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Nothing here is original, everything is from the two books by B. Perthame, ”Transport
equations in biology” and ”Parabolic equations in biology”.

1 Basic models

Bernoulli (1760): an estimate of how many lives could be saved immunizations from smallpox.
The simplest ODE model comes from Maltus (1798):

dN

dt
= αN(t). (1.1)

Here, α is the growth rate. This is approximately valid at an early stage of the population
growth for any model of the type

dN

dt
= f(N(t)),

with α = f ′(0).
The next level is the logistic model introduced by P.-F. Verhulst (mid 19th century):

dN

dt
= αN(t)(K −N(t)). (1.2)

Here, K is the carrying capacity of the environment. The steady states are N = 0 – unstable,
and N = K – stable:

lim
t→∞

N(t) = K.

A more realistic modification to account for the fact that at small population size there is
no growth: the Allee effect (1931):

dN

dt
= αN(t)(1− N(t)

K−
)(
N(t)

K+

− 1). (1.3)

Now, if N(0) < K− then N(t) → 0 as t → +∞, and if N(0) > K− then N(t) → K+ as
t → +∞. The steady states N = 0 and N = K+ stable – this is the bistable nonlinearity
type.
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The spatial versions: the Fisher-KPP equation

∂n

∂t
−∆n = αn(t, x)(K − n(t, x)), (1.4)

the Allen-Cahn (also called bistable) equation

∂n

∂t
−∆n = αn(t, x)(1− n(t, x))(n(t, x)− s), (1.5)

with 0 < s < 1. General reaction-diffusion equation:

∂n

∂t
−∆n = f(n), (1.6)

with f(0) = 0. Traveling wave solutions: n(t, x) = Φ(x− ct):

−cΦ′ − Φ′′ = f(Φ), Φ(−∞) = Φ−, Φ(+∞) = Φ+, (1.7)

where f(Φ−) = f(Φ+) = 0. Assume without loss of generality that Φ− = 1, Φ+ = 0. Then
multiply (1.7) by Φ′ and integrate:

−c
ˆ
−∞

(Φ′)2dx =

ˆ ∞
−∞

f(Φ)Φ′dx = −
ˆ 1

0

f(u)du. (1.8)

Thus, the speed c has the same sign as

ˆ 1

0

f(u)du.

In particular, if both n = 0 and n = 1 are stable steady states of f then the state n = 1
invades the state n = 0 (that is, c > 0) if the above integral is positive. Otherwise, the state
n = 0 invades the state n = 1 (c < 0).

The Lotka-Volterra systems

The simplest Lotka-Volterra system (1926) is a 2× 2 system for the population F (t) of prey
(food) and P (t) of predators:

dF

dt
= α(t)F − r(t)F, dP

dt
= α1(t)P − µ(t)P. (1.9)

Here, α and α1 are the growth rates of the prey and predators, respectively, r and µ are the
corresponding death rates. The basic assumptions of the Lotka-Volterra models are:

α(t) = const, d(t) = βP (t), α1(t) = γF (t), µ(t) = const. (1.10)

Here, β and γ are constants. This leads to the system

dF

dt
= αF − βFP, dP

dt
= γFP − µP. (1.11)
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The (non-zero) equilibrium state is

F̄ =
µ

γ
, P̄ =

α

β
.

Let us add external hunting or fishing: this means that α′ = α− ε, µ′ = µ+ ε, and gives( P̄
F̄

)
nofishing

=
α

µ

γ

β
,
( P̄
F̄

)
fishing

=
α− ε
µ+ ε

γ

β
. (1.12)

We conclude that fishing leads to a smaller fraction of predators among all fish. This was
experimentally verified by D’Ancona during World War I in the Mediterranean when fishing
went significantly down.

The long time behavior of the Lotka-Volterra system (1.11) is rather simple.

Proposition 1.1 If F (0) > 0 and P (0) > 0, then F (t) > 0 and P (t) > 0 for all t > 0, and
the solution (F (t), P (t)) is periodic in time.

Proof. Write F (t) = eφ(t) and P (t) = eψ(t) (positivity of F and P (t) is an exercise), then

dφ

dt
= α− βeψ = −∂H

∂ψ
,
dψ

dt
= γeφ − µ =

∂H

∂φ
, (1.13)

with
H(φ, ψ) = βeψ − αψ + γeφ − µφ

It follows that the function H(φ, ψ) satisfies

H(φ(t), ψ(t)) = H(φ(0), ψ(0)).

The function H is bounded from below and satisfies

H(s, u)→ +∞ as (s, u)→∞.

Therefore, its level sets are closed curves, except for one which is just the equilibrium point
which is the minimum of H. In addition, on each level set (except for the equilibrium point)
the velocity never vanishes. Thus, all trajectories are periodic. 2

The periodic behavior of the Lotka-Volterra system is not very generic but nevertheless
interesting.

The chemostat: several nutrients

A chemostat contains nutrients Si, i = 1, . . . , I, and a micro-organism which uses the nutrients
to grow. The balance system is as follows:

dSi
dt

= R[S0i − Si(t)]− Si(t)ηin(t), i = 1, . . . , I, (1.14)

dn

dt
= n(t)

( I∑
i=1

ηiSi(t)−R).
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Here, S0i is the influx of pure nutrients into the chemostat, and R is the outflow rate for
the mixture of the nutrient and the micro-organism. The two quadratic terms represent the
consumption of the nutrients and the growth of the micro-organism.

The steady state (S̄i, n̄) of (1.14) is unique: it is determined by

I∑
i=1

ηiS̄i = R, RS0i = S̄i(R + ηin̄),

hence n̄ is the unique solution of
I∑
i=1

ηiS0i

R + ηin̄
= 1. (1.15)

A necessary and sufficient condition for the steady state to exist is, therefore:

I∑
i=1

S0iηi > R. (1.16)

In particular, if R is large – violates (1.16) – then there is no steady state. This is because a
strong flow will take all micro-organisms away, and they will not have a chance to grow. The
long time behavior of the solutions is given by the following.

Proposition 1.2 Proof. Let us assume that n(0) > 0 and Si(0) > 0 for all i = 1, . . . , I.
(i) If

∑I
i=1 S0iηi < R (no steady state exists) then n(t)→ 0 and Si(t)→ S0i as t→ +∞.

(ii) If
∑I

i=1 S0iηi > R (a steady state exists) then n(t)→ n̄ and Si(t)→ S̄i as t→ +∞.

Proof. Let us define the total mass:

M(t) = n(t) +
I∑
i=1

Si(t).

It satisfies a simple ODE

dM

dt
= R

( I∑
i=1

S0i −M(t)), (1.17)

thus

M(t) =
I∑
i=1

S0i + n0e
−Rt, n0 = M(0)−

I∑
i=1

S0i. (1.18)

Next, observe that
d

dt
(Si(t)− S0i) ≤ −R(Si(t)− S0i), (1.19)

hence
Si(t) ≤ S0i + (Si(0)− S0i)e

−Rt. (1.20)

To prove part (i) we now observe that (1.20) implies that for large t we have

n∑
i=1

ηiSi(t) ≤
n∑
i=1

ηiS0i + C1e
−Rt < R− ε0

2
, (1.21)
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where

ε0 = R−
I∑
i=1

S0i.

It follows that there exists T > 0 so that for all t > T we have

dn

dt
≤ −ε0

2
n,

thus n(t)→ 0 as t→ +∞. Going back to (1.18) and (1.20) we see that

I∑
i=1

S0i +
I∑
i=1

(Si(0)− S0i)e
−Rt ≥

I∑
i=1

Si(t) =
I∑
i=1

S0i + n0e
−Rt − n(t).

It follows that

lim
t→∞

I∑
i=1

Si(t) =
I∑
i=1

S0i.

Together with (1.20), we see that Si(t)→ S0i as t→ +∞ for all i = 1, . . . , I.
To prove (ii) we will only show that

lim inf
t→∞

n(t) ≥ n̄. (1.22)

The rest is proved similarly, as will be seen from the proof. First, we show that for any ε > 0
there exists a time Tε so that if t > Tε and n(t) < n1 − ε, then

dn(t)

dt
>
ε

2
n(t)

I∑
i=1

ηi. (1.23)

Here, we have defined

n1 =
(∑

ηi

)−1(∑
ηiS0i −R

)
. (1.24)

Indeed, if n(t) < n1 − ε, and t is sufficiently large, then, using (1.18) gives

I∑
i=1

Si(t) =
I∑
i=1

S0i + n0e
−Rt − n(t) ≥

I∑
i=1

S0i − n1 + ε, (1.25)

thus
I∑
i=1

(S0i − Si(t)) ≤ n1 − ε. (1.26)

Once again, recalling (1.20), we see that if t is sufficiently large, then (1.26) implies that for
each i we must have

Si(t) ≥ S0i − n1 +
ε

2
. (1.27)

Therefore,
I∑
i=1

ηiSi(t) ≥
I∑
i=1

ηiS0i − n1

∑
ηi +

ε

2

∑
ηi = R +

ε

2

∑
ηi. (1.28)
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Now, (1.23) follows, and, as a consequence, we conclude that

lim inf
t→∞

n(t) ≥ n1. (1.29)

If n1 > n̄, then we are done. Otherwise, we go back to the equation for Si:

dSi
dt

= R[S0i − Si(t)]− Si(t)ηin(t). (1.30)

It follows from (1.29) that for each ε > 0 there exists Tε so that for all t > Tε we have

dSi
dt
≤ R[S0i − Si(t)]− Si(t)ηi(n1 − ε). (1.31)

Hence, if at some time t > Tε we have

Si(t) > 100ε+
RS0i

R + ηin1

,

then, with some positive c > 0 (which depends on R, n1 and ηi) we have

dSi
dt

< −cεSi.

Therefore, we know that

lim sup
t→∞

Si(t) ≤ S1i =
RS0i

R + ηin1

< S0i. (1.32)

Returning to (1.18)

n(t) +
I∑
i=1

Si(t) =
I∑
i=1

S0i + n0e
−Rt, (1.33)

we see that

lim inf
t→∞

n(t) ≥
I∑
i=1

[S0i − S1i] = n2 = n1

∑
i

ηiS0i

R + η1n1

> n1. (1.34)

The last inequality above follows from our assumption

I∑
i=1

ηiS0i > R.

We may now iterate the above argument, showing that

lim inf
t→∞

n(t) ≥ nk, (1.35)

with the sequence nk defined iteratively as

nk+1 = nk

I∑
i=1

ηiS0i

R + η1nk
> nk.

6



It is immediate to see that the increasing sequence nk converges to n̄. The upper bound

lim sup
t→+∞

n(t) ≤ n̄

is proved similarly, hence
lim
t→+∞

n(t) = n̄.

Convergence of Si(t) to S̄i then follows also by a similar argument (one can see its elements
in the passage from n1 to n2 above). 2

Chemostat: several micro-organisms

We have looked above at a chemostat with several nutrients and one micro-organism. Let
us now consider a chemostat with a single nutrient and several micro-organisms competing
for this resource. We will assume that the ability of each micro-organism to use the nutrient
depends only on the nutrient concentration. Then the system for the nutrient concentration
S(t) and the micro-organism densities Ni(t) is

Ṡ(t) = R(S0 − S)−
I∑
j=1

ηj(S)Nj, (1.36)

Ṅi(t) = Ni(ηj(S)−R).

As before, R is the dilution rate of the input flow, and S0 is the concentration of the input
nutrient.

We will make the following assumptions:

ηj(S) are increasing in S, η′(S) ≥ α > 0, and ηj(S0) > R for all i, (1.37)

and that
all η−1

j (R) are different. (1.38)

In a steady state we must have either Nj = 0 or ηj(S) = R, for all j. Assumption (1.38)
means that there are I + 1 steady states: a trivial one where all Nj = 0 and S = S0, and I
steady states which have just one non-zero Nm for some m, and S = η−1

m (R), that is, they
have the form

N = (0, . . . , 0, N̄m, 0, . . . , 0), S̄ = η−1
m (R), N̄m = S0 − η−1

m (R). (1.39)

That is, each steady state contains just one micro-organism. One may ask, which of the
steady states is selected as the long time limit of the solution of the ODE system. Let us
define i0 is the minimizer of η−1

i (R), that is,

η−1
i0

(R) = S∗ := min
1≤i≤I

η−1
i (R).

In other words, i0 corresponds to the equilibrium which has the smallest amount of nutrient
left, or, somewhat equivalently, this micro-organism is most efficient in consuming the nutrient
(at least in the equilibrium). The next theorem shows the selection principle – this ”most
efficient” micro-organism will be selected in the long time limit.
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Theorem 1.3 Assume that (1.38) and (1.39) hold. Then Ni(t) → 0 as t → +∞ for all
i 6= i0, and Ni0(t)→ N̄∗i0 = S0 − S∗ and S(t)→ S∗ as t→ +∞.

Proof. First, we need to establish a balance law, an analog of the mass conservation in the
case of multiple nutrients and one organism. Note that

M(t) = S(t) +
I∑
i=1

Ni(t)

satisfies
Ṁ = R(S0 −M),

hence
M(t) = S0 + (M(0)− S0)e−Rt.

In other words, we have a balance law

S(t) +
I∑
i=1

Ni(t) = S0 +Q0e
−Rt, Q0 = S(0)− S0 +

I∑
i=1

Ni(0). (1.40)

Next, we show that at least some micro-organism does not die out. Note that

N(t) =
I∑
i=1

Ni(t)

satisfies
Ṅ(t) ≥ N(t)(ηmin(S)−R), ηmin(S) = min

1≤i≤I
ηi(S). (1.41)

Now, if all Ni(t)→ 0 as t→ +∞, then the balance law (1.40) implies that S(t)→ S0 as t→
+∞ (which makes perfect physical sense), and assumption (1.37) implies that ηmin(S0) > R.
This, together with (1.41) contradicts the assumption that N(t) → 0. It is easy to modify
this argument to show that a slightly better conclusion holds:

lim inf
t→+∞

N(t) = M1 > 0. (1.42)

Next, we show that S(t) has a limit as t → +∞. We compute the evolution of Ṡ.
Differentiating (1.40) gives

Ṡ(t) +
I∑
i=1

Ṅi(t) = −RQ0e
−Rt. (1.43)

Differentiating once again leads to

dṠ

dt
= − d

dt

I∑
i=1

Ni(ηi(S)−R) +R2Q0e
−Rt = −

I∑
i=1

Ṅi(ηi(S)−R)−
I∑
i=1

Niη
′
i(S)Ṡ +R2Q0e

−Rt

= −
I∑
i=1

Ni(ηi(S)−R)2 − Ṡ
I∑
i=1

Niη
′
i(S) +R2Q0e

−Rt ≤ −Ṡ
I∑
i=1

Niη
′
i(S) +R2Q0e

−Rt.
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Let us, for 0 < δ � 1, multiply the above by a smooth increasing function χδ(Ṡ) ≥ 0 such
that χδ(u) = 0 for u < 0 and χδ(u) = 1 for u > δ. This gives, with the function Φδ(u) such
that Φ′δ(u) = χδ(u) and Φδ(u) = 0 for u < 0:

dΦδ(Ṡ)

dt
≤ −Φ′δ(Ṡ)Ṡ

I∑
i=1

Niη
′
i(S) +R2Q0e

−RtΦ′δ(Ṡ).

As Φ′δ(u)u ≥ 0, using assumption (1.37) we get

dΦδ(Ṡ)

dt
≤ −αΦ′δ(Ṡ)ṠN(t) +R2Q0e

−RtΦ′δ(Ṡ) ≤ −αM1

2
Φ′δ(Ṡ)Ṡ +R2Q0e

−RtΦ′δ(Ṡ). (1.44)

Note that S(t) and N(t) are uniformly bounded, as follows from the balance law (1.40).
Therefore, Ṡ is also uniformly bounded, and so is Φδ(Ṡ)(t). Moreover, the last term in the
right side is integrable in time, and

ˆ ∞
0

R2Q0e
−RtΦ′δ(Ṡ)dt ≤ RQ0

simply because Φ′δ(u) = χδ(u) = 1. Thus, integrating (1.44) in time, we conclude that there
exists a constant C > 0, independent of δ ∈ (0, 1) such that

ˆ ∞
0

Φ′δ(Ṡ(t))Ṡ(t)dt ≤ C < +∞. (1.45)

Passing to the limit δ → 0, using the Fatou lemma, we conclude that

ˆ ∞
0

(Ṡ(t))+dt ≤ C. (1.46)

Lemma 1.4 If a function g ∈ L∞[0,+∞) ∩ C1[0,+∞) satisfies

ˆ +∞

0

(dg
dt

)
+
dt < +∞,

then g(t) is of bounded variation and has a limit as t→ +∞.

Proof. Note that for any x1 and x2 we have

g(x2)− g(x1) =

ˆ x2

x1

(g′)+(x)dx−
ˆ x2

x1

(g′)−(x)dx,

so that ˆ ∞
0

(dg
dt

)
−
dt ≤ 2‖g‖L∞

ˆ ∞
0

(dg
dt

)
+
dt.

We conclude that then ˆ ∞
0

|ġ(t)|dt < +∞.
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It follows that for any k > 0 there exists M so that for all x1, x2 > M we have

|g(x1)− g(x2)| ≤
ˆ x2

x1

|g′(x)|dx ≤ 2−k,

and the conclusion that g(x) has a limit as x→ +∞ is a simple consequence. 2
Lemma 1.4 implies immediately that the function S(t) has a limit as t → +∞. We now

identify the limit as S∗. Indeed, if

lim
t→+∞

S(t) > S∗,

then
lim
t→+∞

ηi0(S(t)) > R,

hence Ni0 has an exponential growth, contradicting the balance law (1.40). On the other
hand, if

lim
t→+∞

S(t) < S∗,

then
lim
t→+∞

ηi(S(t)) < R,

for all i, meaning that all Ni(t)→ 0 as t→∞, contradicting the no extinction bound (1.42).
Therefore, we have

lim
t→+∞

S(t) = S∗.

In that case, we have
Ni(t)→ 0 as t→∞ for all i 6= i0.

Then the balance law (1.40) implies that

lim
t→∞

Ni0(t) = S0 − S∗,

and we are done. 2

Phytoplankton

Phytoplankton are several species of photosynthesizing microscopic organisms (2 to 200 mi-
crometers). They live in the upper layers of lakes and oceans (50 to 100 meters deep) where
light is sufficient to sustain them but they are 2 to 5 percent more dense than water. The
question is why they do not sink. There are various explanations for that, for example, as
they sink, food restriction makes them lighter, or that ocean mixing brings them up.

A simple model for the evolution of the phytoplankton looks at a single column of water,
with the vertical variable z so that z = 0 at the surface, and z → +∞ at the (bottomless)
bottom – the z axis points downward. The evolution of the population density n(t, z) is
governed by a reaction-diffusion PDE

∂n(t, z)

∂z
+ vp

∂n(t, z)

∂z
− κ∂

2n

∂z2
= f(z, S(t, z, [n]))n(t, z), t > 0, z > 0, (1.47)
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with a non-negative initial condition n(0, z) = n0(z). Here, vp is the vertical flow velocity of
the gravitational sinking, and κ is the diffusion constant. The birth/death rate f(z, S(t, z, [n]))
depends on the local light and is decreasing in z – we will assume that it is positive for small
z and is negative for large z. In addition, it takes into account the shading effect – it depends
on the total amount of the phytoplankton above z:

S(t, z, [n]) =

ˆ z

0

n(t, x)dx.

A typical example would be to take a monotonically decreasing function G(s) such that
G(0) > 0 and G(+∞) < 0, and set

f(z, S(t, z, [n])) = G
(
z[1 + σ

ˆ z

0

n(t, x)dx]
)
.

We need to supplement (1.47) by the no-flux boundary condition at z = 0:

κ
∂n(t, 0)

∂z
− vpn(t, 0) = 0, (1.48)

and n(t, z) → 0 as z → +∞. The maximum principle implies that n(t, z) > 0 for all t > 0
and z ≥ 0, as long as n0(z) is non-negative and not identically equal to zero.

Here, we will restrict ourselves to the simple case when G(s) is a step function:

G(s) =

{
B+ > 0, for 0 ≤ s ≤ H0,
B− < 0, for H0 < s < +∞.

(1.49)

This creates a discontinuity at z = H in the function f , with H defined implicitly by the
equation

H0 = H
(

1 + σ

ˆ H

0

n(t, x)dx
)
, (1.50)

which has a unique solution since n(t, z) ≥ 0 for all z ≥ 0. There is a unique stationary
solution of the layer model if and only if the layer is sufficiently wide, and the ”good” layer
is sufficiently good, as stated in the following.

Theorem 1.5 There exists H̄(κ, vp, B
±) so that for κ > v2

p/(4B+), there is a unique station-
ary non-negative solution n(x) ∈ C1(0,+∞) if and only if H0 > H̄.

Proof. We will use the following lemma.

Lemma 1.6 There exists a unique ā > 0 so that the the problem

vpn
′
a − κn′′a = ga(z)na(z), (1.51)

κn′a(0)− vpna(0) = 0,

na(∞) = 0,

where ga(z) = B+ for z < a and ga(z) = B− for z > a, has a positive solution in C1(0,+∞)
for a = ā.
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Proof of Lemma 1.6. For z > a the solution has the form na(z) = ce−γz, where γ > 0 is
the positive root of the equation

κγ2 + vpγ +B− = 0,

that is,

γ =
1

2κ
(−vp + s), s =

√
v2
p + 4κ|B−|.

It follows that na satisfies
n′a(a) = −na(a). (1.52)

Therefore, an equivalent formulation of (1.51) is a boundary value problem on the inter-
val (0, a):

vpn
′
a − κn′′a = B+na(z), (1.53)

κn′a(0)− vpna(0) = 0,

n′a(a) == −γna(a).

Therefore, na(z) is the principal eigenfunction of the eigenvalue problem

vpn
′
a − κn′′a = µana(z), (1.54)

κn′a(0)− vpna(0) = 0,

n′a(a) = −γna(a),

with the principal eigenvalue
µa = B+. (1.55)

It is convenient to re-write (1.54) for the function

w(z) = e−λzna(z),

with λ to be chosen. This leads to

vpw
′ + λvpw − κw′′ − 2κλv′ − κλ2w = µw.

Taking λ = vp/(2κ) to eliminate the first order term gives

v2
p

2κ
w − κw′′ − κ

v2
p

4κ2
λ2w = µw,

or

−κw′′ =
(
µ−

v2
p

4κ
)w, (1.56)

with the boundary conditions

κw′(0) =
vp
2
w(0), w′(a) = −

( vp
2κ

+ γ
)
w(a). (1.57)
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Thus, we can, once again, reformulate our problem as follows: find a > 0 so that the principal
eigenvalue ηa (the unique eigenvalue that corresponds to a positive eigenfunction) of the
eigenvalue problem

−κw′′ = νaw, (1.58)

κw′(0) =
vp
2
w(0), w′(a) = −

( vp
2κ

+ γ
)
w(a), (1.59)

satisfies

νa = B+ −
v2
p

4κ
. (1.60)

Exercise 1.7 Show that νa > 0 for all a > 0, νa is a decreasing function in a, and satisfies

lim
a→0

νa = +∞, lim
a→+∞

νa = 0.

Hint: set κ = 1, and rescale the problem to the interval [0, 1] – set w(x) = ψ(x/a), so that

−ψ′′ = a2νaψ, (1.61)

ψ′(0) =
vpa

2
ψ(0), ψ′(1) = −a

( vp
2κ

+ γ
)
ψ(a). (1.62)

Show that

a2νa = inf
‖φ‖L2[0,1]=1

(ˆ 1

0

|φx|2dx+
vpa

2
φ(0)2 + a

( vp
2κ

+ γ
)
φ(a)2

)
.

Deduce that νa is decreasing in a.

It follows that there exists a unique a so that νa satisfies (1.60), provided that

B+ >
v2
p

4κ
,

and the proof of the lemma is complete. 2
We return to the proof of Theorem 1.5. A stationary solution satisfies

vpn
′ − κn′′ = g(z)n(z), (1.63)

κn′(0)− vpn(0) = 0,

where g(z) = B+ for z < Hn and g(z) = B− for z > Hn, with Hn as in (1.50):

H0 = Hn

(
1 + σ

ˆ Hn

0

n(x)dx
)
. (1.64)

Lemma 1.6 implies that Hn = ā, the unique value for which Lemma claims existence of a
positive solution, and n = Cnā, where nā is the solution of (1.51) normalized so that nā(0) = 1.
The constant C is then determined from the equation

H0 = ā
(

1 + σ

ˆ ā

0

nā(x)dx
)
, (1.65)

which has a solution if and only if H0 > ā. 2
One may further show that the long time limit of the solutions of the Cauchy problem for

n(t, x) is the positive stationary solution we have constructed above but we will not address
this issue now.
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2 Adaptive dynamics

Adaptive dynamics studies two effects: (i) the selection principle, which favors population
with the best adapted trait, and (ii) mutations which allow the off-spring to have a slightly
different trait from the parent. Here, we look at simple ODE models and study how the
selection principle arises as the long time limit of small mutations.

A simple of example of a structured population and the selection
principle

We begin with a very simple example of the logistic equation modified to take into account
the traits. We structure the population by a trait x ∈ R and assume that the reproduction
rate depends on the trait but the death rate depends on the total population:

∂n(t, x)

∂t
= b(x)n(t, x)− ρ(t)n(t, x), (2.1)

where ρ(t) is the total population:

ρ(t) =

ˆ
R
n(t, x)dx.

The initial condition is n(0, x) = n0(x) such that n0(x) > 0 for x ∈ (xm, xM), and n0(x) = 0
otherwise. Note that there no mutations in this model, and any state of the form

n(t, x) = b(y)δ(x− y)

is a steady solution, for all y ∈ R. The question is which of these states will be selected in
the long time limit. We have the selection principle – the best adapted population will be
selected.

Theorem 2.1 Assume that b(x) is continuous, b(x) ≥ b > 0 for all x ∈ R, and that b(x)
attains its maximum over the interval [xm, xM ] at a single point x̄ ∈ (xm, xM). Then the
solution to (2.1) satisfies

lim
t→+∞

ρ(t) = ρ̄ = b(x̄), n(t, x)→ b(x̄)δ(x− x̄), as to→ +∞ (2.2)

the last convergence in the sense of distributions.

Proof. In this simple case, we give a computational proof. The function

N(t, x) = n(t, x) exp
{ˆ t

0

ρ(s)ds
}

satisfies
dN

dt
= b(x)N(x),

hence
N(t, x) = n0(x)eb(x)t.
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We also have

d

dt

(
exp {

ˆ t

0

ρ(s)ds}
)

= ρ(t) exp {
ˆ t

0

ρ(s)ds} =

ˆ
R
N(t, x)dx =

ˆ
R
n0(x)eb(x)sdx,

so that

exp {
ˆ t

0

ρ(s)ds} =

ˆ
R

n0(x)

b(x)
eb(x)tdx+K, K = 1−

ˆ
R

n0(x)

b(x)
dx,

whence ˆ t

0

ρ(s)ds = log
( ˆ

R

n0(x)

b(x)
eb(x)tdx+K

)
,

and

ρ(t) =
(ˆ

R

n0(x)

b(x)
eb(x)tdx+K

)−1
ˆ
R
n0(x)eb(x)tdx.

To see what happens as t→ +∞, we note that

ρ(t) ≤
(ˆ

R

n0(x)

b(x)
eb(x)tdx+K

)−1

b(x̄)

ˆ
R

n0(x)

b(x)
eb(x)tdx→ b(x̄),

as t→ +∞. For the converse, we take ε > 0 and look at the set

Iε = {x : b(x) ≥ b(x̄)− ε}.

Then

ρ(x) ≥
(ˆ

R

n0(x)

b(x)
eb(x)tdx+K

)−1
ˆ
Iε

n0(x)eb(x)tdx

≥
( ˆ

R

n0(x)

b(x)
eb(x)tdx+K

)−1

(b(x̄)− ε)
ˆ
Iε

n0(x)

b(x)
eb(x)tdx =

(b(x̄)− ε)
Aε(t)

,

where

Aε(t) =
(ˆ

R

n0(x)

b(x)
eb(x)tdx+K

)( ˆ
Iε

n0(x)

b(x)
eb(x)tdx

)−1

=
( ˆ

R

n0(x)

b(x)
eb(x)tdx

)(ˆ
Iε

n0(x)

b(x)
eb(x)tdx

)−1

+ o(1).

Note that ˆ
Iε

n0(x)

b(x)
eb(x)tdx ≥

ˆ
Iε/2

n0(x)

b(x)
eb(x)tdx ≥ Ce(b(x̄)−ε/2)t,

while ˆ
R\Iε

n0(x)

b(x)
eb(x)tdx ≤ Ce(b(x̄)−ε)t.

It follows that Aε(t)→ 1 as t→ +∞, and therefore

ρ(t)→ b(x̄) as t→ +∞. (2.3)
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Next, from the expression for N(t, x) we know that

n(t, x) = n0(x)eb(x)t exp
{
−
ˆ t

0

ρ(s)ds
}

It is easy to see from (2.3) that for x 6= x̄ we have n(t, x)→ 0. It then follows from (2.3) that

n(t, x)→ b(x̄)δ(x− x̄) as t→ +∞.

This finishes the proof. 2

A more general situation

A more general model than (2.1) may have the form

∂n(t, x)

∂t
= b(x, ρ(t))n(t, x)− g(x, ρ(t))n(t, x), (2.4)

so that the birth and death rates of the population with a trait x ∈ R depend both on x and
the total population

ρ(t) =

ˆ
R
n(t, x)dx.

We will assume that the functions b(x, ρ) and g(x, ρ) factorize:

b(x, ρ) = b(x)Qb(ρ), d(x, ρ) = d(x)Qd(ρ). (2.5)

We will assume that the functions b and d are continuous, and Qb, Qd ∈ C1(0,+∞), and that
the following standard bounds hold:

0 < bm ≤ b(x) ≤ bM , 0 < dm ≤ d(x) ≤ dM , for all x ∈ R.

In addition, we will need some bounds that would ensure the population does not explode or
disappear completely: first, there exists 0 < ρM so that

αM = max
x∈R

[b(x)Qb(ρM)− d(x)Qd(ρM)] < 0, (2.6)

and, second, there exists ρm ∈ (0, ρM) such that

αm = min
x∈R

[b(x)Qb(ρm)− d(x)Qd(ρm)] > 0. (2.7)

Proposition 2.2 Assume that n0(x) ≥ 0 and ρm ≤ ρ(t = 0) ≤ ρM , then ρm ≤ ρ(t) ≤ ρM for
all t > 0.

Proof. We will just show that ρ(t) ≥ ρm. This is a consequence of the maximum principle.
Indeed, assume that τ0 is the first time such that ρ(τ0) = ρm, then

dρ

dt

∣∣∣
t=τ0

=

ˆ
R
[b(x)Qb(ρm)− d(x)Qd(ρm)]n(τ0, x)dx ≥ αmρm > 0.
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It follows that ρ(t) ≥ ρm for all t > 0. 2
Next, we will assume that

Q′b(ρ) < 0, Q′d(ρ) > 0, (2.8)

that is, the growth rate decreases, and the death rate increases, as the population grows. It
follows then that there exists a unique ρ = ρ̄ such that

max
R

[b(x)Qb(ρ)− d(x)Qd(ρ)] = 0. (2.9)

We will assume that there exists a unique x̄ such that

b(x̄)Qb(ρ̄)− d(x̄)Qd(ρ̄) = 0. (2.10)

Therefore, if ρ = ρ̄, then
∂n(t, x)

∂t
< 0, for all x 6= x̄. (2.11)

The last assumption we need is that there exists δ0 > 0 and R > 0 so that for all |ρ− ρ̄0| < δ0

and all R > 0 we have
βR = max

|x|≥R
[b(x)Qb(ρ)− d(x)Qd(x)] < 0. (2.12)

Then we still have the selection principle.

Theorem 2.3 With the above assumptions, if n0(x) > 0 and ρm ≤ ρ(t = 0) ≤ ρM , then

ρ(t)→ ρ̄, n(t, x)→ ρ̄δ(x− x̄), as t→ +∞. (2.13)

Proof. We consider a function P (r) that satisfies

rP ′(r) + P (r) = Q(r), Q(r) =
Qd(r)

Qb(r)
. (2.14)

Let us also define

L(t) =

ˆ
R

( b(x)

d(x)
− P (ρ(t))

)
n(t, x)dx. (2.15)

Note that L(t) is uniformly bounded – this follows from our assumptions and Proposition 2.2.
We compute:

dL(t)

dt
=

ˆ
R

( b(x)

d(x)
− P ′(ρ(t))

dρ

dt

)
n(t, x)dx (2.16)

+

ˆ
R

( b(x)

d(x)
− P (ρ(t)))(b(x)Qb(ρ(t))− d(x)Qd(ρ(t))n(t, x)dx.

Note thatˆ
R
P ′(ρ(t))

dρ

dt
n(t, x)dx = P ′(ρ(t))ρ(t)

ˆ
R
[b(x)Qb(x)− d(x)Qd(x)]n(t, x)dx.
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Using this in (2.16), together with (2.14), and the fact that b(x) and Qd(ρ(t)) are uniformly
bounded from below, gives

dL

dt
=

ˆ
R

( b(x)

d(x)
− P (ρ(t)− P ′(ρ(t))ρ(t))(b(x)Qb(ρ(t))− d(x)Qd(ρ(t))n(t, x)dx

=

ˆ
R

( b(x)

d(x)
− Qd(ρ(t))

Qb(ρ(t))

)
(b(x)Qb(ρ(t))− d(x)Qd(ρ(t))n(t, x)dx

=

ˆ
R
d(x)Qb(ρ(t))

( b(x)

d(x)
−Q(ρ(t))

)2

n(t, x)dx ≥ dmQb(ρM)D(t),

where

D(t) =

ˆ
R

( b(x)

d(x)
−Q(ρ(t))

)2

n(t, x)dx. (2.17)

Therefore, L(t) is bounded and increasing, hence it approaches a limit as t→ +∞:

L(t)→ L, as t→ +∞. (2.18)

We also deduce a bound ˆ ∞
0

D(t)dt < +∞. (2.19)

Let us now find

dD(t)

dt
=

ˆ
R

( b(x)

d(x)
−Q(ρ(t))

)2

(b(x)Qb(ρ(t))− d(x)Qd(ρ(t)))n(t, x)dx (2.20)

−2Q′(ρ(t))

ˆ
R

( b(x)

d(x)
−Q(ρ(t))

)
n(t, x)dx

ˆ
R
(b(y)Qb(ρ(t))− d(y)Qd(ρ(t)))n(t, y)dy = I + II.

As ρ(t) is a priori bounded, we have

|I| ≤ CD(t).

The second term can be bounded using the bound on ρ and the Cauchy-Schwartz inequality
as

|II| ≤ C
(ˆ

R

( b(x)

d(x)
−Q(ρ(t))

)2

n(t, x)dx
)1/2

ρ(t)1/2

×
(ˆ

R
(b(y)Qb(ρ(t))− d(y)Qd(ρ(t)))2n(t, y)dy

)1/2

ρ(t)1/2 ≤ CD(t).

We conclude that ˆ ∞
0

∣∣∣dD(t)

dt

∣∣∣dt < +∞. (2.21)

Therefore, D(t) has a limit as t→ +∞. In addition, as D(t) is integrable, we conclude that

D(t)→ 0 as t→ +∞. (2.22)

The Cauchy-Schwartz inequality implies that
ˆ
R

∣∣∣ b(x)

d(x)
−Q(ρ(t))

∣∣∣n(t, x)dx ≤ (D(t))1/2ρ(t)1/2 → 0 as t→ +∞. (2.23)
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Note that

[Q(ρ(t))− P (ρ(t))]ρ(t) = L(t) +

ˆ
R

(
Q(ρ(t))− b(x)

d(x)

)
n(t, x)dx,

thus (2.18) and (2.23) together imply that

[Q(ρ(t))− P (ρ(t))]ρ(t)→ L, as t→ +∞.

As Q− P is not locally constant:

r(P −Q)′ + (P −Q) = −rQ′ < 0,

it follows that ρ(t) has a limit:
ρ(t)→ ρ∗. (2.24)

Let us now show that ρ∗ = ρ̄. Indeed, if ρ∗ > ρ̄ then

max
x∈R

[b(x)Qb(ρ
∗)− d(x)Qd(ρ

∗)] < 0,

which implies that n(t, x)→ 0, which is a contradiction since ρ(t) ≥ ρm. On the other hand,
if ρ∗ < ρ̄, then

max
x∈R

[b(x)Qb(ρ
∗)− d(x)Qd(ρ

∗)] < 0,

which, in turn, implies that ρ(t)→ +∞ as t→ +∞ contradicting ρ(t) ≤ ρM . Therefore, we
have ρ∗ = ρ̄. It follows from assumption (2.12) that

d

dt

ˆ
|x|≥R

n(t, x)dx ≤ βR

ˆ
|x|≥R

n(t, x)dx, (2.25)

thus ˆ
|x|≥R

n(t, x)dx→ 0 as t→ +∞.

It follows that n(t, x) has a weak limit n∗(x) in the space of measures along a sequence
tn → +∞, and ˆ

R
n∗(x)dx = ρ̄.

Finally, we know from (2.23) that n∗(x) has to be concentrated on the set where

b(x)

d(x)
− Qd(ρ̄)

Qb(ρ̄)
= 0,

which consists of one point x̄. It follows that the limit is unique and

n∗(x) = ρ̄δ(x− x̄).

The proof is complete.
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Mutations

A slight variation of the previous system would be the dynamics of the form

∂n(t, x)

∂t
= b(x)Qb(ρb(t))n(t, x)− d(x)Qd(ρd(t))n(t, x). (2.26)

Here, we have set

ρb(t) =

ˆ
R
ψb(x)n(t, x)dx, ρd(t) =

ˆ
R
ψd(x)n(t, x)dx.

The function ψb(y) measures how much the presence of the species of the trait y helps other
species to reproduce, and the function ψd(y) measures how much stronger the competition
becomes if species with the trait y are present. It is natural to assume, as before, that the
functions b(x) and d(x) are continuous, and

0 < bm ≤ b(x) ≤ bM , 0 < dm ≤ d(x) ≤ dM , for all x ∈ R. (2.27)

The functions Qb and Qd are C1(R+) and

Q′b(ρ) ≤ a1 < 0, Q′d(ρ) ≥ a2 > 0 for all ρ > 0. (2.28)

For the birth and death rates we assume that

ψm ≤ ψd(x), ψb(x) ≤ ψM for all x ∈ R. (2.29)

These assumptions help prevent the blow-up of the total population in a finite time. We also
introduce a generalization of (2.6) and (2.7) first, there exists ρM such that:

αM = max
x∈R

[b(x)Qb(ψmρM)− d(x)Qd(ψmρM)] < 0, (2.30)

and, second, there exists ρm ∈ (0, ρM) such that

αm = min
x∈R

[b(x)Qb(ψMρm)− d(x)Qd(ψMρm)] > 0. (2.31)

We may now also add the possibility of mutations – an individual with a trait x may give
birth to offspring with a trait y. This would lead to the following dynamics:

∂n(t, x)

∂t
= Qb(ρb(t))

ˆ
R
b(y)K(x− y)n(t, y)dy − d(x)Qd(ρd(t))n(t, x). (2.32)

Here, K(x) is a non-negative probability density:

ˆ
R
K(x)dx = 1.
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Existence of the solutions

The first step is to prove existence of the solutions.

Theorem 2.4 Assume that the non-negative initial condition n0(x) ∈ L1(R), and

ρm ≤ ρ0 ≤ ρM .

Then (2.32) has a non-negative solution such that

n,
∂n

∂t
∈ C(0,+∞;L1(R)),

and for all t ≥ 0 we have
ρm ≤ ρ(t) ≤ ρM . (2.33)

Proof. The proof is similar to that for the Cauchy-Kovalevskaya theorem.
An a priori bound. We first obtain the a priori bound (2.33) on the solution (assuming

that it exists). Let us integrate (2.32). Note that

ˆ
R×R

b(y)K(x− y)n(t, y)dydx =

ˆ
R
b(y)n(t, y)dy.

It follows that

dρ(t)

dt
= Qb(ρb(t))

ˆ
R
b(x)n(t, x)dx−Qd(ρd(t))

ˆ
R
d(x)n(t, x)dx (2.34)

≤ ρ(t) max
y

[Qb(ρb(t))b(y)−Qd(ρd(t))(.y)].

Note that
ρb(t) ≥ ψmρ(t),

thus
Qb(ρb(t)) ≤ Qb(ψmρ(t)),

and
Qd(ρd(t)) ≥ Qd(ψmρ(t)).

Using this in (2.34) gives

dρ(t)

dt
≤ ρ(t) max

y
[Qb(ψmρ(t))b(y)−Qd(ψmρ(t))(.y)].

Therefore, if ρ(t) > ρM then
dρ(t)

dt
< 0,

and ρ(t) decreases. Similarly, if ρ(t) < ρm, then

dρ(t)

dt
> 0,
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and ρ(t) increases. Hence, if initially we have ρm ≤ ρ0 ≤ ρM , then for all t > 0 we still have
ρm ≤ ρ(t) ≤ ρM .

Existence. We will use the fixed point theorem for the existence. Consider the Banach
space

X = C([0, T ];L1(R)), ‖m‖X = sup
0≤t≤T

‖m(t)‖L1(R),

for some T > 0 to be chosen. Let us choose C0 = 2ρM and T sufficiently small so that

ρ0 + TbMQb(0)C0 ≤ C0,

and set
S = {m ∈ X, m ≥ 0, ‖m‖X ≤ C0}.

Given a function m ∈ S, define

Rb(t) =

ˆ
R
ψb(x)m(t, x)dx, Rd(t) =

ˆ
R
ψd(x)m(t, x)dx,

and let n(t, x) be the solution of the ODE, that we solve x by x:

∂n(t, x)

∂t
= Qb(Rb(t))

ˆ
R
b(y)K(x− y)m(t, y)dy − d(x)Qd(Rd(t))n(t, x),

with the initial condition n(0, x) = n0(x). We may then define the mapping m→ Φ(m) = n,
and the claim is that Φ has a unique fixed point in S if we choose a good C0 and a sufficiently
small T . We need to verify two conditions: (i) Φ maps S into S, and (ii) that Φ is a contraction
for T sufficiently small. If we can verify these conditions then the Banach-Picard fixed point
theorem implies that Φ has a fixed point in S, which is a solution we seek. We can then
iterate this argument on the intervals [T, 2T ], [2T, 3T ], . . . Note that on each time step the
solution will satisfy ρm ≤ ρ(t) ≤ ρM , hence we can restart the argument each time.

To check (i) we simply write down the solution formula:

n(t, x) = n0(x) exp
(
− d(x)

ˆ t

0

Qb(Rd(s))ds
)

(2.35)

+

ˆ t

0

Qb(Rb(s))

ˆ
R
b(y)K(x− y)m(s, y)dy exp

{
− d(x)

ˆ t

s

Qd(Rd(s
′))ds′

}
ds.

It follows that n ≥ 0, and we also have

∂n(t, x)

∂t
≤ Qb(Rb(t))

ˆ
R
b(y)K(x− y)m(t, y)dy, (2.36)

so that
‖n(t)‖L1 ≤ ρ0 + TQb(0)bMC0 ≤ C0, (2.37)

if T is sufficiently small. Thus, Φ maps S to S.
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To check that Φ is a contraction, take m1,2 ∈ S then we can write

∂

∂t
(n1 − n2) = Qb(R

1
b(t))

ˆ
R
b(y)K(x− y)m1(t, y)dy − d(x)Qd(R

1
d(t))n1(t, x)

−Qb(R
2
b(t))

ˆ
R
b(y)K(x− y)m2(t, y)dy + d(x)Qd(R

2
d(t))n

2(t, x)

= [Qb(R
1
b(t))−Qb(R

2
b(t))]

ˆ
R
b(y)K(x− y)m1(t, y)dy

+Qb(R
2
b(t))

ˆ
R
b(y)K(x− y)[m1(t, y)−m2(t, y)]dy

−d(x)Qd(R
1
d(t))(n1(t, x)− n2(t, x)) + d(x)[Qd(R

2
d(t))−Qd(R

1
d(t))]n2(t, x).

Integrating in x we obtain

‖n1 − n2‖X ≤ ψMC0TbM‖m1 −m2‖X +Qb(0)bMT‖m1 −m2‖X
+dMQd(ρM)T‖n1 − n2‖X + dMρMψMT‖m1 −m2‖X .

Therefore, if T is sufficiently small, then

‖n1 − n2‖X ≤ c‖m1 −m2‖X ,

with c < 1. Thus, for such T the mapping Φ : S → S is a contraction, and has a fixed point,
which is the solution we seek. 2

Small mutations: the asymptotic limit

We now consider the situation when mutations are small: this is modeled by taking a smooth
compactly supported kernel K(x) of the form

Kε(x) =
1

ε
K
(x
ε

)
, k(x) ≥ 0,

ˆ
R
K(z)dz = 1. (2.38)

Of course, one would not expect small mutations to have a non-trivial effect on times of the
order t ∼ O(1), because
ˆ
R
b(y)Kε(x−y)n(t, y)dy =

ˆ
R
b(x−εz)K(z)n(t, x−εz)dz →

ˆ
R
b(x)K(z)n(t, x)dz = b(x)n(t, x),

(2.39)
as ε→ 0. That is, the model with small mutations should be well-approximated by the model
(2.26) with no mutations. In order for the small mutations to have a non-trivial effect, we
need to wait for times of the order t ∼ O(ε−1). Accordingly, we consider the system in the
rescaled time variable:

ε
∂nε(t, x)

∂t
= Qb(ρ

ε
b(t))

ˆ
R
b(y)Kε(x− y)nε(t, y)dy − d(x)Qd(ρ

ε
d(t))n

ε(t, x), (2.40)

with

ρεb(t) =

ˆ
ψb(x)nε(t, x)dx, ρεd(t) =

ˆ
ψd(x)nε(t, x)dx.
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We will show that in the limit ε→ 0 there is a selection principle, so that at every time t there
is only one dominant trait x̄(t) but x̄(t) itself has a non-trivial dynamics, so that typically we
will have

nε(t, x)→ n̄(t, x) = ρ̄(t)δ(x− x̄(t)). (2.41)

Our goal will be to understand the dynamics of x̄(t) and ρ̄(t). Such limiting population
is called monomorphic. It is also possible that the limit is a sure of several Dirac masses
at x̄1(t), x̄2(t), . . . , x̄N(t), and then the population is called polymorphic.

We will assume that the initial population is nearly monomorphic:

nε0(x) = eφ
ε
0(x)/ε, (2.42)

with a function φε0(x) such that

φε0(x)→ φ0(x) ≤ 0, uniformly in R, (2.43)

and ˆ
R
nε0(x)dx→M0 > 0, ε→ 0. (2.44)

Note that nε0(x) is very small where φε0(x) � −ε, which is, approximately, the region
where φ0(x) < 0. Thus, in order to ensure we have initially a nearly monomorphic popu-
lation, we will assume that

max
x∈R

φ0(x) = 0 = φ0(x̄0) for a unique x̄0 ∈ R. (2.45)

A typical example is the Gaussian family

nε0(x) =
1√
2πε

e−|x|
2/(2ε), φε0(x) = −|x|

2

2
− ε

2
log(2πε).

Let us write the equation for φε:

∂φε(t, x)

∂t
= e−φ

ε(t,x)/εQb(ρ
ε
b(t))

ˆ
R
b(y)Kε(x− y)eφ

ε(t,y)/εdy − d(x)Qd(ρ
ε
d(t)) (2.46)

= Qb(ρ
ε
b(t))

ˆ
R
b(x− εy)K(y)e[φε(t,x−εy)−φε(t,x)]/εdy − d(x)Qd(ρ

ε
d(t)).

It is convenient to assume that K is even: K(y) = K(−y), then, expanding in ε we get the
formal limit:

∂φ(t, x)

∂t
= Qb(ρb(t))b(x)

ˆ
R
K(y) exp

{
y
∂φ(t, x)

∂x

}
dy − d(x)Qd(ρd(t)). (2.47)

Let us define

H(p) =

ˆ
R
K(y)epydy.

The limiting constrained Hamilton-Jacobi problem should be understood as follows: the func-
tion φ(t, x) satisfies the Hamilton-Jacobi equation

∂φ(t, x)

∂t
= Qb(ρb(t))b(x)H

(∂φ(t, x)

∂x

)
− d(x)Qd(ρd(t)). (2.48)
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In addition, there is a constraint:

max
x∈R

φ(t, x) = 0 for all t ≥ 0. (2.49)

The total density ρ̄(t) is a Lagrange multiplier that ensures that the constraint (2.49) holds.
If the maximum x̄(t) is unique then, thinking of

n(t, x) = ρ̄(t)δ(x− x̄(t)),

we have
ρ̄b(t) = ψb(x̄(t))ρ̄(t), ρ̄d(t) = ψd(x̄(t))ρ̄(t). (2.50)

Therefore, the formal limit is as follows: find a function φ(t, x), and ρ̄(t) and x̄(t), so
that φ(t, x) satisfies (2.48) with ρb(t) and ρd(t) given in terms of ρ̄(t) and x̄(t) by (2.50),
the constraint (2.49) holds, and φ(t, x) attains its maximum at x̄(t), where

φ(t, x̄(t)) = 0. (2.51)

An example of the constrained Hamilton-Jacobi problem

Let us explain the above scheme on a simple example. Let us assume that Qb ≡ 1, d ≡ 1,
ψd ≡ 1 and Qd(u) = u, so that the starting problem is

∂nε(t, x)

∂x
=

ˆ
R
b(y)Kε(x− y)nε(t, y)dy − ρε(t)nε(t, x), (2.52)

with

ρε(t) =

ˆ
R
nε(t, x)dx.

For short times this model reduces to the familiar simple problem

∂n(t, x)

∂t
= b(x)n(t, x)− ρ(t)n(t, x),

with which we have started. The function φε(t, x) satisfies

∂φε(t, x)

∂t
=

ˆ
R
b(x+ εy)K(y)e[φε(t,x+εy)−φε(t,x)]/εdy − ρε(t). (2.53)

This gives the following constrained Hamilton-Jacobi problem (2.48):

∂φ(t, x)

∂t
= b(x)H

(∂φ(t, x)

∂x

)
− ρ̄(t), (2.54)

max
x∈R

φ(t, x) = 0 = φ(t, x̄(t)), for all t ≥ 0,

φ(0, x) = φ0(x).

The Hamiltonian is, as before,

H(p) =

ˆ
R
K(y)epydy.
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In this simple example, we can use the following trick: set

R(t) =

ˆ t

0

ρ̄(s)ds, ψ(t, x) = φ(t, x) +R(t),

then we arrive at the unconstrained Hamilton-Jacobi equation for the function ψ(t, x):

∂ψ(t, x)

∂t
= b(x)H

(∂ψ(t, x)

∂x

)
, (2.55)

ψ(0, x) = φ0(x).

Then, after solving (2.55) we may simply set

R(t) = max
x∈R

ψ(t, x),

enforcing the constraint on φ(t, x).

Theorem 2.5 Under the above assumptions, assume, in addition, that

φε0(x) ≤ Cε
0 − |x|,

then the function

ψε(t, x) = φε(t, x) +Rε(t), Rε(t) =

ˆ t

0

ρε(t)dt, (2.56)

satisfies
ψε(t, x)→ ψ(t, x), locally uniformly in x.

Here, ψ(t, x) is the viscosity solution of the Hamilton-Jacobi equation (2.55), and

φε(t, x)→ φ(t, x) = ψ(t, x)−max
y∈R

ψ(t, y).

The first step toward the proof are the following propositions.

Proposition 2.6 We have, for all t ≥ 0 the bound

min
(

min
y∈R

b(y), ρε0

)
≤ ρε(t) ≤ max

(
max
y∈R

b(y), ρε0

)
. (2.57)

Proof. Indeed, integrating (2.52) in x gives

dρε(t)

dt
=

ˆ
R
b(y)nε(t, x)dx− (ρε(t))2. (2.58)

It follows that

dρε(t)

dt
≤ bMρ

ε(t)− (ρε(t))2,
dρε(t)

dt
≥ bmρ

ε(t)− (ρε(t))2,

with
bm = min(b(y)), bM = max b(y).

The maximum principle implies then (2.57). 2
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Proposition 2.7 If the initial condition satisfies

φε0(x) ≤ Cε
0 − |x|,

then ψε(t, x) defined by (2.56) satisfies

ψε(t, x) ≤ Cε
0 − |x|+ t

(
max
y∈R

b(y)
)(

max
|p|≤1

H(p)
)
, (2.59)

and ∣∣∣∂ψε(t, x)

∂t

∣∣∣ ≤ 2
(

max
y∈R

b(y)
)
H(‖∇φε0‖L∞). (2.60)

Proof. The function ψε(t, x) satisfies

∂ψε(t, x)

∂t
=

ˆ
R
b(x+ εy)K(y)e[ψε(t,x+εy)−ψε(t,x)]/εdy. (2.61)

The function
ψ(t, x) = Cε

0 − |x|+ tB, B = (max
x∈R

b(x))(max
|p|≤1

H(p))

is a super-solution to (2.61): indeed, we have

∂ψε(t, x)

∂t
= B, (2.62)

and ˆ
R
b(x+ εy)K(y)e[ψ(t,x+εy)−ψ(t,x)]/εdy ≤ (max

x∈R
b(x))

ˆ
R
K(y)e(|x|−|x+εy|)/εdy

≤ (max
x∈R

b(x))

ˆ
R
K(y)e|y|dy ≤ B.

Now, (2.59) follows from the maximum principle in a slightly roundabout way: set

mε(t, x) = eψε(t,x)/ε, m̄(t, x) = eψ̄(t,x)/ε,

then
∂mε(t, x)

∂t
=

ˆ
b(y)Kε(x− y)mε(t, y)dy, (2.63)

and
∂m̄(t, x)

∂t
≥
ˆ
b(y)Kε(x− y)mε(t, y)dy. (2.64)

It is easy to see that (2.63) and (2.64) together with the inequality mε(0, x) ≤ m̄(0, x) imply
that

mε(t, x) ≥ m̄(t, x), (2.65)

and (2.59) follows.
Finally, to get (2.60) we define

Ψε(t, x) =
∂ψε(t, x)

∂t
,
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and differentiate (2.61) to get

∂Ψε(t, x)

∂t
=

1

ε

ˆ
R
b(x+ εy)K(y)e[ψε(t,x+εy)−ψε(t,x)]/ε[Ψε(t, x+ εy)−Ψε(t, x)]dy. (2.66)

Therefore, at the point x0 where Ψε(t, x) attains its maximum we have

∂Ψε(t, x0)

∂t
=

1

ε

ˆ
R
b(x+ εy)K(y)e[ψε(t,x+εy)−ψε(t,x)]/ε[Ψε(t, x0 + εy)−Ψε(t, x0)]dy ≤ 0, (2.67)

whence
max
x∈R

Ψε(t, x) ≤ max
x∈R

Ψε(t = 0, x).

The same argument shows that

min
x∈R

Ψε(t, x) ≥ min
x∈R

Ψε(t = 0, x).

Finally, we use (2.61) at t = 0 to observe that, with some intermediate point ξ(y) we have

|Ψε(t = 0, x)| =
ˆ
R
b(x+ εy)K(y)e[φε0(x+εy)−φε0(x)]/εdy

≤ (max
y∈R

b(y))

ˆ
R
K(y) exp{y∂φ

ε
0(ξ(y))

∂x
}dy ≤ 2(max

y∈R
b(y))H

(
‖∇φε0‖L∞

)
. (2.68)

In the last step we used the following inequality: if |f(y)| ≤M , then

ˆ
K(y)eyf(y)dy ≤

ˆ
y<0

K(y)e−Mydy +

ˆ
y>0

K(y)eMydy

≤
ˆ
y<0

K(y)e−Mydy +

ˆ
y>0

K(y)e−Mydy +

ˆ
y>0

K(y)eMydy +

ˆ
y<0

K(y)eMydy = 2

ˆ
R
eMy.

Proof of Theorem 2.5

First, we would like to bound the spatial derivative of ψε. Fix a time T > 0 and let

Φε(t, x) =
∂ψε(t, x)

∂x
.

Let us write
∂

∂t

(ψε(t, x)

b(x)

)
=

ˆ
R

b(x+ εy)

b(x)
K(y)e[ψε(t,x+εy)−ψε(t,x)]/εdy, (2.69)

and differentiate in x:

∂

∂t

(Φε(t, x)

b(x)

)
=

1

b(x)2

∂b(x)

∂x

∂ψε(t, x)

∂t
+

ˆ
R

∂

∂x

(b(x+ εy)

b(x)

)
K(y)e[ψε(t,x+εy)−ψε(t,x)]/εdy

+
1

ε

ˆ
R

b(x+ εy)

b(x)
K(y)e[ψε(t,x+εy)−ψε(t,x)]/ε(Φε(t, x+ εy)− Φε(t, x))dy. (2.70)
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Note that ∣∣∣ ∂
∂x

b(x+ εz)

b(x)

∣∣∣ ≤ Cε.

Again, we consider the maximal point of Φε:

Qε(t) = max
x∈R

Φε(t, x)

The last term in the right side of (2.70) is non-positive where Φε attains its maximum and
non-negative where Φε attains its minimum, and the first term is bounded by Proposition 2.7.
We obtain therefore

dQε

dt
≤ C + Cε

ˆ
R
K(y)e[ψε(t,x+εy)−ψε(t,x)]/εdy ≤ C + Cε

ˆ
K(y)e|y|Qε(t)dy.

As K(y) is compactly supported, we deduce that there exists CT so that when ε < ε0(T ) we
have Qε(t) ≤ CT . Therefore, the family of functions ψε(t, x) is locally compact due to the
Arzela-Ascoli theorem.

Thus, we may extract a subsequence εk → 0, so that both Rε(t), which is Lipschitz
continuous in time, and ψε(t, x) have local uniform limits. The limit ψ(t, x) satisfies the
Hamilton-Jacobi equation in the viscosity sense (this is a non-trivial step but part of the
general theory of viscosity solutions). The fact that the maximum of φ(t, x) has to be equal
to zero follows from the upper and lower bounds on ρε(t) – if the maximum were different
from zero, then ρ(t) would either tend to zero or grow at a rate which is unbounded in ε.

Dynamics of the dominant trait: the monomorphic population

Let us now explain how the dominant trait x̄(t) can be recovered from the solution of the
Hamilton-Jacobi equation in the general case, as long as the population is monomorphic, that
is, the function φ(t, x) attains a single maximum x̄(t) where

φ(t, x̄(t)) = 0. (2.71)

Let us recall that φ(t, x) satisfies

∂φ(t, x)

∂t
= Qb(ρb(t))b(x)H

(∂φ(t, x)

∂x

)
− d(x)Qd(ρd(t)). (2.72)

Note that (2.71) implies that, in addition to

∂φ(t, x̄(t)

∂x
= 0, (2.73)

which holds simply because x̄(t) is the maximum of φ(t, x), we have

0 =
d

dt
φ(t, x̄(t)) =

∂φ(t, x(t))

∂t
+
dx̄(t)

dt

∂φ(t, x̄(t))

∂x
=
∂φ(t, x(t))

∂t
. (2.74)

We deduce then from (2.72) that

Qb(ρb(t))b(x̄)H(0)− d(x̄)Qd(ρd(t)) = 0. (2.75)
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We know that

H(0) =

ˆ
K(y)dy = 1, (2.76)

thus
Qb(ρb(t))b(x̄) = d(x̄)Qd(ρd(t)). (2.77)

In order to get the evolution of x̄(t) let us differentiate (2.73) in t:

0 =
d

dt

∂φ(t, x̄(t)

∂x
=
∂2φ(t, x̄(t))

∂t∂x
+
∂2φ(t, x̄(t))

∂x2

dx̄(t)

dt
. (2.78)

On the other hand, differentiating (2.72) in x gives

∂2φ(t, x̄(t))

∂t∂x
= Qb(ρb(t))

∂b(x̄)

∂x
H
(∂φ(t, x̄)

∂x

)
+ b(x̄)Hp

(∂φ(t, x̄)

∂x

)∂2φ(t, x̄)

∂x2
(2.79)

−∂d(x̄)

∂x
Qd(ρd(t)).

However, as K(y) is even, we have H(0) = 0 and

Hp(0) =

ˆ
R
yK(y)dy = 0,

thus we get

∂2φ(t, x̄(t))

∂t∂x
= Qb(ρb(t))

∂b(x̄)

∂x
− ∂d(x̄)

∂x
Qd(ρd(t)).

Using this in (2.78) leads to an evolution equation for x̄(t):

dx̄(t)

dt
= −

(∂2φ(t, x̄(t))

∂x2

)−1[
Qb(ρb(t))

∂b(x̄(t))

∂x
− ∂d(x̄(t))

∂x
Qd(ρd(t))

]
. (2.80)

If the population is monomorphic, that is, φ(t, x) attains a unique maximum, then

n(t, x) = ρ̄(t)δ(x− x̄(t)) (2.81)

and
ρb(t) = ψb(x̄(t))ρ̄(t), ρd(t) = ψd(x̄(t))ρ̄(t). (2.82)

We may then re-write (2.77) as an equation for ρ̄(t) in terms of x̄(t):

Qb(ψb(x̄(t)ρ̄(t))b(x̄(t)) = d(x̄(t))Qd(ψd(x̄(t)ρ̄(t)). (2.83)

Then we may use (2.82) and (2.83) in (2.80) to get a closed equation for x̄(t) as soon as the
function φ(t, x) is known.
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The dimorphic case

Let us see what happens if the population is dimorphic: the density n(t, x) has the form

n(t, x) = ρ̄1(t)δ(x− x̄1(t)) + ρ̄2(t)δ(x− x̄2(t)), (2.84)

and
0 = max

x∈R
φ(t, x) = φ(t, x̄1(t)) = φ(t, x̄2(t)). (2.85)

As before, we may derive (2.77) both at x̄1(t) and x̄2(t), so that

R(t) :=
Qb(ρb(t))

Qd(ρd(t)
=
d(x̄1(t))

b(x̄1(t))
=
d(x̄2(t))

b(x̄2(t))
. (2.86)

Thus, a necessary condition for dimorphism is that the function s(x) = d(x)/b(x) is not one-
to-one. If s(x) has a ”parabolic profile”, so that for every y we can find two pre-images x1

and x2 so that
y = s(x1) = s(x2),

then x̄1(t) and x̄2(t) determine each other. The functions ρb(t) and ρd(t) are now given by

ρb(t) = ψb(x̄1(t))ρ̄1(t) + ψb(x̄2(t))ρ̄2(t), (2.87)

ρd(t) = ψd(x̄1(t))ρ̄1(t) + ψd(x̄2(t))ρ̄2(t).

Then, ρ̄1(t) and ρ̄2(t) are two Lagrange multipliers that are needed in the Hamilton-Jacobi
equation to ensure that the solution φ(t, x) has exactly two maxima and it vanishes at both
of them.

3 The renewal equation

The renewal equation is the simplest model to account for aging: n(t, x) is the density of the
population of age x. The population ages ”at speed one”, and offspring of age zero are born.
The balance, which does not account for the death rate, is

∂n(t, x)

∂t
+
∂n(t, x)

∂x
= 0, (3.1)

together with the initial condition n(0, x) = n0(x), and the boundary condition

n(t, x = 0) =

ˆ ∞
0

B(y)n(t, y)dy, (3.2)

which accounts for the birth of zero-age offspring. The analysis here is rather simple and
explicit, as we will see. A more complicated related model describes the cell division

∂n(t, x)

∂t
+
∂n(t, x)

∂x
+B(x)n(t, x) =

ˆ ∞
x

b(x, y)n(t, y)dy, (3.3)

with the boundary condition n(t, x = 0) = 0. Here, x is not the cell age but its size that
grows in time. This model includes the death rate B(x), and allows the cells to produce new
cells of an arbitrary ”age” (or size) x, smaller than its current size y. We will look at it later,
and for now focus on (3.1)-(3.2).

31



The eigenfunction

Let us first look for a special solution of the form

n(t, x) = eλ0tN(x),

with N(x) > 0, normalized so that

ˆ ∞
0

N(x)dx = 1. (3.4)

This gives

∂N(x)

∂x
+ λ0N(x) = 0, x ≥ 0, (3.5)

N(0) =

ˆ ∞
0

B(y)N(y)dy.

The explicit solution, taking into account the normalization (3.4) is

N(x) = λ0e
−λ0x. (3.6)

The eigenvalue λ0 is determined then by the boundary condition:

ˆ ∞
0

B(y)e−λ0ydy = 1. (3.7)

It is easy to check that such λ0 is unique. Eventually we will see that any solution of the
time-dependent problem in the long time limit behaves as

n(t, x) ∼ c0N(x)eλ0t.

Equivalently, the long time behavior of the solutions of

∂m(t, x)

∂t
+
∂m(t, x)

∂x
+ λ0m(t, x) = 0, (3.8)

m(t, x = 0) =

ˆ ∞
0

B(y)m(t, y)dy,

m(0, x) = m0(x),

is a multiple of the eigenfunction:

m(t, x) ∼ c0N(x).

Let us now look for an adjoint eigenfunction φ(x). It should be determined from the following
condition: take any solution m(t, x) of (3.8), then we should have

ˆ ∞
0

m(t, x)φ(x)dx =

ˆ ∞
0

m0(x)φ(x)dx, (3.9)
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that is,
d

dt

ˆ ∞
0

m(t, x)φ(x)dx = 0. (3.10)

This is equivalent to

0 =

ˆ ∞
0

(
∂m(t, x)

∂x
+ λ0m(t, x))φ(x)dx = −m(t, 0)φ(0) +

ˆ ∞
0

(−∂φ(x)

∂x
+ λ0φ(x))m(t, x)dx

=

ˆ ∞
0

(−∂φ(x)

∂x
+ λ0φ(x)− φ(0)B(x))m(t, x)dx.

Therefore, the function φ(x) ≥ 0 should be the solution of

−∂φ(x)

∂x
+ λ0φ(x) = φ(0)B(x), x ≥ 0, (3.11)

normalized so that ˆ ∞
0

φ(y)N(y) = 1. (3.12)

It is convenient to introduce

Q(x) =
φ(x)N(x)

φ(0)N(0)
. (3.13)

The function Q(x) satisfies

−φ(0)N(0)

N(x)

∂Q(x)

∂x
+
φ(0)N(0)Q(x)

N2(x)

∂N(x)

∂x
+
λ0φ(0)N(0)Q(x)

N(x)
= φ(0)B(x), (3.14)

that is,

−∂Q(x)

∂x
=
N(x)B(x)

N(0)
, x ≥ 0, (3.15)

with the boundary condition Q(0) = 1. It follows that

Q(x) = 1−
ˆ x

0

B(y)e−λ0ydy =

ˆ ∞
x

B(y)e−λ0ydy ≤ ‖B‖L∞
1

λ0

e−λ0x, (3.16)

We took into account (3.7) in the second step. Thus, φ(x) can be written as

φ(x) =
φ(0)N(0)

λ0

eλ0x
ˆ ∞
x

B(y)e−λ0ydy. (3.17)

Note that while B(x) has a very simple expression, the function φ(x) is much less explicit.
Note that

0 ≤ Q(x) ≤ 1,

which means that
0 ≤ φ(x)N(x) ≤ φ(0)N(0). (3.18)

The upper bound in (3.16) implies that

φ(x) =
φ(0)N(0)

N(x)
Q(x) ≤ φ(0)‖B‖L∞

λ0

. (3.19)
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If we use normalization (3.12), we get

1

φ(0)N(0)
=

ˆ ∞
0

Q(x)dx =

ˆ ∞
0

ˆ ∞
x

B(y)e−λ0ydydx =

ˆ ∞
0

yB(y)e−λ0ydy. (3.20)

This determines φ(0):
1

φ(0)
= λ0

ˆ ∞
0

yB(y)e−λ0ydy. (3.21)

We thus have an upper bound for φ(x), from (3.19):

φ(x) ≤ ‖B‖L
∞

λ2
0

( ˆ ∞
0

yB(y)e−λ0ydy
)−1

. (3.22)

The existence theory

Let us consider the function m(t, x), solution of (3.8)

∂m(t, x)

∂t
+
∂m(t, x)

∂x
+ λ0m(t, x) = 0, (3.23)

m(t, x = 0) =

ˆ ∞
0

B(y)m(t, y)dy,

m(0, x) = m0(x).

We assume that

B(x) ≥ 0 for all x ≥ 0, B ∈ L1 ∩ L∞(0,+∞),

ˆ ∞
0

B(x)dx > 1. (3.24)

Theorem 3.1 Assume that there exists C0 such that

|m0(x)| ≤ C0N(x), (3.25)

then there exists a unique weak solution to (3.23) in C1((0,+∞);L1(R;φ(x)dx)) such that

|m(t, x)| ≤ C0N(x). (3.26)

In addition, if n1
0(x) ≤ n2

0(x) for all x ≥ 0, then m1(t, x) ≤ m2(t, x) for all x ≥ 0 and t ≥ 0.
Finally, we have ˆ ∞

0

m(t, x)φ(x)dx =

ˆ ∞
0

n0(x)φ(x)dx, (3.27)

and ˆ ∞
0

|m(t, x)|φ(x)dx ≤
ˆ ∞

0

|n0(x)|φ(x)dx. (3.28)

Step 1. Existence for n0 ∈ L1(R+). We first prove existence of the solution with the initial
condition n0 ∈ L1((0,+∞); dx). We will fix T > 0 and use the Picard fixed point theorem in
the Banach space

X = C([0, T ];L1(R+; dx)), ‖m‖X = sup
0≤t≤T

‖m(t)‖L1(dx).
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We will need to assume that T is sufficiently small but the size of the time T will not
depend on the L1-norm of the initial condition, so we will be abel to repeat this argument on
(T, 2T ), (2T, 3T ), . . . getting the global in time existence. We will set the solution operator
S : X → X as follows. Fix q ∈ X and let n = Sq be the solution of

∂n(t, x)

∂t
+
∂n(t, x)

∂x
+ λ0n(t, x) = 0, (3.29)

n(t, x = 0) =

ˆ ∞
0

B(y)q(t, y)dy,

n(0, x) = m0(x).

Our task is to show that S is a contraction: let q1,2 ∈ X and let n1,2 be the corresponding
solutions of (3.29). Setting q = q1 − q2 and n = n1 − n2 we deduce that

∂n(t, x)

∂t
+
∂n(t, x)

∂x
+ λ0n(t, x) = 0, (3.30)

n(t, x = 0) =

ˆ ∞
0

B(y)q(t, y)dy,

n(0, x) = 0.

We claim that |n(t, x)| is a weak solution of

∂|n|(t, x)

∂t
+
∂|n|(t, x)

∂x
+ λ0|n|(t, x) = 0, (3.31)

|n|(t, x = 0) =
∣∣∣ ˆ ∞

0

B(y)q(t, y)dy
∣∣∣.

|n|(0, x) = 0.

To see that, consider a family of smooth functions χε(n) such that χε(n)→ |n| and χ′ε(n)→
sgn(n), then for each ε > 0 we have, multiplying (3.31) by χ′δ(n)

∂χε(n)(t, x)

∂t
+
∂χε(n)(t, x)

∂x
+ χ′ε(n)λ0n(t, x) = 0. (3.32)

Passing to the limit ε→ 0 gives (3.31). Integrating (3.31) in time and space we get

ˆ ∞
0

|n(t, x)|dx ≤
ˆ t

0

|n(s, 0)|ds =

ˆ t

0

∣∣∣ ˆ ∞
0

B(y)q(s, y)dy
∣∣∣ds ≤ t‖B‖L∞‖q‖X .

We see that if

T‖B‖L∞ ≤ 1

2
,

then the map S is a contraction, hence it has a fixed point in X.
Step 2. The comparison principle. The comparison principle is a direct consequence

of the construction since if n1
0(x) ≥ n2

0(x) for all x ≥ 0, then for each q ∈ X we have
S1q(t, x) ≥ S2q(t, x) for all t and x. Recall that the fixed points can be constructed as the
limit of the iteration process mn+1 = Smn. As the operator S respects the order, if we take
m1

0 = m2
0 = 0, then we will have m1

n(t, x) ≥ m2
n(t, x), hence this order will be preserved in the
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limit for the fixed points as well. The maximum principle is a consequence of the comparison
principle since CN0(x) is a steady solution, and can also be taken as the initial condition.

Step 3. Uniqueness and existence in C([0, T ];L1(R+). Let us take an initial condition
n0 ∈ L1(R+;φ(x)dx). The function φ(x) is bounded, hence there exists a sequence nk ∈
L1(R; dx) such that nk → n0 in L1(R+;φ(x)dx). Let mk be the corresponding solution. The
function m = (mk −mp) satisfies

∂m(t, x)φ(x)

∂t
+
∂m(t, x)φ(x)

∂x
= −φ(0)B(x)m(t, x), (3.33)

m(t, x = 0) =

ˆ ∞
0

B(y)m(t, y)dy,

m(0, x) = nk − np.

This implies

∂|m(t, x)|φ(x)

∂t
+
∂|m(t, x)|φ(x)

∂x
= −φ(0)B(x)|m(t, x)|, (3.34)

m(t, x = 0) =

ˆ ∞
0

B(y)m(t, y)dy,

m(0, x) = nk − np.

Integrating in x gives

d

dt

ˆ
|m(t, x)|φ(x)dx = |m(t, 0)|φ(0)− φ(0)

ˆ
B(x)|m(t, x)|dx (3.35)

≤ |m(t, 0)|φ(0)− |m(t, 0)|φ(0) ≤ 0.

We conclude that ˆ
|mk(t, x)−mp(t, x)|φdx ≤

ˆ
|nk(x)− np(x)|φ(x)dx. (3.36)

As the sequence nk is Cauchy in L1(R+;φ(x)dx), we conclude from (3.36) that the sequence
mk(t, x) is Cauchy in C([0, T ];L1(R+;φ(x)dx). Hence, it converges to a limit m(t, x), which
is a weak solution in C([0, T ];L1(R+;φ(x)dx)). In order to see uniqueness, note that (3.36)
implies that if there are two solutions then they must coincide on the support of φ(x). How-
ever, the equation for φ(x) shows that the support of φ contains the support of B. Hence,
the two solutions coincide on the support of B. This means that they satisfy the transport
equation with the same boundary and initial conditions, hence they coincide.

Finally, we have already shown (3.28), and (3.27) also follows from integrating the equa-
tion.

A little bit of regularity

Let us now assume that the initial condition satisfies

|n0(x)| ≤ CN0(x),
∣∣∣∂n0(x)

∂x

∣∣∣ ≤ C1N0(x), (3.37)
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and, in addition, it is well prepared in the sense that

n0(0) =

ˆ
B(y)n0(y)dy. (3.38)

Then, differentiating the equation in t we see that the time derivative

nt =
∂n

∂t

satisfies exactly the same problem as n(t, x). Moreover, initially we have

nt(0, x) = −∂n0

∂x
− λ0n0(x),

hence
|nt(0, x)| ≤ (λ0C0 + C1)N0(x).

Therefore, the maximum principle implies that∣∣∣∂n(t, x)

∂t

∣∣∣ ≤ (λ0C0 + C1)N0(x), (3.39)

for all t ≥ 0. We have a similar estimate for the spatial derivative. This simply follows from
the equation: ∣∣∣∂n(t, x)

∂x

∣∣∣ ≤ ∣∣∣∂n(t, x)

∂t

∣∣∣+ λ0|n(t, x)| ≤ C ′N0(x) (3.40)

by what we have already shown.

Generalized relative entropy

We give here an example of how one can apply the generalized relative entropy method to
the renewal equation. We will discuss more about this method later for other equations. Let
n(t, x) be the solution of

∂n(t, x)

∂t
+
∂n(t, x)

∂x
+ λ0n(t, x) = 0, (3.41)

n(t, x = 0) =

ˆ ∞
0

B(y)n(t, y)dy,

n(0, x) = n0(x).

Note that the ratio

ζ(x) =
n(t, x)

N(t, x)

satisfies the homogeneous transport equation

∂ζ

∂t
+
∂ζ

∂x
=

1

N

(∂n
∂t

+
∂n

∂x

)
− n

N2

∂N

∂x
= − 1

N
λ0n+

n

N2
λ0N = 0.
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Therefore, any function H(n(t, x)/N(t, x)) satisfies the same transport equation:

∂

∂t
H
( n(t, x)

N(t, x)

)
+

∂

∂x
H
( n(t, x)

N(t, x)

)
= 0. (3.42)

Recall that the function φ satisfies

−∂φ
∂x

+ λ0φ = φ(0)B(x). (3.43)

Let us compute the equation for the function φ(x)N(x)H(n(t, x)/N(x)):

∂

∂t

(
φ(x)N(x)H

(n(t, x)

N(x)

))
+

∂

∂x

(
φ(x)N(x)H

(n(t, x)

N(x)

))
= φ(x)N(x)

∂

∂t
H
(n(t, x)

N(x)

)
+ φ(x)N(x)

∂

∂x
H
(n(t, x)

N(x)

)
+
∂φ

∂x
N(x)H

(n(t, x)

N(x)

)
+φ(x)

∂N(x)

∂x
H
(n(t, x)

N(x)

)
=
[
λ0φ(x)N(x)− φ(0)B(x)N(x)− λ0φ(x)N(x)

]
H
(n(t, x)

N(x)

)
= −φ(0)B(x)N(x)H

(n(t, x)

N(x)

)
. (3.44)

Let us define a probability measure

dµ(x) =
B(x)N(x)

N(0)
dx,

ˆ ∞
0

dµ(x) = 1. (3.45)

We integrate (3.44) in x:

d

dt

ˆ
φ(x)N(x)H

(n(t, x)

N(x)

)
dx = −φ(0)N(0)

ˆ
H
(n(t, x)

N(x)

)
dµ(x) + φ(0)N(0)H

(n(t, 0)

N(0)

)
.

(3.46)
Let us now assume that the function H(s) is convex and H(0) = 0. Then, as dµ(x) is a
probability measure, we have ˆ

H(u(x))dµ ≥ H
(ˆ

u(x)dµ
)
. (3.47)

As
n(t, 0)

N(0)
=

ˆ
B(x)n(t, x)

N(0)
dx =

ˆ
n(t, x)

N(x)

B(x)N(x)

N(0)
dx =

ˆ
n(t, x)

N(x)
dµ(x),

we deduce that

H
(n(t, 0)

N(0)

)
≤
ˆ
H
(n(t, x)

N(x)

)
dµ(x).

Using this in (3.46) gives

d

dt

ˆ
φ(x)N(x)H

(n(t, x)

N(x)

)
dx ≤ 0 for all convex functions H with H(0) = 0. (3.48)

Integrating (3.46) in time gives a bound for the entropy dissipation

D(t) =

ˆ
H
(n(t, x)

N(x)

)
dµ(x)−H

(ˆ n(t, x)

N(x)

)
dµ(x)

)
≥ 0, (3.49)

as

φ(0)N(0)

ˆ ∞
0

D(t)dt ≤
ˆ
φ(x)N(x)H

(n0(x)

N(x)

)
dx < +∞. (3.50)
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Long time asymptotics via the generalized entropy method

The entropy dissipation bound (3.49) says, roughly, that D(t)→ 0 as t→ +∞, so we expect
that in the long time limit m(t, x), solution of

∂m(t, x)

∂t
+
∂m(t, x)

∂x
+ λ0m(t, x) = 0, (3.51)

m(t, 0) =

ˆ ∞
0

B(y)m(t, y)dy,

m(0, x) = n0(x),

would converge to a function r(x) such that

ˆ
H
( r(x)

N(x)

)
dµ(x)−H

( ˆ r(x)

N(x)
dµ(x)

)
= 0. (3.52)

This would imply that r(x) = CN(x) is a multiple of N(x). We will prove that asymptotic
behavior in this section. As before, we assume that B(x) ≥ 0, B ∈ L∞(R+), and

1 <

ˆ
B(y)dy < +∞. (3.53)

Theorem 3.2 Assume that |n0(x)| ≤ CN(x), and set

α0 =

ˆ
n0(x)φ(x)dx, (3.54)

then ˆ ∞
0

|m(t, x)− α0N(x)|φ(x)dx→ 0. (3.55)

Proof. As we only assume that n0(x) satisfies |n0(x)| ≤ CN(x), it is helpful to regularize the
initial condition so that we would have, in addition, the bound on the derivative. Hence, we
approximate n0 in L1(R+;φ(x)dx) by a sequence of smooth functions n0

ε such that n0
ε → n0

in L1(R+;φ(x)dx) and each n0
ε satisfies∣∣∣∂n0

ε(x)

∂x

∣∣∣ ≤ C1N(x), (3.56)

and the compatibility condition holds

n0
ε(0) =

ˆ ∞
0

B(y)n0
ε(y)dy. (3.57)

Note that then α0
ε → α0 as ε→ 0, and, as we have shown, we have

ˆ ∞
0

|m(t, x)−mε(t, x)|φ(x)dx ≤
ˆ ∞

0

|n0(x)− n0
ε(x)|φ(x)dx→ 0 as ε→ 0. (3.58)
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Therefore, we have
ˆ ∞

0

|m(t, x)− α0N(x)|φ(x)dx ≤
ˆ ∞

0

|m(t, x)−mε(t, x)|φ(x)dx (3.59)

+

ˆ ∞
0

|mε(t, x)− αεN(x)|φ(x)dx+ |αε − α0|
ˆ ∞

0

N(x)φ(x)dx.

The first and the last term in the right side go to zero as ε → 0, uniformly in t, thus to
establish our claim it suffices to show that the middle term tends to zero as t → +∞. In
other words, it suffices to prove that the conclusion of the theorem holds for smooth initial
data, with the assumption that the compatibility condition (3.57) holds. This is what we will
now assume about n0(x).

Next, note that we may look at the difference

h(t, x) = m(t, x)− α0N(x),

which satisfies the same problem as m(t, x) but with the initial condition

h0(x) = n0(x)− α0N(x),

so that ˆ ∞
0

h0(x)φ(x)dx = 0. (3.60)

Our goal will be to show that
ˆ ∞

0

|h(t, x)|φ(x)dx→ 0 as t→ +∞. (3.61)

Note that we know that
d

dt

ˆ ∞
0

|h(t, x)|φ(x)dx ≤ 0, (3.62)

hence the limit in (3.61) exists:

ˆ ∞
0

|h(t, x)|φ(x)dx→ L as t→ +∞. (3.63)

Our goal is to show that L = 0.
Let us define the time shifts hk(t, x) = h(t+ k, x), and the corresponding entropy dissipa-

tion

Dk(t) =

ˆ
H
(hk(t, x)

N(x)

)
dµ(x)−H

(ˆ hk(t, x)

N(x)
dµ(x)

)
≥ 0. (3.64)

Note that Dk(t) is simply

Dk(t) =

ˆ
H
(m(t+ k, x)

N(x)

)
dµ(x)−H

(ˆ m(t+ k, x)

N(x)

)
dµ(x)

)
≥ 0, (3.65)

thus

Ik =

ˆ ∞
0

Dk(t)dt =

ˆ ∞
k

D0(t)dt,
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and we know from (3.50) that

ˆ ∞
0

D0(t)dt ≤ 1

φ(0)N(0)

ˆ
φ(x)N(x)H

(h0(x)

N(x)

)
dx < +∞. (3.66)

We conclude that

Ik =

ˆ ∞
0

[ ˆ
H
(hk(t, x)

N(x)

)
dµ(x)−H

(ˆ hk(t, x)

N(x)
dµ(x)

)]
dt→ 0 as k → +∞. (3.67)

Each hk satisfies

∂hk(t, x)

∂t
+
∂hk(t, x)

∂x
+ λ0hk(t, x) = 0, (3.68)

hk(t, 0) =

ˆ ∞
0

B(y)hk(t, y)dy,

and ˆ ∞
0

hk(t, y)φ(y)dy = 0 for all t ≥ 0. (3.69)

Using the regularity bounds on the derivatives of hk(t, x) in x and t, we may extract a
subsequence, still denoted hk so that hk → g in C([0, T ]× R+), and

|g(x)| ≤ C0N(x), (3.70)ˆ ∞
0

B(y)hk(t, y)dy →
ˆ ∞

0

B(y)g(y)dy,

ˆ ∞
0

φ(t, x)g(t, x)dx = 0, (3.71)

and ˆ ∞
0

φ(x)|g(t, x)|dx = L, (3.72)

with L as in (3.63). We now pass to the limit k →∞ in (3.67). Convexity of the weak limits
(if uk converges weakly to f , H is convex and H(uk)→ l then l ≥ H(f)) then implies that

ˆ ∞
0

ˆ
H
(g(t, x)

N(x)

)
dµ(x) ≤ lim

k→+∞

ˆ ∞
0

ˆ
H
(hk(t, x)

N(x)

)
dµ(x) (3.73)

= lim
k→+∞

ˆ ∞
0

H
(ˆ hk(t, x)

N(x)
dµ(x)

)
dt =

ˆ ∞
0

H
(ˆ g(t, x)

N(x)
dµ(x)

)
dt.

We used (3.67) in the last step. Jensen’s inequality then implies that on the support of

dµ(x) =
B(x)N(x)

N(0)
dx,

which is the same as the support of B(x), we have

g(t, x)

N(x)
= C(t) on the support of B(x). (3.74)
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However, we may write an equation for this fraction:

∂

∂t

(g(t, x)

N(x)

)
+

∂

∂x

(g(t, x)

N(x)

)
= 0.

It follows that (3.74) holds not just on the support of B(x) but everywhere, and that C(t) is
a constant function. We conclude that

g(x) = M0N(x).

As ˆ ∞
0

g(t, x)φ(x)dx = 0,

we see that M0 = 0, and we are done.

The renewal equation with diffusion

Let us now show that the generalized relative entropy method also applies to the renewal
equation with diffusion and a death rate

∂n(t, x)

∂t
+
∂n(t, x)

∂x
+ d(x)n(t, x) =

∂

∂x

[
ν(x)

∂n(t, x)

∂x

]
, (3.75)

n(t, 0) = ν(0)
∂n(t, 0)

∂x
+

ˆ ∞
0

B(y)n(t, y)dy,

n(0, x) = n0(x).

Note that if both the death rate and the reproduction rate vanish: d(x) = B(x) = 0, then
the total population is preserved:

d

dt

ˆ ∞
0

n(t, x)dx = 0 if d(x) = B(x) = 0.

This explains the boundary condition in (3.75). We let N(x) be the principal eigenfunction
of the steady problem:

n(t, x) = eλ0tN(x)

is a solution of (3.75) if

∂N(x)

∂x
+ [d(x) + λ0]N(x) =

∂

∂x

[
ν(x)

∂N(x)

∂x

]
, (3.76)

N(0) = ν(0)
∂N(0)

∂x
+

ˆ ∞
0

B(y)N(y)dy.

The adjoint problem is now

−∂φ(x)

∂x
+ [d(x) + λ0]φ(x) =

∂

∂x

[
ν(x)

∂φ(x)

∂x

]
+B(x)φ(0), (3.77)

∂φ(0)

∂x
= 0,

ˆ ∞
0

φ(x)N(x)dx = 1.
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Leaving for the moment aside the question of the existence of N(x) and φ(x), look for a
relative entropy inequality. Let m(t, x) be the solution of

∂m(t, x)

∂t
+
∂m(t, x)

∂x
+ (d(x) + λ0)m(t, x) =

∂

∂x

[
ν(x)

∂m(t, x)

∂x

]
, (3.78)

m(t, 0) = ν(0)
∂m(t, 0)

∂x
+

ˆ ∞
0

B(y)m(t, y)dy,

m(0, x) = n0(x).

Note that the

I(t) =

ˆ ∞
0

m(t, x)φ(x)dx

is conserved:

dI

dt
=

ˆ ∞
0

[
− ∂m(t, x)

∂x
− (d(x) + λ0)m(t, x) +

∂

∂x

(
ν(x)

∂m(t, x)

∂x

)]
φ(x)dx

= n(t, 0)φ(0) +

ˆ ∞
0

m(t, x)
[
− (d(x) + λ0)φ(x) +

∂φ

∂x

]
dx− φ(0)ν(0)

∂m(t, 0)

∂x

−
ˆ ∞

0

∂m(t, x)

∂x
ν(x)

∂φ(x)

∂x
dx =

ˆ ∞
0

m(t, x)
[
φ(0)B(x)− (d(x) + λ0)φ(x) +

∂φ

∂x

]
dx

+m(t, 0)ν(0)
∂φ(0)

∂x
+

ˆ ∞
0

m(t, x)
∂

∂x

(
ν(x)

∂φ(x)

∂x

)
dx = 0.

This explains the choice of the function φ(x), and the boudnary condition in (3.77).
In order to deduce entropy dissipation, we form the same object as before:

Q(t) =

ˆ ∞
0

N(x)φ(x)H
(m(t, x)

N(x)

)
dx, (3.79)

and compute Q̇(t). First, we need an equation for the ratio

ζ(t, x) =
m(t, x)

N(x)
.

Note that 1/N(x) satisfies

∂

∂x

1

N(x)
− (d(x) + λ0)

1

N(x)
= − 1

N2

∂

∂x

(
ν(x)

∂N(x)

∂x

)
=

∂

∂x

(
ν(x)

∂

∂x

1

N(x)

)
−2ν(x)N(x)

( ∂
∂x

1

N(x)

)2

.

Therefore, the function ζ(t, x) satisfies

∂ζ

∂t
+
∂ζ

∂x
=

1

N(x)

[ ∂
∂x

(
ν(x)

∂m(t, x)

∂x

)
− (d(x) + λ0)m

]
+m

[ ∂
∂x

(
ν(x)

∂

∂x

1

N(x)

)
+(d(x) + λ0)

1

N(x)
− 2ν(x)N(x)

( ∂
∂x

1

N(x)

)2]
=

∂

∂x

[
ν(x)

∂ζ

∂x

]
−2ν(x)

∂m

∂x

∂

∂x

1

N(x)
− 2ν(x)m(t, x)N(x)

( ∂
∂x

1

N(x)

)2

=
∂

∂x

[
ν(x)

∂ζ

∂x

]
− 2ν(x)N(x)

( ∂
∂x

1

N(x)

)∂ζ
∂x
.
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Then, for any function H we obtain

∂H(ζ)

∂t
+
∂H(ζ)

∂x
= H ′(ζ)

∂

∂x

[
ν(x)

∂ζ

∂x

]
− 2H ′(ζ)ν(x)N(x)

( ∂
∂x

1

N(x)

)∂ζ
∂x

=
∂

∂x

[
ν(x)

∂H(ζ)

∂x

]
− ν(x)

(∂ζ
∂x

)2

H ′′(ζ)− 2ν(x)N(x)
( ∂
∂x

1

N(x)

)∂H(ζ)

∂x
.

It follows that the function p(t, x) = N(x)H(ζ(t, x)) satisfies

∂p

∂t
+
∂p

∂x
+ (d(x) + λ0)p = H(ζ)

∂

∂x

[
ν(x)

∂N(x)

∂x

]
+N(x)

∂

∂x

[
ν(x)

∂H(ζ)

∂x

]
−N(x)ν(x)

(∂ζ
∂x

)2

H ′′(ζ)− 2ν(x)N2(x)
( ∂
∂x

1

N(x)

)∂H(ζ)

∂x

=
∂

∂x

[
ν(x)

∂p

∂x

]
−N(x)ν(x)

(∂ζ
∂x

)2

H ′′(ζ).

Therefore, we have for the relative entropy Q(t):

dQ

dt
=

ˆ ∞
0

φ(x)
∂p(t, x)

∂t
dx

=

ˆ ∞
0

φ
[
− ∂p

∂x
− (d(x) + λ0)p+

∂

∂x

[
ν(x)

∂p

∂x

]
−N(x)ν(x)

(∂ζ
∂x

)2

H ′′(ζ)
]

= −
ˆ ∞

0

φ(x)N(x)ν(x)
(∂ζ(t, x)

∂x

)2

H ′′(ζ)dx

+φ(0)p(t, 0) +

ˆ ∞
0

p(t, x)
[∂φ(x)

∂x
− (d(x) + λ0)φ(x) +

∂

∂x

(
ν(x)

∂φ

∂x

)]
dx

−φ(0)ν(0)
∂p(t, 0)

∂x
+ p(t, 0)ν(0)

∂φ(0)

∂x

= −
ˆ ∞

0

φ(x)N(x)ν(x)
(∂ζ(t, x)

∂x

)2

H ′′(ζ)dx

+φ(0)
[
p(t, 0)− ν(0)

∂p(t, 0)

∂x
−
ˆ ∞

0

B(x)p(t, x)dx
]
. (3.80)

Note that

p(t, 0)− ν(0)
∂p(t, x)

∂x
= N(0)H(ζ(t, 0))− ν(0)H(ζ(t, 0))

∂N(0)

∂x
(3.81)

−ν(0)N(0)H ′(ζ(t, 0))
∂ζ(t, 0)

∂x
= H(ζ(t, 0))

ˆ ∞
0

B(x)N(x)dx− ν(0)N(0)H ′(ζ(t, 0))
∂ζ(t, 0)

∂x
.

Let us get the boundary condition for ζ:

ν(0)
∂ζ(t, 0)

∂x
=

1

N(0)

[
m(t, 0)−

ˆ ∞
0

B(x)m(t, x)dx
]
− m(t, 0)

N2(0)
[N(0)−

ˆ ∞
0

B(x)N(x)dx
]

=
m(t, 0)

N2(0)

ˆ ∞
0

B(x)N(x)dx− 1

N(0)

ˆ ∞
0

B(x)m(t, x)dx.
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Using this in (3.81) gives

p(t, 0)− ν(0)
∂p(t, 0)

∂x
−
ˆ ∞

0

B(x)p(t, x)dx = H(ζ(t, 0))

ˆ ∞
0

B(x)N(x)dx

−H ′(ζ(t, 0))ν(0)N(0)
∂ζ(t, 0)

∂x
−
ˆ ∞

0

B(x)N(x)H(ζ(t, x))dx

= H(ζ(t, 0))

ˆ ∞
0

B(x)N(x)dx−H ′(ζ(t, 0))
m(t, 0)

N(0)

ˆ ∞
0

B(x)N(x)dx (3.82)

+H ′(ζ(t, 0))

ˆ ∞
0

B(x)m(t, x)dx−
ˆ ∞

0

B(x)N(x)H(ζ(t, x))dx

=

ˆ ∞
0

B(x)N(x)
[
H(ζ(t, 0))−H ′(ζ(t, 0))ζ(t, 0) +H ′(ζ(t, 0))ζ(t, x)−H(ζ(t, x))

]
dx.

Note that

Dren := −
ˆ ∞

0

B(x)N(x)
[
H(ζ(t, 0))+H ′(ζ(t, 0))(ζ(t, x)−ζ(t, 0))−H(ζ(t, x))

]
dx ≥ 0 (3.83)

if the function H(s) is convex. To summarize, we have obtained the following relative entropy
dissipation inequality for any convex function H(s):

Q(t) =

ˆ
N(x)φ(x)H

(m(t, x)

N(x)

)
dx (3.84)

satisfies
dQ

dt
= −Ddiff (t)−Dren(t), (3.85)

with Dren(t) defined in (3.83), and

Ddiff (t) =

ˆ ∞
0

φ(x)N(x)ν(x)
(∂ζ(t, x)

∂x

)2

H ′′(ζ)dx, ζ(t, x) =
m(t, x)

N(x)
. (3.86)

With the relative entropy dissipation inequality in hand, one may proceed as before to
obtain the asymptotic limit of m(t, x).

4 Cell motion and chemotaxis

Attraction potential

Before going into the Keller-Segel system, consider a population of bacteria in an attractive
potential V (x): they move in the direction of the gradient of V (x) but also diffuse. The
governing equation is

ρt +∇ · (ρ∇V ) = ∆ρ. (4.1)

This equation preserves the total mass:
ˆ
ρ(t, x)dx =

ˆ
ρ0(x)dx. (4.2)
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On the other hand, multiplying by e−V (x)ρ(x) and integrating we get

1

2

d

dt

ˆ
e−V ρ2(t, x)dx =

ˆ
e−V ρ[∆ρ−∇ · (ρ∇V )]dx (4.3)

=

ˆ
e−V [−|∇ρ|2 + 2ρ∇ρ · ∇V − ρ2|∇V |2]dx = −

ˆ
e−V (x)|∇ρ− ρ∇V |2dx.

Therefore, the total mass is preserved but the L2-norm with the weight e−V (x) decreases.
Imagine that V (x) is a positive function, concentrated near a point x0. Then, having ρ(t, x)
large near x0 does not lead to large weighted L2-norm since w(x) is very small around x0. On
the other hand, if ρ(t, x) is large in a region where V (x) is small, that would produce large
contribution to the weighted L2-norm. Thus, the dynamics tends to concentrate ρ(t, x) in the
regions where V (x) is large.

Moreover, the right side of (4.3) vanishes if

ρ̄(x) = CeV (x), (4.4)

which is a steady solution. Thus, we expect that in the long time limit ρ(x) will approach
ρ̄(x). If we allow V (x) to vary in time and concentrate more as ρ(t, x) concentrates, we may
produce the blow-up in the solution. The Keller-Segel model is an example of how that can
happen even with a very modest coupling. Discuss that V (x) has to grow at infinity
which is not the case in the nonlinear problem.

The Keller-Segel system

The Keller-Segel model for chemotaxis describes the evolution of the bacteria of density ρ(t, x)
attracted by chemoreactant of density c(t, x). The idea is the bacteria would like to move
in the direction of the maximal local increase of the chemoattractant density, that is, in the
direction of ∇c(t, x). There is also diffusion present to reflect the random motion by the
bacteria. This leads to the equation

ρt +∇ · (ρv) = ∆ρ, (4.5)

with the velocity
v(t, x) = χ∇c(t, x). (4.6)

The parameter χ ≥ 0 measures the strength of the chemotactic attraction. In order to
close the system we need an equation for c(t, x). The Keller-Segel model postulates that the
chemoattractant is emitted by the cells and diffuses:

α
∂c

∂t
−∆c+ τc = ρ. (4.7)

Here, τ−1/2 is ”the activation length” of the chemoattractant. One interesting regime is
α, τ → 0, leading to

c = (−∆)−1ρ = kd

ˆ
Rn

ρ(y)

|x− y|n−2
dy, (4.8)
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in dimension n ≥ 3. In dimension n = 2, which, in some sense, is the most interesting case,
the Green’s function G(x) = k2 log |x| is not positive, meaning that the positivity of c(t, x)
can be violated, something we will need to avoid.

An interesting feature of the Keller-Segel system is that it is critical in Ln/2: solutions
with smooth initial conditions with a small Ln/2 will exist for all times, but solutions with a
large Ln/2 initial norm, even if the initial condition is smooth, will blow-up in a finite time
– the bacteria concentration will become infinite. In particular, in dimension n = 1 global
solutions always exist, but in R2 solutions with a larger initial mass (L1 norm) will blow up.

The free energy

Let us first look at the heat equation
φt = ∆φ, (4.9)

and look at what happens for the free energy

Eheat =

ˆ
Rn

φ log φdx. (4.10)

We have

dEheat
dt

=

ˆ
(1 + log φ)(∆φ)dx. = −

ˆ
1

φ
|∇φ|2dx = −

ˆ
φ|∇(log φ)|2dx. (4.11)

Let us see what happens for equations of the form

ρt +∇ · (ρv) = ∆ρ, (4.12)

with an advecting velocity v(t, x). Then we have

dEheat
dt

=

ˆ
(1 + log ρ)(∆ρ−∇ · (ρv))dx = −

ˆ
1

ρ
|∇ρ|2dx+

ˆ
(v · ∇ρ)dx

= −
ˆ
ρ
∣∣∣∇(log ρ)|2dx+

ˆ
(v · ∇ρ)dx. (4.13)

In the Keller-Segel model we have

v = χ∇c, c = (−∆)−1ρ.

Therefore, we have

ˆ
ρctdx =

ˆ
ρ(−∆)−1ρtdx =

ˆ
[(−∆)−1ρ]ρt =

ˆ
cρtdx,

so that

χ

2

d

dt

ˆ
ρ(t, x)c(t, x)dx = χ

ˆ
cρtdx = χ

ˆ
c(∆ρ− χ∇ · (ρ∇c))dx

= −χ
ˆ

(∇c · ∇ρ)dx+ χ2

ˆ
ρ|∇c|2dx =

ˆ
(v · ∇ρ)dx+

ˆ
ρ|v|2dx.
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Combining this with (4.13) gives

d

dt

(
Eheat −

χ

2

ˆ
ρ(t, x)c(t, x)dx

)
= −
ˆ
ρ
∣∣∣∇(log ρ)− v|2dx ≤ 0. (4.14)

We define the free energy then as

Ecc =

ˆ
(ρ log ρ− χ

2
ρc)dx. (4.15)

Existence for small data in dimentions n > 2

We now show that if the initial condition is small in Ln/2 norm and n > 2 then solution exists
for all times. We will consider the ”time-independent” chemotactic law:

ρt + χ∇ · (ρ∇c) = ∆ρ, (4.16)

−∆c+ = ρ,

ρ(0, x) = ρ0(x).

Theorem 4.1 Let n > 2. There exists a constant Kn so that if ρ0 ∈ L1(Rn), and ‖ρ0‖Ln/2 ≤
Kn/χ, then (4.16) admits a unique weak solution ρ ∈ L∞(R+;L1 ∩ Ln/2) such that

‖ρ(t)‖Ln/2 ≤ ‖ρ0‖Ln/2 , (4.17)ˆ ∞
0

ˆ
R
|ρ|1+(d/2)(t, x)dxdt < +∞,

∇(ρn/4) ∈ L2(R+ × Rn). (4.18)

We also have the decay estimates:

‖ρ(t)‖Ln/2 ≤
Cm0

tβ
, β =

d− 2

2
, (4.19)

‖ρ(t)‖Lp ≤ Cm0

tz
, t ≥ T (n, p), z =

n

2

(
1− 1

p

)
.

The decay estimates simply say that after a long time the solution with a small initial condition
becomes so small that the nonlinear term may be neglected, and ρ(t, x) behaves as a solution
of the heat equation.
Proof. Multiply (4.16) by ρp−1:

1

p

d

dt

ˆ
ρp(t, x)dx =

ˆ
(∆ρ− χ∇ · (ρ∇c))ρp−1dx (4.20)

= −(p− 1)

ˆ
ρp−2|∇ρ|2dx+ (p− 1)χ

ˆ
ρp−1(∇c · ∇ρ)dx

= −4(p− 1)

p2

ˆ
|∇(ρp/2)|2dx+ χ

p− 1

p

ˆ
(∇c · ∇(ρp))dx. (4.21)

Integrating by parts in the last term in the right side and using the equation for c(t, x) we get

d

dt

ˆ
ρp(t, x)dx+

4(p− 1)

p

ˆ
|∇(ρp/2)|2dx = χ

p− 1

p

ˆ
ρp+1dx. (4.22)
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Let us set u = ρp/2, then (4.22) is

d

dt

ˆ
u2(t, x)dx+

4(p− 1)

p

ˆ
|∇u|2dx = χ

p− 1

p

ˆ
u2(p+1)/pdx. (4.23)

In order to bound the right side of (4.23) in terms of its left side we may now use the
Gagliardo-Nirenberg inequality

‖u‖Lr(Rn) ≤ C‖∇u‖θLs(Rn)‖u‖1−θ
Lq(Rn), (4.24)

with 1 ≤ s < n, 1 ≤ q ≤ ∞, and

1

r
=
θ

s
− θ

n
+

1− θ
q

. (4.25)

Taking s = 2, q = n/p, and r = 2(p + 1)/p we see that, first, indeed, we need n > 2 and,
second, θ is determined by

p

2(p+ 1)
=
θ

2
− θ

n
+
p(1− θ)

n
=
p

n
+ θ

n− 2(p+ 1)

2n

so that

θ =
2n

n− 2(p+ 1)

( p

2(p+ 1)
− p

n

)
=

2np

2n(p+ 1)
=

p

p+ 1
.

We see thatˆ
u2(p+1)/pdx ≤ C

(ˆ
|∇u|2dx

)θr/2( ˆ
|u|n/pdx

)(1−θ)pr/n
= C

(ˆ
|∇u|2dx

)(ˆ
|u|n/pdx

)2/n

.

(4.26)
Going back to the function ρ this is

ˆ
ρp+1dx ≤ C

( ˆ
|∇(ρp/2)|2dx

)(ˆ
|ρ|n/2dx

)2/n

. (4.27)

Returning to (4.22), we deduce

d

dt

ˆ
ρp(t, x)dx+

4(p− 1)

p

ˆ
|∇(ρp/2)|2dx ≤ Cχ

p− 1

p

(ˆ
|∇(ρp/2)|2dx

)(ˆ
|ρ|n/2dx

)2/n

.

(4.28)
To close this inequality, we choose p = n/2 so that

d

dt

ˆ
ρn/2(t, x)dx+

4(p− 1)

p

ˆ
|∇(ρn/4)|2dx ≤ Cχ

p− 1

p

(ˆ
|∇(ρn/4)|2dx

)( ˆ
|ρ|n/2dx

)2/n

.

(4.29)
Therefore, if at the time t = 0 we have

Cχ
p− 1

p

( ˆ
|ρ0|n/2dx

)2/n

<
1

2

4(p− 1)

p
, (4.30)

then
d

dt

ˆ
ρn/2(t, x)dx < 0,
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for all t > 0, and inequality (4.30) persists:

Cχ
p− 1

p

( ˆ
|ρ(t, x)|n/2dx

)2/n

<
1

2

4(p− 1)

p
. (4.31)

This proves the Ln/2 bound in the theorem. Integrating in time we see that if (4.30) holds,
then ˆ ∞

0

ˆ
|∇(ρn/4)|2dxdt ≤ C < +∞. (4.32)

Now, going back to (4.27), with p = n/2, we see that

ˆ ∞
0

ˆ
ρn/2+1dxdt ≤ C

ˆ ∞
0

(ˆ
|∇(ρp/2)|2dx

)( ˆ
|ρ|n/2dx

)2/n

dt ≤ C, (4.33)

because of (4.31) and (4.32).
To get the decay bounds on ρ in time, we get back to (4.29) with the assumption (4.30)

d

dt

ˆ
ρn/2(t, x)dx ≤ −C

ˆ
|∇(ρn/4)|2dx. (4.34)

We now use the Gagliardo-Nirenberg inequality

ˆ
|u|2+4/ndx ≤ C

(ˆ
|∇u|2dx

)(ˆ
|u|2dx

)2/n

. (4.35)

It is an example of (4.24) with

r = 2 +
4

n
, s = 2, q = 2, θ =

2

r
, 1− θ =

4

nr
.

Taking u = ρn/4 in (4.35) gives

ˆ
|∇(ρn/4)|2dx ≥ C

(ˆ
ρn/2

)−2/n(ˆ
ρ1+n/2dx

)
. (4.36)

We obtain from (4.34):

d

dt

ˆ
ρn/2(t, x)dx ≤ − C

‖ρ(t)‖Ln/2

ˆ
ρ1+n/2dx. (4.37)

However, the L1-norm of ρ(t) is preserved:

m0 =

ˆ
ρ0(x)dx =

ˆ
ρ(t, x)dx.

We may now interpolate:

ˆ
ρn/2dx =

ˆ
ρaρbdx ≤

( ˆ
ρapdx

)1/p(ˆ
ρbqdx

)1/q

=
(ˆ

ρdx
)1/p( ˆ

ρ1+n/2
)1/q
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if we choose a, b, p and q so that

1

p
+

1

q
= 1, a+ b =

n

2
, ap = 1, bq =

n

2
+ 1,

that is,

q =
n

n− 2
, p =

n

2
,

so that ˆ
ρn/2dx ≤

(ˆ
ρdx
)2/n(ˆ

ρ1+n/2dx
)(n−2)/n

,

and ˆ
ρ1+n/2dx ≥ m

−2/(n−2)
0

(ˆ
ρn/2dx

)n/(n−2)

Going back to (4.37) gives

d

dt

ˆ
ρn/2(t, x)dx ≤ −Cm

−2/(n−2)
0

‖ρ(t)‖Ln/2

(ˆ
ρn/2

)n/(n−2)

= −Cm−2/(n−2)
0

( ˆ
ρn/2dx

)k
, (4.38)

with

k =
n

n− 2
− 2

n
> 1.

Let us set

u(t) =

ˆ
ρn/2(t, x)dx,

then we have
du

dt
≤ −Cm−2/(n−2)

0 uk,

or
1

k − 1

d

dt
(u−k+1) ≥ Cm

−2/(n−2)
0 ,

so that
1

uk−1(t)
≥ 1

uk−1
0

+ C(k − 1)m
−2/(n−2)
0 t ≥ C ′m

−2/(n−2)
0 t.

We obtain

u(t) ≤ C ′′m
2/[(n−2)(k−1)]
0

t1/(k−1)
.

It follows that

‖ρ(t)‖Ln/2 ≤
Cma

0

tb
, (4.39)

with

a =
2(k − 1)

(n− 2)

2

n
=

4

n(n− 2)

[ n

n− 2
− 2

n
− 1
]−1

= 1,

and

b =
1

k − 1

2

n
=
n− 2

2
.
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Thus, (4.39) says that

‖ρ(t)‖Ln/2 ≤
C

t(n−2)/2
‖ρ0‖L1 , (4.40)

as claimed by the theorem. Finally, for the decay of the Lp-norms we return to (4.28):

d

dt

ˆ
ρp(t, x)dx+

4(p− 1)

p

ˆ
|∇(ρp/2)|2dx ≤ Cχ

p− 1

p

(ˆ
|∇(ρp/2)|2dx

)(ˆ
|ρ|n/2dx

)2/n

.

(4.41)
Now we know that ‖ρ‖Ln/2 → 0 as t → +∞, hence we know that for all t > T , with some
T > 0, we have ‖ρ‖Ln/2 ≤ 1/2Cχ, so that

d

dt

ˆ
ρp(t, x)dx ≤ −C

( ˆ
|∇(ρp/2)|2dx

)
, (4.42)

and we can proceed as before.
The existence part is done by the usual regularization plus the above a priori bounds for

the regularized system plus removing the regularization argument.

Blow-up for large data in n > 2

We now show that solutions with large initial data can blow up, and first consider n > 2.

Theorem 4.2 Assume n > 2, and set

m0 =

ˆ
ρ0(x)dx.

There exists a constant C̄ > 0 so that if

χ

ˆ
|x|2ρ0(x)dx ≤ C̄(χm0)n/(n−2) (4.43)

then there is no global smooth solution with decay at infinity to the Keller-Segel system.

Let us first explain why (4.43) can not hold if ρ0 has a small Ln/2-norm (which would guarantee
the existence of a global smooth solution). To see that, let us fix R > 0, set

m2 =

ˆ
|x|2ρ0(x),

and write

m0 =

ˆ
ρ0(x)dx =

ˆ
|x|≥R

ρ0(x)dx+

ˆ
|x|≤R

ρ0(x)dx (4.44)

≤ 1

R2

ˆ
|x|≥R

|x|2ρ0(x)dx+
(ˆ
|x|≤R

ρ
n/2
0 (x)dx

)2/n

CRn(1−2/n) ≤ m2

R2
+ CRn−2‖ρ0‖Ln/2 .

We choose R so that the two terms in the right side coincide:

R =
Cm

1/n
2

‖ρ‖1/n

Ln/2

,
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leading to
m0 ≤ Cm

1−2/n
2 ‖ρ‖2/n

Ln/2 , (4.45)

or, equivalently,
m2 ≥ m

n/(n−2)
0 ‖ρ‖−2/n

Ln/2 . (4.46)

Therefore, condition (4.43) implies that

χ‖ρ‖−2/n

Ln/2 ≤ C̄χn/(n−2),

or

‖ρ‖Ln/2 ≥ Cχ(1−n/(n−2))(n/2) =
C

χ
.

Thus, the scaling 1/χ for the ‖ρ‖Ln/2 norm is the same both to ensure the global existence
and to guarantee the blow-up.

Proof. We now prove the theorem. We will now denote

m2(t) =

ˆ
|x|2ρ(t, x)dx.

Recall that

∇c(t, x) = −Cn
ˆ

x− y
|x− y|n

ρ(t, y)dy,

so that, multiplying the equation of ρ(t, x) by |x|2 and integrating, we get

dm2

dt
=

ˆ
|x|2ρ(t, x)dx− χ

ˆ
|x|2∇ · (ρ(t, x)∇c(t, x))dx

= 2nm0 + 2χ

ˆ
ρ(t, x)(x · ∇c(t, x))dx = 2nm0 − 2χCn

ˆ
ρ(t, x)ρ(t, y)

(x · (x− y))

|x− y|n
dxdy.

Symmetrizing the last expression, we can write
ˆ
ρ(t, x)ρ(t, y)

(x · (x− y))

|x− y|n
dxdy =

1

2

ˆ
ρ(t, x)ρ(t, y)

1

|x− y|n−2
dxdy.

It follows that for any R > 0 we may write

dm2

dt
≤ 2nm0 − Cnχ

ˆ
|x−y|≤R

ρ(t, x)ρ(t, y)
1

|x− y|n−2
dxdy

≤ 2nm0 −
Cnχ

Rn−2

ˆ
|x−y|≤R

ρ(t, x)ρ(t, y)dxdy

= 2nm0 −
Cnχ

Rn−2

[ ˆ
Rn

ρ(x)ρ(y)dy −
ˆ
|x−y|≥R

ρ(t, x)ρ(t, y)dxdy
]

= 2nm0 −
Cnχm

2
0

Rn−2
+
Cnχ

Rn−2

ˆ
Rn

ρ(t, x)ρ(t, y)
|x− y|2

R2
dxdy.

Note thatˆ
Rn

ρ(t, x)ρ(t, y)|x− y|2dxdy ≤ 2

ˆ
Rn

ρ(t, x)ρ(t, y)(x2 + y2)dxdy = 4m0m2.
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Therefore, we have

dm2

dt
≤ 2nm0 −

Cnχm
2
0

Rn−2
+

4Cnχm0m2

Rn
.

Let us take R small, so that the first two terms would combine to be negative:

2nm0 = ε
Cnχm

2
0

Rn−2
,

or
R = (Cχm0)1/(n−2).

This would give

dm2

dt
≤ −m0

2
+ Cχm0m2

1

(χm0)n/(n−2)
= −m0

(1

2
− Cχm2

(χm0)n/(n−2)

)
.

Therefore, as m0 is conserved, if we have at t = 0

χm2(0) ≤ C(χm0)n/(n−2),

which is assumption (4.43), then m2(t) is a decreasing in time function such that

dm2

dt
≤ −m0

3
.

Hence, there is a finite time T > 0 so that m2(T ) must be negative, which is a contradiction.
Thus, there can not be a global smooth solution for which the moment m2(t) remains finite
for all times.

The critical mass in dimension n = 2

In two dimensions, the result is much more precise: we will show that solutions of the Keler-
Segel system

ρt + χ∇ · (ρ∇c) = ∆ρ, (4.47)

−∆c = ρ,

ρ(0, x) = ρ0(x),

with the initial mass m0 larger than the critical mass

mc =
8π

χ
. (4.48)

blow up in a finite time, while those with m0 < mc (and a slightly stronger initial decay) will
have global in time solutions. We will always assume that

m2(0) =

ˆ
|x|2ρ0(x)dx < +∞, m0 =

ˆ
ρ0(x)dx < +∞, (4.49)

and ˆ
ρ0(x)| log ρ0(x)|dx < +∞. (4.50)

Here is the blow-up result.
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Theorem 4.3 In n = 2 assume that (4.49), (4.50) hold and m0 > mc. Then any solution to
the Keeler-Segel system (4.47) becomes a singular measure in a finite time.

And here is the global existence.

Theorem 4.4 In n = 2 assume that (4.49), (4.50) hold and m0 < mc. Then there are global
weak solutions to the Keller-Segel system (4.47) such that

ˆ
ρ0(x)(| log ρ0(x)|+ |x|2)dx < +∞. (4.51)

Proof of the blow-up

Th proof of the blow-up itself is not difficult, the main difficulty is to show that the solution
becomes a singular measure at the blow-up time. Note that in n = 2 we still have the formula

∇c(t, x) = − 1

2π

ˆ
R2

x− y
|x− y|2

ρ(t, y)dy, (4.52)

hence the second moment

m2(t) =

ˆ
R2

|x|2ρ(t, x)dx

satisfies

dm2

dt
=

ˆ
|x|2[∆ρ− χ∇ · (ρ∇c)]dx = 4m0 + 2χ

ˆ
ρ(t, x)(x · ∇c(t, x))dx (4.53)

= 4m0 −
χ

π

ˆ
(x · (x− y))

|x− y|2
ρ(t, x)ρ(t, y)dxdy

= 4m0 −
χ

2π

ˆ
(x · (x− y)) + (y · (y − x))

|x− y|2
ρ(t, x)ρ(t, y)dxdy = 4m0 −

χ

2π
m2

0.

As m0 is conserved in time, we conclude that

m2(t) = m2(0)− 4m0

(
1− χ

8π
m0

)
t. (4.54)

Therefore, if m0 > 8π/χ we will have m2(T ) < 0 in a finite time, which is a contradiction, and
global in time solution can not exist. This, however, does not answer the question of what
happens at the blow-up time, and we need to address this claim in the theorem separately.

The L1 weak solutions

Multiplying (4.47) by a test function ψ ∈ C∞c (R2) and integrating by parts we get

d

dt

ˆ
ψ(x)ρ(t, x)dx =

ˆ
∆ψ(x)ρ(t, x)dx− χ

2π

ˆ (
(x− y) · ∇ψ(x)

)ρ(t, x)ρ(t, y)

|x− y|2
dxdy. (4.55)
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In order to deal with the singularity in the right side we symmetrize:
ˆ (

(x− y) · ∇ψ(x)
)ρ(t, x)ρ(t, y)

|x− y|2
dxdy

=
1

2

ˆ (
(x− y) · ∇ψ(x)

)ρ(t, x)ρ(t, y)

|x− y|2
dxdy +

1

2

ˆ (
(y − x) · ∇ψ(y)

)ρ(t, x)ρ(t, y)

|x− y|2
dxdy

=
1

2

ˆ (
(x− y) · ∇(ψ(x)−∇ψ(y))

)ρ(t, x)ρ(t, y)

|x− y|2
dxdy. (4.56)

The term in the right side of (4.56) is not singular because of the difference ∇ψ(x)−∇ψ(y).
Therefore, we say that ρ(t, x) ∈ L∞((0, T );L1(R2)) is a weak solution provided that

d

dt

ˆ
ψ(x)ρ(t, x)dx =

ˆ
∆ψ(x)ρ(t, x)dx− χ

4π

ˆ (
(x−y)·(∇ψ(x)−∇ψ(y))

)ρ(t, x)ρ(t, y)

|x− y|2
dxdy.

(4.57)
The weak solutions conserve mass. To see that, we use a test function of the form ψR(x) =
ψ(x/|R|), with ψ(x) a smooth function such that ψ(r) = 1 for 0 ≤ |r| ≤ 1/2 and ψ(r) = 0 for
r > 1. Then we have∣∣∣ˆ ρ(t, x)∆ψ(x)dx

∣∣∣ ≤ C

R2

ˆ
ρ(t, x)dx =

C

R2
‖ρ(t)‖L1 , (4.58)

and∣∣∣ˆ ((x− y) · (∇ψ(x)−∇ψ(y))
)ρ(t, x)ρ(t, y)

|x− y|2
dxdy

∣∣∣ ≤ C

R2

ˆ
ρ(t, x)ρ(t, y)dxdy =

C

R2
‖ρ(t)‖2

L1 .

(4.59)
These estimates imply conservation of mass: by the monotone convergence theorem we have

ˆ
R2

ρ(t, x)dx = lim
R→∞

ˆ
ψR(x)ρ(t, x)dx = lim

R→∞

ˆ
ψR(x)ρ0(x)dx =

ˆ
R2

ρ0(x)dx. (4.60)

Let us assume that, in addition to ρ0 ∈ L1(R2), we also know that

m2(0) =

ˆ
|x|2ρ0(x)dx < +∞.

In order to see what happens to

m2(t) =

ˆ
|x|2ρ(t, x)dx,

let us take a sequence of functions φR(x) = |x|2ψR(x), multiply the equation by φR(x) and
integrate:

d

dt

ˆ
φR(x)ρ(t, x)dx =

ˆ
∆φR(x)ρ(t, x)dx− χ

4π

ˆ (
(x−y)·(∇φR(x)−∇φR(y))

)ρ(t, x)ρ(t, y)

|x− y|2
dxdy.

(4.61)
Note that

∆φR(x) = 4ψ
( x
R

)
+ 4

x

R
· ∇ψ

( x
R

)
+
x2

R2
∆ψ
( x
R

)
,
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hence
|∆φR(x)| ≤ C,

and, similarly, we can bound any second derivative of φR:∣∣∣∂2φR(x)

∂xj∂xk

∣∣∣ ≤ C. (4.62)

We also have ∣∣∣((x− y) · (∇φR(x)−∇φR(y))
)∣∣∣ ≤ |∇φR(x)−∇φR(y)|

|x− y|
≤ C (4.63)

because of (4.62). We conclude that∣∣∣ d
dt

ˆ
φR(x)ρ(t, x)dx

∣∣∣ ≤ Cm0 +m2
0, (4.64)

so that ∣∣∣ ˆ φR(x)ρ(t, x)dx
∣∣∣ ≤ C. (4.65)

Moreover, we may now write

ˆ
φR(x)ρ(t, x)dx =

ˆ
φR(x)ρ0(x)dx+

ˆ t

0

ˆ
∆φR(x)ρ(s, x)dxds (4.66)

− χ

4π

ˆ t

0

ˆ (
(x− y) · (∇φR(x)−∇φR(y))

)ρ(s, x)ρ(s, y)

|x− y|2
dxdyds.

As long as ρ(t, x) remains an L1-function, we may use the Lebesgue dominated convergence
theorem, together with the expression for ∆φR and

∇φR(x) = 2xψ
( x
R

)
+
|x|2

R
∇ψ
( x
R

)
,

to conclude that, as long ρ(t, x) remains in L∞((0, t);L1(R2)), we have

ˆ
|x|2ρ(t, x)dx =

ˆ
|x|2ρ0(x)dx+4

ˆ t

0

ˆ
ρ(s, x)dxds− χ

2π

ˆ t

0

ˆ
ρ(s, x)ρ(s, y)dxdyds. (4.67)

Therefore, ρ(t, x) can not remain in L∞((0, t);L1(R2)) for t > T∗ such that

ˆ
|x|2ρ0(x)dx+ 4m0T∗ −

χ

2π
m2

0T∗ = 0. (4.68)

This shows that ρ(t, x) must become a singular measure – recall that its total mass remains
bounded.
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Existence for subcritical mass in n = 2

We now prove Theorem 4.4. We will need to use the following logarithmic Hardy-Littlewood-
Sobolev inequality. Let f ≥ 0 be such that f log f ∈ L1(Rn), and set

M =

ˆ
f(x)dx.

Then we haveˆ
Rn

f log fdx+
n

M

ˆ
f(x)f(y) log |x− y|dxdy ≥M [logM − Cn], (4.69)

with
C2 = 1 + log π.

In dimension n = 2 we can understand it as follows. Consider the Poisson equation

−∆c = f,

so that

c(x) = − 1

2π

ˆ
log(x− y)f(y)dy.

Then if f ∈ L1(R2) we would not automatically have c ∈ L∞(R2), nor ∇c ∈ L2(R2), because
of the logarithmic divergences. However, the lemma asserts that if f log f ∈ L1(R2), then we
have ˆ

|∇c(x)|2dx =

ˆ
c(x)f(x)dx = − 1

2π

ˆ
log |x− y|f(x)d(y)dxdy < +∞,

as follows from (4.69).
We will use the free energy (4.15):

Ecc(t) =

ˆ
(ρ log ρ− χ

2
ρc)dx =

ˆ
ρ(t, x) log ρ(t, x)dx+

χ

4π

ˆ
ρ(t, x)ρ(t, x) log |x− y|dxdy.

(4.70)
Recall that

Ecc(t) ≤ Ecc(0).

Hence, the logarithmic Hardy-Littlewood-Sobolev inequality implies that

ˆ
ρ(t, x) log ρ(t, x)dx ≤ Ecc(0)− χ

4π

ˆ
ρ(t, x)ρ(t, x) log |x− y|dxdy (4.71)

≤ Ecc(0) +
χ

4π

m0

2

ˆ
ρ(t, x) log ρ(t, x)dx− χ

4π

m0

2
m0(logm0 − C2).

Thus, if m0 < mc = 8π/χ, we get a bound

ˆ
R2

ρ(t, x) log ρ(t, x)dx ≤
(

1− m0

mc

)−1

[Ecc(0)− C(m0)]. (4.72)
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In addition, (4.67) gives us

ˆ
|x|2ρ(t, x)dx =

ˆ
|x|2ρ0(x)dx+ 4m0t−

4m2
0

mc

t. (4.73)

We may define

A =
{
x : 0 < ρ(t, x) < e−|x|

2
}
, B =

{
x : e−|x|

2 ≤ ρ(t, x) < 1
}

and writeˆ
|ρ|≤1

ρ(t, x)| log ρ(t, x)|dx =

ˆ
A

ρ(t, x)| log ρ(t, x)|dx+

ˆ
B

ρ(t, x)| log ρ(t, x)|dx = I + II.

(4.74)
For the first term we have, as u| log u| as an increasing function for small u > 0:

I ≤
ˆ
A

|x|2e−|x|2dx ≤ C,

and for the second

II ≤
ˆ
B

|x|2ρ(t, x)dx ≤ C(t),

by (4.73). We conclude that, as |u| = u+ 2u−:
ˆ
R2

ρ(t, x)| log ρ(t, x)|dx =

ˆ
R2

ρ(t, x) log ρ(t, x)dx+ 2

ˆ
|ρ|≤1

ρ(t, x)| log ρ(t, x)|dx ≤ C(t).

(4.75)
This strengthens the assumption ρ ∈ L∞((0, T );L1(R2)) to the a priori bound

ρ log ρ ∈ L∞((0, T );L1(R2)) for all T > 0.

This gives then a uniform L2-bound for ∇c, and provides enough compactness to prove
existence of weak solutions.

5 Traveling waves

What is a traveling wave

Let us start with a simple ODE

du

dt
= u(1− u), u(0) = u0. (5.1)

This ODE has a stable steady state u ≡ 1 and an unstable steady state u ≡ 0. For any
u0 ∈ (0, 1) we have u(t)→ 1 as t→ +∞. One may think of u(t) as a population density, with
u = 1 being the saturation level. Let us now assume that u(t, x) also depends on a spatial
variable, and the species can move in space in a diffusive way. Then the equation becomes

∂u

∂t
= κ∆u+ f(u), u(0, x) = u0(x). (5.2)
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Here, κ is the diffusion coefficient, and we have replaced u(1 − u) by a general nonlinearity
f(u). We will assume that u ≡ 0 and u ≡ 1 are steady states, meaning that f(0) = f(1) = 0.
Let us first assume that x is one-dimensional. We are interested in initial conditions which
look like fronts separating the two states. This means that u0(x) looks as follows:

u0(x)→ 1 as x→ −∞, u0(x)→ 0 as x→ +∞. (5.3)

The question is whether the solution of (5.2) will converge in the limit to a steady state
separating u ≈ 1 and u ≈ 0, or one of these states would invade the other, so that as t→ +∞
we would have

u(t, x)→ 1 as t→ +∞, for any x ∈ R fixed, (5.4)

or
u(t, x)→ 0 as t→ +∞, for any x ∈ R fixed. (5.5)

In the former case we say that 1 invades 0, and that 0 invades 1 in the latter. There is a
special class of solutions which invade at a constant speed c, they have the form

u(t, x) = U(x− ct), (5.6)

and satisfy the boundary condition

U(x)→ 1 as x→ −∞, and U(x)→ 0 as x→ +∞. (5.7)

Thus, 1 invades 0 if c > 0, and 0 invades 1 if c < 0. The traveling wave satisfies the ODE

−cU ′ = U ′′ + f(U), U(−∞) = 1, U(+∞) = 0. (5.8)

First, integrating the equation we get

c =

ˆ ∞
∞

f(U(x))dx. (5.9)

Next, multiplying the equation by U ′ and integrating, gives

c

ˆ ∞
−∞

(U ′(x))2dx = −
ˆ ∞
−∞

f(U(x))U ′(x)dx =

ˆ 1

0

f(s)ds. (5.10)

That is, the sign of the speed c is determined by the sign of the integral in the right side
above. In other words, if we set

F (s) =

ˆ s

0

f(z)dz, (5.11)

then the state 1 invades 0 if F (1) > 0, and 0 invades 1 if F (1) < 0.
There are three main classes of nonlinearities we will consider. All of them will satisfy

f(0) = f(1) = 0. We say that f(u) is of the Fisher-KPP class if it looks like u(1 − u). This
means that

f(0) = f(1) = 0, f(u) > 0 and f(u) ≤ f ′(0)u for all u ∈ (0, 1). (5.12)
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The nonlinearity f(u) is of the ignition class if there exists θ0 ∈ (0, 1) so that

f(u) = 0 for all u ∈ [0, θ0], f(u) > 0 for u ∈ (θ0, 1). (5.13)

Finally, f(u) is a bistable nonlinearity if there exists θ0 ∈ (0, 1)0 so that

f(u) < 0 for all u ∈ (0, θ0), f(u) > 0 for u ∈ (θ0, 1). (5.14)

Our goal will be to show the following: (1) in the ignition and bistable cases there exists
a unique speed c∗ > 0 for which a traveling wave exists, and the wave is unique up to a
translation; (2) in the KPP case there exists c∗ > 0 so that for any c ≥ c∗ a traveling wave
Uc(x) exists, and for each c ≥ c∗ fixed, the wave is unique up to a translation.

Explicit examples

The ignition case

Before we consider the general nonlinearities, we consider explicit examples, where traveling
waves can be computed more or less explicitly. We begin with the ignition case, taking a
very simple discontinuous f(u): f(u) = 0 for 0 ≤ u ≤ θ and f(u) = µ(1 − u) for θ < u ≤ 1.
Consider the traveling wave equation, setting κ = 1 for simplicity:

−cU ′ = U ′′ + f(U). (5.15)

We know from (5.10) that c > 0. Let us fix the translation requiring that U(0) = θ. Then for
x > 0 the function U(x) has the form

U(x) = θe−cx, x > 0, (5.16)

while for x < 0 we have
−cU ′ = U ′′ + µ(1− U). (5.17)

We may write U = 1− w, with w(x) solving

cw′ = w′′ + µw, x < 0. (5.18)

That is,
w(x) = Aeλx +Beλ

′x,

with

λ(c) =
1

2
[−c+

√
c2 + 4µ] > 0, λ′ =

1

2
[−c−

√
c2 + 4µ] < 0.

As the function w(x) is bounded, and x < 0 we must have B = 0, and, as w(0) = 1 − θ, we
have

U(x) = 1− (1− θ)eλx, x ≤ 0.

Matching U ′(0+) and U ′(0−) gives

cθ = (1− θ)λ(c). (5.19)

Note that
dλ(c)

dc
=

1

2
[−1 +

c√
c2 + 4µ

] < 0,

hence (5.19) has a unique solution c∗ > 0, and the traveling speed is unique.
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The bistable case

Next, we consider an explicit bistable example. Let us define a discontinuos f(u) by f(u) =
−νu for 0 ≤ u ≤ θ, and f(u) = µ(1− u) for θ < u ≤ 1. Once again, we fix the translation by
the normalization U(0) = θ. For x > 0 we have

−cU ′ = U ′′ − νU, U(0) = θ, U(+∞) = 0. (5.20)

It follows that

U(x) = θe−λrx, λr =
1

2
[c+
√
c2 + 4ν], x > 0.

For x < 0 we have

−cU ′ = U ′′ + (1− µ)U, U(0) = θ, U(+∞) = 0. (5.21)

Setting again U = 1− w gives

w(x) = Aeλlx, λl =
1

2
[−c+

√
c2 + 4µ], x < 0.

Matching at x = 0 implies that A = 1− θ, and

θλr(c) = (1− θ)λl(c). (5.22)

Next, note that λ′r(c) > 0 and λ′l(c) < 0. Moreover, we have, as c→ −∞:

λr(c) =
1

2

[
c− c

√
1 +

4ν

c2

]
∼ 1

2
(c− c(1 +

2ν

c2
)) ∼ ν

c
, c→ −∞,

and

λl =
1

2

[
− c+

√
c2 + 4µ

]
∼ |c| as c→ −∞,

and, as c→ +∞:

λr(c) =
1

2

[
c+ c

√
1 +

4ν

c2

]
∼ c as c→ +∞,

and

λl =
1

2

[
− c+

√
c2 + 4µ

]
∼ µ

c
as c→ −∞.

It follows that for any θ ∈ (0, 1) there is exactly one solution to (5.22), and the traveling wave
speed c∗ is unique.

The Fisher-KPP case

We now consider an explicit Fisher-KPP example. We take θ ∈ (0, 1) and set f(u) = µ(1−θ)u
for 0 ≤ u ≤ θm, and f(u) = µθ(1− u) for θ ≤ u ≤ 1. Once again, we fix u(0) = θ. Now, we
have

−cU ′ = U ′′ + µθ(1− u), x < 0,

hence

U(x) = 1− (1− θ)eλl(c)x, λl(c) =
1

2

[
− c+

√
c2 + 4µθ

]
.
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For x > 0 we have
−cU ′ = U ′′ + µ(1− θ)U, x > 0. (5.23)

The difference here, relative to the ignition and bistable examples is that we now have two
decaying exponentials as solutions of (5.23):

U(x) = θe−γ2(c)x + a(e−γ1(c)x − e−γ2(c)x), (5.24)

with

γ1(c) =
1

2
[c−

√
c2 − 4µ(1− θ)], γ2(c) =

1

2
[c+

√
c2 − 4µ(1− θ)].

As we require positive solutions, we must have c ≥ c∗, with

c∗ =
√

4µ(1− θ). (5.25)

Note that the case c = c∗ has to be treated separately since then γ1(c∗)γ2(c∗). Let us match
the derivatives at x = 0:

−λl(c)(1− θ) = −γ2(c)θ + a(γ2(c)− γ1(c)), (5.26)

or

−(1− θ)
2

[
− c+

√
c2 + 4µθ

]
= −θ

2
[c+

√
c2 − 4µ(1− θ)] + a

√
c2 − 4µ(1− θ),

or
2a
√
c2 − 4µ(1− θ) = c− (1− θ)

√
c2 + 4µθ + θ

√
c2 − 4µ(1− θ). (5.27)

For the positivity of U(x) we need a ≥ 0, hence we need the right side of (5.27) to be
non-negative. This is true if

c2 + θ2(c2 − 4µ(1− θ)) + 2cθ
√
c2 − 4µ(1− θ) ≥ (1− 2θ + θ2)(c2 + 4µθ)

= c2 + 4µθ − 2θc2 − 8θ2µ+ θ2c2 + 4θ3µ

or

2cθ
√
c2 − 4µ(1− θ) ≥ c2 + 4µθ − 2θc2 − 8θ2µ+ θ2c2 + 4θ3µ− c2 − c2θ2 + 4µθ2 + 4µθ3

= 4µθ − 2θc2 − 4θ2µ+ 8µθ3.

But if c > c∗ then the right side satisfies

4µθ − 2θc2 − 4θ2µ+ 8µθ3 ≤ 4µθ − 8θµ(1− θ)− 4θ2µ+ 8µθ3 = −4µθ + 4µθ2 + 8µθ3

Solution should exist if c > c∗. The case c = c∗ is an exercise.
Thus, in the KPP case, the speed of a traveling wave is not unique, and actually waves

exist for all c ≥ c∗.
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Existence of one dimensional travelling waves

Following the historical order of development we begin with showing that travelling wave
solutions of

∂T

∂t
=
∂2T

∂x2
+

1

4
f(T ). (5.28)

exist when the nonlinearity f(T ) is of the KPP type. The factor 1/4 is introduced for
convenience. We will assume that f is normalized so that f ′(0) = 1, then the KPP condition
f ′(T ) ≤ f ′(0)T implies that f(T ) ≤ T .

The function U(x) satisfies an ODE

−cU ′ = U ′′ +
1

4
f(U), U(−∞) = 1, U(+∞) = 0. (5.29)

Introduce V = −U ′ so that (5.29) becomes

dU

dx
= −V (5.30)

dV

dx
= −cV +

1

4
f(U).

This system has two equilibria: (U, V ) = (0, 0) and (U, V ) = (1, 0). A travelling wave
corresponds to a heteroclinic orbit of (5.30) that connects the second equilibrium (1, 0) at
x→ −∞, to the first, (0, 0), at x→ +∞. Linearization around (0, 0) gives

d

dx

(
U
V

)
= A0

(
U
V

)
, A0 =

(
0 −1

1
4
f ′(0) −c

)
.

The eigenvalues of A0 satisfy

λ2 + cλ+
1

4
f ′(0) = 0

and are both real and negative if c2 ≥ f ′(0) = 1. Therefore for a positive travelling wave
U(x − ct) to exist we need c ≥ 1 so that (0, 0) is a stable point. The linearization around
(1, 0) gives

d

dx

(
Ũ
Ṽ

)
= A1

(
Ũ
Ṽ

)
, A1 =

(
0 −1

1
4
f ′(1) −c

)
.

The eigenvalues of A1 satisfy

λ2 + cλ+
1

4
f ′(1) = 0

so that they have a different sign: λ1 > 0, λ2 < 0, and (1, 0) is a saddle. Note that the
unstable direction (1,−λ1) corresponding to λ1 > 0 lies in the second and fourth quadrants.

Let us look at the the triangle D formed by the lines l1 = {V = γU}, l2 = {V = α(1−U)}
and the interval l3 = {[0, 1]} on the U -axis. We check that with an appropriate choice of γ
and α all trajectories of (5.30) point into D on the boundary ∂D if c ≥ 1. That means that
the unstable manifold of (1, 0) has to end at (0, 0) since it may not cross the boundary of the
triangle. That is, U and V stay positive along a heteroclinic orbit that starts at (1, 0) and
ends at (0, 0) – this is a monotonic positive travelling wave we want to exist. In particular
that will show that travelling waves exist for all c ≥ c∗ = 1.
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Along l3 we have V = 0 and

dU

dx
= 0,

dV

dx
=

1

4
f(U) > 0

so that trajectories point upward, that is, into D. Along l1 we have
dU

dx
= −V < 0 and

dV

dU
= c− f(U)

4V
= c− f(U)

4γU
.

That means that the trajectory points into D if the slope
dV

dU
≥ γ along l1. This is true if

c− f(U)

4γU
≥ γ

for all U ∈ [0, 1]. This is equivalent to

cγ − γ2 ≥ f(U)

4U
. (5.31)

We have
f(U)

U
≤ 1 and hence (5.31) holds provided that

cγ − γ2 ≥ 1

4
. (5.32)

Such γ > 0 exists if c ≥ 1. Let us check that with this choice of c and γ all trajectories point

into D also along the segment l2. Indeed we have along l2:
dU

dx
= −V < 0 and

dV

dU
= c− f(U)

4V
= c− f(U)

4α(1− U)
.

That means that the trajectory points into D if the slope
dV

dU
≥ −α along l1. This is true if

c− f(U)

4α(1− U)
≥ −α

for all U ∈ [0, 1], or

cα + α2 ≥ f(U)

4(1− U)
.

This is true for instance if α ≥ inf
0≤U≤1

f(U)

4(1− U)
.

Therefore a travelling front exists provided that c ≥ 1. However, we have also shown that
no travelling front exists for c < 1. Thus we have proved the following theorem.

Theorem 5.1 A travelling front solution of (5.29) with a KPP-type nonlinearity exists for
all c ≥ 1.
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Remark 5.2 We note that the travelling waves that propagate with the speeds c > c∗ = 1
are in a sense superfluous. More precisely, their existence is unrelated to diffusion: let U0(x)
be solution of

dU0

dx
= −1

4
f(U0), U0(0) = 1/2. (5.33)

Such solution exists and satisfies the boundary conditions

U0(x)→ 1 as x→ −∞ and U0(x)→ 0 as x→ +∞. (5.34)

Then given any c > 0 the function T (t, x) = U0

(x
c
− t
)

is a traveling wave solution of

∂T

∂t
= 0 · ∂

2T

∂x2
+

1

4
f(T ).

Thus these travelling waves exist even at zero diffusion coefficient and are therefore not quite
”reaction-diffusion” waves.

The shortcoming of having non-physical waves is absent in the case of ignition nonlinearity.

Theorem 5.3 Let f(T ) be of ignition type. Then there exists a unique c = c∗ so that a
travelling wave solution of (5.28) of the form U(x− ct) exists.

The proof is based on the ODE methods similar to those in the KPP case, and is left as an
exercise for the reader. We note, however, that in the ignition case spurious waves at zero
diffusivity do not exist: solutions of (5.33) do not satisfy the boundary conditions (5.34). This
explains qualitatively uniqueness of the travelling front speed. We also remark that if we fix
the travelling wave so that U(0) = θ0 then the travelling wave is given by U(x) = θ0 exp(−cx)
for x ≥ 0. Hence we have to find c so that in the variables (U, V = −U ′) the stable manifold
of the point (1, 0) in (5.30) would pass through the point (θ0, cθ0). Not surprisingly such c is
unique.

The front-like initial data

We look now at the behavior of solutions of (5.28) with a general initial data T0(x) = T (0, x)
such that T0(x) = 1 for x ≤ x0, T0(x) = 0 for x ≥ x1 and 0 ≤ T0(x) ≤ 1. The main result
is that such initial data propagates with the speed c∗ = 1 of the slowest travelling front in
the KPP case and with the speed of the unique travelling wave in the ignition case. More
precisely, we have the following.

Theorem 5.4 Let T (t, x) be solution of (5.28) with the initial data T0(x) as above. Then
given any x ∈ R we have

lim
t→∞

T (t, x+ ct) =

{
0, if c > c∗,
1, if c < c∗.

(5.35)

Here c∗ = 1 is the minimal speed in the KPP case and the unique travelling front speed in the
ignition case.
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This means qualitatively that T moves with the speed c∗. More precise statements on the
convergence to a travelling front in the ignition case may be obtained but we will not go into
details.

We will prove (5.35) only in the ignition case. The idea is to use the travelling wave solution
U(x− ct) to construct a super-solution and a sub-solution. Let U(x) be the travelling wave,
solution of

−c∗U ′ = U ′′ + f(U), U(0) = θ0.

We dropped the factor 1/4 in front of f(U) as it is useful only in the KPP case. We look for
a sub-solution for T of the form

ψl(t, x) = U(x− c∗t+ x1 + ξ1(t))− q1(t, x).

The functions ξ1(t) and q1(t, x, z) are to be chosen so as to make ψl be a sub-solution. The
shift x1 will be then used to make sure that initially we have ψl(0, x) ≤ T0(x). In order for
ψl to be a sub-solution we need

G[ψl] =
∂ψl
∂t
− ∂2ψl
∂x2

− f(ψl) ≤ 0.

We have

G[ψl] = ξ̇1U
′ − ∂q1

∂t
+
∂2q1

∂x2
+ f(U)− f(U − q1).

With an appropriate choice of x1, that is, by shifting U sufficiently to the left we may ensure
that T0(x) ≥ U(x)− q10(x) with 0 ≤ q10(x) ≤ (1− θ0)/2 and q10(x) ∈ L1(R). Then we choose
q1(t, x) to be the solution of

∂q1

∂t
=
∂2q1

∂x2
, q1(0, x) = q10(x) (5.36)

so that we have

‖q1(t)‖∞ ≤
C√
t
‖q10‖L1(D) (5.37)

for t ≥ 1.
We may find δ > 0 so that if U ∈ (1− δ, 1) and q1 ∈ (0, (1−θ0)/2) then f(U) ≤ f(U − q1).

Hence we have in this range of U :

G[ψl] ≤ ξ̇1U
′ ≤ 0 (5.38)

provided that ξ̇1 ≥ 0. Furthermore, if δ is sufficiently small and U ∈ (0, δ) then f(U) =
f(U − δ) = 0 and hence in this range of U we have (5.38) with the equality sign on the left.
Finally, if U ∈ (δ, 1− δ) then |f(U)− f(U − q1)| ≤ K|q| and U ′ ≤ −β with positive constants
K and β that depend on δ > 0. Hence G[ψl] ≤ 0 everywhere provided that

ξ̇1(t) ≥ K‖q1(t)‖∞
β

. (5.39)

Thus we may choose
ξ1(t) = C

√
t. (5.40)
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Therefore we obtain a lower bound for T :

T (t, x) ≥ U(x− c∗t+ C
√
t)− q1(t, x). (5.41)

In order to obtain an upper bound we set ψu = U(x− c∗t− x2− ξ2(t)) + q2(t, x) and look for
ξ2(t) and q2(t, x) so that G[ψu] ≥ 0. The constant x2 is chosen so that

T0(x) ≤ U(x− x2) + q2(0, x)

with q2(0, x) ∈ L1(R) and 0 ≤ q2(0, x) ≤ θ0/2, as with q1(0, x). The function q2(t, x) is then
chosen to satisfy the same heat equation (5.36) as q1. Hence it obeys the same time decay
bounds as q1. With the above choice of q2 we have

G(ψu) = −ξ̇2U
′ + f(U)− f(U + q2).

Once again, we consider three regions of values for U . First, if 1−δ ≤ U ≤ 1 with a sufficiently
small δ > 0 then f(U) − f(U + q2) ≥ 0, as q2 ≥ 0. Hence G[ψu] ≥ 0 in this region provided
that ξ̇2 ≥ 0. Second, as q2 ≤ θ0/2 we have f(U) = f(U + q2) = 0 if 0 ≤ U ≤ δ with a
sufficiently small δ > 0. Hence G[ψu] ≥ 0 in that region under the same condition ξ̇2 ≥ 0.
Finally, if U ∈ (δ, 1− δ) then U ′ ≤ −β with β > 0 and |f(U)− f(U + q2)| ≤ K‖q2‖∞. That
means that G[ψu] ≥ 0 if we choose ξ2 so that

ξ̇2 ≥
K‖q2‖∞

β
.

Therefore we may choose
ξ2(t) = C

√
t,

as with ξ1(t). Thus we obtain upper and lower bounds

U(x− c∗t+ ξ1(t) + x1)− q1(t, x) ≤ T (t, x) ≤ U(x− c∗t− ξ2(t)− x2) + q2(t, x) (5.42)

that imply in particular that

U(x− c∗t+ C0[1 +
√
t])− C0√

t
≤ T (t, x) ≤ U(x− c∗t− C0[1 +

√
t]) +

C0√
t

(5.43)

with a constant C0 determined by the initial conditions. Now, if we take x = x0 + ct with
c < c∗ and use the lower bound in (5.43) we get T (t, x0 + ct) → 1 as t → ∞. On the other
hand, if we take x = x0 + ct with c > c∗ and use the upper bound we obtain T (t, x0 + ct)→ 0
as t→∞.

One may obtain the upper bound in the KPP result simply by replacing F (T ) by T . The
lower bound is obtained from the ignition case by cutting of a KPP-type f(T ) at a point
θ0 > 0 and then letting θ0 → 0. We omit the details. 2

We confess that a better effort using the spectral methods and functional analysis shows
that in the ignition case solution actually converges to a travelling wave exponentially fast in
time. However, this requires a different technique that we do not go into here.
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Compactly supported initial data

When the initial data T0 has compact support, two scenarios are possible in the ignition case.
First, if the support is too small, solution may become extinct:

T (t, x)→ 0 as t→∞, uniformly on R. (5.44)

On the other hand, if the support is sufficiently large, two fronts will form: one on the right,
another on the left that will propagate to the left and to the right so that eventually

T (t, x)→ 1 as t→∞, uniformly on compact sets. (5.45)

Extinction is impossible in the KPP case: solution with an arbitrarily small initial support
satisfies (5.45). The difference between the KPP and ignition case is best seen from the
linearization at small T : in the ignition case we get the heat equation

∂T

∂t
=
∂2T

∂x2

that has solutions decaying in time. In the KPP case the linearization is

∂T

∂t
=
∂2T

∂x2
+ f ′(0)T

that has solutions growing in time.
We consider solutions of

∂T

∂t
=
∂2T

∂x2
+ f(T ) (5.46)

with an initial data of the form

T0(x) =

{
1, |x| ≤ x0,
0, |x| ≥ x1,

(5.47)

and with 0 ≤ T0 ≤ 1. The first result concerns extinction.

Theorem 5.5 Let f be of the ignition type. There exists l > 0 so that if x1 ≤ l then solution
becomes extinct, that is, (5.44) holds.

Proof. The proof is simple: the comparison principle implies that T (t, x) ≤ Ψ(t, x), solution
of

∂Ψ

∂t
=
∂2Ψ

∂x2
+MΨ, Ψ(0, x) = T0(x)

with the constant M chosen so that f(T ) ≤MT . However, Ψ is given explicitly by

Ψ(t, x) =
et√
2πt

ˆ
e−(x−y)2/4tT0(y)dy ≤ et√

2πt
‖T0‖L1 ≤ et√

2πt
|x1|.

Hence T (t = 1, x) ≤ Ψ(t = 1, x) ≤ θ0 provided that |x1| ≤ Cθ0. However, if T (t = 1, x) ≤ θ0

then uniquness of the solution of the Cauchy problem for (5.46) implies that T (t, x) satisfies
the heat equation for t > 1:

∂T

∂t
=
∂2T

∂x2
.

Then the limit behavior (5.44) follows from the fact that ‖T (t = 1)‖L1 <∞. 2

On the other hand, if T0 = 1 on a sufficiently large set, then the flame propagates: (5.45)
holds.
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Theorem 5.6 If f is of the ignition type then there exists L > 0 so that if x0 ≥ L then (5.45)
holds. If f is of the KPP type then (5.45) holds provided that x1 > 0.

Proof. We will consider the ignition case but the KPP case is similar. The proof is in two
steps. First we will find d > 0 and a sub-solution φ(x) on the interval [−d, d] so that

φ′′(x) + f(φ) ≥ 0, φ(−d) = φ(d) = 0 (5.48)

and 0 ≤ φ ≤ 1. We will then consider a special solution Φ(t, x) of (5.46) with the initial data
Φ(t, x) = φ(x). It will turn out to be monotonically increasing in time and thus converge to
a limit as t→ +∞. It will only remain to identify the limit as Φ∞ ≡ 1.

Choose θ1, θ2 so that θ2 > θ1 > θ0 and define f1(T ) by

f1(T ) =


0, T ≤ θ1

f(θ2)(T − θ1)

θ2 − θ1

, θ1 ≤ T ≤ θ2

f(T ), θ2 ≤ T ≤ 1

The function f(T ) is Lipschitz continuous, and hence we may choose θ1 and θ2 so that
f1(T ) ≤ f(T ). Therefore if φ satisfies

φ′′ + f1(φ) = 0 (5.49)

then φ satisfies (5.48). We are going to exhibit an explicit solution φ(x) of (5.49) with the
“initial” conditions

φ(0) = θ2,
dφ

dx
(0) = 0.

Indeed, φ(x) is given explicitly by

φ(r) = θ1 + (θ2 − θ1) cos
(
x
√
α
)
, α =

f(θ2)

θ2 − θ1

for x ≤ R1 =
π

2
√
α

. (5.50)

Furthermore, we have

φ(x) = B(d− |x|), for R1 ≤ |x| (5.51)

with B and d determined by matching (5.50) and (5.51) at x = R1: B = (θ2 − θ1)
√
α and

d = R1 +
θ1

B
. The function φ(x) satisfies (5.48). We choose x0 sufficiently large so that

T0(x) ≥ φ(x). We now let Φ(t, x) be solution of (5.46) with the initial data Φ(0, x) = φ(x),
as we discussed above. Then

T (t, x) ≥ Φ(t, x) ≥ φ(x), (5.52)

as the first inequality follows from the comparison principle, while the second from the fact
that φ(x) is a sub-solution. This implies that v(t, x) = ∂Φ

∂t
> 0 for t > 0. Indeed, given any

h > 0, let vh(t, x) = Φ(t + h, x) − Φ(t, x). Then vh(0, x) > 0 is positive as implied by the
second inequality in (5.52). The function vh satisfies an equation of the form

∂vh
∂t

=
∂2vh
∂x2

+
f(Φ(t+ h, x))− f(Φ(t, x))

Φ(t+ h, x)− Φ(t, x)
vh.
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Hence the maximum principle implies that vh(t, x) > 0 for all t > 0, and all h > 0. Thus the
function Φ(t, x) is monotonically increasing in time and has a limit Φ̄(x) as t → +∞. The
limit function has to be a non-negative solution of

Φ̄xx + f(Φ̄) = 0, x ∈ R, (5.53)

such that Φ̄(x) ≥ φ(x), for x ∈ [−d, d]. We may now define the shifts

φh(x) = φ(x+ h), x ∈ (−d− h, d− h),

which all satisfy

0 = φ′′h + f1(φh) ≤ φ′′h + f(φh), − d− h < φh(x) < d− h.

We know that for h small we have Φ̄(x) > φh(x) for all x ∈ (−d − h, d − h). If we let h0

be the supremum of all h such that this inequality holds, we deduce that Φ̄(x) ≥ φh̄(x) for
all x ∈ (−d − h, d − h) and there exists x0 such that Φ̄(x0) = φh̄(x0). This contradicts the
maximum principle, hence Φ̄(x) > φh(x) for all h. We conclude that Φ̄(x) ≥ θ2 everywhere.
This and (5.53) implies that Φ̄ may not attain a local minimum in R, hence either it is equal
to a constant T0, or it is monotonic on two sides of the point x0 where it attains its maximum,
and thus has limits as x → ±∞. In the former case the constant T0 ≥ θ2 has to be such
that f(T0) = 0 and hence Φ̄ = 1. In the latter case there exist two sequences xn → −∞ and
yn → +∞ so that Φ̄x(xn) → 0 and Φ̄x(yn) → 0 as n → +∞. Integrating (5.53) between xn
and yn we get

Φ̄x(yn)− Φ̄x(xn) +

ˆ yn

xn

f(Φ̄)dx = 0.

Passing to the limit n→ +∞ we obtain f(Φ̄) ≡ 0, hence Φ̄ ≡ 1. 2

It is not difficult to construct a sub-solution that propagates to the left and right with the
speed c∗. That means that not only (5.45) holds for x1 > l but also the front expands at the
speed of the travelling front.

6 Explosion, extinction and diffusion

Here, we investigate the interaction of a local nonlinearity and diffusion, a simpler setting
than for the non-local Keller-Segel system. Solution of a simple ODE

ż(t) = zm, z(0) = z0 > 0, (6.1)

is explicit:

z(t) =
z0

(1− (m− 1)tzm−1
0 )1/(m−1)

.

It blows up in a finite time for all m > 1. On the other hand, solution of the same nonlinear
ODE with a negative sign:

ż(t) = −zm, z(0) = z0 > 0, (6.2)

is also explicit:

z(t) =
z0

(1 + (m− 1)tzm−1
0 )1/(m−1)

,
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and it becomes extinct in a finite time:

z(t)→ 0 as t→ +∞.

Here, we ask how the presence of diffusion can affect these phenomena. Intuitively, diffusion
spreads the solution and tries to ”bring it down”. This is an obvious competition with local
growth in (6.1), so one may expect that the addition of diffusion can prevent the blow-up.
On the other hand, for (6.2) one may expect that diffusion will combine with the decay to
speed up the convergence of the solution to zero – this is true but depends on the way how
we measure the convergence to zero.

Blow-up in the semilinear heat equation: using the maximum principle

We will consider the following problem in a bounded domain:

ut = ∆u+ u2, t ≥ 0, x ∈ Ω, (6.3)

u = 0 on ∂Ω,

u(0, x) = u0(x) ≥ 0.

In order to understand what to expect, let φ be the principal eigenfucntion of the Dirichlet
Laplacian in Ω:

−∆φ = λ1φ, φ(x) > 0, x ∈ Ω, (6.4)

φ = 0 on ∂Ω.

Let us multiply (6.3) and integrate by parts:

d

dt

ˆ
Ω

u(t, x)φ(x)dx =

ˆ
Ω

[∆u(t, x) + u(t, x)2]φ(x)dx =

ˆ
Ω

[−λ1u(t, x)φ(x) + u2(t, x)φ(x)]dx.

(6.5)
The Cauchy-Schwartz inequality implies( ˆ

Ω

u(t, x)φ(x)dx
)2

dx ≤
ˆ

Ω

u2(t, x)φ(x)dx

ˆ
φ(x)dx. (6.6)

Using this in (6.5) gives

d

dt

ˆ
Ω

u(t, x)φ(x)dx ≥ −λ1

ˆ
Ω

u(t, x)φ(x)dx+
1

a

(ˆ
Ω

u(t, x)φ(x)dx
)2

dx, (6.7)

with

a =

ˆ
Ω

φ(x)dx.

Thus,

Z(t) =

ˆ
Ω

u(t, x)φ(x)dx

satisfies
dZ(t)

dt
≥ −λ1Z(t) +

1

a
Z2(t). (6.8)
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Let us define Q(t) = eλ1tZ(t), so that

dQ(t)

dt
≥ e−λ1t

1

a
Q2(t). (6.9)

Integrating in time gives

− 1

Q(t)
+

1

Q(0)
≥ 1

aλ1

(1− e−λ1t), (6.10)

or
1

Q(t)
≤ 1

Q(0)
− 1

aλ1

(1− e−λ1t). (6.11)

Thus, if Q(0) is sufficiently large, so that

1

Q(0)
<

1

aλ1

, (6.12)

then there exists a time T ∗ so that Q(T ∗) < 0 which is a contradiction. Hence, no global in
time solution may exist if the initial mass is sufficiently large, more precisely, if

ˆ
Ω

u0(x)φ(x)dx ≥ λ1

ˆ
Ω

φ(x)dx. (6.13)

Note that this condition would not change if we multiply φ by a constant!
In order to see what happens when the initial condition is small, note that φµ = µφ(x) is

a super-solution: it satisfies
−∆φµ = λ1φµ ≥ φ2

µ, (6.14)

provided that
µφ(x) ≤ λ1 for all x ∈ Ω.

This is true, if we set

µ = min
x∈Ω

λ1

φ(x)
.

The minimum is achieved since φ(x) = 0 on ∂Ω. let us consider the difference

w(t, x) = u(t, x)− φµ(x),

with some fixed b > 0. It satisfies

wt −∆w = ut −∆u+ ∆φµ ≤ u2 − φ2
µ = (u− φµ)(u+ φµ) = w(u+ φµ). (6.15)

We conclude that if w(0, x) ≤ 0 for all x ∈ Ω, then w(t, x) ≤ 0 for all x ∈ Ω and all t > 0.
Thus, if the initial condition is small, in the sense that

u0(x) ≤ µφ(x), (6.16)

then u(t, x) remains finite for all t > 0 – diffusion wins over growth.
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Blow-up in the semilinear heat equation: using the energy method

Let us now obtain a different size condition for the blow-up, without using the maximum
principle, or positivity of the solution. We start with

ut = ∆u+ |u|p−1u, t ≥ 0, x ∈ Ω, (6.17)

u = 0 on ∂Ω,

u(0, x) = u0(x),

with some p > 1. This system has an energy:

E(t) =
1

2

ˆ
Ω

|∇u|2dx− 1

p+ 1

ˆ
Ω

|u|p+1dx. (6.18)

Note that

dE

dt
=

ˆ
Ω

(∇u · ∇ut)dx−
ˆ

Ω

|u|p−1uutdx = −
ˆ

Ω

ut[∆u+ |u|p−1u]dx

= −
ˆ

Ω

(∆u+ |u|p−1u)2dx ≤ 0, (6.19)

thus

E(t) ≤ E(0) :=
1

2

ˆ
Ω

|∇u0|2dx−
1

p+ 1

ˆ
Ω

|u0|p+1dx. (6.20)

Let us now see what happens with the L2-norm of the solution. Multiplying the equation by
u and integrating gives

1

2

d

dt

ˆ
|u(t, x)|2dx =

ˆ
u[∆u+ |u|p−1u]dx = −

ˆ
|∇u(t, x)|2dx+

ˆ
|u|p+1dx

= −2E(t)− 2

p+ 1

ˆ
Ω

|u|p+1dx+

ˆ
|u|p+1dx ≥ −2E0 + α

ˆ
|u|p+1dx, (6.21)

with

α = 1− 2

p+ 1
> 0.

Thus, if E0 ≤ 0, then we have

1

2

d

dt

ˆ
|u(t, x)|2dx ≥ α

ˆ
|u|p+1dx. (6.22)

Hölder’s inequality implies, for p > 1 that

ˆ
Ω

|u|2dx ≤
( ˆ

Ω

|u|p+1dx
)2/(p+1)( ˆ

Ω

dx
)1−2/(p+1)

,

hence ˆ
Ω

|u|p+1dx ≥ |Ω|(1−p)/2
( ˆ

Ω

|u|2dx
)(p+1)/2

.
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Thus, setting

Z(t) =

ˆ
|u(t, x)|2d,

we get from (6.22) when E0 ≤ 0:

dZ

dt
≥ 2α|Ω|(1−p)/2Z(p+1)/2(t). (6.23)

Thus, any solution with E0 ≤ 0 blows up in a finite time. Note that this is also a size
condition: if we fix any g(x) 6≡ 0, and consider the initial condition u0(x) = rg(x), then

E0(r) =
1

2

ˆ
|∇u0|2dx−

1

p+ 1

ˆ
|u0|p+1dx =

r2

2

ˆ
|∇g|2dx− rp+1

p+ 1

ˆ
|g|p+1dx < 0,

for all

r > r0 :=
(p+ 1

2

ˆ
|∇g|2dx

)1/(p−1)(ˆ
|g|p+1dx

)−1/(p−1)

.

Diffusion can prevent extinction

Let us now consider a ”negative nonlinear heat equation”:

ut = ∆u− up, x ∈ Rd, (6.24)

with p > 1 and u(0, x) = u0(x) ≥ 0. This a very simple model for reproduction, and the total
mass

M(t) =

ˆ
Rd

u(t, x)dx, (6.25)

is the total mass that has not reproduced. Thus, small M(t) corresponds to effective repro-
duction. Obviously, in the absence of diffusion we have

M(t)→ 0 as t→ +∞. (6.26)

With diffusion we still have

dM

dt
= D(t) : −

ˆ
Rd

up(t, x)dx < 0, (6.27)

so the total mass decreases. We would like to understand if diffusion may prevent extinction:
will (6.26) still be true in the presence of diffusion?

First, we need an estimate for the dissipation D(t) in (6.27). Note that solutions of the
heat equation

vt −∆v = 0, x ∈ Rd, (6.28)

satisfy two well-known estimates:

‖v(t2)‖L1 ≤ ‖v(t1)‖L1 ,

and

‖v(t2)‖L∞ ≤ C

(t2 − t1)d/2
‖v(t1)‖L1 ,
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for all t2 > t1 ≥ 0. It follows that
ˆ
Rd

|v(t2, x)|pdx ≤ ‖v(t2)‖L1‖v(t2)‖p−1
L∞ ≤

C

(t2 − t1)d(p−1)/2
‖v(t1)‖pL1 . (6.29)

If v(t, x) is the solution of (6.28) for t > τ , with v(τ, x) = u(τ, x), then we have u(t, x) ≤ v(t, x),
whence intgrating (6.27) in time gives, for all t2 > τ + a, and a ≥ 0:

M(t2) = M(τ + a)−
ˆ t2

τ+a

ˆ
Rd

u(t, x)pdxdt ≥M(τ + a)−
ˆ t2

τ+a

ˆ
Rd

v(t, x)pdxdt

≥M(τ + a)− CM(τ)p
ˆ t2

τ+a

dt

(t− τ)1+δ
, (6.30)

with

δ =
d(p− 1)

2
− 1. (6.31)

In order to have δ > 0 we need to assume that

p > 1 +
2

d
. (6.32)

Then we have

M(t2) ≥M(τ + a)− CM(τ)p
ˆ ∞
τ+a

dt

(t− τ)1+δ
= M(τ + a)− CM(τ)p

aδ
, (6.33)

for all t2 > τ + a. On the other hand, we also have, as M(s) is decreasing in time:

M(τ + a) = M(τ)−
ˆ τ+a

τ

up(t, x)dx ≥M(τ)− ‖u0‖p−1
L∞

ˆ τ+a

τ

ˆ
Rd

u(t, x)dx

≥M(τ)− ‖u0‖p−1
L∞

ˆ τ+a

τ

M(s)ds = M(τ)− a‖u0‖p−1
L∞M(τ). (6.34)

Let us choose a so that

a‖u0‖p−1
L∞ =

1

2
.

Then we have from (6.34):

M(τ + a) ≥ M(τ)

2
.

Using this in (6.33) gives us, for all t2 > τ + a:

M(t2) ≥ M(τ)

2
− CM(τ)p

aδ
. (6.35)

Then, if we have
M(t)→ 0 as t→ +∞,

we have a time τ so that
CM(τ)p−1

aδ
<

1

3
,
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and (6.35) would imply

M(t) ≥ M(τ)

6
, for all t ≥ τ + a,

which is obviously incompatible with (6.36). We conclude that

lim
t→+∞

M(t) > 0, (6.36)

and diffusion does, in fact, prevent the extinction.

77


