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Chapter 1

Introduction

1.1. Linear ordinary differential equations and the method
of integrating factors

A differential equation is an equation which relates the derivatives of an
unknown function to the unknown function itself and known quantities. We
distinguish two basic types of differential equations: An ordinary differential
equation is a differential equation for an unknown function which depends on
a single variable (usually denoted by t and referred to as time). By contrast,
if the unknown function depends on two or more variables, the equation
is a partial differential equation. In this text, we will restrict ourselves to
ordinary differential equations, as the theory of partial differential equations
is considerably more difficult.

Perhaps the simplest example of an ordinary differential equation is the
equation

(1) x′(t) = a x(t),

where x(t) is a real-valued function and a is a constant. This is an example
of a linear differential equation of first order. Its general solution is described
in the following proposition:

Proposition 1.1. A function x(t) is a solution of (1) if and only if x(t) =
c eat for some constant c.

Proof. Let x(t) be an arbitrary solution of (1). Then

d

dt
(e−at x(t)) = e−at (x′(t)− a x(t)) = 0.

1



2 1. Introduction

Therefore, the function e−at x(t) is constant. Consequently, x(t) = c eat for
some constant c.

Conversely, suppose that x(t) is a function of the form x(t) = c eat for
some constant c. Then x′(t) = ca eat = a x(t). Therefore, any function of
the form x(t) = c eat is a solution of (1). �

We now consider a more general situation. Specifically, we consider the
differential equation

(2) x′(t) = a(t)x(t) + f(t).

Here, a(t) and f(t) are given continuous functions which are defined on some
interval J ⊂ R. Like (1), the equation (2) is a linear differential equation
of first order. However, while the equation (1) has constant coefficients,
coefficients in the equation (2) are allowed to depend on t. In the following
proposition, we describe the general solution of (2):

Proposition 1.2. Fix a time t0 ∈ J , and let ϕ(t) =
∫ t
t0
a(s) ds. Then a

function x(t) is a solution of (2) if and only if

x(t) = eϕ(t)

(∫ t

t0

e−ϕ(s) f(s) ds+ c

)
for some constant c.

Proof. Let x(t) be an arbitrary solution of (2). Then

d

dt
(e−ϕ(t) x(t)) = e−ϕ(t) (x′(t)− ϕ′(t)x(t))

= e−ϕ(t) (x′(t)− a(t)x(t))

= e−ϕ(t) f(t).

Integrating this identity, we obtain

e−ϕ(t) x(t) =

∫ t

t0

e−ϕ(s) f(s) ds+ c

for some constant c. This implies

x(t) = eϕ(t)

(∫ t

t0

e−ϕ(s) f(s) ds+ c

)
for some constant c.

Conversely, suppose that x(t) is of the form

x(t) = eϕ(t)

(∫ t

t0

e−ϕ(s) f(s) ds+ c

)
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for some constant c. Then

x′(t) = ϕ′(t) eϕ(t)

(∫ t

t0

e−ϕ(s) f(s) ds+ c

)
+ eϕ(t) d

dt

(∫ t

t0

e−ϕ(s) f(s) ds

)
= a(t)x(t) + f(t).

Therefore, x(t) solves the differential equation (2). This completes the proof.
�

1.2. The method of separation of variables

We next describe another class of differential equations of first order that
can be solved in closed form. We say that a differential equation is separable
if it can be written in the form

(3) x′(t) = f(x(t)) g(t).

Here, f(x) and g(t) are continuous functions which we assume to be given.
Moreover, we assume that U ⊂ R is an open set such that f(x) 6= 0 for all
x ∈ U .

In order to solve (3), we first choose a function ϕ : U → R such that
ϕ′(x) = 1

f(x) . Suppose now that x(t) is a solution of (3) which takes values

in U . Then we obtain

d

dt
ϕ(x(t)) = ϕ′(x(t))x′(t) =

1

f(x(t))
x′(t) = g(t).

Integrating both sides of this equation gives

ϕ(x(t)) =

∫
g(t) dt+ c

for some constant c. Thus, the solution x(t) can be written in the form

x(t) = ϕ−1

(∫
g(t) dt+ c

)
,

where ϕ−1 denotes the inverse of ϕ. Note that the general solution of the
differential equation involves an arbitrary constant c. If we prescribe the
value of the function x(t) at some time t0, then this uniquely determines
the integration constant c, and we obtain a unique solution of the given
differential equation with that initial condition.

As an example, let us consider the differential equation

x′(t) = t (1 + x(t)2).



4 1. Introduction

To solve this equation, we observe that
∫

1
1+x2

dx = arctan(x). Hence, if

x(t) is a solution of the given differential equation, then

d

dt
arctan(x(t)) =

1

1 + x(t)2
x′(t) = t.

Integrating this equation, we obtain

arctan(x(t)) =
t2

2
+ c

for some constant c. Thus, we conclude that

x(t) = tan
( t2

2
+ c
)
.

1.3. Problems

Problem 1.1. Find the solution of the differential equation x′(t) = − 2t
1+t2

x(t)+

1 with initial condition x(0) = 1.

Problem 1.2. Find the solution of the differential equation x′(t) = t
t+1 y(t)+

1 with initial condition x(0) = 0.

Problem 1.3. Find the general solution of the differential equation x′(t) =
x(t) (1− x(t)). This differential is related to the logistic growth model.

Problem 1.4. Find the general solution of the differential equation x′(t) =
x(t) log 1

x(t) . This equation describes the Gompertz growth model.

Problem 1.5. Let x(t) be the solution of the differential equation x′(t) =
cosx(t) with initial condition x(0) = 0.
(i) Using separation of variables, show that

log(1 + sinx(t))− log(1− sinx(t)) = 2t.

(Hint: Write 2
cosx = cosx

1+sinx + cosx
1−sinx .)

(ii) Show that

x(t) = arcsin
(et − e−t
et + e−t

)
= arctan(et)− arctan(e−t).



Chapter 2

Systems of linear
differential equations

2.1. The exponential of a matrix

Let A ∈ Cn×n be an n× n matrix. The operator norm of A is defined by

‖A‖op = sup
x∈Cn, ‖x‖≤1

‖Ax‖.

It is straightforward to verify that the operator norm is submultiplicative;
that is,

‖AB‖op ≤ ‖A‖op ‖B‖op.

Iterating this estimate, we obtain

‖Ak‖op ≤ ‖A‖kop

for every nonnegative integer k. This implies that the sequence

m∑
k=0

1

k!
Ak

is a Cauchy sequence in Cn×n. Its limit

exp(A) := lim
m→∞

m∑
k=0

1

k!
Ak

is referred to as the matrix exponential of A.

Proposition 2.1. Let A,B ∈ Cn×n be two n× n matrices satisfying AB =
BA. Then

exp(A+B) = exp(A) exp(B).

5



6 2. Systems of linear differential equations

Proof. Since A and B commute, we obtain

(A+B)l =

l∑
j=0

(
l

j

)
Aj Bl−j ,

hence

1

l!
(A+B)l =

l∑
j=0

1

j! (l − j)!
Aj Bl−j .

Summation over l gives

2m∑
l=0

1

l!
(A+B)l =

∑
j,k≥0, j+k≤2m

1

j! k!
Aj Bk.

From this, we deduce that

2m∑
k=0

1

k!
(A+B)k −

( m∑
j=0

1

j!
Aj
)( m∑

k=0

1

k!
Bk

)
=

∑
j,k≥0, j+k≤2m,max{j,k}>m

1

j! k!
Aj Bk.

This gives ∥∥∥∥ 2m∑
l=0

1

l!
(A+B)l −

( m∑
j=0

1

j!
Aj
)( m∑

k=0

1

k!
Bk

)∥∥∥∥
op

≤
∑

j,k≥0, j+k≤2m,max{j,k}>m

1

j! k!
‖A‖jop ‖B‖kop

≤
( ∞∑
j=m+1

1

j!
‖A‖jop

)( ∞∑
k=m+1

1

k!
‖B‖kop

)
,

and the right hand side converges to 0 as m→∞. From this, the assertion
follows. �

Corollary 2.2. For any matrix A ∈ Cn×n, the matrix exp(A) is invertible,
and its inverse is given by exp(−A).

Corollary 2.3. We have exp((s+ t)A) = exp(sA) exp(tA) for every matrix
A ∈ Cn×n and all s, t ∈ R.

In the remainder of this section, we derive an alternative formula for the
exponential of a matrix. This formula is inspired by Euler’s formula for the
exponential of a number:

Proposition 2.4. For every matrix A ∈ Cn×n, we have

exp(A) = lim
m→∞

(
I +

1

m
A
)m

.
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Proof. We compute

exp(A)−
(
I +

1

m
A
)m

=
[

exp
( 1

m
A
)]m

−
(
I +

1

m
A
)m

=

m−1∑
l=0

[
exp

( 1

m
A
)]m−l−1 [

exp
( 1

m
A
)
− I − 1

m
A
] (
I +

1

m
A
)l
.

This gives∥∥∥ exp(A)−
(
I +

1

m
A
)m∥∥∥

op

≤
m−1∑
l=0

∥∥∥ exp
( 1

m
A
)∥∥∥m−l−1

op

∥∥∥ exp
( 1

m
A
)
− I − 1

m
A
∥∥∥

op

∥∥∥I +
1

m
A
∥∥∥l

op

≤
m−1∑
l=0

e
m−l−1
m

‖A‖op
∥∥∥ exp

( 1

m
A
)
− I − 1

m
A
∥∥∥

op

(
1 +

1

m
‖A‖op

)l
≤

m−1∑
l=0

e
m−l−1
m

‖A‖op
∥∥∥ exp

( 1

m
A
)
− I − 1

m
A
∥∥∥

op
e
l
m
‖A‖op

= me
m−1
m
‖A‖op

∥∥∥ exp
( 1

m
A
)
− I − 1

m
A
∥∥∥

op
.

On the other hand,

exp
( 1

m
A
)
− I − 1

m
A =

∞∑
k=2

1

k!

1

mk
Ak,

hence∥∥∥ exp
( 1

m
A
)
− I − 1

m
A
∥∥∥

op
≤
∞∑
k=2

1

k!

1

mk
‖A‖kop ≤

1

m2
‖A‖2op e

1
m
‖A‖op .

Putting these facts together, we conclude that∥∥∥ exp(A)−
(
I +

1

m
A
)m∥∥∥

op
≤ 1

m
‖A‖2op e

‖A‖op .

From this, the assertion follows easily. �

2.2. Calculating the matrix exponential of a diagonalizable
matrix

In this section, we consider a matrix A ∈ Cn×n which is diagonalizable.
In other words, there exists an invertible matrix S ∈ Cn×n and a diagonal
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matrix

D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 . . . . . . λn


such that A = SDS−1. Equivalently, a matrix A is diagonalizable if there
exists a basis of Cn which consists of eigenvectors of A.

In order to compute the exponential of such a matrix we need two aux-
iliary results. The first one relates the matrix exponentials of two matrices
that are similar to each other.

Proposition 2.5. Suppose that A,B ∈ Cn×n are similar, so that A =
SBS−1 for some invertible matrix S ∈ Cn×n. Then exp(tA) = S exp(tB)S−1

for all t ∈ R.

Proof. Using induction on k, it is easy to show that Ak = SBkS−1 for all
integers k ≥ 0. Consequently,

exp(tA) =
∞∑
k=0

tk

k!
Ak =

∞∑
k=0

tk

k!
SBkS−1 = S exp(tB)S−1.

This completes the proof. �

The second result gives a formula for the exponential of a diagonal ma-
trix:

Proposition 2.6. Suppose that

D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 . . . . . . λn


is a diagonal matrix. Then

exp(tD) =


etλ1 0 . . . 0

0 etλ2 . . . 0
...

...
. . .

...
0 . . . . . . etλn

 .
Proof. Using induction on k, we can show that

Dk =


λk1 0 . . . 0
0 λk2 . . . 0
...

...
. . .

...
0 . . . . . . λkn


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for every integer k ≥ 0. Summation over k gives

exp(tD) =

∞∑
k=0

tk

k!
Dk =


∑∞

k=0
tk

k! λ
k
1 0 . . . 0

0
∑∞

k=0
tk

k! λ
k
2 . . . 0

...
...

. . .
...

0 . . . . . .
∑∞

k=0
tk

k! λ
k
n

 .

From this, the assertion follows. �

To summarize, if A = SDS−1 is a diagonalizable matrix, then its matrix
exponential is given by

exp(tA) = S exp(tD)S−1 = S


etλ1 0 . . . 0

0 etλ2 . . . 0
...

...
. . .

...
0 . . . . . . etλn

S−1.

As an example, let us consider the matrix

A =

[
α β
−β α

]
,

where α, β ∈ R. The matrix A has eigenvalues λ1 = α+ iβ and λ2 = α− iβ.
Moreover, the vectors

v1 =

[
1
i

]
and

v2 =

[
1
−i

]
are eigenvectors of A with eigenvalues λ1 and λ2. Consequently, A is diag-
onalizable and

A = S

[
α+ iβ 0

0 α− iβ

]
S−1,

where

S =

[
1 1
i −i

]
.
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Therefore, the matrix exponential of A is given by

exp(tA) = S

[
et(α+iβ) 0

0 et(α−iβ)

]
S−1

=

[
1 1
i −i

] [
et(α+iβ) 0

0 et(α−iβ)

] [
1
2 − i

2
1
2

i
2

]
=

[
1
2 (et(α+iβ) + et(α−iβ) − i

2 (et(α+iβ) + et(α−iβ))
i
2 (et(α+iβ) + et(α−iβ)) 1

2 (et(α+iβ) + et(α−iβ)

]
=

[
eαt cos(βt) eαt sin(βt)
−eαt sin(βt) eαt cos(βt)

]
.

2.3. Generalized eigenspaces and the L+N decomposition

In order to compute the exponential of a matrix that is not diagonaliz-
able, it will be necessary to consider decompositions of Cn into generalized
eigenspaces. We will need the following theorem due to Cayley and Hamil-
ton:

Theorem 2.7. Let A be a n×n matrix, and let pA(λ) = det(λI−A) denote
the characteristic polynomial of A. Then pA(A) = 0.

Proof. The proof involves several steps.

Step 1: Suppose first that A is a diagonal matrix with diagonal entries
λ1, . . . , λn, i.e.

A =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 . . . . . . λn

 .
Then

p(A) =


p(λ1) 0 . . . 0

0 p(λ2) . . . 0
...

...
. . .

...
0 . . . . . . p(λn)


for every polynomial p. In particular, if p = pA is the characteristic polyno-
mial of A, then pA(λj) = 0 for all j, hence pA(A) = 0.

Step 2: Suppose next that A is an upper triangular matrix whose diag-
onal entries are pairwise distinct. In this case, A has n distinct eigenvalues.
In particular, A is diagonalizable. Hence, we can find a diagonal matrix B
and an invertible matrix S such that A = SBS−1. Clearly, A and B have
the same characteristic polynomial, so pA(A) = pB(A) = SpB(B)S−1 = 0
by Step 1.
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Step 3: Suppose now that A is a arbitrary upper triangular matrix. We
can find a sequence of matrices Ak such that limk→∞Ak = A and each
matrix Ak is upper triangular with n distinct diagonal entries. This implies
pA(A) = limk→∞ pAk(Ak) = 0.

Step 4: Finally, if A is a general n × n matrix, we can find an upper
triangular matrix B such that A = SBS−1. Again, A and B have the same
characteristic polynomial, so we obtain pA(A) = pB(A) = SpB(B)S−1 = 0
by Step 3. �

We will also need the following tool from algebra:

Proposition 2.8. Suppose that f(λ) and g(λ) are two polynomials that are
relatively prime. (This means that any polynomial that divides both f(λ)
and g(λ) must be constant, i.e. of degree 0.) Then we can find polynomials
p(λ) and q(λ) such that p(λ) f(λ) + q(λ) g(λ) = 1.

This is standard result in algebra. The polynomials p(λ) and q(λ) can be
found using the Euclidean algorithm. A proof can be found in most algebra
textbooks.

Proposition 2.9. Let A be an n× n matrix, and let f(λ) and g(λ) be two
polynomials that are relatively prime. Moreovr, let x be a vector satisfying
f(A) g(A)x = 0. Then there exists a unique pair of vectors y, z such that
f(A) y = 0, g(A) z = 0, and y + z = x. In other words, ker(f(A) g(A)) =
ker f(A)⊕ ker g(A).

Proof. Since the polynomials f(λ) and g(λ) are relatively prime, we can
find polynomials p(λ) and q(λ) such that

p(λ) f(λ) + q(λ) g(λ) = 1.

This implies
p(A) f(A) + q(A) g(A) = I.

In order to prove the existence part, we define vectors y, z by y = q(A) g(A)x
and z = p(A) f(A)x. Then

f(A) y = f(A) q(A) g(A)x = q(A) f(A) g(A)x = 0,

g(A) z = g(A) p(A) f(A)x = p(A) f(A) g(A)x = 0,

and
y + z = (p(A) f(A) + q(A) g(A))x = x.

Therefore, the vectors y, z have all the required properties.

In order to prove the uniqueness part, it suffices to show that ker f(A)∩
ker g(A) = {0}. Assume that x lies in the intersection of ker f(A) and
ker g(A), so that f(A)x = 0 and g(A)x = 0. This implies p(A) f(A)x = 0
and q(A) g(A)x = 0. Adding both equations, we obtain x = (p(A) f(A) +



12 2. Systems of linear differential equations

q(A) g(A))x = 0. This shows that show that ker f(A) ∩ ker g(A) = {0}, as
claimed. �

Corollary 2.10. Let A be a n×n matrix, and denote by pA(λ) = det(λI−A)
the characteristic polynomial of A. Let us write the polynomial pA(λ) in the
form

pA(λ) = (λ− λ1)ν1 · · · (λ− λm)νm ,

where λ1, . . . , λm are the distinct eigenvalues of A and ν1, . . . , νm denote
their respective algebraic multiplicities. Then we have the direct sum decom-
position

Cn = ker(A− λ1I)ν1 ⊕ . . .⊕ (A− λmI)νm .

The spaces ker(A − λjI)νj are referred to as the generalized eigenspaces of
A.

Proof. For abbreviation, let gj(λ) = (λ− λj)νj , so that

pA(λ) = g1(λ) · · · gm(λ).

For each k ∈ {1, . . . ,m}, the polynomials g1(λ) · · · gk−1(λ) and gk(λ) are
relatively prime, as they have no roots in common. Consequently,

ker(g1(A) · · · gk−1(A)gk(A)) = ker(g1(A) · · · gk−1(A))⊕ ker gk(A).

Repeated application of this result yields the direct sum decomposition

ker pA(A) = ker g1(A)⊕ . . .⊕ ker gm(A).

On the other hand, pA(A) = 0 by the Cayley-Hamilton theorem, so that
ker pA(A) = Cn. As a result, we obtain the following decomposition of Cn
into generalized eigenspaces:

Cn = ker g1(A)⊕ . . .⊕ ker gm(A).

�

Theorem 2.11. Let A ∈ Cn×n be given. Then we can find matrices L,N ∈
Cn with the following properties:

(i) L+N = A.

(ii) LN = NL.

(iii) L is diagonalizable.

(iv) N is nilpotent, i.e. Nn = 0.

Moreover, the matrices L and N are unique.

Proof. We first prove the existence statement. Consider the decomposition
of Cn into generalized eigenspaces:

Cn = ker(A− λ1I)ν1 ⊕ . . .⊕ (A− λmI)νm .
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Consider the linear transformation from Cn into itself that sends a vector x ∈
ker(A− λjI)νj to λjx (j = 1, . . . ,m). Let L be the n× n matrix associated
with this linear transformation. This implies Lx = λjx for all x ∈ ker(A −
λjI)νj . Clearly, ker(L− λjI) = ker(A− λjI)νj for j = 1, . . . ,m. Therefore,
there exists a basis of Cn that consists of eigenvectors of L. Consequently,
L is diagonalizable.

We claim that A and L commute, i.e. LA = AL. It suffices to show that
LAx = ALx for all vectors x ∈ ker(A− λjI)νj and all j = 1, . . . ,m. Indeed,
if x belongs to the generalized eigenspace ker(A − λjI)νj , then Ax lies in
the same generalized eigenspace. Therefore, Lx = λjx and LAx = λjAx.
Putting these facts together, we obtain LAx = λjAx = ALx, as claimed.
Therefore, LA = AL.

We now put N = A − L. Clearly, L + N = A and LN = LA − L2 =
AL − L2 = NL. Hence, it remains to show that Nn = 0. As above, it
is enough to show that Nnx = 0 for all vectors x ∈ ker(A − λjI)νj and all
j = 1, . . . ,m. By definition of L and N , we have Nx = Ax−Lx = (A−λjI)x
for all x ∈ ker(A−λjI)νj . From this it is easy to see that Nnx = (A−λjI)nx.
However, (A − λjI)nx = 0 since x ∈ ker(A − λjI)νj and νj ≤ n. Thus, we
conclude that Nnx = 0 for all x ∈ ker(A− λjI)νj . This completes the proof
of the existence part.

We next turn to the proof of the uniqueness statement. Suppose that
L,N ∈ Cn×n satsify (i) – (iv). We claim that Lx = λjx for all vectors
x ∈ ker(A − λjI)νj and all j = 1, . . . ,m. To this end, we use the formula
L− λjI = (A− λjI)−N . Since N commutes with A− λjI, it follows that

(L− λjI)2n =
2n∑
l=0

(
2n

l

)
(−N)l (A− λjI)2n−l.

Using the identity Nn = 0, we obtain

(L− λjI)2n =

n−1∑
l=0

(
2n

l

)
(−N)l (A− λjI)2n−l.

Suppose that x ∈ ker(A − λjI)νj . Since νj ≤ n, we have (A − λjI)2n−lx =
0 for all l = 0, . . . , n − 1. This implies (L − λjI)2nx = 0. Since L is
diagonalizable, we it follows that (L − λjI)x = 0. Thus, we conclude that
Lx = λjx for all vectors x ∈ ker(A− λjI)νj and all j = 1, . . . ,m.

Since

Cn = ker(A− λ1I)ν1 ⊕ . . .⊕ (A− λmI)νm ,

there is exactly one matrix L such that Lx = λjx for x ∈ ker(A−λjI)νj and
j = 1, . . . ,m. This completes the proof of the uniqueness statement. �
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As an example, let us compute the L+N decomposition of the matrix

A =


0 2 3 −4
0 1 2 −4
−1 −2 −4 6
0 −1 −2 3

 .

We begin by computing the eigenvalues and eigenvectors of A. The charac-
teristic polynomial of A is given by

det(λI −A) = det


λ −2 −3 4
0 λ− 1 −2 4
1 2 λ+ 4 −6
0 1 2 λ− 3


= λdet

λ− 1 −2 4
2 λ+ 4 −6
1 2 λ− 3

+ det

 −2 −3 4
λ− 1 −2 4

1 2 λ− 3


= λ(λ3 − λ) + (3λ2 + 1)

= λ4 + 2λ2 + 1

= (λ− i)2 (λ+ i)2.

Thus, the eigenvalues of A are i and −i, and they both have algebraic
multiplicity 2. A straightforward calculation shows that the generalized
eigenspaces are given by

ker(A− iI)2 = ker


−4 −4i −6i −2 + 8i
−2 −2i 2− 4i −4 + 8i

4 + 2i −2 + 4i −4 + 8i 6− 12i
2 2i 4i −6i

 = span{v1, v2}

and

ker(A+ iI)2 = ker


−4 4i 6i −2− 8i
−2 2i 2 + 4i −4− 8i

4− 2i −2− 4i −4− 8i 6 + 12i
2 −2i −4i 6i

 = span{v3, v4},
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where v1, v2, v3, v4 are defined by

v1 =


1
i
0
0

 , v2 =


2 + i

0
−2 + i
−1

 ,

v3 =


1
−i
0
0

 , v4 =


2− i

0
−2− i
−1

 .
Thus, we conclude that Lv1 = iv1, Lv2 = iv2, Lv3 = −iv3, Lv4 = −iv4.

Let S be the 4× 4-matrix with column vectors v1, v2, v3, v4:

S =


1 2 + i 1 2− i
i 0 −i 0
0 −2 + i 0 −2− i
0 −1 0 −1

 .
The inverse of S is given by

S−1 =


1
2 − i

2 −1
2 2

0 0 − i
2 −1−2i

2
1
2

i
2 −1

2 2
0 0 i

2 −1+2i
2

 .
Using the identities Lv1 = iv1, Lv2 = iv2, Lv3 = −iv3, Lv4 = −iv4, we
obtain

L = S


i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

S−1 =


0 1 2 −3
−1 0 1 −4
0 0 −2 5
0 0 −1 2

 .
Consequently,

N = A− L =


0 1 1 −1
1 1 1 0
−1 −2 −2 1
0 −1 −1 1

 .
It is easy to check that LN = NL and N2 = 0, as expected.

2.4. Calculating the exponential of a general n× n matrix

Let now A be an arbitrary n × n matrix. By Theorem 2.11, we may write
A = L+N , where L is diagonalizable, N is nilpotent, and LN = NL. This
gives

exp(tA) = exp(tL) exp(tN).
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Since L is diagonalizable, we may write L = SDS−1, where D is a diagonal
matrix. This gives

exp(tL) = S exp(tD)S−1.

On the other hand,

exp(tN) =

∞∑
k=0

tk

k!
Nk =

n−1∑
k=0

tk

k!
Nk

since Nn = 0. Putting these facts together, we obtain

exp(tA) = S exp(tD)S−1
n−1∑
k=0

tk

k!
Nk.

Since the exponential of a diagonal matrix is trivial to compute, we thus
obtain an explicit formula for exp(tA).

As an example, let us compute the matrix exponential of the matrix

A =


0 2 3 −4
0 1 2 −4
−1 −2 −4 6
0 −1 −2 3

 .
We have seen above that

L =


0 1 2 −3
−1 0 1 −4
0 0 −2 5
0 0 −1 2


and

N =


0 1 1 −1
1 1 1 0
−1 −2 −2 1
0 −1 −1 1

 .
Moreover,

L = S


i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

S−1,

where

S =


1 2 + i 1 2− i
i 0 −i 0
0 −2 + i 0 −2− i
0 −1 0 −1

 .
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This gives

exp(tL) = S


eit 0 0 0
0 eit 0 0
0 0 e−it 0
0 0 0 e−it

S−1.

Furthermore,

exp(tN) = I + tN =


1 t t −t
t 1 + t t 0
−t −2t 1− 2t t
0 −t −t 1 + t


since N2 = 0. Putting these facts together, we obtain

exp(tA) = S


eit 0 0 0
0 eit 0 0
0 0 e−it 0
0 0 0 e−it

S−1


1 t t −t
t 1 + t t 0
−t −2t 1− 2t t
0 −t −t 1 + t

 .

2.5. Solving systems of linear differential equations using
matrix exponentials

In this section, we consider a system of linear differential equations of the
form

x′i(t) =

n∑
j=1

aij xj(t),

where x1(t), . . . , xn(t) are the unkown functions and aij is a given set of real
numbers. It is convenient to rewrite this system in matrix form. To that
end, we write

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


and

x(t) =


x1(t)
x2(t)

...
xn(t)

 .
With this understood, the system can be rewritten as

x′(t) = Ax(t).
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Proposition 2.12. The function t 7→ exp(tA) is differentiable, and

d

dt
exp(tA) = A exp(tA).

Proof. Using the identity

1

h
(exp(hA)− I) =

∞∑
k=1

hk−1

k!
Ak,

we obtain

lim
h→0

1

h
(exp(hA)− I) = A.

This implies

lim
h→0

1

h
(exp((t+h)A)−exp(tA)) = lim

h→0

1

h
(exp(hA)−I) exp(tA) = A exp(tA).

This proves the claim. �

Theorem 2.13. Given any vector x0 ∈ Rn and any matrix A ∈ Rn×n,
there exists a unique solution of the differential equation x′(t) = Ax(t) with
initial condition x(0) = x0. Moreover, the solution can be expressed as
x(t) = exp(tA)x0.

Proof. Let x(t) be a solution of the differential equation x′(t) = Ax(t) with
initial condition x(0) = x0. Then

d

dt
(exp(−tA)x(t)) = exp(−tA)x′(t)− exp(−tA)Ax(t) = 0.

Consequently, the function t 7→ exp(−tA)x(t) is constant. From this, we
deduce that exp(−tA)x(t) = x0, hence x(t) = exp(tA)x0. This proves the
uniqueness statement.

Conversely, if we define x(t) by the formula x(t) = exp(tA)x0, then
x(0) = x0 and

x′(t) =
d

dt
exp(tA)x0 = A exp(tA)x0 = Ax(t).

Thus, x(t) solves the given initial value problem. �

We next consider an inhomogeneous system of the form

x′(t) = Ax(t) + f(t),

where f(t) is a given function which takes values in Rn.

Theorem 2.14. Let A be an n × n matrix, and let f : I → Rn be a con-
tinuous function which is defined on an open interval I containing 0. Then
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there exists a unique solution of the differential equation x′(t) = Ax(t)+f(t)
with initial condition x(0) = x0. Moreover, the solution can be expressed as

x(t) = exp(tA)

(
x0 +

∫ t

0
exp(−sA) f(s) ds

)
.

Proof. Let x(t) be a solution of the differential equation x′(t) = Ax(t)+f(t)
with initial condition x(0) = x0. Then

d

dt
(exp(−tA)x(t)) = exp(−tA)x′(t)− exp(−tA)Ax(t) = exp(−tA) f(t).

Integrating this identity gives

exp(−tA)x(t) = x0 +

∫ t

0
exp(−sA) f(s) ds,

hence

x(t) = exp(tA)

(
x0 +

∫ t

0
exp(−sA) f(s) ds

)
.

This proves the uniqueness statement.

Conversely, if we define x(t) by the formula

x(t) = exp(tA)

(
x0 +

∫ t

0
exp(−sA) f(s) ds

)
,

then x(0) = x0 and

x′(t) = A exp(tA)

(
x0 +

∫ t

0
exp(−sA) f(s) ds

)
+ exp(tA)

d

dt

(
x0 +

∫ t

0
exp(−sA) f(s) ds

)
= Ax(t) + f(t).

Therefore, x(t) is a solution of the given initial value problem. �

As an example, let us find the solution of the inhomogeneous system

x′(t) =

[
1 −2
3 3

]
x(t) + e2t

[
−2
3

]
with initial condition

x(0) =

[
0
0

]
.

The coefficient matrix

A =

[
1 −2
3 3

]
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has eigenvalues λ1 = 2+
√

5 i and λ2 = 2−
√

5 i. The associated eigenvectors
are given by

v1 =

[
−2

1 +
√

5 i

]
, v2 =

[
−2

1−
√

5 i

]
.

Hence, if we define

S =

[
−2 −2

1 +
√

5 i 1−
√

5 i

]
,

then

A = S

[
2 +
√

5 i 0

0 2−
√

5 i

]
S−1

and

exp(tA) = S

[
e(2+

√
5 i)t 0

0 e(2−
√

5 i)t

]
S−1.

Moreover, we compute

exp(−tA) f(t) = S

[
e−
√

5 i t 0

0 e
√

5 i t

]
S−1

[
−2
3

]

=
1

2
√

5 i
S

[
e−
√

5 i t 0

0 e
√

5 i t

][
2 +
√

5 i

−2 +
√

5 i

]

=
1

2
√

5 i
S

[
e−
√

5 i t (2 +
√

5 i)

e
√

5 i t (−2 +
√

5 i)

]
.

This implies∫ t

0
exp(−sA) f(s) ds =

1

10
S

[
(e−
√

5 i t − 1) (2 +
√

5 i)

(e
√

5 i t − 1) (2−
√

5 i)

]
.

Thus, the solution of the initial value problem is given by

x(t) = exp(tA)

∫ t

0
exp(−sA) f(s) ds

=
1

10
S

[
e(2+

√
5 i)t 0

0 e(2−
√

5 i)t

][
(e−
√

5 i t − 1) (2 +
√

5 i)

(e
√

5 i t − 1) (2−
√

5 i)

]

=
1

10
S

[
(e2t − e(2+

√
5 i)t) (2 +

√
5 i)

(e2t − e(2−
√

5 i)t) (2−
√

5 i)

]

=
1

10

[
−(e2t − e(2+

√
5 i)t) (4 + 2

√
5 i)− (e2t − e(2−

√
5 i)t) (4− 2

√
5 i)

−(e2t − e(2+
√

5 i)t) (3− 3
√

5 i)− (e2t − e(2−
√

5 i)t) (3 + 3
√

5 i)

]

=
1

5

[
−4e2t + 4e2t cos(

√
5 t)− 2

√
5 e2t sin(

√
5 t)

−3e2t + 3e2t cos(
√

5 t) + 3
√

5 e2t sin(
√

5 t)

]
.
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2.6. Asymptotic behavior of solutions

Proposition 2.15. Assume that all eigenvalues of A have negative real
part. Then exp(tA) → 0 as t → ∞. In other words, every solution of the
differential equation x′(t) = Ax(t) converges to 0 as t→∞.

Proof. Let λ1, . . . , λm denote the eigenvalues of A, and let ν1, . . . , νm denote
their algebraic multiplicities. Suppose that x ∈ ker(A− λjI)νj , so that x is
a generalized eigenvector of A. Then

exp(tA)x = etλj exp(t(A− λjI))x = etλj
n−1∑
k=0

tk

k!
(A− λjI)kx.

Since Re(λj) < 0, it follows that

‖ exp(tA)x‖ = etRe(λj)

∥∥∥∥ n−1∑
k=0

tk

k!
(A− λjI)kx

∥∥∥∥→ 0

as t → ∞. Thus, limt→∞ exp(tA)x = 0 whenever x is a generalized eigen-
vector of A. Since every vector in Cn can be written as a sum of generalized
eigenvectors, we conclude that limt→∞ exp(tA)x = 0 for all x ∈ Cn. From
this, the assertion follows easily. �

Proposition 2.16. Assume that all eigenvalues of A have negative real
part. Moreover, suppose that f : R → Rn is a continuous function which
is periodic with period τ . Then there exists a unique solution x̄(t) of the
differential equation x′(t) = Ax(t) + f(t) which is periodic with period τ .
Moreover, if x(t) is another solution of the differential equation x′(t) =
Ax(t) + f(t), then x(t)− x̄(t)→ 0 as t→∞.

Proof. We first observe that the matrix exp(−τA) − I is invertible. In-
deed, if 1 is an eigenvalue of the matrix exp(−τA), then 1 is an eigenvalue
of the matrix exp(−mτA) for every integer m. This is impossible since
exp(−mτA) → 0 as m → ∞. Consequently, the matrix exp(−τA) − I is
invertible.

We now define a vector x̄0 by

(exp(−τA)− I) x̄0 =

∫ τ

0
exp(−sA) f(s) ds.

Moreover, we define

x̄(t) = exp(tA)

(
x̄0 +

∫ t

0
exp(−sA) f(s) ds

)
.
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Since the function f(t) is periodic with period τ , we have

x̄(t+ τ) = exp((t+ τ)A)

(
x̄0 +

∫ t+τ

0
exp(−sA) f(s) ds

)
= exp((t+ τ)A)

(
exp(−τA) x̄0 +

∫ t+τ

τ
exp(−sA) f(s) ds

)
= exp((t+ τ)A)

(
exp(−τA) x̄0 +

∫ t

0
exp(−(s+ τ)A) f(s+ τ) ds

)
= exp(tA)

(
x̄0 +

∫ t

0
exp(−sA) f(s+ τ) ds

)
= x̄(t)

for all t. Therefore, the function x̄(t) is periodic with period τ . Moreover,
by Theorem 2.14, the function x̄(t) satisfies x̄′(t) = Ax̄(t) + f(t) for all t.
This proves that there is at least one periodic solution.

We next assume that x(t) is an arbitrary solution of the differential
equation x′(t) = Ax(t) + f(t). Then the difference x(t) − x̄(t) satisfies the
differential equation

d

dt
(x(t)− x̄(t)) = A(x(t)− x̄(t)).

This implies

x(t)− x̄(t) = exp(tA) (x(0)− x̄(0)),

and the right hand side converges to 0 as t→∞.

Finally, we show that x̄(t) is the only solution which is periodic with
period τ . To prove this, suppose that x(t) is another solution which is
periodic with period τ . Then the function x(t)− x̄(t) is periodic with period
τ . Since x(t)− x̄(t)→ 0 as t→∞, we conclude that x(t)− x̄(t) = 0 for all
t. This completes the proof. �

In the remainder of this section, we analyze what happens when A has
some eigenvalues with negative real part and some eigenvalues with positive
real part. As usual, we denote by λ1, . . . , λm the eigenvalues of A and
by ν1, . . . , νm their algebraic multiplicities. We assume that Re(λj) 6= 0
for j = 1, . . . ,m. After rearranging the eigenvalues, we may assume that
Re(λj) < 0 for j = 1, . . . , l and Re(λj) > 0 for j = l + 1, . . . ,m. Let us
define

p−(λ) =

l∏
j=1

(λ− λj)νj

and

p+(λ) =
m∏

j=l+1

(λ− λj)νj .
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We claim that p−(λ) and p+(λ) are relatively prime. Suppose by contra-
diction that there is a polynomial q(λ) of degree at least 1 which divides
both p−(λ) and p+(λ). By the fundamental theorem of algebra, q(λ) has at
least one root in the complex plane, and this number must be a common
root of p−(λ) and p+(λ). But this impossible since the roots of p−(λ) all
have positive real part and the roots of p+(λ) all have negative real part.
Thus, we conclude that p−(λ) and p+(λ) are relatively prime. Moreover,
the product p−(λ) p+(λ) is the characteristic polynomial of A. Using the
Cayley-Hamilton, we conclude that

Cn = ker(p−(A) p+(A)) = ker p−(A)⊕ p+(A).

Let P− and P+ denote the canonical projections associated with this direct
sum decomposition. The subspaces ker p−(A) and ker p+(A) are referred to
as the stable and unstable subspaces, and the projections P− and P+ are
referred to as the spectral projections.

We now assume that A has real entries. Since the eigenvalues of a real
matrix occur in pairs of complex conjugate numbers, the polynomials p−(λ)
and p+(λ) have real coefficients. Thus, the subspaces ker p−(A), ker p+(A) ⊂
Cn are invariant under complex conjugation, and the projections P− and P+

are matrices with real entries.

Proposition 2.17. Assume that A has no eigenvalues on the imaginary
axis. Let us choose α > 0 small enough such that |Re(λj)| > α for all
eigenvalues of A. If x ∈ ker p−(A), then eαt exp(tA)x → 0 as t → ∞.
Similarly, if x ∈ ker p+(A), then e−αt exp(tA)x→ 0 as t→ −∞.

Proof. Suppose first that x ∈ ker(A− λjI)νj for some j ∈ {1, . . . , l}. Then

exp(tA)x = etλj exp(t(A− λjI))x = etλj
n−1∑
k=0

tk

k!
(A− λjI)kx.

Since Re(λj) < −α, it follows that

eαt ‖ exp(tA)x‖ = et (Re(λj)+α)

∥∥∥∥ n−1∑
k=0

tk

k!
(A− λjI)kx

∥∥∥∥→ 0

as t → ∞. Thus, limt→∞ e
αt exp(tA)x = 0 whenever x ∈ ker(A − λjI)νj

and j ∈ {1, . . . , l}. Since

ker p−(A) = ker(A− λ1I)ν1 ⊕ . . .⊕ (A− λlI)νl ,

we conclude that limt→∞ e
αt exp(tA)x = 0 for all x ∈ ker p−(A). An

analogous argument shows that limt→−∞ e
−αt exp(tA)x = 0 for all x ∈

ker p+(A). �
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Corollary 2.18. Assume that A has no eigenvalues on the imaginary axis.
Let us choose α > 0 small enough such that |Re(λj)| > α for all eigenvalues
of A. Then there exist positive constants N and α such that

eαt exp(tA)P− → 0

as t→∞ and

e−αt exp(tA)P+ → 0

as t→ −∞.

2.7. Problems

Problem 2.1. Consider the following 3× 3 matrix:

A =

1 2 −2
0 1 3
0 0 −2

 .
Find a diagonalizable matrix L such that AL = LA and A−L is nilpotent.

Problem 2.2. Consider the following 4× 4 matrix:

A =


1 −1 0 1
2 −1 1 0
0 0 −1 2
0 0 −1 1

 .
Find a diagonalizable matrix L such that AL = LA and A−L is nilpotent.

Problem 2.3. Find the general solution of the inhomogeneous differential
equation

x′(t) =

[
2 1
4 −1

]
x(t) +

[
0
5t

]
.

Problem 2.4. Consider a matrix A ∈ Cn×n. Show that

{µ : µ is an eigenvalue of exp(tA)} = {etλ : λ is an eigenvalue of A}.

This result is called the spectral mapping theorem. (Hint: It suffices to
prove this in the special case A is an upper triangular matrix.)

Problem 2.5. Consider a matrix A ∈ Cn×n. As usual, let λ1, . . . , λm
denote the eigenvalues of A and by ν1, . . . , νm their algebraic multiplicities.
We assume that Re(λj) < 0 for j = 1, . . . , k; Re(λj) = 0 for j = k+ 1, . . . , l;
and Re(λj) > 0 for j = l + 1, . . . ,m. Show that

{x ∈ Cn : lim sup
t→∞

‖ exp(tA)x‖ <∞} =

k⊕
j=1

ker(A−λjI)νj⊕
l⊕

j=k+1

ker(A−λjI).
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Problem 2.6. Consider a matrix A ∈ Rn×n. Suppose that all eigenvalues
of A have negative real part. Show that the limit

lim
τ→∞

∫ τ

0

[
exp(tA)

]T
exp(tA) dt =: S

exists. Show that the matrix S is positive definite, and

〈Sx,Ax〉 = −1

2
‖x‖2

for all x ∈ Rn.

Problem 2.7. Consider a matrix A ∈ Cn×n. Suppose that every eigenvalue
of A satisfies |λ| < 1. Show that limk→∞A

k = 0.





Chapter 3

Nonlinear systems

3.1. Peano’s existence theorem

The proof of Peano’s theorem relies on a compactness theorem due to Arzelà
and Ascoli:

Arzelà-Ascoli Theorem. Let J be a compact interval, and let xk : J → Rn
be a sequence of continuous functions. Assume that the functions xk(t) are
uniformly bounded, so that

sup
k∈N

sup
t∈J
‖xk(t)‖ <∞.

Suppose further that the sequence xk is equicontinuous. This means that,
given any ε > 0, there exists a real number δ > 0 so that

sup
k∈N

sup
s,t∈J, |s−t|≤δ

|xk(s)− xk(t)| ≤ ε.

Then a subsequence of the original sequence xk(t) converges uniformly to
some limit function x(t).

Proof. Let A = {t1, t2, . . .} be a countable dense subset of J . Since the
sequence xk(t1) is bounded, the Bolzano-Weierstrass theorem implies that
we can find a sequence of integers {kl,1 : l = 1, 2, . . .} going to infinity such
that the limit liml→∞ xkl,1(t1) exists. Similarly, since the sequence xk(t2)
is bounded, there exists a subsequence {kl,2 : l = 1, 2, . . .} of the sequence
{kl,1 : l = 1, 2, . . .} with the property that the limit liml→∞ xkl,1(t1) exists.
Proceeding inductively, we obtain for each m ∈ N a sequence of integers
{kl,m : l = 1, 2, . . .} with the property that the limit liml→∞ xkl,m(tm) exists.
Moreover, the sequence {kl,m : l = 1, 2, . . .} is a subsequence of the previous
sequence {kl,m−1 : l = 1, 2, . . .}.

27
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We now consider the diagonal sequence {kl,l : l = 1, 2, . . .}. Given any
integer m ∈ N, we have {kl,l : l = m,m+1, . . .} ⊂ {kl,m : l = 1, 2, . . .}. Since
the limit liml→∞ xkl,m(tm) exists, we conclude that the limit liml→∞ xkl,l(tm)
exists as well. To summarize, the limit liml→∞ xkl,l(t) exists for each t ∈ A.

We want to show that the functions xkl,l(t) converge uniformly. Sup-
pose that ε is a given positive real number. Since the functions xk(t) are
equicontinuous, we can find a real number δ > 0 so that

sup
k∈N

sup
s,t∈J, |s−t|≤δ

|xk(s)− xk(t)| ≤ ε.

Moreover, since the set A is dense, we can find a finite subset E ⊂ A such
that J ⊂

⋃m
s∈E(s − δ, s + δ). Finally, we can find a positive integer l0 such

that

max
s∈E
|xkl̃,l̃(s)− xkl,l(s)| ≤ ε

for all l̃ ≥ l ≥ l0. We claim that

|xkl̃,l̃(t)− xkl,l(t)| ≤ 3ε

for all t ∈ J and l̃ ≥ l ≥ l0. Indeed, for each t ∈ J there exists a number
s ∈ E such that |s− t| < δ. This gives

|xkl̃,l̃(t)− xkl,l(t)|
≤ |xkl̃,l̃(s)− xkl,l(s)|+ |xkl,l(s)− xkl,l(t)|+ |xkl̃,l̃(s)− xkl̃,l̃(t)| ≤ 3ε,

as claimed.

In particular, for each t ∈ J , the sequence xkl,l(t), l = 1, 2, . . ., is a
Cauchy sequence. Consequently, the limit x(t) = liml→∞ xkl,l(t) exists for
each t ∈ J . Moreover,

|x(t)− xkl,l(t)| = lim
l̃→∞
|xkl̃,l̃(t)− xkl,l(t)| ≤ 3ε

for all t ∈ J and all l ≥ l0. Since ε > 0 is arbitrary, the sequence xk(t)
converges uniformly to x(t). This completes the proof. �

Theorem 3.1. Let U ⊂ Rn be an open set, and let F : U → Rn be a
continuous mapping. Fix a point x0 ∈ U . Then the differential equation
x′(t) = F (x(t)) with initial condition x(0) = x0 admits a solution x(t),
which is defined on an interval (−δ, δ). Here, δ is a positive real number
which depends on x0.

Proof. Since U is open, we can find a positive real number r > 0 such that
B2r(x0) ⊂ U . Let

M = sup
x∈Br(x0)

‖F (x)‖,

and suppose that δ is chosen such that 0 < δ < r
M .
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For every positive integer k, we define a continuous function xk : [−δ, δ]→
Br(x0) as follows. For t ∈ [− δ

k ,
δ
k ], we define

xk(t) = x0 + t F (x0).

Suppose now that j ∈ {1, . . . , k − 1}, and we have defined xk(t) for t ∈
[− jδ

k ,
jδ
k ]. We then define

xk(t) = xk

(jδ
k

)
+
(
t− jδ

k

)
F
(
xk

(jδ
k

))
for t ∈ [ jδk ,

(j+1)δ
k ] and

xk(t) = xk

(
− jδ

k

)
+
(
t+

jδ

k

)
F
(
xk

(
− jδ

k

))
for t ∈ [− (j+1)δ

k ,− jδ
k ]. Using induction on j, one can show that

|xk(t)| ≤M |t| < r

for all t ∈ [− jδ
k ,

jδ
k ]. Thus, the function xk maps the interval [−δ, δ] into the

ball Br(x0), as claimed.

It follows immediately from the definition of xk that

|xk(s)− xk(t)| ≤M |s− t|

for all s, t ∈ [−δ, δ]. Consequently, the functions xk(t) are equicontinuous.
By the Arzelà-Ascoli theorem, there exists a sequence of positive integers
kl → ∞ such that the functions xkl(t) converge uniformly to some limit
function x(t) as l → ∞. It is clear that x is a continuous function which
maps the interval [−δ, δ] into the closed ball of radius r centered at x0.

We claim that x(t) is a solution of the given initial value problem. To
see this, we write

xk(t) = x0 +

∫ t

0
F (yk(s)) ds,

where the function yk(t) is defined by

yk(t) =


x0 if t ∈ [− δ

k ,
δ
k ]

xk
( jδ
k

)
if t ∈ ( jδk ,

(j+1)δ
k ] for some j ∈ {1, . . . , k − 1}

xk
(
− jδ

k

)
if t ∈ [− (j+1)δ

k ,− jδ
k ) for some j ∈ {1, . . . , k − 1}.

It is easy to see that

sup
t∈[−δ,δ]

‖xk(t)− yk(t)‖ ≤
M

k
.

This implies

sup
t∈[−δ,δ]

‖x(t)− ykl(t)‖ ≤ sup
t∈[−δ,δ]

‖x(t)− xkl(t)‖+
M

kl
→ 0
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as l→∞. In other words, the functions ykl(t) converge uniformly to x(t) as
l → ∞. Since continuous functions on compact sets are uniformly continu-
ous, we conclude that the functions F (ykl(t)) converge uniformly to F (x(t))
as l→∞. In particular,

x(t) = lim
l→∞

xkl(t)

= lim
l→∞

(
x0 +

∫ t

0
F (ykl(s)) ds

)
= x0 +

∫ t

0
F (x(s)) ds.

Putting t = 0 gives x(0) = x0. Moreover, since x(t) is continuous, the func-
tion F (x(t)) is continuous as well. Thus, x(t) is continuously differentiable
with derivative x′(t) = F (x(t)). This completes the proof. �

It is instructive to consider the special case when x′(t) = Ax(t) for some
matrix A ∈ Rn×n. In this case, the approximating functions xk(t) satisfy

xk

(jδ
k

)
=
(
I +

δ

k
A
)j
x0

and

xk

(
− jδ

k

)
=
(
I − δ

k
A
)j
x0

for j ∈ {1, . . . , k}. Using Proposition 2.4, it is not difficult to show that
xk(t)→ exp(tA)x0 as k →∞.

3.2. Existence theory via the method of Picard iterates

Theorem 3.2. Let U ⊂ Rn be an open set, and let F : U → Rn be a
continuously differentiable mapping. Fix a point x0 ∈ U . Then the differ-
ential equation x′(t) = F (x(t)) with initial condition x(0) = x0 admits a
solution x(t), which is defined on an interval (−δ, δ). Here, δ is a positive
real number which depends on x0.

Since U is open, we can find a positive real number r > 0 such that
B3r(x0) ⊂ U . Moreover, we define

M = sup
x∈B2r(x0)

‖F (x)‖

and

L = sup
x∈B2r(x0)

‖DF (x)‖op.

We now choose δ small enough so that

0 < δ < min{r, r
M
,

1

2L
}.
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The strategy is to construct a family of functions xk(t) defined on the interval
(−δ, δ) such that x0(t) = x0 and

xk+1(t) = x0 +

∫ t

0
F (xk(s)) ds

for all t ∈ (−δ, δ). The functions xk(t) are called the Picard iterates.

Lemma 3.3. The function xk(t) is well-defined, and

‖xk(t)− xk−1(t)‖ ≤ 2−k+1 r

for all t ∈ (−δ, δ).

Proof. We argue by induction on k. For k = 1, the assertion is trivial. We
now assume that the assertion has been established for all integers less than
or equal to k. In other words, xj(t) is defined for all j ≤ k, and we have

‖xj(t)− xj−1(t)‖ ≤ 2−j+1 r

for all t ∈ (−δ, δ) and all j ≤ k. Summation over j gives

max{‖xk(t)−x0‖, ‖xk−1(t)−x0‖} ≤
k∑
j=1

‖xj(t)−xj−1(t)‖ ≤
k∑
j=1

2−j+1 r < 2r

for all t ∈ (−δ, δ). Consequently, xk(t), xk−1(t) ∈ B2r(x0) ⊂ U . Therefore,
xk+1(t) can be defined.

By definition of L, we have ‖F (ξ)− F (η)‖ ≤ L ‖ξ − η‖ whenever ξ, η ∈
B2r(x0). Since xk(t), xk−1(t) ∈ B2r(x0) for all t ∈ (−δ, δ), we conclude that

‖F (xk(t))− F (xk−1(t))‖ ≤ L ‖xk(t)− xk−1(t)‖ ≤ 2−k+1 r L

for all t ∈ (−δ, δ). Using the identities

xk+1(t) = x0 +

∫ t

0
F (xk(s)) ds

and

xk(t) = x0 +

∫ t

0
F (xk−1(s)) ds,

we obtain

xk+1(t)− xk(t) =

∫ t

0
(F (xk(s))− F (xk−1(s))) ds.

This implies

‖xk+1(t)− xk(t)‖ ≤ 2−k+1 r L |t| ≤ 2−k+1 r L δ ≤ 2−k r

for all t ∈ (−δ, δ). �
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Using Lemma 3.3, we obtain

‖xk̃(t)− xk(t)‖ ≤
k̃∑

j=k+1

‖xj(t)− xj−1(t)‖ ≤
k̃∑

j=k+1

2−j+1 r ≤ 2−k+1 r

for all k̃ ≥ k ≥ 1 and all t ∈ (−δ, δ). Thus, for each t ∈ (−δ, δ), the sequence
xk(t) is a Cauchy sequence. Let us define

x(t) := lim
k→∞

xk(t).

Then

‖x(t)− xk(t)‖ = lim
k̃→∞

‖xk̃(t)− xk(t)‖ ≤ 2−k+1 r

for all t ∈ (−δ, δ). Thus, the sequence xk(t) converges uniformly to x(t). In
particular, the limit function x(t) is continuous. Moreover,

x(t) = lim
k→∞

xk+1(t)

= lim
k→∞

(
x0 +

∫ t

0
F (xk(s)) ds

)
= x0 +

∫ t

0
F (x(s)) ds

for all t ∈ (−δ, δ). Putting t = 0 gives x(0) = x0. Moreover, since x(t) is
continuous, the function F (x(t)) is continuous as well. Thus, x(t) is con-
tinuously differentiable with derivative x′(t) = F (x(t)). This completes the
proof of Theorem 3.2.

As an example, let us consider the differential equation x′(t) = Ax(t)
where A is an n× n matrix. In this case, the Picard iterates satisfy

xk+1(t) = x0 +

∫ t

0
Axk(s) ds.

Using induction on k, one can show that

xk(t) =
k∑
l=0

tl

l!
Alx0.

Thus, xk(t)→ exp(tA)x0 as expected.

3.3. Uniqueness and the maximal time interval of existence

Theorem 3.4. Let U ⊂ Rn be an open set, and let F : U → Rn be a
continuously differentiable mapping. Suppose that x(t) and y(t) are two
solutions of the differential equation x′(t) = F (x(t)). Moreover, suppose
that x(t) is defined on some open interval I and y(t) is defined on some
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open interval J . If 0 ∈ I ∩ J and x(0) = y(0), then x(t) = y(t) for all
t ∈ I ∩ J .

Proof. We first show that x(t) = y(t) for all t ∈ I ∩ J ∩ (0,∞). Suppose
that this false. Let τ = inf{t ∈ I ∩ J ∩ (0,∞) : x(t) 6= y(t)}. Clearly,
x(τ) = y(τ). For abbreviation, let x̄ := x(τ) = y(τ). Let us fix a real
number r > 0 such that B2r(x̄) ⊂ U . We can find a real number δ > 0 such
that [τ, τ + δ] ⊂ I ∩ J and x(t), y(t) ∈ Br(x̄) for all t ∈ [τ, τ + δ]. Hence, if
we put L = supx∈Br(x̄) ‖DF (x)‖op, then we obtain

‖F (x(t))− F (y(t))‖ ≤ L ‖x(t)− y(t)‖

for all t ∈ [τ, τ + δ]. This implies

d

dt
‖x(t)− y(t)‖2 = 2 〈x(t)− y(t), x′(t)− y′(t)〉

= 2 〈x(t)− y(t), F (x(t))− F (y(t))〉
≤ 2L ‖x(t)− y(t)‖2

for t ∈ [τ, τ + δ]. Consequently, the function t 7→ e−2Lt ‖x(t) − y(t)‖2 is
monotone decreasing on the interval [τ, τ + δ]. Since x(τ) = y(τ), it follows
that x(t) = y(t) for all t ∈ [τ, τ + δ]. This contradicts the definition of τ .
Thus, x(t) = y(t) for all t ∈ I ∩ J ∩ (0,∞). An analogous argument shows
that x(t) = y(t) for all t ∈ I ∩ J ∩ (−∞, 0). �

In the following, we assume that U ⊂ Rn is an open set, and F : U → Rn
is continuously differentiable. Theorem 3.4 guarantees that, given any point
x0 ∈ U , there exists a unique maximal solution of the initial value problem

(4)

{
x′(t) = F (x(t))

x(0) = x0.

To see this, we fix a point x0 ∈ U and define

J?x0 = {τ ∈ R : there exists a solution of (4) which is

defined on some open interval containing τ}.

In other words, J?x0 is the union of the domains of definition of all solutions
of the initial value problem (4). Clearly, J?x0 is an open interval. Using The-
orem 3.1 or Theorem 3.2, we conclude that J?x0 is non-empty. Moreover, by
Theorem 3.4, two solutions of (4) agree on the intersection of their domains
of definition. Hence, there exists a unique function x : J?x0 → U which solves
(4).

We next characterize the maximal interval J?x0 on which the solution is
defined.
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Theorem 3.5. Assume that U ⊂ Rn is an open set, and F : U → Rn is
continuously differentiable. Fix a point x0 ∈ U , and let x(t) be the unique
maximal solution of the initial value problem (4), and let J?x0 = (α, β) denote
its domain of definition. If β <∞, then

lim sup
t↗β

min
{

dist(x(t),Rn \ U),
1

‖x(t)‖

}
= 0.

Proof. We argue by contradiction. Suppose that β <∞ and

inf
k∈N

min
{

dist(x(tk),Rn \ U),
1

‖x(tk)‖

}
> 0

for some sequence of times tk ↗ β. Then the sequence {x(tk) : k ∈ N} is
contained in a compact subset of U .

Using either Theorem 3.1 or Theorem 3.2, we can find a uniform constant
δ > 0 with the property that (−δ, δ) ⊂ J?x(tk) for all k. It is important that

the constant δ does not depend on k; this is possible since the sequence
{x(tk) : k ∈ N} is contained in a compact subset of U . Consequently,
[0, tk+δ) ⊂ J?x0 for each k. This implies tk+δ ≤ β for all k. This contradicts
the fact that limk→∞ tk = β. This completes the proof of Theorem 3.5. �

We now define

Ω = {(x0, t) ∈ U × Rn : t ∈ J?x0}.
Moreover, for each point (x0, t) ∈ Ω, we define

Φ(x0, t) = ϕt(x0) = x(t),

where x : J?x0 → U denotes the unique maximal solution of (4). The mapping
Φ : Ω → U is referred as the flow associated with the differential equation
x′(t) = F (x(t)). The map Φ enjoys the following semigroup property: If
(x0, s) ∈ Ω and (Φ(x0, s), t) ∈ Ω, then (x0, s + t) ∈ Ω and Φ(x0, s + t) =
Φ(Φ(x0, s), t). This is an easy consequence of the uniqueness theorem above.

3.4. Continuous dependence on the initial data

As above let U ⊂ Rn × R, and let F : U → Rn be a continuous mapping
which is continuously differentiable in the spatial variables. We denote by
Φ the flow associated with this differential equation, and by Ω ⊂ U ×R the
domain of definition of Φ.

Theorem 3.6. The set Ω is open, and Φ : Ω→ U is continuous.

In order to prove this theorem, we consider an arbitrary point (x0, t0) ∈
Ω. Our goal is to show that a Ω contains a ball of positive radius centered
at (x0, t0) and that Φ is continuous at (x0, t0).
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It suffices to consider the case t0 ≥ 0. (The case t0 < 0 can be handled
in an analogous fashion.) Let

C = {Φ(x0, t) : 0 ≤ t ≤ t0}.
The set C is closed and bounded subset of U . Since U is open, the set C
has positive distance from the boundary of U . Hence, we can find a positive
real number r such that

0 < 4r < dist(C,Rn \ U).

Let
M = sup{‖F (x)‖ : dist(x,C) ≤ 4r}

and
L = sup{‖DF (x)‖op : dist(x,C) ≤ 4r}.

Lemma 3.7. Fix a point y0 such that ‖x0 − y0‖ ≤ e−Lt0 r. Then

‖Φ(x0, t)− Φ(y0, t)‖ ≤ 2eLt ‖x0 − y0‖
whenever 0 ≤ t ≤ t0 and (y0, t) ∈ Ω.

Proof. For abbreviation, let x(t) = Φ(x0, t) and y(t) = Φ(y0, t). Suppose
that there exists a real number t ∈ [0, t0] such that (y0, t) ∈ Ω and

‖x(t)− y(t)‖ > 2eLt ‖x0 − y0‖.
Observe first that x0 6= y0. (If x0 = y0, then the uniqueness theorem implies
that x(t) = y(t) for all t.) Let

τ = inf{t ∈ [0, t0] : (y0, t) ∈ Ω and ‖x(t)− y(t)‖ > 2eLt ‖x0 − y‖}.
Then 0 < τ ≤ t0, (y, τ) ∈ Ω, and

‖x(τ)− y(τ)‖ = 2eLτ ‖x0 − y0‖.
Moreover,

‖x(t)− y(t)‖ ≤ 2eLt ‖x0 − y0‖
for all t ∈ [0, τ ]. This implies

‖x(t)− y(t)‖ ≤ 2eLt0 ‖x0 − y0‖ ≤ 2r

for all t ∈ [0, τ ]. Hence, for every t ∈ [0, τ ], the line segment joining x(t) and
y(t) is contained in the set {x ∈ Rn : dist(x,C) ≤ 2r}. By definition of L,
we have

‖F (x(t))− F (y(t))‖ ≤ L ‖x(t)− y(t)‖
for all t ∈ [0, τ ]. This implies

d

dt
‖x(t)− y(t)‖2 = 2 〈x(t)− y(t), x′(t)− y′(t)〉

= 2 〈x(t)− y(t), F (x(t))− F (y(t))〉
≤ 2L ‖x(t)− y(t)‖2
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for all t ∈ [0, τ ]. Consequently, the function t 7→ e−2Lt ‖x(t)− y(t)‖2 is also
monotone decreasing on [0, τ ]. Consequently,

2 ‖x0 − y0‖ ≤ e−Lτ ‖x(τ)− y(τ)‖ ≤ ‖x(0)− y(0)‖ = ‖x0 − y0‖.
This is a contradiction. �

Lemma 3.8. Fix a point y0 such that ‖x0−y0‖ ≤ e−Lt0 r. If 0 ≤ s < t0 + r
M

and (y0, t) ∈ Ω, then dist(Φ(y0, t), C) ≤ 4r.

Proof. Suppose that there exists a number t such that 0 ≤ t < t0 + r
M ,

(y0, s) ∈ Ω, and dist(Φ(y0, t), C) > 4r. In particular, (y0, t0) ∈ Ω. We define

τ = inf{t ∈ [0, t0 +
r

M
) : (y0, t) ∈ Ω and dist(Φ(y0, t), C) > 4r}.

It follows from Lemma 3.7 that

dist(Φ(y0, t), C) ≤ ‖Φ(x0, t)− Φ(y0, t)‖ ≤ 2eLt ‖x0 − y0‖ ≤ 2r

for 0 ≤ t ≤ t0. Consequently, t0 < τ < t0 + r
M , (y0, τ) ∈ Ω, and

dist(Φ(y0, τ), C) = 4r. Moreover, dist(Φ(y0, t), C) ≤ 4r for all t ∈ [t0, τ ].
This implies

‖ d
dt

Φ(y0, t)‖ = ‖F (Φ(y0, t))‖ ≤M

for all t ∈ [t0, τ ] by definition of M . Integrating this inequality over the in-
terval [t0, τ ] gives ‖Φ(y0, t0)−Φ(y0, τ)‖ ≤ r. On the other hand, ‖Φ(x0, t0)−
Φ(y0, t0)‖ ≤ 2r by Lemma 3.7. Putting these facts together, we con-
clude that ‖Φ(x0, t0) − Φ(y0, τ)‖ ≤ 3r. This contradicts the fact that
‖Φ(x0, t0) − Φ(y0, τ)‖ ≥ dist(Φ(y0, τ), C) = 4r. This proves the asser-
tion. �

Lemma 3.9. Suppose that ‖x0 − y0‖ ≤ e−Lt0 r and 0 ≤ t < t0 + r
M . Then

(y0, t) ∈ Ω, and ‖Φ(x0, t0)− Φ(y0, t)‖ ≤ 2eLt0 ‖x0 − y0‖+M |t0 − t|.

Proof. We first show that (y0, t) ∈ Ω whenever 0 ≤ t < t0 + r
M . Suppose

by contradiction that the solution t 7→ Φ(y0, t) ceases to exist at some time
τ < t0 + r

M . It follows from Lemma 3.8 that dist(Φ(y0, t), C) ≤ 4r for all t ∈
[0, τ). This implies that the solution t 7→ Φ(y0, t) is contained in a compact
subset of U , contradicting the global existence and uniqueness theorem.
Since the set C is compact and dist(C,Rn \U) > 4r, these statements are in
contradiction. Thus, we conclude that (y0, t) ∈ Ω whenever 0 ≤ t < t0 + r

M .

Using Lemma 3.8, we obtain dist(Φ(y0, t), C) ≤ 4r for 0 ≤ t < t0 + r
M .

Hence, by definition of M , we have

‖ d
dt

Φ(y0, t)‖ = ‖F (Φ(y0, t))‖ ≤M

for 0 ≤ t < t0 + r
M . This implies

‖Φ(y0, t0)− Φ(y0, t)‖ ≤M |t0 − t|
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for all 0 ≤ t < t0 + r
M . Therefore,

‖Φ(x0, t0)− Φ(y0, t)‖ ≤ ‖Φ(x0, t0)− Φ(y0, t0)‖+ ‖Φ(y0, t0)− Φ(y0, t)‖

≤ 2eLt0 ‖x0 − y0‖+M |t0 − t|.

This proves the claim. �

To summarize, we have shown that Ω contains a neighborhood of the
point (x0, t0), and Φ is continuous at the point (x0, t0).

3.5. Differentiability of flows and the linearized equation

As usual, we consider an autonomous system of ordinary differential equa-
tions of the form x′(t) = F (x(t)), where F : U → Rn is a continuously
differentiable function defined on some open subset U of Rn. We denote by
Φ the flow associated with this differential equation, and by Ω ⊂ U ×R the
domain of definition of Φ. We have shown earlier that the set Ω is open and
the map Φ : Ω→ U is continuous.

We next establish differentiability of Φ. To that end, we need the fol-
lowing auxiliary result:

Proposition 3.10. Let A : [0, T ] → Rn×n be a continuous function which
takes values values in the space of n × n matrices. Then there exists a
continuously differentiable function M : [0, T ] → Rn×n such that M ′(t) =
A(t)M(t) and M(0) = I.

Proof. For abbreviation, let N = supt∈[0,T ] ‖A(t)‖op. For each k ∈ N, we

define a continuous function Mk : [0, T ]→ Rn×n by

Mk(t) = I + t A(0)

for t ∈ [0, 1
k ] and

Mk(t) =
[
I +

(
t− jT

k

)
A
(jT
k

)]
Mk

(jT
k

)
for t ∈ [ jTk ,

(j+1)T
k ]. Using induction on j, we can show that

‖Mk(t)‖op ≤ eNt

for all t ∈ [0, jTk ]. By the Arzelà-Ascoli theorem, a subsequence of the se-
quence Mk(t) converges uniformly to some function M(t). The function
M : [0, T ] → Rn×n is clearly continuous. Moreover, by following the argu-
ments in the proof of Theorem 3.1, one readily verifies that

M(t) = I +

∫ t

0
A(s)M(s) ds
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for all t ∈ [0, T ]. Thus, M(t) is continuously differentiable and M ′(t) =
A(t)M(t). �

Theorem 3.11. Fix a point (x0, t0) ∈ Ω. Let x(t) = Φ(x0, t) denote the
unique maximal solution with initial vector x0, and let A(t) = DF (x(t)).
Moreover, suppose that M : [0, t0]→ Rn×n is a solution of the ODE M ′(t) =
A(t)M(t) with initial condition M(0) = I. Then the map ϕt0 is differentiable
at x0, and its differential is given by Dϕt0 = M(t0).

In the following, we describe the proof of Theorem 3.11. We need to
show that

lim
y→0

1

‖x0 − y‖
‖ϕt0(x0)− ϕt0(y)−M(t0)(x0 − y)‖ = 0.

To verify this, let ε > 0 be given. Since F is continuously differentiable,
we can find a real number r > 0 such that for each t ∈ [0, t0] we have
B2r(x(t)) ⊂ U and supy∈Br(x(t)) ‖DF (y) − A(t)‖op ≤ ε. Integrating this
inequality over a line segment, we obtain

‖F (x(t))− F (y)−A(t) (x(t)− y)‖ ≤ ε ‖y − x(t)‖

for all t ∈ [0, t0] and all points y ∈ Br(x(t)).

Since Φ is continuous, we can find a real number 0 < δ < r such that

sup
t∈[0,t0]

‖Φ(x0, t)− Φ(y0, t)‖ ≤ r

for all points y0 satisfying ‖x0 − y0‖ ≤ δ.
We now consider a point y0 with 0 < ‖x0 − y0‖ ≤ δ. For abbreviation,

let K := supt∈[0,t0] ‖A(t)‖ and L = supt∈[0,t0] ‖M(t)‖. The function y(t) =

Φ(y0, t) satisfies y′(t) = F (y(t)). Hence, the function u(t) := x(t) − y(t) −
M(t)(x0 − y0) satisfies

u′(t) = x′(t)− y′(t)−M ′(t)(x0 − y0)

= F (x(t))− F (y(t))−A(t)M(t)(x0 − y0)

= F (x(t))− F (y(t))−A(t) (x(t)− y(t)) +A(t)u(t).

This implies

‖u′(t)‖ ≤ ‖F (x(t))− F (y(t))−A(t) (x(t)− y(t))‖+ ‖A(t)‖ ‖u(t)‖
≤ ε ‖x(t)− y(t)‖+K ‖u(t)‖
≤ ε ‖M(t)(x0 − y0)‖+ (K + ε) ‖u(t)‖
≤ εL ‖x0 − y0‖+ (K + ε) ‖u(t)‖

for all t ∈ [0, t0].
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Lemma 3.12. We have

e−(K+ε)t0 ‖u(t0)‖ ≤ t0εL ‖x0 − y0‖.

Proof. Note that u(0) = 0 by definition of u(t). If u(t0) = 0, the assertion
is trivial. Hence, we may assume that u(t0) 6= 0. Let τ = sup{t ∈ [0, t0] :
u(t) = 0}. Clearly, τ ∈ [0, t0), u(τ) = 0, and u(τ) 6= 0 for all t ∈ (τ, t0].
Note that

d

dt
‖u(t)‖ ≤ ‖u′(t)‖ ≤ εL ‖x0 − y0‖+ (K + ε) ‖u(t)‖

for all t ∈ (τ, t0]. This implies

d

dt
(e−(K+ε)t ‖u(t)‖) ≤ εL e−(K+ε)t ‖x0 − y0‖ ≤ εL ‖x0 − y0‖

for all t ∈ (τ, t0]. Consequently, the function t 7→ e−(K+ε)t ‖u(t)‖−tεL ‖x0−
y0‖ is monotone decreasing on the interval (τ, t0]. Since u(τ) = 0, it follows
that

e−(K+ε)t0 ‖u(t0)‖ − t0εL ‖x0 − y0‖ ≤ e−(K+ε)t0 ‖u(τ)‖ − τεL ‖x0 − y0‖ ≤ 0,

which establishes the claim. �

We now complete the proof of Theorem 3.11. Using Lemma 3.12, we
obtain

1

‖x0 − y0‖
‖ϕt0(x0)− ϕt0(y0)−M(t0)(x0 − y0)‖ =

1

‖x0 − y0‖
‖u(t0)‖

≤ t0εL e(K+ε)t0

for all points y0 satisfying 0 < ‖x0 − y0‖ ≤ δ. Since ε > 0 is arbitrary, we
conclude that

lim
y→0

1

‖x0 − y‖
‖ϕt0(x0)− ϕt0(y)−M(t0)(x0 − y)‖ = 0.

This completes the proof.

3.6. Liouville’s theorem

Proposition 3.13. Let M(t) be a continuously differentiable function taking
values in Rn×n. If M ′(t) = A(t)M(t), then

detM(t) = detM(0) e
∫ t
0 tr(A(s)) ds.

Proof. It suffices to show that
d

dt
detM(t) = tr(A(t)) detM(t)

for all t. In order to verify this, we fix a time t0. Let us write A(t0) = SBS−1,
where S ∈ Cn×n is invertible and B ∈ Cn×n is an upper triangular matrix.



40 3. Nonlinear systems

Moreover, let M̃(t) = (I + (t − t0)A(t0))M(t0). Then M̃(t0) = M(t0) and

M̃ ′(t0) = M ′(t0). This implies

d

dt
detM(t)

∣∣∣
t=t0

=
d

dt
det M̃(t)

∣∣∣
t=t0

.

Moreover,

det M̃(t) = det(I + (t− t0)A(t0)) detM(t0)

= det(I + (t− t0)B) detM(t0)

=
n∏
k=1

(1 + (t− t0) bkk) detM(t0).

This implies

d

dt
det M̃(t)

∣∣∣
t=t0

=

n∑
k=1

bkk detM(t0)

= tr(B) detM(t0)

= tr(A(t0)) detM(t0).

Putting these facts together, we conclude that

d

dt
detM(t)

∣∣∣
t=t0

= tr(A(t0)) detM(t0),

as claimed. �

Theorem 3.14. Suppose that DF (x) is trace-free for all x ∈ U . Then ϕt
is volume-preserving for each t; that is, detDϕt(x) = 1 for all (x, t) ∈ Ω.

Proof. Fix a point (x0, t0) ∈ Ω. For abbreviation, let x(t) = Φ(x0, t) and
A(t) = DF (x(t)). Then Dϕt0(x0) = M(t0), where M(t) is a solution of
the differential equation M ′(t) = A(t)M(t) with initial condition M(0) = I.
Since A(t) is tracefree, we conclude that detM(t) is constant in t. Thus,
detDϕt0(x0) = detM(t0) = detM(0) = 1. �

3.7. Problems

Problem 3.1. Let F be a continuously differentiable vector field on Rn.
Moreover, suppose that ‖F (x)‖ ≤ ψ(‖x‖), where ψ : [0,∞) → (0,∞) is a
continuous function satisfying

∫∞
0

1
ψ(r) dr =∞. Fix a point x0 ∈ Rn, and let

x(t) denote the unique solution of the differential equation x′(t) = F (x(t))
with initial condition x(0) = x0. Show that x(t) is defined for all t ∈ R.

Problem 3.2. Let us define a continuous function F : R → R by F (x) =√
|x|. Show that the differential equation x′(t) = F (x(t)) with initial con-

dition x(0) = 0 has infinitely many solutions.
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Problem 3.3. Let U ⊂ Rn × Rm be an open set, and let F : U → Rn
be a continuously differentiable mapping. Given any point (x0, λ0) ∈ U , we
define Φ(x0, λ0, t) = x(t), where x(t) is the unique solution of the differential
equation x′(t) = F (x(t), λ0) with initial condition x(0) = x0. Moreover, let
Ω be the set of all triplets (x0, λ0, t) ∈ U×R for which Φ(x0, λ0, t) is defined.
Show that the set Ω is open and the map Φ : Ω→ Rn is continuous. (Hint:
Apply Theorem 3.6 to the system x′(t) = F (x(t), λ(t)), λ′(t) = 0.)





Chapter 4

Analysis of equilibrium
points

4.1. Stability of equilibrium points

Definition 4.1. Suppose that x̄ is an equilibrium point of the autonomous
system x′(t) = F (x(t)), so that F (x̄) = 0. We say that x̄ is stable if, given
any real number ε > 0 we can find a real number δ > 0 such that ϕt(x) ∈
Bε(x̄) for all x ∈ Bδ(x̄) and all t ≥ 0. We say that x̄ is asymptotically
stable if x̄ is stable and limt→∞ ϕt(x) = x̄ for all points x in some open
neighorhood of x̄.

We note that the condition that limt→∞ ϕt(x) = x̄ for all points x in
some open neighorhood of x̄ does not imply stability (cf. Problem 4.3 below).

The following result gives a sufficient condition for an equilibrium point
to be asymptotically stable:

Theorem 4.2. Suppose that 0 is an equilibrium point of the system x′(t) =
F (x(t)). Moreover, suppose that the eigenvalues of the matrix A = DF (0)
all have negative real part. Then 0 is asymptotically stable.

Proof. Suppose that ε > 0 is given. Since the eigenvalues of A have negative
real part, we have limt→∞ exp(tA) = 0. Let us fix a real number T > 0 such
that ‖ exp(TA)‖op <

1
2 . By Theorem 3.6, we can find a real number η > 0

such that supt∈[0,T ] ‖ϕt(y)‖ < ε for all points y ∈ Bη(0). Moreover, by

Theorem 3.11, we have DϕT (0) = exp(TA). Since ‖ exp(TA)‖op < 1
2 , we

can find a real number δ ∈ (0, η) such that ‖ϕT (y)‖ ≤ 1
2 ‖y‖ for all points

y ∈ Bδ(0).

43
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We now consider an initial point y0 ∈ Bδ(0). Using induction on k, we
can show that the solution ϕt(y0) is defined on [0, kT ], and ‖ϕkT (y0)‖ ≤
2−k δ. Since ‖ϕkT (y0)‖ < η, we conclude that

sup
t∈[kT,(k+1)T ]

‖ϕt(y0)‖ = sup
t∈[0,T ]

‖ϕt(ϕkT (y0))‖ < ε

for all k. Therefore, ϕt(y0) ∈ Bε(0) for all t ≥ 0. This shows that 0 is a
stable equilibrium point. Finally, since ϕkT (y0) → 0 as k → ∞, Theorem
3.6 implies that

sup
t∈[kT,(k+1)T ]

‖ϕt(y0)‖ = sup
t∈[0,T ]

‖ϕt(ϕkT (y0))‖ → 0

as k →∞. This completes the proof. �

4.2. The stable manifold theorem

In this section, we give a precise description of the qualitative behavior of a
dynamical system near an equilibrium point. Our discussion loosely follows
the one in [6]. We consider an open set U ⊂ Rn and a map F : U → Rn
of class C1. Let us assume that 0 is a hyperbolic equilibrium point for the
differential equation x′(t) = F (x(t)). That is, we have 0 ∈ U , F (0) = 0,
and all eigenvalues of the matrix A = DF (0) have non-zero real part. For
abbreviation, let G(x) = F (x)−Ax. Clearly, DG(0) = 0.

Let U− = ker p−(A) and U+ = ker p+(A) denote the stable and unstable
subspaces of A, and let P− and P+ denote the associated projections. Since
U− and U+ are invariant under A, the projections P− and P+ commute with
A. We can find positive constants α and Λ such that

‖ exp(tA)P−‖op ≤ Λ e−αt

for all t ≥ 0 and

‖ exp(tA)P+‖op ≤ Λ eαt

for all t ≤ 0. Suppose that r > 0 is sufficiently small such that B2Kr(0) ⊂ U
and

sup
‖x‖≤2Λr

‖DF (x)−DF (0)‖op ≤
3α

16Λ
.

Since DG(x) = DF (x)−A = DF (x)−DF (0), it follows that

sup
‖x‖≤2Λr

‖DG(x)‖op ≤
3α

16Λ
.
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Lemma 4.3. Given any vector x− ∈ U− with ‖x−‖ ≤ r, there exists a

function x(t) such that ‖x(t)‖ ≤ 2Λ e−
αt
2 ‖x−‖ and

x(t) = exp(tA)x− +

∫ t

0
exp((t− s)A)P−G(x(s)) ds

−
∫ ∞
t

exp(−(s− t)A)P+G(x(s)) ds(5)

for all t ≥ 0.

Proof. The strategy is to use an iterative method. We define a sequence of
functions xk(t) by

x0(t) = 0

and

xk(t) = exp(tA)x− +

∫ t

0
exp((t− s)A)P−G(xk−1(s)) ds

−
∫ ∞
t

exp(−(s− t)A)P+G(xk−1(s)) ds.

We claim that the function xk(t) is well-defined, and

‖xk(t)− xk−1(t)‖ ≤ 2−k+1 Λ e−
αt
2 ‖x−‖

for all t ≥ 0.

Since x1(t) = exp(tA)x− and x0(t) = 0, we have ‖x1(t) − x0(t)‖ =
‖ exp(tA)x−‖ = ‖ exp(tA)P−x−‖ ≤ Λ e−αt ‖x−‖ for all t ≥ 0. Therefore,
the assertion holds for k = 1. We next assume that k ≥ 1 and the assertion
holds for all integers less than or equal to k. In other words, the function
xj(t) is well-defined and

‖xj(t)− xj−1(t)‖ ≤ 2−j+1 Λ e−
αt
2 ‖x−‖

for all j ≤ k. Summation over j gives

max{‖xk(t)‖, ‖xk−1(t)‖} ≤
k∑
j=1

‖xj(t)− xj−1(t)‖

≤
k∑
j=1

2−j+1 Λ e−
αt
2 ‖x−‖

≤ 2Λ e−
αt
2 ‖x−‖ ≤ 2Λr

for all t ≥ 0. In particular, the function xk+1(t) can be defined. Moreover,
‖G(ξ)−G(η)‖ ≤ 3α

16Λ ‖ξ−η‖ whenever ξ, η ∈ B2Λr(0). Since xk(t), xk−1(t) ∈
B2Λr(0), we obtain

‖G(xk(t))−G(xk−1(t))‖ ≤ 3α

16Λ
‖xk(t)− xk−1(t)‖ ≤ 3α

8
2−k e−

αt
2 ‖x−‖
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for all t ≥ 0. By definition of xk+1(t) and xk(t), we have

xk+1(t)− xk(t) =

∫ t

0
exp((t− s)A)P− (G(xk(s))−G(xk−1(s))) ds

−
∫ ∞
t

exp((t− s)A)P+ (G(xk(s))−G(xk−1(s))) ds,

hence

‖xk+1(t)− xk(t)‖ ≤
∫ t

0
Λ e−α(t−s) ‖G(xk(s))−G(xk−1(s))‖ ds

+

∫ ∞
t

Λ e−α(s−t) ‖G(xk(s))−G(xk−1(s))‖ ds

for all t ≥ 0. Using our estimate for ‖G(xk(s))−G(xk−1(s))‖, we obtain

‖xk+1(t)− xk(t)‖ ≤
∫ t

0

3α

8
2−k Λ e−α(t−s) e−

αs
2 ‖x−‖ ds

+

∫ ∞
t

3α

8
2−k Λ e−α(s−t) e−

αs
2 ‖x−‖ ds

≤
∫ t

0

3α

8
2−k Λ e−

α(t−s)
2 e−

αt
2 ‖x−‖ ds

+

∫ ∞
t

3α

8
2−k Λ e−

3α(s−t)
2 e−

αt
2 ‖x−‖ ds

≤ 2−k Λ e−
αt
2 ‖x−‖

for all t ≥ 0. This completes the proof of the claim.

We now continue with the proof of Lemma 4.3. The functions xk(t)
satisfy

‖xk+1(t)− xk(t)‖ ≤ 2−k Λ e−
αt
2 ‖x−‖

for all t ≥ 0 and all k ≥ 0. In particular, for every t ≥ 0 the sequence
{xk(t) : k ∈ N} is a Cauchy sequence. Hence, we may define a function x(t)
by

x(t) = lim
k→∞

xk(t).

It is easy to see that

‖x(t)− xk(t)‖ ≤
∞∑
j=k

‖xj+1(t)− xj(t)‖ ≤ 2−k+1 Λ e−
αt
2 ‖x−‖
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for all t ≥ 0 and k ≥ 0. Hence, the functions xk(t) converge uniformly to
x(t). As a consequence, the function x(t) is continuous and satisfies

x(t) = exp(tA)x− +

∫ t

0
exp((t− s)A)P−G(x(s)) ds

−
∫ ∞
t

exp(−(s− t)A)P+G(x(s)) ds

for all t ≥ 0. This completes the proof of Lemma 4.3. �

In the next step, we show that the function x(t) is unique. In fact, we
prove a stronger statement:

Lemma 4.4. Consider two vectors x−, y− ∈ U− with ‖x−‖, ‖y−‖ ≤ r.
Moreover, suppose that x(t) and y(t) are two functions satisfying ‖x(t)‖, ‖y(t)‖ ≤
2Λr and

x(t) = exp(tA)x− +

∫ t

0
exp((t− s)A)P−G(x(s)) ds

−
∫ ∞
t

exp(−(s− t)A)P+G(x(s)) ds

and

y(t) = exp(tA)x− +

∫ t

0
exp((t− s)A)P−G(x(s)) ds

−
∫ ∞
t

exp(−(s− t)A)P+G(x(s)) ds

for all t ≥ 0. Then

‖x(t)− y(t)‖ ≤ 2Λ ‖x− − y−‖.

Proof. We compute

x(t)− y(t) = exp(tA) (x− − y−) +

∫ t

0
exp((t− s)A)P− (G(x(s))−G(y(s))) ds

−
∫ ∞
t

exp((t− s)A)P+ (G(x(s))−G(y(s))) ds
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for all t ≥ 0. This implies

‖x(t)− y(t)‖ ≤ Λ e−αt ‖x− − y−‖+

∫ t

0
Λ e−α(t−s) ‖G(x(s))−G(y(s))‖ ds

+

∫ ∞
t

3α

16
e−α(s−t) ‖G(x(s))−G(y(s))‖ ds

≤ Λ e−αt ‖x− − y−‖+

∫ t

0

3α

16
e−α(t−s) ‖x(s)− y(s)‖ ds

+

∫ ∞
t

3α

16
e−α(s−t) ‖x(s)− y(s)‖ ds

≤ Λ ‖x− − y−‖+
3

8
sup
s≥0
‖x(s)− y(s)‖

for all t ≥ 0. Thus, we conclude that

sup
t≥0
‖x(t)− y(t)‖ ≤ Λ ‖x− − y−‖+

3

8
sup
t≥0
‖x(t)− y(t)‖,

hence
sup
t≥0
‖x(t)− y(t)‖ ≤ 2Λ ‖x− − y−‖.

This proves the assertion. �

We define a function ψ from U− to U+ as follows: for every vector
x− ∈ U− with ‖x−‖ ≤ r, we define ψ(x−) = P+x(0) ∈ U+, where x(t) is the
unique solution of the integral equation (5). It follows from Lemma 4.4 that
ψ(x−) is well-defined and continuous. We next show that ψ is differentiable:

Lemma 4.5. Fix a point x− ∈ U− with ‖x−‖ ≤ r, and let x(t) denote the
solution of the integral equation (5). Then there exists a bounded continuous
function M : [0,∞)→ Rn×n such that

M(t) = exp(tA)P− +

∫ t

0
exp((t− s)A)P−DG(x(s))M(s) ds

−
∫ ∞
t

exp(−(s− t)A)P+DG(x(s))M(s) ds.(6)

Moreover, the function ψ is differentiable at x−, and the differential Dψ(x−) :
U− → U+ is given by Dψ−(x−) = P+M(0)|U−.

Proof. The existence of a solution to the integral equation (6) follows from
an iteration procedure similar to the one used in the proof of Lemma 4.3.
We omit the details.

We claim that ψ is differentiable at x− with differential Dψ−(x−) =
P+M(0)|U− . To prove this, let ε > 0 be given. We can find a real number
δ > 0 such that ‖DG(ξ) − DG(η)‖op ≤ ε for all points ξ, η ∈ B2Λr(0)
satisfying ‖ξ − η‖ ≤ 2Λδ. Integrating this inequality over a line segment,
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we conclude that ‖G(ξ) − G(η) − DG(ξ) (ξ − η)‖ ≤ ε ‖ξ − η‖ whenever
‖ξ − η‖ ≤ 2Λδ.

We now consider a point y− ∈ U− with ‖y−‖ ≤ r and ‖x− − y−‖ ≤ δ.
We define u(t) := x(t)− y(t)−M(t) (x− − y−), where x(t) and y(t) denote
the solutions of our integral equation associated with x− and y−. Then

x(t)− y(t) = exp(tA) (x− − y−) +

∫ t

0
exp((t− s)A)P− (G(x(s))−G(y(s))) ds

−
∫ ∞
t

exp(−(s− t)A)P+ (G(x(s))−G(y(s))) ds,

hence

u(t) =

∫ t

0
exp((t− s)A)P− [G(x(s))−G(y(s))−DG(x(s)M(s) (x− − y−)] ds

−
∫ ∞
t

exp(−(s− t)A)P+ [G(x(s))−G(y(s))−DG(x(s))M(s) (x− − y−)] ds

for all t ≥ 0. We have shown above that

‖x(t)− y(t)‖ ≤ 2Λ ‖x− − y−‖ ≤ 2Λδ

for all t ≥ 0. This implies

‖G(x(t))−G(y(t))−DG(x(t))M(t) (x− − y−)‖
≤ ‖G(x(t))−G(y(t))−DG(x(t)) (x(t)− y(t))‖+ ‖DG(x(t))u(t)‖

≤ ε ‖x(t)− y(t)‖+
3α

16Λ
‖u(t)‖

≤ 2Λε ‖x− − y−‖+
3α

16Λ
‖u(t)‖

for all t ≥ 0. Putting these facts together, we obtain

‖u(t)‖ ≤
∫ t

0
‖ exp((t− s)A)P−‖op

(
2Λε ‖x− − y−‖+

3α

16Λ
‖u(s)‖

)
ds

+

∫ ∞
t
‖ exp(−(s− t)A)P−‖op

(
2Λε ‖x− − y−‖+

3α

16Λ
‖u(s)‖

)
ds

≤
∫ t

0
Λ e−α(t−s)

(
2Λε ‖x− − y−‖+

3α

16Λ
‖u(s)‖

)
ds

+

∫ ∞
t

Λ e−α(s−t)
(

2Λε ‖x− − y−‖+
3α

16Λ
‖u(s)‖

)
ds

≤ 4Λ2ε

α
‖x− − y−‖+

3

8
sup
s≥0
‖u(s)‖

for all t ≥ 0. Thus, we conclude that

sup
t≥0
‖u(t)‖ ≤ 4Λ2ε

α
‖x− − y−‖+

3

8
sup
t≥0
‖u(t)‖,
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hence

sup
t≥0
‖u(t)‖ ≤ 8Λ2ε

α
‖x− − y−‖.

In particular,

‖u(0)‖ ≤ 8Λ2ε

α
‖x− − y−‖.

This implies

‖ψ(x−)− ψ(y−)− P+M(0) (x− − y−)‖ = ‖P+u(0)‖ ≤ 8Λ3ε

α
‖x− − y−‖.

Since ε > 0 is arbitrary, we conclude that ψ is differentiable at x− and
Dψ(x−) = P+M(0)|U− . This completes the proof. �

Corollary 4.6. We have Dψ(0) = 0.

Proof. If x− = 0, then x(t) = 0 for all t ≥ 0. This implies M(t) =
exp(tA)P−, hence Dψ(0) = P+M(0)|U− = 0. �

Lemma 4.7. The differential Dψ(x−) depends continuously on the point
x−.

Proof. Fix a point x− ∈ U− with ‖x−‖ ≤ r, and let ε > 0 be given. As
above, we can find a real number δ > 0 such that ‖DG(ξ)−DG(η)‖op ≤ ε
for all points ξ, η ∈ B2Λr(0) satisfying ‖ξ − η‖ ≤ 2Λδ.

We now consider a point y− ∈ U− with ‖y−‖ ≤ r and ‖x− − y−‖ ≤ δ.
Let M : [0,∞) → Rn×n and N : [0,∞) → Rn×n be bounded continuous
functions satisfying the integral equations

M(t) = exp(tA)P− +

∫ t

0
exp((t− s)A)P−DG(x(s))M(s) ds

−
∫ ∞
t

exp(−(s− t)A)P+DG(x(s))M(s) ds

and

N(t) = exp(tA)P− +

∫ t

0
exp((t− s)A)P−DG(y(s))N(s) ds

−
∫ ∞
t

exp(−(s− t)A)P+DG(y(s))N(s) ds.

Then

M(t)−N(t) =

∫ t

0
exp((t− s)A)P− [DG(x(s))M(s)−DG(y(s))N(s)] ds

−
∫ ∞
t

exp(−(s− t)A)P+ [DG(x(s))M(s)−DG(y(s))N(s)] ds.

Note that
‖x(t)− y(t)‖ ≤ 2Λ ‖x− − y−‖ ≤ 2Λδ
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for all t ≥ 0. This implies

‖DG(x(t))M(t)−DG(y(t))N(t)‖op

≤ ‖(DG(x(t))−DG(y(t)))M(t)‖op + ‖DG(y(t)) (M(t)−N(t))‖op

≤ ε ‖M(t)‖op +
3α

16Λ
‖M(t)−N(t)‖op.

This gives

‖M(t)−N(t)‖op

≤
∫ t

0
‖ exp((t− s)A)P−‖op

(
ε ‖M(s)‖op +

3α

16Λ
‖M(s)−N(s)‖op

)
ds

+

∫ ∞
t
‖ exp(−(s− t)A)P+‖op

(
ε ‖M(s)‖op +

3α

16Λ
‖M(s)−N(s)‖op

)
ds

≤
∫ t

0
Λ e−α(t−s)

(
ε ‖M(s)‖op +

3α

16Λ
‖M(s)−N(s)‖op

)
ds

+

∫ ∞
t

Λ e−α(s−t)
(
ε ‖M(s)‖op +

3α

16Λ
‖M(s)−N(s)‖op

)
ds

≤ 2Λε

α
sup
s≥0
‖M(s)‖op +

3

8
sup
s≥0
‖M(s)−N(s)‖op

for all t ≥ 0. Thus,

sup
t≥0
‖M(t)−N(t)‖op ≤

2Λε

α
sup
t≥0
‖M(t)‖op +

3

8
sup
s≥0
‖M(t)−N(t)‖op,

hence

sup
t≥0
‖M(t)−N(t)‖op ≤

4Λε

α
sup
t≥0
‖M(t)‖op.

Putting t = 0, we obtain

‖P+M(0)− P+N(0)‖op ≤
4Λ2ε

α
sup
t≥0
‖M(t)‖op.

Since ε > 0 is arbitrary and supt≥0 ‖M(t)‖op <∞, the assertion follows. �

Let W s denote the graph of ψ, so that

W s = {x− + ψ(x−) : x− ∈ U−, ‖x−‖ ≤ r}.

We have shown that W s is a C1 manifold which is tangential to the stable
subspace U− at the origin. We next show that any solution starting in W s

converges to the origin at an exponential rate:

Lemma 4.8. Consider a vector x− ∈ U− with ‖x−‖ ≤ r. Moreover, let
x0 = ψ(x−) + x−. Then the unique solution of the initial value problem
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x′(t) = F (x(t)), x(0) = x0, is defined for all t ≥ 0 and satisfies

sup
t≥0

e
αt
2 ‖x(t)‖ <∞.

In other words, the solution x(t) converges to the origin at an exponential
rate.

Proof. By Lemma 4.3 and Lemma 4.4, there exists a unique function x(t)

such that ‖x(t)‖ ≤ 2Λ e−
αt
2 ‖x−‖ and

exp(−tA)x(t) = x− +

∫ t

0
exp(−sA)P−G(x(s)) ds

−
∫ ∞
t

exp(−sA)P+G(x(s)) ds

for all t ≥ 0. This gives

d

dt
(exp(−tA)x(t)) = exp(−tA)P−G(x(t)) + exp(−tA)P+G(x(t))

= exp(−tA)G(x(t))

for all t ≥ 0. From this, we deduce that

x′(t) = Ax(t) +G(x(t)) = F (x(t))

for all t ≥ 0. Therefore, x(t) is a solution of the differential equation x′(t) =
F (x(t)). Moreover, P−x(0) = x− and P+x(0) = ψ(x−) by definition of ψ.
Thus x(0) = ψ(x−) + x− = x0. Since x(t) converges exponentially to 0, the
assertion follows. �

Lemma 4.9. Consider a vector x0 ∈ Rn. Write x0 = x+ + x−, where
x+ ∈ U+ and x− ∈ U−. Assume that ‖x+‖ ≤ r, ‖x−‖ ≤ r, and x+ 6= ψ(x−).
Then the solution of the initial value problem x′(t) = F (x(t)), x(0) = x0,
must leave the ball B2Λr(0) at some point.

Proof. Let x(t) be the solution of the differential equation x′(t) = F (x(t))
with initial condition x(0) = x0. Suppose that x(t) remains in the ball
B2Λr(0) for all time. Using the identity

x′(t) = Ax(t) +G(x(t)),

we obtain

(7) exp(−tA)x(t) = x0 +

∫ t

0
exp(−sA)G(x(s)) ds

for all t ≥ 0. This implies

exp(−tA)P+x(t) = x+ +

∫ t

0
exp(−sA)P+G(x(s)) ds.
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Since ‖x(t)‖ is bounded and exp(−tA)P+ → 0 as t→∞, we obtain

(8) 0 = x+ +

∫ ∞
0

exp(−sA)P+G(x(s)) ds.

Subtracting (8) from (7), we obtain

exp(−tA)x(t) = x− +

∫ t

0
exp(−sA)G(x(s)) ds

−
∫ ∞

0
exp(−sA)P+G(x(s)) ds,

hence

exp(−tA)x(t) = x− +

∫ t

0
exp(−sA)P−G(x(s)) ds

−
∫ ∞
t

exp(−sA)P+G(x(s)) ds

for all t ≥ 0. Therefore, x(t) is a solution of the integral equation (5).
This implies ψ(x−) = P+x(0) = x+, contrary to our assumption. Thus,
the solution of the initial value problem x′(t) = F (x(t)), x(0) = x0, must
eventually leave the ball B2Λr(0). �

To summarize, we have proved the following theorem:

Theorem 4.10. Suppose that F : U → Rn is of class C1. Moreover, suppose
that 0 ∈ U is a hyperbolic equilibrium point. Then there exists a submanifold
W s of class C1 with the following properties:

(i) The origin lies on W s and the tangent space to W s at 0 is given
by U−. In particular, dimW s = dimU−.

(ii) If x0 ∈W s is sufficiently close to 0, then the unique solution of the
differential equation x′(t) = F (x(t)) with initial condition x(0) =
x0 converges exponentially to 0.

(iii) If x0 /∈W s is sufficiently close to 0, then the unique solution of the
differential equation x′(t) = F (x(t)) with initial condition x(0) =
x0 will leave the ball B2Λr(0) at some time in the future.

Note that, in part (iii), the solution may re-enter the ball B2Λr(0) at some
later time, and it may still converge to the equilibrium point as t→∞, but
it cannot do so without first leaving the ball B2Λr(0).

4.3. Lyapunov’s theorems

Theorem 4.11. Suppose that x̄ is an equilibrium point of the autonomous
system x′(t) = F (x(t)). Moreover, suppose that L is a smooth function
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defined on some ball Br(x̄), which has a strict local minimum at x̄. Finally,
we assume that 〈∇L(x), F (x)〉 ≤ 0 for all x ∈ Br(x̄). Then x̄ is stable.

Proof. Let ε ∈ (0, r) be given. Since L has a strict local minimum at x̄, we
have

L(x̄) < inf
∂Bε(x̄)

L.

By continuity, we can find a real number δ ∈ (0, ε) such that

sup
Bδ(x̄)

L < inf
∂Bε(x̄)

L.

We claim that ϕt(x) ∈ Bε(x̄) for all x ∈ Bδ(x̄) and all t ≥ 0. To prove
this, we argue by contradiction. Fix a point x0 ∈ Bδ(x̄), and suppose that
ϕt(x0) /∈ Bε(x̄) for some t ≥ 0. Let

τ = inf{t ≥ 0 : ϕt(x0) /∈ Bε(x̄)}.
Clearly, ϕτ (x0) ∈ ∂Bε(x̄). Moreover, for t ∈ (0, τ), we have ϕt(x0) ∈ Bε(x̄).
This implies

d

dt
L(ϕt(x0)) = 〈∇L(ϕt(x0)), F (ϕt(x0))〉 ≤ 0

for all t ∈ (0, τ). Thus, we conclude that

inf
∂Bε(x̄)

L ≤ L(ϕτ (x0)) ≤ L(x0) ≤ sup
Bδ(x̄)

L.

This contradicts our choice of δ. �

Theorem 4.12. Suppose that x̄ is an equilibrium point of the autonomous
system x′(t) = F (x(t)). Moreover, suppose that L is a smooth function
defined on some ball Br(x̄), which has a strict local minimum at x̄. Finally,
we assume that 〈∇L(x), F (x)〉 < 0 for all x ∈ Br(x̄) \ {x̄}. Then x̄ is
asymptotically stable.

Proof. It follows from Theorem 4.11 that x̄ is stable. Suppose that x̄
is not asymptotically stable. Let us fix a real number δ > 0 such that
ϕt(x) ∈ B r

2
(x̄) for all x ∈ Bδ(x̄) and all t ≥ 0. Since x̄ is not asymptotically

stable, we can find a point x0 ∈ Bδ(x̄) such that lim supt→∞ ‖ϕt(x0)− x̄‖ >
0. Consequently, we can find a sequence of times sk → ∞ such that
lim inft→∞ ‖ϕsk(x0) − x̄‖ > 0. After passing to a subsequence if neces-
sary, we may assume that the sequence ϕsk(x0) converges to some point
y ∈ Br(x̄) \ x̄.

Since 〈∇L(x), F (x)〉 ≤ 0 for all x ∈ Br(x̄), the function t 7→ L(ϕt(x0)) is
monotone decreasing. Hence, the limit λ := limt→∞ L(ϕt(x0)) exists. This
gives

L(ϕt(y)) = lim
k→∞

L(ϕt(ϕsk(x0))) = lim
k→∞

L(ϕsk+t(x0)) = λ.
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Therefore, the function L(ϕt(y)) is constant. In particular,

〈∇L(y), F (y)〉 =
d

dt
L(ϕt(y))

∣∣∣
t=0

= 0,

which contradicts our assumption. �

4.4. Gradient and Hamiltonian systems

Finding Lyapunov functions is a difficult task in general. However, there are
certain classes of nonlinear system which always admit a monotone quantity.
In the following, we assume that U ⊂ Rn is an open set and F : U → Rn is
continuously differentiable mapping.

Definition 4.13. We say that the system x′(t) = F (x(t)) is a gradient
system if F (x) = −∇V (x) for some real-valued function V .

There is a convenient criterion for deciding whether a given system is
a gradient or Hamiltonian system. A necessary condition for the system

x′(t) = F (x(t)) to be a gradient system is that
∂Fj
∂xi

(x) = ∂Fi
∂xj

(x) for all

x ∈ U . Moreover, if the domain U is simply connected, then this condition
is a sufficient condition for x′(t) = F (x(t)) to be a gradient system.

Proposition 4.14. Consider a gradient system of the form x′(t) = F (x(t)),
where F (x) = −∇V (x). Moreover, suppose that the function V attains a
strict local minimum at x̄. Then x̄ is a stable equilibrium point.

Proof. Since
〈∇V (x), F (x)〉 = −‖∇V (x)‖2 ≤ 0,

the function V (x) is a Lyapunov function. Consequently, x̄ is a stable equi-
librium point. �

Definition 4.15. Assume that n is even, and let

J =



0 1
−1 0

0 1
−1 0

. . .

0 1
−1 0


.

We say that the system x′(t) = F (x(t)) is Hamiltonian if F (x) = J ∇H(x)
for some real-valued function H.

Proposition 4.16. Consider a gradient system of the form x′(t) = F (x(t)),
where F (x) = −J ∇H(x). Moreover, suppose that the function H attains a
strict local minimum at x̄. Then x̄ is a stable equilibrium point.
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Proof. Since J is anti-symmetric, we have

〈∇H(x), F (x)〉 = −〈∇H(x), J ∇H(x)〉 = 0.

Therefore, the function H(x) is a Lyapunov function. Consequently, x̄ is a
stable equilibrium point. �

4.5. Problems

Problem 4.1. Let U be an open set in Rn containing 0, and let F : U → Rn
be a smooth vector field. Assume that 0 is an equilibrium point of the system
x′(t) = F (x(t)), and let A = DF (0) be the differential of F at 0. Suppose
that all eigenvalues of A have negative real part. Show that there exists a
quadratic function L(x) = 〈Sx, x〉 such that L(x) has a strict local minimum
at 0 and

〈∇L(x), F (x)〉 < 0

if x ∈ U \ {0} is sufficiently close to 0. Conclude from this that 0 is asymp-
totically stable. (Hint: Use Problem 2.6.)

Problem 4.2. Consider the system

x′1(t) = x2(t)2 + x1(t)x2(t)− 2

x′2(t) = x1(t)2 + x1(t)x2(t)− 2.

(i) Find all equilibrium points of this system. For each equilibrium point, de-
cide whether or not it is hyperbolic. For each hyperbolic equilibrium point,
decide whether it is a source, a sink, or a saddle.
(ii) Sketch the phase portrait of this system.
(iii) Find the stable and unstable curves for each saddle point. (Hint: Con-
sider the functions x1(t) + x2(t) and x1(t)− x2(t).)

Problem 4.3. This example is taken from [4]. Let us consider the system

x′1(t) = x1(t) + x1(t)x2(t)−
√
x1(t)2 + x2(t)2 (x1(t) + x2(t))

x′2(t) = x2(t)− x1(t)2 +
√
x1(t)2 + x2(t)2 (x1(t)− x2(t)).

(i) Let us write x1(t) = r(t) cos θ(t) and x2(t) = r(t) sin θ(t). Show that r(t)
and θ(t) satisfy the differential equations

r′(t) = r(t) (1− r(t))
θ′(t) = r(t) (1− cos θ).

(ii) Show that any solution that originates in a neighborhood of (1, 0) will
converge to (1, 0) as t→∞.
(iii) Show that the equilibrium point (1, 0) is unstable.



Chapter 5

Limit sets of dynamical
systems and the
Poincaré-Bendixson
theorem

5.1. Positively invariant sets

Definition 5.1. Let us consider the ODE x′(t) = F (x(t)), where F : U →
Rn is continuously differentiable. We say that a set A ⊂ U is invariant under
the flow generated by this ODE if ϕt(x) ∈ A for all x ∈ A and all t ∈ R
for which ϕt(x) is defined. Moreover, we say that a set A ⊂ U is positively
invariant if ϕt(x) ∈ A for all x ∈ A and all t ∈ [0,∞) for which ϕt(x) is
defined.

In this section, we show that a set is positively invariant under the ODE
x′(t) = F (x(t)) if the vector field F points inward along the boundary.

Theorem 5.2. Let F : U → Rn be continuously differentiable, and let
A ⊂ U be relatively closed so that Ā∩U = A. Then the following statements
are equivalent:

(i) A is positively invariant under the ODE x′(t) = F (x(t)).

(ii) 〈F (y), y − z〉 ≥ 0 for all points y ∈ A, z ∈ Rn satisfying ‖y − z‖ =
dist(z,A).

Proof. We first show that (i) implies (ii). Assume that A is positively in-
variant. Moreover, suppose that y ∈ A and z ∈ Rn are two points satisfying

57
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‖y − z‖ = dist(z,A). Let x(t), t ∈ [0, T ), denote the unique solution of the
ODE x′(t) = F (x(t)) with initial condition x(0) = y. Since A is positively
invariant, we have

‖x(0)− z‖ = ‖y − z‖ = dist(z,A) ≤ ‖x(t)− z‖

for all t ∈ [0, T ). This implies

0 ≤ d

dt
(‖x(t)− z‖2)

∣∣∣
t=0

= 2 〈x′(0), x(0)− z〉

= 2 〈F (x(0)), x(0)− z〉
= 2 〈F (y), y − z〉.

This shows that 〈F (y), y − z〉 ≥ 0, as claimed.

We now show that (ii) implies (i). Let us assume that condition (ii)
holds, and let x(t), t ∈ [0, T ), be a solution of the ODE x′(t) = F (x(t)) with
x(0) ∈ A. We claim that x(t) ∈ A for all t ∈ [0, T ). To prove this, we argue
by contradiction. Suppose that x(t0) /∈ A for some t0 ∈ (0, T ). Let

C = {x(t) : t ∈ [0, t0]}.

Note that C is a compact subset of U . Let us fix positive real numbers r
and L such that dist(C,Rn \ U) > 2r and

sup
dist(x,C)≤r

‖DF (x)‖op < L.

By assumption, x(t0) /∈ A. We now define

τ = sup{t ∈ [0, t0] : e−Lt dist(x(t), A) ≤ e−Lt0 δ},

where δ is chosen so that 0 < δ < min{dist(x(t0), A), r}. Clearly, τ ∈
(0, t0). Since A is closed, we can find a point y ∈ Ā such that ‖x(τ)− y‖ =
dist(x(τ), A). By definition of τ ,

e−Lτ ‖x(τ)− y‖ = e−Lτ dist(x(t), A) = e−Lt0 δ

and

e−Lt ‖x(t)− y‖ ≥ e−Lt dist(x(t), A) ≥ e−Lt0 δ
for all t ∈ [τ, t0). From this, we deduce that

d

dt
(e−2Lt ‖x(t)− y‖2)

∣∣∣
t=τ
≥ 0,

hence

〈F (x(τ)), x(τ)− y〉 ≥ L ‖x(τ)− y‖2.
Moreover, ‖x(τ)−y‖ = e−L(t0−τ) δ < r. Since dist(C,Rn\U) > 2r, it follows
that y ∈ Ā ∩ U = A. Hence, the assumptions imply that

〈F (y), y − x(τ)〉 ≥ 0.
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Adding both inequalities, we conclude that

〈F (x(τ))− F (y), x(τ)− y〉 ≥ L ‖x(τ)− y‖2.

By definition of L, we have ‖DF‖op < L at each point on the line segment
joining x(τ) and y. This implies

〈F (x(τ))− F (y), x(τ)− y〉 ≤ ‖F (x(τ))− F (y)‖ ‖x(τ)− y‖ < L ‖x(τ)− y‖2.

This is a contradiction. �

Corollary 5.3. Let F : U → Rn be continuously differentiable, and let A
be a closed subset of U with smooth boundary. Let ν(y) denote the outward-
pointing unit normal vector at a point y ∈ ∂A. Then the following statements
are equivalent:

(i) A is positively invariant under the ODE x′(t) = F (x(t)).

(ii) 〈F (y), ν(y)〉 ≤ 0 for all points y ∈ ∂A.

It is often useful to consider the domains with piecewise smooth bound-
ary. For example, for planar domains we have the following result:

Corollary 5.4. Let F : U → R2 be continuously differentiable, and let A be
a closed subset of U . We assume that the boundary ∂A is piecewise smooth.
Let E denote the set of corners of ∂A. For each point y ∈ ∂A\E, we denote
by ν(y) the outward-pointing unit normal vector at y. Then the following
statements are equivalent:

(i) A is positively invariant under the ODE x′(t) = F (x(t)).

(ii) 〈F (y), ν(y)〉 ≤ 0 for all points y ∈ ∂A \ E.

Proof. It is easy to see that (i) implies (ii). We now show that (ii) implies
(i). By Theorem 5.2, it suffices to show that 〈F (y), y − z〉 ≥ 0 for all points
y ∈ A, z ∈ Rn satisfying ‖y − z‖ = dist(z,A). To verify this, we distinguish
two cases:

Case 1: Suppose first that y /∈ E. Clearly, y must lie on the boundary
∂A. Since the point y has smallest distance from z among all points in A, it
follows that the vector z − y = αν(y) for some number α ≥ 0. This implies
〈F (y), y − z〉 = −α 〈F (y), ν(y)〉 ≤ 0.

Case 2: Suppose finally that y ∈ E. By assumption, the point y lies on
two boundary arcs, which we denote by Γ1 and Γ2. Let ν1 denote the out-
ward pointing unit normal vector field along Γ1, and let ν2 be the outward-
pointing unit normal vector field along Γ1. Since y has smallest distance
from z among all points in A, we conclude that z− y = α1 ν1(y) +α2 ν2(y2)
for some numbers α1, α2 ≥ 0. Using our assumption (and the continuity of
F ), we conclude that 〈F (y1), ν(y1)〉 ≤ 0 and 〈F (y2), ν(y2)〉 ≤ 0. This implies
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〈F (y), y− z〉 = −α1 〈F (y), ν1(y)〉−α2 〈F (y), ν2(y)〉 ≤ 0. This completes the
proof. �

5.2. The ω-limit set of a trajectory

Definition 5.5. Let F : U → Rn be continuously differentiable, and let
x(t) be a solution of the ODE x′(t) = F (x(t)) which is defined for all t ≥ 0.
A point y ∈ Rn is an ω-limit point of the trajectory x(t) if there exists a
sequence of times sk →∞ such that limk→∞ x(sk) = y.

If we denote by Ω denote the set of all ω-limit points of x(t), then

Ω =
⋂
t≥0

{x(s) : s ∈ [t,∞)},

where {x(s) : s ∈ [t,∞)} denotes the closure of the set {x(s) : s ∈ [t,∞)}.
Since intersections of closed sets are always closed, we conclude that Ω is a
closed subset of Rn.

Proposition 5.6. If Ω is bounded and non-empty, then limt→∞ dist(x(t),Ω) =
0.

Proof. Suppose this is false. Then there exists a sequence of times tk →∞
such that dist(x(tk),Ω) > ε for all k. Let y be an arbitrary point in Ω.
Since y is an ω-limit point of the trajectory x(t), we can find a sequence of
numbers sk such that sk > tk and ‖x(sk) − y‖ < ε for all k. This implies
dist(x(sk),Ω) < ε for all k. By the intermediate value theorem, we can find
a sequence of times τk ∈ (tk, sk) such that dist(x(τk),Ω) = ε. Since Ω is
bounded, it follows that the sequence x(τk) is bounded. By the Bolzano-
Weierstrass theorem, we can find a sequence of integers kl → ∞ such that
the sequence x(τkl) converges to some point z ∈ Rn as l→∞. Consequently,
z is an ω-limit point and dist(z,Ω) = liml→∞ dist(x(τkl ,Ω) ≥ ε. This is a
contradiction. �

Proposition 5.7. If Ω is bounded, then Ω is connected.

Proof. Suppose that Ω is not connected. Then there exist non-empty closed
sets A1 and A2 such that A1∪A2 = Ω and A1∩A2 = ∅. Since Ω is bounded,
the sets A1 and A2 are compact. Since A1 and A2 are disjoint, it follows
that dist(A1, A2) > 0.

Let us fix two arbitrary points y1 ∈ A1 and y2 ∈ A2. Since y1 is an
ω-limit point of x(t), we can find a sequence of times sk,1 → ∞ such that
limk→∞ x(sk,1) = y1. Similarly, we can find a sequence of times sk,2 → ∞
such that limk→∞ x(sk,2) = y2. In particular, limk→∞ dist(x(sk,1), A1) = 0
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and limk→∞ dist(x(sk,2), A1) = dist(y2, A1) ≥ dist(A1, A2). By the interme-
diate value theorem, we can find a sequence of times τk →∞ such that

dist(x(τk), A1) =
1

2
dist(A1, A2).

Using the triangle inequality, we obtain

dist(x(τk), A2) ≥ dist(A1, A2)− dist(x(τk), A1) ≥ 1

2
dist(A1, A2).

This implies

dist(x(τk),Ω) = min{dist(x(τk), A1), dist(x(τk), A2)} =
1

2
dist(A1, A2).

This contradicts Proposition 5.6. �

Proposition 5.8. The set Ω ∩ U is an invariant set.

Proof. Consider a y ∈ Ω∩U . Then there exists a sequence of times sk →∞
such that limk→∞ x(sk) = y. Hence, if t ∈ R is fixed, then

lim
k→∞

x(sk + t) = lim
k→∞

ϕt(x(sk)) = ϕt(y).

Thus, ϕt(y) ∈ Ω for all t ∈ R. This proves the assertion. �

Finally, we show that certain equilibrium points cannot arise as ω-limit
points.

Proposition 5.9. Let x(t), t ≥ 0, be a solution of the differential equation
x′(t) = F (x(t)) and let x̄ be an ω-limit point of x(t). Moreover, we assume
that x̄ is a stable equilibrium point for the system x′(t) = −F (x(t)). Then
x(t) = x̄ for all t ≥ 0.

Proof. As usual, we denote by ϕt the flow generated by the differential
equation x′(t) = F (x(t)). Let us fix a real number ε > 0. By assumption,
we can find a real number δ > 0 such that ϕ−t(x) ∈ Bε(x̄) for all x ∈ Bδ(x̄)
and all t ≥ 0. Moreover, since x̄ is an ω-limit point, we can find a sequence
of times sk →∞ such that limk→∞ x(sk) = x̄. In particular, x(sk) ∈ Bδ(x̄)
if k is sufficiently large. This implies x(0) = ϕ−sk(x(sk)) ∈ Bε(x̄). Since
ε > 0 is arbitrary, we conclude that x(0) = x̄. From this, the assertion
follows. �

As an application, we can prove a global version of Lyapunov’s second
theorem:

Proposition 5.10. Consider the differential equation x′(t) = F (x(t)), where
F : U → Rn is continuously differentiable. We assume that there exists a
function L : U → Rn with the following properties:
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(i) For each µ ∈ R, the sublevel set {x ∈ U : L(x) ≤ µ} is a compact
subset of U .

(ii) We have 〈∇L(x), F (x)〉 < 0 for all points x ∈ U \ E, where E
consists of isolated points.

Then, given any point x0 ∈ U , the function ϕt(x0) is defined for all t ≥ 0
and converges to an equilibrium point.

Proof. Fix a point x0 ∈ U , and let µ = L(x0). Since 〈∇L(x), F (x)〉 ≤ 0
for all x ∈ U , we conclude that the function t 7→ L(ϕt(x0)) is monotone
decreasing. In particular, L(ϕt(x0)) ≤ µ for all t ≥ 0. Since the sublevel
set {x ∈ U : L(x) ≤ µ} is a compact subset of U , we conclude that the
solution exists for all t ≥ 0. Since the function t 7→ L(ϕt(x0)) is monotone
decreasing, the limit λ := limt→∞ L(ϕt(x0)) exists.

Let Ω denote the ω-limit set of the trajectory ϕt(x0). Given any point
y ∈ Ω, we can find a sequence of times sk →∞ such that limk→∞ ϕsk(x0) =
y. This implies

L(ϕt(y)) = lim
k→∞

L(ϕt(ϕsk(x0))) = lim
k→∞

L(ϕsk+t(x0)) = λ.

Consequently, the function L(ϕt(y)) is constant. This implies

〈∇L(y), F (y)〉 =
d

dt
L(ϕt(y))

∣∣∣
t=0

= 0.

Consequently,

Ω ⊂ {x ∈ U : 〈L(x), F (x)〉 = 0} ⊂ E.
In particular, Ω consists of at most finitely many points. Since Ω is con-
nected, we conclude that Ω consists of at most a single point. On the other
hand, since the trajectory ϕt(x0) is contained in a compact set, the set Ω
is non-empty by the Bolzano-Weierstrass theorem. Thus, Ω consists of ex-
actly one point. Moreover, this point must be an equilibrium point since Ω
is a positively invariant set. Hence, the assertion follows from Proposition
5.6. �

5.3. ω-limit sets of planar dynamical systems

In this section, we will consider a planary dynamical system of the form
x′(t) = F (x(t)), where F : R2 × R2. Our goal is to analyze the ω-limit set
of a given solution x(t) of the ODE x′(t) = F (x(t)).

Definition 5.11. A line segment S = {λz0 + (1− λ)z1 : λ ∈ (0, 1)} is said
to be transversal if, for each point x ∈ S̄, the vector F (x) is not parallel to
the vector z1 − z0.
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Lemma 5.12. Let S be a transversal line segment, and let x̄ be an arbitrary
point in S. Then there exists an open neighborhood U of x̄ and a smooth
function h : U → R such that h(x̄) = 0 and ϕh(x)(x) ∈ S for all points
x ∈ U .

Proof. This follows immediately from the implicit function theorem. �

Lemma 5.13. Let x(t) be a solution of the ODE x′(t) = F (x(t)) which is
defined on some time interval J , and let S be a transversal line segment.
Then the set E = {t ∈ J : x(t) ∈ S} is discrete.

Proof. Suppose this is false. Then there exists a number τ ∈ R and a
sequence of numbers tk ∈ E \ {τ} such that limk→∞ tk = τ . Clearly, x(tk) ∈
S and x(τ) = limk→∞ x(tk) ∈ S̄. Hence, the vector x(τ)−x(tk)

τ−tk is tangential

to S. Consequently, the limit limk→∞
x(τ)−x(tk)

τ−tk = x′(τ) = F (x(τ)) is also

tangential to S. This contradicts the fact that S is a transversal line segment.
�

The following monotonicity property plays a fundamental role in the
proof of the Poincaré-Bendixson theorem:

Lemma 5.14. Let x(t) be a solution of the ODE x′(t) = F (x(t)) which is
not periodic, and let S = {λz0 + (1 − λ)z1 : λ ∈ (0, 1)} be a transversal
line segment. Let us consider three times t0 < t1 < t2 with the property
that x(t) ∈ S for t ∈ {t0, t1, t2} and x(t) /∈ S for all t ∈ (t0, t1) ∪ (t1, t2).
Moreover, let us write x(ti) = λiz0+(1−λi)z1 where λi ∈ [0, 1] for i = 0, 1, 2.
Then either λ0 < λ1 < λ2 or λ0 > λ1 > λ2.

Proof. Since x(t) is not periodic, the numbers λ0, λ1, λ2 are all distinct.
Suppose now that the assertion is false. Then we either have λ1 > max{λ0, λ2}
or λ1 < min{λ0, λ2}. Without loss of generality, we may assume that
λ1 > max{λ0, λ2}. (Otherwise, we switch the roles of z0 and z1.) More-
over, we may assume that λ0 < λ2. (Otherwise, we replace F by −F and ti
by −t2−i.) Consequently, λ0 < λ2 < λ1.

Let

Γ = {x(t) : t ∈ [t0, t1]} ∪ {λz0 + (1− λ)z1 : λ ∈ (λ0, λ1)}.
In other words, Γ is the union of the trajectory from x(t0) to x(t1) with
a line segment from x(t0) to x(t1). By assumption, x(t) /∈ S for all t ∈
(t0, t1), so Γ is free of self-intersections. By the Jordan curve theorem, the
complement R2 \ Γ has exactly two connected components. Let us denote
these components by D1 and D2.

By assumption, the vector F (λz0 + (1 − λ)z1) cannot be parallel to S
for any λ ∈ [λ0, λ1]. After switching the roles of D1 and D2 if necessary,
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we may assume that the vector F (λz0 + (1 − λ)z1) points into D1 for each
λ ∈ (λ0, λ1). Hence, at each point on the boundary ∂D1 = Γ, the vector field
F points inward or is tangential to ∂D1. By Corollary 5.4, the closure D̄1 is
a positively invariant set. Since x(t1) ∈ D̄1, we conclude that x(t) ∈ D̄1 for
all t > t1. On the other hand, since the point x(t2) lies on the line segment
{λz0 +(1−λ)z1 : λ ∈ (λ0, λ1)}, we have x(t2−ε) /∈ D̄1 if ε > 0 is sufficiently
small. This is a contradiction. �

Lemma 5.15. Let x(t) be a solution of the ODE x′(t) = F (x(t)) which is
defined for all t ≥ 0 and is not periodic. Moreover, let Ω denote its ω-limit
set, and let S = {λz0 + (1− λ)z1 : s ∈ [0, 1]} be a transversal line segment.
Then the intersection Ω ∩ S consists of at most one point.

Proof. We argue by contradiction. Suppose that the intersection Ω ∩ S
contains two distinct points y1 and y2. Since y1 ∈ Ω, we can find a sequence
of real numbers sk,1 → ∞ such that limk→∞ x(sk,1) = y1. Moreover, there
exists a sequence of real numbers sk,2 →∞ such that limk→∞ x(sk,2) = y2.
Using Lemma 5.12, we can find a sequence of real numbers s̃k,1 such that
s̃k,1 − sk,1 → 0 and x(s̃k,1) ∈ S for all k. Similarly, we obtain a sequence of
real numbers s̃k,2 such that s̃k,2 − sk,2 → 0 and x(s̃k,2) ∈ S for all k.

By Lemma 5.13, the set E = {t ≥ 0 : x(t) ∈ S} is discrete. Moreover,
since s̃k,1, s̃k,2 ∈ E for all k, it follows that E is unbounded. Let us write
E = {tk : k ∈ N}, where tk is an increasing sequence of times going to
infinity. Since x(tk) ∈ S, we may write x(tk) = λk z0 + (1− λk)z1 for some
λk ∈ [0, 1]. By Lemma 5.14, the sequence λk is either monotone increasing
or monotone decreasing. In either case, the limit limk→∞ λk exists. This
implies that the limit limk→∞ x(tk) exists. On the other hand, the sequences
{x(s̃k,1) : k ∈ N} and {x(s̃k,2 : k ∈ N} are subsequences of the sequence
{x(tk) : k ∈ N}, and we have limk→∞ x(s̃k,1) = y1 and limk→∞ x(s̃k,2) = y2.
Thus, y1 = y2, contrary to our assumption. �

Lemma 5.16. Let x(t) be a solution of the ODE x′(t) = F (x(t)) which is
defined for all t ≥ 0 and is not periodic. Moreover, let Ω denote its ω-limit
set. Assume that Ω is bounded, non-empty, and contains no equilibrium
points. Then every point in Ω lies on a periodic orbit.

Proof. Let us consider an arbitrary point y0 ∈ Ω, and let y(t) be the unique
maximal solution with y(0) = y0. By Proposition 5.8, we have y(t) ∈ Ω for
all t. Since Ω is a compact set, we conclude that the solution y(t) is defined
for all t ∈ R. Let z be an ω-limit point of the solution y(t). Since y(t) ∈ Ω
for all t ∈ R, we conclude that z ∈ Ω. Consequently, z cannot be an
equilibrium point. Hence, we can find a transversal line segment S such
that z ∈ S. By Lemma 5.15, the set Ω ∩ S consists of at most one point.
Therefore, Ω ∩ S = {z}.
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Since z is an ω-limit point of y(t), we can find a sequence sk →∞ such
that limk→∞ y(sk) = z. Using Lemma 5.12, we can find another sequence
of times s̃k such that s̃k − sk → 0 and y(s̃k) ∈ S for all k. This implies
y(s̃k) ∈ Ω ∩ S for all k. Consequently, y(s̃k) = z for all k. From this, we
deduce that the solution y(t) is periodic. �

Poincaré-Bendixson Theorem. Let x(t) be a solution of the ODE x′(t) =
F (x(t)), which is defined for all t ≥ 0. Let Ω be the set of ω-limit points
of the trajectory x(t). Suppose that Ω is bounded, non-empty, and contains
no equilibrium points. Then there exists a periodic solution y(t) of the ODE
y′(t) = F (y(t)) such that {y(t) : t ∈ R} = Ω.

Proof. If x(t) is periodic, the assertion is trivial. In the following, we will
assume that x(t) is not periodic. By Lemma 5.16, there exists a periodic
solution y(t) of the ODE y′(t) = F (y(t)) such that A := {y(t) : t ∈ R} ⊂ Ω.

We claim that the set Ω\A is closed. To see this, we consider a sequence
of points zk ∈ Ω \ A such that limk→∞ zk = z̄. Clearly, z̄ ∈ Ω since Ω is
closed. In particular, z̄ cannot be an equilibrium point. Consequently, we
can find a transversal line segment S such that z̄ ∈ S. By Lemma 5.15, the
set Ω ∩ S consists of at most one point. Thus, Ω ∩ S = {z̄}.

By Lemma 5.12, there exists an open neighborhood U of z̄ and a smooth
function h : U → R such that h(z̄) = 0 and ϕh(z)(z) ∈ S for all points
z ∈ U . Since limk→∞ zk = z̄, we have zk ∈ U if k is sufficiently large.
Then ϕh(zk)(zk) ∈ S. Since Ω is an invariant set and zk ∈ Ω, it follows
that ϕh(zk)(zk) ∈ Ω ∩ S if k is sufficiently large. From this, we deduce that
ϕh(zk)(zk) = z̄ for k sufficiently large. Since zk /∈ A, we conclude that z̄ /∈ A.
This shows that the set Ω \A is closed.

To summarize, we have shown that Ω can be written as a disjoint union
of the closed sets A and Ω\A. Since A is connected, we must have Ω\A = ∅.
This completes the proof. �

5.4. Stability of periodic solutions and the Poincaré map

We now return to the n-dimensional case. Suppose that x(t) is a non-
constant periodic solution of the ODE x′(t) = F (x(t)), and let Γ = {x(t) :
t ∈ R}. Our goal in this section is to analyze whether this periodic orbit is
stable; that is, whether a nearby solution y(t) will converge to Γ as t→∞.

To simplify the notation, we will assume that x(0) = 0. Since 0 is not
an equilibrium point, we can find an (n − 1)-dimensional subspace S ⊂ Rn
such that F (0) /∈ S. By the implicit function theorem, we can find an open
neighborhood U of 0 and a smooth function h : U → R such that h(0) = T
and ϕh(y)(y) ∈ S for all points y ∈ U . We next define a map P : S ∩U → S
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by

P (y) = ϕh(y)(y) ∈ S
for y ∈ S ∩ U . Since ϕT (0) = 0 and h(0) = T , we obtain P (0) = 0. The
map P is called the Poincaré map.

Theorem 5.17. Suppose that the eigenvalues of DP (0) all lie inside the
unit circle in C. If y0 is sufficiently close to 0, then dist(ϕt(y0),Γ) → 0 as
t→∞.

Proof. Let A = DP (0) denote the differential of P at the origin. By as-
sumption, the eigenvalues of A all lie inside the unit circle in C. Using the
L+N decomposition, it is easy to see that limk→∞A

k = 0 (cf. Problem 2.7
above). Let us fix a positive integer m such that ‖Am‖op <

1
2 .

For abbreviation, let T̃ = mT . By the implicit function theorem, we can
find an open neighborhood Ũ of 0 and a smooth function h̃ : Ũ → R such
that h̃(0) = T̃ and ϕh̃(y)(y) ∈ S for all points y ∈ Ũ . We now define a map

P̃ : S ∩ Ũ → S by

P̃ (y) = ϕh̃(y)(y) ∈ S

for y ∈ S ∩ Ũ . Note that

P̃ (y) = P ◦ . . . ◦ P︸ ︷︷ ︸
m times

(y)

if y ∈ S is sufficiently close to the origin. This implies

DP̃ (0) = DP (0)m = Am.

Consequently, ‖DP̃ (0)‖op < 1
2 by our choice of m. Consequently, we can

find a real number δ > 0 such that Bδ(0) ⊂ Ũ and ‖P̃ (y)‖ ≤ 1
2 ‖y‖ for all

points y ∈ S ∩Bδ(0).

We now consider an initial point y0 ∈ S. We assume that y0 is sufficiently
close to the origin such that y0 ∈ Ũ and ‖ϕh̃(y0)(y0)‖ < δ. We inductively

define a sequence of numbers tk such that t0 = h̃(y0) and tk+1 = tk +

h̃(ϕtk(y0)). Clearly,

ϕtk+1
(y0) = ϕh̃(ϕtk (y0))(ϕtk(y0)) = P̃ (ϕtk(y0)).

Using induction on k, we can show that ‖ϕtk(y0)‖ < 2−k δ. Therefore,
ϕtk(y0)→ 0 as k →∞. This implies

tk+1 − tk = h̃(ϕtk(y0))→ h̃(0) = T̃

as k →∞. Since ϕtk(y0)→ 0 as k →∞, we conclude that

sup
t∈[tk,tk+1]

‖ϕt(y0)− ϕt−tk(0)‖ = sup
t∈[0,tk+1−tk]

‖ϕt(ϕtk(y0))− ϕt(0)‖ → 0
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as k →∞. In particular,

sup
t∈[tk,tk+1]

dist(ϕt(y0),Γ)→ 0

as k →∞. From this, the assertion follows. �

Finally, we describe how the differential of the Poincaré map is related
to the differential of ϕT .

Proposition 5.18. Let us define a linear transformation Q : Rn → S by
Qy = y for all y ∈ S and QF (0) = 0. Then

DP (0) y = QDϕT (0) y

for all y ∈ S.

Proof. Fix a vector y ∈ S. Using the chain rule, we obtain

d

ds
P (sy)

∣∣∣
s=0

=
d

ds
ϕh(sy)(sy)

∣∣∣
s=0

= DϕT (0) y + κF (0),

where κ = d
dsh(sy)

∣∣
s=0

. On the other hand, since P (sy) ∈ S for all s, we

conclude that d
dsP (sy)

∣∣
s=0
∈ S. Thus, we conclude that

d

ds
P (sy)

∣∣∣
s=0

= Q (DϕT (0) y + κF (0)) = QDϕT (0) y.

From this, the assertion follows. �

5.5. Problems

Problem 5.1. Let p(x) be a polynomial of odd degree whose leading coeffi-
cient is positive. Moreover, let (x0, y0) be an arbitrary point in R2. Suppose
that (x(t), y(t)) is the unique maximal solution of the system

x′(t) = y(t)

y′(t) = −y(t)3 − p(x)

with the initial condition (x(0), y(0)) = (x0, y0).
(i) Show that supt≥0(x(t)2 + y(t)2) < ∞. (Hint: Look for a monotone
quantity of the form f(x) + g(y).)
(ii) Show that the solution (x(t), y(t)) is defined for all t ≥ 0.
(iii) Suppose that (x̄, ȳ) is an ω-limit point of the trajectory (x(t), y(t)).
Show that p(x̄) = ȳ = 0.
(iv) Show that the ω-limit set of the trajectory (x(t), y(t)) consists of exactly
one point.
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Problem 5.2. Let F : Rn → Rn be a continuously differentiable mapping.
Assume that x(t) is a solution of the system x′(t) = F (x(t)) which is defined
for all t ≥ 0, and let Ω be its ω-limit set. We assume that Ω is bounded and

{x ∈ Ω : ‖x‖ ≤ r} = {λv : λ ∈ [0, r]}

for some positive real number r and some unit vector v. The goal of this
problem is to show that every point on the line segment {λv : λ ∈ [0, r]} is
an equilibrium point.
(i) Fix a number λ ∈ (0, r). Consider a sequence of times sk →∞ such that
x(sk) → rv, and define τk = sup{t ∈ [0, sk] : ‖x(t)‖ ≤ r and 〈x(t), v〉 ≤ λ}.
Show that τk → ∞, x(τk) → λv, and 〈F (x(τk)), v〉 ≥ 0. Deduce from this
that 〈F (λv), v〉 ≥ 0.
(ii) Fix a number λ ∈ (0, r). Consider a sequence of times sk → ∞ such
that x(sk)→ 0, and define τk = sup{t ∈ [0, sk] : ‖x(t)‖ ≥ r or 〈x(t), v〉 ≥ λ}.
Show that τk → ∞, x(τk) → λv, and 〈F (x(τk)), v〉 ≤ 0. Deduce from this
that 〈F (λv), v〉 ≤ 0.
(iii) Show that F (λv) = 0 for all λ ∈ (0, r). In other words, every point on
this line segment is an equilibrium point.

Problem 5.3. Let F be a vector field on R2, and let x(t) be a solution of
the ODE x′(t) = F (x(t)) which is defined for all t ∈ R and is not periodic.
Suppose that x̄ ∈ R2 is both an α-limit point and an ω-limit point of the
trajectory x(t). In other words, there exists a family of times {sk : k ∈ Z}
such that limk→∞ x(sk) = limk→−∞ x(sk) = x̄. Show that x̄ is an equilib-
rium point. (Hint: Consider a transversal line segment passing through x̄
and use the monotonicity property.)

Problem 5.4. Let us consider the unique maximal solution of the system

x′1(t) =
(1− x1(t)2)2

1 + x1(t)2
(x1(t) + (1− x1(t)2)x2(t))

x′2(t) = −x1(t) + (1− x1(t)2)x2(t)

with initial condition (x1(0), x2(0)) = (0, 1).

(i) Let us write y1(t) = x1(t)
1−x1(t)2

and y2(t) = x2(t). Show that

y′1(t) =
2

1 +
√

1 + 4y1(t)2
(y1(t) + y2(t))

y′2(t) =
2

1 +
√

1 + 4y1(t)2
(y2(t)− y1(t)).

(ii) Show that the ω-limit set of (x1(t), x2(t)) is a union of two parallel lines.
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Problem 5.5. Consider the system

x′1(t) = (1− x1(t)2) (x1(t) + 2x2(t))

x′2(t) = (1− x2(t)2) (x2(t)− 2x1(t)).

(i) Show that the square Q = [−1, 1] × [−1, 1] is an invariant set for this
system.
(ii) Let (x1(t), x2(t)) denote the unique maximal solution of this system with
initial condition (x1(0), x2(0)) = (1

2 , 0), and let Ω denote its ω-limit set.

Show that Ω ⊂ ∂Q. (Hint: Consider the function (1− x1(t)2)(1− x2(t)2).)
(iii) Show that Ω cannot consist of a single point. (Hint: Suppose that
(x1(t), x2(t)) converges to an equilibrium point, and use the stable manifold
theorem to arrive at a contradiction.)
(iv) Let L1 = {1} × [−1, 1], L2 = [−1, 1] × {1}, L3 = {−1} × [−1, 1], and
L4 = [−1, 1] × {−1}. Show that Ω =

⋃
j∈J Lj for some non-empty set

J ⊂ {1, 2, 3, 4}.
(v) Show that Ω = ∂Q. (Hint: Use Problem 5.2.)





Chapter 6

Ordinary differential
equations in geometry,
physics, and biology

6.1. Delaunay’s surfaces in differential geometry

Let Σ be a surface of revolution in R3 so that

Σ = {(r(t) cos s, r(t) sin s, t) : t ∈ I}

for some function r : I → (0,∞). At each point on Σ, we have two curvature
radii. The reciprocals of the curvature radii are referred to as the prinicpal
curvatures, and their sum is referred to as the mean curvature of Σ.

In 1841, C. Delaunay investigated surfaces of revolution which have con-
stant mean curvature 2. The mean curvature of a surface of revolution is
given by

H = −r(t)r
′′(t)− (1 + r′(t)2)

r(t) (1 + r′(t)2)
3
2

.

Hence, the condition H = 2 is equivalent to the differential equation

r(t)r′′(t) = (1 + r′(t)2)− 2r(t) (1 + r′(t)2)
3
2 .

If we put x(t) = r(t) and y(t) = r′(t), we obtain the system

x′(t) = y(t)

y′(t) = (1 + y(t)2)
( 1

x(t)
− 2

√
1 + y(t)2

)
71
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in the half-plane U = {(x, y) ∈ R2 : x > 0}. In order to analyze this system,
we consider the function

L(x, y) = x2 − x√
1 + y2

.

A straightforward calculation yields

∂L

∂x
(x, y) = 2x− 1√

1 + y2

and

∂L

∂y
(x, y) =

xy√
1 + y2 (1 + y2)

.

This implies

y
∂L

∂x
(x, y) + (1 + y2)

(1

x
− 2

√
1 + y2

) ∂L
∂y

(x, y)

= 2xy − y√
1 + y2

+
(1

x
− 2

√
1 + y2

) xy√
1 + y2

= 0.

Hence, if (x(t), y(t)) is a solution

x′(t) = y(t)

y′(t) = (1 + y(t)2)
( 1

x(t)
− 2
√

1 + y(t)2
)
,

then d
dtL(x(t), y(t)) = 0. In other words, every solution curve is contained

in a level curve of the function L(x, y). The level curves are shown in the
figure below:
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The system above has only one equilibrium point, which is (1
2 , 0). The

coefficient matrix of the linearized system at (1
2 , 0) is given by[

0 1
−4 0

]
,

which has eigenvalues 2i and −2i. Nonetheless, the point (1
2 , 0) is a stable

equilibrium point. To see this, we apply Lyapunov’s theorem. We first
observe that the gradient of L at the point (1

2 , 0) vanishes, and the Hessian

of L at the point (1
2 , 0) is given by[

2 0
0 1

2

]
.

Since this matrix is positive definite, we conclude that L has a strict local
minimum at (1

2 , 0). Therefore, the point (1
2 , 0) is stable by Lyapunov’s the-

orem. However, the point (1
2 , 0) is clearly not asymptotically stable, since

every trajectory is contained in a level curve of L. Note that the surface of
revolution associated with the constant solution (1

2 , 0) is a cylinder of radius
1
2 .

We next fix a real number 1
2 < a < 1, and let (x(t), y(t)) be the unique

maximal solution satisfying the initial condition (x(0), y(0)) = (a, 0). The
function (x(t), y(t)) is defined on some interval J (which may be infinite).
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Since L is constant along any solution curve, we must have

L(x(t), y(t)) = L(a, 0) = −a (1− a)

for all t ∈ J . This implies

−x(t) (1− x(t)) ≤ x(t)2 − x(t)√
1 + y(t)2

= −a(1− a)

for all t ∈ J . From this it follows that

1− a ≤ x(t) ≤ a

for all t ∈ J . Moreover,√
1 + y(t)2 =

x(t)

a (1− a) + x(t)2

=
1

2
√
a(1− a)

(
1−

(
√
a(1− a)− x(t))2

a(1− a) + x(t)2

)
≤ 1

2
√
a(1− a)

,

hence

y(t)2 ≤ 1

4a(1− a)
− 1 =

(2a− 1)2

4a(1− a)
.

From this, we deduce that the solution is defined for all times, i.e. J = R.
(Otherwise, we could find a sequence of times tk ∈ J such that limk→∞ x(tk) =
0 or limk→∞ x(tk)

2 + y(tk)
2 = ∞. That would contradict the previous in-

equalities.)

In the next step, we claim that the function (x(t), y(t)) is periodic. To
prove this, let

T = inf{t > 0 : y(t) = 0}.

(Note that T might be infinite. We will later show that this is not the
case.) Note that y(t) < 0 for t ∈ (0, T ). Using the identity L(x(t), y(t)) =
−a (1− a), we obtain

y(t)2 =
x(t)2

(a(1− a) + x(t)2)2
− 1 =

(a2 − x(t)2) (x(t)2 − (1− a)2)

(a(1− a) + x(t)2)2
.

Therefore, 1− a < x(t) < a and

y(t) = −
√
a2 − x(t)2

√
x(t)2 − (1− a)2

a(1− a) + x(t)2
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for all t ∈ (0, T ). This gives

τ =

∫ τ

0

x′(t)

y(t)
dt

= −
∫ τ

0

a(1− a) + x(t)2√
a2 − x(t)2

√
x(t)2 − (1− a)2

x′(t) dt

=

∫ a

x(τ)

a(1− a) + x2

√
a2 − x2

√
x2 − (1− a)2

dx

≤
∫ a

1−a

a(1− a) + x2

√
a2 − x2

√
x2 − (1− a)2

dx

for τ ∈ (0, T ). Since the integral∫ a

1−a

a(1− a) + x2

√
a2 − x2

√
x2 − (1− a)2

dx

is finite, it follows that T is finite. We next observe that y(T ) = 1 − a
and x(T ) = 1 − a by definition of T . Repeating this argument, we obtain
x(2T ) = a and y(2T ) = 0. In particular, x(2T ) = x(0) and y(2T ) = y(0).
Hence, it follows from the uniqueness theorem that x(t + 2T ) = x(t) and
y(t + 2T ) = y(t) for all t ∈ R. This shows that the function (x(t), y(t)) is
periodic with period

2T = 2

∫ a

1−a

a(1− a) + x2

√
a2 − x2

√
x2 − (1− a)2

dx.

Finally, we observe that the unique solution with the initial condition
(x(0), y(0)) = (1, 0) is given by x(t) =

√
1− t2 and y(t) = − t√

1−t2 . The

surface of revolution associated with this solution is a sphere of radius 1.

6.2. The mathematical pendulum

Let us considered an idealized pendulum. Let θ denote the angle between the
pendulum and the vertical axis. If we neglect friction, the angle θ satisfies
the differential equation

θ′′(t) = −g
l

sin θ(t),

where l is the length of the pendulum and g denotes the acceleration due to
gravity. By a suitable choice of units, we can arrange that g

l = 1, so

θ′′(t) = − sin θ(t).

This differential equation is equivalent to the system

x′(t) = y(t)

y′(t) = − sinx(t).
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This system is Hamiltonian, and the Hamiltonian function is

H(x, y) =
1

2
y2 − cosx.

In particular,

1

2
y(t)2 − cosx(t) = constant

for every solution (x(t), y(t)). This reflects the law of conservation of energy.
The level curves of the function H(x, y) are shown below:
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The system above has infinitely many equilibrium points, which are of
the form (πk, 0) with k ∈ Z. The point (0, 0) is a strict local minimum of the
function H(x, y). Consequently, the point (0, 0) is a stable equilibrium by
Lyapunov’s theorem. The point (0, 0) is not asymptotically stable, however.

We next consider the equilibrium point (π, 0). The coefficient matrix of
the linearized system at (π, 0) is given by[

0 1
1 0

]
.

This matrix has eigenvalues 1 and −1, and the associated eigenvectors are[
1
1

]
and

[
1
−1

]
. By the stable manifold theorem, we can find a curve W s

passing through the point (π, 0) such that limt→∞ ϕt(x, y) = (π, 0) for every
point (x, y) ∈ W s. Since H(x, y) is constant along a solution of the ODE,
we have

H(x, y) = lim
t→∞

H(ϕt(x, y)) = H(π, 0) = 1
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for all points (x, y) ∈W s. Consequently,

W s ⊂{(x, y) :
1

2
y2 − cosx = 1}

= {(x, y) : y = 2 cos
x

2
} ∪ {(x, y) : y = −2 cos

x

2
}.

Since W s is tangent to the vector

[
1
−1

]
at the point (π, 0), we must have

W s ⊂ {(x, y) : y = 2 cos
x

2
}.

Similarly, we can find a curve W u passing through the point (π, 0) such that
limt→−∞ ϕt(x, y) = (π, 0) for every point (x, y) ∈ W s. A similar argument
as above gives

W u ⊂ {(x, y) : y = −2 cos
x

2
}.

We next fix a real number 0 < a < π, and let (x(t), y(t)) be the unique
maximal solution satisfying the initial condition (x(0), y(0)) = (a, 0). The
function (x(t), y(t)) is defined on some interval J (which may be infinite).
Then

1

2
y(t)2 − cosx(t) = − cos a

for all t ∈ J . In particular, |y(t)| ≤ 2 for all t ∈ J . Since x′(t) = y(t), it
follows that |x(t)| ≤ 2 |t| for all t ∈ J . In particular, the solution (x(t), y(t))
cannot approach infinity in finite time. Consequently, the solution is defined
for all t, i.e. J = R.

We next show that the function (x(t), y(t)) is periodic. Let

T = inf{t > 0 : y(t) = 0}.

(Note that T might be infinite. We will later show that this is not the case.)
Clearly, y(t) 6= 0 and cosx(t) 6= cos a for t ∈ (0, T ). Since the functions
x(t) and y(t) are continuous, we have −a < x(t) < a and y(t) < 0 for all
t ∈ (0, T ). Moreover,

y(t) = −
√

2 (cosx(t)− cos a)
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for t ∈ (0, T ). Therefore, we obtain

τ =

∫ τ

0

1

y(t)
x′(t) dt

= −
∫ τ

0

1√
2 (cosx(t)− cos a)

x′(t) dt

=

∫ a

x(τ)

1√
2 (cosx− cos a)

dx

≤
∫ a

−a

1√
2 (cosx− cos a)

dx

for all τ ∈ (0, T ). Since the integral∫ a

−a

1√
2 (cosx− cos a)

dx

is finite, we conclude that T < ∞. By definition of T , y(T ) = 0 and
cosx(T ) = cos a. Since the function x(t) is decreasing for t ∈ (0, T ), we
conclude that x(T ) = −a. This gives

T =

∫ a

−a

1√
2 (cosx− cos a)

dx.

Repeating this argument, we obtain x(2T ) = a and y(2T ) = 0. In particular,
x(2T ) = x(0) and y(2T ) = y(0). Hence, it follows from the uniqueness
theorem that x(t+2T ) = x(t) and y(t+2T ) = y(t) for all t ∈ R. This shows
that the function (x(t), y(t)) is periodic with period

T = 2

∫ a

−a

1√
2 (cosx− cos a)

dx.

6.3. Kepler’s problem

Consider the following system of two coupled second order differential equa-
tions:

x′′1(t) = − x1(t)

(x1(t)2 + x2(t)2)
3
2

x′′2(t) = − x2(t)

(x1(t)2 + x2(t)2)
3
2

.

This system describes the motion of a point mass in a central force field,
where the force is proportional to r−2.

Proposition 6.1. Suppose that (x1(t), x2(t)) is a solution of the system of
differential equations given above. Then we have the following conserved
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quantities:

L = x1(t)x′2(t)− x2(t)x′1(t) = constant,

A1 = −(x1(t)x′2(t)− x2(t)x′1(t))x′2(t) +
x1(t)

(x1(t)2 + x2(t)2)
1
2

= constant,

A2 = (x1(t)x′2(t)− x2(t)x′1(t))x′1(t) +
x2(t)

(x1(t)2 + x2(t)2)
1
2

= constant.

Proof. We compute

d

dt
(x1(t)x′2(t)− x2(t)x′1(t))

= x1(t)x′′2(t)− x2(t)x′′1(t)

= −x1(t)
x2(t)

(x1(t)2 + x2(t)2)
3
2

+ x2(t)
x1(t)

(x1(t)2 + x2(t)2)
3
2

= 0.

This proves the first statement. Since the function x1(t)x′2(t) − x2(t)x′1(t)
is constant, we obtain

d

dt

(
− (x1(t)x′2(t)− x2(t)x′1(t))x′2(t) +

x1(t)

(x1(t)2 + x2(t)2)
1
2

)
= −(x1(t)x′2(t)− x2(t)x′1(t))x′′2(t)

+
x′1(t)

(x1(t)2 + x2(t)2)
1
2

− x1(t)2 x′1(t) + x1(t)x2(t)x′2(t)

(x1(t)2 + x2(t)2)
3
2

= −(x1(t)x′2(t)− x2(t)x′1(t))x′′2(t)

− (x1(t)x′2(t)− x2(t)x′1(t))
x2(t)

(x1(t)2 + x2(t)2)
3
2

= 0.

This proves the second statement. Finally, if we replace (x1(t), x2(t)) by
(x2(t), x1(t)), we obtain

d

dt

(
(x1(t)x′2(t)− x2(t)x′1(t))x′1(t) +

x2(t)

(x1(t)2 + x2(t)2)
1
2

)
= 0.

This completes the proof. �

We note that the first identity reflects the conservation of angular mo-
mentum. These conservation laws hold for any central force field. The
conservation laws for A1 and A2 are much more subtle, and are special to
Kepler’s problem. The vector (A1, A2) is called the Runge-Lenz vector.
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Corollary 6.2. Suppose that (x1(t), x2(t)) is a solution of the system of
differential equations given above. Then

x1(t)2 + x2(t)2 = (A1x1(t) +A2x2(t) + L2)2.

In particular, the path t 7→ (x1(t), x2(t)) is contained in a conic section.

Proof. We compute

A1x1(t) +A2x2(t) = −(x1(t)x′2(t)− x2(t)x′1(t))2 + (x1(t)2 + x2(t)2)
1
2

= −L2 + (x1(t)2 + x2(t)2)
1
2 .

This implies

x1(t)2 + x2(t)2 = (A1x1(t) +A2x2(t) + L2)2.

In other words, the path t 7→ (x1(t), x2(t)) is contained in the set

Γ = {(x1, x2) ∈ R2 : x2
1 + x2

2 = (A1x1 +A2x2 + L2)2}.

If A2
1 + A2

2 < 1, then Γ is an ellipse with principle axes L2√
1−A2

1−A2
2

and

L2

1−A2
1−A2

2
. If A2

1 +A2
2 = 1, then Γ is a parabola. Finally, if A2

1 +A2
2 > 1, then

Γ is a hyperbola. �

Finally, let us derive a formula for the position (x1(t), x2(t)) as a function
of t. For simplicity, we only consider the case when the orbit is an ellipse.

Proposition 6.3. Suppose that (x1(t), x2(t)) is a solution of the system
of differential equations given above. Moreover, suppose that A1 = ε and
A2 = 0, where 0 ≤ ε < 1 and A1 and A2 are defined as in Proposition 6.1.
Then we may write

x1(t) =
L2

1− ε2
(cos θ(t) + ε),

x2(t) =
L2

√
1− ε2

sin θ(t),

where θ(t) satisfies Kepler’s equation

θ(t) + ε sin θ(t) =
( L2

1− ε2

)− 3
2
t+ constant.

In particular, the solution (x1(t), x2(t)) is periodic with period 2π
(
L2

1−ε2
) 3

2 .

Proof. By Corollary 6.2,

x2
1 + x2

2 = (ε x1 + L2)2.

Rearranging terms gives

(1− ε2)
(
x1 −

L2 ε

1− ε2

)2
+ x2

2 =
L4

1− ε2
.
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Consequently, we can find a function function θ(t) such that

x1(t) =
L2

1− ε2
(cos θ(t) + ε)

x2(t) =
L2

√
1− ε2

sin θ(t).

Differentiating these identities with respect to t gives

L = x1(t)x′2(t)− x2(t)x′1(t)

=
L4

(1− ε2)
3
2

(cos2 θ(t) + ε cos θ(t)) θ′(t) +
L4

(1− ε2)
3
2

sin2 θ(t) θ′(t)

=
L4

(1− ε2)
3
2

(1 + ε cos θ(t)) θ′(t).

Thus, we conclude that

(1 + ε cos θ(t)) θ′(t) =
( L2

1− ε2

)− 3
2
.

Integrating this equation with respect to t yields

θ(t) + ε sin θ(t) =
( L2

1− ε2

)− 3
2
t+ constant.

Hence, if we define T = 2π
(
L2

1−ε2
) 3

2 , then θ(t+ T ) = θ(t) + 2π. This implies

(x1(t + T ), x2(t + T )) = (x1(t), x2(t)). Thus, the solution (x1(t), x2(t)) is

periodic with period T = 2π
(
L2

1−ε2
) 3

2 . �

6.4. Predator-prey models

In this section, we analyze a model for the growth of the populations of
two species, one of which preys on the other. This model was proposed
by Volterra and Lotka in the 1920s. Let x(t) denote the size of the prey
population at time t, and let y(t) denote the size of the predator population
at time t. The dynamics of x(t) and y(t) is modeled by the differential
equations

x′(t) = a x(t)− αx(t) y(t)

y′(t) = −c y(t) + γ x(t) y(t),

where a, α, c, γ are positive constants.

This system has two equilibrium points, (0, 0) and ( cγ ,
a
α). The coefficient

matrix of the linearized system at the point (0, 0) is given by[
a 0
0 −c

]
.
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Therefore, the point (0, 0) is a saddle point. The stable curve is given by
{x = 0}, and the unstable curve is {y = 0}.

Similarly, the coefficient matrix of the linearized system at the point
( cγ ,

a
α) is given by [

0 aγ
α

−αc
γ 0

]
.

The eigenvalues of this matrix are
√
ac i and −

√
ac i, so we need additional

arguments to decide whether the equilibrium point ( cγ ,
a
α) is stable.

We next consider the function

L(x, y) = γ x− c log x+ α y − a log y

for x, y > 0. We claim that this function is a Lyapunov function. It is clear
that the function x 7→ γ x− c log x attains its global minimum at the point
c
γ . Similarly, the function y 7→ α y − a log y attains its global minimum at

the point a
α . Therefore, the function L attains its global minimum at the

point ( cγ ,
a
α). Moreover, this is a strict minimum.

Suppose now that (x(t), y(t)) is a solution of the system of differential
equations considered above satisfying x(t), y(t) > 0. Then

d

dt
L(x(t), y(t))

=
(
γ − c

x(t)

)
x′(t) +

(
α− a

y(t)

)
y′(t)

=
(
γ − c

x(t)

)
(a x(t)− αx(t) y(t)) +

(
α− a

y(t)

)
(−c y(t) + γ x(t) y(t))

= (γ x(t)− c) (a− α y(t)) + (α y(t)− a) (−c+ γ x(t))

= 0.

Therefore, the function L(x, y) is a conserved quantity. By Lyapunov’s
theorem, the equilibrium point ( cγ ,

a
α) is stable.

Finally, it is not difficult to show that each level set of the function L is
smooth curve which lies in a compact subset of the quadrant {(x, y) ∈ R2 :
x, y > 0}. Hence, every solution that originates in this quadrant is either
constant or periodic.

6.5. Mathematical models for the spread of infectious
diseases

In this section, we discuss a model for the spread of infectious diseases which
is due to Kermack and McKendrick. This model relies on several assump-
tions. First, we assume that the incubation period can be neglected, so that
any infected person can immediately infect others. Second, we assume that
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any person who has recovered from the disease gains permanent immunity.
Let us denote by x(t) the number of persons who are susceptible to the dis-
ease. Moreover, let y(t) be the number of persons who are currently infected.
In other words, x(t) is the number of persons who have not contracted the
disease prior to time t, and y(t) is the number of persons who have been
infected but have not yet recovered. Finally, let z(t) denote the number of
persons who have recovered from the disease.

The dynamics of x(t), y(t), z(t) can be modeled by the following system
of differential equations:

x′(t) = −β x(t) y(t)

y′(t) = β x(t) y(t)− γ y(t)

z′(t) = γ y(t).

Here, β and γ are positive constants. This system is an example of what is
called an SIR-model, and was first proposed by Kermack and McKendrick.

We note that the sum x(t) + y(t) + z(t) is constant. Hence, it is enough
to solve the two-dimensional system

x′(t) = −β x(t) y(t)

y′(t) = β x(t) y(t)− γ y(t).

To that end, we consider the quantity

L(x, y) = x(t)− γ

β
log x(t) + y(t).

A straightforward calculation gives

d

dt
L(x(t), y(t)) =

(
1− γ

β x(t)

)
x′(t) + y′(t)

= −(β x(t)− γ) y(t) + β x(t) y(t)− γ y(t)

= 0.

Thus, L(x, y) is a conserved quantity.

If x(0) ≤ γ
β , then the function x(t) is monotone decreasing and converges

to 0 as t → ∞. On the other hand, if x(0) > γ
β , then the number of

infected persons will increase at first. The epidemic will reach its peak
when x(t) = γ

β . Afterwards, the number of infected persons will decrease,

and will converge to 0 as t→∞. For that reason, the ratio γ
β is referred to

as the epidemiological threshold.

6.6. A mathematical model of glycolysis

In this section, we discuss Sel’kov’s model for glycolysis. Our treatment
closely follows [5], Section 7.3. The differential equations governing Sel’kov’s
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model are as follows:

x′(t) = −x(t) + a y(t) + x(t)2 y(t)

y′(t) = b− a y(t)− x(t)2 y(t).

Here, the functions x(t) and y(t) describe the concentrations, at time t, of
two chemicals (adenosine diphosphate and fructose-6-phosphate), and a and
b are positive constants. We will focus on the case when the initial values
x(0) = x0 and y(0) = y0 are positive.

Proposition 6.4. Given any real number λ ≥ b
a , the set

A = {(x, y) ∈ R2 : x ≤ 0, 0 ≤ y ≤ λ, and x+ y ≤ λ+ b}

is positively invariant.

Proof. It suffices to show that the vector field

F (x, y) = (−x+ ay + x2y, b− ay − x2y)

is inward-pointing along the boundary of A. In other words, we need to
show that

〈F (x, y), ν〉 ≤ 0

for every point (x, y) ∈ ∂A, where ν denotes the outward-pointing unit
normal vector to ∂A.

The boundary of A consists of four line segments:

∂A = L1 ∪ L2 ∪ L3 ∪ L4,

where

L1 = {(x, y) ∈ R2 : x = 0 and 0 ≤ y ≤ λ}
L2 = {(x, y) ∈ R2 : y = 0 and 0 ≤ x ≤ λ+ b}
L3 = {(x, y) ∈ R2 : x+ y = λ+ b and b ≤ x ≤ λ+ b}
L4 = {(x, y) ∈ R2 : y = λ and 0 ≤ x ≤ b}.

Step 1: Consider a point (x, y) ∈ L1. The outward-pointing unit normal
vector to ∂A at (x, y) is ν = (−1, 0). This implies

〈F (x, y), ν〉 = 〈F (0, y), ν〉 = 〈(ay, b− ay), (−1, 0)〉 = −ay ≤ 0

since y ≥ 0.

Step 2: We next consider a point (x, y) ∈ L2. In this case, the outward-
pointing unit-normal vector is given by ν = (0,−1). Therefore,

〈F (x, y), ν〉 = 〈F (x, 0), ν〉 = 〈(−x, b), (0,−1)〉 = −b ≤ 0.
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Step 3: Consider now a point (x, y) ∈ L3. In this case, the outward-
pointing unit-normal vector is ν = ( 1√

2
, 1√

2
). Hence,

〈F (x, y), ν〉

=
〈

(−x(t) + a y(t) + x(t)2 y(t), b− a y(t)− x(t)2 y(t)),
( 1√

2
,

1√
2

)〉
=

1√
2

(b− x) ≤ 0

since x ≥ b.
Step 4: Finally, let (x, y) be a point on the line segment L4. The

outward-pointing unit normal vector to ∂A is ν = (0, 1). From this it follows
that

〈F (x, y), ν〉 = 〈F (x, λ), ν〉
= 〈(−x+ aλ+ x2λ, b− aλ− x2λ), (0, 1)〉
= b− aλ− x2λ

≤ b− aλ ≤ 0

since λ ≥ b
a .

Therefore, the region A is positively invariant as claimed. �

We next discuss the asymptotic behavior of the solution as t→∞.

Proposition 6.5. Let (x0, y0) be a pair of positive real numbers. More-
over, let (x(t), y(t)) be the unique maximal solution of the system above
with x(0) = x0 and y(0) = y0, and let Ω be the set of all ω-limit points of
(x(t), y(t)). Then Ω is bounded and non-empty.

Proof. Consider the region

A = {(x, y) ∈ R2 : x ≥ 0, 0 ≤ y ≤ λ, and x+ y ≤ λ+ b},
where λ = max{x0 + y0 − b, y0,

b
a}. It follows from Proposition 6.4 that

(x(t), y(t)) ∈ A for all t ≥ 0. Since A is a bounded region, it follows from
the Bolzano-Weierstrass theorem that the solution (x(t), y(t)) has at least
one ω-limit point. This shows that Ω is non-empty. On the other hand,
since (x(t), y(t)) ∈ A for all t ≥ 0, it follows that Ω ⊂ A, which implies that
Ω is bounded. �

Finally, we analyze the equilibrium points:

Proposition 6.6. The point (b, b
a+b2

) is the only equilibrium point of the

system. If b4 +(2a−1) b2 +(a2 +a) < 0, then both eigenvalues of the matrix
DF (b, b

a+b2
) have positive real part. Similarly, if b4+(2a−1) b2+(a2+a) > 0,

then both eigenvalues of the matrix DF (b, b
a+b2

) have negative real part.
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Proof. Suppose that (x̄, ȳ) is an equilibrium point. Then

−x̄+ a ȳ + x̄2 ȳ = 0

and
b− a ȳ − x̄2 ȳ = 0.

Adding both identities, we obtain

b− x̄ = 0,

hence x̄ = b. Substituting this into the first equation, we obtain

(a+ b2) ȳ = b,

hence

ȳ =
b

a+ b2
.

The differential of F is given by

DF (x, y) =

[
−1 + 2xy a+ x2

−2xy −a− x2

]
.

The trace and determinant of this matrix are

tr

[
−1 + 2xy a+ x2

−2xy −a− x2

]
= −1 + 2xy − x2 − a

and

det

[
−1 + 2xy a+ x2

−2xy −a− x2

]
= a+ x2.

In particular, the determinant of DF (x, y) is always positive. This shows
that the matrix DF (b, b

a+b2
) cannot have two real eigenvalues with opposite

signs. The sign of the trace of DF (b, b
a+b2

) indicates whether the eigenvalues

of the matrix DF (b, b
a+b2

) have positive or negative real part. �

Theorem 6.7. Let (x0, y0) be a pair of positive real numbers such that
(x0, y0) 6= (b, b

a+b2
). Moreover, let (x(t), y(t)) be the unique maximal solution

with x(0) = x0 and y(0) = y0. Then the following holds:

(i) If b4 + (2a − 1) b2 + (a2 + a) < 0, then the solution (x(t), y(t))
approaches a periodic solution as t→∞.

(ii) If b4 + (2a− 1) b2 + (a2 + a) > 0, then either limt→∞(x(t), y(t)) =
(b, b

a+b2
) or the solution (x(t), y(t)) converges to a periodic solution

as t→∞.

Proof. As above, let Ω be the set of all ω-limit points of (x(t), y(t)). We first
assume that b4 + (2a − 1) b2 + (a2 + a) < 0. In this case, both eigenvalues
of the matrix DF (b, b

a+b2
) have positive real part. By Theorem 4.2, the

equilibrium point (b, b
a+b2

) is asymptotically stable after a time reversal t→
−t. Using Proposition 5.9, we conclude that (b, b

a+b2
) /∈ Ω. In particular,
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the set Ω contains no equilibrium points. Hence, the Poincaré-Bendixson
theorem implies that the solution (x(t), y(t)) approaches a periodic solution
as t→∞.

We now assume that b4 + (2a − 1) b2 + (a2 + a) > 0. In this case,
both eigenvalues of the matrix DF (b, b

a+b2
) have negative real part. By

Theorem 4.2, the equilibrium point (b, b
a+b2

) is asymptotically stable. If

(b, b
a+b2

) /∈ Ω, it follows from the Poincaré-Bendixson theorem that the so-

lution (x(t), y(t)) converges to a periodic solution as t → ∞. On the other
hand, if (b, b

a+b2
) ∈ Ω, then we have limt→∞(x(t), y(t)) = (b, b

a+b2
) since

(b, b
a+b2

) is asymptotically stable. �

6.7. Problems

Problem 6.1. Let (x(t), y(t)) be the unique solution of the differential
equations

x′(t) = y(t)

y′(t) = − sinx(t)

with initial values x(0) = 0 and y(0) = 2.
(i) Show that

x′(t) = 2 cos
x(t)

2
.

(ii) Using Problem 1.5, conclude that

x(t)

2
= arctan(et)− arctan(e−t)

and

y(t) =
4

et + e−t
.

What can you say about the asymptotic behavior of (x(t), y(t)) as t→∞?

Problem 6.2. Let (x1(t), x2(t)) be a solution of the system

x′′1(t) = − x1(t)

(x1(t)2 + x2(t)2)
3
2

x′′2(t) = − x2(t)

(x1(t)2 + x2(t)2)
3
2

.

(i) Show that

E =
1

2
(x′1(t)2 + x′2(t)2)− 1

(x1(t)2 + x2(t)2)
1
2

= constant.

(ii) Show that A2
1 + A2

2 = 2EL2 + 1, where L,A1, A2 denote the conserved
quantities from Proposition 6.1.





Chapter 7

Sturm-Liouville theory

7.1. Boundary value problems for linear differential
equations of second order

In this chapter, we will study linear differential equations of second order
with variable coefficients.

Definition 7.1. Let p(t) and q(t) be two continuously differentiable func-
tions that are defined on some interval [a, b]. We then consider the following
linear differential equation of second order for the unknown function u(t):

(9)
d

dt

[
p(t)

d

dt
u(t)

]
+ q(t)u(t) = 0.

The differential equation (9) is called a Sturm-Liouville equation. Moreover,
we say that (9) is a regular Sturm-Liouville equation if p(t) > 0 for all
t ∈ [a, b].

In the following, we will only consider regular Sturm-Liouville equations.

Proposition 7.2. Suppose that (9) is a regular Sturm-Liouville equation.
Then the set of all functions u(t) satisfying (9) is a vector space of dimen-
sion 2. In other words, there exist two linearly independent solutions w0(t)
and w1(t) of (9), and any other solution of (9) can be written as a linear
combination of w0(t) and w1(t) with constant coefficients.

Proof. The differential equation (9) is equivalent to the non-autonomous
linear system

x′1(t) =
1

p(t)
x2(t)

x′2(t) = −q(t)x1(t).

89
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By Proposition 3.10, there exists a unique solution of (9) which satisfies the
initial condition u(a) = 1 and u′(a) = 0. Similarly, there exists a unique
solution of (9) which satisfies the initial conditions u(a) = 0 and u′(a) = 1.
Let us denote these solutions by w0(t) and w1(t). It follows from Proposition
3.10 that the functions w0(t) and w1(t) are defined on entire interval [a, b].

It is clear that w0(t) and w1(t) are linearly indepedent (i.e. neither
function is a constant multiple of the other). It remains to show that any
solution of (9) can be written as a linear combination of w0(t) and w1(t). To
see this, let u(t) be an arbitrary solution of (9). Then the function v(t) =
u(t)−u(a)w0(t)−u′(a)w1(t) is a solution of (9), and we have v(a) = u(a)−
u(a)w0(a)−u′(a)w1(a) = 0 and v′(a) = u′(a)−u(a)w′0(a)−u′(a)w′1(a) = 0.
Hence, the uniqueness theorem implies that v(t) = 0 for all t ∈ [a, b]. Thus,
we conclude that u(t) = u(a)w0(t) +u′(a)w1(t) for all t ∈ [a, b]. This shows
that u(t) can be written as a linear combination of w0(t) and w1(t) with
constant coefficients. �

So far, we have focused on initial value problems for systems of ordinary
differential equations. However, in many situations, it is more natural to
impose boundary conditions instead. For example, we can prescribe the
values of the function u at the endpoints of the interval [a, b]. Alternatively,
we may prescribe the values of u′(t) at the endpoints of the interval [a, b].
The following list shows the most common boundary conditions:

• Dirichlet boundary conditions: u(a) = A, u(b) = B.

• Neumann boundary conditions: u′(a) = A, u′(b) = B.

• Mixed Dirichlet-Neumann boundary condition: u(a) = A, u′(b) =
B.

• Periodic boundary condition: u(a) = u(b), u′(a) = u′(b).

Here, A and B are given real numbers.

A Sturm-Liouville equation together with a set of boundary conditions
is called a Sturm-Liouville system. While the initial value problem for a
regular Sturm-Liouville system always has exactly one solution, a boundary
value problem may have infinitely many solutions or no solutions at all. To
see this, we first consider the differential equation

d2

dt2
u(t) + u(t) = 0

with the Dirichlet boundary conditions u(0) = 0 and u(π) = 0. This equa-
tion has infinitely many solutions. In fact, every constant multiple of the
function sin t is a solution.
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We next consider the differential equation

d2

dt2
u(t) + u(t) = 0

with the Dirichlet boundary conditions u(0) = 0 and u(π) = 1. This equa-

tion has no solution. In fact, if u(t) is a solution of d2

dt2
u(t) + u(t) = 0 with

u(0) = 0, then u(t) must be a constant multiple of sin t. But then u(π) = 0
since sinπ = 0. Therefore, there is no solution of the differential equation
d2

dt2
u(t) + u(t) = 0 with u(0) = 0 and u(π) = 1.

In the sequel, we will mostly focus on the Dirichlet boundary value
problem. The following result gives a necessary and sufficient condition for
the Dirichlet boundary value problem to admit a unique solution:

Proposition 7.3. Suppose that (9) is a regular Sturm-Liouville equation.
Then the following statements are equivalent:

(i) Given any pair of real numbers (A,B), there exists a unique solu-
tion of (9) such that u(a) = A and u(b) = B.

(ii) Every solution of (9) satisfying u(a) = u(b) = 0 vanishes identi-
cally.

Proof. It is clear that (i) implies (ii). To prove the reverse implication,
we consider the set V of all solutions of the differential equation (9). By
Proposition 7.2, V is a vector space of dimension 2. We next consider the
linear transformation L : V → R2, which assigns to every function u ∈ V the
pair (u(a), u(b)) ∈ R2. If condition (ii) holds, then L has trivial nullspace.
Since V has the same dimension as R2, it follows that L is invertible. This
implies that statement (i) holds. �

Thus, in order to decide whether the Dirichlet boundary value problem
has a unique solution, it suffices to study solutions of the differential equation
(9) which satisfy the boundary condition u(a) = u(b) = 0.

We now develop an important method for studying the solutions of a
regular Sturm-Liouville equation

d

dt

[
p(t)

d

dt
u(t)

]
+ q(t)u(t) = 0.

Suppose that u(t) is a solution of (9) which is not identically zero. Our
strategy is to rewrite (9) as a system of two differential equations of first
order, and pass to polar coordinates:

p(t)
d

dt
u(t) = r(t) cos θ(t)

u(t) = r(t) sin θ(t).
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This change of variables is known as the Prüfer substitution.

Clearly,

0 =
d

dt
(r(t) sin θ(t))− 1

p(t)
r(t) cos θ(t)

= r′(t) sin θ(t) + r(t) θ′(t) cos θ(t)− 1

p(t)
r(t) cos θ(t).

Moreover, since u(t) is a solution of (9), we have

0 =
d

dt
(r(t) cos θ(t)) + q(t) r(t) sin θ(t)

= r′(t) cos θ(t)− r(t) θ′(t) sin θ(t) + q(t) r(t) sin θ(t).

This gives a system of two linear equations for the two unknowns r′(t) and
θ′(t). Solving this system yields

(10) r′(t) =
( 1

p(t)
− q(t)

)
r(t) cos θ(t) sin θ(t)

and

(11) θ′(t) = q(t) sin2 θ(t) +
1

p(t)
cos2 θ(t).

This is a system of two nonlinear differential equations for r(t) and θ(t). A
key observation is that the differential equation for the function θ(t) does
not make any reference to the function r(t). Hence, we can first look for a
solution θ(t) of (11). Once θ(t) is known, the function r(t) is determined by
the formula

r(t) = r(a) exp

(∫ t

a

( 1

p(s)
− q(s)

)
cos θ(s) sin θ(s) ds

)
.

Moreover, if u(t) satisfies a boundary condition, we obtain additional re-
strictions on r(t) and θ(t). For example, if u satisfies the Dirichlet bound-
ary conditions u(a) = u(b) = 0, then sin θ(a) = sin θ(b) = 0. Simi-
larly, the Neumann boundary condition u′(a) = u′(b) = 0 is equivalent to
cos θ(a) = cos θ(b) = 0. Moreover, the mixed Dirichlet-Neumann boundary
u(a) = u′(b) = 0 leads to the equation sin θ(a) = cos θ(b) = 0. In all these
cases, the boundary condition for u(t) leads to a set of endpoint conditions
for the function θ(t). This is true for many boundary conditions, with the
notable exception of periodic boundary conditions.

7.2. The Sturm comparison theorem

In this section, we describe a method for comparing the phase functions of
two Sturm-Liouville systems. To that end, we need the following comparison
principle:
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Proposition 7.4. Suppose that θ(t) and θ̃(t) satisfy the differential inequal-
ities

θ′(t) ≥ q(t) sin2 θ(t) +
1

p(t)
cos2 θ(t)

and

θ̃′(t) ≤ q(t) sin2 θ̃(t) +
1

p(t)
cos2 θ̃(t),

where p(t) is a positive function. If θ(a) ≥ θ̃(a), then θ(t) ≥ θ̃(t) for all

t ∈ [a, b]. Moreover, if θ(b) = θ̃(b), then θ(t) = θ̃(t) for all t ∈ [a, b].

Proof. We can find a positive constant L > 0 such that

d

dt
(θ(t)− θ̃(t)) ≥ q(t) (sin2 θ(t)− sin2 θ̃(t)) +

1

p(t)
(cos2 θ(t)− cos2 θ̃(t))

≥ −L |θ(t)− θ̃(t)|

for all t ∈ [a, b].

Suppose now that there exists a real number t1 ∈ [a, b] such that θ(t1) <

θ̃(t1). By assumption, t1 ∈ (a, b]. We now define

t0 = sup{t ∈ [a, t1) : θ(t) ≥ θ̃(t)}.

It is easy to see that θ(t0) = θ̃(t0) and θ(t) < θ̃(t) for all t ∈ (t0, t1]. This
implies

d

dt
(θ(t)− θ̃(t)) ≥ L (θ(t)− θ̃(t))

for all t ∈ (t0, t1]. Consequently, the function e−Lt (θ(t)− θ̃(t)) is monotone

increasing on the interval [t0, t1]. Since θ(t0) − θ̃(t0) = 0, we conclude that

θ(t)− θ̃(t) ≥ 0 for all t ∈ [t0, t1]. This contradicts our choice of t1. Thus, we

conclude that θ(t) ≥ θ̃(t) for all t ∈ [a, b].

Consequently,

d

dt
(θ(t)− θ̃(t)) ≥ −L (θ(t)− θ̃(t))

for all t ∈ [a, b]. Therefore, the function eLt (θ(t)− θ̃(t)) is nonnegative and

monotone increasing on the interval [a, b]. Hence, if θ(b) − θ̃(b) = 0, then

θ(t)− θ̃(t) = 0 for all t ∈ [a, b]. This completes the proof. �

Corollary 7.5. Suppose that θ(t) satisfies the differential inequality

θ′(t) ≥ q(t) sin2 θ(t) +
1

p(t)
cos2 θ(t),

where p(t) is a positive function. If θ(a) ≥ πk, then θ(b) > πk.
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Proof. Let us define θ̃(t) = πk. Since θ̃(t) is constant, we have

θ̃′(t) < q̃(t) sin2 θ̃(t) +
1

p̃(t)
cos2 θ̃(t).

Hence, Proposition 7.4 implies that θ(b) ≥ πk. Moreover, the inequality is
be strict. In fact, if θ(b) = πk, then Proposition 7.4 implies that θ(t) = πk
for all t ∈ [a, b], which is impossible. �

Corollary 7.6. Suppose that 0 < p(t) ≤ p̃(t) and q(t) ≥ q̃(t) for all t ∈ [a, b].
Moreover, suppose that u(t) and ũ(t) are non-trivial solutions of the Sturm-
Liouville equations

d

dt

[
p(t)

d

dt
u(t)

]
+ q(t)u(t) = 0

and
d

dt

[
p̃(t)

d

dt
ũ(t)

]
+ q̃(t) ũ(t) = 0.

Finally, suppose that θ(t) and θ̃(t) denote the associated phase functions. If

θ(a) ≥ θ̃(a), then θ(t) ≥ θ̃(t) for all t ∈ [a, b]. Moreover, if θ(b) = θ̃(b), then

θ(t) = θ̃(t) for all t ∈ [a, b].

Proof. Let us write

p(t)
d

dt
u(t) = r(t) cos θ(t)

u(t) = r(t) sin θ(t)

and

p̃(t) ũ′(t) = r̃(t) cos θ̃(t)

ũ(t) = r̃(t) sin θ̃(t).

The functions θ(t) and θ̃(t) satisfy the differential equations

θ′(t) = q(t) sin2 θ(t) +
1

p(t)
cos2 θ(t)

and

θ̃′(t) = q̃(t) sin2 θ̃(t) +
1

p̃(t)
cos2 θ̃(t)

≤ q(t) sin2 θ̃(t) +
1

p(t)
cos2 θ̃(t).

Hence, the assertion follows from Proposition 7.4. �

As another consequence of the comparison principle, we obtain the fol-
lowing result:
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Sturm Comparison Theorem. Suppose that 0 < p(t) ≤ p̃(t) and q(t) ≥
q̃(t) for all t ∈ [a, b]. Moreover, suppose that u(t) and ũ(t) are non-trivial
solutions of the Sturm-Liouville equations

d

dt

[
p(t)

d

dt
u(t)

]
+ q(t)u(t) = 0

and
d

dt

[
p̃(t)

d

dt
ũ(t)

]
+ q̃(t) ũ(t) = 0.

If ũ(a) = ũ(b) = 0, then there exists a real number τ ∈ (a, b] and u(τ) = 0.
In other words, between any two zeroes of the function ũ(t) there is at least
one zero of the function u(t).

Proof. As above, we write

p(t)
d

dt
u(t) = r(t) cos θ(t)

u(t) = r(t) sin θ(t)

and

p̃(t) ũ′(t) = r̃(t) cos θ̃(t)

ũ(t) = r̃(t) sin θ̃(t).

We can arrange that θ(a) ∈ [0, π). Moreover, since ũ(a) = 0, we may

assume that θ̃(a) = 0. Since ũ(b) = 0, it follows that θ̃(b) must be an

integer multiple of π. Moreover, θ̃(b) > 0 by Corollary 7.5. Consequently,

θ̃(b) ≥ π. On the other hand, since θ(a) ≥ θ̃(a), it follows from Corollary

7.6 that θ(b) ≥ θ̃(b) ≥ π. Since θ(a) < π, the intermediate value theorem
implies the existence of a real number τ ∈ (a, b] such that θ(τ) = π. This
implies u(τ) = 0, as claimed. �

7.3. Eigenvalues and eigenfunctions of Sturm-Liouville
systems

Suppose that p(t), q(t), and ρ(t) are three functions defined on some time
interval [a, b]. We assume that p(t) and q(t) are continuously differentiable,
and ρ(t) is continuous. Moreover, we assume that p(t) and ρ(t) are positive
for all t ∈ [a, b]. In this section, we will consider the Sturm-Liouville system
of the form

(12)
d

dt

[
p(t)

d

dt
u(t)

]
+ (q(t) + λ ρ(t))u(t) = 0, u(a) = u(b) = 0,

where λ is a constant.
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Definition 7.7. We say that λ is said to be an eigenvalue of the Sturm-
Liouville (12) if the system (12) admits a non-trivial solution. If u(t) is
a non-trivial solution of (12), we say that u(t) is an eigenfunction with
eigenvalue λ.

Our goal in this section is to analyze the eigenvalues of (12). To that
end, we consider an arbitrary number λ ∈ R. It follows from the basic
existence and uniqueness theorem that the initial value problem

d

dt

[
p(t)

d

dt
u(t)

]
+ (q(t) + λ ρ(t))u(t) = 0, u(a) = 0, u′(a) = 1

has a unique solution. We will denote this solution by uλ(t).

Proposition 7.8. A real number λ is an eigenvalue of (12) if and only if
uλ(b) = 0. In this case, the function uλ(t) is an eigenfunction, and any
other eigenfunction is a constant multiple of the function uλ(t).

Proof. Suppose that u(t) is an eigenfunction with eigenvalue λ. The func-
tions u(t) and u′(a)uλ(t) satisfy the same differential equation with the same
initial values. Hence, it follows from the existence and uniqueness theorem
that u(t) = u′(a)uλ(t) for all t ∈ [a, b]. Since u(b) = 0, it follows that
u′(a)uλ(b) = 0. On the other hand, since u(t) is a non-trivial solution, we
must have u′(a) 6= 0. Therefore, uλ(b) = 0, and u(t) is a constant multiple
of u(t). Conversely, if uλ(b) = 0, then the function uλ(t) is an eigenfunction
with eigenvalue λ. �

In order to study the zeroes of the function uλ(t), we use the Prüfer
substitution. Let us write

p(t)
d

dt
uλ(t) = rλ(t) cos θλ(t)

uλ(t) = rλ(t) sin θλ(t),

where θλ(a) = 0. It was shown above that the function θλ(t) satisfies the
differential equation

θ′λ(t) = (q(t) + λ ρ(t)) sin2 θλ(t) +
1

p(t)
cos2 θλ(t).

Using Corollary 7.5, we obtain θλ(t) > 0 for all t ∈ (a, b].

Proposition 7.9. A real number λ is an eigenvalue of (12) if and only if
θλ(b) = πn for some positive integer n.

Proof. By Proposition 7.8, λ is an eigenvalue of (12) if and only if uλ(b) = 0.
This is equivalent to saying that θλ(b) = πn for some integer n. Finally, n
must be a positive integer since θλ(b) > 0. �
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Proposition 7.10. If θλ(b) = πn, then the function uλ(t) has exactly n− 1
zeroes in the interval (a, b).

Proof. For each k ∈ {0, 1, . . . , n}, we define

τk = inf{t ∈ [a, b] : θλ(t) ≥ πk}.
It is easy to see that a = τ0 < τ1 < . . . < τn−1 < τn = b and θλ(t) < πk
for all t ∈ [a, τk). Moreover, θλ(τk) = πk for each k ∈ {0, 1, . . . , n}. Using
Corollary 7.5, we conclude that θλ(t) > πk for all t ∈ (τk, b]. Putting these
facts together, we conclude that πk < θλ(t) < π(k+ 1) for all t ∈ (τk, τk+1).
Consequently, uλ(τk) = 0 and uλ(t) 6= 0 for all t ∈ (τk, τk+1). Therefore, the
function uλ(t) has exactly n− 1 zeroes in the interval (a, b). �

As an example, let us consider the eigenvalue problem

d2

dt2
u(t) + λu(t) = 0, u(a) = u(b) = 0.

In this case, the function uλ(t) is given by

uλ(t) =


1√
λ

sin(
√
λ (t− a)) if λ > 0

t− a if λ = 0
1√
−λ sinh(

√
−λ (t− a)) if λ < 0.

In particular, uλ(b) = 0 if and only if λ is positive and
√
λ (t− a) = πn for

some positive integer n. Therefore, the n-th eigenvalue is given by

λn =
π2n2

(b− a)2
,

and the associated eigenfunction is given by

constant · sin
(
πn

t− a
b− a

)
.

Note that λn = O(n2).

We now return to the general case. In view of Proposition 7.9, the
problem of finding the eigenvalues of (12) comes down to finding all numbers
λ for which θλ(b) = πn, where n is a positive integer. This is a nonlinear
equation in λ. We will show that this equation has exactly one solution for
every positive integer n. This is a consequence of the following theorem:

Theorem 7.11. The function λ 7→ θλ(b) is continuous and strictly increas-
ing. Moreover,

lim
λ→−∞

θλ(b) = 0

and
lim
λ→∞

θλ(b) =∞.
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Proof. The proof involves several steps:

Step 1: Using Theorem 3.6, it is easy to show that the function (λ, t) 7→
θλ(t) is continuous (see also Problem 3.3). In particular, the function λ 7→
θλ(b) is continuous.

Step 2: We next show that the function λ 7→ θλ(b) is strictly increasing.
Suppose that λ and µ are two real numbers such that λ > µ. The function
uλ(t) satisfies the differential equation

d

dt

[
p(t)

d

dt
uλ(t)

]
+ (q(t) + λ ρ(t))uλ(t) = 0.

Similarly, the function uµ(t) satisfies the differential equation

d

dt

[
p(t)

d

dt
uµ(t)

]
+ (q(t) + µρ(t))uµ(t) = 0.

Since λ > µ and ρ(t) is positive, we have

q(t) + λ ρ(t) > q(t) + µρ(t)

for all t ∈ [a, b]. Moreover, θλ(a) = θµ(a) = 0. By Corollary 7.6, we have
θλ(b) ≥ θµ(b). We claim that θλ(b) > θµ(b). Indeed, if θλ(b) = θµ(b),
then Corollary 7.6 implies that θλ(t) = θµ(t) for all t ∈ [a, b]. Using the
differential equations

θ′λ(t) = (q(t) + λ ρ(t)) sin2 θλ(t) +
1

p(t)
cos2 θλ(t)

and

θ′µ(t) = (q(t) + µρ(t)) sin2 θµ(t) +
1

p(t)
cos2 θµ(t),

we conclude that λ = µ, contrary to our assumption. Consequently, θλ(b) >
θµ(b). Therefore, the function λ 7→ θλ(b) is strictly increasing.

Step 3: We now show that limλ→∞ θλ(b) =∞. Suppose that a positive
integer n is given. The function

û(t) = sin
(
πn

t− a
b− a

)
satisfies the differential equation

d

dt

[
pmax

d

dt
û(t)

]
+

π2n2

(b− a)2
pmax û(t) = 0.

Let us write

pmax
d

dt
û(t) = r̂(t) cos θ̂(t)

û(t) = r̂(t) sin θ̂(t),

where θ̂(a) = 0.
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Suppose that λ is chosen such that λ > 0 and

λ ρmin ≥
π2n2

(b− a)2
pmax − qmin.

Then

q(t) + λ ρ(t) ≥ π2n2

(b− a)2
pmax

for all t ∈ [a, b]. Moreover,

p(t) ≤ pmax

for all t ∈ [a, b]. Hence, it follows from Corollary 7.6 that θλ(b) ≥ θ̂(b).

Since û(b) = 0, the number θ̂(b) must be an integer multiple of π. Moreover,
since the function û(t) has exactly n − 1 zeroes between a and b, we have

θ̂(b) = πn by Proposition 7.10. Putting these facts together, we obtain

θλ(b) ≥ θ̂(b) = πn. Since n is arbitrary, we conclude that limλ→∞ θλ(b) =∞.

Step 4: It remains to show that limλ→−∞ θλ(b) = 0. Suppose that a
number ε ∈ (0, π) is given. Let us choose a real number λ such that λ < 0
and

(qmax + λ ρmin) sin2 ε+
1

pmin
cos2 ε < 0.

We claim that θλ(b) ≤ ε. Suppose this is false. In this case, we define

τ = inf{t ∈ (a, b] : θλ(b) > ε}.

Clearly, θλ(τ) = ε and θ′λ(τ) ≥ 0. On the other hand,

θ′λ(τ) = (q(τ) + λ ρ(τ)) sin2 θλ(τ) +
1

p(τ)
cos2 θλ(τ)

= (q(τ) + λ ρ(τ)) sin2 ε+
1

p(τ)
cos2 ε

≤ (qmax + λ ρmin) sin2 ε+
1

pmin
cos2 ε

< 0

by our choice of λ. This is a contradiction. Consequently, θλ(b) ≤ ε. Since
ε > 0 can be chosen arbitrarily small, we conclude that limλ→−∞ θλ(b) = 0.
This completes the proof of Theorem 7.11. �

Theorem 7.12. There exists an increasing sequence of real numbers λ1 <
λ2 < . . . with the following properties:

(i) The real number λn is the unique solution of the equation θλ(b) =
πn.

(ii) λn →∞ as n→∞.

(iii) A real number λ is an eigenvalue if and only if there exists a positive
integer n such that λ = λn.
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(iv) For every positive integer n, the function uλn(t) is an eigenfunction
with eigenvalue λn. Moreover, the function uλn(t) has exactly n−1
zeroes in the open interval (a, b).

Proof. Let n be a positive integer. It follows from Theorem 7.11 that
limλ→−∞ θλ(b) = 0 and limλ→∞ θλ(b) = ∞. Hence, by the intermediate
value theorem, there exists a real number λn such that θλn(b) = πn. Since
the function λ 7→ θλ(b) is strictly increasing, we have θλ(b) < πn for λ < λn
and θλ(b) > πn for λ > λn. Therefore, λn is the only solution of the equation
θλ(b) = πn. This proves (i).

In order to prove (ii), we observe that θλn(b) = πn by definition of
λn. This implies limn→∞ θλn(b) = ∞. Since the function λ 7→ θλn(b) is
continuous, this can only happen if limn→∞ λn =∞.

Finally, (iii) and (iv) follow immediately from Proposition 7.9 and Propo-
sition 7.10. This completes the proof of Theorem 7.12.

�

7.4. The Liouville normal form

Consider the eigenvalue problem

(13)
d

dt

[
p(t)

d

dt
u(t)

]
+ (q(t) + λ ρ(t))u(t) = 0, u(a) = u(b) = 0.

We continue to assume that p(t), ρ(t) > 0. We say that a system is in
Liouville normal form if p(t) = ρ(t) = 1 for all t ∈ [a, b].

We claim that every system is equivalent to one that is in Liouville
normal form. To explain this, let

T =

∫ b

a

√
ρ(s)

p(s)
ds.

We then consider the system

(14)
d2

dτ2
w(τ) + (Q(τ) + λ)w(τ) = 0, w(0) = w(T ) = 0,

where Q : [0, T ]→ R is defined by

Q

(∫ t

a

√
ρ(s)

p(s)
ds

)
= ρ(t)−1

{
q(t) + (p(t) ρ(t))

1
4
d

dt

[
p(t)

d

dt
(p(t) ρ(t))−

1
4

]}
.

The systems (13) and (14) are equivalent in the following sense:
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Theorem 7.13. Suppose that u : [a, b] → R and w : [0, T ] → R are related
by

u(t) = (p(t)ρ(t))−
1
4 w

(∫ t

a

√
ρ(s)

p(s)
ds

)
.

Then u is a solution of (13) if and only if w is a solution of (14).

Proof. Differentiating the identity

u(t) = (p(t)ρ(t))−
1
4 w

(∫ t

a

√
ρ(s)

p(s)
ds

)

with respect to t gives

p(t)
d

dt
u(t) = (p(t)ρ(t))

1
4
d

dτ
w

(∫ t

a

√
ρ(s)

p(s)
ds

)

+ p(t)
d

dt
(p(t)ρ(t))−

1
4 w

(∫ t

a

√
ρ(s)

p(s)
ds

)
.

This implies

d

dt

[
p(t)

d

dt
u(t)

]
= ρ(t) (p(t)ρ(t))−

1
4
d2

dτ2
w

(∫ t

a

√
ρ(s)

p(s)
ds

)

+
d

dt
(p(t)ρ(t))

1
4
d

dτ
w

(∫ t

a

√
ρ(s)

p(s)
ds

)

+ (p(t)ρ(t))
1
2
d

dt
(p(t)ρ(t))−

1
4
d

dτ
w

(∫ t

a

√
ρ(s)

p(s)
ds

)

+
d

dt

[
p(t)

d

dt
(p(t)ρ(t))−

1
4

]
w

(∫ t

a

√
ρ(s)

p(s)
ds

)

= ρ(t) (p(t)ρ(t))−
1
4
d2

dτ2
w

(∫ t

a

√
ρ(s)

p(s)
ds

)

+
d

dt

[
p(t)

d

dt
(p(t)ρ(t))−

1
4

]
w

(∫ t

a

√
ρ(s)

p(s)
ds

)
.
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Therefore, we obtain

d

dt

[
p(t)

d

dt
u(t)

]
+ q(t)u(t)

= ρ(t) (p(t)ρ(t))−
1
4
d2

dτ2
w

(∫ t

a

√
ρ(s)

p(s)
ds

)

+ ρ(t) (p(t)ρ(t))−
1
4 Q

(∫ t

a

√
ρ(s)

p(s)
ds

)
w

(∫ t

a

√
ρ(s)

p(s)
ds

)
.

From this, the assertion follows easily. �

In other words, the two systems (13) and (14) have the same eigenvalues,
and there is a one-to-one correspondence between eigenfunctions of (13) and
eigenfunctions of (14).

7.5. Asymptotic behavior of eigenvalues of a Sturm-Liouville
system

In this section, we analyze the asymptotic behavior of the eigenvalues of
a Sturm-Liouville system. We first consider a system which is in Liouville
normal form:

Proposition 7.14. Consider the system

d2

dt2
u(t) + (q(t) + λ)u(t) = 0, u(a) = u(b) = 0.

The n-th eigenvalue of this system can be bounded by

π2n2

(b− a)2
− qmax ≤ λn ≤

π2n2

(b− a)2
− qmin.

Proof. As before, we denote by uλ(t) the unique solution of the initial value
problem

d2

dt2
u(t) + (q(t) + λ)u(t) = 0, u(a) = 0, u′(a) = 1.

As usual, we write

d

dt
uλ(t) = rλ(t) cos θλ(t)

uλ(t) = rλ(t) sin θλ(t),

where θλ(a) = 0. Moreover, we consider the function

û(t) = sin
(
πn

t− a
b− a

)
.
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The function û(t) is a solution of the Sturm-Liouville equation

d2

dt2
û(t) +

π2n2

(b− a)2
û(t) = 0.

We may write

d

dt
û(t) = r̂(t) cos θ̂(t)

û(t) = r̂(t) sin θ̂(t),

where θ̂(a) = 0.

We first define

λ =
π2n2

(b− a)2
− qmax ≥ 0.

Then

q(t) + λ ≤ π2n2

(b− a)2

for all t ∈ [a, b]. Hence, Corollary 7.6 implies that θλ(t) ≤ θ̂(t) for all
t ∈ [a, b]. In particular,

θλ(b) ≤ θ̂(b) = πn = θλn(b).

Since the function λ 7→ θλ(b) is strictly monotone increasing, we conclude
that

λn ≥ λ =
π2n2

(b− a)2
− qmax.

In the next step, we define

λ =
π2n2

(b− a)2
− qmin.

Then

q(t) + λ ≥ π2n2

(b− a)2

for all t ∈ [a, b]. By Corollary 7.6, we have θλ(t) ≥ θ̂(t) for all t ∈ [a, b].
Hence, we obtain

θλ(b) ≥ θ̂(b) = πn = θλn(b).

Since the function λ 7→ θλ(b) is strictly monotone increasing, we conclude
that

λn ≤ λ =
π2n2

(b− a)2
− qmin.

This completes the proof of Proposition 7.14. �
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Corollary 7.15. Consider the system

d2

dt2
u(t) + (q(t) + λ)u(t) = 0, u(a) = u(b) = 0.

If λn denotes the n-th eigenvalue of this system, then

λn =
π2n2

(b− a)2
+O(1).

Combining Corollary 7.15 with Theorem 7.13, we can draw the following
conclusion:

Theorem 7.16. Consider the system

d

dt

[
p(t)

d

dt
u(t)

]
+ (q(t) + λ ρ(t))u(t) = 0, u(a) = u(b) = 0.

Let λn be the n-th eigenvalue of this system. Then

λn =
π2n2

T 2
+O(1),

where

T =

∫ b

a

√
ρ(t)

p(t)
dt.

7.6. Asymptotic behavior of eigenfunctions

We now analyze the asymptotic behavior of the n-th eigenfunction of a
Sturm-Liouville system. In view of the discussion above, it suffices to con-
sider systems in Liouville normal form.

Proposition 7.17. Suppose that u : [a, b]→ R is a solution of the equation

d2

dt2
u(t) + (q(t) + λ)u(t) = 0

with u(a) = 0. Moreover, suppose that u is normalized such that∫ b

a
u(t)2 dt = 1.

If λ is large, then

u(t) = ±
√

2

b− a
sin(
√
λ (t− a)) +O

( 1√
λ

)
.

Proof. Let us fix a large number λ > 0. The differential equation

d2

dt2
u(t) + (q(t) + λ)u(t) = 0
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can be rewritten as

(15)
d

dt

[
λ−

1
2
d

dt
u(t)

]
+ (λ−

1
2 q(t) + λ

1
2 )u(t) = 0.

We now perform a Prüfer substitution for (15). In other words, we write

λ−
1
2
d

dt
u(t) = r(t) cos θ(t)

u(t) = r(t) sin θ(t),

where θ(a) = 0. Without loss of generality, we may assume that r(a) > 0.
(Otherwise, we replace u(t) by −u(t).) The functions r(t) and θ(t) satisfy
the differential equations

r′(t) = −λ−
1
2 q(t) r(t) cos θ(t) sin θ(t)

and

θ′(t) = (λ−
1
2 q(t) + λ

1
2 ) sin2 θ(t) + λ

1
2 cos2 θ(t).

This implies

d

dt
log r(t) = −λ−

1
2 q(t) cos θ(t) sin θ(t)

and
d

dt
(θ(t)− λ

1
2 t) = λ−

1
2 q(t).

Consequently, ∣∣∣ d
dt

log r(t)
∣∣∣ ≤ C1 λ

− 1
2

and ∣∣∣ d
dt

(θ(t)− λ
1
2 t)
∣∣∣ ≤ C1 λ

− 1
2 ,

where C1 = supt∈[a,b] |q(t)|. Integrating these inequalities gives∣∣∣ log
r(t)

r(a)

∣∣∣ ≤ C2 λ
− 1

2

and

|θ(t)− λ
1
2 (t− a)| ≤ C2 λ

− 1
2

for all t ∈ [a, b]. This implies∣∣∣ r(t)
r(a)

− 1
∣∣∣ ≤ C3 λ

− 1
2

and

| sin θ(t)− sin(λ
1
2 (t− a))| ≤ C3 λ

− 1
2
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for all t ∈ [a, b]. Putting these facts together, we obtain∣∣∣ 1

r(a)
u(t)− sin(λ

1
2 (t− a))

∣∣∣ =
∣∣∣ r(t)
r(a)

sin θ(t)− sin(λ
1
2 (t− a))

∣∣∣
≤
∣∣∣ r(t)
r(a)

− 1
∣∣∣+ | sin θ(t)− sin(λ

1
2 (t− a))|(16)

≤ 2C3 λ
− 1

2 .

We now estimate the term r(a). To that end, we observe that∣∣∣ 1

r(a)2
u(t)2 − sin2(λ

1
2 (t− a))

∣∣∣ ≤ 8C3 λ
− 1

2

for all t ∈ [a, b]. We now integrate this inequality over the interval [a, b].
Using the identities ∫ b

a
u(t)2 dt = 1

and∫ b

a
sin2(λ

1
2 (t− a)) dt =

b− a
2
− 1

2λ
1
2

cos(λ
1
2 (b− a)) sin(λ

1
2 (b− a)),

we obtain ∣∣∣ 1

r(a)2
− b− a

2

∣∣∣ ≤ C4 λ
− 1

2 .

Consequently, ∣∣∣r(a)−
√

2

b− a

∣∣∣ ≤ C5 λ
− 1

2 .

In particular, r(a) ≤ C6, where C6 is a uniform constant that does not
depend on λ. Using (16), we obtain

|u(t)− r(a) sin(λ
1
2 (t− a))| ≤ C7 λ

− 1
2 ,

hence ∣∣∣u(t)−
√

2

b− a
sin(λ

1
2 (t− a))

∣∣∣ ≤ C8 λ
− 1

2 .

This completes the proof. �

Corollary 7.18. Consider the system

d2

dt2
u(t) + (q(t) + λ)u(t) = 0, u(a) = u(b) = 0.

Let λn be the n-th eigenvalue of this system. Moreover, suppose that un is
the corresponding eigenfunction, normalized such that∫ b

a
un(t)2 dt = 1.
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For n large, we have the asymptotic expansion

un(t) = ±
√

2

b− a
sin
(
πn

t− a
b− a

)
+O

( 1

n

)
.

Proof. By Proposition 7.17,

un(t) = ±
√

2

b− a
sin(

√
λn (t− a)) +O

( 1√
λn

)
.

Moreover, it follows from Corollary 7.15 that√
λn =

πn

b− a
+O

( 1

n

)
.

Putting these facts together, the assertion follows. �

Combining Corollary 7.18 with Theorem 7.13, we can draw the following
conclusion:

Theorem 7.19. Consider the system

d

dt

[
p(t)

d

dt
u(t)

]
+ (q(t) + λ ρ(t))u(t) = 0, u(a) = u(b) = 0.

Let λn be the n-th eigenvalue of this system. Moreover, suppose that un is
the corresponding eigenfunction, normalized such that∫ b

a
ρ(t)un(t)2 dt = 1.

For n large, we have

un(t) = ±
√

2

T
(p(t)ρ(t))−

1
4 sin

(
πn

T

∫ t

a

√
ρ(s)

p(s)
ds

)
+O

( 1

n

)
,

where

T =

∫ b

a

√
ρ(s)

p(s)
ds.

Proof. We may write

un(t) = (p(t)ρ(t))−
1
4 wn

(∫ t

a

√
ρ(s)

p(s)
ds

)
for some function wn : [0, T ]→ R. The function wn satisfies

d2

dτ2
wn(τ) + (Q(τ) + λn)wn(τ) = 0, wn(0) = wn(T ) = 0.
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Using the substitution rule, we obtain

∫ T

0
wn(τ)2 dτ =

∫ b

a

√
ρ(t)

p(t)
wn

(∫ t

a

√
ρ(s)

p(s)
ds

)2

dt

=

∫ b

a
ρ(t)un(t)2 dt

= 1.

By Corollary 7.18, the function wn satisfies

wn(τ) = ±
√

2

T
sin
(πn
T
τ
)

+O
( 1

n

)
for n large. Thus,

un(t) = ±
√

2

T
(p(t)ρ(t))−

1
4 sin

(
πn

T

∫ t

a

√
ρ(s)

p(s)
ds

)
+O

( 1

n

)
for n large. �

7.7. Orthogonality and completeness of eigenfunctions

Let us consider a Sturm-Liouville system of the form

d2

dt2
u(t) + (q(t) + λ)u(t) = 0, u(a) = u(b) = 0.

Let us denote by λ1 < λ2 < . . . the eigenvalues of this Sturm-Liouville
system, and let u1(t), u2(t), . . . denote the associated eigenfunctions. We
assume that the eigenfunctions are normalized such that∫ b

a
un(t)2 dt = 1

for all n.

Proposition 7.20. We have∫ b

a
um(t)un(t) dt = 0

for m 6= n.
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Proof. We compute

0 =

∫ b

a

d

dt

(
um(t)

d

dt
un(t)− un(t)

d

dt
um(t)

)
dt

=

∫ b

a

(
um(t)

d2

dt2
un(t)− un(t)

d2

dt2
um(t)

)
dt

=

∫ b

a
(λm − λn)um(t)un(t) dt.

Since λm 6= λn, the assertion follows. �

Corollary 7.21. For every continuous function v, we have
∞∑
n=1

(∫ b

a
un(t) v(t) dt

)2

≤
∫ b

a
v(t)2 dt.

Proof. Let

w = v −
m∑
n=1

(∫ b

a
un(t) v(t) dt

)
un.

Then

0 ≤
∫ b

a
w(t)2 dt =

∫ b

a
v(t)2 dt−

m∑
n=1

(∫ b

a
un(t) v(t) dt

)2

.

Since m is arbitrary, the assertion follows. �

In the remainder of this section, we establish a completeness property
of the set of eigenfunctions. More precisely, we will show that∫ b

a
v(t)2 dt =

∞∑
n=m+1

(∫ b

a
un(t) v(t) dt

)2

for every continuous function v. In order to prove this, we will follow the
arguments in Birkhoff and Rota’s book [2]. Let

ûn(t) =

√
2

b− a
sin
(
πn

t− a
b− a

)
.

It is a well known fact that every continuous function on the interval [a, b] can
be represented by a Fourier series. Moreover, for every continuous function
v we have ∫ b

a
v(t)2 dt =

∞∑
n=m+1

(∫ b

a
ûn(t) v(t) dt

)2

.

This relation is known as Parseval’s identity. Moreover, Corollary 7.18 im-
plies that ∫ b

a
(un(t)− ûn(t))2 dt = O

( 1

n2

)
,
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hence
∞∑
n=1

∫ b

a
(un(t)− ûn(t))2 dt <∞.

Proposition 7.22. Fix an integer m such that
∞∑

n=m+1

∫ b

a
(un(t)− ûn(t))2 dt ≤ 1

4
.

Moreover, suppose that v is a function satisfying∫ b

a
ûn(t) v(t) dt = 0

for n = 1, . . . ,m. Then∫ b

a
v(t)2 dt ≤ 4

∞∑
n=m+1

(∫ b

a
un(t) v(t) dt

)2

.

Proof. Using Parseval’s identity for Fourier series, we obtain∫ b

a
v(t)2 dt =

∞∑
n=m+1

(∫ b

a
ûn(t) v(t) dt

)2

≤ 2
∞∑

n=m+1

(∫ b

a
un(t) v(t) dt

)2

+ 2
∞∑

n=m+1

(∫ b

a
(un(t)− ûn(t)) v(t) dt

)2

≤ 2

∞∑
n=m+1

(∫ b

a
un(t) v(t) dt

)2

+ 2

∞∑
n=m+1

(∫ b

a
(un(t)− ûn(t))2 dt

)(∫ b

a
v(t)2 dt

)

≤ 2
∞∑

n=m+1

(∫ b

a
un(t) v(t) dt

)2

+
1

2

∫ b

a
v(t)2 dt.

From this, the assertion follows. �

Corollary 7.23. Fix an integer m such that
∞∑

n=m+1

∫ b

a
(un(t)− ûn(t))2 dt ≤ 1

4
.

Moreover, suppose that v ∈ span{u1, . . . , um} is a function satisfying∫ b

a
ûn(t) v(t) dt = 0
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for n = 1, . . . ,m. Then v = 0.

Proposition 7.24. Fix a continuous function v and a real number ε > 0.
Then there exists an integer m > 0 and a function w ∈ span{u1, . . . , um}
such that ∫ b

a
(v(t)− w(t))2 dt ≤ ε.

Proof. Let us fix an integer m such that

∞∑
n=m+1

∫ b

a
(un(t)− ûn(t))2 dt ≤ 1

4

and
∞∑

n=m+1

(∫ b

a
un(t) v(t) dt

)2

≤ ε

4
.

By Corollary 7.23, we can find a function w ∈ span{u1, . . . , um} such that∫ b

a
ûn(t) (v(t)− w(t)) dt = 0

for n = 1, . . . ,m. Using Proposition 7.22, we obtain∫ b

a
(v(t)− w(t))2 dt ≤ 4

∞∑
n=m+1

(∫ b

a
un(t) (v(t)− w(t)) dt

)2

= 4

∞∑
n=m+1

(∫ b

a
un(t) v(t) dt

)2

≤ ε,

as claimed. �

Corollary 7.25. For every continuous function v, we have

∞∑
n=1

(∫ b

a
un(t) v(t) dt

)2

=

∫ b

a
v(t)2 dt.

Proof. Given any ε > 0, we can find an integer m > 0 and a function
w ∈ span{u1, . . . , um} such that

m∑
n=1

(∫ b

a
un(t) (v(t)− w(t)) dt

)2

≤
∫ b

a
(v(t)− w(t))2 dt ≤ ε.
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This gives √∫ b

a
v(t)2 dt ≤

√∫ b

a
w(t)2 dt+

√
ε

=

√√√√ m∑
n=1

(∫ b

a
un(t)w(t) dt

)2

+
√
ε

≤

√√√√ m∑
n=1

(∫ b

a
un(t) v(t) dt

)2

+ 2
√
ε.

Since ε > 0 is arbitrary, the asserion follows. �

Combining Corollary 7.18 with Theorem 7.13, we obtain the following
result:

Theorem 7.26. Consider the system

d

dt

[
p(t)

d

dt
u(t)

]
+ (q(t) + λ ρ(t))u(t) = 0, u(a) = u(b) = 0.

Let λn be the n-th eigenvalue of this system. Moreover, suppose that un is
the corresponding eigenfunction, normalized such that∫ b

a
ρ(t)un(t)2 dt = 1.

Then
∞∑
n=1

(∫ b

a
ρ(t)un(t) v(t) dt

)2

=

∫ b

a
ρ(t) v(t)2 dt

for every continuous function v.

7.8. Problems

Problem 7.1. Suppose that a and b are real numbers such that a < b. For
which real numbers λ does the boundary value problem

d2

dt2
u(t) + λu(t) = 0, u(a) = u′(b) = 0

have a non-trivial solution?

Problem 7.2. Let a and b be two real numbers such that a < b, and let
q(t) be a continuous function defined on [a, b]. Suppose that the boundary
value problem

d2

dt2
u(t) + (q(t) + λ)u(t) = 0, u(a) = u′(b) = 0
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has a non-trivial solution u(t). Moreover, suppose that q(t) ≤ 0 for all

t ∈ [a, b]. Show that λ ≥ π2

4(b−a)2
.

Problem 7.3. Let T =
∫ b
a

√
ρ(s)
p(s) ds. Moreover, suppose that u : [a, b]→ R

and w : [0, T ]→ R are related by

u(t) = (p(t)ρ(t))−
1
4 w

(∫ t

a

√
ρ(s)

p(s)
ds

)
.

Show that ∫ b

a
ρ(t)u(t)2 dt =

∫ T

0
w(τ)2 dτ.

Problem 7.4. This problem is concerned with a generalization of Proposi-
tion 7.20. Suppose that u(t) is a solution of the Sturm-Liouville system

d

dt

[
p(t)

d

dt
u(t)

]
+ (q(t) + λ ρ(t))u(t) = 0, u(a) = u(b) = 0.

Moreover, let v(t) be a solution of the Sturm-Liouville system

d

dt

[
p(t)

d

dt
v(t)

]
+ (q(t) + µρ(t)) v(t) = 0, v(a) = v(b) = 0.

Show that ∫ b

a
ρ(t)u(t) v(t) dt = 0

if λ 6= µ.

Problem 7.5. Suppose that u(t) is a solution of the Sturm-Liouville system

d

dt

[
p(t)

d

dt
u(t)

]
+ (q(t) + λ ρ(t))u(t) = 0, u(a) = u(b) = 0.

We assume that p(t), q(t), and ρ(t) are real-valued functions, and p(t), ρ(t) >
0. Finally, we assume that λ is a complex number with Im(λ) 6= 0. Show
that u vanishes identically.

Problem 7.6. Let p(t) and q(t) be positive functions on [a, b] with the prop-
erty that the product p(t)q(t) is monotone increasing. Moreover, suppose
that u(t) is a solution of the differential equation

d

dt

[
p(t)

d

dt
u(t)

]
+ q(t)u(t) = 0.

Finally, let tk be an increasing sequence of times such that u attains a local
extremum at tk. Show that the sequence u(tk)

2 is monotone decreasing. This
result is known as the Sonin-Pólya-Butlewski theorem. (Hint: Consider the

function u(t)2 + p(t)u′(t)2

q(t) .)





Bibliography

[1] H. Amann, Ordinary differential equations: an introduction to nonlinear analysis,
Walter de Gruyter, Berlin, 1990

[2] G. Birkhoff and G.-C. Rota, Ordinary differential equations, 4th edition, Wiley, New
York, 1989

[3] M.W. Hirsch, S. Smale, and R.L. Devaney, Differential equations, dynamical systems,
and an introduction to chaos, 2nd edition, Elsevier/Academic Press, Amsterdam,
2004

[4] L. Perko, Differential equations and dynamical systems, 3rd edition, Springer-Verlag,
New York, 2001

[5] S. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology,
chemistry, and engineering, Perseus Book Publishing, 1994

[6] G. Teschl, Ordinary differential equations and dynamical systems, Graduate Studies
of Mathematics, vol. 140, American Mathematical Society, Providence RI, 2012

115


