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Abstract

We consider solutions of the KPP equation with a time-dependent diffusivity of the form
σ(t/T ). For an initial condition that is compactly supported, we show that when σ(s) is increasing
in time the front position at time T is X(T ) = c∗T − ν̄T 1/3+O(log T ). That is, X(T ) lags behind
the linear front by an amount that is algebraic in T , not by the Bramson correction (3/2) log T
as in the uniform medium. This refines a result by Fang and Zeitouni.

1 Introduction

The long time behavior of the solutions of the Fisher-KPP equation

ut = uxx + f(u), (1.1)

has been studied since the original works by Fisher [6], and Kolmogorov, Petrovskii and Piskunov [12]
that both appeared in 1937. The nonlinear function f(u) is assumed to satisfy

f(u) > 0 for u ∈ (0, 1), f(0) = f(1) = 0 and f(u) ≤ f ′(0)u for u ∈ [0, 1]. (1.2)

Like other reaction-diffusion equations, this equation admits traveling wave solutions: for any c ≥
c∗ = 2

√
f ′(0) there exists a profile U c(x) that satisfies

−cU c
x = U c

xx + f(U c), U c(−∞) = 1, U c(+∞) = 0.

If the initial data for (1.1) is front-like, meaning that 0 ≤ u(0, x) ≤ 1, u(0, x) = 0 for x > L, for
some L ∈ R, and

lim inf
x→−∞

u(0, x) > 0, (1.3)

then the solution at a later time will resemble a traveling wave in a shifted reference frame. An
interesting problem is to determine the position of the front at large times. Let us define the front
position as

X(t) = sup{x : u(t, x) = 1/2}. (1.4)

Bramson has shown in his seminal papers [1, 2] that X(t) has the asymptotics

X(t) = c∗t−
3

2λ∗
log t+ x0 + o(1), as t→ +∞. (1.5)
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Here, x0 is a constant shift that depends on the initial data, and λ∗ is the exponential decay rate
for the critical traveling wave:

U c∗(x) ∼ xe−λ∗x, as x→ +∞. (1.6)

Bramson’s proof of (1.5) was probabilistic. In [13, 16], versions of Bramson’s result were proved
using the intersection number of the solution, a PDE technique which was used also in the original
KPP paper [12]. An alternative probabilistic proof of Bramson’s correction was recently given by
Roberts [15], and an extension to higher dimensions was done by Gärtner [9]. A simple proof of a
weaker version of (1.5) was presented recently in [10]:

X(t) = c∗t−
3

2λ∗
log t+O(1), as t→ +∞. (1.7)

It was extended to spatially periodic media in [11]. The main observation of [10, 11] is very simple
and has been used already by Gärtner in the probabilistic context: solutions of the nonlinear equation
(1.1) behave very similarly to those of the linear equation

wt = wxx + f ′(0)w, (1.8)

with the Dirichlet boundary condition at a moving boundary: w(t, Y (t)) = 0. The idea is that if we
choose the boundary Y (t) “too far to the left” then w(t, x) will grow exponentially in time, while if
we choose Y (t) “too far to the right” then w(t, x) will decay in time. It turns out that if we choose
Y (t) so that w(t, x) stays O(1) as t→ +∞, then Y (t) gives a good approximation to X(t) – this is
proved using appropriate sub- and super-solutions for u(t, x) that are based on w(t, x).

The Fisher-KPP equation also appears in the theory of branching random walks and branch-
ing Brownian motion (BBM) [14]. Consider a BBM starting at x = 0 at time t = 0, and let
X1(t), . . . , XNt(t) be the descendants of the original particle at time t, arranged in increasing order:

X1(t) ≤ X2(t) ≤ · · · ≤ XNt(t).

Then, the probability distribution function of the maximum:

v(t, x) = P(XNt(t) > x), (1.9)

satisfies the Fisher-KPP equation

vt =
1

2
vxx + v − v2, (1.10)

with the initial data v0(x) = Ix≤0. Recently, Fang and Zeitouni considered the asymptotics of the
position of the maximum for a branching random walk with a time-dependent diffusivity: first, with
a variance that takes just two values σ1 and σ2 on the time intervals 0 ≤ t ≤ T/2 and T/2 ≤ t ≤ T [4],
and then for a monotonic in time variance of the form σ(t/T ) [5]. They have observed that Bramson’s
correction 3/2 log T for the front position X(T ) is valid only for constant diffusivities, and, moreover,
for a monotonic in time variance the deviation is actually of the size O(T 1/3), which is a completely
different behavior. Their results are described in more detail in Sections 3 and 4.

The main result of the present paper (see Theorem 4.1) is a PDE proof (based on the aforemen-
tioned ideas from [10, 11]) and a refinement of the results of Fang and Zeitouni. More precisely, we
consider solutions of

ut = σ2(t/T )uxx + f(u), (1.11)

with front-like initial data u0(x). We show that if σ(s) is increasing, the front position has the
asymptotics

X(T ) = ceffT − ν̄T 1/3 +O(log T ), as T → +∞. (1.12)
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Here, the effective speed is

ceff = 2

∫ 1

0
σ(s)ds,

and the explicit constant in front of T 1/3 is

ν̄ = β

∫ 1

0
σ(τ)1/3σ̇(τ)2/3dτ,

and −β < 0 is the first zero of the Airy function Ai(x). We note that a crucial ingredient leading
to the T 1/3 correction is the fact that σ̇(s) is positive – it leads to time variation in the exponential
decay rate λ(s) = 1/σ(s) that ultimately creates the balance in the Airy eigenvalue problem that is
necessary to observe T 1/3-delay. We refer the reader to the proof of Theorem 4.1 for details of the
balance.

When the diffusivity σ2 depends on time, the relations (1.9) and (1.10) between the branching
Brownian motion and the Fisher-KPP equation may be generalized as follows. Each of the branching
particles satisfies

dX(t) =
√
2σ(t) dB(t) (1.13)

where B(t) is a standard Brownian motion in R (for each particle there is a different Brownian
motion, independent of the others). Suppose there is one particle initially at time s at position y.
The particles branch independently at rate γ > 0, and we label them XM(t) ≤ · · · ≤ X2(t) ≤ X1(t),
so that XM(t) refers to the minimal particle at time t. From a modification of the arguments in [14],
it follows that the function

z(s, y; t) = P(XM(t) > 0 | X1(s) = y)

satisfies the terminal value problem

zs + σ2(s)zyy = γz − γz2, s < t, y ∈ R

with the terminal condition being the indicator function

z(t, y; t) = I(0,∞)(y).

Therefore, the function

v(r, y; t) = 1− z(t− r, y; t) = P(XM(t) ≤ 0 | X1(t− r) = y)

satisfies the initial value problem

vr = σ2(t− r)vyy + γv(1− v), y ∈ R, r > 0 (1.14)

with initial condition
v(0, y; t) = I(−∞,0](y),

which is in the class of initial value problems that were are studying. In particular, by comparing
(1.13) and (1.14), we see that solutions of the Fisher-KPP equation (i.e. (1.11) with f = u − u2)
with a diffusion coefficient σ2 that increases in time correspond to a BBM with diffusion coefficient
σ2 that decreases in time (as in [4, 5]).

The paper is organized as follows. In Section 2 we recall what happens for the fully linearized
problem. In Section 3 we review Fang’s and Zeitouni’s “two-variances” setting and explain how
their results can be obtained by PDE-based computations. This leads us to the main theorem of
this paper, Theorem 4.1, stated in Section 4. The last two sections are devoted to its proof.
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Throughout the paper we assume for simplicity of notation that f ′(0) = 1, and denote by C,C ′

etc. various constants that do not depend on T .
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2 “Front position” in the linear case

It is instructive to first consider how solutions of the linearized equation

φt = σ2(t)φxx + φ, x ∈ R, t > 0 (2.1)

with compactly supported initial data φ(0, x) = φ0(x) spread on the whole real line as t increases.
We assume that φ0(x) ∈ L1(R) is nonnegative, compactly supported, and positive on a set of positive
measure. The “front” position is defined in this setting as

Xlin(t) = sup{x ∈ R : φ(t, x) = 1}. (2.2)

Note that, unlike the solution of the KPP equation, the solution of the linear problem is not bounded
by 1 from above, and

lim
t→+∞

φ(t, x) = +∞ for all x ∈ R,

so Xlin(t), as defined in (2.2), is finite, at least for sufficiently large times (depending on the initial
data). In order to find the front position, we make a time change

s(t) =

∫ t

0
σ2(r) dr.

Then the solution of (2.1) can be written as φ(t, x) = etv(s(t), x). Here, the function v(s, x) solves
the heat equation

vs = vxx, s > 0,

with the initial data v(0, x) = φ0(x). The front position is, therefore, determined by

etv(s(t), Xlin(t)) =
et√
4πs(t)

∫

R

exp
{
− (Xlin(t)− y)2

4s(t)

}
φ0(y) dy = 1. (2.3)

Without loss of generality, and to simplify the computations, suppose that the initial data φ0 is the
characteristic function of an interval [0,M ]:

φ0(x) = I[0,M ](x).

It is easy to see directly from (2.3) that Xlin(t) → +∞ as t→ +∞. Hence the integral in (2.3) may
be estimated as follows for large t:

∫ M

0
exp

{
− (Xlin(t)− y)2

4s(t)

}
dy =

∫ M

0
exp

{
− X2

lin(t)− 2Xlin(t)y + y2

4s(t)

}
dy

= e−X2
lin(t)/4s(t)

∫ M

0
exp

{Xlin(t)y

2s(t)

}
dy

[
1 +O

( 1

s(t)

)]
(2.4)

= e−X2
lin(t)/4s(t)

2s(t)

Xlin(t)

[
eMXlin(t)/2s(t) − 1

] [
1 +O

( 1

s(t)

)]
.
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It is also straightforward to verify, using the maximum principle, that Xlin(t)/s(t) = O(1) as t →
+∞. Therefore, (2.3) and (2.4) show that

et√
4πs(t)

e−X2
lin(t)/4s(t) = O(1), (2.5)

that is:

t− X2
lin(t)

4s(t)
− 1

2
log s(t) = O(1). (2.6)

We deduce that

Xlin(t) =

(
4s(t)t(1− log s(t)

2t
+O(

1

t
))

)1/2

= 2
√
s(t)t

(
1− log s(t)

4t
+O(

1

t
))

)
. (2.7)

As s(t)/t = O(1), it follows that the front position has the asymptotics

Xlin(t) = 2

(
1

t

∫ t

0
σ2(ξ)dξ

) 1
2

t− 1

2

(
1

t

∫ t

0
σ2(ξ)dξ

) 1
2

log t+O(1). (2.8)

If we define the average variance as

σeff (t) =

(
1

t

∫ t

0
σ2(ξ)dξ

)1/2

, (2.9)

the front position can be written in a form similar to that in a homogeneous medium (c.f. (1.5)):

Xlin(t) = 2σeff (t)t−
σeff (t)

2
log t+O(1), as t→ ∞. (2.10)

That is, the front position lags by “1/2 log t” behind the “linear” in time asymptotics. Moreover, it
depends only on the average variance σeff (t). For example, if σ(t) has the form

σ(t) =

{
σ1, 0 ≤ t ≤ T/2,
σ2, T/2 < t ≤ T ,

(2.11)

then Xlin(T ) does not depend on whether σ1 > σ2 or σ2 > σ1. This is very different from what
happens for the (nonlinear) KPP equation, where, as it was discovered by Fang and Zeitouni in [4],
the front position depends very much on the relation between σ1 and σ2.

3 KPP with a piece-wise constant diffusivity

In order to appreciate the difference between the behavior of the solutions of the KPP equation
and those of the linearized problem, we first recover from the PDE point of view the results of [4]
obtained for the discrete version of

ut = σ2(t)uxx + u(1− u), x ∈ R, t > 0, (3.1)

u(0, x) = u0(x), x. ∈ R

Here, as in [4], the diffusivity σ(t) has the form (2.11). We suppose that 0 ≤ u0 < 1 and u0 is
compactly supported. As u(t, x) satisfies 0 < u(t, x) < 1, it is convenient to define the front position
X(t) by

X(t) = sup{x ∈ R | u(t, x) = 1/2}. (3.2)
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Let us define the averages

σa =
σ1 + σ2

2
(3.3)

and

σe =

√
σ21 + σ22

2
. (3.4)

The following proposition is a PDE version of the main result of [4].

Proposition 3.1 Let u solve the nonlinear problem (3.1) where σ(t) is the piece-wise constant
function (2.11). If σ1 < σ2, then we have

X(T ) = 2σaT − 3σa lnT +O(1), as T → ∞. (3.5)

If σ1 > σ2, then

X(T ) = 2σeT − 1

2
σe lnT +O(1), as T → ∞. (3.6)

Comparing (3.5) and (3.6), we see that, in contrast to the linear case, both the speed and the
logarithmic term are not invariant under a permutation of σ1 and σ2. The main observation of [4]
is that while the delay behind the linear-in-time position is logarithmic in both cases, neither of the
pre-factors 1/2 and 3 is equal to the Bramson coefficient 3/2 that appears when σ(t) is constant
in time – the case σ1 = σ2 turns out to be degenerate. In [4] this result is stated in terms of a
branching random walk. As we have explained in the introduction, this means that in Proposition
3.1, the case of increasing σ (i.e. σ1 < σ2) corresponds to decreasing σ in the corresponding result
in [4]. Similarly, decreasing σ in Proposition 3.1 corresponds to increasing σ in [4].

Since a probabilistic proof of Proposition 3.1 has been presented already in [4], we only outline
the computations required for a PDE proof, and omit the details that can easily turn them into a
rigorous proof. Let c1 = 2σ1 be the minimal traveling wave speed associated with σ1. That is, for
any c ≥ c1 there is a traveling wave solution v(t, x) = Uc(x− ct) to the equation

vt = σ21vxx + v(1− v)

satisfying Uc(+∞) = 0, Uc(−∞) = 1. We denote by U1 the wave profile corresponding to the
minimal speed c = c1, and by λ1 = 1/σ1 the exponential decay of the wave: U1(x) ∼ xe−λ1x as
x → +∞. Similarly, c2 = 2σ2, and λ2 = 1/σ2 are the parameters associated with the minimial
traveling wave solution for

vt = σ22vxx + v(1− v).

3.1 The front position when σ1 < σ2

We first look at the case σ1 < σ2. For 0 < t < T/2 the function u(t, x) solves the KPP equation with a
constant diffusivity σ1. So, when T is large, at the time t = T/2 it will satisfy (see [1, 2, 9, 10, 13, 16])

u(T/2, x) ≤ U1(x− c1T/2 +
3

2λ1
log(T/2) + δ1). x ∈ R.

Here, the shift δ1 depends only on the initial data u0. As the profile U1(y) has the asymptotics

C−1
1 ye−λ1y ≤ U1(y) ≤ C1ye

−λ1y, y ≥ 1, (3.7)

the function u(T/2, x) satisfies

u(T/2, x) ≤ C1(x− c1T/2 +
3

2λ1
log(T/2) + δ1) exp

{
− λ1(x− c1T/2 +

3

2λ1
log(T/2) + δ1)

}
,
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for x sufficiently large. Observe that, because σ1 < σ2, the exponential decay rates satisfy λ1 > λ2.
In particular, for any λ3 ∈ (λ2, λ1) we may choose C2 so that

u(T/2, x) ≤ min
(
1, C2 exp

{
− λ3(x− c1T/2 +

3

2λ1
log(T/2) + δ1)

})
, x ∈ R.

Hence the function u(T/2, x) decays much faster than the critical traveling wave U2(x), and the
evolution between the times T/2 to T is as if u were compactly supported at time T/2. In particular,
it follows that

X(T ) ≤ c1
T

2
− 3

2λ1
log(T/2) + c2

T

2
− 3

2λ2
log(T/2) +O(1). (3.8)

Notice that this argument fails when σ1 = σ2, and λ1 = λ2.
A matching lower bound on X(T ) is obtained similarly. If T is sufficiently large, then at the

time T/2 we have

u(T/2, x) ≥ U1(x− c1T/2 +
3

2λ1
log(T/2) + δ2)− 1/4, x ≥ 0,

for some constant δ2 depending only on u0. In particular, there is δ3 such that

u(T/2, x+ c1T/2−
3

2λ1
log(T/2) + δ3) ≥

1

2
I[0,1](x),

for all T sufficiently large. By the maximum principle, u(T, x) ≥ v(T, x) where

vt = σ22vxx + v(1− v), t ≥ T/2, x ∈ R

v(T/2, x) =
1

2
I[0,1](x− c1T/2 +

3

2λ1
log(T/2)− δ3), x ∈ R. (3.9)

The function v(t, x) satisfies the KPP equation with a constant diffusivity σ2, and its front position
satisfies the “usual Bramson 3/2 log(T/2) delay” after time T/2 elapses for (3.9), which brings us to
time t = T . Hence, the front position satisfies

X(T ) ≥ c1
T

2
− 3

2λ1
log(T/2) + c2

T

2
− 3

2λ2
log(T/2) +O(1). (3.10)

Combining (3.8) and (3.10) we obtain

X(T ) = (c1 + c2)T − 3

2

(
1

λ1
+

1

λ2

)
log T +O(1),

which establishes (3.5).

3.2 The front position when σ1 > σ2

Now, we consider the situation when σ1 > σ2. The first task is compute the speed. We still have
the same asymptotics for u(t, x) at the time t = T/2:

u(T/2, x) ∼ U1(x− c1T/2) ≈
{

1, x < c1T/2,

e−λ1(x−c1T/2)−(x−c1T/2)2/(4σ2
1(T/2)), x > c1T/2,

(3.11)

which comes from solving the KPP equation with the diffusivity σ1 on the time interval [0, T/2].
Here, as we are computing only the speed, and not the precise asymptotics, the Bramson logarithmic
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correction was neglected. The key point is that the decay rate λ1 is now slower than the decay rate
λ2 = 1/σ2 for the critical traveling wave associated with diffusivity σ2. Solving the KPP equation
with the diffusivity σ2 for T/2 ≤ t ≤ T , and with the initial data as in (3.11), at a time t = s+ T/2
we have, to the leading order:

u(T/2 + s, c1T/2 + x) ≈ es
∫ ∞

0
e−(x−y)2/(4σ2

2s)−λ1y−y2/(2σ2
1T )dy, (3.12)

and at s = T/2 we get

u(T, c1T/2 + x) ≈ e
T
2
− x2

2σ2
2
T

∫ ∞

0
e
−

y2

2σ2
2
T
+ xy

σ2
2
T e

−λ1y−
y2

2σ2
1
T dy.

In order to find the speed, let us look for α > 0 such that u(T, c1T/2 + αT ) = O(1):

u(T, c1T/2 + αT ) ≈
∞∫

0

e
T
2
−α2T

2σ2
2

−
y2

2σ2
2
T
+αy

σ2
2 e

−λ1y−
y2

2σ2
1
T dy ≈ e

T
2
−α2T

2σ2
2

+

(

α

σ2
2

−λ1

)2(

2

σ2
2
T
+ 2

σ2
1
T

)−1

= O(1).

This gives

1− α2

σ22
+

(
α

σ22
− 1

σ1

)2( 1

σ22
+

1

σ21

)−1

= 0, (3.13)

which after some algebra can reduced to

(α+ σ1)
2 = 2(σ21 + σ22).

This gives the linear in time asymptotics for the front position

X(T ) = c1
T

2
+ αT = (σ1 + α)T =

√
2(σ21 + σ22)T = 2σeT,

as in (3.6).
Next, we outline how the above computation should be modified to compute the logarithmic shift.

A more refined version of the asymptotics (3.11) for u(T/2, x) around the position ξ(T ) = c1T/2 is

u(T/2, x) ≥ (T/2)−3/2(x− ξ(T ))e−λ1(x−ξ(T ))−(x−ξ(T ))2/(4σ2
1(T/2)), x > ξ(T ). (3.14)

In order to find the logarithmic correction we need to take into account the factor of (x− ξ(T )) in
front of the exponential in (3.14) (we did not need to account for it in the calculation of the speed,
where (3.11) was sufficient). The “refined analog” of (3.12) for t = s+ T/2 is

u(T/2 + s, ξ(T ) + x) ≈ T−3/2 e
s

√
s

∫ ∞

0
ye−(x−y)2/(4σ2

2s)−λ1y−y2/(2σ2
1T )dy,

and at s = T/2 we get

u(T, ξ(T ) + x) ≈ 1

T 2
e

T
2
− x2

2σ2
2
T

∫ ∞

0
ye

−
y2

2σ2
2
T
+ xy

σ2
2
T e

−λ1y−
y2

2σ2
1
T dy.

Taking x = αT + r log T , with α as in (3.13), and r to be determined by the condition

u(T, c1T/2 + αT + r log T ) = O(1),
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gives

u(T, ξ(T ) + αT + r log T ) ≈ 1

T 2
e

T
2
−

α2T2+2αrT log T

2σ2
2
T

∫ ∞

0
ye

−
y2

2σ2
2
T
+αy

σ2
2

+ r log T

σ2
2
T

y
e
−λ1y−

y2

2σ2
1
T dy = O(1).

(3.15)
Note that for b≪ 1 we have an approximation

∫ ∞

0
yeay−by2dy ≈ a

b3/2
ea

2/(4b).

Using this in (3.15) (in our case b ∼ 1/T is small) gives

u(T, ξ(T ) + αT + r log T ) ≈ 1

T 2
e

T
2
−α2T

2σ2
2

−
αr log T

σ2
2

(
α

σ22
− λ1

)(
1

2σ22T
+

1

2σ21T

)−3/2

× exp

[(
α

σ22
+
r log T

σ22T
− λ1

)2 1

4

(
1

2σ22T
+

1

2σ21T

)−1
]
. (3.16)

An elementary computation shows that the choice (3.13) of α cancels the terms in the exponent in
(3.16) that are linear in T , while to cancel the terms multiplying log T in the exponent, we need to
choose r so that

T−1/2e−αr log T/σ2
2 exp

[(
σ21σ

2
2

σ21 + σ22

)
r log T

σ22
(
α

σ22
− λ1)

]
= 1.

After some elementary transformations, this gives

r = −1

2

√
σ21 + σ22

2
= −σe

2
,

which is the logarithmic shift in (3.6). As we have mentioned, it is quite straightforward to make
this argument rigorous using the precise asymptotics on the solutions of the KPP equation with
constant coefficients from [10].

4 The Fang-Zeitouni shift for an increasing diffusivity

Motivated by the example of the variance that takes two different values as in Section 3, especially
the case σ1 < σ2, when the front delay is “surprisingly large”, Fang and Zeitouni considered in [5] the
following question: given a fixed time T and all possible variances σ(s), such that, say, 1 ≤ σ(s) ≤ 2
for all 0 ≤ s ≤ T , what is the largest possible KPP delay for compactly supported initial data?
In order to make this question well-defined, they considered variances of the form σ(s/T ), with a
smooth, bounded from above, and away from zero function σ(s) : [0, 1], and studied solutions of

ut = σ2(t/T )uxx + f(u), x ∈ R, t ∈ [0, T ] (4.1)

u(0, x) = u0(x), x ∈ R,

with compactly supported initial data u0(x), and with f(u) = u − u2. We consider here more
generally, a nonlinearity f(u) of the KPP type, as in (1.2). The front position X(t) for 0 ≤ t ≤ T is
then defined as in (3.2).

Note that after rescaling t = sT , x = yT , we obtain the following form of (4.1):

us = δσ2(s)uyy +
1

δ
f(u), (4.2)

9



with δ = 1/T ≪ 1. The initial data for (4.2) is also rescaled: u(s = 0, y) = u0(y/δ) which
creates some additional complications when u0 is compactly supported. However, if we consider,
for simplicity, the special initial data u0(x) = Ix≤0, as in the paper by Fang and Zeitouni, then it
is invariant under rescaling. Using the analysis of Freidlin [7, 8] or Evans and Souganidis [3], it is
straightforward to verify that when σ(s) is increasing then for a step-function initial data the front
speed is, asymptotically for large T (see [5] for a detailed computation), given by

X(T )

T
= vσ + o(1), as T → +∞, (4.3)

where

vσ =

∫ 1

0
σ(s)ds. (4.4)

We note that when σ(s) is not strictly increasing in time, then the speed vσ need not be given by
(4.4). For instance, when σ(s) is decreasing in time, we have

vσ =

(∫ 1

0
σ2(s)ds

)1/2

,

which is the same as the speed for the linearized problem (2.9).
The main result of Fang and Zeitouni in [5] is that when σ(s) is increasing in time, the front

position actually lags behind the linear-in-time asymptotics by a term of the order T 1/3 and not
logarithmically:

X(T ) = vσT − g(T ), (4.5)

with a function g(T ) that satisfies

0 < lim inf
T→+∞

g(T )

T 1/3
≤ lim sup

T→+∞

g(T )

T 1/3
< +∞. (4.6)

The main result of the present paper is the following refinement of this asymptotics.

Theorem 4.1 Let u satisfy (4.1) and define X(t) by (3.2). Assume that σ̇(s) > 0 for 0 ≤ s ≤ 1.
Then

X(T ) = 2T

∫ 1

0
σ(s)ds− ν̄T 1/3 +O(log T ), (4.7)

as T → ∞, where

ν̄ = β

∫ 1

0
σ(τ)1/3σ̇(τ)2/3dτ, 0 ≤ s ≤ 1, (4.8)

and β > 0 is the the principal eigenvalue of the Airy operator

−ϕxx + xϕ(x) = βϕ(x), x > 0; ϕ(0) = 0. (4.9)

Note that the function ϕ̂(x) = ϕ(x+ β) satisfies

−ϕ̂′′(x) + xϕ̂(x) = 0 for x ≥ −β with ϕ̂(−β) = 0.

Therefore, −β < 0 is the first zero of the Airy function Ai(x), and ϕ(r) = cAi(r − β) for some
constant c > 0.

Unlike [5], the proof of this theorem is not probabilistic and relies on the techniques and ideas
of [10, 11] that gave an alternative PDE proof of Bramson’s delay in homogeneous and periodic
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media. As we have mentioned, the main idea is to consider a linear boundary value problem on a
moving half line:

φt = σ2(t/T )φxx + φ, t ∈ [0, T ], x > Y (t) (4.10)

with the Dirichlet boundary condition φ(t, Y (t)) = 0. The crucial observation is that when the
moving boundary Y (t) is appropriately chosen, solutions of the nonlinear KPP equation (4.1) and
those of the linear problem (4.10) behave in a similar fashion. Roughly, if we choose Y (t) to be too
far on the left, solutions of (4.10) will grow exponentially in time, while if we take it too far to the
right, they will decay exponentially in time. However, if we choose Y (t) just right so that either
solutions of (4.10) stay O(1) in a certain region, or, at most, decay algebraically in time, then we
can construct both sub- and super-solutions for the KPP equation (4.1) using the function φ(t, x),
and use them to find the asymptotics for X(T ).

5 Proof of Theorem 4.1: the upper bound

The Dirichlet moving boundary problem

As we have mentioned, we will construct a sub-solution and a super-solution for the KPP equation
(4.1) using the linearized problem (4.10) with the Dirichlet boundary condition on a moving bound-
ary. Let φ(t, x) ≥ 0 satisfy (4.10) with Y (t) to be specified later. The initial condition φ(0, x) = φ0(x)
will also be chosen later on. Although φ clearly is a supersolution to the nonlinear equation, in the
sense that

φt ≥ σ2(t/T )φxx + φ(1− φ),

we can not conclude that u(t, x) ≤ φ(t, x) for x > Y (t) provided that u0(x) ≤ φ0(x) because of
the boundary condition φ(t, Y (t)) = 0, which u does not satisfy. The remedy is to choose Y (t) and
φ0(x) ≥ u0(x) so that for all t ≥ 0 there exists a point where Y1(t) such that

Y (t) < Y1(t) < Y (t) + C, and φ(t, Y1(t)) ≥ 1. (5.1)

If this is the case, the function

φ̄(t, x) =

{
1, x ≤ Y1(t)

min(1, φ(t, x)), x > Y1(t)
(5.2)

is a true super-solution for the nonlinear problem in all of R as a minimum of two super-solutions.
By the maximum principle, we conclude that u(t, x) ≤ φ̄(t, x) holds for all t ∈ [0, T ], x ∈ R, giving
us an upper bound for X(t):

X(t) ≤ Z(t) = sup{x : φ(t, x) = 1/2}. (5.3)

Our task, therefore, includes getting good decay estimates on φ(t, x) so that we can control the
location of Z(t).

We claim that by choosing

Y (t) = 2

∫ t

0
σ(τ/T )dτ − T 1/3l(t/T ), (5.4)

with l(s) defined by

l(s) = β

∫ s

0
σ(τ)1/3σ̇(τ)2/3dτ, 0 ≤ s ≤ 1, (5.5)
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so that ν̄ = l(1), and with a suitable initial condition φ0 ≥ 0, the function φ(t, x) will satisfy

φ(t, x) = e−λ(t/T )(x−Y (t))T 1/3

[
ϕ

((
x− Y (t)

T 1/3

)
σ̇(t/T )1/3

σ(t/T )4/3

)
+O(T−1/3)

]
(5.6)

where ϕ is the Airy eigenfunction in (4.9) and λ(s) = 1/σ(s). More precisely, we will show that
there is a constant C such that for all T > 1 there is a smooth function h(s, r) : [0, 1]× [0,∞) → R

such that

max
0≤s≤1

‖h(s, ·)‖L∞([0,∞)) ≤
C

T 1/3
(5.7)

and

φ(t, x) = e−λ(t/T )(x−Y (t))T 1/3

[
ϕ

((
x− Y (t)

T 1/3

)
σ̇(t/T )1/3

σ(t/T )4/3

)
+ h

(
t

T 1/3
,

(
x− Y (t)

T 1/3

)
σ̇(t/T )1/3

σ(t/T )4/3

)]
.

(5.8)
From above and the fact that ϕ′(0) > 0, we will conclude that, indeed, there is a continuous function
Y1(t) such that (5.1) holds. In particular, we have

u(T, x) ≤ φ̄(T, x) ≤ e−λ(1)(x−Y (T ))T 1/3

[
ϕ

((
x− Y (T )

T 1/3

)
σ̇(t/T )1/3

σ(t/T )4/3

)
+O(T−1/3)

]
, x > Y1(T ).

It follows that

X(T ) ≤ 2T

∫ 1

0
σ(s)ds− T 1/3l(1) + C log T, (5.9)

which is the required upper bound for X(T ) in Theorem 4.1.

5.1 The problem in the moving frame

Our goal is, therefore, to choose the initial data φ0 so that with Y (t) given by (5.4) we would have
(5.7) and (5.8), and φ0(x) ≥ u0(x) for x ≥ 0. To this end, let us consider Y (t) of the form

Y (t) = 2

∫ t

0
σ(τ/T )dτ − Tml(t/T ),

with the exponent m to be determined and l(0) = 0. Shifting to the moving frame: φ(t, x) =
v(t, x− Y (t)), we obtain

vt − 2σ(t/T )vy + Tm−1 l̇(t/T )vy = σ2(t/T )vyy + v, y > 0, 0 ≤ t ≤ T,

and v(t, 0) = 0. The initial data is unchanged: v(0, x) = φ0(x). Next, we take out the exponen-
tial decay (in space) factor: let λ(s) = 1/σ(s), and define a function w(s, y) = v(sT, y)eλ(s)y. A
straightforward computation using the definition of λ(s) shows that w(s, y) satisfies

1

T
ws + Tm−1 l̇(s)wy = σ2(s)wyy +

(
Tm−1 l̇(s)

σ(s)
− 1

T

σ̇(s)y

σ2(s)

)
w, y > 0, 0 ≤ s ≤ 1,

with the boundary condition w(s, 0) = 0, and the initial condition w(0, y) = eλ(0)yφ0(y). After
rescaling of the spatial variable: y = T pz, this equation becomes

1

T
ws + Tm−p−1 l̇(s)wz = σ2(s)T−2pwzz +

(
Tm−1 l̇(s)

σ(s)
− T p−1 σ̇(s)z

σ2(s)

)
w. (5.10)
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The initial data in the rescaled variables is w(0, z) = eλ(0)T
pzφ0(T

pz).
Now, in order to balance the three terms in the right side of (5.10), we choose m = p = 1/3, so

that −2p = p− 1 = m− 1. Then, we have

ε(ws + l̇(s)wz) = σ2(s)wzz −
σ̇(s)

σ2(s)
zw +

l̇(s)

σ(s)
w, y > 0, 0 < s ≤ 1, (5.11)

with the initial data w(0, z) = eλ(0)z/εφ0(z/ε), and the boundary condition w(s, 0) = 0. Here we
have set ε = T−1/3.

We observe from (5.11) that if ε is small, then z 7→ w(s, z) is almost a solution to the eigenvalue
problem

−σ2(s)w̄zz +
σ̇(s)

σ2(s)
zw̄ = µ(s)w̄, z > 0; w̄(0) = 0. (5.12)

The shift l(s) should be, therefore, related to the principal eigenvalue µ(s) for (5.12) via

µ(s) = l̇(s)/σ(s),

which, after a simple rescaling of the eigenvalue problem, becomes (5.5). With this in mind, to
simplify the eigenvalue problem, we rescale again by z = rσ4/3(σ̇)−1/3. Then in the variables (s, r),
(5.11) becomes

ε
σ2/3

σ̇2/3

(
ws +

(
σ̇1/3

σ4/3

)′
σ4/3

σ̇1/3
rwr +

l̇σ̇1/3

σ4/3
wr

)
= wrr − rw +

l̇

σ1/3σ̇2/3
w, r > 0 (5.13)

with w(s, 0) = 0, and the initial data

w(0, r) = eλ(0)rσ
4/3(0)(σ̇)−1/3(0)/εφ0(rσ

4/3(0)(σ̇)−1/3(0)/ε).

5.2 The small ε asymptotics

We now consider the small ε behavior of the solutions of (5.13), where ε = T−1/3. Recall that we
denote by β > 0 and ϕ(r) ≥ 0, respectively, the principal eigenvalue and eigenfunction for the Airy
operator

Lrϕ = −ϕrr(r) + rϕ(r) = βϕ(r), r > 0; ϕ(0) = 0. (5.14)

Here, ϕ is normalized so that ∫ ∞

0
ϕ2 dr = 1. (5.15)

The operator Lr is self-adjoint on the space

V = {w ∈ H1
0 ([0,∞)) |

∫ ∞

0
x|w(x)|2 dx <∞}.

We now choose the shift l(s) to satisfy

l̇(s) = βσ(s)1/3σ̇(s)2/3, l(0) = 0. (5.16)

We also denote the coefficients

k1(s) =
βσ̇

σ
, k2(s) =

σ̇2/3

σ2/3
, k3(s) =

(
σ̇1/3

σ4/3

)′(
σ4/3

σ̇1/3

)
.
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These are all bounded above and bounded away from zero. With this notation, equation (5.13) for
w(s, r) becomes

ws = ε−1k2(s) (β − Lr)w − k1(s)wr − k3(s)rwr, r > 0, s ∈ [0, 1]. (5.17)

We will prove the following:

Lemma 5.1 There is a constant C such that if w(s, r) solves (5.17) with w(s, 0) = 0 and initial
condition w(0, r) = ϕ(r), then

max
0≤s≤1

‖w(s, ·)− ϕ(·)‖L∞([0,∞)) ≤ Cε.

This lemma implies the upper bound in Theorem 4.1. Indeed, φ(t, x) is related to w(s, r) by

φ(t, x) = e−λ(t/T )(x−Y (t))w

(
t

T
,

(
x− Y (t)

T 1/3

)
σ̇(t/T )1/3

σ(t/T )4/3

)
.

We then choose the initial condition φ0 so that w(0, r) = T 1/3ϕ(r):

φ0(x) = e−λ(0)xT 1/3ϕ

(
x

T 1/3

σ̇(0)1/3

σ(0)4/3

)
. (5.18)

Having chosen φ0 by (5.18), Lemma 5.1 implies that

‖w(s, ·)− T 1/3ϕ(·)‖L∞ ≤ C,

which implies (5.7) and (5.8).
Next, we ensure that initially we have φ0(x) ≥ u0(x) for x ≥ 0. Since ϕ′(0) > 0, for any M > 0

we have

φ0(x) ≥ e−λ(0)xT 1/3ϕ

(
x

T 1/3

σ̇(0)1/3

σ(0)4/3

)
≥
(
σ̇(0)1/3

σ(0)4/3
ϕ′(0)

2

)
xe−λ(0)x, x ∈ [0,M ],

if T is large enough. Hence, by multiplying φ0(x) by another large constant (independent of T ),
we may guarantee that φ0(x) ≥ u0(x), the latter being compactly supported on an interval [0,M ].
Now, by the L∞ bound in Lemma 5.1 and since ϕ′(0) > 0, there are constants C > 0 and ρ > 0
such that for any y ∈ [0, T 1/3]

T 1/3

[
ϕ

(( y

T 1/3

) σ̇(t/T )1/3
σ(t/T )4/3

)
+ h

(
t

T 1/3
,
( y

T 1/3

) σ̇(t/T )1/3
σ(t/T )4/3

)]
.

≥ T 1/3ρ
y

T 1/3
− T 1/3‖h‖∞ ≥ T 1/3ρ

y

T 1/3
− T 1/3CT−1/3 = ρy − C. (5.19)

Hence, taking y0 > 2C/ρ sufficiently large (independent of T ), we have

φ(t, Y (t) + y0) = e−λ(t/T )(y0)T 1/3

[
ϕ

(( y0

T 1/3

) σ̇(t/T )1/3
σ(t/T )4/3

)
+ h

(
t

T 1/3
,
( y0

T 1/3

) σ̇(t/T )1/3
σ(t/T )4/3

)]

≥ e−λ(t/T )(y0)
ρ

2
y0, (5.20)

for all t ∈ [0, T ]. Therefore, by multiplying φ by a large constant, independent of T , we may
guarantee that φ(t, Y (t)+y0) > 1 holds for all t ∈ [0, T ]. In particular, we may set Y1(t) = Y (t)+y0
and define φ̄(t, x) as in (5.2) so that φ̄(t, x) ≥ u(t, x) for all x ∈ R and t ∈ [0, T ]. As explained above,
this establishes the upper bound (5.9), except for the proof of Lemma 5.1.
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5.3 Proof of Lemma 5.1

Let w(s, r) = α(s)ϕ(r) + w̃(s, r), where 〈w̃, ϕ〉 = 0 for all s, and define

δ(s) =

∫ ∞

0
w̃2 dr ≥ 0.

First, we will show that for some constant C and ρ > 0, independent of ε,

‖w(s, ·)− α(0)ϕ(·)‖L2([0,∞)) ≤ Ce−ρε−1s/2δ(0)1/2 + Cε(α(0) + δ1/2(0)). (5.21)

holds for all s ∈ [0, 1]. Then, we bootstrap this L2-bound to an L∞ estimate.
Let M and A denote the operators

Mw = k2(s)(β − Lr)w,

and
Aw = −k1(s)wr − k3(s)rwr.

Multiplying (5.17) by w and integrating by parts we have

1

2

d

ds

∫ ∞

0
w2 dr = ε−1k2(s)〈(β − Lr)w,w〉 − k1(s)〈w,wr〉 − k3(s)〈rwr, w〉

= ε−1k2(s)〈(β − Lr)w,w〉+
k3(s)

2
〈w,w〉 ≤ k3(s)

2
〈w,w〉. (5.22)

Therefore, by Gronwall’s inequality we have
∫ ∞

0
w2(s, r) dr ≤ eK

∫ ∞

0
w2(0, r) dr

for all s ∈ [0, 1], where K = max0≤τ≤1

∫ τ
0 k3(s) ds. In particular, we have an a priori bound on α(s):

|α(s)| =
∣∣∣∣
∫ ∞

0
w(s, r)ϕ(r) dr

∣∣∣∣ ≤ eK/2

(∫ ∞

0
w2(0, r) dr

)1/2

= eK(α2(0) + δ(0))1/2 ≤ eK(α(0) + δ1/2(0)), (5.23)

and on δ(s):

0 ≤ δ(s) =

∫ ∞

0
(w̃(s, r))2 dr ≤ eK

∫ ∞

0
w2(0, r) dr = eK(α2(0) + δ(0)) (5.24)

that hold for all s ∈ [0, 1], since w̃ and ϕ are orthogonal. Using (5.17), we also compute

δ′(s) =
d

ds

∫ ∞

0
w̃2(s, r) dr = ε−1〈w̃,Mw̃〉+ 〈w̃, Aw〉 = −ε−1k2(s)

∫ ∞

0

(
|w̃r|2 + (r − β)w̃2

)
dr

−k1(s)α(s)
∫ ∞

0
w̃(s, r)ϕ′(r) dr − k3(s)

∫ ∞

0
w̃(s, r)rwr(s, r) dr

≤ −ε−1k2(s)(β2 − β)

∫ ∞

0
w̃2 dr − k1(s)α(s)

∫ ∞

0
w̃(s, r)ϕ′(r) dr − k3(s)

∫ ∞

0
w̃(s, r)rwr(s, r) dr

= −ε−1k2(s)(β2 − β)

∫ ∞

0
w̃2 dr − k1(s)α(s)

∫ ∞

0
w̃(s, r)ϕ′(r) dr

+
k3(s)

2

∫ ∞

0
w̃2 dr − k3(s)α(s)

∫ ∞

0
w̃rϕ′ dr, (5.25)
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where β2 > β is the second eigenvalue of the Airy operator (−β2 < −β < 0 is the second root of the
Airy function Ai(x)). Since

min
0≤s≤1

k2(s) > 0,

we have
k3(s) ≤ ε−1k2(s)(β2 − β) for all s ∈ [0, 1],

if ε is small enough. Hence, (5.25) implies

δ′(s) ≤ −ε−1k2(s)

2
(β2−β)

∫ ∞

0
w̃2 dr−k1(s)α(s)

∫ ∞

0
w̃(s, r)ϕ′(r) dr−k3(s)α(s)

∫ ∞

0
w̃rϕ′ dr. (5.26)

Let

I1(s) =

∫ ∞

0
w̃ϕ′ dr, I3(s) =

∫ ∞

0
rw̃ϕ′ dr.

By the Cauchy-Schwarz inequality, we have

|I1(s)|2 ≤ δ(s)

∫ ∞

0
(ϕ′)2 dr.

By definition of ϕ and its normalization, we have
∫ ∞

0
(ϕ′)2 dr ≤ β,

so
|I1(s)|2 ≤ δ(s)β.

Similarly, we have

|I3(s)|2 ≤ Cδ(s)

∫
r2(ϕ′)2 dr.

Using this and (5.23) and (5.24) in (5.26) we obtain

δ′(s) ≤ −ε−1ρδ(s)− α(s)k1(s)I1(s)− k3(s)α(s)I3(s) ≤ −ε−1ρδ(s) + C|α(s)|δ(s)1/2, (5.27)

for all s ∈ [0, 1], for some constant ρ > 0. This gives

(eρε
−1sδ(s))′ ≤ C|α(s)|δ(s)1/2eρε−1s = C|α(s)|(eρε−1sδ(s))1/2eρε

−1s/2,

which, in turn, implies

(eρε
−1tδ(t))1/2 ≤ (eρε

−10δ(0))1/2 +
C

2

∫ t

0
|α(s)|eρε−1s/2 ds. (5.28)

Therefore, using (5.23), we conclude that

0 ≤ δ(t)1/2 ≤ e−ρε−1t/2δ(0)1/2 +
C

2

∫ t

0
|α(s)|e−ρε−1(t−s)/2 ds

≤ e−ρε−1t/2δ(0)1/2 + Cε(α(0) + δ1/2(0)). (5.29)

Now we estimate α′(s). Returning to (5.17) again, we obtain

d

ds
α(s) =

d

ds

∫ ∞

0
ϕ(r)w(s, r) dr = ε−1〈ϕ,Mw〉+ 〈ϕ,Aw〉 = 〈ϕ,Aw〉

= k1(s)

∫ ∞

0
ϕ′(r)w(s, r) dr + k3(s)

∫ ∞

0
(w̃ϕ+ w̃rϕ′) dr

= k1(s)

∫ ∞

0
ϕ′(r)w̃(s, r) dr + k3(s)

∫ ∞

0
w̃rϕ′ dr. (5.30)
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Therefore, by Cauchy-Schwarz and (5.29), we have

|α′(s)| ≤ C
√
δ(s) ≤ Ce−ρε−1t/2δ(0)1/2 + Cε(α(0) + δ1/2(0)), ∀ s ∈ [0, 1]. (5.31)

Since ϕ and w̃ are orthogonal and ‖ϕ‖2 = 1, we now combine 5.29) and (5.31) to conclude that

‖w(s, ·)− α(0)ϕ(·)‖L2([0,∞)) ≤ ‖w(s, ·)− α(s)ϕ(·)‖L2([0,∞)) + |α(s)− α(0)|
= δ1/2(s) + |α(s)− α(0)|
≤ C

√
δ(s) ≤ Ce−ρε−1t/2δ(0)1/2 + Cε(α(0) + δ1/2(0)) (5.32)

holds for all s ∈ [0, 1]. This proves (5.21).
Now we strengthen (5.21) to obtain an L∞ estimate. The function h(s, r) = w(s, r) − α(0)ϕ(r)

satisfies

hs = ε−1k2(s)(β − Lr)h− k1(s)hr − k3(s)rhr − k1(s)α(0)ϕr − k3(s)α(0)rϕr. (5.33)

Changing variables τ = ε−1s, leads to

hτ = k2(ετ)hrr+k2(ετ)(βh−rh)−εk1(ετ)hr−εk3(ετ)rhr−εk1(ετ)α(0)ϕr−εk3(s)α(0)rϕr. (5.34)

The coefficients k1, k2, k3 are smooth and bounded independently of ε and k2 > 0 is bounded away
from zero. The functions ϕr and rϕr are also smooth and bounded. Therefore, by considering the
Cauchy problem starting at a time τ1 on the time interval τ1 ≤ τ ≤ τ1 + 1 with the initial data
h(τ1, r), we see that the maximum principle implies that there is a constant C ′ such that for any
τ1 ∈ [0, ε−1 − 1],

max
τ∈[τ1,τ1+1]

‖h(τ, ·)‖L∞ ≤ C ′‖h(τ1, ·)‖L∞ + C ′εα(0). (5.35)

From (5.21), we also know that

∫ ∞

0
|h(τ, r)|2 dr < Cγ(τ, ε)2 for all τ ∈ [0, ε−1]. (5.36)

where
γ(τ, ε) = Ce−ρτδ(0)1/2 + Cε(α(0) + δ1/2(0)).

Now, let τ0 be any time in the interval [0, ε−1]. Multiply (5.34) by h and integrate:

1

2

d

dt

∫ ∞

0
h2dr ≤ −c0

∫ ∞

0
h2rdr + Cβ

∫ ∞

0
h2dr + Cε

∫ ∞

0
h2dr + Cεα(0)‖h‖L2 . (5.37)

Integrating in time and using the bound (5.36), we obtain

c0

∫ τ0+1

τ0

∫ ∞

0
h2r(τ, r)drdτ ≤ Cγ(τ0, ε)

2 + Cεα(0)γ(τ0, ε). (5.38)

Therefore, there exists a time τ1 ∈ [τ0, τ0 + 1] for which

∫ ∞

0
h2r(τ1, r)dr ≤ Cγ(τ0, ε)

2 + Cεα(0)γ(τ0, ε). (5.39)

Hence, at this time τ1 we have
∫ ∞

0
h2r(τ1, r)dr +

∫ ∞

0
h2(τ1, r)dr ≤ Cγ(τ0, ε)

2 + Cεα(0)γ(τ0, ε), (5.40)
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and thus
‖h(τ1, ·)‖L∞(0,+∞) ≤ Cγ(τ0, ε) + C

√
εα(0)γ(τ0, ε).

Since τ0 was chosen arbitrarily and since τ0+1 ∈ [τ1, τ1+1], we combine this with (5.35) to conclude
that

‖h(τ0 + 1, ·)‖L∞(0,+∞) ≤ C ′′γ(τ0, ε) + C
√
εα(0)γ(τ0, ε) + C ′′εα(0), ∀ τ0 ∈ [0, ε−1 − 1]. (5.41)

For τ ∈ [0, 1], (5.35) also implies that

‖h(τ, ·)‖L∞ ≤ C ′′‖h(0, ·)‖L∞ + C ′′εα(0), ∀ τ ∈ [0, 1]. (5.42)

If δ(0) = 0, then γ(τ, ε) ≤ Cεα(0) for all τ ≥ 0. Furthermore, h(0, ·) ≡ 0 in this case. Therefore,
the combination of (5.41) and (5.42) implies that

‖h(τ, ·)‖L∞ ≤ Cεα(0)

holds for all τ ∈ [0, ε−1]. This concludes the proof of the lemma. �

6 Proof of the lower bound in Theorem 4.1

6.1 Outline of the proof

Step 1. We will, once again, use the linearized problem with the Dirichlet boundary condition on
a moving boundary. However, the solution of

φt = σ2(t/T )φxx + f ′(0)φ, x > Y (t), φ(t, Y (t) = 0,

would not be a true sub-solution for the nonlinear problem since f ′(0)u ≥ f(u). Therefore, we assume
without loss of generality that f ′(0) = 1, and replace f(u) by the linear function f1(u) = (1−T−1/10)u
so that f(u) ≥ f1(u) for all u ≤ T−1/10. The idea is to choose Y (t) so that until the time T the
solution ψ(t, x) to this modified linear problem stays below T−1/10. By our choice of f1 this makes
it a sub-solution for the nonlinear equation. To this end, we will set

Ys(t) = 2

∫ t

0
σ(s/T )ds− T 1/3l(t/T )

with l(t) almost as in the proof of the upper bound except we will end up with

l(1) = lold(1) +
C log T

T 1/3
.

Given Ys(t), we choose a function ψ0(x) ≤ u0(x) such that the solution of

ψt = σ2(t/T )ψxx + (1− T−10)ψ, x > Ys(t) (6.1)

with the initial condition ψ(0, x) = ψ0(x) and the boundary condition ψ(t, Ys(t)) = 0 satisfies the
following two conditions: first,

ψ(t, x) ≤ T−10, for all 0 ≤ t ≤ T and all x > Ys(t), (6.2)

and, second,
ψ(t, Ys(t) + 1) ≥ T−100, for all T/2 ≤ t ≤ T . (6.3)
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It follows that u(t, x) ≥ ψ(t, x) for all 0 ≤ t ≤ T and x ≥ Ys(t). The difficulty in this step is to make
sure that (6.1)-(6.3) are all compatible.

Step 2. The main consequence of Step 1 is that the solution of the nonlinear problem

ut = σ2(t/T )uxx + f(u), (6.4)

satisfies a lower bound
u(t, Ys(t) + 1) ≥ T−100 for all T/2 ≤ t ≤ T . (6.5)

Let us assume that the initial data u0(x) is front-like and monotonic: if not, we can bound it from
below by a monotonic function. Then ux(t, x) < 0 for all t > 0 and x ∈ R, whence u(t, x) ≥ T−100

for all t ∈ [T/2, T ] and x ≤ Ys(t) + 1.
Let τ = T − C log T and consider the KPP equation

vt = σ2(1)vxx + f(v), τ ≤ t ≤ T, (6.6)

on a fixed interval IL = [Ys(τ)− 2L, Ys(τ)− L], with the Dirichlet boundary conditions

v(t, Ys(τ)− 2L) = v(t, Ys(τ)− L) = 0, τ ≤ t ≤ T,

and with the initial data v(τ, x) = T−100 ≤ u(τ, x). As the function v(t, x) is concave in x for all
τ ≤ t ≤ T , and the function σ(s) is increasing, it satisfies

vt ≤ σ2(t/T )vxx + f(v), τ ≤ t ≤ T, x ∈ IL. (6.7)

Then u(t, x) ≥ v(t, x) for all x ∈ IL and τ ≤ t ≤ T . Let us choose L sufficiently large (independent
of T ) so that there exists a steady solution v̄(x) of (6.6):

σ2(1)v̄xx + f(v̄) = 0,

v̄(t, Ys(τ)− 2L) = v(t, Ys(τ)− L) = 0.

It follows that v(t, x) converges to v̄(x) exponentially fast as t − τ → ∞. More precisely, we have
the following estimate:

|v(t, x)− v̄(x)| ≤ C ′T 100e−c1(t−τ). (6.8)

Obviously, by taking the constant C in the definition of τ sufficiently large we can guarantee that
the exponential term e−c1(T−τ) is much smaller than the term T 100 in (6.8), whence

u(T, x) ≥ v̄(x)− 1

T
,

for all x ∈ IL. In particular, u(T, x) ≥ maxy∈IL v̄(y)− 1
T holds for all x ≤ Ys(τ)− 2L, which implies

that X(T ) ≥ Ys(T ) − C ′′ log T . Therefore, to complete the proof of the lower bound on X(T ), we
only need to verify that (6.1)-(6.3) are compatible.

6.2 Verification of the claim of Step 1

Let us proceed as in the proof of the upper bound: we start with

ψt = σ2(t/T )ψxx + (1− T−10)ψ, x > Ys(t), t > 0,
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with ψ(t, Ys(t)) = 0, and set

Ys(t) = 2

∫ t

0
σ(τ/T )dτ − T 1/3l(t/T ),

with l(s) to be determined. Making the change of variables

ψ(t, x) = v(t, x− Ys(t))

gives
vt − 2σ(t/T )vy + T−2/3 l̇(t/T )vy = σ2(t/T )vyy + (1− T−10)v.

Next, we write
v(t, y) = e−λ(t/T )yw̃(t/T, y)

to get

1

T
w̃s −

y

T
λ̇(s)w̃ − 2σ(s)w̃y + 2σ(s)λ(s)w̃ + T−2/3 l̇(s)w̃y − T−2/3 l̇(s)λ(s)w̃

= σ2(s)w̃yy − 2λ(s)σ2(s)w̃y + [σ2(s)λ2(s) + 1− T−10]w̃.

We choose λ(s) = 1/σ(s), as before, so that w̃(s, y) satisfies

1

T
w̃s + T−2/3 l̇(s)w̃y = σ2(s)w̃yy +

[
T−2/3 l̇(s)

σ(s)
− T−10 − yσ̇(s)

Tσ2(s)

]
w̃,

with the initial data w̃(0, y) = v(0, y)eλ(0)y = ψ(0, y)eλ(0)y.
The next step is to write w̃(s, y) = w(s, y/T 1/3)e−s/T 9

:

1

T
ws +

1

T
l̇(s)wz =

1

T 2/3
σ2(s)wzz +

[
T−2/3 l̇(s)

σ(s)
− zσ̇(s)

T 2/3σ2(s)

]
w,

with w(0, z) = w̃(0, T 1/3z) = ψ(0, T 1/3z)eλ(0)T
1/3z, and the boundary condition w(t, 0) = 0. Setting

ε = T−1/3 gives, as before:

ε[ws + l̇(s)wz] = σ2(s)wzz +

[
l̇(s)

σ(s)
− zσ̇(s)σ2(s)

]
w, (6.9)

with w(0, z) = ψ(0, z/ε)eλ(0)z/ε, and the boundary condition w(t, 0) = 0. As in the construction of
the super-solution, we set z = rσ4/3(σ̇)−1/3, so that (6.9) becomes

ε
σ2/3

σ̇2/3

(
ws +

(
σ̇1/3

σ4/3

)′
σ4/3

σ̇1/3
rwr +

l̇σ̇1/3

σ4/3
wr

)
= wrr − rw +

l̇

σ1/3σ̇2/3
w, r > 0 (6.10)

with w(s, 0) = 0, and w(0, r) = eλ(0)rσ
4/3(0)(σ̇)−1/3(0)/εψ0(rσ

4/3(0)(σ̇)−1/3(0)/ε). Then we choose l(s)
to satisfy

l̇(s) = βσ(s)1/3σ̇(s)2/3,

so that with the previous notation for k1,2,3(s) we get

ws = ε−1k2(s) (β − Lr)w − k1(s)wr − k3(s)rwr, r > 0, s ∈ [0, 1]. (6.11)
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In summary, we have

ψ(t, x+ Ys(t)) = e−λ(t/T )yw

(
t

T
,
x

T 1/3

σ̇(t/T )1/3

σ(t/T )4/3

)
e−t/T 10

.

where w(s, r) satisfies (6.11), which is the same equation as before (i.e. (5.17)). The difference here is
that initial data for ψ is compactly supported, say, in the interval [0, 1], in order that ψ(0, x) ≤ u0(x).
This means that we may choose the initial data for w in the form

w(0, r) = εηI[0,N ]

(r
ε

)
(6.12)

where η > 0 will be chosen later. In particular, the initial data w(0, r) cannot be bounded from
below by a multiple of the eigenfunction ϕ.

With initial condition (6.12), let us decompose w as in the proof of Lemma 5.1: w(s, r) =
α(s)ϕ(r) + w̃(s, r) where 〈ϕ(·), w̃(s, ·)〉 = 0 for all s. Since ϕ′(0) > 0, we see that

α(0) =

∫ ∞

0
w(0, r)ϕ(r) dr = O(εηε2).

Also, let δ(s) =
∫∞

0 w̃2(s, r) dr, so that

δ(0) =

∫ ∞

0
(w(0, r)− α(0)ϕ(r))2 dr = O(ε2ηε).

The computations in Lemma 5.1 still apply. In particular, (5.41) and (5.42) shows that

‖w(s, ·)‖L∞(0,∞) ≤ ‖w(s, ·)− α(0)ϕ(·)‖L∞(0,∞) + ‖α(0)ϕ‖L∞(0,∞) ≤ Cεη

holds for all s ∈ [0, 1] and ε ∈ (0, 1]. This implies the uniform upper bound on ψ:

ψ(t, x+ Ys(t)) ≤ Cεη = CT−η/3, ∀ x ≥ 0, t ∈ [0, T ] (6.13)

which is (6.2), assuming we fix η > 30.
Now we derive the lower bound (6.3) through a lower bound on w. The problem is that the

projection of w(0, r) onto the eigenfunction ϕ(r) is relatively small compared to its projection onto
the orthogonal complement of ϕ (i.e. α(0) = O(εη+2), while δ1/2(0) = O(εη+1/2)). To address this
issue, we first show that there exists a constant C > 0 so that

w(s = ε, r) ≥ Cεη+2, for all r ∈ [1, 2]. (6.14)

To see why (6.14) must hold, we set τ = s/ε and to avoid dealing with unbounded coefficients we
note that solution of (6.11) is bounded from below by the solution of the Dirichlet problem

w̄τ = k2(ετ) (β − Lr) w̄ − k1(ετ)w̄r − k3(ετ)rw̄r, 0 < r < 10, τ ∈ [0, 1], (6.15)

with the boundary condition w̄(τ, 0) = w̄(τ, 10) = 0 and the initial condition w̄(0, r) = w(0, r) given
by (6.12). As all coefficients are now bounded, the function w̄(s, r) for τ ∈ [0, 1] is, up to a constant
factor, and a bounded time change, of the same order as the solution of

v̄τ = v̄rr − k̃ε1(τ)v̄r − k̃ε3(τ)rv̄r, 0 < r < 10, τ ∈ [0, 1], (6.16)
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also with the zero boundary conditions and the same initial data, and appropriate, uniformly
bounded k̃ε1,3(t). Hence, it suffices to show that v̄(s = 1, r) ≥ Cεη+2 for all r ∈ [1, 2]. Let us
denote

b(τ, r) = −k̃ε1(τ)− k̃ε3(τ)r,

so that our problem is
v̄τ = v̄rr + b(τ, r)v̄r. (6.17)

Let us denote

B(τ, r) =

∫ r

0
b(τ, x)dx.

The function η(τ, r) = eB(τ,r)/2v̄(τ, r) satisfies

ητ = ηrr +

(
Bτ

2
− Brr

2
− B2

r

4

)
η.

So, if

M = max
τ∈[0,1]
r∈[0,10]

( |B|
2

+
|Bτ |
2

+
|Brr|
2

+
|Br|2
4

)

we have v̄(τ, r) = e−B/2η(τ, r) ≥ e−M ρ̄(τ, r) for all τ ∈ [0, 1] and r ∈ [0, 10], where p̄(τ, r) solves the
heat equation

p̄τ = p̄rr, 0 < r < 10, τ ∈ [0, 1], (6.18)

with the zero Dirichlet boundary conditions and p̄(0, r) = w(0, r) given by (6.12). In particular,
w̄(τ, r) ≥ Cp̄(τ, r). A simple computation shows that

p̄(τ = 1, r) ≥ Cεη+2 for all r ∈ [1, 2].

We conclude that (6.14) holds.
As a consequence of (6.14), the function w(s, r) satisfies the lower bound w(s, r) ≥ Cεη+2q(s, r)

for s > ε, where q is the solution of

qs = ε−1k2(s) (β − Lr) q − k1(s)qr − k3(s)rqr, r > 0, s ∈ [ε, 1], (6.19)

with the Cauchy data

q(ε, r) =

{
1, 1 ≤ r ≤ 2,
0, otherwise.

(6.20)

As we have done before, let us decompose q(s, r) as

q(s, r) = α(s)ϕ(r) + q̃(s, r)

where 〈q̃(s, ·), ϕ(·)〉 = 0 for all s and let

δ(s) =

∫ ∞

0
q̃2(s, r) dr.

Observe that, at the initial time s = ε, we now have C1 ≤ α(ε) ≤ C2 and C1 ≤ δ(ε) ≤ C2 for some
constant C1, C2 > 0, independent of ε. That is, the projection of q(ε, r) onto ϕ and its orthogonal
complement are comparable in magnitude. The computations in Lemma 5.1 now apply to q(s, r)
(with the initial time at s = ε rather than s = 0). In particular, (5.41) and (5.42) shows that

‖q(s, ·)− α(ε)ϕ(·)‖L∞(0,∞) ≤ Cε(α(ε) + δ1/2(ε)) ≤ C3ε
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holds for all s ∈ [1/2, 1]. Therefore,

w(s, r) ≥ Cεη+2q(s, r) ≥ Cεη+2(α(ε)ϕ(r)− C3ε)

holds for all r ≥ 0, s ≥ 1/2. Choosing r = jε, with j fixed, and using the fact that ϕ′(0) > ρ > 0,
we have

w(s, jε) ≥ C4ε
η+3ρj − C5ε

η+3

for s ≥ 1/2, if ε is small enough, depending on j. So, if we fix j large enough, this is bounded below
by C6ε

η+3 > 0 once ε is small enough. Putting this in terms of ψ, we have

ψ(t, j + Ys(t)) ≥ Cw

(
t

T
, jε

σ̇(t/T )1/3

σ(t/T )4/3

)
≥ Cεη+3 = CT−(η+3)/3

for all t ∈ [T/2, T ]. The Harnack inequality and the fact that ψ ≥ 0 now implies that ψ(t, 1+Ys(t)) ≥
C ′T−(η+3)/3 also holds for all t ∈ [T/2, T ]. In view of this and (6.13), we see that (6.3) and (6.2)
hold if η = 50, for example. This completes the proof of the lower bound in Theorem 4.1.
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