∗D +A) px +
2

Q∗
∇θQ∗ · ∇θp, (4.23)

for τ > 0, x > c∗τ , and θ ∈ Θ, with the Neumann boundary condition (4.21), the Dirichlet boundary
condition for τ > 0,

p(τ, c∗τ, ·) = 0, (4.24)
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and the initial condition p(0, ·) = p0. There exists T0 such that if T ≥ T0, then there exist σ > 0
and C > 0 that do not depend on p0, and τ0 > 0 that may depend on p0 such that

x− c∗τ
Cτ3/2

≤ p(τ, x, θ) ≤ C(x− c∗τ)

τ3/2
, (4.25)

for all x ∈ [c∗τ, c∗τ + σ
√
τ ], all θ ∈ Θ and all τ ≥ τ0.

As the proof is rather technical, we postpone it for the moment. Its proof is in Section 5.

4.3 The upper bound

We will now show how to deduce the statement of Theorem 4.1 from Proposition 4.3, starting with
the upper bound. We will thus prove that the delay is at least 3

2λ∗ log(t) in the following sense:

max{x ∈ R : ∃θ ∈ Θ, u(t, x, θ) = m} ≤ c∗t− 3

2λ∗
log(t) + xm,

for some constant xm. The idea is to use the linearized problem with a moving Dirichlet boundary
condition to create a suitable super-solution. Obviously, the Dirichlet boundary condition prevents
the solution of this problem from being directly a super-solution. To overcome this, we show that
the solution to the linearized equation is greater than 1 near the moving boundary. Hence, after a
suitable cut-off, it will be a true super-solution.

To this end, we consider the solution to the linearized problem with the Dirichlet boundary
condition at x = c∗t− r log(1 + t/T ), with r and T to be determined:

zt −Dzxx −∆θz +Azx = z, for x > c∗t− r log(1 + t/T ),

z(t, c∗t− r log(1 + t/T ), ·) = 0,

∂z

∂νθ
= 0, on ∂Θ,

z(0, ·) = u0.

(4.26)

We make a time change

τ = t− r

c∗
log

(
1 +

t

T

)
. (4.27)

By fixing T large enough, depending only on r and c∗, we may ensure that the function h(τ) = t
is one-to-one, and

1

h′(τ)
= 1− r

c∗(t+ T )
= 1− r

c∗(τ + T ) + r log(1 + t/T )
= 1− r

c∗(τ + T )
+O(τ−3/2). (4.28)

To simplify the notation, we define

ω(τ) = 1− 1

h′(τ)
, |ω′(τ)| = O(τ−2). (4.29)

Notice that ω satisfies (4.22). The function z̃(τ, ·) = z(t, ·) satisfies

(1− ω)z̃τ = D̃z̃xx + ∆θz̃ −Az̃x + z̃.
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Let τ 7→ α(τ) be a function to be determined later, and decompose z̃ as

z̃(τ, x, θ) = α(τ)e−λ
∗(x−c∗τ)Q∗(θ)p̃(τ, x, θ).

The function p̃ satisfies

(1− ω)p̃τ = Dp̃xx + ∆θp̃− (A+ 2λD)px +
2

Q∗
∇θQ∗ · ∇θp̃+

(
− α′

h′α
+

rλ∗

t+ T

)
p̃, (4.30)

and p̃(τ, c∗τ, ·) = 0 for all τ . We choose α as the solution of

α′

α
=

rλ∗

t+ T
h′ =

rλ∗

τ + T
+O

(
1

(τ + T )2

)
, (4.31)

with the asymptotics:

α(τ) = exp
{
rλ∗ log(τ + T ) +O(τ−1)

}
= (τ + T )rλ

∗
(1 +O(τ−1)). (4.32)

In view of (4.29), we may apply Proposition 4.3 to the solutions of (4.30). This, along with (4.32),
implies that if we choose

r =
3

2λ∗
, (4.33)

then there exist constants σ, C1 and C2 and a fixed time τ0 such that we have

C1(x− c∗τ)e−λ
∗(x−c∗τ) ≤ z̃(τ, x, θ) ≤ C2(x− c∗τ)e−λ

∗(x−c∗τ), (4.34)

for τ ≥ τ0 and all x ∈ [c∗τ, c∗τ + σ
√
τ ]. Hence, we may choose M such that

Mz̃(τ, c∗τ + 1, θ) ≥ 2,

for all τ ≥ τ0 and θ ∈ Θ.
We may now define a super-solution for the nonlinear Fisher-KPP equation (4.1) as

u(t, x, θ) =

min(1,Mz(t, x, θ)), for all x ≥ c∗t− r log(1 + t/T ) + 1,

1, for all x ≤ c∗t− r log(1 + t/T ) + 1.

Figure 1 depicts a sketch of the solution u of the nonlinear Fisher-KPP problem, and the super-
solution u. We also have u(h(τ0), ·) ≥ u0 for a sufficiently large M , since u0 is compactly supported
on the right. Hence, we have

u(t, ·) ≤ u(h(τ0) + t, ·)

for all t ≥ t0.
To conclude, it follows from the form of our super-solution and (4.34) that, given any m ∈ (0, 1),

we may choose xm ≥ 1 such that u(t, x, θ) < m for all t ≥ t0, all

x ≥ c∗t− 3

2λ∗
log t+ xm,

and all θ ∈ Θ. Thus, for such x we have

u(t, x, θ) ≤ ū(t, x, θ) ≤ m,

for all t ≥ t0 and θ ∈ Θ. This concludes the proof of the upper bound in Theorem 4.1.
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c∗t− 3
2λ∗ ln(1 + t

T )

u
u

Mz

c∗t− 3
2λ∗ ln(1 + t

T ) + 1

Figure 1: A sketch of the solution u and the super-solution u.

4.4 The lower bound

We now prove that the delay is at most 3
2λ∗ log(t) in the following sense:

min{x ∈ R : ∃θ ∈ Θ, u(t, x, θ) = m} ≥ c∗t− 3

2λ∗
log(t) + xm,

for some constant Cm. The proof of the lower bound requires the same estimates as the upper bound,
but the approach is slightly different. Note that the solution to the linearized equation is not a
sub-solution to the nonlinear Fisher-KPP equation since f(u) ≤ u. To get around this, we solve the
linearized equation with a moving Dirichlet boundary condition at c∗t, instead of c∗t−(3/2λ∗) log(t),
in order to make this solution small. Then, we modify the solution to the linearized equation by
an order O(1) multiplicative factor in order to obtain a sub-solution.

The resulting sub-solution will decay in time. Hence, we may not directly conclude a lower
bound on the location of the level sets. Instead, we show that this sub-solution is of the correct
order e−σ

√
t/t at the position c∗t+ σ

√
t. This will allow us to fit a travelling wave underneath the

solution u of the Fisher-KPP equation on the half-line x < c∗t + σ
√
t, and we use this travelling

wave to obtain a lower bound on the location of the level sets of u. We will assume without loss of
generality that

` := lim inf
x→−∞

inf
θ∈Θ

u0(x, θ) = 1. (4.35)

It is straightforward to modify the argument below to account for the case ` < 1. Note that ` > 0
by assumption (4.3). As a consequence of (4.44) we have that, for all t ≥ 0,

lim inf
x→−∞

inf
θ∈Θ

u(t, x, θ) = 1. (4.36)
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A preliminary sub-solution using the linearized system

As outlined above, the first step is to obtain a sub-solution decaying in time. To this end, we look
at the solution w to 

wt −Dwxx −∆θw +Awx = w, for x > c∗t,

w(t, c∗t, ·) = 0,

∂w

∂νθ
= 0, on ∂Θ,

w(0, ·) = u0.

(4.37)

As before, we factor out a decaying exponential, and the eigenfunction Q∗:

w(t, x, θ) = e−λ
∗(x−c∗t)Q∗(θ)p(t, x, θ). (4.38)

The function p satisfies

pt = Dpxx + ∆θp− (2λ∗D +A) px +
2

Q∗
∇θQ∗ · ∇θpθ, for x > c∗t, (4.39)

with the corresponding boundary and initial conditions. Proposition 4.3 with ω = 0 gives an upper
bound

|p(t, x+ c∗t)| ≤ Cx

(t+ 1)3/2
,

that, along with the decomposition (4.38) gives

‖w(t, ·, ·)‖∞ ≤
C

(1 + t)3/2
(4.40)

This temporal decay allows us to devise a sub-solution of the Fisher-KPP problem, of the form

w(t, x, θ) = a(t)w(t, x, θ).

To verify that w is a sub-solution, we note that

wt −Dwxx −∆θw +Awx − f(w) ≤ ȧ(t)

a(t)
w + w − (w −Mδw

1+δ),

with δ as in (4.5). Using (4.40), we get

wt −Dwxx − wθθ +Awx − f(w) ≤ w
(
ȧ(t)

a
+

CMδ

(t+ 1)3δ/2

)
.

We let a(t) be the solution of

− ȧ
a

=
CMδ

(t+ 1)3δ/2
. (4.41)

As δ > 2/3, there exists a0 > 0 so that a(t) > a0 for all t > 0. Taking a(0) ≤ 1 ensures that

w(0, ·) ≤ u0(x, ·),

while (4.41) implies
wt −Dwxx − wθθ +Awx − f(w) ≤ 0.
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As a result, the maximum principle implies that

w(t, c∗t+ x, θ) ≤ u(t, c∗t+ x, θ),

for all θ, all t and all x ≥ 0. In particular, the conclusion of Proposition 4.3 implies that there
exists σ > 0 and T0 such that if t ≥ T0 then

Ca0e
−σ
√
t

t
≤ a0w(t, c∗t+ σ

√
t, θ) ≤ u(t, c∗t+ σ

√
t, θ). (4.42)

A travelling wave sub-solution

We now use the lower bound (4.42) to fit a travelling wave under u. The sub-solution we will
construct is sketched in Figure 2. In order to avoid complications due to boundary conditions
at −∞, we fix m to be any constant in (m, 1), and replace the non-linearity f(u) by f(u)(1−u/m).
Let U be the travelling wave solution to the modified equation moving with speed c∗:

−c∗Ux −DUxx −∆θU +AUx − f(U)(1− U/m) = 0, (4.43)

with the Neumann boundary condition at ∂Θ, and

U(−∞, ·) = m, U(+∞, ·) = 0. (4.44)

This wave satisfies 0 < U < m, so it sits below u as x tends to −∞: see (4.36). However, it moves
too quickly – it does not have the logarithmic delay in time. Instead, we define

U(t, x, θ) = U(x− c∗t+ s(t), θ). (4.45)

It is easy to check that if ṡ(t) ≥ 0, then U is a sub-solution to (4.43):

U t −DUxx −∆θU +AUx − f(U)(1− U/m)

= −(c∗ − ṡ(t))Ux −DUxx −∆θU +AUx + f(U)(1− U/m) = ṡ(t)Ux ≤ 0, (4.46)

as U is decreasing in x [5]. Hence, U is a sub-solution.
We already know from (4.36) that U sits below u at x = −∞:

U(t, x, θ) < u(t, x, θ), for all t > 0 and θ ∈ Θ for all x sufficiently negative. (4.47)

Thus, we only need to arrange for U to sit below u at x = c∗t + σ
√
t, with σ is as in (4.42). The

travelling wave has the asymptotics [19]

U(x, θ) ∼ xe−λ∗xQ∗(θ) (4.48)

for large x (uniformly in θ). By translation, we may ensure that

U(x, θ) ≤ εxe−λ∗x,

for all x ≥ 1, with ε > 0 small to be chosen. In view of the definition of U , for t sufficiently large,
we have

U(t, c∗t+ σ
√
t, ·) ≤ ε(σ

√
t+ s(t))e−λ

∗(σ
√
t+s(t)).
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Choosing

s(t) =
3

2λ∗
log(1 + t), (4.49)

using (4.42), and adjusting ε as necessary, we see that

U(t, c∗t+ σ
√
t, ·) ≤ Ce−σ

√
t

a0t
≤ u(t, c∗t+ σ

√
t, ·). (4.50)

for all t ≥ T0. In addition, because of (4.36), it is easy to see that translating U further to the left,
we may ensure that

U(T0, x, θ) ≤ u(T0, x, θ), (4.51)

for all x ≤ c∗T0 + σ
√
T0 and all θ ∈ Θ. The combination of (4.46), (4.47), (4.50) and (4.51) the

inequalities above, along with the maximum principle, implies that

U(t, x, θ) ≤ u(t, x, θ), (4.52)

for all t ≥ T0, all x ≤ c∗t+ σ
√
t, and all θ ∈ Θ.

To conclude, we need to understand where the level set of height m of U is. We see from (4.45)
that there exists Lm such that if x < −Lm then

U(t, c∗t+ x− s(t), θ) > m.

Thus, (4.49) and (4.52) mean that

{x ∈ R : ∃θ ∈ Θ, u(t, x, θ) = m} ⊂
[
c∗t− 3

2λ∗
log(1 + t)− Lm,∞

)
.

This finishes the proof of the lower bound in Theorem 4.1.

5 The proof of Proposition 4.3

In this section, we prove Proposition 4.3. The proof of the upper bound in (4.25) is easier than for
the lower bound, and this is what we will do first. Essentially, the remainder of the paper will then
be devoted to the proof of the lower bound in (4.25).

5.1 The self-adjoint form

Our first step is to re-write (4.23) in a self-adjoint form. Let us set

µ = a(Q∗)2, a =
( 1

|Θ|

ˆ
Θ

(Q∗)2dθ
)−1

. (5.1)

Then we have an identity

Dpxx + ∆θp+
2

Q∗
∇θQ∗ · ∇θp =

1

µ

[
(Dµpx)x +∇θ · (µ∇θp)

]
. (5.2)

In order to re-write the spatial drift term in the right side of (4.23), we look for a corrector β that
satisfies

∆θβ = 2λ∗D +A− r in Θ, (5.3)

∂β

∂νθ
= 0 on ∂Θ,
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c∗t− 3
2λ∗ ln(t) c∗t c∗t+ σ

√
t

U

∼ O
(
e−σ
√
t

t

)w

u

Figure 2: A sketch of the sub-solution U , the solution u of the Fisher-KPP problem, and of the
solution of the linearized problem with the Dirichlet boundary condition at x = c∗t.

with some r ∈ R. The solvability condition for (5.3) is

r =

ˆ
Θ

[2λ∗D(θ) +A(θ)]µ(θ)
dθ

|Θ|
= a

ˆ
Θ

[2λ∗D(θ) +A(θ)](Q∗(θ))2 dθ

|Θ|
= c∗. (5.4)

We used (4.17) and (5.1) in the last step above. Thus, (4.23) can be recast as

(1− ω)µpτ = Lp, (5.5)

with the operator L
Lp = (Dµpx)x +∇θ · (µ∇θp)− (∆θβ + c∗) px. (5.6)

Note that the average of the advection term in x in (5.6) equals to c∗.
We now state a lemma regarding almost-linear solutions to (5.5) and its adjoint. The latter

will be crucial in the proof of the upper bound for p. The former will be required later. We denote
by L∗ the formal adjoint of the operator L with respect to the Lebesgue measure, and set

Cτ = [c∗τ,+∞)×Θ,

Lemma 5.1. There exist functions ζ and f solving
µ∂τζ = Lζ, on Cτ ,

∂ζ

∂νθ
= 0, on ∂Θ,

ζ(τ, c∗τ, ·) = 0,

and

µ∂τf = −L∗f, on Cτ ,

∂f

∂νθ
= 0 on ∂Θ,

f(τ, c∗τ, ·) = 0,

(5.7)

such that fτ , ζτ ≤ 0. Moreover, there exists a constant C > 0 such that all x ≥ c∗τ ,

C−1 (x− c∗τ) ≤ ζ(t, x, θ), f(t, x, θ) ≤ C (x− c∗τ) ,

and |∂τf |, |∂τζ| ≤ C.

We omit the proof as it is very close to [21].
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5.2 The proof of the upper bound

We now prove the upper bound in (4.25), namely, there exists a positive constant such that

p(τ, x, θ) ≤ C0(x− c∗τ)

(τ + 1)3/2
, (5.8)

for all τ > 0, x > c∗t and θ ∈ Θ. We use a standard strategy: a Nash-type inequality is used
to obtain the L2 decay in terms of the L1 norm, and then the uniform decay follows by a duality
argument.

We first derive an L1−L2 bound. Using (5.5)-(5.6), integrating by parts gives that for any τ > 0,
we have

1− ω
2

d

dτ

ˆ
Cτ
µ(θ)p(τ, x, θ)2dxdθ = −

ˆ
Cτ
µ(θ)

[
D(θ)px(τ, x, θ)2 + |∇θp(τ, x, θ)|2

]
dxdθ. (5.9)

The dissipation in the right side may be estimated using a Nash type inequality for half-cylinders
of the form Ω = [0,∞)×Θ, with Θ ⊂ Rd, for functions such that φ(0, ·) ≡ 0:

‖∇φ‖22 ≥ C

(
1 +

(
‖φ‖2
‖xφ‖1

) 10d
3(3+d)

)−1

‖φ‖22
(
‖φ‖2
‖xφ‖1

) 4
3

. (5.10)

The proof of the one-dimensional version of (5.10) can be found in [21]. We describe the required
modifications for d > 1 in Section 5.8. This gives:

ˆ
Cτ
µ(θ)

[
D(θ)px(τ, x, θ)2 + |∇θp(τ, x, θ)|2

]
dxdθ ≥ CI2(τ)

(
1+

(
I2(τ)1/2

I1(τ)

) 10d
3(3+d) )−1

(
I2(τ)1/2

I1(τ)

) 4
3

.

(5.11)
Here, we have defined

I1(τ) :=

ˆ
Cτ
µ(θ)(x− c∗τ)p(τ, x, θ)dxdθ, and,

I2(τ) :=

ˆ
Cτ
µ(θ)p(τ, x, θ)2dxdθ.

We point out that we used in (5.11) that µ is bounded uniformly away from 0 and ∞.
Next, we look at

I(τ) : =

ˆ
Cτ
µ(θ)f(τ, x, θ)p(τ, x, θ)dxdθ,

with f as in (5.7). If ω ≡ 0, then I(τ) is a conserved quantity. In general, following the proof of [21,
Lemma 5.4], one can show that there exists a constant C > 0 such that

C−1I(0) ≤ I(τ) ≤ C
(ˆ
C0
p0dxdθ + I(0)

)
. (5.12)

Using Lemma 5.1, we see that I(τ) and I1(τ) are comparable:

1

C

ˆ
Cτ
µ(θ)f(τ, x, θ)p(τ, x, θ)dxdθ ≤ I1(τ) ≤ C

ˆ
Cτ
µ(θ)f(τ, x, θ)p(τ, x, θ)dxdθ.
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As a consequence, we have

C−2I1(0) ≤ C−1I1(τ) ≤ N :=

(ˆ
C0
p0dxdθ + I1(0)

)
. (5.13)

Using (5.13) together with (5.9) and (5.11), we obtain(
I1(τ)4/3

I2(τ)5/3
+
I1(τ)(4−2d)/(3+d)

I2(τ)5/(3+d)

)
I ′2(τ) ≤ − 1

C(1− ω(τ))
. (5.14)

An elementary argument, starting with this differential inequality, using the decay assumptions
on ω and (5.13), gives an upper bound

I2(τ) ≤ CN2

(τ + 1)3/2
, (5.15)

regardless of the cross-section dimension d ≥ 1. In other words, we have the bound

‖p(τ, ·)‖L2(Cτ ) ≤
C

(τ + 1)3/4

ˆ
C0

(1 + x)|p0(x, θ)|dxdθ. (5.16)

We may now apply the standard duality argument. Let Sτ be the solution operator mapping p0

to p(τ, ·). The bound (5.15) applies that S∗τ satisfies

|S∗τp0| ≤
C(1 + x− c∗τ)

(τ + 1)3/4
‖p0‖L2(C0). (5.17)

However, S∗τ is the solution operator for a parabolic equation of the same type, except for the
reverse drift direction, thus it also obeys the bound (5.16), and hence Sτ itself obeys (5.17) as well.
Decomposing Sτ = Sτ/2 ◦ Sτ/2 and applying the bounds (5.16) and (5.17) separately, we get

|p(τ, x, θ)| ≤ C(1 + x− c∗τ)

(τ + 1)3/2

ˆ
C0

(1 + x)p0(x, θ)dxdθ. (5.18)

This proves (5.8) for x > c∗τ + 1. However, as p(τ, c∗τ, ·) = 0, using the parabolic regularity
for x ∈ (c∗τ, c∗τ + 1), we obtain the upper bound (5.8) for all x > c∗τ . �

5.3 The lower bound for p

We now prove the lower bound on p in Proposition 4.3, namely, there exists a positive constant
such that

p(τ, x, θ) ≥ (x− c∗τ)

C0(τ + 1)3/2
, (5.19)

for all τ > 0, x > c∗t and θ ∈ Θ.

Approximate solutions

For the proof of Proposition 4.3 will make use of approximate solutions of our problem that satisfy
the bounds claimed in this Proposition. Let Qλ be the eigenfunction in (4.12), and set

χ = − 1

Qλ

∂Qλ
∂λ

∣∣∣
λ=λ∗

, (5.20)
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and

D : =

(ˆ
Θ

(D + c∗χ− 2λ∗Dχ−Aχ) (Q∗)2dθ

)(ˆ
Θ

(Q∗)2dθ

)−1

. (5.21)

To see that D > 0, we differentiate (4.18) in λ to obtain

ˆ
Θ

[
2Q

∂Q

∂λ

(
c′(λ)λ+ c(λ)− 2λD −A

)
+Q2

(
c′′(λ)λ+ 2c′(λ)− 2D −A

)]
dθ = 0. (5.22)

Evaluating (5.22) at λ = λ∗, we obtain, as c′(λ∗) = 0:

0 =

ˆ
Θ

[
−2(Q∗)2χ (c∗ − 2λ∗D −A) + (Q∗)2

(
c′′(λ)λ− 2D −A

)]
dθ.

Now, (5.21) and (4.18) show that this is

c′′(λ∗)λ∗
ˆ

Θ
(Q∗)2dθ = 2D

ˆ
Θ

(Q∗)2dθ.

Since c′′(λ∗) > 0 by Proposition 4.2, we conclude that D > 0.
The approximate solutions are described by the following analogue of [21, Proposition 5.2].

Proposition 5.2. Let χ ∈ R, then there is a function S(τ, x, θ) such that, for any σ > 0,

(1− ω)
∂S

∂τ
−DSxx −∆θS + (2λD +A)Sx −

2

Q∗
∇θQ∗ · ∇θS = O(τ−3) (5.23)

and ∣∣∣∣S(τ, x, ·)− x− c∗τ + χ+ χ

τ3/2
e−

(x−c∗τ)2

4Dτ

∣∣∣∣ ≤ Cτ−3/2

(
x− c∗τ√

τ

)2

+O(τ−2), (5.24)

for all x ∈ [c∗τ, c∗τ + σ
√
τ ]. The constant C depends on σ.

The approximate solutions do approximate true solutions on [c∗τ, c∗τ + σ
√
τ ], as seen from the

following.

Proposition 5.3. Fix σ > 0, and let S be as in Proposition 5.2. Suppose that ξ satisfies for τ > 0,
(1− ω)ξτ = Dξxx + ∆θξ − (2λ∗D +A) ξx + 2

Q∗∇Q
∗ · ∇ξ, x ∈ [c∗τ, c∗τ + σ

√
τ ],

ξ(τ, c∗τ, ·) = S(τ, c∗τ, ·),

ξ(τ, c∗τ + σ
√
τ , ·) = S(τ, c∗τ + σ

√
τ , ·).

(5.25)

Then there is a positive constant τ0 such that, if τ ≥ τ0 and x− c∗τ ∈ (0, σ
√
τ), then

| (ξ − S) (τ, x, ·)| ≤ C

τ3/2
.

The proof of Proposition 5.3 is a relatively straightforward energy estimate of the difference ξ−S
that can be obtained almost exactly as in [21, Proposition 5.3].
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The size of the solution at distance O(
√
τ)

Another key step is to establish the magnitude of p at distances of the order O(
√
τ) from x = c∗τ .

With the following proposition, we control p at the endpoints of the interval [c∗τ, c∗τ+σ
√
τ ]. Then,

the previous propositions allow us to control p in the remainder of the interval as S approximates p.

Proposition 5.4. Let p be as in Proposition 4.3. There are constants σ > 0 and C0 > 0 so that

1

C0τ
≤ p(τ, c∗τ + σ

√
τ) ≤ C0

τ
(5.26)

whenever τ ≥ 1.

Sketch of the proof of Proposition 4.3

We now outline how to combine Propositions 5.2 to 5.4 to obtain the lower bound in Proposition 4.3.
Proposition 5.4 controls p at the point c∗τ+σ

√
τ in a way consistent with (4.25). On the other hand,

by choosing χ = −(1+‖χ‖∞) in Proposition 5.2, the combination of Propositions 5.2 and 5.3 allows
us to build a sub-solution ξ− to p. Then, re-applying Proposition 5.3, we see that ξ− satisfies the
bounds in (4.25) except on a finite interval [c∗τ, c∗τ+x0], for some x0. By the comparison principle,
we may then transfer these bounds to p and use parabolic regularity to remove the condition on x0,
finishing the proof of the claim. Thus, it remains to prove Propositions 5.2 and 5.4, which is done
in the rest of this paper.

5.4 The proof of Proposition 5.2

Our strategy is the same as in [21, Proposition 5.2], though the details are different, so we include
a sketch of the proof for reader’s convenience. We begin with the multi-scale expansion

S(τ, x, θ) =
1

τ

(
S0(z) +

S1(z, θ)√
τ

+
S2(z, θ)

τ
+
S3(z, θ)

τ3/2

)
, z =

x− c∗τ√
τ

.

Plugging this into the left hand side of (5.23), we obtain the equation

(1− ω)

τ

[
−S

0

τ
− 3S1

2τ3/2
− 2S2

τ2
− 5S3

2τ5/2

]
+

(1− ω)

τ

[
−c∗ S

0
z

τ1/2
− c∗S

1
z

τ
− c∗ S

2
z

τ3/2
− c∗S

3
z

τ2

]
+

(1− ω)

τ

[
−z

2

S0
z

τ
− z

2

S1
z

τ3/2
− z

2

S2
z

τ2
− z

2

S3
z

τ5/2

]
+
D

τ

[
−S

0
zz

τ
− S1

zz

τ3/2
− S2

zz

τ2
− S3

zz

τ5/2

]
+

1

τ

[
LS1

τ1/2
+
LS2

τ
+
LS3

τ3/2

]
+

(2λ∗D +A)

τ

[
S0
z√
τ

+
S1
z

τ
+

S2
z

τ3/2
+
S3
z

τ2

]
= 0.

(5.27)

Here, we have defined the operator

L = ∆θ +
2

Q∗
∇θQ∗ · ∇θ.

Grouping the terms of order τ−3/2 in (5.27), we obtain

LS1 = (c∗ − 2λ∗D −A)S0
z . (5.28)

It is easy to verify that (5.28) has a solution of the form

S1 = χ0S
0
z + φ1, χ0 = χ+ χ, (5.29)
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where φ1 only depends on z. The terms of order τ−2 in (5.27) give

−S0 − c∗S1
z −

z

2
S0
z −DS0

zz + LS2 + 2λDS1
z +AS1

z = 0. (5.30)

Using expression (5.29) for S1, multiplying (5.30) by (Q∗)2 and integrating in θ, we obtain

S0 +
z

2
S0
z +DS0

zz = 0 (5.31)

with D as in (5.21), so that

S0(z) = z exp

{
− z2

4D

}
. (5.32)

With this in hand, we return to (5.30) that we write as

LS2 = (c∗ − 2λD +A)(S1)z + (D + c∗χ0 − 2λ∗Dχ0 +Aχ0 −D)S0
zz. (5.33)

One solution of (5.33) is
S2(z, θ) = χ0(θ)(φ1)z(z) + Ŝ2(θ)S0

zz(z),

where Ŝ2(θ) is any solution to

LŜ2 = D + c∗χ0 − 2λ∗Dχ0 +Aχ0 −D, (5.34)

with the Neumann boundary conditions. The definition of D ensures that solution of (5.34) exists.
Continuing, we examine the terms of order τ−5/2 to obtain

−3

2
S1 + ωc∗S0

z − c∗S2
z −

z

2
S1
z −DS1

zz + 2λDS2
z + LS3 +AS2

z = 0. (5.35)

Here, we replaced ω by ω/τ at the expense of lower order terms which we may absorb into theO(τ−3)
term in (5.23). Multiplying by (Q∗)2 and integrating over θ yields the solvability condition for S3:

−3

2
φ1 −

z

2
(φ1)z −D(φ1)zz = (3β1 − ωc∗)S0

z + zβ1S
0
zz + β2S

0
zzz. (5.36)

Here, we have defined

β1 : =
1

2

´
Θ χ0(Q∗)2dθ´

Θ(Q∗)2dθ
, β2 : =

´
Θ(c∗Ŝ2 − 2λDŜ2 −AŜ2 +D)(Q∗)2dθ´

Θ(Q∗)2dθ
.

We may now choose φ1 to be the unique solution to (5.36) with φ1(0) = 0 and (φ1)z(0) = 0.
Since S0 and its derivatives are bounded, there exists a constant C such that |φ1(z)| ≤ Cz2 for
all |z| ≤ σ. For the sake of clarity, we write φ1 = z2φ, with a bounded function φ.

Finally, grouping the τ−3 terms together and setting them to zero, we get an equation for S3. It
follows from the elliptic regularity theory that, for z ≤ σ, S3 is uniformly bounded. To summarize,
we have found an approximate solution, in the sense that (5.23) holds, of the form

S =
x− c∗τ
τ3/2

e−
(x−c∗τ)2

4Dτ + χ0

1− z2

4Dτ

τ3/2
e−

(x−c∗τ)2

4Dτ +
x− c∗τ
τ5/2

φ(z) +
S2

τ2
+

S3

τ5/2
. (5.37)

It also clearly satisfies the condition (5.24). This concludes the proof. �
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5.5 Understanding p at x− c∗τ ∼ O(
√
τ): the proof of Proposition 5.4

The lower bound in (5.26) is a consequence of an integral bound.

Lemma 5.5. There exists a time T0 > 0 and constants c0, B, and N , depending only on the initial
data, such that for any τ > T0 there exists a set Iτ ⊂ [c∗τ +N−1√τ , c∗t+N

√
τ ] with |Iτ | ≥ B

√
τ

and with
1

c0τ
≤
ˆ

Θ
p(τ, x, η)dη. (5.38)

Proposition 5.4 follows from Lemma 5.5 and a standard heat kernel bound. Indeed, let us
assume that ω = 0, as we may otherwise apply the time change

dτ ′ =
dτ

1− ω(τ)
.

Let Γ be the heat kernel for (5.5)-(5.6) with the Dirichlet boundary condition at x = c∗t. That is,
the solution of

µψτ = (Dµψx)x +∇θ · (µ∇θψ)− (∆θβ + c∗)ψx, τ > s, x > c∗τ, θ ∈ Θ,

∂ψ

∂νθ
= 0, on ∂Θ, (5.39)

ψ(τ, c∗τ, ·) = 0,

ψ(s, ·) = ψ̄,

can be written as

ψ(τ, x, θ) =

ˆ
Cs

Γ(τ, x, θ, s, y, η)ψ̄(y, η)µ(η)dydη. (5.40)

As in [21], one can show the following, starting with the standard heat kernel bound in a cylinder.
Set Φ(s) = s for s ∈ [0, 1] and Φ(s) =

√
s for s > 1, then for all δ > 0, there exists a constant K

such that

Γ(τ, x, θ, s, y, η) ≥ 1

KΦ(τ − s)
exp

{
−K |x− y|

2 + |θ − η|2

Φ(τ − s)

}
(5.41)

whenever R > 0, τ ∈ (s, s + R2], and x, y ∈ (c∗τ + ξ − δR, c∗τ + ξ + δR). A straightforward
computation using (5.40) going from the time s = τ/2 to τ shows that the integral bound (5.38),
combined with the pointwise lower bound (5.41) on the heat kernel, lead to a pointwise lower bound
on p in Proposition 5.4. �

5.6 Proof of Lemma 5.5

An exponentially weighted estimate

As in [21], one may show that for all α > 0, there exists a function ηα that satisfies

µ∂τηα = −L∗ (µηα) + ℵ(α)µηα, on Cτ , (5.42)

∂ηα
∂νθ

= 0 on ∂Θ,

ηα(τ, c∗τ, ·) = 0.
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as well as the exponential bounds

eα(x−c∗τ) − e−α(x−c∗τ)

Cα
≤ ηα(t, x, θ) ≤ C e

α(x−c∗τ) − e−α(x−c∗τ)

α
. (5.43)

The eigenvalue ℵ(α) in (5.42) behaves as

ℵ(α) = ℵ0α
2 +O(α3), (5.44)

as α tends to zero, with some ℵ0 > 0. Moreover, we have

|∂τηα| ≤ C for all x ∈ [c∗τ, c∗τ + α−1], and

|∂τηα| ≤ Cαηα for all x ≥ c∗τ + α−1.
(5.45)

With this in hand, we define

Vα(τ) = (1− ω(τ))

ˆ
Cτ
µ(θ) η2α(τ, x, θ) p(τ, x, θ) q(τ, x, θ) dxdθ. (5.46)

Here, we write
p = qζ, (5.47)

and ζ is as in Lemma 5.1. Lemma 5.5 is a consequence of the following estimate.

Lemma 5.6. There is a constant C0 depending on p0 such that

Vτ−1/2(τ) ≤ C0τ
−3/2. (5.48)

We first show how to conclude the proof of Lemma 5.5 from Lemma 5.6. Note that (5.48)
implies (ˆ ∞

0

ˆ
Θ

e2x/
√
τ − e−2x/

√
τ

x
p(τ, c∗τ + x, θ)2dxdθ

)1/2

≤ C0

τ
, (5.49)

Fix N > 0 to be determined later, then (5.49) gives, in particular:

ˆ ∞
N
√
τ

ˆ
Θ
xp(τ, c∗τ + x, θ)dxdθ =

ˆ ∞
N
√
τ

ˆ
Θ

ex/
√
τ

√
x
p(τ, c∗τ + x, θ)e−x/

√
τx3/2dxdθ

≤

(ˆ ∞
N
√
τ

ˆ
Θ

e2x/
√
τ

x
p(τ, c∗τ + x, θ)2dxdθ

)1/2(ˆ ∞
N
√
τ

ˆ
Θ
e−2x/

√
τx3dxdθ

)1/2

≤ C

τ

(ˆ ∞
N
√
t

ˆ
Θ
e−2x/

√
τx3dxdθ

)1/2

≤ C0N
3e−N/2. (5.50)

On the other hand, we also have

ˆ √τ/N
0

ˆ
Θ
xp(τ, c∗τ + x, θ)dxdθ ≤ C0N

−3.

Hence, choosing N sufficiently large, depending only on the initial data of p and not on time, we
have ˆ N

√
τ

√
τ/N

ˆ
Θ
xp(τ, c∗τ + x, θ)dxdθ ≥ C0. (5.51)
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Let us set

Iτ : =

{
x ∈ [c∗τ +

√
τ/N, c∗τ +N

√
τ ] :

ˆ
Θ
p(τ, x, η)dη ≥ C0

4N2τ

}
.

Then, (5.51) implies

3C0

4
≤
ˆ
Iτ

ˆ
Θ

(x− c∗τ)p(τ, x, θ)dxdθ ≤
ˆ
Iτ

ˆ
Θ

C0(x− c∗τ)2

τ3/2
dxdθ ≤ |Iτ |

C0N
2

τ1/2
,

and the proof of Lemma 5.5 is complete. �

5.7 The proof of Lemma 5.6

Throughout this section we use the assumption that τ ≤ α−2. The proof relies on two observations.
First, we have the following energy-dissipation inequality for Vα:

V ′α(τ) ≤
(
ℵ(2α)− ω′(τ)

1− ω(τ)
+ Cαω(τ)

)
Vα(τ)− 2Dα(τ) +

C0

(τ + 1)5/2
, (5.52)

with the dissipation

Dα =

ˆ
Cτ
µ(θ)η2α(τ, x, θ)ζ(τ, x, θ)

(
D(θ)|qx(τ, x, θ)|2 + |qθ(τ, x, θ)|2

)
dxdθ. (5.53)

Recall that the function ζ is defined in Lemma 5.1, and q is as in (5.47). Since this computation is
quite involved, we delay it for the moment.

The second observation is that the dissipation Dα may be related to Vα by the inequality

Dα ≥
1

C0
V 5/3
α (5.54)

where C0 is a constant depending only on p0 and τ ∈ [0, T ]. We also delay the proof of (5.54).
The combination of (5.52) and (5.54) yields the differential inequality

V ′α ≤
(
ℵ(2α)− ω′

1− ω
+

Cα

τ + 1

)
Vα −

1

C0
V 5/3
α +

C0

(τ + 1)5/2
. (5.55)

Let us define

Z(τ) = (τ + 1)3/2Vα exp(−Φ(τ)), Φ(τ) = ℵ(2α)τ + log(1− ω(τ)) + Cα log(τ + 1).

Note that, as τ ≤ α−2, we know, due to the asymptotics (5.44) for ℵ(2α), that

|Φ(s)| ≤ C for all 0 ≤ s ≤ τ , (5.56)

with a constant C > 0 that is independent of α > 0 sufficiently small. Thus, (5.48) would follow
if we show that that Z is uniformly bounded above. However, it follows from (5.55) and (5.56)
that Z satisfies

Z ′ ≤ C Z

τ + 1
+

C0

τ + 1
− 1

C0(τ + 1)
Z5/3.

This implies

Z5/3 ≤ max
{
C (Z + C0) , Z(0)5/3

}
.

Hence, Z is bounded uniformly above. Thus, to finish the proof of Lemma 5.6, it only remains to
show (5.52) and (5.54).
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Proof of the differential inequality (5.52) for Vα

Differentiating Vα, we obtain

V ′α = − ω′

1− ω
Vα + (1− ω)

ˆ
Cτ
µ [(∂τη2α) pq + η2αpτq + η2αpqτ ] dxdθ. (5.57)

Let us re-write the integral in (5.57). By the definition of η2α, we have

(1− ω)

ˆ
Cτ
µ (∂τη2α) pq dxdθ = (1− ω)

ˆ
Cτ

[−L∗ (µη2α) + ℵ(2α)µηα] pq dxdθ,

= − (1− ω)

ˆ
Cτ
µη2αL(pq) dxdθ + ℵ(2α)Vα.

Using equation (4.23) for p, we deduce

V ′α =

{
ℵ(2α)− ω′

1− ω

}
Vα +

ˆ
Cτ
µη2α [− (1− ω(τ))L(pq) + L(p)q + (1− ω)pqτ ] dxdθ. (5.58)

The last integral requires a bit of work. Note that

L(pq) = pL(q) + qL(p) + 2Dpxqx + 2pθqθ,

and

(1− ω)qτ = L(q) +
q

ζ
(L (ζ)− (1− ω) ζτ ) + 2D

ζx
ζ
qx + 2

ζθ
ζ
qθ,

= L(q) +
q

ζ
(L (ζ)− ζτ ) + ω

ζτ
ζ
q + 2D

ζx
ζ
qx + 2

ζθ
ζ
qθ.

Thus, we may re-write (5.58) as

V ′α =

(
ℵ(2α)− ω′

1− ω

)
Vα + ω

ˆ
Cτ
µη2αL(pq)dxdθ + ω

ˆ
Cτ
µη2αpq

ζτ
ζ
dxdθ

− 2

ˆ
Cτ
µη2α(Dpxqx + pθqθ)dxdθ + 2

ˆ
Cτ
µη2αp

(
D
ζx
ζ
qx +

ζθ
ζ
qθ

)
dxdθ.

The last two terms in the right side can be combined as

− 2

ˆ
Cτ
µη2α(Dpxqx + αpθqθ) dxdθ + 2

ˆ
Cτ
µη2α

(
D
ζx
ζ
qx +

ζθ
ζ
qθ

)
p dxdθ

= −2

ˆ
Cτ
µη2α

(
D

(
px −

ζx
ζ
p

)
qx +

(
pθ −

ζθ
ζ
p

)
qθ

)
dxdθ

= −2

ˆ
Cτ
µη2αζ

(
D|qx|2 + |qθ|2

)
dxdθ = −2Dα,

hence

V ′α =

(
ℵ(2α)− ω′

1− ω

)
Vα − 2Dα + ω

ˆ
Cτ
µη2α

(
L(pq) + p

ζτ
ζ
q

)
dxdθ. (5.59)

The estimate (5.52) will be complete after estimating the last term in the right side. We write
ˆ
Cτ
µη2α

(
L(pq) + p

ζτ
ζ
q

)
dxdθ =

ˆ
Cτ

(
pqL∗(µη2α) + µη2α

ζτ
ζ
pq

)
dxdθ ≤

ˆ
Cτ
µ[∂τη2α]pq dxdθ,

(5.60)
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as ζτ ≤ 0. We use (5.45) to obtain∣∣∣∣ˆ
Cτ
µ∂τη2αpqdxdθ

∣∣∣∣ ≤
∣∣∣∣∣
ˆ c∗τ+α−1

c∗τ

ˆ
Θ
µ∂τη2αpqdxdθ

∣∣∣∣∣+

∣∣∣∣ˆ ∞
c∗τ+α−1

ˆ
Θ
µ∂τη2αpqdxdθ

∣∣∣∣
≤
ˆ c∗τ+α−1

c∗τ

ˆ
Θ
µpqdxdθ + Cα

ˆ ∞
c∗τ+α−1

ˆ
Θ
µη2αpqdxdθ.

The second term above is CαVα, as desired. For the first term, we apply the upper bound (5.8)
for p and the asymptotics for ζ in Lemma 5.1 to obtain

ˆ c∗τ+α−1

c∗τ

ˆ
Θ
µpqdxdθ ≤ C0

(τ + 1)3/2

ˆ c∗τ+α−1

c∗τ

ˆ
Θ
pdxdθ.

Integrating (5.5), we see that
´
Cτ µpdxdθ is non-increasing in time. Hence, we obtain that

ω

ˆ
Cτ
µη2α

(
L(pq) + p

ζτ
ζ
q

)
dxdθ ≤ C0

(τ + 1)5/2
+ C

α

τ + 1
Vα.

Returning to (5.59), we obtain the desired differential inequality

V ′α =

(
ℵ(2α)− ω′(τ)

1− ω(τ)
+ C

α

τ + 1

)
Vα − 2Dα +

C0

(τ + 1)5/2
.

Proof of the inequality (5.54) relating Vα and Dα

It is helpful to define
ϕ(τ, z, θ) = eαz3q(τ, c∗τ + |z|, θ),

with (z1, z2, z3) = z ∈ R3, and consider the following quantities

Îα :=
1

2π

ˆ
R3×Θ

ϕ(τ, z, θ)dzdθ =

ˆ
Cτ

(
eα(x−c∗τ) − e−α(x−c∗τ)

α

)
(x− c∗τ)q(τ, x, θ)µdzdθ,

V̂α :=
1

2π

ˆ
R3×Θ

ϕ(τ, z, θ)2dzdθ =

ˆ
Cτ

(
e2α(x−c∗τ) − e−2α(x−c∗τ)

α

)
(x− c∗τ)q2(τ, x, θ)µdzdθ,

D̂α :=
1

2π

ˆ
R3×Θ

|∇ϕ(τ, z, θ)|2dzdθ

=

ˆ
Cτ

(
e2α(x−c∗τ) − e−2α(x−c∗τ)

2α

)
(x− c∗τ)(|∇q(τ, x, θ)|2 − α2q(τ, x, θ)2)µdzdθ.

(5.61)

They can be related by the following Nash-type inequality.

Proposition 5.7. Let Θ ⊂ Rd be a smooth, bounded domain, and Ω = Rk × Θ. There exists
a constant C, depending only on d, k, and |Θ| such that if φ is any function in L1(Ω) ∩ H1(Ω)
satisfying Neumann boundary conditions on the boundary ∂Θ, then

‖∇φ‖22 ≥ C
(

1 +

(
‖φ‖2
‖φ‖1

) 2d(k+2)
k(k+d) )−1

‖φ‖22
(
‖φ‖2
‖φ‖1

) 4
k

. (5.62)
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Inequality (5.62) is a multi-dimensional version of a Nash-type inequality in [16], while the
one-dimensional version of (5.10) is in [21]. Its proof is in Section 5.8.

We may apply Proposition 5.7 to φ in the cylinder R3 ×Θ to obtain

D̂α ≥
1

C

V̂
5/3
α Î

−4/3
α

1 + V̂
5d/(3d+9)
α Î

−10d/(3d+9)
α

(5.63)

Using the bounds for ζ in Lemma 5.1 and the exponential bounds (5.43) for ηα, we see that

C−1V̂α ≤ Vα ≤ CV̂α and D̂α ≤ CDα. (5.64)

We claim that
1

C0
≤ Îα ≤ C0 and Vα ≤ C0, (5.65)

so that (5.63) implies

Dα ≥
1

C0
V 5/3
α ,

which is (5.54).
To finish, we need to show that (5.65) holds. We begin with the inequality for Îα in (5.65). Let

us introduce

Iα = (1− ω)

ˆ
Cτ
µ(θ)ηα(τ, x, θ)p(τ, x, θ)dxdθ. (5.66)

We note that
C−1Iα ≤ Îα ≤ CIα,

by (5.43). Hence, we need only show that Iα is bounded away from infinity and zero uniformly in τ
and α for all τ ≤ α−2. Let us differentiate Iα:

I ′α = − ω′

1− ω
Iα + (1− ω)

ˆ
Cτ
µ [p∂τηα + ηαpτ ] dxdθ.

Using (4.23) and (5.42) allows us to rewrite the integral involving pτ :

I ′α(τ) =

(
ℵ(α)− ω′(τ)

1− ω(τ)

)
Iα(τ)− ω(τ)

ˆ
Cτ
µp∂τηα dxdθ. (5.67)

The last term may be estimated as

ω

∣∣∣∣ˆ
Cτ
µp∂τηαdxdθ

∣∣∣∣ ≤ Cω ˆ c∗τ+α−1

c∗τ

ˆ
Θ
pdxdθ + Cωα

ˆ ∞
c∗τ+α−1

ˆ
Θ
pηαdxdθ. (5.68)

The second term in (5.68) is bounded by C(τ + 1)−1αIα. The first requires a bit more work. First,
split the integral as

ˆ c∗τ+α−1

c∗τ

ˆ
Θ
pdxdθ =

ˆ c∗τ+min{τ2/3,α−1}

c∗τ

ˆ
Θ
pdxdθ +

ˆ c∗τ+α−1

c∗τ+min{τ2/3,α−1}

ˆ
Θ
pdxdθ. (5.69)

The first term is estimated using (5.8) to obtain

ˆ c∗τ+min{τ2/3,α−1}

c∗τ

ˆ
Θ
pdxdθ ≤

ˆ min{τ2/3,α−1}

0

ˆ
Θ

C0x

(τ + 1)3/2
dxdθ ≤ C0

(τ + 1)1/6
.
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Arguing as in [21, Lemma 5.4], we may bound p by the solution to (4.23) in the whole cylinder
R×Θ. Thus, the heat kernel bounds of, e.g. [29], imply that

p(τ, x+ c∗τ, ·) ≤ C0e
− x2

C(τ+1)

√
τ + 1

, (5.70)

where C0 is a constant depending on p0. Hence, the second integral in (5.69) yields

ˆ c∗τ+α−1

c∗τ+min{τ2/3,α−1}

ˆ
Θ
pdxdθ ≤ C

ˆ α−1

min{τ2/3,α−1}

ˆ
Θ

e
− x2

C(τ+1)

√
τ + 1

dxdθ ≤ C0e
−(τ+1)1/3/C .

From (4.22), we see that |ω| ≤ C(τ +T )−1, with T to be chosen. This, along with the previous two
inequalities and (5.68), implies that

ω

∣∣∣∣ˆ
Cτ
µp∂τηαdxdθ

∣∣∣∣ ≤ C0

(τ + T )(τ + 1)1/6
≤ C0

T 1/12(τ + 1)13/12
.

We used above the first assumption on ω in (4.22). Hence, we obtain∣∣∣∣I ′α − (ℵ(α)− ω′

1− ω
+O(α/(τ + 1))

)
Iα

∣∣∣∣ ≤ C0

T 1/12(τ + 1)13/12
. (5.71)

Integrating (5.71), using, once again, (4.22), yields the inequality

C(τ + 1)Cαeℵ(α)τ

(
Iα(0)− C0

T 1/12

)
≤ Iα(τ) ≤ C(τ + 1)Cαeℵ(α)τ

(
Iα(0) +

C0

T 1/12

)
. (5.72)

Using that τ ≤ α−2 and that ℵ(α) ∼ α2, by (5.44), we have that τCαeℵ(α)τ ≤ C. Using this
and choosing T at least as large as (2C0/Iα(0))12 in (5.72) finishes the proof of the first estimate
in (5.65). We note that, for all α, we have

Iα(0) ≥
ˆ
Cτ
xp0(x, θ)dxdθ,

so that our condition on T can be made uniform in α.
Now we consider Vα. Fix N to be determined later and assume that τ2/3 < Nα−1, the other

case being treated via a very similar computation. We decompose the integral as

Vα(τ) =

ˆ c∗τ+τ2/3

c∗τ

ˆ
Θ
η2αpqdxdθ +

ˆ c∗τ+Nα−1

c∗τ+τ2/3

ˆ
Θ
η2αpqdxdθ +

ˆ ∞
c∗τ+Nα−1

ˆ
Θ
η2αpqdxdθ. (5.73)

For the first integral, using Lemma 5.1 and the definition of q, we may apply (5.8) to bound p and q
as C(x− c∗τ)(τ + 1)−3/2 and C(τ + 1)−3/2, respectively. Using also (5.43) to bound η2α by a linear
function:

η2α(τ, x, θ) ≤ Ce2αN (x− c∗τ) on [c∗τ, c∗τ +Nα−1], (5.74)

we get ˆ c∗τ+τ2/3

c∗τ

ˆ
Θ
η2αpqdxdθ ≤

Ce2αN

(τ + 1)3

ˆ c∗τ+τ2/3

c∗τ
(x− c∗τ)2dx ≤ Ce2αN

(τ + 1)
. (5.75)
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For the second integral in (5.73), we use the same bounds for q and η2α but we bound p with the
Gaussian bound (5.70). This yields

ˆ c∗τ+Nα−1

c∗τ+τ2/3

ˆ
Θ
η2αpqdxdθ ≤

Ce2αN

(τ + 1)2

ˆ Nα−1

τ2/3
xe
− x2

C(τ+1)dx ≤ Ce2αN

(τ + 1)
e−(τ+1)1/3/C . (5.76)

For the last integral in (5.73), we use the bound q and p as in the last step and bound η2α

by Ce2αx/α. This yields

ˆ ∞
c∗τ+Nα−1

ˆ
Θ
η2αpqdxdθ ≤

C

(τ + 1)2

ˆ ∞
Nα−1

e
2αx− x2

C(τ+1)

α
dx.

Since τ ≤ α−2, we may choose N such that

N

Cα(τ + 1))
− 2α ≥ 1

α(τ + 1)

for all α sufficiently small. Hence, we have

C

(τ + 1)2

ˆ ∞
Nα−1

e
2αx− x2

C(τ+1)

α
dx ≤ C

(τ + 1)2

ˆ ∞
Nα−1

e
2αx− Nx

Cα(τ+1)

α
dx

≤ C

(τ + 1)2

ˆ ∞
Nα−1

e
− x
α(τ+1)

α
dx ≤ C

(τ + 1)
.

Combining this bound with (5.75) and (5.76), we have that, for all τ ≤ α−2,

Vα(τ) ≤ C(τ + 1)−1,

which, in particular, implies the upper bound on Vα in (5.65).

5.8 The proof of Proposition 5.7

Here we prove the Nash-type inequality on cylinders that we use above. We point out that when
the L2 norm is small relative to the L1 norm, this yields the same inequality as in Rk. The main
point here is that using this inequality we see that solutions to the heat equation on Rk ×Θ decay
at the same rate as solutions to the heat equation in Rk.

Our approach is similar to the one used in [16]. However, some computational challenges arise
since we lack an explicit formula for the solutions of k + 1 order polynomials. We note that, by
extending φ if necessary and scaling, we may assume without loss of generality that Θ = [0, 1]d.

First, we represent φ in terms of its Fourier series in the θ variable, and its Fourier transform
in the x variable. This yields

φ(x, θ) =
∑
n∈Zd

ˆ
Rk
φ̂n(ξ)eiξ·x cos (πnθ)

dξ

(2π)
k+d
2

,

where

φ̂n(ξ) :=

ˆ
Θ

ˆ
Rk
φ(x, θ)e−iξ·x cos (πnθ)

dxdθ

(2π)
k+d
2
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Before we continue, we note two things. First, we have that

|φ̂n(ξ)| ≤ ‖φ‖1, (5.77)

Second, the Plancherel formula tells that

‖φ‖22 =
∑
n

ˆ
Rk
|φ̂n(ξ)|2dξ, and that ‖∇φ‖22 =

∑
n

ˆ
Rk

(
|ξ|2 + n2

)
|φ̂n(ξ)|2 dξ

(2π)
k+d
2

. (5.78)

Fix a constant ρ to be determined later. We now decompose ‖φ‖2 into outer and inner parts as

‖φ‖22 =
∑
|n|≤ρ

ˆ
Bρ(0)

|φ̂n(ξ)|2dξ +
∑
|n|>ρ

ˆ
Rd
|φ̂n(ξ)|2dξ +

∑
n

ˆ
Bρ(0)c

|φ̂n(ξ)|2dξ. (5.79)

The first term in (5.79) may be bounded as∑
|n|≤ρ

ˆ
Bρ(0)

|φ̂n(ξ)|2dξ ≤
∑
|n|≤ρ

ˆ
Bρ(0)

‖φn‖21dξ ≤ Cρk(ρ+ 1)d‖φn‖21 (5.80)

The second and third terms in (5.79) may be estimated in the same way so we show only the second
term. It can be bounded as:∑

|n|>ρ

ˆ
Rd
|φ̂n(ξ)|2dξ ≤

∑
|n|>ρ

ˆ
Rd

1

ρ2

(
|ξ|2 + n2

)
|φ̂n(ξ)|2dξ ≤ 1

ρ2
‖∇φ‖22. (5.81)

Combining (5.80) and (5.81) with (5.79), we obtain

1

C
‖φ‖22 ≤ ρk(ρ+ 1)d‖φ‖21 +

1

ρ2
‖∇φ‖22,

In the interest of legibility, we define the following constants

I = ‖φ‖21, J = ‖∇φ‖22, and K = ‖φ‖22,

and we re-write the above inequality as

1

C
K ≤ ρk(ρd + 1)I +

1

ρ2
J.

Define X to be the quantity

X
def
= J

1
k+2

(
CI

2−d
k+2

K

) 1
k+d

,

and choose

ρ =

(
J

I

) 1
k+2

in order to optimize this inequality. Hence, the above inequality becomes

1 ≤ Xk+d + αXk,
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where we define

α = C

(
I

K

) d
k+d

.

It is straight-forward to verify that this polynomial has exactly one positive root which must be at
least as large as (2(1 + α))−1/k. Hence, it follows that

X ≥
(

1

2(1 + α)

)1/k

≥ C 1

1 + α1/k
.

Returning to our earlier notation, we obtain

J ≥
CK

(
I
K

) d−2
k+d

1 +
(
I
K

) d(k+2)
k(k+d)

,

Re-arranging this inequality and substituting in for I, J , and K concludes the proof.
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