
Lecture notes for Math 272, Winter 2021

Lenya Ryzhik1

March 11, 2021

1Department of Mathematics, Stanford University, Stanford, CA 94305, USA. Email:
ryzhik@stanford.edu



These notes will be continuously updated during the course.

The plan for this class is to cover the following topics:

I. Basic theory of Hamilton-Jacobi equations:
1. Existence and long time behavior for the viscous Hamilton-Jacobi equations.
2. Basic viscosity solutions theory for the first order Hamilton-Jacobi equations.
3. The Lions-Papanicolaou-Varadhan theorem and applications to periodic homogenization.
4. Long time behavior for the Lax-Oleinik semigroup, and very rudimentary aspects of the
Fathi theory.

II. Hamilton-Jacobi equations with a constraint and applications to the biological modeling.

III. An introduction to mean-field games, based on the lecture notes by P. Cardaliaguet and
A. Porretta.

Part I of these lecture notes is a draft of a chapter in a book in preparation with Sasha
Kiselev and Jean-Michel Roquejoffre. The preliminary version of the draft of this chapter was
written mostly by Jean-Michel. All mistakes are, obviously, mine.

The draft will be updated as we go, potentially with major re-writes back and forth.
Because of that, I plan to update the lecture notes after each lecture, to reflect what was
actually presented in class, and not upload the full draft of Chapter 2 of these notes from the
start.

In addition, I include Chapter 1 (which is actual Chapter 2 of the book draft) in the
lecture notes because some of the results of that chapter will be used in class, and it is easy
to refer to them in this way. However, this content is included solely for your convenience,
the class will not cover that chapter and will start with Chapter 2 of these notes (which is
Chapter 3 of the book draft).

The texts of Chapter 1 and 2 have not been finalized so all comments are extremely
welcome!
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Chapter 1

Diffusion equations

1.1 Introduction to the chapter

Parabolic equations of the form

∂u

∂t
−

n∑
i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
j=1

bj(x)
∂u

∂xj
= f(x, u,∇u), (1.1.1)

are ubiquitous in mathematics and various applications in physics, biology, economics and
other fields. While there are many textbooks on the subject, ranging from the most elemen-
tary to extremely advanced, most of them concentrate on the highly non-trivial questions
of the existence and regularity of the solutions. We have chosen instead to focus on some
striking qualitative properties of the solutions that, nevertheless, can be proved with almost
no background in analysis, using only the very basic regularity results. The unifying link in
this chapter will be the parabolic maximum principle and the Harnack inequality. Together
with the parabolic regularity, they will be responsible for the seemingly very special behavior
that we will observe in the solutions of these equations.

The chapter starts with an informal probabilistic introduction. While we do not try to
motivate the basic diffusion equations by models in the applied sciences here, an interested
reader would have no difficulty finding the connections between such equations and models
in physics, biology, chemistry and ecology in many basic textbooks. On the other hand, the
parabolic equations have a deep connection with probability. Indeed, some of the most famous
results in the parabolic regularity theory were proved by probabilistic tools. It is, therefore,
quite natural to start the chapter by explaining how the basic linear models arise, in a very
simple manner, from limits of a random walk. We reassure the reader that the motivation
from the physical or life sciences will not be absent from this book, as some of the later
chapters will precisely be motivated by problems in fluid mechanics or biology. We also keep
the probabilistic considerations to an elementary level, without any use of stochastic analysis.

The probabilistic section is followed by a brief interlude on the maximum principle. There
is nothing original in the exposition, and we do not even present the proofs, as they can be
found in many textbooks on PDE. We simply recall the statements that we will need.

We then proceed to the section on the existence and regularity theory for the nonlinear
heat equations: the reaction-diffusion equations and viscous Hamilton-Jacobi equations. They
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arise in many models in physical and biological sciences, and our ”true” interest is in the
qualitative behavior of their solutions, as these reflect the corresponding natural phenomena.
However, an unfortunate feature of the nonlinear partial differential equations is that, before
talking knowledgeably about their solutions or their behavior, one first has to prove that
they exist. This will, as a matter of fact, be a non-trivial problem in the last two chapters
of this book, where we look at the fluid mechanics models, for which the existence of the
solutions can be quite subtle. As the reaction-diffusion equations that we have in mind here
and in Chapter ?? both belong to a very well studied class and are much simpler, it would
not be inconceivable to brush their existence theory under the rug, invoking other books.
This would not be completely right, for several reasons. The first is that we do not want to
give the impression that the theory is inaccessible: it is quite simple and can be explained
very easily. The second reason is that we wish to explain both the power and the limitation
of the parabolic regularity theory, so that the difficulty of the existence issues for the fluid
mechanics models in the latter chapters would be clearer to the reader. The third reason is
more practical: even for the qualitative properties that we aim for, we still need to estimate
derivatives. So, it is better to say how this is done.

The next section contains a rather informal guide to the regularity theory for the parabolic
equations with inhomogeneous coefficients. We state the results we will need later, and outline
the details of some of the main ideas needed for the proofs without presenting them in full
– they can be found in the classical texts we mention below. We hope that by this point
the reader will be able to study the proofs in these more advanced textbooks without losing
sight of the main ideas. This section also contains the Harnack inequality. What is slightly
different here is the statement of a (non-optimal) version of the Harnack inequality that will
be of an immediate use to us in the first main application of this chapter, the convergence
to the steady solutions in the one-dimensional Allen-Cahn equations on the line. The reason
we have chosen this example is that it really depends on nothing else than the maximum
principle and the Harnack inequality, illustrating how far reaching this property is. It is also
a perfect example of how a technical information, such as bounds on the derivatives, has a
qualitative implication – the long time behavior of the solutions.

The next section concerns the principal eigenvalue of the second order elliptic operators, a
well-treated subject in its own right. We state the Krein-Rutman theorem and, just to show
the reader that we are not using any machinery heavier than the results we want to prove,
we provide a proof in the context of the second order elliptic and parabolic operators. It
shares many features with the convergence proof of the next section, without its sometimes
technically involved details. We hope the reader will realize the ubiquitous character of the
ideas presented.

We end the chapter with the study of reaction-diffusion fronts. While it is, in its own
right, a huge subject that is still advancing at the time of the writing of this chapter, we
have decided that talking about them was a good way to follow the main pledge of this book:
show the reader results that are interesting and representative of the theory, while not being
the most advanced or up-to-date. With nothing else than the tools displayed in this chapter,
we will see that we can say a lot about the large time organization of this class of models, a
striking example being the convergence to pulsating waves: periodicity in space will generate
a sort of time periodicity for the solutions.

This chapter is quite long so we ask the reader to be prepared to persevere through the
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more technical places, but we feel that it is worth showing how far one may go with the sole
aid of the maximum principle and a few estimates. We hope that in the end the reader will
find the effort rewarding.

A note on notation. We will follow throughout the book the summation convention:
the repeated indices are always summed over, unless specified otherwise. In particular, we
will usually write equations such as (1.1.1) in the form

∂u

∂t
− aij(x)

∂2u

∂xi∂xj
+ bj(x)

∂u

∂xj
= f(x, u,∇u), (1.1.2)

or
∂u

∂t
− aij(x)∂xi∂xju+ bj(x)∂xju = f(x, u,∇u). (1.1.3)

We hope the reader will get accustomed to this convention sufficiently fast so that it causes
no confusion or inconvenience.

1.2 A probabilistic introduction to the evolution equa-

tions

Let us explain informally how the linear equations of the form (1.1.2), with f ≡ 0 arise from
random walks, in a very simple way. One should emphasize that many of the qualitative
properties of the solutions to the parabolic and integral equations, such as the maximum
principle and regularity, on a very informal level, are an ”obvious” consequence of the mi-
croscopic random walk model. For simplicity, we will mostly consider the one-dimensional
case, the reader can, and should, generalize this approach to higher dimensions – this is quite
straightforward.

Discrete equations and random walks

The starting point in our derivation of the evolution equations is a discrete time Markov jump
process Xnτ , with a time step τ > 0, defined on a lattice with mesh size h:

hZ = {0,±h,±2h, . . . }.

The particle position evolves as follows: if the particle is located at a position x ∈ hZ at the
time t = nτ then at the time t = (n + 1)τ it jumps to a random position y ∈ hZ, with the
transition probability

P (X(n+1)τ = y| Xnτ = x) = k(x− y), x, y ∈ hZ. (1.2.1)

Here, k(x) is a prescribed non-negative kernel such that∑
y∈hZ

k(y) = 1. (1.2.2)

The classical symmetric random walk with a spatial step h and a time step τ corresponds to
the choice k(±h) = 1/2, and k(y) = 0 otherwise – the particle may only jump to the nearest
neighbor on the left and on the right, with equal probabilities.
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In order to connect this process to an evolution equation, let us take a function f : hZ→ R,
defined on our lattice, and introduce

u(t, x) = E(f(Xt(x))). (1.2.3)

Here, Xt(x), t ∈ τN, is the above Markov process starting at a position X0(x) = x ∈ hZ at
the time t = 0. If f ≥ 0 then one may think of u(t, x) as the expected value of a “prize” to
be collected at the time t at a (random) location of Xt(x) given that the process starts at the
point x at the time t = 0. An important special case is when f is the characteristic function
of a set A. Then, u(t, x) is the probability that the jump process Xt(x) that starts at the
position X0 = x is inside the set A at the time t.

As the process Xt(x) is Markov, the function u(t, x) satisfies the following relation

u(t+ τ, x) = E(f(Xt+τ (x))) =
∑
y∈hZ

P (Xτ = y|X0 = x)E(f(Xt(y))) =
∑
y∈hZ

k(x− y)u(t, y).

(1.2.4)
This is because after the initial step when the particle jumps at the time τ from the starting
position x to a random position y, the process “starts anew”, and runs for time t between the
times τ and t+ τ . Equation (1.2.4) can be re-written, using (1.2.2) as

u(t+ τ, x)− u(t, x) =
∑
y∈hZ

k(x− y)[u(t, y)− u(t, x)]. (1.2.5)

The key point of this section is that the discrete equation (1.2.5) leads to various interesting
continuum limits as h ↓ 0 and τ ↓ 0, depending on the choice of the transition kernel k(y), and
on the relative size of the spatial mesh size h and the time step τ . In other words, depending
on the microscopic model – the particular properties of the random walk – we will end up
with different macroscopic continuous models.

The heat equation and random walks

Before showing how a general parabolic equation with non-constant coefficients can be ob-
tained via a limiting procedure from a random walk on a lattice, let us show how this can be
done for the heat equation

∂u

∂t
= a

∂2u

∂x2
, (1.2.6)

with a constant diffusivity constant a > 0. We will assume that the transition probability
kernel has the form

k(x) = φ
(x
h

)
, x ∈ hZ, (1.2.7)

with a non-negative function φ(m) ≥ 0 defined on Z, such that∑
m

φ(m) = 1. (1.2.8)

This form of k(x) allows us to re-write (1.2.5) as

u(t+ τ, x)− u(t, x) =
∑
y∈hZ

φ

(
x− y
h

)
[u(t, y)− u(t, x)], (1.2.9)
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or, equivalently,

u(t+ τ, x)− u(t, x) =
∑
m∈Z

φ(m)[u(t, x−mh)− u(t, x)]. (1.2.10)

In order to arrive to the heat equation in the limit, we will make the assumption that jumps
are symmetric on average: ∑

m∈Z

mφ(m) = 0. (1.2.11)

Then, expanding the right side of (1.2.10) in h and the left side in τ , we obtain

τ
∂u(t, x)

∂t
=
ah2

2

∂2u

∂x2
(t, x) + lower order terms, (1.2.12)

with

a =
∑
m

|m|2φ(m). (1.2.13)

To balance the left and the right sides of (1.2.12), we need to take the time step τ = h2 –
note that the scaling τ = O(h2) is essentially forced on us if we want to balance the two sides
of this equation. Then, in the limit τ = h2 ↓ 0, we obtain the heat equation

∂u(t, x)

∂t
=
a

2

∂2u(t, x)

∂x2
. (1.2.14)

The diffusion coefficient a given by (1.2.13) is the second moment of the jump size – in other
words, it measures the “overall jumpiness” of the particles. This is a very simple example of
how the microscopic information, the kernel φ(m), translates into a macroscopic quantity –
the overall diffusion coefficient a in the macroscopic equation (1.2.14).

Exercise 1.2.1 Show that if (1.2.11) is violated and

b =
∑
m∈Z

mφ(m) 6= 0, (1.2.15)

then one needs to take τ = h, and the (formal limit) is the advection equation

∂u(t, x)

∂t
+ b

∂u(t, x)

∂x
= 0, (1.2.16)

without any diffusion.

Exercise 1.2.2 A reader familiar with the basic probability theory should relate the limit
in (1.2.16) to the law of large numbers and explain the relation τ = h in these terms. How
can (1.2.14) and the relation τ = h2 between the temporal and spatial steps be explained in
terms of the central limit theorem?
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Parabolic equations with variable coefficients and drifts and random walks

In order to connect a linear parabolic equation with inhomogeneous coefficients, such as (1.1.2)
with the right side f ≡ 0:

∂u

∂t
− a(x)

∂2u

∂x2
+ b(x)

∂u

∂x
= 0, (1.2.17)

to a continuum limit of random walks, we consider a slight modification of the microscopic
dynamics that led to the heat equation in the macroscopic limit. We go back to (1.2.4):

u(t+ τ, x) = E(f(Xt+τ (x))) =
∑
y∈hZ

P (Xτ = y|X0 = x)E(f(Xt(y))) =
∑
y∈hZ

k(x, y)u(t, y).

(1.2.18)
Here, k(x, y) is the probability to jump to the position y from a position x. Note that we
no longer assume that the law of the jump process is spatially homogeneous: the transition
probabilities depend not only on the difference x− y but both on x and y. However, we will
assume that k(x, y) is ”locally homogeneous”. This condition translates into considering

k(x, y;h) = φ

(
x,
x− y
h

;h

)
. (1.2.19)

The ”slow” spatial dependence of the transition probability density is encoded in the de-
pendence of the function φ(x, z, h) on the ”macroscopic” variable x, while its ”fast” spatial
variations are described by the dependence of φ(x, z, h) on the variable z.

Exercise 1.2.3 Make sure you can interpret this point. Think of “freezing” the variable x
and only varying the z-variable.

We will soon see why we introduce the additional dependence of the transition density on
the mesh size h – this will lead to a non-trivial first order term in the parabolic equation
we will obtain in the limit. We assume that the function φ(x,m;h), with x ∈ R, m ∈ Z
and h ∈ (0, 1), satisfies∑

m∈Z

φ(x,m;h) = 1 for all x ∈ R and h ∈ (0, 1), (1.2.20)

which leads to the analog of the normalization (1.2.2):∑
y∈hZ

k(x, y) = 1 for all x ∈ hZ. (1.2.21)

This allows us to re-write (1.2.18) in the familiar form

u(t+ τ, x)− u(t, x) =
∑
y∈hZ

φ

(
x,
x− y
h

;h

)
[u(t, y)− u(t, x)], (1.2.22)

or, equivalently,

u(t+ τ, x)− u(t, x) =
∑
m∈Z

φ(x,m;h)[u(t, x−mh)− u(t, x)], (1.2.23)
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We will make the assumption that the average asymmetry of the jumps is of the size h. In
other words, we suppose that∑

m∈Z

mφ(x,m;h) = b(x)h+O(h2), (1.2.24)

that is, ∑
m∈Z

mφ(x,m; 0) = 0 for all x ∈ R ,

and

b(x) =
∑
m∈Z

m
∂φ(x,m;h = 0)

∂h
(1.2.25)

is a given smooth function. The last assumption we will make is that the time step is τ = h2,
as before. Expanding the left and the right side of (1.2.23) in h now leads to the parabolic
equation

∂u

∂t
= −b(x)

∂u(t, x)

∂x
+ a(x)

∂2u(t, x)

∂x2
, (1.2.26)

with

a(x) =
1

2

∑
m∈Z

|m|2φ(x,m;h = 0). (1.2.27)

This is a parabolic equation of the form (1.1.2) in one dimension. We automatically satisfy
the condition a(x) > 0 (known as the ellipticity condition) unless φ(x,m;h = 0) = 0 for
all m ∈ Z \ {0}. That is, a(x) = 0 only at the positions where the particles are completely
stuck and can not jump at all. Note that the asymmetry in (1.2.24), that is, the mismatch
in the typical jump sizes to the left and right, leads to the first order term in the limit
equation (1.2.26) – because of that the first-order coefficient b(x) is known as the drift, while
the second-order coefficient a(x) (known as the diffusivity) measures ”the overall jumpiness”
of the particles, as seen from (1.2.27).

Exercise 1.2.4 Relate the above considerations to the method of characteristics for the first
order linear equation

∂u

∂t
+ b(x)

∂u

∂x
= 0.

How does it arise from similar considerations?

Exercise 1.2.5 It is straightforward to generalize this construction to higher dimensions
leading to general parabolic equations of the form (1.1.2). Verify that the diffusion matri-
ces aij(x) in (1.1.2) that arise in this fashion, will always be nonnegative, in the sense that
for any ξ ∈ Rn and all x, we have (once again, as the repeated indices are summed over):

aij(x)ξiξj ≥ 0. (1.2.28)

This is very close to the lower bound in the ellipticity condition on the matrix aij(x) which
says that there exists a constant c > 0 so that for any ξ ∈ Rn and x ∈ Rn we have

c|ξ|2 ≤ aij(x)ξiξj ≤ c−1|ξ|2. (1.2.29)

We see that the ellipticity condition appears very naturally in the probabilistic setting.
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Summarizing, we see that parabolic equations of the form (1.1.2) arise as limits of random
walks that make jumps of the size O(h), with a time step τ = O(h2). Thus, the overall
number of jumps by a time t = O(1) is very large, and each individual jump is very small.
The drift vector bj(x) appears from the local non-zero mean of the jump direction and size,
and the diffusivity matrix aij(x) measures the typical jump size. In addition, the diffusivity
matrix is nonegative-definite: condition (1.2.28) is satisfied.

Parabolic equations and branching random walks

Let us now explain how random walks can lead to parabolic equations with a zero-order term:

∂u

∂t
− aij(x)

∂2u

∂xi∂xj
+ bj(x)

∂u

∂xj
+ c(x)u = 0. (1.2.30)

This will help us understand qualitatively the role of the coefficient c(x). Once again, we will
consider the one-dimensional case for simplicity, and will only give the details for the case

∂u

∂t
− ∂2u

∂x2
+ c(x)u = 0, (1.2.31)

as the non-constant diffusion matrix aij(x) and drift bj(x) can be treated exactly as in the
case c = 0.

In order to incorporate the zero order term we need to allow the particles not only jump
but also branch – this is the reason why the zero-order term will appear in (1.2.30). As
before, our particles make jumps on the lattice hZ, at the discrete times t ∈ τN. We start
at t = 0 with one particle at a position x ∈ hZ. Let us assume that at the time t = nτ
we have a collection of Nt particles X1(t, x), . . . , XNt(t, x) (the number Nt is random, as will
immediately see). At the time t, each particle Xm(t, x) behaves independently from the other
particles. With the probability

p0 = 1− |c(Xm(t))|τ,

it simply jumps to a new location y ∈ hZ, chosen with the transition probability k(Xm(t)−y),
as in the process with no branching. If the particle at Xm(t, x) does not jump – this happens
with the probability p1 = 1 − p0, there are two possibilities. If c(Xm(t)) < 0, then it is
replaced by two particles at the same location Xm(t, x) that remain at this position until the
time t+ τ . If c(Xm(t)) > 0 and the particle does not jump, then it is removed. This process
is repeated independently for all particles X1(t, x), . . . , XNt(t, x), giving a new collection of
particles at the locations X1(t + τ, x), . . . , XNt+τ (t + τ, x) at the time t + τ . If c(x) > 0 at
some positions, then the process can terminate when there are no particles left. If c(x) ≤ 0
everywhere, then the process continues forever.

To connect this particle system to an evolution equation, given a function f , we define,
for t ∈ τN , and x ∈ hZ,

u(t, x) = E[f(X1(t, x)) + f(X2(t, x)) + · · ·+ f(XNt(t, x))].

The convention is that f = 0 inside the expectation if there are no particles left. This is similar
to what we have done for particles with no branching. If f is the characteristic function of a
set A, then u(t, x) is the expected number of particles inside A at the time t > 0.
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In order to get an evolution equation for u(t, x), we look at the initial time when we have
just one particle at the position x: if c(x) ≤ 0, then this particle either jumps or branches,
leading to the balance

u(t+ τ, x) = (1 + c(x)τ)
∑
y∈hZ

k(x− y)u(t, y)− 2c(x)τu(t, x), if c(x) ≤ 0, (1.2.32)

which is the analog of (1.2.4). If c(x) > 0 the particle either jumps or is removed, leading to

u(t+ τ, x) = (1− |c(x)|τ)
∑
y∈hZ

k(x− y)u(t, y). (1.2.33)

In both cases, we can re-write the balances similarly to (1.2.5):

u(t+ τ, x)− u(t, x) = (1− |c(x)|τ)
∑
y∈hZ

k(x− y)(u(t, y)− u(t, x))− c(x)τu(t, x). (1.2.34)

We may now take the transition probability kernel of the familiar form

k(x) = φ
(x
h

)
,

with a function φ(m) as in (1.2.7)-(1.2.8). Taking τ = h2 leads, as in (1.2.12), to the diffusion
equation but now with a zero-order term:

∂u

∂t
=
a

2

∂2u

∂x2
− c(x)u. (1.2.35)

Thus, the zero-order coefficient c(x) can be interpreted as the branching (or killing, depending
on the sign of c(x)) rate of the random walk. The parabolic maximum principle for c(x) ≥ 0
that we will discuss in the next section simply means, on this informal level, that if the
particles never branch, and can only be removed, their expected number can not grow in
time.

Exercise 1.2.6 Add branching to the random walk we have discussed in Section 1.2 of this
chapter, and obtain a more general parabolic equation, in higher dimensions:

∂u

∂t
− aij(x)

∂2u

∂xi∂xj
+ bj(x)

∂u

∂xj
+ c(x)u = 0. (1.2.36)

1.3 The maximum principle interlude: the basic state-

ments

As the parabolic maximum principle underlies most of the parabolic existence and regularity
theory, we first recall some basics on the maximum principle for parabolic equations. They
are very similar in spirit to what we have described in the previous chapter for the Laplace
and Poisson equations. This material can, once again, be found in many standard textbooks,
such as [?], so we will not present most of the proofs but just recall the statements we will
need.
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We consider a (more general than the Laplacian) elliptic operator of the form

Lu(x) = −aij(t, x)
∂2u

∂xi∂xj
+ bj(t, x)

∂u

∂xj
, (1.3.1)

in a bounded domain x ∈ Ω ⊂ Rn and for 0 ≤ t ≤ T . Note that the zero-order coefficient is
set to be zero for the moment. The ellipticity of L means that the matrix aij(t, x) is uniformly
positive-definite and bounded. That is, there exist two positive constants λ > 0 and Λ > 0
so that, for any ξ ∈ Rn, and 0 ≤ t ≤ T , and any x ∈ Ω, we have

λ|ξ|2 ≤ aij(t, x)ξiξj ≤ Λ|ξ|2. (1.3.2)

We also assume that all coefficients aij(t, x) and bj(t, x) are continuous and uniformly bounded.
Given a time T > 0, define the parabolic cylinder ΩT = [0, T )×Ω and its parabolic boundary
as

ΓT = {x ∈ Ω, 0 ≤ t ≤ T : either x ∈ ∂Ω or t = 0}.

In other words, ΓT is the part of the boundary of ΩT without “the top” {(t, x) : t = T, x ∈ Ω}.

Theorem 1.3.1 (The weak maximum principle) Let a function u(t, x) satisfy

∂u

∂t
+ Lu ≤ 0, x ∈ Ω, 0 ≤ t ≤ T, (1.3.3)

and assume that Ω is a smooth bounded domain. Then u(t, x) attains its maximum over ΩT

on the parabolic boundary ΓT , that is,

sup
ΩT

u(t, x) = sup
ΓT

u(t, x). (1.3.4)

As in the elliptic case, we also have the strong maximum principle.

Theorem 1.3.2 (The strong maximum principle) Let a smooth function u(t, x) satisfy

∂u

∂t
+ Lu ≤ 0, x ∈ Ω, 0 ≤ t ≤ T, (1.3.5)

in a smooth bounded domain Ω. Then if u(t, x) attains its maximum over Ω̄T at an interior
point (t0, x0) 6∈ ΓT then u(t, x) is equal to a constant in ΩT .

We will not prove these results here, the reader may consult [?] or other standard textbooks
on PDEs for a proof. One standard generalization of the maximum principle is to include the
lower order term with a sign, as in the elliptic case – compare to Theorem ?? in Chapter ??.
Namely, it is quite straightforward to show that if c(x) ≥ 0 then the maximum principle still
holds for parabolic equations (1.3.5) with an operator L of the form

Lu(x) = −aij(t, x)
∂2u

∂xi∂xj
+ bj(t, x)

∂u

∂xj
+ c(t, x)u. (1.3.6)
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The proof can, once again, be found in [?]. However, as we have seen in the elliptic case, in
the maximum principles for narrow domains (Theorem ?? in Chapter ??) and domains of a
small volume (Theorem ?? in the same chapter), the sign condition on the coefficient c(t, x)
is not necessary for the maximum principle to hold. Later in this chapter, we will discuss a
more general condition that quantifies the necessary assumptions on the operator L for the
maximum principle to hold in a unified way.

A consequence of the maximum principle is the comparison principle, a result that holds
also for operators with zero order coefficients and in unbounded domains. In general, the
comparison principle in unbounded domains holds under a proper restriction on the growth
of the solutions at infinity. Here, for simplicity we assume that the solutions are uniformly
bounded.

Theorem 1.3.3 Let the smooth uniformly bounded functions u(t, x) and v(t, x) satisfy

∂u

∂t
+ Lu+ c(t, x)u ≥ 0, 0 ≤ t ≤ T, x ∈ Ω (1.3.7)

and
∂v

∂t
+ Lv + c(t, x)v ≤ 0, 0 ≤ t ≤ T, x ∈ Ω, (1.3.8)

in a smooth (and possibly unbounded) domain Ω, with a bounded function c(t, x). Assume
that u(0, x) ≥ v(0, x) and

u(t, x) ≥ v(t, x) for all 0 ≤ t ≤ T and x ∈ ∂Ω.

Then, we have
u(t, x) ≥ v(t, x) for all 0 ≤ t ≤ T and all x ∈ Ω.

Moreover, if in addition, u(0, x) > v(0, x) on an open subset of Ω then u(t, x) > v(t, x) for
all 0 < t < T and all x ∈ Ω.

The assumption that both u(t, x) and v(t, x) are uniformly bounded is important if the do-
main Ω is unbounded – without this condition even the Cauchy problem for the standard
heat equation in Rn may have more than one solution, while the comparison principle implies
uniqueness trivially. An example of non-uniqueness is discussed in detail in [?] – such solutions
grow very fast as |x| → +∞ for any t > 0, while satisfying the initial condition u(0, x) ≡ 0.
The extra assumption that u(t, x) is bounded allows to rule out this non-uniqueness issue.
Note that the special case Ω = Rn is included in Theorem 1.3.3, and in that case only the
comparison at the initial time t = 0 is needed for the conclusion to hold for bounded solutions.
Once again, a reader not interested in treating the proof as an exercise should consult [?], or
another of his favorite basic PDE textbooks. We should stress that in the rest of this book
we will only consider solutions for which the uniqueness holds.

A standard corollary of the parabolic maximum principle is the following estimate.

Exercise 1.3.4 Let Ω be a (possibly unbounded) smooth domain, and u(t, x) be the solution
of the initial boundary value problem

ut + Lu+ c(t, x)u = 0, in Ω, (1.3.9)

u(t, x) = 0 for x ∈ ∂Ω,

u(0, x) = u0(x).
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Assume (to ensure the uniqueness of the solution) that u is locally in time bounded: for
all T > 0 there exists CT > 0 such that |u(t, x)| ≤ CT for all t ∈ [0, T ] and x ∈ Ω.
Assume that the function c(t, x) is bounded, with c(t, x) ≥ −M for all x ∈ Ω, and show that
then u(t, x) satisfies

|u(t, x)| ≤ ‖u0‖L∞eMt, for all t > 0 and x ∈ Ω. (1.3.10)

The estimate (1.3.10) on the possible growth (or decay) of the solution of (1.3.9) is by no
means optimal, and we will soon see how it can be improved.

We also have the parabolic Hopf Lemma, of which we will only need the following version.

Lemma 1.3.5 (The parabolic Hopf Lemma) Let u(t, x) ≥ 0 be a solution of

ut + Lu+ c(t, x)u = 0, 0 ≤ t ≤ T,

in a ball B(z,R). Assume that there exists t0 > 0 and x0 ∈ ∂B(z,R) such that u(t0, x0) = 0,
then we have

∂u(t0, x0)

∂ν
< 0. (1.3.11)

The proof is very similar to that of the elliptic Hopf Lemma, and can be found, for instance,
in [?].

1.4 The forced linear heat equation

The regularity theory for the parabolic equations is an extremely rich and fascinating subject
that is often misunderstood as ”technical”. To keep things relatively simple, we are not going
to delve into it head first. Rather, we focus in this section on the regularity results for the
forced linear heat equation in the whole space:

ut −∆u = g(t, x), t > 0, x ∈ Rn, (1.4.1)

with an initial condition u(0, x) = u0(x). As we will see almost immediately, in Proposi-
tion 1.4.3, the contribution of the initial condition can be treated in a very simple way, and
the main question is what can we say about the regularity of u(t, x) in terms of the prescribed
regularity of g(t, x). In Section 1.5, the answers to these seemingly technical and ”boring”
issues will allow us to address the question of existence and regularity of solutions to ”much
more interesting” nonlinear equations, in a very large class. The completely explicit results
for the heat equation we describe in this section also explain quite well how one can ap-
proach general inhomogeneous parabolic equations – we explain this at the qualitative level
in Section 1.6.

This section is both longer and more technical than what the reader has encountered so
far in the book. This techniques are mostly elementary but still require us to get our hands
dirty and the computations reveal some of the very important cancellations that underline
the regularity theory in the general case discussed in Section 1.6. We proceed in several steps.
First we show that if g(t, x) is bounded, without any othere assumptions on its regularity,
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then the function u(t, x) is Hölder continuous both in t and in x, and the corresponding
Hölder norms of u are bounded by the L∞-norm of g. This is done in Section 1.4.2, and
the main result there is Proposition 1.4.7. Next, in Section 1.4.3 we assume that g(t, x) is
Hölder continuous and show that then u(t, x) is once differentiable in t and twice in x, with
the corresponding bounds on the derivatives in terms of the Hölder norm of g. This is made
precise in Proposition 1.4.13, and a generalization to higher order derivatives is explained in
Proposition 1.4.20. Finally, in Section 1.4.4 we show that if g(t, x) is Hölder continuous then
the first derivative in time and second derivatives in space are not just bounded but actually
themselves Hölder continuous – this is stated in Proposition 1.4.18. Of course, in the first
place, the reader may wonder what we mean by a solution to the heat equation that is not
necessarily differentiable. This is explained in Section 1.4.1 in terms of the Duhamel formula.

The proofs of all these results are painfully computational but they open the gates to
beautiful results in the theory of nonlinear diffusion equations, so the payoff for the hard
work in this section is quite high. The hope is that the reader will emerge at the end of
this section with the understanding that the parabolic regularity theory does require some
calculations but is by no means mysterious or inaccessible. As we will see later, the results it
provides are not light but worth their weight in gold.
Recommendation. This section contains many exercises that are computational in nature
and may at the first look appear somewhat unappealing to the reader. We strongly encourage
you to do them as they show the machinery and details behind the beautiful theory.

1.4.1 The Duhamel formula

We consider the forced linear heat equation

ut = ∆u+ g(t, x), (1.4.2)

posed in the whole space x ∈ Rn, and with an initial condition

u(0, x) = u0(x). (1.4.3)

The basic question for us in this section is how regular the solution of (1.4.2)-(1.4.3) is,
in terms of the regularity of the initial condition u0(x) and the forcing term g(t, x). The
function u(t, x) is given explicitly by the Duhamel formula

u(t, x) = v(t, x) +

∫ t

0

w(t, x; s)ds. (1.4.4)

Here, v(t, x) is the solution to the homogeneous heat equation

vt = ∆v, x ∈ Rn, t > 0, (1.4.5)

with the initial condition v(0, x) = u0(x), and w(t, x; s) is the solution of the Cauchy problem

wt(t, x; s) = ∆w(t, x; s), x ∈ Rn, t > s, (1.4.6)

that runs starting at the time s, and is supplemented by the initial condition at t = s:

w(t = s, x; s) = g(s, x). (1.4.7)
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Exercise 1.4.1 If the reader has not previously encountered the Duhamel formula, you
should consider it in a more general setting of a forced problem on a Banach space X:

du

dt
= Lu+ g, t > 0, (1.4.8)

with an initial condition u(0) = u0 ∈ X, for some general linear operator L : X → X and
forcing g ∈ C([0, T ];X). The basic assumption on the operator L is that for any v0 ∈ X the
initial value problem

dv

dt
= Lv, t > 0, (1.4.9)

with the initial condition v(0) = v0 ∈ X has a unique bounded solution u(t) ∈ X for all t ≥ 0.
Show that for all 0 ≤ t ≤ T the function u(t) can be written as

u(t) = v(t) +

∫ t

0

w(t; s)ds.

Here, v(t) is the solution to the initial value problem (1.4.9) with v(0) = u0, and w(t; s) solves
the initial value problem starting at a time s < t:

dw

dt
= Lw, t > s, (1.4.10)

with the initial condition w(s) = g(s).

Let us denote the solution of the Cauchy problem (1.4.5) as

v(t, x) = et∆u0. (1.4.11)

This defines the operator et∆. It maps the initial condition of the heat equation to its solution
at the time t, and is given explicitly as

et∆f(x) =
1

(4πt)n/2

∫
Rn
e−(x−y)2/(4t)f(y)dy. (1.4.12)

With this notation, another way to write the Duhamel formula (1.4.2) is

u(t, x) = et∆u0(x) +

∫ t

0

e(t−s)∆g(s, x)ds, (1.4.13)

or, more explicitly:

u(t, x) =
1

(4πt)n/2

∫
e−(x−y)2/(4t)u0(y)dy +

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))g(s, y)dyds.

(1.4.14)
Of course, we can make these expressions much shorter and more elegant if we introduce the
heat kernel

G(t, x) =
1

(4πt)n/2
e−|x|

2/(4t), (1.4.15)

and rewrite them in terms of convolutions with G(t, x). We keep the formulas for u(t, x) as
explicit as feasible on purpose, to keep the potential singularities as visible as possible, so
that the reader would be alert of the potential dangers in the estimates.

Here is an exercise on the Duhamel formula for a different partial differential equation.
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Exercise 1.4.2 Consider the one-dimensional wave equation

utt − uxx = g(t, x), t > 0, x ∈ R, (1.4.16)

with zero initial condition u(0, x) = ut(0, x) = 0. Show that its solution is given by the
Duhamel formula

Jwave(t, x) =
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)
g(s, y)dyds. (1.4.17)

The first term in (1.4.14) is rather benign as far as regularity is concerned. We use the
notation

|k| = k1 + · · ·+ kn,

for a multi-index k = (k1, . . . , kn), and

Dk
xu =

∂|k|u

∂xk11 . . . ∂xknn
.

Proposition 1.4.3 Let u0 be a bounded and continuous function and set

v(t, x) = et∆u0 =
1

(4πt)n/2

∫
e−(x−y)2/(4t)u0(y)dy. (1.4.18)

Show that for any t > 0 and for any multi-index k with |k| = m there exists Cm > 0 that
depends only on m so that

|Dk
xv(t, x)| ≤ Cm

tm/2
‖u0‖L∞ , |∂mt v(t, x)| ≤ Cm

tm
‖u0‖L∞ , for all t > 0 and x ∈ Rn. (1.4.19)

The reader should note the following simple observations. First, the estimates on the deriva-
tives of v(t, x) in (1.4.19) blow-up as t ↓ 0. This is expected – we only assume that u0(x) is
continuous. More importantly, the estimates on the derivatives at a positive time t > 0 de-
pend only on the L∞-norm of u0 – this is the instant regularization effect of the heat equation.

Exercise 1.4.4 Prove Proposition 1.4.3. The proof involves nothing but calculus and remem-
bering when an integral with an integrand that depends on a parameter can be differentiated
in this parameter.

For the rest of this section we focus on the second term in (1.4.14),

J(t, x) =

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))g(s, y)dyds. (1.4.20)

Note that the function J(t, x), if it is sufficiently regular, is the solution to the forced linear
heat equation

Jt = ∆J + g(t, x), (1.4.21)

posed in the whole space x ∈ Rn, with the initial condition J(0, x) ≡ 0. However, as a priori
we do not know that J(t, x) is differentiable, for now, we can not be quite sure that (1.4.21)
makes classical sense as stated. It is potentially problematic because of the term (t− s)−n/2
in (1.4.20) that blows up as s ↑ t. In particular, a naive attempt to differentiate the integrand
in t or x would lead to expressions that are too singular to be absolutely integrable without
some cancellations.
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Exercise 1.4.5 Differentiate the integrand in J(t, x) in t blindly, observe the singularity
as s→ t and get stuck.

However, to see that the singularity is not as dangerous as it may naively seem, observe that
a simple change of variables shows that if g(t, x) is bounded then so is J(t, x):

|J(t, x)| ≤ ‖g‖L∞
∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))dyds =

t‖g‖L∞
πn/2

∫
e−z

2

dz = t‖g‖L∞ .

(1.4.22)
We used above the simple change of variables

z =
x− y

2
√
t− s

, (1.4.23)

that will be a recurring refrain throughout this section and beyond. In other words, the
integral (1.4.20) defines an L∞ function J(t, x) if g(t, x) itself is an L∞ function. The reader
should informally think of J(t, x) as the solution to (1.4.21) even if it does not have sufficient
regularity to be a classical solution. In the remainder of this section we focus exactly to the
question of regularity of J(t, x).

Exercise 1.4.6 Deduce the upper bound (1.4.22) for J(t, x) directly from the parabolic max-
imum principle, without any explicit computations.

1.4.2 Regularity gain: from a bounded g(t, x) to a Hölder J(t, x)

The estimate (1.4.22) can be restated as an L∞ − L∞ bound:

‖J‖L∞ ≤ t‖g‖L∞ . (1.4.24)

Such bounds are useful but they do not give any better regularity for the function J(t, x) than
for g(t, x): it says that if g is bounded then so is J . On the other hand, the following propo-
sition gives a quantifiable way to say that if g(t, x) is bounded, and without any assumptions
on the continuity of g, then the function J is Hölder continuous in t and differentiable in x.
Hence, it is more regular than the assumed regularity of g. This is a very simple example of
the general phenomenon of parabolic regularity: solution is better than the input data, such
as the initial condition or forcing.

Recall the notion of the Hölder norm of a function g(t, x) defined for (t, x) ∈ [0, T ]× Rn:

‖g‖Cαt Cβx = ‖g‖L∞ + sup
|g(t, x)− g(t′, x′)|
|t− t′|α + |x− x′|β

, (1.4.25)

with the supremum taken over all 0 ≤ t, t′ ≤ T and x, x′ ∈ Rn such that (t, x) 6= (t′, x′). We
will use the notation Cα

t C
β
x ([0, T ]×Rn), or Cα

t C
β
x for short, for the space of Hölder continuous

functions on [0, T ]×Rn with a finite Hölder norm. We apologize to the reader for the use of
this cumbersome notation but it allows us to distinguish between the regularity in time and
space and avoid various other notational pitfalls.
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Proposition 1.4.7 Let g(t, x) be a measurable bounded function, so that g ∈ L∞([0, T ]×Rn),
and J(t, x) be given by (1.4.20). Then,
(i) the function J(t, x) is once differentiable in x for all t > 0 and x ∈ Rn,
(ii) for any α ∈ (0, 1), the function J(t, x) is Cα-Hölder continuous in t for all t > 0 and
all x ∈ Rn, and
(iii) for all 1 ≤ k ≤ n, the derivatives ∂xkJ(t, x) are Cα-Hölder continuous in x, for all t > 0
and x ∈ Rn, for all α ∈ (0, 1).
Moreover, there exist C > 0 and Cα > 0 so that for all t, t′ ∈ [0, T ] and x, x′ ∈ Rn we have

|∂xkJ(t, x)| ≤ C
√
t‖g‖L∞([0,T ]×Rn),

|∂xkJ(t, x)− ∂xkJ(t, x′)| ≤ Cα‖g‖L∞([0,T ]×Rn)|x− x′|α,
|J(t, x)− J(t′, x)| ≤ Cα‖g‖L∞([0,T ]×Rn)|t− t′|α.

(1.4.26)

The difference in regularity of J(t, x) in t and x is not an artifact of the proof. It is easy to see
that J(t, x) need not be differentiable in t if all we know about g(t, x) is that it is bounded.
Indeed, the reader can simply think of g(t, x) = sgn(t− 1), in which case J(t, x) = |t− 1| − 1
and is not differentiable at t = 1 but is Hölder continuous for all t ≥ 0. The next exercise
shows that neither can one expect the function J(t, x) to be twice continuously differentiable
in x under the assumption that g(t, x) is bounded and not necessarily continuous. Hence, the
claimed regularity of J(t, x) in Proposition 1.4.7 is ”reasonably optimal”.

Exercise 1.4.8 Give an example of a bounded function g(t, x), t ≥ 0, x ∈ R, such that J(t, x)
is not twice continuously differentiable in x even though the derivative ∂xJ(t, x) is α-Hölder
continuous in x for any α ∈ (0, 1).

The next exercise asks you to compare the gain of regularity for the heat equation and for
the wave equation.

Exercise 1.4.9 Does the result of Proposition 1.4.7 apply to the solution to the wave equa-
tion given in Exercise 1.4.2?

Proof of Proposition 1.4.7. Let us freeze t > 0, fix some 1 ≤ i ≤ n, and prove
that J(t, x) is differentiable in xi. The first inclination may be to simply differentiate the
integrand in (1.4.20), as suggested, albeit with a warning, in Exercise 1.4.4. This can not be
done in the t-variable, simply because we have seen that J(t, x) need not be differentiable
in t. Such differentiation in the x-variable can be justified, but it is also instructive to work
from scratch with the finite differences, as we will need to do that with the time increments
anyway. Let ei be the unit vector in the xi-direction and write

J(t, x+ hei)− J(t, x)

h
=

1

h

∫ t

0

∫
Rn

[
e−(x+hei−y)2/4(t−s) − e−(x−y)2/4(t−s)

]
g(s, y)

dyds

(4π(t− s))n/2
.

(1.4.27)
The familiar change of variables (1.4.23)

z =
x− y

2
√
t− s

, (1.4.28)
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leads to

J(t, x+ hei)− J(t, x)

h
=

1

h

∫ t

0

∫
Rn

[
e−(z+hei/(2

√
t−s))2 − e−z2

]
g(s, x− 2z

√
t− s) dzds

(4π)n/2

=

∫ t

0

Qh,i(t, s)
ds√
t− s

.

(1.4.29)
with

Qh,i(t, s) =

√
t− s
h

∫
Rn

[
e−(z+hei/(2

√
t−s))2 − e−z2

]
g(s, x− 2z

√
t− s) dz

(4π)n/2
. (1.4.30)

Exercise 1.4.10 Show that if g ∈ L∞([0, T ]×Rn), then for almost every 0 < s ≤ t fixed we
have

lim
h→0

Qh,i(t, s) = Q̄i(t, s) := −
∫
Rn
zie
−z2g(s, x− 2z

√
t− s) dz

(4π)n/2
, (1.4.31)

and that there exists C > 0 so that for almost every 0 < s ≤ t and all h ∈ (0, 1) we have

|Qh,i(t, s)| ≤ C‖g‖L∞ . (1.4.32)

The result of Exercise 1.4.10 allows us to use the Lebesgue dominated convergence theorem
and pass to the limit h→ 0 in (1.4.29) and conclude that

∂J(t, x)

∂xi
= −

∫ t

0

∫
Rn
zie
−z2g(s, x− 2z

√
t− s) dz

(4π)n/2
ds√
t− s

. (1.4.33)

This shows both that J(t, x) is differentiable in x and that the first bound in (1.4.26) holds:∣∣∣∂J(t, x)

∂xi

∣∣∣ ≤ C
√
t‖g‖L∞ . (1.4.34)

The above argument can not be repeated for the time derivative: if we differentiate the
integrand in time, and make the same change of variable to z as in (1.4.28), we would get

∂

∂t

(
e−|x−y|

2/4(t−s)

(4π(t− s))n/2

)
=
|x− y|2

4(t− s)2

e−|x−y|
2/4(t−s)

(4π(t− s))n/2
=

1

4(t− s)
|z2|e−|z|2

(4π(t− s))n/2
, z =

x− y√
t− s

.

Thus, the change of variables to z would bring a non-integrable (t− s)−1 singularity instead
of a (t− s)−1/2 term that appears in (1.4.33).

Exercise 1.4.11 Verify that differentiating the integrand twice in x leads to the same kind
of (seemingly non-integrable) singularity in (t− s) as differentiating once in t.

Nevertheless, the Hölder continuity of J(t, x) in time is proved by a very similar, except
slightly longer, argument. We again compute a partial difference. Assume, for convenience,
that t′ ≥ t, and write

J(t, x)− J(t′, x) =

∫ t

0

∫
Rn

(
e−|x−y|

2/4(t−s)

(4π(t− s))n/2
− e−|x−y|

2/4(t′−s)

(4π(t′ − s))n/2

)
g(s, y)dyds

−
∫ t′

t

∫
Rn

e−|x−y|
2/4(t′−s)

(4π(t′ − s))n/2
g(s, y)dyds = I1(t, t′, x) + I2(t, t′, x).

(1.4.35)
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The second term above satisfies the simple estimate

|I2(t, t′, x)| ≤ ‖g‖L∞|t′ − t|, (1.4.36)

obtained via the by now automatic change of variables as in (1.4.28). As for I1, we write,
using the Newton-Leibniz formula in the t variable, for a fixed s ∈ [0, t]

e−|x−y|
2/4(t′−s)

(4π(t′ − s))n/2
− e−|x−y|

2/4(t−s)

(4π(t− s))n/2
=

∫ t′

t

h(z)

(4π(τ − s))n/2+1
dτ, z =

x− y√
τ − s

, (1.4.37)

with an integrable function

h(z) =

(
−n

2
+
|z|2

4

)
e−|z|

2

.

Thus, we have, changing the variables y → z in the integral over Rn, and integrating z out,
using integrability of h(z):

|I1(t, t′, x)| ≤ C‖g‖L∞
∫ t

0

∫ t′

t

dτ

τ − s
ds = C‖g‖L∞

∫ t

0

log

(
t′ − s
t− s

)
ds

= C‖g‖L∞(t′ log t′ − t log t− (t′ − t) log(t′ − t)). (1.4.38)

This proves that

|I1(t, t′, x)| ≤ C‖g‖L∞ |t′ − t|α, (1.4.39)

for all α ∈ (0, 1).

Exercise 1.4.12 Consider the partial differences

∂J(t, x+ hej)

∂xi
− ∂J(t, x)

∂xi

using expression (1.4.33) for ∂xiJ(t, x) and use a trick similar to (1.4.37) to show that ∂xiJ(t, x)
is Hölder continuous and the last estimate in (1.4.26) holds.

This exercise finishes the proof of Proposition 1.4.7. �
Let us stress again that the logarithmic term log(t − t′) that appears in (1.4.38) is not

a fluke of the proof: it represents a genuine obstacle to differentiability of J(t, x) in time
if g(t, x) is just bounded and not Hölder continuous in t. This fact is absolutely crucial in the
parabolic regularity theory, and not just in the present reasonably simple context.

1.4.3 Regularity gain: from Hölder g(t, x) to differentiable J(t, x)

Proposition 1.4.7 shows that if we assume that g(t, x) is bounded then J(t, x) is differen-
tiable in space and Hölder continuous in time, and, as we have seen, one can not expect a
better regularity for J(t, x) without further assumptions on the function g(t, x). We now
assume that g(t, x) itself is Hölder continuous in time and space, and show that then J(t, x)
is differentiable in t and twice differentiable in x.
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Proposition 1.4.13 Assume that g(t, x) ∈ Cα/2
t Cα

x ([0, T ] × Rn), so that there exists K > 0
such that for all 0 ≤ t, t′ ≤ T and x, x′ ∈ Rn we have

|g(t, x)− g(t′, x′)| ≤ K
(
|t− t′|α/2 + |x− x′|α

)
(1.4.40)

for some α ∈ (0, 1). Then J(t, x) given by (1.4.20) is twice continuously differentiable in x,
and once continuously differentiable in t over (0, T ) × Rn. Moreover, there exists C > 0 so
that

‖D2
xJ‖L∞([0,T ]×Rn) + ‖∂tJ‖L∞([0,T ]×Rn) ≤ C‖g‖Cα/2,α([0,T ]×Rn). (1.4.41)

Note the difference in the Hölder exponents in t and x in the assumption (1.4.40) on the
function g(t, x). It is of course not necessary as any Hölder assumptions in x and t would
lead to result. But it is very natural, as will be clear from the argument below. In a similar
fashion, the gain of regularity in time and space for J is different: one derivative in time
and two derivatives in space. Both instances are related to the different scaling of the heat
equation and other parabolic problems in time and space.

Continuing the theme started in Exercise 1.4.9, we ask the reader to consider the following
quesiton.

Exercise 1.4.14 Does the result of Proposition 1.4.13 apply to the solution Jwave(t, x) to the
wave equation given in Exercise 1.4.2?

Proof. One could look again at the partial differences, as in the proof of Proposition 1.4.7.
However, we will use a different strategy, to illustrate another method. We will take δ ∈ (0, t)
small, and consider an approximation

Jδ(t, x) =

∫ t−δ

0

e(t−s)∆g(s, ·)(x)ds =

∫ t−δ

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))g(s, y)dyds.

(1.4.42)
Note that Jδ(s, x) is the solution to the Cauchy problem (in the variable s, with t fixed)

∂Jδ
∂s

= ∆Jδ +H(t− s− δ)g(s, x), (1.4.43)

with the initial condition Jδ(0, x) = 0. Here, we have introduced the cut-off H(s) = 1 for s < 0
and H(s) = 0 for s > 0.

The function Jδ(t, x) is smooth both in t and x for all δ > 0 – this is easy to check
simply by differentiating the integrand in (1.4.42) in t and x, since that does not produce any
singularity due to t− s > δ. Moreover, Jδ(t, x) converges uniformly to J(t, x) as δ ↓ 0 – this
follows from the estimate

|J(t, x)− Jδ(t, x)| ≤ δ‖g‖L∞ , (1.4.44)

that can be checked as in (1.4.22).

Exercise 1.4.15 Check that (1.4.44) holds.

As a consequence of (1.4.44), the derivatives of Jδ(t, x) converge weakly, in the sense of
distributions, to the corresponding weak derivatives of J(t, x). Thus, to show that, say,
the second derivatives (understood in the sense of distributions) ∂xixjJ(t, x) are actually
continuous functions, it suffices to prove that the partial derivatives ∂xixjJδ(t, x) converge
uniformly to a continuous function, and that is what we will do. In other words, we are
relying on the following real analysis exercise.
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Exercise 1.4.16 Assume that fn(x), x ∈ R, is a sequence of infinitely differentiable functions
that converges uniformly on R to a limit g ∈ C(R). Show that then f ′n → g′ in the sense
of distributions. Suppose, in addition, that there is a function p ∈ C(R) such that f ′n → p,
also uniformly on R. Show that then g(x) is continuously differentiable and p(x) = g′(x) for
all x ∈ R.

We will look in detail at ∂xixjJδ, with i 6= j. As the integrand for Jδ has no singularity
at s = t, we may simply differentiate under the integral sign

∂2Jδ(t, x)

∂xi∂xj
=

∫ t−δ

0

∫
Rn

(xi − yi)(xj − yj)
4(t− s)2(4π(t− s))n/2

e−|x−y|
2/4(t−s)g(s, y)dsdy.

The extra factor (t − s)2 in the denominator can not be removed simply by the change of
variable (1.4.28) – as the reader can immediately check, this would still leave a non-integrable
extra factor of (t− s)−1 that would cause an obvious problem in passing to the limit δ ↓ 0.

A very simple but absolutely crucial observation that will come to our rescue here is that,
as i 6= j, we have ∫

Rn
(xi − yi)(xj − yj)e−|x−y|

2/4(t−s)dy = 0. (1.4.45)

This allows us to write

∂2Jδ(t, x)

∂xi∂xj
=

∫ t−δ

0

∫
Rn

(xi − yi)(xj − yj)
4(t− s)2(4π(t− s))n/2

e−|x−y|
2/4(t−s)(g(s, y)− g(t, x)

)
dsdy. (1.4.46)

Note that we use here crucially the fact that δ > 0 and all integrals are finite because of
that. Now, we can use the regularity of g(s, y) to help us. In particular, the Hölder continuity
assumption (1.4.40) gives∣∣∣ (xi − yi)(xj − yj)

4(t− s)2(4π(t− s))n/2
e−|x−y|

2/4(t−s)(g(s, y)− g(t, x)
)∣∣∣

≤ C|z|2e−|z|2(|t− s|α/2 + |x− y|α)

(t− s)(t− s)n/2
‖g‖

C
α/2
t Cαx

≤ C

(t− s)1−α/2
k(z)

(4π(t− s))n/2
‖g‖

C
α/2
t Cαx

,

(1.4.47)
still with z = (x− y)/

√
t− s, as in (1.4.28), and

k(z) = |z|2e−|z|2/4(1 + |z|α).

As before, the factor of (t− s)n/2 in the right side of (1.4.47) goes into the volume element

dz =
dy

(t− s)n/2
,

and we only have the factor (t−s)1−α/2 left in the denominator in (1.4.47), which is integrable
in s, unlike the factor (t− s)−1 one would get without using the cancellation in (1.4.45) and
the Hölder regularity of g(t, x). Thus, after accounting for the Jacobian factor, the integrand
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in the expression for ∂xixjJδ is dominated by an integrable function in z. This has two
consequences. First, the Lebesgue dominated convergence theorem implies that

∂2Jδ(t, x)

∂xi∂xj
→ Zij(t, x) :=

∫ t

0

∫
Rn

(xi − yi)(xj − yj)
4(t− s)2(4π(t− s))n/2

e−|x−y|
2/4(t−s)(g(s, y)− g(t, x)) dsdy,

(1.4.48)
as δ → 0, pointwise in t and x. In addition, the bound on the integrand in (1.4.47) implies
that the convergence in (1.4.48) is uniform in x ∈ Rn. In particular, the continuity of the
limit Zij(t, x) follows as well. Invoking the claim of Exercise 1.4.16, we now deduce that

∂2J(t, x)

∂xi∂xj
= Zij(t, x) for i 6= j and all t > 0 and x ∈ Rn, (1.4.49)

and that these mixed second derivatives are continuous. In addition, we also see from (1.4.47)
that ∣∣∣∂2Jδ(t, x)

∂xi∂xj

∣∣∣ ≤ C

∫ t

0

ds

(t− s)1−α/2‖g‖Cα/2t Cαx
≤ Ctα/2‖g‖

C
α/2
t Cαx

, (1.4.50)

and thus the derivatives of J(t, x) obey the same bound:∣∣∣∂2J(t, x)

∂xi∂xj

∣∣∣ ≤ Ctα/2‖g‖
C
α/2
t Cαx

. (1.4.51)

Exercise 1.4.17 Complete the argument by looking at the remaining derivatives ∂tJ(t, x)
and ∂xixiJ(t, x). In both cases, one would start with Jδ, find a cancellation such as in (1.4.45),
leading to a version of (1.4.46), and then pass to the limit δ ↓ 0 using the Hölder regularity
of g(t, x).

1.4.4 Regularity gain: from a Hölder g to Hölder derivatives of J

Proposition 1.4.13 is slightly sub-optimal: it says that if g is Hölder continuous then J is
twice differentiable in x and once in t but says nothing about the continuity or regularity of
these derivatives. We now show that they are actually themselves Hölder continuous then the
Hölder continuity passes on to the corresponding derivatives of the solution.

Proposition 1.4.18 Assume that g(t, x) ∈ Cα/2
t Cα

x ([0, T ] × Rn), so that there exists K > 0
such that for all 0 ≤ t, t′ ≤ T and x, x′ ∈ Rn we have

|g(t, x)− g(t′, x′)| ≤ K
(
|t− t′|α/2 + |x− x′|α

)
(1.4.52)

for some α ∈ (0, 1). Then, there exists C > 0 such that

‖D2
xJ‖Cα/2,α([0,T ]×Rn)

+ ‖∂tJ‖
C
α/2
t Cαx ([0,T ]×Rn)

≤ C‖g‖
C
α/2
t Cαx ([0,T ]×Rn)

. (1.4.53)

There is a subtle but important point here. Our first result, Proposition 1.4.7 said that if g
is in L∞ then you nearly gain one derivative in time and two derivatives in space, but only
nearly: the true result is that J and DxJ are α-Hölder continuous in t and x for any α ∈ (0, 1)
but it is not true that ∂tJ and D2

xJ necessarily exist. Proposition 1.4.18 says, on the other
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hand, that if g is Hölder continuous and not just bounded, so that g ∈ Cα/2
t Cα

x , then you fully

gain one derivative in t and two in x: ∂tJ and D2
xJ are bounded in the same space C

α/2
t Cα

x

as g. This result is optimal, one can not expect anything better, as can be seen simply from
the form of the heat equation

Jt −∆J = g. (1.4.54)

Warning. In the proof below we denote by the constants C, C ′ etc. various universal
constants that do not depend on anything but elementary calculus, and, in particular, not on
the function g, t or x. We make no attempt to optimize them. We also set, for some brevity

Mg = ‖g‖
C
α/2
t Cαx

. (1.4.55)

Proof. Our analysis follows what we did in Section 1.4.3 except we have to look at the
Hölder differences for the second derivatives. The function J(t, x) is given by the Duhamel
formula

J(t, x) =

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))g(s, y)dyds. (1.4.56)

As in the proof of Proposition 1.4.13, we are going to examine only ∂xixjJ , with i 6= j, leaving
the other derivatives to the reader as a lengthy but straightforward exercise. Let us set

hij(z) =
zizj

(4π)n/2
e−|z|

2

, D(s, t, x, y) = hij

( x− y
2
√
t− s

)g(s, y)− g(t, x)

(t− s)n/2+1
,

so that we may write (1.4.48)-(1.4.49) as

∂2J(t, x)

∂xi∂xj
=

∫ t

0

∫
Rn
D(s, t, x, y)dsdy. (1.4.57)

Now, for 0 < t ≤ t′ ≤ T and x, x′ in Rn, we have

∂2J(t′, x′)

∂xi∂xj
− ∂2J(t, x)

∂xi∂xj
=

∫ t′

t

∫
Rn
D(s, t′, x′, y)dsdy

+

∫ t

0

∫
Rn

(
D(s, t′, x′, y)−D(s, t, x, y)

)
dsdy = J1(t, t′, x′) + J2(t, x, t′, x′).

(1.4.58)

Exercise 1.4.19 Verify that no additional ideas other than what has already been developed
in the proof of Propositions 1.4.7 and 1.4.13 are required to prove that the integral J1 satisfies
an inequality of the form

|J1(t, t′, x′)| ≤ CMg|t− t′|α/2. (1.4.59)

As for the integral J2, we need to look at it a little deeper. The change of variables

z =
x− y

2
√
t− s

transforms (1.4.57) into

∂2J(t, x)

∂xi∂xj
=

∫ t

0

∫
Rn
hij(z)

(g(s, x− 2
√
t− sz)− g(t, x))

t− s
dsdz

πn/2
,
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and J2 becomes

J2(t, t′, x, x′)

=

∫ t

0

∫
Rn
hij(z)

[
g(s, x′ − 2

√
t′ − sz)− g(t′, x′)

t′ − s
− g(s, x− 2

√
t− sz)− g(t, x)

t− s

]
dsdz

πn/2

=

∫ t

0

∫
Rn
hij(z)

[
g(s, x′ − 2

√
t′ − sz)− g(t′, x′)

t′ − s
− g(s, x− 2

√
t′ − sz)− g(t′, x)

t′ − s

]
dsdz

πn/2

+

∫ t

0

∫
Rn
hij(z)

[
g(s, x− 2

√
t′ − sz)− g(t′, x)

t′ − s
− g(s, x− 2

√
t− sz)− g(t, x)

t− s

]
dsdz

πn/2

= J21(t, t′, x, x′) + J22(t, t′, x, x′). (1.4.60)

We estimate each term separately.
The estimate of J22(t, t′, x, x). We split the time integration domain 0 ≤ s ≤ t into the

intervals
A = {s : t− (t′ − t) ≤ s ≤ t}, B = {0 ≤ s ≤ t− (t′ − t)}.

Note that if t′ − t ≥ t, then A = [0, t] and b is empty. The Hölder regularity of g(t, x) in
(1.4.52) implies that

|g(s, x− 2
√
t′ − sz)− g(t′, x)| ≤ 2Mg(t

′ − s)α/2(1 + |z|α), (1.4.61)

and
|g(s, x− 2

√
t− sz)− g(t, x)| ≤ 2Mg(t− s)α/2(1 + |z|α). (1.4.62)

Note that for s ∈ A we have

t′ − s ≤ 2(t′ − t), t− s ≤ (t′ − t).

Hence, the contribution to J22 by the integral over the interval A can be bounded as

JA22(t, t′, x, x′) ≤ 2Mg

∫ t

t−(t′−t)

∫
Rn
|hij(z)|(1 + |z|α)

[
1

(t′ − s)1−α/2 +
1

(t− s)1−α/2

]
dsdz

πn/2

≤ Cα(t′ − t)α/2Mg,
(1.4.63)

with a constant Cα that depends only on α ∈ (0, 1). We used (1.4.61) and (1.4.62) above.
To estimate the contribution to J22 by the integral over the interval B, note that for s ∈ B

both increments t − s and t′ − s are strictly positive, so that the integrand is not singular.
Let us also recall that hij has zero integral. Thus, we may remove both g(t, x) and g(t′, x′)
from the integral. This allows us to rewrite JB22 as

JB22(t, t′, x, x′) =

∫ t−(t′−t)

0

∫
Rn

(
g(s, x− 2

√
t′ − sz)

t′ − s
− g(s, x− 2

√
t− sz)

t− s

)
hij(z)

dsdz

πn/2

=

∫ t−(t′−t)

0

∫
Rn

(g(s, x− 2
√
t′ − sz)− g(s, x− 2

√
t− sz)

t′ − s

)
hij(z)

dsdz

πn/2

+

∫ t−(t′−t)

0

∫
Rn

(
g(s, x− 2

√
t− sz)

t′ − s
− g(s, x− 2

√
t− sz)

t− s

)
hij(z)

dsdz

πn/2

= JB221 + JB222.
(1.4.64)
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Note that the integrand in the term JB221 can be bounded from above by

CMg|z|2e−|z|
2 |(
√
t′ − s−

√
t− s)z|α

t′ − s
, (1.4.65)

with a constant C > 0 that only depends on α ∈ (0, 1). Integrating out the z-variable then
gives

JB221(t, t′, x, x′) ≤ CMg

∫ t−(t′−t)

0

(
√
t′ − s−

√
t− s)αds

t′ − s
≤ CMg

∫ t−(t′−t)

0

1

t− s
(t′ − t)α

(t− s)α/2
ds

≤ CMg(t
′ − t)α/2.

(1.4.66)
To estimate JB222 we again use the zero integral property of hij(z) to write this term as

JB222(t, t′, x, x′) =

∫ t−(t′−t)

0

∫
Rn

(
g(s, x− 2

√
t− sz)− g(s, x)

)( 1

t′ − s
− 1

t− s

)
hij(z)

dsdz

πn/2
.

(1.4.67)
The integrand in (1.4.69) can be bounded by

CMg|t− s|α/2|z|α|z|2e−|z|
2 t′ − t
(t− s)2

. (1.4.68)

Integrating out the z-variable and then the s variable, we obtain

|JB222(t, t′, x, x′)| ≤ CMg|t− t′|α/2. (1.4.69)

We conclude that
J22(t, t′, x, x′) ≤ CMg(t

′ − t)α/2, 0 < t ≤ t′. (1.4.70)

The estimate of J21(t, t′, x, x′). Now, we estimate

J21(t, t′, x, x′)

=

∫ t

0

∫
Rn
hij(z)

[
g(s, x′ − 2

√
t′ − sz)− g(t′, x′)

t′ − s
− g(s, x− 2

√
t′ − sz)− g(t′, x)

t′ − s

]
dsdz

πn/2

= JA21 + JB21. (1.4.71)

The two terms above refer to the integration over the time interval A = {t−|x−x′|2 ≤ s ≤ t}
and its complement B. As before, if t ≤ |x− x′|2, then we only have A = {0 ≤ s ≤ t}. In the
first domain, we just use the bounds

|g(s, x′ − 2
√
t′ − sz)− g(t′, x′)| ≤ CMg(t

′ − s)α/2(1 + |z|α) (1.4.72)

and
|g(s, x− 2

√
t′ − sz)− g(t′, x)| ≤ CMg(t

′ − s)α/2(1 + |z|α). (1.4.73)

After integrating out the z-variable, this leads to

|JA21(t, t′, x, x′)| ≤ CMg

∫ t

t−|x−x′|2
(t′ − s)−1+α

2 ds ≤ CMg(|t′ − t|α/2 + |x− x′|α). (1.4.74)
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Next, as hij has zero mass and t′ − s is strictly positive when s ∈ B, we can drop the terms
involving g(t′, x′) and g(t′, x) leading to

JB21(t, t′, x, x′) =

∫ t−|x−x′|2

0

∫
Rn
hij(z)

g(s, x′ − 2
√
t′ − sz)− g(s, x− 2

√
t′ − sz)

t′ − s
dsdz

πn/2

=

∫ t−|x−x′|2

0

∫
Rn

(
hij

( x′ − y
2
√
t′ − s

)
− hij

( x− y
2
√
t′ − s

))g(s, y)

t′ − s
dsdy

(4π(t′ − s))n/2
. (1.4.75)

Once again, because hij has zero mass we have

JB21(t, t′, x, x′)=

∫ t−|x−x′|2

0

∫
Rn

(
hij

( x′ − y
2
√
t′ − s

)
−hij

( x− y
2
√
t′ − s

))g(s, y)− g(t′, x′)

t′ − s
dsdy

(4π(t′ − s))n/2
.

The integrand above can be re-written as(
hij

( x′ − y
2
√
t′ − s

)
− hij

( x− y
2
√
t′ − s

))g(s, y)− g(t′, x′)

t′ − s
(1.4.76)

=
1

2

∫ 1

0

g(s, y)− g(s, xσ) + g(s, xσ)− g(t′, x′)

(t′ − s)3/2
(x′ − x) · ∇hij

( xσ − y
2
√
t′ − s

)
dσ,

with xσ = σx+ (1− σ)x′. It follows that

|JB21(t, t′, x, x′)| ≤ CMg|x− x′|
∫ t−|x−x′|2

0

∫ 1

0

∫
Rn

∣∣∣∇hij( xσ − y
2
√
t′ − s

)∣∣∣ (1.4.77)

× |y − xσ|
α + |x′ − xσ|α + |t′ − s|α/2

(t′ − s)3/2

dsdydσ

(t′ − s)n/2
.

Using the estimates

|∇h(z)| ≤ C|z|3e−|z|2 ,

and |x′ − xσ| ≤ |x− x′|, and making the usual change of variable

z =
xσ − y

2
√
t′ − s

,

and integrating out the z and σ variables, we arrive at

|JB21(t, t′, x, x′)| ≤ CMg|x− x′|
∫ t−|x−x′|2

0

(
1

(t− s)(3−α)/2
+
|x− x′|α

(t− s)3/2

)
ds. (1.4.78)

Integrating out the s variable, we obtain

|JB21(t, t′, x, x′)| ≤ CMg|x− x′|
(
|x− x′|α−1 + |x− x′|α|x− x′|−1

)
≤ CMg|x− x′|α, (1.4.79)

thus J21 is also Hölder continuous, finishing the proof. �
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Higher order derivatives

The previous results can be generalized to the higher order derivatives of J(t, x) assuming
that the corresponding derivatives of g(t, x) exist and are Hödler continuous. Recall that we
use the notation

|k| = k1 + · · ·+ kn,

for a multi-index k = (k1, . . . , kn), and

Dk
xu =

∂|k|u

∂xk11 . . . ∂xknn
.

The following result will be indispensable in the analysis of nonlinear equations, despite its
seemingly technical nature.

Proposition 1.4.20 Assume that the function g(t, x) is M times continuously differentiable

in t and K times continuously differentiable in x, and ∂Mt D
k
xg(t, x) ∈ Cα/2

t Cα
x ([0, T ]×Rn) for

all multi-indices k with |k| = K, for some α ∈ (0, 1). Then J(t, x) given by (1.4.20) is M + 1
times continuously differentiable in t, and K + 2 times continuously differentiable in x for all
0 ≤ t ≤ T and x ∈ Rn. Moreover, there exists C > 0 that depends on M and K so that for
any multi-indices k and k′ with |k| = K and |k′| = K + 2 we have

‖∂M+1
t Dk

xJ‖Cα/2t Cαx ([0,T ]×Rn)
+‖∂Mt Dk′

x J‖Cα/2t Cαx ([0,T ]×Rn)
≤ C sup

0≤|r|≤K,0≤m≤M
‖Dm

t D
r
xg‖Cα/2t Cαx ([0,T ]×Rn)

.

(1.4.80)
In particular, if g(t, x) is infinitely differentiable with each derivative uniformly bounded in t
and x then so is J(t, x).

Exercise 1.4.21 Provide the proof of Proposition 1.4.20. One way to run the argument is
to solve ∂tv−∆v = Dm

t D
k
xg, v(0) = 0, apply the results we proved above to v and then show

that Dm
t D

k
xu = v.

A remark on the constant coefficients case

To finish this section, consider solutions to general constant coefficients equations of the form

ut − aij∂xixju+ bj∂xju+ cu = f(t, x). (1.4.81)

We assume that aij, bi and c are constants, and the matrix A := (aij) is positive definite:
there exists a constant λ > 0 so that for any vector ξ ∈ Rn we have

aijξiξj ≥ λ|ξ|2. (1.4.82)

Assume also that f is an α-Hölder function over [0, T ] × Rn, and take the initial condi-
tion v(0, x) ≡ 0. The function v(t, x) = u(t, x+Bt) exp(ct), with B = (b1, . . . , bn), solves

vt − aij∂xixjv = f(t, x+Bt). (1.4.83)

The change of variable w(t, x) = v(t,
√
Ax) brings us back to the forced heat equation:

wt −∆w = f(t,
√
A(x+Bt)). (1.4.84)

We see that the conclusion of Proposition 1.4.18 also applies to other parabolic equations
with constant coefficients, as long as the ellipticity condition (1.4.82) holds.
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Exercise 1.4.22 Consider the solutions of the equation

ut − uxx + uy = f(t, x, y), (1.4.85)

in R2 and use this example to convince yourself that the ellipticity condition is necessary for
the Hölder regularity as in Proposition 1.4.18 to hold.

Congratulations. We congratulate the reader who managed to follow the lengthy com-
putations in this section!

1.5 Regularity for the nonlinear heat equations

In this section, we reap the fruit of our labour in the previous section and prove global in time
existence of solutions to some nonlinear parabolic equations. We will not strive to achieve
the sharpest results. Rather, we have in mind two particular classes of nonlinear parabolic
equations, for which eventually we would like to understand the large time behavior: the semi-
linear and quasi-linear equations of the simplest form. The truth is that the two examples
we consider here contain some of the main features under which the more general global
existence and regularity results hold: the Lipschitz behavior of the nonlinearity, and the
smooth spatial dependence of the coefficients in the equation. Thus, after reading this section
the reader should be well prepared to digest the more general results described in other, more
specialized books.

1.5.1 Existence and regularity for a semi-linear diffusion equation

First, we consider semi-linear parabolic equations of the form

ut = ∆u+ f(t, x, u). (1.5.1)

Such equations are generally known as the reaction-diffusion equations, and are very common
in biological and physical sciences. We will discuss the origins of such equations, and the
behavior of the solutions to a class of such equations in great detail in Chapter ??.

We will consider (1.5.1) posed in Rn, and equipped with a bounded and continuous initial
condition

u(0, x) = u0(x). (1.5.2)

As in the theory of nonlinear ordinary differential equations, we need to assume some Lipschitz
property of the function f(t, x, u) in the u-variable. Otherwise we may run into blow-up issues,
familiar from the solutions to the ordinary differential equation

du

dt
= u2, u(0) = u0. (1.5.3)

Recall that if u0 > 0 then solution to (1.5.3) exists only until the time T0 = 1/u0 and

lim
t↑T0

u(t) = +∞. (1.5.4)

This is something we would like to avoid in this expository section.

32



There are two possible assumptions that will ensure that solutions to (1.5.1) exist and do
not blow up in a finite time. First, we may simply assume that the function f is smooth in
all its variables and globally Lipschitz in u: there exists a constant Cf > 0 so that

|f(t, x, u)− f(t, x, u′)| ≤ Cf |u− u′|, for all t ≥ 0, x ∈ Rn and u, u′ ∈ R. (1.5.5)

Alternatively, we may assume that f(t, x, u) is smooth in all its variables, and locally Lipschitz
in u: for every K > 0 there exists CK > 0 such that

|f(t, x, u)− f(t, x, u′)| ≤ CK |u− u′|, for all t ≥ 0, x ∈ Rn and |u|, |u′| ≤ K, (1.5.6)

and, in addition, there exist M1 < M2 so that

f(t, x,M1) = f(t, x,M2) = 0 for all t ≥ 0 and x ∈ Rn. (1.5.7)

Under this assumption we will show that solutions corresponding to initial data u0 such that
M1 ≤ u0 ≤M2 will be globally regular. One reason why (1.5.6)-(1.5.7) is a useful alternative
to the global Lipshcitz assumption in (1.5.5) is the Fisher-KPP equation

ut = ∆u+ u(1− u), (1.5.8)

with the predator-prey nonlinearity f(u) = u(1 − u) that does not satisfy (1.5.5) but which
does obey (1.5.6)-(1.5.7). We refer the reader to Chapter ?? for the discussion of how this
equation arises in the biological modeling and other applications, as well as to the explanation
of its name.

Another important example is the time-dependent version of the Allen-Cahn equation we
have encountered in Chapter ??:

ut = ∆u+ u− u3. (1.5.9)

Here, once again, the nonlinearity f(u) = u − u3 satisfies (1.5.6)-(1.5.7) but not (1.5.5). We
will prove the following existence result under assumptions (1.5.6)-(1.5.7).

Theorem 1.5.1 Assume that assumptions (1.5.6)-(1.5.7) hold with some M1 < M2, and the
initial condition u0(x) is bounded and smooth, and

M1 ≤ u0(x) ≤M2 for all x ∈ Rn. (1.5.10)

Then, there exists a unique bounded smooth solution u(t, x) to (1.5.1)-(1.5.2), which, in ad-
dition, satisfies

M1 < u(t, x) < M2 for all t > 0 and x ∈ Rn. (1.5.11)

Moreover, for all T > 0 each derivative of u is uniformly bounded over [T,+∞)× Rn.

Assumption (1.5.7) may seem too stringent to the reader. Its role is to ensure that u(t, x)
satisfies the uniform bounds in (1.5.11). We explain in Exercise 1.5.4 how this assumption
can be relaxed, while still ensuring that (1.5.11) holds. We also do not need to assume that
the initial condition u0(x) is smooth – it suffices to assume that it is bounded and continuous.
This is the subject of Exercise 1.5.5.
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Let us first explain the two simpler claims in Theorem 1.5.1: the bounds in (1.5.11)
and uniqueness. Let u(t, x) be a bounded smooth solution to (1.5.1)-(1.5.2) with an initial
condition u0(x) that satisfies (1.5.10). Consider the function v(t, x) = u(t, x) −M1. This
function satisfies

vt = ∆v + c(t, x)v, (1.5.12)

with

c(t, x) =
f(t, x, u(t, x))− f(t, x,M1)

u(t, x)−M1

. (1.5.13)

As the function u(t, x) is bounded, assumptions (1.5.7) and (1.5.6) imply that c(t, x) is also
bounded. Hence, the comparison principle in Theorem 1.3.3 can be applied to (1.5.12). As
v(0, x) ≥ 0 for all x ∈ Rn, it follows that v(t, x) > 0 for all t > 0, so that u(t, x) > M1 for all
x ∈ Rn. The other inequality in (1.5.11) can be proved similarly.

Uniqueness of bounded solutions is proved in an analogous fashion. Assume that u1(x)
and u2(x) are two smooth bounded solutions to the Cauchy problem (1.5.1)-(1.5.2). Then
w = u1 − u2 satisfies

wt = ∆w + c(t, x)w, (1.5.14)

with the initial condition w(0, x) = 0 and a bounded function

c(t, x) =
f(t, x, u1(t, x))− f(t, x, u2(t, x))

u1(t, x)− u2(t, x)
.

The comparison principle then implies that both w(t, x) ≤ 0 and w(t, x) ≥ 0, thus w(t, x) ≡ 0,
proving the uniqueness.

Thus, the main issue in the proof of Theorem 1.5.1 is to prove the existence of a bounded
solution to (1.5.1)-(1.5.2). As the function f(t, x, u) is not necessarily globally Lipschitz, we
are going to use the following trick based on the fact that f satisfies (1.5.7). Consider a

function f̃(t, x, u) such that

f(t, x, u) = f̃(t, x, u) for all x ∈ Rn and M1 ≤ u ≤M2, (1.5.15)

and there exists K > 0 so that

|f̃(t, x, u)| ≤ K for all x ∈ Rn and u ∈ R. (1.5.16)

We may also ensure that f̃(t, x, u) is globally Lipschitz: there exists Cf > 0 so that

|f̃(t, x, u1)− f̃(t, x, u2)| ≤ Cf |u1 − u2|, for all t ≥ 0, x ∈ Rn and all u1, u2 ∈ R, (1.5.17)

as compared to f(t, x, u) that is only locally Lipschitz in u. Note that (1.5.7) holds auto-

matically for f̃(t, x, u) because of (1.5.15). Hence, by what we have just shown, any smooth
bounded solution to the initial value problem

ut = ∆u+ f̃(t, x, u),

u(0, x) = u0(x),
(1.5.18)
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with an initial condition u0(x) that satisfies assumption (1.5.10) will obey (1.5.11):

M1 < u(t, x) < M2 for all t > 0 and x ∈ Rn. (1.5.19)

It follows that f̃(t, x, u(x, t)) ≡ f(t, x, u(x, t)), and thus any bounded solution to (1.5.18) is
a solution to (1.5.1) with the same initial condition. Therefore, it suffices to construct a
bounded solution to (1.5.18).

A typical approach to the existence proofs in nonlinear problems is to use a fixed point
argument. To this end, it is useful, and standard, to rephrase the parabolic initial value
problem (1.5.1)-(1.5.2) as an integral equation, using the Duhamel formula. This is done
as follows. Given a fixed T > 0 and initial condition u0(x), we define an operator T as a
mapping of the space C([0, T ]× Rn) to itself via

[T u](t, x) = et∆u0(x) +

∫ t

0

e(t−s)∆f̃(s, ·, u(s, ·))(x)ds (1.5.20)

= et∆u0(x) +

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))f̃(s, y, u(s, y))dyds,

with the operator et∆ defined in (1.4.12):

et∆η(x) =
1

(4πt)n/2

∫
Rn
e−(x−y)2/(4t)η(y)dy. (1.5.21)

The Duhamel formula for the solution to the Cauchy problem (1.5.18) can be now succinctly
restated as

u(t, x) = [T u](t, x). (1.5.22)

In other words, any smooth bounded solution to the initial value problem is a fixed point of
the operator T .

Exercise 1.5.2 Show that if a function u(t, x) that is continuously differentiable in t and
twice continuously differentiable in x satisfies (1.5.22), then u(t, x) is a solution to the initial
value problem (1.5.18).

Thus, to prove the existence part of Theorem 1.5.1 we need to show that a fixed point of the
operator T exists and is sufficiently regular to differentiate it once in t and twice in x.

Existence of a fixed point: the Picard iteration argument on a short time interval

The first step is to prove the existence of a fixed point of T in C([0, T ] × Rn) for T > 0
sufficiently small. In the second step, we will extend the existence result to all T > 0.

We will use the standard Picard iteration approach: set u(0) = 0 and define

u(n+1)(t, x) = T u(n)(t, x). (1.5.23)

In particular, we have

u(1)(t, x) = et∆u0. (1.5.24)
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As the initial condition u0(x) is continuous and bounded, the function u(1)(t, x) is infinitely
differentiable in t and x. Proposition 1.4.20, combined with a simple induction argument,
shows that u(n)(t, x) are smooth for t > 0 and x ∈ Rn, for all n ≥ 1.

The global Lipschitz property (1.5.17) of f̃(t, x, u) allows us to write

|T u(t, x)− T v(t, x)| ≤
∫ t

0

∫
Rn

e−(x−y)2/(4(t−s))

(4π(t− s))n/2
|f̃(s, y, u(s, y))− f̃(s, y, v(s, y))|dyds

≤ Cf

∫ t

0

∫
Rn

e−(x−y)2/(4(t−s))

(4π(t− s))n/2
|u(s, y)− v(s, y)|dyds

≤ CfT sup
0≤s≤T,y∈Rn

|u(s, y)− v(s, y)|.

(1.5.25)

This shows that if T < C−1
f , then the mapping T is a contraction on C([0, T ]×Rn) and thus

has a unique fixed point in C([0, T ]× Rn). Before we extend this result to all T > 0 we first
show that the fixed point is a smooth function hence a classical solution to (1.5.18) on [0, T ].

The bootstrap argument

Smoothness of the fixed point u(t, x) is proved using what is commonly called a boot-strap
argument. The key observation is the following.

Lemma 1.5.3 Let u(t, x) be a fixed point of the operator T in C([0, T ];Rn), so that it satis-
fies (1.5.22), and is bounded and continuous on [0, T ]× Rn. Then u(t, x) is infinitely differ-
entiable in t and x for all t > 0 and x ∈ Rn.

Proof. Let us write (1.5.22) as

u(t, x) = u(1)(t, x) +D[u](t, x), (1.5.26)

with
u(1)(t, x) = et∆u0, (1.5.27)

and

D[u](t, x) =

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))g(s, y)dyds, (1.5.28)

where
g(t, x) = f̃(t, x, u(t, x)). (1.5.29)

As we have noted, the function u(1)(t, x) is infinitely differentiable for any t > 0 and x ∈ Rn

simply because it is a solution to the heat equation with a bounded and continuous initial
condition u0. Thus, we only need to deal with the Duhamel term D[u](t, x). To treat this
term, we will use Propositions 1.4.7 and 1.4.18. The function g(t, x)) defined in (1.5.29) is
bounded on [0, T ]×Rn because of (1.5.16). Hence, we may apply Proposition 1.4.7 and deduce
that D[u](t, x) is actually Hölder continuous on [0, T ]× Rn, and we have a priori bounds

‖D[u]‖L∞ ≤ C‖g‖L∞ ,
‖∂xkD[u]‖L∞ ≤ C‖g‖L∞

(1.5.30)
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and for any α ∈ (0, 1) there is Cα so that

|D[u](t, x)−D[u](t′, x)| ≤ Cα‖g‖L∞|t− t′|α. (1.5.31)

From this and (1.5.26), we conclude that u itself satisfies the same bounds:

‖u‖L∞ ≤ ‖u0‖L∞ + C‖g‖L∞ ,
‖∂xku‖L∞ ≤ ‖Dxu0‖L∞ + C‖g‖L∞
|u(t, x)− u(t′, x)| ≤ ‖D2

xu0‖L∞ |t− t′|+ Cα‖g‖L∞|t− t′|α.
(1.5.32)

Therefore, u(t, x) is not just continuous and bounded, but also Hölder continuous in t and x,

with explicit bounds above. Then, so is g(t, x) = f̃(t, x, u(t, x)), and then Proposition 1.4.18
tells us that D[u](t, x) is differentiable once in t and twice in x and the derivatives ∂tu and D2

xu
are themselves Hölder continuous. Then, (1.5.26), in turn, implies that u(t, x) is differentiable
in t and twice differentiable in x, with Hölder continuous derivatives, and thus g(t, x) possesses
the same regularity. We may iterate this argument, using Proposition 1.4.18, each time gaining
derivatives in t and x, and conclude that, actually, u(t, x) is infinitely differentiable in t and
x. This is known as a boot-strap argument.

The global in time existence

To show that existence of a solution can be extended to all T > 0, note that, as we have
shown that the fixed point u(t, x) of the mapping T is smooth, we know that u(t, x) is a
classical solution to the initial value problem (1.5.18) on the time interval 0 ≤ t ≤ T , hence
it satisfies

M1 ≤ u(T, x) ≤M2, for all x ∈ Rn. (1.5.33)

Moreover, the existence time T does not depend on u0. Therefore, we can repeat the Picard
iteration argument on the time intervals [T, 2T ], [2T, 3T ], and so on, eventually constructing
a global in time solution to the Cauchy problem. This finishes the proof of Theorem 1.5.1.

Exercise 1.5.4 Assumption (1.5.7) is more stringent than necessary. Show that the claim
of Theorem 1.5.1 holds also if instead of (1.5.7) we assume that there exist M1 and M2 such
that

f(t, x,M1)sgn(M1) ≤ 0 and f(t, x,M2)sgn(M2) ≤ 0 for all t ≥ 0 and x ∈ Rn, (1.5.34)

and the initial condition u0(x) satisfies (1.5.10).

Exercise 1.5.5 As the reader may have noticed, the only place where we have used the
assumption that the initial condition u0(x) is smooth is in estimates (1.5.32). It was used
there to bound the derivatives of the contribution u(1)(t, x) = et∆u0 to u(t, x) in (1.5.26).
However, this term is smooth even if u0(x) is just continuous and not necessarily smooth.
Use this to show that the conclusion of Theorem 1.5.1 holds if we only assume that u0 is
bounded and continuous.
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1.5.2 The regularity of the solutions to a quasi-linear heat equation

One may wonder if the treatment that we have given to the semi-linear heat equation (1.5.1)
is too specialized. To dispel this concern, we show how the above approach can be extended
to equations with a drift and quasi-linear heat equations of the form

ut −∆u = f(t, x,∇u), (1.5.35)

posed for t > 0 and x ∈ Rn. The nonlinearity is now stronger: it depends not on u itself
but on its gradient ∇u. We ask that the nonlinear term f(t, x, p) satisfies the following two
hypotheses: first, there exists C1 > 0 so that

|f(t, x, 0)| ≤ C1 for all t ≥ 0 and x ∈ Rn, (1.5.36)

and, second, f is uniformly Lipschitz in the p-variable: there exists C2 > 0 so that

|f(t, x, p1)− f(t, x, p2)| ≤ C2|p1 − p2|, for all t ≥ 0 and x, p1, p2 ∈ Rn. (1.5.37)

One consequence of (1.5.36) and (1.5.37) is a uniform bound

|f(t, x, p)| ≤ C3(1 + |p|), for all t ≥ 0, x, p ∈ Rn, (1.5.38)

showing that f(t, x, p) grows at most linearly in p. We also require that f(t, x, p) is smooth
in t, x and p, and obeys the estimates

|∂mt f(t, x, p)|+ |Dk
xf(t, x, p)| ≤ Cm,k(1 + |p|), for all t ≥ 0, x, p ∈ Rn, (1.5.39)

for any m ≥ 1 and multi-index k ∈ Zn. This smoothness assumption can be greatly relaxed
but we are not concerned with the optimal results here.

Two standard examples of equations of the form (1.5.35) are parabolic equations with
constant diffusion and nonuniform drifts, such as

ut = ∆u+ bj(t, x)
∂u

∂xj
, (1.5.40)

with a prescribed drift b(t, x) = (b1(t, x), . . . , bn(t, x)), and viscous regularizations of the
Hamilton-Jacobi equations, such as

ut = ∆u+ f(|∇u|). (1.5.41)

We will encounter both of them in the sequel. Our goal is to prove the following.

Theorem 1.5.6 Under the above assumptions, equation (1.5.35), equipped with a bounded
continuous initial condition u0, has a unique smooth solution u(t, x) over (0,+∞)×Rn, which
is bounded with all its derivatives over every set of the form (ε, T )× Rn, with 0 < ε < T .

We will use the ideas displayed in the proof of Theorem 1.5.1. However, a serious additional
difficulty for a quasi-linear equation (1.5.35) compared to a semi-linear equation such as (1.5.1)
is that it involves a nonlinear function of the gradient of the function u, which, a priori, may
not be smooth at all. That is, if u is not smooth, and its gradient is only a distribution,
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giving the meaning to a nonlinear function f(x,∇u) becomes problematic. Note that there
is no problem of that sort with the Laplacian ∆u in (1.5.35), as we may interpret it in the
sense of distributions. In addition, if we try to write down the Duhamel formula for (1.5.35),
an analog to (1.5.20)-(1.5.18), it would take the form

u(t, x) = [T u](t, x), (1.5.42)

with the operator T given now by

[T u](t, x) = et∆u0(x) +

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))f(s, y,∇u(s, y))dyds.

(1.5.43)
This operator can not be considered as a mapping on C([0, T ] × Rn) because of the term
involving ∇u. Hence, the strategy in the proof of Theorem 1.5.1 needs to be modified.

A natural and standard idea is to regularize the nonlinear term, and then pass to the
limit, removing the regularization. We will consider the following nonlocal approximation
to (1.5.35):

uεt −∆uε = f(t, x,∇vε), vε = eε∆uε. (1.5.44)

When ε > 0 is small, one expects the solutions to (1.5.35) and (1.5.44) to be close as

eε∆ψ → ψ, as ε→ 0. (1.5.45)

Exercise 1.5.7 For ψ in which function spaces does the convergence in (1.5.45) hold? For
instance, does it hold in L2 or L∞? How about C1(R)?

A damper on our expectations is that the convergence in (1.5.45) does not automatically
translate into the convergence of the corresponding gradients, unless we already know that ψ
is differentiable. In other words, there is no reason to expect that

∇(eε∆ψ)→ ∇ψ,

simply because the right side may not exist. Unfortunately, a result of this kind is exactly
what we need in order to understand the convergence of the term f(x,∇vε) in (1.5.44).

Nevertheless, a huge advantage of (1.5.44) over (1.5.35) is that the function vε that appears
inside the nonlinearity is smooth if uε is merely continuous, as long as ε > 0. This can be
used to show that the Cauchy problem for (1.5.44) has a unique smooth solution.

Exercise 1.5.8 Show that, for every ε > 0 and every bounded function u(x), we have

‖∇(eε∆u)‖L∞ ≤
C√
ε
‖u‖L∞ . (1.5.46)

Use this fact, and the strategy in the proof of Theorem 1.5.1, to prove that (1.5.44), equipped
with a bounded continuous initial condition u0, has a unique smooth solution uε over a set
of the form (0, Tε] × Rn, with a time Tε > 0 that depends on ε > 0 but not on the initial
condition u0.
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Recommendation. The reader should take this exercise very seriously. You do not need any
tools beyond what has been already done in this chapter, and it presents a good opportunity
to check your understanding so far.

Having constructed solutions to (1.5.44) on a finite time interval [0, Tε], in order to obtain
a global in time solution to the original equation (1.5.35), we need to do two things: (1) extend
the existence of the solutions to the approximate equation (1.5.44) to all t > 0, and (2) pass
to the limit ε → 0 and show that the limit of uε exists (possibly along a sub-sequence) and
satisfies “the true equation” (1.5.35). The latter step will require uniform bounds on ∇uε
that do not depend on ε – something much better than what is required in Exercise 1.5.8.
The last step will be to prove uniqueness of such global in time smooth solution to (1.5.35)
but that is much simpler.

Global in time existence of the approximate solution

To show that the solution to (1.5.44) exists for all t > 0, and not just on the interval [0, Tε],
we use the Duhamel formula

uε(t, x) = et∆u0(x) +

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))f(s, y,∇vε(s, y))dyds. (1.5.47)

Assumption (1.5.38), together with the gradient bound (1.5.46), implies an estimate

|f(t, x,∇vε(t, x))| ≤ C(1 + |∇vε(t, x)|) ≤ C
(

1 +
‖uε(t, ·)‖L∞√

ε

)
, (1.5.48)

that can be used in (1.5.47) to yield a Grownwall inequality

‖uε(t, ·)‖L∞ ≤ ‖u0‖L∞ + Ct+
C√
ε

∫ t

0

‖uε(s, ·)‖L∞ds. (1.5.49)

We used the maximum principle to bound the first term in the right side of (1.5.47), and (1.5.48)
together with the standard change of variables (1.4.28):

z =
x− y

2
√
t− s

, (1.5.50)

to estimate the integral in the right side of (1.5.47).
We set

Zε(t) =

∫ t

0

‖uε(s, ·)‖L∞ds,

and write (1.5.49) as
dZε
dt
≤ ‖u0‖L∞ + Ct+

C√
ε
Zε. (1.5.51)

Multiplying (1.5.51) by exp(−Ct/
√
ε) and integrating, keeping in mind that Zε(0) = 0, gives

Zε(t) ≤
√
ε

C
eCt/

√
ε
(
‖u0‖L∞ + Ct

)
. (1.5.52)
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Using this bound in (1.5.49) gives the estimate

‖uε(t, ·)‖L∞ ≤
(
‖u0‖L∞ + Ct

)(
1 + eCt/

√
ε
)
. (1.5.53)

Therefore, the L∞-norm of the solution can grow by at most a fixed factor over the time
interval [0, Tε]. This estimate, together with the result of Exercise 1.5.8 allows us to restart
the Cauchy problem on the time interval [Tε, 2Tε], and then on [2Tε, 3Tε], and so on, showing
that the regularized problem (1.5.44) admits a global in time solution.

Passing to the limit ε ↓ 0

A much more serious challenge than proving the global in time existence of uε is to send ε ↓ 0,
and recover a smooth solution of the original equation (1.5.35) in the limit. Note that the
upper bound (1.5.53) deteriorates very badly as ε ↓ 0. Hence, we need to come up with much
betters bounds than that in order to pass to the limit ε ↓ 0. To do this, we will obtain the
Hölder estimates for uε and its derivatives up to the second order in space and the first order
in time, that will be independent of ε. The Ascoli-Arzela theorem will then provide us with
the compactness of the family uε, and allow us to pass to the limit along a subsequence and
obtain a solution to (1.5.35).

Exercise 1.5.9 Assume that there exists α ∈ (0, 1) such that, for all δ > 0 and T > δ,
there is Cδ(T ) > 0, that is independent of ε ∈ (0, 1), for which we have the following Hölder
regularity estimates:∣∣∣ ∂
∂t

(
uε(t, x)−uε(t′, x′)

)∣∣∣+∣∣∣D2
x

(
uε(t, x)−uε(t′, x′)

)∣∣∣ ≤ Cδ(T )
(
|t−t′|α/2 + |x−x′|α

)
, (1.5.54)

for all t, t′ ∈ [δ, T ] and x, x′ ∈ Rn, together with a uniform bound

|uε(t, x)| ≤ C(T ), for all 0 ≤ t ≤ T and all x ∈ Rn. (1.5.55)

Write down a complete proof that then there exists a subsequence uεk(t, x) that converges
to a limit u(t, x) as k → +∞, and, noreover, that ∇vε → ∇u. In which space does the
convergence take place? Show that the limit u(t, x) is twice continuously differentiable in
space, and once continuously differentiable in time, and is a solution to (1.5.35). For now, we
leave open the question of why the limit satisfies the initial conditions as well.

This exercise gives us the road map to the construction of a solution to (1.5.35): we
“only” need to establish the Hölder estimates (1.5.54) for the solutions to the approximate
equation (1.5.44). We will use the following lemma, that is a slight generalization of the
Gronwall lemma, and which is very useful in estimating the derivatives for the solutions of
the parabolic equations.

Lemma 1.5.10 Let ϕ(t) be a nonnegative bounded function that satisfies, for all 0 ≤ t ≤ T :

ϕ(t) ≤ a√
t

+ b

∫ t

0

ϕ(s)√
t− s

ds. (1.5.56)

Then, for all T > 0, there is C(T, b) > 0 that depends on T and b but not on ‖ϕ‖L∞, such
that

ϕ(t) ≤ C(T, b)a√
t

, for all 0 < t ≤ T . (1.5.57)
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Proof. First, note that we can write ϕ(t) = aψ(t), leading to

ψ(t) ≤ 1√
t

+ b

∫ t

0

ψ(s)√
t− s

ds. (1.5.58)

Then, iterating (1.5.58) we obtain

ψ(t) ≤
n∑
k=0

In(t) +Rn+1(t), (1.5.59)

for any n ≥ 0, with

In+1(t) = b

∫ t

0

In(s)√
t− s

ds, I0(t) =
1√
t
, (1.5.60)

and

Rn+1(t) = b

∫ t

0

Rn(s)√
t− s

, R0(t) = ψ(t). (1.5.61)

We claim that there exist a constant c > 0, and p > 1 so that

In(t) ≤ 1√
t

(ct)n/2

(n!)1/p
. (1.5.62)

Indeed, this bound holds for n = 0, and if it holds for In(t), then we have

In+1(t) = b

∫ t

0

In(s)√
t− s

ds ≤ bcn/2

(n!)1/p

∫ t

0

s(n−1)/2ds√
t− s

=
bcn/2t(n+1)/2

√
t(n!)1/p

∫ 1

0

τ (n−1)/2dτ√
1− τ

≤ bcn/2t(n+1)/2

(n!)1/p
√
t

(∫ 1

0

τ 3(n−1)/2dτ
)1/3(∫ 1

0

dτ

(1− τ)3/4

)2/3

=
bcn/2t(n+1)/2

√
t(n!)1/p

42/3

(3n/2− 1/2)1/3
≤ bcn/2t(n+1)/2

√
t(n!)1/p

4

(n+ 1)1/3
. (1.5.63)

We used above the Hölder inequality with exponents 3 and 3/2. Thus, the bound (1.5.62)
holds with p = 3 and c = 16b2.

As we assume that ϕ(t) is bounded, so is R0(t) = ψ(t). This leads to a better bound
for Rn(t) than for In(t): we claim that there exist a constant c > 0, and p > 1 so that

Rn(t) ≤ (ct)n/2

(n!)1/p
‖ψ‖L∞ . (1.5.64)

The computation is very similar to (1.5.63): we know that (1.5.64) holds for n = 0, and if it
holds for some n, then we have

Rn+1(t) = b

∫ t

0

Rn(s)√
t− s

ds ≤ bcn/2

(n!)1/p

∫ t

0

sn/2ds√
t− s

=
bcn/2t(n+1)/2

(n!)1/p

∫ 1

0

τ (n−1)/2dτ√
1− τ

≤ bcn/2t(n+1)/2

(n!)1/p

(∫ 1

0

τ 3(n−1)/2dτ
)1/3(∫ 1

0

dτ

(1− τ)3/4

)2/3

=
bcn/2t(n+1)/2

(n!)1/p

42/3

(3n/2− 1/2)1/3
≤ bcn/2t(n+1)/2

(n!)1/p

4

(n+ 1)1/3
. (1.5.65)
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Once again, we can take p = 3 and c = 16b2. We conclude that

Rn(t)→ 0 as n→ +∞, uniformly on [0, T ]. (1.5.66)

Going back to (1.5.59), we see that

ϕ(t) ≤ a√
t

+ a
∞∑
n=1

In(t). (1.5.67)

Now, the desired estimate (1.5.57) follows from (1.5.67) and (1.5.62). �
With the claim of Lemma 1.5.10 in hand, let us go back to the Duhamel formula (1.5.47)

uε(t, x) = et∆u0(x) +

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))f(s, y,∇vε(s, y))dyds. (1.5.68)

We first get a Hölder bound on ∇uε. The maximum principle implies that

‖et∆u0‖L∞ ≤ ‖u0‖L∞ , (1.5.69)

and also that the gradient
∇vε = eε∆∇uε,

satisfies the bound
‖∇vε(t, ·)‖L∞ ≤ ‖∇uε(t, ·)‖L∞ . (1.5.70)

We use these estimates, together with assumption (1.5.38) on the function f(t, x, p), and the
change of variables (1.5.50), in the Duhamel formula (1.5.68), leading to

‖uε(t, ·)‖L∞ ≤ ‖u0‖L∞ + Ct+ C

∫ t

0

‖∇uε(s, ·)‖L∞ds. (1.5.71)

The next step is to take the gradient of the Duhamel formula:

∇uε(t, x) = ∇
(
et∆u0(x)

)
+∇

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))f(s, y,∇vε(s, y))dyds

= ∇
(
et∆u0(x)

)
+

∫ t

0

∇
[
e(t−s)∆f(s, ·,∇vε(s, ·))

]
(x)ds.

(1.5.72)
The first term in the right side is estimated as in (1.5.46):

‖∇(et∆u0)‖L∞ ≤
C√
t
‖u0‖L∞ . (1.5.73)

To bound the gradient of the integral term in (1.5.72), we note that (1.5.73), together with
assumption (1.5.38) give

‖∇e(t−s)∆f(s, ·,∇vε(s, ·))‖L∞ ≤
C√
t− s

‖f(s, ·,∇vε(s, ·)‖L∞ ≤
C√
t− s

(1 + ‖∇vε(s, ·)‖L∞).

(1.5.74)
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Using (1.5.70) once again and putting together (1.5.72), (1.5.73) and (1.5.74), leads to

‖∇uε(t, ·)‖L∞ ≤
C√
t
‖u0‖L∞ + C

√
t+ C

∫ t

0

‖∇uε(s, .)‖L∞√
t− s

ds. (1.5.75)

Writing
C√
t
‖u0‖L∞ + C

√
t ≤ C‖u0‖L∞ + CT√

t
, 0 ≤ t ≤ T,

we can put (1.5.75) into the form of (1.5.56). Lemma 1.5.10 implies then that there exists a
constant C(T ) > 0, independent of ε, such that

‖∇uε(t, ·)‖L∞ ≤
C(T )√

t
, 0 < t ≤ T. (1.5.76)

This bound, which is uniform in ε ∈ (0, 1), is absolutely crucial and allows us to proceed
relatively effortlessly. Note that even though the right side of (1.5.76) blows up as t ↓ 0, we can
not expect any better bound than (1.5.76) as we only assume that the initial condition u0(x)
is continuous and not necessarily differentiable.

The first simple observation is that using the estimate (1.5.76) in (1.5.71) gives a uniform
bound on uε itself:

‖uε(t, ·)‖L∞ ≤ C(T ), 0 < t ≤ T. (1.5.77)

This is the uniform bound (1.5.55) in Exercise 1.5.9. In other words, for t ∈ (δ,∞) for any
δ > 0, the family uε(t, ·) is uniformly bounded in the Sobolev space W 1,∞(Rn) – the space of
L∞ functions with gradients (in the sense of distributions) that are also L∞ functions:

‖uε(t, ·)‖W 1,∞ ≤ C(T )√
t
, 0 < t ≤ T. (1.5.78)

The constant C(T ) depends only on T , the constant C3 in (1.5.38) and ‖u0‖L∞ .
The uniform bound on the gradient in (1.5.76) seems a far cry from what we need in

Exercise 1.5.9 – there, we require a Hölder estimate on the second derivatives in x, and so
far we only have a uniform bound on the first derivative. We do not even know yet that the
first derivatives are Hölder continuous. Surprisingly, the end of the proof is actually not far
off. Take some 1 ≤ i ≤ n, and set

zεi (t, x) =
∂uε(t, x)

∂xi
.

Note that such differentiation is perfectly legal since the functions uε are smooth. The equation
for zεi is (using, as usual, the summation convention for repeated indices)

∂tz
ε
i −∆zεi = ∂xif(t, x,∇vε) + ∂pjf(t, x,∇vε)∂xjqεi , qεi = eε∆zεi . (1.5.79)

We look at (1.5.79) as an equation for zεi , with a given function ∇vε(t, x) that satisfies the
already proved uniform bound

‖∇vε(t, ·)‖L∞ ≤
C(T )√

t
, 0 < t ≤ T, (1.5.80)
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that follows immediately from (1.5.76). Thus, (1.5.79) is of the form

∂tz
ε
i −∆zεi = G(t, x,∇qεi ), qεi = eε∆zεi , (1.5.81)

with
G(t, x, p) = ∂xif(t, x,∇vε(t, x)) + ∂pjf(t, x,∇vε(t, x))pj. (1.5.82)

The function G(t, x, p) satisfies the assumptions on the nonlinearity f(t, x, p) stated at the
beginning of this section – it is simply a linear function in the variable p, and the gradient
bound (1.5.80), together with the smoothness assumptions on f(t, x, p) in (1.5.39), and the
Lipschitz estimate (1.5.37), implies that

|G(t, x, p)| ≤ C(T )√
t

(1 + |p|). (1.5.83)

Hence, on any time interval [δ, T ] with δ > 0, the function zεi satisfies an equation of the type
we have just analyzed for uε, and our previous analysis shows that

‖∇zεi (t, ·)‖L∞ ≤
C(T, δ)√
t− δ

, δ < t ≤ T. (1.5.84)

The constant C(T, δ) depends on δ > 0 because it depends on ‖zεi (δ, ·)‖L∞ and because (1.5.83)
produces an upper bound on G(t, x, p) for t > δ that depends on δ > 0. Rephrasing (1.5.84),
we have the bound

‖D2uε(t, ·)‖L∞ ≤
C(T, δ)√
t− δ

, δ < t ≤ T, (1.5.85)

with a constant C(T, δ) that depends on δ > 0, T > 0 and ‖u0‖L∞ .
This is almost what we need in (1.5.54) – we also need to show that D2uε are Hölder

continuous, and deal with the time derivative and Hölder continuity in t. With the information
we have already obtained, we know that the right side of (1.5.81) is a uniformly bounded
function, on any time interval [δ, T ], with δ > 0. Proposition 1.4.7 implies then immediately
that ∇zi(t, x) is Hölder continuous in x and zi(t, x) itself is Hölder continuous in t on the time
interval [2δ, T ], with bounds that do not depend on ε > 0. In addition, the uniform bound
on ‖D2uε‖L∞ and equation (1.5.44) itself imply a uniform bound on the time derivative:

‖∂tuε(t, ·)‖L∞ ≤
C(T, δ)√
t− δ

, δ < t ≤ T. (1.5.86)

To get a Hödler bound on the time derivative

ζε(t, x) =
∂uε(t, x)

∂t
, (1.5.87)

we differentiate (1.5.44) in time to get the following equation

∂tζ
ε −∆ζε = ∂tf(t, x,∇vε) + ∂pjf(t, x,∇vε)∂xjηε, ηε = eε∆ζε. (1.5.88)

This equation has the same form as equation (1.5.81) for zεi (t, x). In addition, (1.5.86) gives
an a priori bound for ζε(δ, ·). Hence, arguing as above gives an analog of (1.5.84):

‖∇ζε(t, ·)‖L∞ ≤
C(T, δ)√
t− δ

, δ < t ≤ T. (1.5.89)
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This allows us to bound ∇ηε, so that we can view (1.5.88) as an equation of the form

∂tζ
ε −∆ζε = F ε(t, x), (1.5.90)

with a function F (t, x) that satisfies a uniform bound

‖F ε(t, ·)‖L∞ ≤
C(T, δ)√
t− δ

, δ < t ≤ T. (1.5.91)

As we know that ζε(t, x) is uniformly bounded by (1.5.86), Proposition 1.4.7 can be used
again, this time to deduce that ζε(t, x) is Hölder continuous in t on any time interval [2δ, T ],
with a bound that does not depend on ε > 0. Thus, (1.5.54) is finally proved.

Now, given any δ > 0, Exercise 1.5.9 allows us to find a sequence εk → 0 so that uεk

converges to a limit u(t, x) locally uniformly, and ∇uεk converge to ∇u(t, x) on any time
interval [δ, T ]. A standard diagonal argument allows us to pass to the limit on (0, T ). The
limit is also twice continuously differentiable in x and once continuously differentiable in t,
and these derivatives themselves are Hölder continuous. Passing to the limit in (1.5.44)

uεt −∆uε = f(t, x,∇vε), vε = eε∆uε, (1.5.92)

leads to
ut −∆u = f(t, x,∇u), (1.5.93)

as desired. In order to prove that u(t, x) satisfies the initial condition, we go back to the
Duhamel formula (1.5.47) to obtain, with the help of (1.5.80):

|uε(t, x)− et∆u0(x)| ≤
∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))|f(s, y,∇vε(s, y))|dyds

≤ C(T )

∫ t

0

∫
Rn

1

(4π(t− s))n/2
e−(x−y)2/(4(t−s))dyds√

s
≤ C(T )

√
t.

(1.5.94)

Passing to the limit εk → 0 implies that u(0, x) = u0(x), so that the initial condition is
satisfied.

Exercise 1.5.11 Differentiate the equation for u and iterate the above argument, showing
that the solution is actually infinitely differentiable.

All that is left in the proof of Theorem 1.5.6 is to prove the uniqueness of a smooth
solution. We will invoke the maximum principle again. Recall that we are looking for smooth
solutions, so the difference w = u1 − u2 between any two solutions u1 and u2 simply satisfies
an equation with a drift:

wt −∆w = b(t, x) · ∇w, (1.5.95)

with a smooth drift b(t, x) such that

f(x,∇u1(t, x))− f(x,∇u2(t, x)) = b(t, x) · [∇u1(t, x)−∇u2(t, x)].

As w(0, x) ≡ 0, the comparison principle of Theorem 1.3.3 implies that w(t, x) ≡ 0 and
u1 ≡ u2. This completes the proof of Theorem 1.5.6. �

Exercise 1.5.12 Prove that, if u0 is smooth, then smoothness holds up to t = 0. Prove that
equation (1.5.35) holds up to t = 0, that is:

ut(0, x) = ∆u0(x) + f(x,∇u0(x)).
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1.5.3 Applications to linear equations with a drift

Let us now discuss how the above results can be made more quantitative for linear equations
of the form

ut = ∆u+ bj(t, x)
∂u

∂xj
+ c(t, x)u, t > 0, x ∈ Rn, (1.5.96)

with smooth coefficients bj(t, x) and c(t, x). We recall, once again, that the repeated indices
are summed. When c(t, x) = 0, this equation has the form of the non-linear equation (1.5.35)
considered in the previous section. In particular, Theorem 1.5.6 implies immediately that
given any initial condition u0(x) that is a bounded continuous function, the equation (1.5.96)
has a unique solution u(t, x) that is infinitely differentiable for all t > 0 and x ∈ Rn such
that u(0, x) = u0(x). The same result holds, with essentially an identical proof when c(t, x)
is smooth.

Exercise 1.5.13 Extend the result of Theorem 1.5.6 to equations of the form (1.5.96) with
smooth coefficients bj(t, x) and c(t, x). with smooth coefficients bj(t, x) and c(t, x).

A more important claim is that the quantitative regularity results formulated in Propo-
sition 1.4.3 for the linear heat equation in the whole space also hold essentially verbatim
for (1.5.96).

1.6 A survival kit in the jungle of regularity

In our noble endeavor to carry out out as explicit computations as possible, we have not
touched the question of regularity of solutions to inhomogeneous equations where the diffu-
sivity can be not constant. An inhomogeneous drift has been treated in Section 1.5.2, We
address here the following question: given a linear inhomogeneous equation of the form

ut − aij(t, x)
∂2u

∂xi∂xj
+ bj(t, x)

∂u

∂xj
+ c(t, x) = f(t, x), (1.6.1)

the coefficients aij, bj c and the right side f having a certain given degree of smoothness,
what is the best regularity that one may expect from u? The question is a little different
from what we did for the nonlinear equations, where one would first prove a certain, possibly
small, amount of regularity, in the hope that this would be sufficient for a bootstrap argument
leading to a much better regularity than in one iteration step. The answer to the question of
maximal regularity is, in a nutshell: if the coefficients have a little bit of continuity, such as
the Hölder continuity, then the derivatives ut and D2u have the same regularity as f . This,
however, is true up to some painful exceptions: continuity for f will not entail, in general,
the continuity of ut and D2u. This is exactly what we have seen in Section 1.4 for the forced
heat equation, so this should not come as a surprise to the reader.

The question of the maximal regularity for linear parabolic equations has a certain degree
of maturity, an interested reader should consult [?] to admire the breadth, beauty and tech-
nical complexity of the available results. Our goal here is much more modest: we will explain
why the Hölder continuity of f will entail the Hölder continuity of ut and D2u – the result
we have already seen for the heat equation using the explicit computations with the Duhamel
term.
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When aij(t, x) = δij (the Kronecker symbol), the second order term in (1.6.1) is the
Laplacian, and our work was already almost done in Theorem 1.5.6 even though we have not
formulated the precise Hölder estimates on the solution in the case when equation (1.5.35)
happens to be linear. Nevertheless, the reader should be able to extract them fron the proof
of that theorem and discover a version of Proposition 1.4.20 for an equation of the form

ut −∆u+ bj(t, x)
∂u

∂xj
+ c(t, x)u = f(t, x), (1.6.2)

with smooth coefficients bj(t, x), j = 1, . . . , n and c(t, x), and f(t, x) ∈ Cα/2
t Cα

x . We will try
to convince the reader, without giving the full details of all the proofs, that this carries over to
variable diffusion coefficients, and, importantly, to problems with boundary conditions. Our
main message here is that all the ideas necessary for the various proofs have already been
displayed, and that ”only” technical complexity and dexterity are involved. Our discussion
follows Chapter 4 of [?], which presents various results with much more details. Let us
emphasize again that in this section, we will only give a sketch of the proofs, and sometimes
we will not state the results in a formal way.

When the diffusion coefficients are not continuous, but merely bounded, the methods
described in this chapter break down. Chapter ??, based on the Nash inequality, explains to
some extent how to deal with such problems by a very different approach.

The Cauchy problem for the inhomogeneous coefficients

We have all the ideas to understand the first big piece of this section, the Cauchy problem
for the parabolic equations with variable coefficients in the whole space, without any forcing:

ut − aij(t, x)
∂2u

∂xi∂xj
+ bj(t, x)

∂u

∂xj
+ c(t, x)u = 0, t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn. (1.6.3)

We make the following assumptions on the coefficients: first, they are sufficiently regular – the
functions (aij(t, x))1≤i,j≤N , (bj(t, x))1≤j≤N and c(t, x), all α-Hölder continuous over [0, T ]×Rn.
Second, we make the ellipticity assumption, generalizing (1.4.82): there exist λ > 0 and Λ > 0
so that for any vector ξ ∈ Rn and any x ∈ Rn we have

λ|ξ|2 ≤ aij(t, x)ξiξj ≤ Λ|ξ|2. (1.6.4)

We assume that the initial condition u0(x) is a continuous function – this assumption can be
very much weakened but we do not focus on it right now.

Theorem 1.6.1 The Cauchy problem (1.6.3) has a unique solution u(t, x), whose Hölder
norm on the sets of the form [ε, T ]× Rn is controlled by the L∞ norm of u0.

The statement of this theorem is deliberately vague – the correct statement should become
clear to the reader after we outline the ideas of the proof.

Exercise 1.6.2 Show that the uniqueness of the solution is an immediate consequence of the
maximum principle.
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Thus, the main issue is the construction of a solution with the desired regularity. The idea
is to construct the fundamental solution of (1.6.3), that is, the solution E(t, s, x, y) of (1.6.3)
on the time interval s ≤ t ≤ T , instead of 0 ≤ t ≤ T :

∂tE − aij(t, x)
∂E

∂xi
xj + bj(t, x)

∂E

∂xj
+ c(t, x)E = 0, t > s, x ∈ Rn, (1.6.5)

with the initial condition

E(t = s, s, x, y) = δ(x− y), (1.6.6)

the Dirac mass at x = y. The solution of (1.6.3) can then be written as

u(t, x) =

∫
Rn
E(t, 0, x, y)u0(y)dy. (1.6.7)

If can show that E(t, s, x, y) is smooth enough (at least away from t = s), u(t, x) will satisfy the
desired estimates as well – they can be obtained by differentiating or taking partial differences
in (1.6.7). Note that regularity of E for t > s is a very strong property: the initial condition
in (1.6.6) at t = s is a measure – and we need to show that for all t > s the solution is actually
a smooth function. On the other hand, this is exactly what happens for the heat equation

ut = ∆u,

where the fundamental solution is

E(t, s, x, y) =
1

(4π(t− s)n/2
e−(x−y)2/(4(t−s)),

and is smooth for all t > s.

Exercise 1.6.3 Go back to the equation

ut − uxx + uy = 0.

considered in Exercise 1.4.22. Show that its fundamental solution is not a smooth function
in the y-variable. Thus, the ellipticity condition is important for this property.

The understanding of the regularity of the solutions of the Cauchy problem is also a key
to the inhomogeneous problem because of the Duhamel principle.

Exercise 1.6.4 Let f(t, x) be a Hölder-continuous function over [0, T ]×Rn. Use the Duhamel
principle to write down the solution of

ut − aij(t, x)
∂2u

∂xi∂xj
u+ bj(t, x)

∂u

∂xj
+ c(t, x)u = f(t, x), t > 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn, (1.6.8)

in terms of E(t, s, x, y).
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Thus, everything boils down to constructing the fundamental solution E(t, s, x, y), and
a way to do it is via the parametrix method. Let us set bj = c = 0 – this does not affect
the essence of the arguments but simplifies the notation. The philosophy is that the possible
singularities of E(t, s, x, y) are localized at t = s snd x = y (as for the heat equation).
Therefore, in order to capture the singularities of E(t, s, x, y) we may try to simply freeze the
coefficients in the equation at t = s and x = y, and compare E(t, s, x, y) to the fundamental
solution E0(s, t, x, y) of the resulting equation:

∂tE0 − aij(s, y)
∂2E0

∂xi∂xj
= 0, t > s, x ∈ Rn,

E0(t = s, x) = δ(x− y), x ∈ Rn. (1.6.9)

There is no reason to expect the two fundamental solutions to be close – they satisfy different
equations. Rather, the expectation is that that E will be a smooth perturbation of E0 – and,
since E0 solves an equation with constant coefficients (remember that s and y are fixed here),
we may compute it exactly.

To this end, let us write the equation for E(t, s, x, y) as

∂tE − aij(s, y)
∂2E

∂xi∂xj
= F (t, x), t > s, x ∈ Rn,

E(t = s, x) = δ(x− y), x ∈ Rn, (1.6.10)

with the right side

F (t, x, y) = (aij(t, x)− aij(s, y))
∂2E

∂xi∂xj
. (1.6.11)

The difference
R0 = E − E0

satisfies

∂tR0 − aij(s, y)
∂2R0

∂xi∂xj
= (aij(t, x)− aij(s, y))

∂2E0

∂xi∂xj
+ F0(t, x), t > s, (1.6.12)

with the initial condition R0(t = s, x) = 0, and

F0(t, x) = (aij(t, x)− aij(s, y))
∂2R0

∂xi∂xj
. (1.6.13)

Let us further decompose
R0 = E1 +R1.

Here, E1 is the solution of

∂tE1 − aij(s, y)
∂2E1

∂xi∂xj
= (aij(t, x)− aij(s, y))

∂2E0

∂xi∂xj
, t > s, (1.6.14)

with the initial condition E1(t = s, x) = 0. The remainder R1 solves

∂tR1 − aij(s, y)
∂2R1

∂xi∂xj
= (aij(t, x)− aij(s, y))

∂2E1

∂xi∂xj
+ F1(t, x), t > s, (1.6.15)
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with R1(t = s, x) = 0, and

F1(t, x) = (aij(t, x)− aij(s, y))
∂2R1

∂xi∂xj
. (1.6.16)

Equation (1.6.14) for E1 is a forced parabolic equation with constant coefficients – as
we have seen, its solutions behave exactly like those of the standard heat equation with
a forcing, except for rotations and dilations. We may assume without loss of generality
that aij(s, y) = δij, so that the reference fundamental solution is

E0(t, s, x, y) =
1

(4π(t− s))n/2
e−(x−y)2/(4(t−s)), (1.6.17)

and (1.6.14) is simply a forced heat equation:

∂tE1 −∆E1 = [aij(t, x)− δij]
∂2E0(t, s, x, y)

∂xi∂xj
, t > s, x ∈ Rn. (1.6.18)

The functions aij(t, x) Hölder continuous, with aij(s, y) = δij. The regularity of E1 can be
approached by the tools of the previous sections – after all, (1.6.14) is just another forced
heat equation! The next exercise may be useful for understanding what is going on.

Exercise 1.6.5 Consider, instead of (1.6.14) the solution of

∂tz −∆z =
∂2E0(t, s, x, y)

∂xi∂xj
, t > s, x ∈ Rn, (1.6.19)

with z(t = s, x) = 0. How does its regularity compare to that of E0? Now, what can you say
about the regularity of the solution to (1.6.18), how does the factor [aij(t, x) − δij] help to
make E1 more regular than z? In which sense is E1 more regular than E0?

With this understanding in hand, one may consider the iterative process: write

R1 = E2 +R2,

with E2 the solution of

∂tE2 − aij(s, y)
∂2E2

∂xi∂xj
= (aij(t, x)− aij(s, y))

∂2E1

∂xi∂xj
, t > s, (1.6.20)

with E2(t = s, x) = 0, and R2 the solution of

∂tR2 − aij(s, y)
∂2R2

∂xi∂xj
= (aij(t, x)− aij(s, y))

∂2E2

∂xi∂xj
+ F2(t, x), t > s, (1.6.21)

with R2(t = s, x) = 0, and

F2(t, x) = (aij(t, x)− aij(s, y))
∂2R2

∂xi∂xj
. (1.6.22)
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Continuing this process, we have a representation for E(t, s, x, y) as

E = E0 + E1 + · · ·+ En +Rn, (1.6.23)

with each next term Ej more regular than E0, . . . , Ej−1. Regularity of all Ej can be inferred
as in Exercise 1.6.5. One needs, of course, also to estimate the remainder Rn to obtain a ”true
theorem” but we leave this out of this chapter, to keep the presentation short. An interested
reader should consult the aforementioned references for full details. We do, however, offer the
reader another (non trivial) exercise.

Exercise 1.6.6 Prove that E(s, t, x, y) obeys Gaussian estimates of the form:

m
e−|x−y|

2/Dt

(t− s)n/2
≤ E(s, t, x, y) ≤M

e−|x−y|
2/dt

(t− s)n/2
,

for all 0 < s < t, T and x, y ∈ Rn. The constants m and M , unfortunately, depend very much
on T ; however the constants d and D do not.

Interior regularity

So far, we have considered parabolic problems in the whole space Rn, without any boundaries.
One of the miracles of the second order diffusion equations is that the regularity properties
are local. That is, the regularity of the solutions in a given region only depends on how regular
the coefficients are in a slightly larger region. Consider, again, the inhomogeneous parabolic
equation

ut − aij(t, x)
∂2u

∂xi∂xj
+ bj(t, x)

∂u

∂xj
+ c(t, x)u = f(t, x), t > 0, (1.6.24)

and assume that the coefficients aij(t, x), bj(t, x) and c(t, x), and forcing f(t, x), are α-Hölder
in S = [0, T ]×BR(x0). It turns out that the derivatives D2u(t, x) and ∂tu(t, x) are α-Hölder
in a smaller set of the form S = [ε, T ] × B(1−ε)R(x0), for any ε > 0. The most important
point is that the Hölder norm of u in S is controlled only by ε, R, and the Hölder norms of
the coefficients and the L∞ bound of u, both inside the larger set S. Note that the Hölder
estimates on u in terms of the L∞-norm of u over S do not hold in the original set S, we need
a small margin, going down to the smaller set Sε. This is very similar to what happens for
the heat equation: the bounded solution to

ut = ∆u, t > 0, x ∈ Rn, (1.6.25)

with an initial condition u(0, x) = ∇u satisfies a bound

‖∇u(t, ·)‖L∞ ≤
C√
t
‖u0‖L∞ , (1.6.26)

that gives information only for t > 0 – this is exactly the margin we have discussed above.
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Exercise 1.6.7 Prove this fact. One standard way to do it is to pick a nonnegative and
smooth function γ(x), equal to 1 in BR/2(x0) and 0 outside of BR(x), and to write down
an equation for v(t, x) = γ(x)u(t, x). Note that this equation is now posed on (0, T ] × Rn,
and that the whole spacee theory can be applied. The computations should be, at times
cumbersome. If in doubt, consult [?]. Looking ahead, we will use this strategy in the proof
of Proposition 1.7.10 in Section 1.7 below, so the reader may find it helpful to read this proof
now.

Regularity up to the boundary

Specifying the Dirichlet boundary conditions allows to get rid of this small margin, and this
is the last issue that we are going to discuss in this section. Let us consider equation (1.6.24),
posed this time in (0, T ] × Ω, where Ω is bounded smooth open subset of Rn. As a side
remark, it is not crucial that Ω be bounded. However, if Ω is unbounded, we should ask
its boundary to oscillate not too much at infinity. Let us supplement (1.6.24) by an initial
condition u(0, x) = u0(x) in Ω, with a continuous function u0, and the Dirichlet boundary
condition

u(t, x) = 0 for 0 ≤ t ≤ T and x ∈ ∂Ω. (1.6.27)

Theorem 1.6.8 Assume aij(t, x), bj(t, x), c(t, x), and f(t, x) are α-Hölder in (0, T ] × Ω –
note that, here, we do need the closure of Ω. The above initial-boundary value problem has
a unique solution u(t, x) such that D2u(t, x) and ∂tu(t, x) are α-Hölder in [ε, T ] × Ω̄, with
their Hölder norms controlled by the L∞ bound of u0, and the Hölder norms of the coefficients
and f .

The way to prove this result parallels the way we followed to establish Theorem 1.6.1. First,
we write down an explicit solution on a model situation. Then, we prove the regularity in
the presence of a Hölder forcing in the model problem. Once this is done, we turn to general
constant coefficients. Then, we do the parametrix method on the model situation. Finally,
we localize the problem and reduce it to the model situation.

Let us be more explicit. The model situation is the heat equation in a half space

Ωn = Rn
+ := {x = (x1, . . . xn) ∈ Rn : xn > 0}.

Setting x′ = (x1, . . . xn−1), we easily obtain the solution of the initial boundary value problem

ut −∆u = 0, t > 0, x ∈ Ωn, (1.6.28)

u(t, x′, 0) = 0,

u(0, x) = u0(x),

as

u(t, x) =

∫
Rn
E0(t, x, y)u0(y)dy, (1.6.29)

with the fundamental solution

E0(t, x, y) =
e−(x′−y′)2/4t

(4πt)n/2

(
e−(xn−yn)2/4t − e−(xn+yn)2/4t

)
. (1.6.30)
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Let us now generalize step by step: for an equation with a constant drift

ut −∆u+ bj∂xju = 0, t > 0, x ∈ Ωn, (1.6.31)

the change of unknowns u(t, x) = exnbn/2v(t, x) transforms the equation into

vt −∆v + bj∂x′jv −
b2
n

4
v = 0, t > 0, x ∈ Ωn. (1.6.32)

Thus, the fundamental solution, for (1.6.31) is

E(t, x, y) = etb
2
n/4−xbn/2E0(t, x− tB′, y), B′ = (b1, . . . Bn−1, 0). (1.6.33)

For an equation of the form

ut − aij∂xixju = 0, t > 0, x ∈ Ωn, (1.6.34)

with a constant positive-definite diffusivity matrix aij, we use the fact that the function

u(t, x) = v(t,
√
A−1x),

with v(t, x) a solution of the heat equation

vt = ∆v,

solves (1.6.34). For an equation mixing the two sets of coefficients, one only has to compose
the transformations. At that point, one can, with a nontrivial amount of computations, prove
the desired regularity for the solutions of

ut − aij
∂2u

∂xi∂xj
+ bj

∂u

∂xj
+ cu = f(t, x) (1.6.35)

with constant coefficients, and the Dirichlet boundary conditions on ∂Ωn. Then, one can use
the parametrix method to obtain the result for general inhomogeneous coefficients. This is
how one proves Theorem 1.6.8 for Ωn = Rn

+.
How does one pass to a general Ω? Unfortunately, the work is not at all finished yet. One

still has to prove a local version of the already proved theorem in Ωn, in the spirit of the local
regularity in Rn, up to the fact that we must not avoid the boundary. Once this is done,
consider a general Ω. Cover its boundary ∂Ω with balls such that, in each of them, ∂Ω is a
graph in a suitable coordinate system. By using this new coordinate system, one retrieves
an equation of the form (1.6.8), and one has to prove that the diffusion coefficients satisfy a
coercivity inequality. At this point, maximal regularity for the Dirichlet problem is proved.

Of course, all kinds of local versions (that is, versions of Theorem 1.6.8 where the coef-
ficients are α-Höder only in a part of Ω) are available. Also, most of the above material is
valid for the Neumann boundary conditions

∂νu = 0 on ∂Ω,

or Robin boundary conditions

∂νu+ γ(t, x)u = 0 on ∂Ω.

We encourage the reader who might still be interested in the subject to try to produce the
full proofs, with an occasional help from the books we have mentioned.
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The Harnack inequalities

We will only touch here on the Harnack inequalities, a very deep and involved topic of
parabolic equations. In a nutshell, the Harnack inequalities allow to control the infimum
of a positive solution of a parabolic equation by a universal fraction of its maximum, modulo
a time shift. They provide one possible, and very beautiful, path to prove regularity, but we
will ignore this aspect here. They are also mostly responsible for the behaviors that are very
specific to the diffusion equations, as will be seen in the next section.

We are going to prove what is, in a sense, a ”‘poor man’s”’ version. It is not as scale
invariant as one would wish, and uses the regularity theory instead of proving it. It is,
however, suited to what we wish to do, and already gives a good account of what is going on.
Consider our favorite equation

ut −∆u+ bj(t, x)
∂u

∂xj
+ c(t, x)u = 0, (1.6.36)

with smooth coefficients bj and c, posed for t ∈ (0, T ), and x ∈ BR+1(0). We stress that the
variable smooth diffusion coefficients could be put in the picture.

Theorem 1.6.9 Let u(t, x) ≥ 0 be a non-negative bounded solution of (1.6.36) for 0 ≤ t ≤ T
and x ∈ BR+1(0), and assume that for all t ∈ [0, T ]:

sup
|x|≤R+1

u(t, x) ≤ k2, sup
|x|≤R

u(t, x) ≥ k1. (1.6.37)

There is a constant hR > 0, that does not depend on T , but that depends on k1 and k2, such
that, for all t ∈ [1, T ]:

hR ≤ inf
|x|≤R

u(t, x). (1.6.38)

Proof. The proof is by contradiction. Assume that there exists a sequence un of the solutions
of (1.6.36) satisfying (1.6.37), and tn ∈ [1, T ], and xn ∈ BR(0), such that

lim
n→+∞

un(tn, xn) = 0. (1.6.39)

Up to a possible extraction of a subsequence, we may assume that

tn → t∞ ∈ [1, T ] and xn → x∞ ∈ BR(0).

The Hölder estimates on un and its derivatives in Theorem 1.6.8 together with the Ascoli-
Arzela theorem, imply that the sequence un is relatively compact in C2([t∞−1/2]×BR+1/2(0)).
Hence, again, after a possible extraction of a subsequence, we may assume that un converges
to u∞ ∈ C2([t∞ − 1/2, T ] × BR+1/2(0)), together with its first two derivatives in x and
the first derivatives in t. Thus, the limit u∞(t, x) satisfies (1.6.36) for t∞ − 1/2 ≤ t ≤ T ,
and x ∈ BR+1/2(0)), and is non-negative. It also satisfies the bounds in (1.6.37), hence it
is not identically equal to zero. Moreover it satisfies u∞(t∞, x∞) = 0. This contradicts the
strong maximum principle. �
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1.7 The principal eigenvalue for elliptic operators and

the Krein-Rutman theorem

One consequence of the strong maximum principle is the existence of a positive eigenfunc-
tion for an elliptic operator in a bounded domain with the Dirichlet or Neumann boundary
conditions. Such eigenfunction necessarily corresponds to the eigenvalue with the smallest
real part. A slightly different way to put it is that the strong maximum principle makes the
Krein-Rutman Theorem applicable, which in turn, implies the existence of such eigenfunc-
tion. In this section, we will prove this theorem in the context of parabolic operators with
time periodic coefficients. We then deduce, in an easy way, some standard properties of the
principal elliptic eigenvalue.

1.7.1 The periodic principal eigenvalue

The maximum principle for elliptic and parabolic problems has a beautiful connection to
the eigenvalue problems, which also allows to extend it to operators with a zero-order term.
We will first consider the periodic eigenvalue problems, that is, elliptic equations where the
coefficients are 1-periodic in every direction in Rn, and the sought for solutions are all 1-
periodic in Rn. It would, of course, be easy to deduce, by dilating the coordinates, the same
results for coefficients with general periods T1, . . . , Tn in the directions e1, . . . , en. We will
consider operators of the form

Lu(x) = −∆u+ bj(x)
∂u

∂xj
+ c(x)u, (1.7.1)

with bounded, smooth and 1-periodic coefficients bj(x) and c(x). We could also consider more
general operators of the form

Lu(x) = −aij(x)
∂2u

∂xi∂xj
+ bj(x)

∂u

∂xj
+ c(x)u,

with uniformly elliptic (and 1-periodic) , and regular coefficients aij,with the help of the
elliptic regularity theory. This will not, however, be needed for our purposes. In order to avoid
repeating that the coefficients and the solutions are 1-periodic, we will just say that x ∈ Tn,
the n-dimensional unit torus.

The key spectral property of the operator L comes from the comparison principle. To this
end, let us recall the Krein-Rutman theorem. It says that if M is a compact operator in a
strongly ordered Banach space X (that is, there is a solid cone K which serves for defining
an order relation: u ≤ v iff v − u ∈ K), that preserves K: Mu ∈ K for all u ∈ K, and maps
the boundary of K into its interior, then M has an eigenfunction φ that lies in this cone:

Mφ = λφ. (1.7.2)

Moreover, the corresponding eigenvalue λ has the largest real part of all eigenvalues of the
operator M . The classical reference [?] has a nice and clear presentation of this theorem but
one can find it in other textbooks, as well.
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How can we apply this theorem to the elliptic operators? The operator L given by (1.7.1)
is not compact, nor does it preserve any interesting cone. However, let us assume momentarily
that c(x) is continuous and c(x) > 0 for all x ∈ Tn. Then the problem

Lu = f, x ∈ Tn (1.7.3)

has a unique solution, and, in addition, if f(x) ≥ 0 and f 6≡ 0, then u(x) > 0 for all x ∈ Tn.
Indeed, let v(t, x) be the solution of the initial value problem

vt + Lv = 0, t > 0, x ∈ Tn, (1.7.4)

with v(0, x) = f(x). The comparison principle implies a uniform upper bound

|v(t, x)| ≤ e−c̄t‖f‖L∞ , (1.7.5)

with

c̄ = inf
x∈Tn

c(x) > 0. (1.7.6)

This allows us to define

u(x) =

∫ ∞
0

v(t, x)x. (1.7.7)

Exercise 1.7.1 Verify that if c(x) > 0 for all x ∈ Tn, then u(x) given by (1.7.7) is a solution
to (1.7.3). Use the maximum principle to show that (1.7.3) has a unique solution.

This means that we may define the inverse operator M = L−1. This operator preserves
the cone of the positive functions, and maps its boundary (non-negative functions that vanish
somewhere in Ω) into its interior – this is a consequence of the strong maximum principle
that holds if c(x) > 0. In addition, M is a compact operator from C(Tn) to itself. Hence, the
inverse operator satisfies the assumptions of the Krein-Rutman theorem.

Exercise 1.7.2 Compactness of the inverse M follows from the elliptic regularity estimates.
One way to convince yourself of this fact is to consult Evans [?]. Another way is to go back
to Theorem 1.5.6, use it to obtain the Hölder regularity estimates on v(t, x), and translate
them in terms of u(x) to show that, if f is continuous, then ∇u is α-Hölder continuous, for
all α ∈ (0, 1). The Arzela-Ascoli theorem implies then compactness of M . Hint: be careful
about the regularity of v(t, x) as t ↓ 0.

Thus, there exists a positive function f and µ ∈ R so that the function u = µf satis-
fies (1.7.3). Positivity of f implies that the solution of (1.7.3) is also positive, hence µ > 0.
As µ is the eigenvalue of L−1 with the largest real part, λ = µ−1 is the eigenvalue of L with
the smallest real part. In particular, it follows that all eigenvalues λk of the operator L have
a positive real part.

If the assumption c(x) ≥ 0 does not hold, we may take K > ‖c‖L∞ , and consider the
operator

L′u = Lu+Ku.
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The zero-order coefficient of L′ is

c′(x) = c(x) +K ≥ 0.

Hence, we may apply the previous argument to the operator L′ and conclude that L′ has
an eigenvalue µ1 that corresponds to a positive eigenfunction, and has the smallest real part
among all eigenvalues of L′. The same is true for the operator L, with the eigenvalue

λ1 = µ1 −K.

We say that λ1 is the principal periodic eigenvalue of the operator L.

1.7.2 The Krein-Rutman theorem: the periodic parabolic case

As promised, we will prove the Krein-Rutman Theorem in the context of the periodic eigen-
value problems. Our starting point will be a slightly more general problem with time-periodic
coefficients:

ut −∆u+ bj(t, x)
∂u

∂xj
+ c(t, x)u = 0, x ∈ Tn. (1.7.8)

Here, the coefficients bj(t, x) and c(t, x) are smooth, 1-periodic in x and T -periodic in t.
Let u(t, x) be the solution of the Cauchy problem for (1.7.8), with a 1-periodic, continuous
initial condition

u(t, x) = u0(x). (1.7.9)

We define the ”time T” operator ST as

[STu0](x) = u(T, x). (1.7.10)

Exercise 1.7.3 Use the results of Section 1.5 to show that ST is compact operator on C(Tn)
that preserves the cone of positive functions.

We are going to prove the Krein-Rutman Theorem for ST first.

Theorem 1.7.4 The operator ST has an eigenvalue µ̄ > 0 that corresponds to a positive
eigenfunction φ1(x) > 0. The eigenvalue µ̄ is simple: the only solutions of

(ST − µ̄)u = 0, x ∈ Tn

are multiples of φ1. If µ is another (possibly non-real) eigenvalue of ST , then |µ| < µ̄.

Proof. Let us pick any positive function φ0 ∈ C(Tn), set ψ0 = φ0/‖φ0‖L∞ , and consider the
iterative sequence (φn, ψn):

φn+1 = STψn, ψn+1 =
φn+1

‖φn+1‖L∞
.
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Note that, because φ0 is positive, both φn and ψn are positive for all n, by the strong maximum
principle. For every n, let µn be the smallest µ such that

φn+1(x) ≤ µψn(x), for all x ∈ Tn. (1.7.11)

Note that (1.7.11) holds for large µ, because each of the φn is positive, hence the smallest
such µ exists. It is also clear that µn ≥ 0. We claim that the sequence µn is non-increasing.
To see that, we apply the operator ST to both sides of the inequality (1.7.11) with µ = µn,
written as

STψn(x) ≤ µnψn(x), for all x ∈ Tn. (1.7.12)

and use the fact that ST preserves positivity, to get

(ST ◦ ST )ψn(x) ≤ µnSTψn(x), for all x ∈ Tn, (1.7.13)

which is
STφn+1(x) ≤ µnφn+1(x), for all x ∈ Tn. (1.7.14)

Dividing both sides by ‖φn+1‖L∞ . we see that

STψn+1(x) ≤ µnψn+1(x), for all x ∈ Tn, (1.7.15)

hence
φn+2(x) ≤ µnψn+1(x), for all x ∈ Tn. (1.7.16)

It follows that µn+1 ≤ µn.
Thus, µn converges to a limit µ̄.

Exercise 1.7.5 Show that, up to an extraction of a subsequence, the sequence ψn converges
to a limit ψ∞, with ‖ψ∞‖L∞ = 1.

The corresponding subsequence φnk converges to φ∞ = STψ∞, by the continuity of ST . And
we have, by (1.7.11):

STψ∞ ≤ µ̄ψ∞. (1.7.17)

If we have the equality in (1.7.17):

STψ∞(x) = µ̄ψ∞(x) for all x ∈ Tn, (1.7.18)

then ψ∞ is a positive eigenfunction of ST corresponding to the eigenvalue µ̄. If, on the other
hand, we have

STψ∞(x) < µ̄ψ∞(x), on an open set U ⊂ Tn, (1.7.19)

they we may use the fact that ST maps the boundary of the cone of non-negative functions
into its interior. In other words, we use the strong maximum principle here. Applying ST to
both sides of (1.7.17) gives then:

STφ∞ < µ̄φ∞ for all x ∈ Tn. (1.7.20)

This contradicts, for large n, the minimality of µn. Thus, (1.7.19) is impossible, and µ̄ is the
sought for eigenvalue. We set, from now on, φ1 = ψ∞:

STφ1 = µ̄φ1, φ1(x) > 0 for all x ∈ Tn. (1.7.21)
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Exercise 1.7.6 So far, we have shown that µ̄ ≥ 0. Why do we know that, actually, µ̄ > 0?

Let φ be an eigenfunction of ST that is not a multiple of φ1, corresponding to an eigen-
value µ:

STφ = µφ.

Let us first assume that µ is real, and so is the eigenfunction φ. If µ ≥ 0, after multiplying φ
by an appropriate factor, we may assume without loss of generality that φ1(x) ≥ φ(x) for
all x ∈ Tn, φ1 6≡ φ, and there exists x0 ∈ Tn such that φ1(x0) = φ(x0). The strong comparison
principle implies that then

STφ1(x) > STφ(x) for all x ∈ Tn.

It follows, in particular, that
µ̄φ1(x0) > µφ(x0),

hence µ̄ > µ ≥ 0, as φ1(x0) = φ(x0) > 0. This argument also shows that µ̄ is a simple
eigenvalue.

If µ < 0, then we can choose φ (after multiplying it by a, possibly negative, constant) so
that, first,

φ1(x) ≥ φ(x), φ(x) ≥ −φ1(x), for all x ∈ Tn, (1.7.22)

and there exists x0 ∈ Tn such that

φ(x0) = φ1(x0).

Applying ST to the second inequality in (1.7.22) gives, in particular,

µφ(x0) > −µ̄φ1(x0), (1.7.23)

thus µ̄ > −µ. In both cases, we see that |µ| < µ̄.

Exercise 1.7.7 Use a similar consideration for the case when µ is complex. In that case, it
helps to write the corresponding eigenfunction as

φ = u+ iv,

and consider the action of ST on the span of u and v, using the same comparison idea. Show
that |µ| < µ̄. If in doubt, consult [?].

This completes the proof of Theorem 1.7.4. �

1.7.3 Back to the principal periodic elliptic eigenvalue

Consider now again the operator L given by (1.7.1):

Lu(x) = −∆u+ bj(x)
∂u

∂xj
+ c(x)u, (1.7.24)

with bounded, smooth and 1-periodic coefficients bj(x) and c(x). One consequence of Theo-
rem 1.7.4 is the analogous result for the principal periodic eigenvalue for L. We will also refer
to the following as the Krein-Rutman theorem.
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Theorem 1.7.8 The operator L has a unique eigenvalue λ1 associated to a positive func-
tion φ1. Moreover, each eigenvalue of L has a real part strictly larger than λ1.

Proof. The operator L falls, of course, in the realm of Theorem 1.7.4, since its time-
independent coefficients are T -periodic for all T > 0. We are also going to use the formula

Lφ = − lim
t↓0

Stφ− φ
t

, (1.7.25)

for smooth φ(x), with the limit in the sense of uniform convergence. This is nothing but an
expression of the fact that the function u(t, x) = [Stφ](x) is the solution of

ut + Lu = 0, (1.7.26)

with the initial condition u(0, x) = φ(x), and if φ is smooth, then (1.7.26) holds also at t = 0.
Given n ∈ N, let µ̄n be the principal eigenvalue of the operator S1/n, with the principal

eigenfunction φn > 0:
S1/nφn = µ̄nφn,

normalized so that ‖φn‖∞ = 1.

Exercise 1.7.9 Show that
lim
n→∞

µ̄n = 1

directly, without using (1.7.27) below.

As (S1/n)n = S1 for all n, we conclude that φn is a positive eigenfunction of S1 with the
eigenvalue (µ̄n)n. By the uniqueness of the positive eigenfunction, we have

µ̄n = (µ̄1)1/n, φn = φ1. (1.7.27)

Note that, by the parabolic regularity, φ1 is infinitely smooth, simply because it is a multiple
of S1φ1, which is infinitely smooth. Hence, (1.7.25) applies to φ1, and

Lφ1 = − lim
n→+∞

n(S1/n − I)φ1 = − lim
n→+∞

n(µ̄
1/n
1 − 1)φ1 = −(log µ̄1)φ1.

We have thus proved the existence of an eigenvalue λ1 = − log µ̄1 of L that corresponds to a
positive eigenfunction. It is easy to see that if

Lφ = λφ,

then
S1φ = e−λφ.

It follows that L can have only one eigenvalue corresponding to a positive eigenfunction. As
we know that all eigenvalues µ of S1 satisfy |µ| < µ̄1, we conclude that λ1 is the eigenvalue
of L with the smallest real part. �

If L is symmetric – that is, it has the form

Lu = − ∂

∂xi

(
aij(x)

∂u

∂xj

)
+ c(x)u, (1.7.28)
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with aij = aji, then the first eigenvalue is given by the minimization over H1(Tn) of the
Rayleigh quotient

λ1 = inf
u∈H1(Tn)

∫
Tn

(aij(x)(∂iu)(∂ju) + c(x)u2(x))dx∫
Tn
u2(x)dx

. (1.7.29)

The existence and uniqueness (up to a factor) of the minimizer is a classical exercise that
we do not reproduce here. As for the positivity of the minimizer, we notice that, if φ is a
minimizer of the Rayleigh quotient, then |φ1| is also a minimizer, thus the unique minimizer
is a positive function.

We end this section with a proposition that may look slightly academic, because it has
to do with lowering the smoothness of the coefficients - something that we have not been so
much interested in so far. A first reason to state it here is that it involves a nice juggling of
estimates. Another reason is that it will have a true application in the nest chapter. For an
Rn-valued function v(x) we denote the divergence of v(x) by

∇ · v =
n∑
j=1

∂vj
∂xj

.

Proposition 1.7.10 Let b(x) be a smooth vector field over Tn. The linear equation

−∆e+∇ · (eb) = 0, x ∈ Tn, (1.7.30)

has a unique solution e∗1(x) normalized so that

‖e∗1‖L∞ = 1, (1.7.31)

and such that e∗1 > 0 on Tn. Moreover, for all α ∈ (0, 1), the function e∗1 is α-Hölder contin-
uous, with the α-Hölder norm bounded by a universal constant depending only on ‖b‖L∞(Tn).

A key point here is that the Hölder regularity of the solution only depends on the L∞-norm
of b(x) but not on its smoothness or any of its derivatives – this is typical for equations in the
divergence form, and we will see much more of this in Chapter ??. This is very different from
what we have seen so far in this chapter: we have always relied on the assumption that the
coefficients are smooth, and the Hölder bounds for the solutions depended on the regularity
of the coefficients. A very remarkable fact is that for equations in the divergence form, such
as (1.7.30), one may often obtain bounds on the regularity of the solutions that depend only
on the L∞-norm of the coefficients but not on their smoothness. Such bounds are much harder
to get for equations in the non-divergence form.

Proof of Proposition 1.7.10

Let us denote

Lφ = −∆φ− bj(x)
∂φ

∂xj
. (1.7.32)
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The constant functions are the principal periodic eigenfunctions of L and zero is the principal
eigenvalue:

L1 = 0. (1.7.33)

Thus, by Theorem 1.7.8, the operator L has no other eigenvalue with a non-positive real part,
which entails the same result for the operator

L∗φ = −∆φ+∇ · (b(x)φ).

In particular, zero is the principal eigenvalue of L∗, associated to a positive eigenfunc-
tion e∗1(x) > 0:

L∗e∗1 = 0, for all x ∈ Tn,

and we can normalize e∗1 so that that (1.7.31) holds. Thus, existence of e∗1(x) is the easy part
of the proof.

The challenge is, of course, to bound the Hölder norms of e∗1 in terms of ‖b‖L∞(Tn) only.
We would like to use a representation formula, as we already did many times in this chapter.
In other words, we would like to treat the term ∇ · (e∗1b) as a force, and convolve it with the
fundamental solution of the Laplace equation in Rn. For that, we need various quantities to
be sufficiently integrable, so we first localize the equation, and then write a representation
formula. This is very similar to the proof of the interior regularity estimates that we have
mentioned very briefly in Section 1.6 – see Exercise 1.6.7. We recommend the reader to
go back to this Section after finishing the current proof, and attempt this exercise again,
setting aij(t, x) = δij in (1.6.24) for simplicity.

Let Γ(x) be a nonnegative smooth cut-off function such that Γ(x) ≡ 1 for x ∈ [−2, 2]n

and Γ(x) ≡ 0 outside (−3, 3)n. The function v(x) = Γ(x)e∗1(x) satisfies

−∆v = −2∇Γ · ∇e∗1 − e∗1∆Γ− Γ∇ · (e∗1b), x ∈ Rn. (1.7.34)

Remember that e∗1 is bounded in L∞, thus so is v. As we will see, nothing should be feared from
the cumbersome quantities like ∆Γ or ∇Γ. We concentrate on the space dimensions n ≥ 2,
leaving n = 1 as an exercise. Let E(x) be the fundamental solution of the Laplace equation
in Rn: the solution of

−∆u = f, x ∈ Rn, (1.7.35)

is given by

u(x) =

∫
Rn
E(x− y)u(y)dy. (1.7.36)

Then we have

v(x) =

∫
Rn
E(x− y)

[
− 2∇Γ(y) · ∇e∗1(y)− e∗1(y)∆Γ(y)− Γ(y)∇ · (e∗1(y)b(y))

]
dy. (1.7.37)

After an integration by parts, we obtain

v(x) =

∫
Rn

(
(∇E(x−y) ·∇Γ(y))e∗1(y)+E(x−y)e∗1(y)∆Γ(y)+∇(E(x−y)Γ(y)) · b(y)e∗1(y)

)
dy.

(1.7.38)
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The key point is that no derivatives of b(x) or e∗1(x) appear in the right side of (1.7.38) – this
is important as the only a priori information that we have on these functions is that they are
bounded in L∞. Thus, the main point is to prove that integrals of the form

P (x) =

∫
Rn
E(x− y)G(y)dy, (1.7.39)

with a bounded and compactly supported function G(x), and

I(x) =

∫
Rn
∇E(x− y) · F (y)dy, (1.7.40)

with a bounded and compactly supported vector-valued function F : Rn 7→ Rn, are α-Hölder
continuous for all α ∈ (0, 1), with the Hölder constants depending only on α and the L∞-norms
of F and G. Both F and G are supported inside the cube [−3, 3]n. We will only consider the
integral I(x), as this would also show that ∇P (x) is α-Hölder. Using the expression

∇E(z) = cn
z

|z|n
,

we see that
|I(x)− I(x′)| ≤ cn‖F‖L∞K(x, x′), (1.7.41)

with

K(x, x′) =

∫
(−3,3)n

∣∣∣∣ x− y|x− y|n
− x′ − y
|x′ − y|n

∣∣∣∣dy. (1.7.42)

Pick now α ∈ (0, 1). We estimate K by splitting the integration domain into two disjoint
pieces:

Ax = {y ∈ (−3, 3)n : |x− y| ≤ |x− x′|α}, Bx = {y ∈ (−3, 3)n : |x− y| > |x− x′|α},

and denote by KA(x, x′) and KB(x, x′) the contribution to K(x, x′) by the integration over
each of these two regions. To avoid some unnecessary trouble, we assume that |x− x′| ≤ lα,
with lα such that

3l ≤ lα for all l ∈ [0, lα]. (1.7.43)

With this choice, we have

|x′ − y| ≤ |x′ − x|+ |x− y| ≤ 2|x− x′|α if y ∈ Ax, (1.7.44)

and
|x′ − y| ≥ |x− y| − |x′ − x| ≥ 2|x− x′| if y ∈ Bx. (1.7.45)

It follows that

KA(x, x′) ≤
∫
|x−y|≤|x−x′|α

dy

|x− y|n−1
+

∫
|x′−y|≤2|x−x′|α

dy

|x′ − y|n−1
≤ C|x− x′|α. (1.7.46)

To estimate KB, we write∣∣∣∣ x− y|x− y|n
− x′ − y
|x′ − y|n

∣∣∣∣≤ C|x− x′|
∫ 1

0

dσ

|xσ − y|n
, xσ = σx+ (1− σ)x′. (1.7.47)
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Note that for all y ∈ Bx we have

|xσ − y| ≥ |x− y| − |x− xσ| ≥ |x− x′|α − |x− x′| ≥ 2|x′ − x|,

and |y| ≤ 3
√
n, hence

KB(x, x′) ≤ |x− x′|
∫ 1

0

dσ

∫
Bx

dy

|xσ − y|n
≤ |x− x′|

∫ 1

0

dσ

∫
|xσ−y|≥|x−x′|

χ(|y| ≤ 3
√
n)dy

|xσ − y|n

≤ C|x− x′| log |x− x′|, (1.7.48)

which implies the uniform α-Hölder bound for I(x), for all α ∈ (0, 1). �

The Dirichlet principal eigenvalue, related issues

We have so far talked about the principal eigenvalue for spatially periodic elliptic problems.
This discussion applies equally well to problems in bounded domains, with the Dirichlet or
Neumann boundary conditions. In the rest of this book, we will often encounter the Dirichlet
problems, so let us explain this situation. Let Ω be a smooth bounded open subset of Rn,
and consider our favorite elliptic operator

Lu = −∆u+ bj(x)
∂u

∂xj
+ c(x)u, (1.7.49)

with smooth coefficients bj(x) and c(x). One could easily look at the more general problem

Lu = −aij(x)
∂2u

∂xi∂xj
+ bj(x)

∂u

∂xj
+ c(x)u, (1.7.50)

with essentially identical results, as long as the matrix aij(x) is uniformly elliptic – we will
avoid this just to keep the notation simpler. We are interested in the eigenvalue problem

Lu = λu in Ω, (1.7.51)

u = 0 on ∂Ω,

and, in particular, in the existence of a positive eigenfunction φ > 0 in Ω. The strategy will
be as in the periodic case, to look at the initial value problem

ut −∆u+ bj(x)
∂u

∂xj
+ c(x)u = 0, t > 0, x ∈ Ω,

u = 0, t > 0, x ∈ ∂Ω, (1.7.52)

u(0, x) = u0(x).

The coefficients bj and c are smooth in (t, x) and T -periodic in t. Again, we set

(STu0)(x) = u(T, x).

The main difference with the periodic case is that, here, the cone of continuous functions which
are positive in Ω and vanish on ∂Ω has an empty interior, so we can not repeat verbatim the
proof of the Krein-Rutman theorem for the operators on Tn.
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Exercise 1.7.11 Revisit the proof of the Krein-Rutman theorem in that case and identify
the place where the proof would fail for the Dirichlet boundary conditions.

What will save the day is the strong maximum principle and the Hopf Lemma. We are
not going to fully repeat the proof of Theorems 1.7.4 and 1.7.8, but we are going to prove a
key proposition that an interested reader can use to prove the Krein-Rutman theorem for the
Dirichlet problem.

Proposition 1.7.12 Assume u0 ∈ C1(Ω) – that is, u0 has derivatives that are continuous up
to ∂Ω, and that u0 > 0 in Ω, and both u0 = 0 and ∂νu0 < 0 on ∂Ω. Then there is µ1 > 0
defined by the formula

µ1 = inf{µ > 0 : STu0 ≤ µu0}. (1.7.53)

Moreover, if µ2 > 0 is defined as

µ2 = inf{µ > 0 : (ST ◦ ST )u0 ≤ µSTu0}, (1.7.54)

then either µ1 > µ2, or µ1 = µ2, and in the latter case (ST ◦ ST )u0 ≡ µ2STu0.

Proof. For the first claim, the existence of the infimum in (1.7.53), we simply note that

µu0 ≥ STu0,

as soon as µ > 0 is large enough, because ∂νu0 < 0 on ∂Ω, u0 > 0 in Ω, and STu0 is a smooth
function up to the boundary. As for the second item, let us first observe that

u(t+ T, x) ≤ µ1u(t, x), (1.7.55)

for any t > 0, by the maximum principle. Let us assume that

u(2T, x) 6≡ µ1u(T, x). (1.7.56)

Then the maximum principle implies that

u(2T, x) < µ1u(T, x) for all x ∈ Ω. (1.7.57)

As
max
x∈Ω̄

[u(2T, x)− µ1u(T, x)] = 0,

the parabolic Hopf lemma, together with (1.7.55) and (1.7.56), implies the existence of δ > 0
such that

∂ν(u(2T, x)− µ1u(T, x)) ≥ δ > 0, for all x ∈ ∂Ω. (1.7.58)

It follows that for ε > 0 sufficiently small, we have

u(2T, x)− µ1u(T, x) ≤ −δ
2
d(x, ∂Ω) for x ∈ Ω such that d(x, ∂Ω) < ε.

On the other hand, once again, the strong maximum principle precludes a touching point
between u(2T, x) and µ1u(T, x) inside

Ωε = {x ∈ Ω : d(x, ∂Ω) ≥ ε}.
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Therefore, there exists δ1 such that

u(2T, x)− µ1u(T, x) ≤ −δ1, for all x ∈ Ωε.

We deduce that there is a – possibly very small – constant c > 0 such that

u(2T, x)− µ1u(T, x) ≤ −cd(x, ∂Ω) in Ω.

However, u(T, x) is controlled from above by Cd(x, ∂Ω), for a possibly large constant C > 0.
All in all, we have

u(2T, x) ≤ (µ1 −
c

C
)u(T, x),

hence (1.7.56) implies that µ2 < µ1, which proves the second claim of the proposition. �

Exercise 1.7.13 Deduce from Proposition 1.7.12 the versions of Theorems 1.7.4 and 1.7.8
for operators ST and L, this time with the Dirichlet boundary conditions.

Thus, the eigenvalue problem (1.7.51), has a principal eigenvalue that enjoys all the prop-
erties we have proved in the periodic one: it has the least real part among all eigenvalues,
and is the only eigenvalue associated to a positive eigenfunction.

Exercise 1.7.14 Assume that L is symmetric; it has the form

Lu = − ∂

∂xj

(
aij(x)

∂u

∂xi

)
+ c(x)u (1.7.59)

Then, the principal eigenvalue is given by the minimization of the Rayleigh quotient over the
Sobolev space H1

0 (Ω):

λ1 = inf
u∈H1

0 (Ω), ‖u‖L2=1

∫
Ω

(
aij(x)

∂u

∂xi

∂u

∂xj
+ c(x)u2(x)

)
dx. (1.7.60)

Exercise 1.7.15 Adapt the preceding discussion to prove the existence of a principal eigen-
value to the Nemann eigenvalue problem

Lu = λu, x ∈ Ω, (1.7.61)

∂νu = 0, x ∈ ∂Ω.

Exercise 1.7.16 (The principal eigenvalue in an unbounded domain) Consider the differen-
tial operator

L = −∆ + c(x), x ∈ Rn.

Assume that c is bounded and uniformly continuous, Assume the existence of c∞ > 0 such
that

lim
|x|→+∞

c(x) = c∞. (1.7.62)

Also assume that c(x) < c∞ for all x ∈ Rn. The goal of the exercise is to prove a Krein-
Rutman type theorem for L. For n ≥ 1, let µn be the principal eigenvalue of L in Bn(0), with
Dirichlet conditions.
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1. Show that (µn)n is a decreasing sequence, bounded by −‖c‖∞. Let µ∞ be its limit.

2. Let ψε,n(x) solve
−∆ψ + εψ = 0 (Bn(0)\BR(0))

ψ = 1 (∂BR(0))
ψ = 0 (∂Bn(0)).

Show that |∂rψε,n| = O(
√
ε) on ∂BR(0), as soon as n is large enough.

3. Let φ2R be the first Dirichlet eigenfunction in B2R(0), that is equal to 1 on ∂BR(0) (why
is φ2R radial?). Let φ

n
be equal to φ2R in BR(0), and ψε,n in Bn(0)\BR(0). Show that,

if ε > 0 is small enough, R large and n very large, then we have

Lφ
n
≤ (c∞ − ε)φn.

4. Deduce that µ∞ ≤ c∞ − ε.

5. Conclude that L has the Krein-Rutman property.

6. Show that the first eigenfunction decays exponentially fast at infinity.

Exercise 1.7.17 Set
L = −∆ + c(x), x ∈ Rn,

the function c satisfying (1.7.62) for some positive c∞. We do not, however, assume c(x) < c∞
anymore. Find as many properties of the preceding exercise as possible that would fail without
this assumption.

Exercise 1.7.18 Redo the existence part of Exercise 1.7.16 with the aid of the Rayleigh
quotients, without any approximation on a finite domain.

These three exercises give just a glimpse at what happens to the principal eigenvalue in
unbounded domains – an interested reader should investigate further, starting with the vari-
ational formulations of [?] and [?], and continuing with the more recent papers [?, ?].

1.7.4 The principal eigenvalue and the comparison principle

Let us now connect the principal eigenvalue and the comparison principle. Since we are at
the moment dealing with the Dirichlet problems, let us remain in this context. There would
be nothing significantly different about the periodic problems.

The principal eigenfunction φ1 > 0, solution of

Lφ1 = λ1φ1, in Ω, (1.7.63)

φ1 = 0 on ∂Ω,

(1.7.64)

with

Lu = −∆u+ bj(x)
∂u

∂xj
+ c(x)u, (1.7.65)
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in particular, provides a special solution

ψ(t, x) = e−λ1tφ1(x) (1.7.66)

for the linear parabolic problem

ψt + Lψ = 0, t > 0, x ∈ Ω (1.7.67)

ψ = 0 on ∂Ω.

Consider then the Cauchy problem

vt + Lv = 0, t > 0, x ∈ Ω (1.7.68)

v = 0 on ∂Ω,

v(0, x) = g(x), x ∈ Ω,

with a smooth bounded function g(x) that vanishes at the boundary ∂Ω. We can find a
constant M > 0 so that

−Mφ1(x) ≤ g(x) ≤Mφ1(x), for all x ∈ Ω.

The comparison principle then implies that for all t > 0 we have a bound

−Mφ1(x)e−λ1t ≤ v(t, x) ≤Mφ1(x)e−λ1t, for all x ∈ Ω, (1.7.69)

which is very useful, especially if λ1 > 0. The assumption that the initial condition g vanishes
at the boundary ∂Ω is not necessary but removes the technical step of having to show that
even if g(x) does not vanish on the boundary, then for any positive time t0 > 0 we can find a
constant C0 so that |v(t0, x)| ≤ C0φ1(x). This leads to the bound (1.7.69) for all t > t0.

Let us now apply the above considerations to the solutions of the elliptic problem

Lu = g(x), in Ω, (1.7.70)

u = 0 on ∂Ω,

with a non-negative function g(x). When can we conclude that the solution u(x) is also
non-negative? The solution of (1.7.70) can be formally written as

u(x) =

∫ ∞
0

v(t, x)dt. (1.7.71)

Here, the function v(t, x) satisfies the Cauchy problem (1.7.68). If the principal eigenvalue λ1

of the operator L is positive, then the integral (1.7.71) converges for all x ∈ Ω because of the
estimates (1.7.69), and the solution of (1.7.70) is, indeed, given by (1.7.71). On the other hand,
if g(x) ≥ 0 and g(x) 6≡ 0, then the parabolic comparison principle implies that v(t, x) > 0 for
all t > 0 and all x ∈ Ω. It follows that u(x) > 0 in Ω.

Therefore, we have proved the following theorem that succinctly relates the notions of the
principal eigenvalue and the comparison principle.
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Theorem 1.7.19 If the principal eigenvalue of the operator L is positive then solutions of
the elliptic equation (1.7.70) satisfy the comparison principle: u(x) > 0 in Ω if g(x) ≥ 0 in Ω
and g(x) 6≡ 0.

This theorem allows to look at the maximum principle in narrow domains introduced in
the previous chapter from a slightly different point of view: the narrowness of the domain
implies that the principal eigenvalue of L is positive no matter what the sign of the free
coefficient c(x) is. This is because the “size” of the second order term in L increases as
the domain narrows, while the “size” of the zero-order term does not change. Therefore, in
a sufficiently narrow domain the principal eigenvalue of L will be positive (recall that the
required narrowness does depend on the size of c(x)). A similar philosophy applies to the
maximum principle for the domains of a small volume.

We conclude this topic with another characterization of the principal eigenvalue of an
elliptic operator in a bounded domain, which we leave as an (important) exercise for the
reader. Let us define

µ1(Ω) = sup{λ : ∃φ ∈ C2(Ω) ∩ C1(Ω̄), φ > 0 and (L− λ)φ ≥ 0 in Ω}, (1.7.72)

and

µ′1(Ω) = inf{λ : ∃φ ∈ C2(Ω) ∩ C1(Ω̄), φ = 0 on ∂Ω, φ > 0 in Ω, and (L− λ)φ ≤ 0 in Ω}.
(1.7.73)

Exercise 1.7.20 Let L be an elliptic operator in a smooth bounded domain Ω, and let λ1 be
the principal eigenvalue of the operator L, and µ1(Ω) and µ′1(Ω) be as above. Show that

λ1 = µ1(Ω) = µ′1(Ω). (1.7.74)

As a hint, say, for the equality λ1 = µ1(Ω), we suggest, assuming existence of some λ > λ1

and φ > 0 such that

(L− λ)φ ≥ 0,

to consider the Cauchy problem

ut + (L− λ)u = 0, in Ω

with the initial data u(0, x) = φ(x), and with the Dirichlet boundary condition u(t, x) = 0
for t > 0 and x ∈ ∂Ω. One should prove two things: first, that ut(t, x) ≤ 0 for all t > 0, and,
second, that there exists some constant C > 0 so that

u(t, x) ≥ Cφ1(x)e(λ−λ1)t,

where φ1 is the principal Dirichlet eigenfunction of L. This will lead to a contradiction. The
second equality in (1.7.74) is proved in a similar way.
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1.8 Reaction-diffusion waves

As a conclusion to this chapter, we will be interested here in one-dimensional models of the
form

ut − uxx = f(x, u), t > 0, x ∈ R, (1.8.1)

the assumptions on f being made precise as the study develops. We will see in this section how
the possibility of comparing two solutions of the same problem will imply their convergence
in the long time limit, putting to work the two main characters we have seen so far in this
chapter: the comparison principle and the Harnack inequality. We will also put to good
use the ideas developed for the existence of the principal eigenvalues for elliptic operators,
they are the same - although they will sometimes be imbedded in more or less technical
considerations. We will start by the simplest possible model: the Allen-Cahn equation, with
f(x, u) = f(u) = u(1 − u)2. There is an explicit steady solution, and we will show in detail
how every solution of the problem, that vaguely looks like the steady solution at both ends
at time t = 0, will converge to a translate of it for large times. The rest of the chapter will be
devoted to showing that the idea is universal, and helps the understanding of seemingly more
complicated, or unrelated models. We will first treat nonlinearities that are less symmetric
than the Allen-Cahn one, giving rise to travelling waves, that will attract the whole dynamics
of the solutions. We will finally investigate the large-time behavior of (1.8.1) with an f(x, u)
periodic in x. This is going to give raise to pulsating waves, i.e. waves that look time-periodic
in some Galilean reference frame. These waves will be shown to be globally attracting, thus
giving some substance to the advertiseemnt (that we made in the introduction) about how
space periodicity generates time-periodicity.

1.8.1 The long time behavior for the Allen-Cahn equation

We consider the one-dimensional Allen-Cahn equation

ut − uxx = f(u), (1.8.2)

with
f(u) = u− u3. (1.8.3)

Recall that we have already considered the steady solutions of this equation in Section ?? of
Chapter ??, and, in particular, the role of its explicit time-independent solutions

φ(x) = tanh
( x√

2

)
, (1.8.4)

and its translates φx0(x) := φ(x+ x0), x0 ∈ R.

Exercise 1.8.1 We have proved in Chapter ?? that, if ψ(x) is a steady solution to (1.8.2)
that satisfies

lim
x→−∞

ψ(x) = −1, lim
x→+∞

ψ(x) = 1,

then ψ is a translate of φ. For an alternative proof, draw the phase portrait of the equation

− ψ′′ = f(ψ) (1.8.5)
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in the (ψ, ψ′) plane. For an orbit (ψ, ψ′) connecting (−1, 0) to (1, 0), show that the solution
tends to (−1, 0) exponentially fast. Multiply then (1.8.5) by ψ′, integrate from −∞ to x and
conclude.

Recall that the Allen-Cahn equation is a simple model for a physical situation when two
phases are stable, corresponding to u = ±1. The time dynamics of the initial value problem
for (1.8.2) corresponds to a competition between these two states. The fact that∫ 1

−1

f(u)du = 0 (1.8.6)

means that the two states are ”equally stable” – this is a necessary condition for (1.8.2) to
have a time-independent solution φ(x) such that

φ(x)→ ±1, as x→ ±∞. (1.8.7)

In other words, such connection between +1 and −1 exists only if (1.8.6) holds.
Since the two phases u = ±1 are equally stable, one expects that if the initial condi-

tion u0(x) for (1.8.2) satisfies

lim
x→−∞

u0(x) = −1, lim
x→+∞

u0(x) = 1, (1.8.8)

then, as t → +∞, the solution u(t, x) will converge to a steady equilibrium, that has to be
a translate of φ. This is the subject of the next theorem, that shows, in addition, that the
convergence rate is exponential.

Theorem 1.8.2 There exists ω > 0 such that for any uniformly continuous and bounded
initial condition u0 for (1.8.2) that satisfies (1.8.8), we can find x0 ∈ R and C0 > 0 such that

|u(t, x)− φ(x+ x0)| ≤ C0e
−ωt, for all x ∈ R and t > 0. (1.8.9)

Since there is a one parameter family of steady solutions, naturally, one may ask how the
solution of the initial value problem chooses a particular translation of φ in the long time limit.
In other words, one would like to know how the shift x0 depends on the initial condition u0.
However, this dependence is quite implicit and there is no simple expression for x0.

There are at least two ways to prove Theorem 1.8.2, both of them need the forthcoming
Lemma 1.8.4, that bounds the level sets of the solution. Once this is at hand, a first option
is to solve the following

Exercise 1.8.3 Assume Lemma 1.8.4 to be true.

1. Verify that the energy functional

J(u) =

∫
R

(
1

2
|ux|2 − F (u)

)
dx, F (u) =

∫ u

−1

f(v)dv,

decreases in time for any solution u(t, x) of (1.8.2).

2. With the aid of Lemma 1.8.4 and the preceding question, show that the solution even-
tually comes very close to a translate φx0(x), uniformly on R.
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3. Prove a Krein-Rutman type property for the operator

Mu = −uxx − f ′(φx0)u.

What is the principal eigenvalue, and what is an associated eigenfunction?

4. If v(x) is close to φx0 , show that one may decompose it uniquely as

v(x) = φx0(x+X) + w,

X small and w small, orthogonal to the null space of M .

5. Assume that u0 is close to φx0 .

• Show the existence of T > 0 such that the decomposition

u(t, x) = φx0(x+X(t)) + w(t, x)

X small and w small, orthogonal to the null space of M , holds at least up to time
T .

• Write a system of equations for (X(t), w(t, x)).

• Deduce that T can be chosen infinite and that X(t) converges, exponentially in
time, to some x1 close to x0.

6. Round up everything and conclude.

This is, more or less, the method devised in the beautiful paper of Fife and McLeod [?]. It
has been generalized to gradient systems in a remarkable paper of Risler [?], which proves
very precise spreading estimates of the leading edge of the solutions, only based on a one-
dimensional set of energy functionals. Risler’s ideas were put to work on the simpler example
(1.8.2) in a paper by Gallay and Risler [?].

We chose to present an alternative method, entirely based on sub and super-solutions
that come closer and closer to each other. It avoids the spectral arguments, and is more
flexible as there are many reaction-diffusion problems where the comparison principle and the
Harnack inequality are available but the energy functionals do not exist. The reader should
also be aware that there are many problems, such as many reaction-diffusion systems, where
the situation is the opposite: the energy functional exists but the comparison principle is not
applicable.

Before we begin, we note that the function f satisfies

f ′(u) ≤ −1 for |u| ≥ 5/6, f ′(u) ≤ −3/2 for |u| ≥ 11/12. (1.8.10)

We will also take R0 > 0 such that

|φ(x)| ≥ 11/12 for |x| ≥ R0. (1.8.11)
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A bound on the level sets

The first ingredient is to prove that the level sets of u(t, x) do not, indeed, go to infinity,
so that the region of activity, where u(t, x) is not too close to ±1, happens, essentially, in
a compact set. This crucial step had already been identified by Fife and McLeod, and we
reproduce here their argument. The idea is to squish u(t, x) between two different translates
of φ, with a correction that goes to zero exponentially in fast time.

Lemma 1.8.4 Let u0 satisfy the assumptions of the theorem. There exist ξ±∞ ∈ R, and q0 > 0,
such that

φ(x+ ξ−∞)− q0e
−t ≤ u(t, x) ≤ φ(x+ ξ+

∞) + q0e
−t, (1.8.12)

for all t ≥ 0 and x ∈ R.

Proof. For the upper bound, we are going to devise two functions ξ+(t) and q(t) such that

u(t, x) = φ(x+ ξ+(t)) + q(t) (1.8.13)

is a super-solution to (1.8.2), with an increasing but bounded function ξ+(t), and an expo-
nentially decreasing function q(t) = q0 exp(−t). One would also construct, in a similar way,
a sub-solution of the form

u(t, x) = φ(x+ ξ−(t))− q(t), (1.8.14)

possibly increasing q a little, with a decreasing but bounded function ξ−(t).
Let us denote

N [u] = ∂tu− uxx − f(u). (1.8.15)

Now, with u(t, x) as in (1.8.13), we have

N [u] = q̇ + ξ̇+φ′(ζ)− f(φ(ζ) + q) + f(φ(ζ)), (1.8.16)

with ζ = x+ ξ+(t). Our goal is to choose ξ+(t) and q(t) so that

N [u] ≥ 0, for all t ≥ 0 and x ∈ R, (1.8.17)

so that ū(t, x) is a super-solution to (1.8.2). We will consider separately the regions |ζ| ≤ R0

and |ζ| ≥ R0.
Step 1. The region |ζ| ≥ R0. First, we have

φ(ζ) + q(t) ≥ 11/12 for ζ ≥ R0,

as q(t) ≥ 0. If we assume that q(0) ≤ 1/12 and make sure that q(t) is decreasing in time,
then we also have

φ(ζ) + q ≤ −5/6 for ζ ≤ −R0.

We have, therefore, as long as ξ+(t) is increasing, using (1.8.10):

N [u] ≥ q̇ − f(φ(ζ) + q) + f(φ) ≥ q̇ + q, for |ζ| ≥ R0. (1.8.18)

It suffices, therefore, to choose
q(t) = q(0)e−t, (1.8.19)
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with q(0) ≤ 1/12, and an increasing ξ+(t), to ensure that

N [u] ≥ 0, for all t ≥ 0 and |ζ| ≥ R0. (1.8.20)

Step 2. The region |ζ| ≤ R0. This time, we have to choose ξ+(t) properly. We write

N [u] ≥ q̇ + ξ̇+φ′(ζ)−Mfq, Mf = ‖f ′‖L∞ , (1.8.21)

and choose

ξ̇+ =
1

k0

(
− q̇ +Mfq

)
, k0 = inf

|ζ|≤R0

φ′(ζ), (1.8.22)

to ensure that the right side of (1.8.21) is non-negative. Using expression (1.8.19) for q(t), we
obtain

ξ+(t) = ξ+(0) +
q(0)

k0

(1 +Mf )(1− e−t). (1.8.23)

To summarize, with the above choices of q(t) and ξ+(t), we know that u satisfies (1.8.17).
It remains to choose q(0) and ξ+(0) so that u(t, x) is actually above u(t, x) – as we have

already established (1.8.17), the comparison principle tells us that we only need to verify that

u(0, x) ≥ u0(x), for all x ∈ R. (1.8.24)

Because u0 tends to ±1 at ±∞, there exists ξ+
0 (possibly quite large), and q0 ∈ (0, 1/12) such

that
u0(x) ≤ φ(x+ ξ+

0 ) + q0. (1.8.25)

Thus, it is enough to choose q(0) = q0, ζ+(0) = ζ+
0 . �

Exercise 1.8.5 Follow the same strategy to construct a sub-solution u(t, x) as in (1.8.14).

Lemma 1.8.4 traps nicely the level sets of u. But will this imply convergence to a steady
solution, or will the level sets of u(t, x) oscillate inside a bounded set? First, let us restate
our findings in a more precise way. We have shown the following

Corollary 1.8.6 Assume that we have

φ(x+ ξ−0 )− q0 ≤ u0(x) ≤ φ(x+ ξ+
0 ) + q0, (1.8.26)

with 0 ≤ q0 ≤ 1/12. Then, we have

φ(x+ ξ−(t))− q(t) ≤ u0(x) ≤ φ(x+ ξ+(t)) + q(t). (1.8.27)

with q(t) = q0e
−t, and

ξ+(t) = ξ+
0 +

q0

k0

(1 +Mf )(1− e−t), ξ−(t) = ξ−0 −
q0

k0

(1 +Mf )(1− e−t). (1.8.28)

One issue here is that the gap between ξ+(t) and ξ−(t) is not decreasing in time but rather in-
creasing – the opposite of what we want! Our goal is to show that we can actually choose ξ+(t)
and ξ−(t) in (1.8.27) so that the ”sub-solution/super-solution gap” ξ+(t) − ξ−(t) would de-
crease to zero as t → +∞ – this will prove convergence of the solution to a translate of φ.
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The mechanism to decrease this difference will be kindly provided by the strong maximum
principle. The idea is to iteratively trap the solutions, at an increasing sequence of times,
between translates of φ0, that will come closer and closer to each other, thus implying the
convergence. However, as there will be some computations, it is worth explaining beforehand
what the main idea is, and which difficulties we will see.

Let us consider for the moment a slightly better situation than in Lemma 1.8.4 – assume
that u0(x) is actually trapped between φ(x + ξ−0 ) and φ(x + ξ+

0 ), without the need for an
additional term q(t):

φ(x+ ξ−0 ) ≤ u0(x) ≤ φ(x+ ξ+
0 ). (1.8.29)

Then, u(t, x) is at a positive distance from one of the two translates, on compact sets, at
least for 0 ≤ t ≤ 1, say, φ(x + ξ+

0 ). This is where the strong maximum principle strikes:
at t = 1, it will make the infimum of φ(x + ξ+

0 )− u(t, x) strictly positive, at least on a large
compact set. We would like to think that then we may translate φ(x + ξ+

0 ) to the right a
little, decreasing ξ+

0 , while keeping it above u(1, x). The catch is that, potentially, the tail
of u(1, x) – that we do not control very well at the moment – might go over φ(x+ ξ), as soon
as ξ is just a little smaller than ξ+

0 . Let us ignore this, and assume that magically we have

φ(x+ ξ−0 ) ≤ u(1, x) ≤ φ(x+ ξ+
1 ), (1.8.30)

with

ξ+
1 = ξ+

0 − δ(ξ+
0 − ξ−0 ), (1.8.31)

with some δ > 0. If we believe in this scenario, we might just as well hope that the situation
may be iterated: at the time t = n, we have

φ(x+ ξ−n ) ≤ u(n, x) ≤ φ(x+ ξ+
n ), (1.8.32)

with

ξ+
n+1 − ξ−n+1 ≤ (1− δ)(ξ+

n − ξ−n ). (1.8.33)

This would imply a geometric decay of ξ+
n − ξ−n to zero, which, in turn, would imply the

exponential convergence of u(t, x) to a translate of φ.

The gap in the previous argument is, of course, in our lack of control of the tail of u(t, x)
that prevents us from being sure that (1.8.30), with ξ+

1 as in (1.8.31), holds everywhere on R
rather than on a compact set. There is no way we can simply ignore it: we will see in
Chapter ?? that the dynamics of many respectable equations is controlled exactly by the tail
of its solutions. Such will not be the case here, but we will have to go through the pain of
controlling the tail of u at every step. This leads to the somewhat heavy proof that follows,
which is itself a simplified version of [?], where global exponential stability of transition waves
is shown. However, there is essentially no other idea than what we have just explained, the
rest are just technical embellishments. The reader should also recall that we have already
encountered a tool for the tail-control in the Allen-Cahn equation: Corollary ?? in Chapter ??
served exactly that purpose in the proof of Theorem ??. We are going to use something very
similar here.
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The proof of Theorem 1.8.2

As promised, the strategy is a refinement of the proof of Lemma 1.8.4. We will construct a
sequence of sub-solutions un and super-solutions un defined for t ≥ Tn, such that

un(t, x) ≤ u(t, x) ≤ un(t, x) for t ≥ Tn. (1.8.34)

Here, Tn → +∞ is a sequence of times with

Tn + T ≤ Tn+1 ≤ Tn + 2T, (1.8.35)

and the time step T > 0 to be specified later on. The sub- and super-solutions will be of the
familiar form (1.8.27)-(1.8.28):

un(t, x) = φ(x+ ξ−n (t))− qne−(t−Tn), un(t, x) = φ(x+ ξ+
n (t)) + qne

−(t−Tn), t ≥ Tn, (1.8.36)

with ξ±n (t) as in (1.8.28):

ξ+
n (t) = ξ+

n +
qn
k0

(1 +Mf )(1− e−(t−Tn)), ξ−n (t) = ξ−n −
qn
k0

(1 +Mf )(1− e−(t−Tn)). (1.8.37)

The reader has surely noticed a slight abuse of notation: we denote by ξ±n the values of ξ±n (t)
at the time t = Tn. This allows us to avoid introducing further notation, and we hope it does
not cause too much confusion.

Our plan is to switch from one pair of sub- and super-solutions to another at the times Tn,
and improve the difference in the two shifts at the ”switching” times, to ensure that

ξ+
n+1 − ξ−n+1 ≤ (1− δ)(ξ+

n − ξ−n ), (1.8.38)

with some small but fixed constant δ > 0 such that

e−T ≤ cT δ ≤
1

4
. (1.8.39)

The constant cT will also be chosen very small in the end – one should think of (1.8.39) as the
requirement that the time step T is very large. This is natural: we can only hope to improve
on the difference ξ+

n − ξ−n , as in (1.8.38), after a very large time step T . The shifts can be
chosen so that they are uniformly bounded:

|ξ±n | ≤M, (1.8.40)

with a sufficiently large M – this follows from the bounds on the level sets of u(t, x) that we
have already obtained. As far as qn are concerned, we will ask that

0 ≤ qn ≤ cqδ(ξ
+
n − ξ−n ), (1.8.41)

with another small constant cq to be determined. Note that at t = 0 we may ensure that q0

satisfies (1.8.41) simply by taking ξ+
0 sufficiently positive and ξ−0 sufficiently negative.

As we have uniform bounds on the location of the level sets of u(t, x), and the shifts ξ±n
will be chosen uniformly bounded, as in (1.8.40), after possibly increasing R0 in (1.8.11), we
can ensure that

φ(x+ ξ±n (t)) ≥ 11/12, u(t, x) ≥ 11/12, for x ≥ R0 and t ≥ Tn, (1.8.42)
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and

− 1 < φ(x+ ξ±n (t)) ≤ 11/12, − 1 < u(t, x) ≤ −11/12, for x ≤ −R0 and t ≥ Tn, (1.8.43)

which implies

f ′(φ(x+ ξ±n (t))) ≤ −1, f ′(u(t, x)) ≤ −1, for |x| ≥ R0 and t ≥ Tn. (1.8.44)

Let us now assume that at the time t = Tn we have the inequality

φ(x+ ξ−n )− qn ≤ u(Tn, x) ≤ φ(x+ ξ+
n ) + qn, (1.8.45)

wth the shift qn that satisfies (1.8.41). Our goal is to find a time Tn+1 ∈ [Tn + T, Tn + 2T ],
and the new shifts ξ±n+1 and qn+1, so that (1.8.45) holds with n replaced by n+ 1 and the new
gap ξ+

n+1 − ξ−n+1 satisfies (1.8.38). We will consider two different cases.
Case 1: the solution gets close to the super-solution. Let us first assume that

there is a time τn ∈ [Tn + T, Tn + 2T ] such that the solution u(τn, x) is ”very close” to the
super-solution un(τn, x) on the interval {|x| ≤ R0 + 1}. More precisely, we assume that

sup
|x|≤R0+1

(
un(τn, x)− u(τn, x)

)
≤ δ(ξ+

n − ξ−n ). (1.8.46)

We will show that in this case we may take Tn+1 = τn, and set

ξ+
n+1 = ξ+

n (τn), ξ−n+1 = ξ−n + (ξ+
n (τn)− ξ+

n ) + δ(ξ+
n − ξ−n ), (1.8.47)

as long as δ is sufficiently small, making sure that

ξ+
n+1 − ξ−n+1 = (1− δ)(ξ+

n − ξ−n ), (1.8.48)

and also choose qn+1 so that
qn+1 = cqδ(ξ

+
n+1 − ξ−n+1). (1.8.49)

As far as the super-solution is concerned, we note that

u(τn, x) ≤ φ(x+ ξ+
n (τn)) + qne

−(t−Tn) ≤ φ(x+ ξ+
n (τn)) + cqδ(ξ

+
n − ξ−n )e−T

≤ φ(x+ ξ+
n (τn)) + qn+1, (1.8.50)

for all x ∈ R, provided that T is sufficiently large, independent of n.
For the sub-solution, we first look at what happens for |x| ≤ R0 + 1 and use (1.8.46):

u(τn, x) ≥ φ(x+ ξ+
n (τn)) + qne

−(τn−Tn) − δ(ξ+
n − ξ−n ), for all |x| ≤ R0 + 1. (1.8.51)

Thus, for |x| ≤ R0 + 1 we have

u(τn, x) ≥ φ(x+ ξ+
n (τn))− δ(ξ+

n − ξ−n ) ≥ φ(x+ ξ+
n − CRδ(ξ+

n − ξ−n )) ≥ φ(x+ ξ−n+1), (1.8.52)

with the constant CR that depends on R0, as long as δ > 0 is sufficiently small.
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It remains to look at |x| ≥ R0 + 1. To this end, recall that

u(τn, x) ≥ φ(x+ ξ−n (τn))− qne−(τn−Tn), for all x ∈ R, (1.8.53)

so that, as follows from the definition of ξ−n (t), we have

u(τn, x) ≥ φ(x+ ξ−n − Cqn)− qne−2T , for all x ∈ R. (1.8.54)

Observe that, as φ(x) is approaching ±1 as x → ±∞ exponentially fast, there exist ω > 0
and C > 0 such that, taking into account (1.8.41) we can write for |x| ≥ R0 + 1:

φ(x+ ξ−n − Cqn) ≥ φ(x+ ξ−n + (ξ+
n (τn)− ξ+

n ) + δ(ξ+
n − ξ−n ))− Cδe−ωR0(ξ+

n − ξ−n )

≥ φ(x+ ξ−n+1)− qn+1, (1.8.55)

as long as R0 is large enough. Here, we have used ξ−n+1 and q−n+1 as in (1.8.47) and (1.8.49).
We conclude that

u(τn, x) ≥ φ(x+ ξ−n+1)− qn+1, for |x| ≥ R0 + 1. (1.8.56)

Summarizing, if (1.8.46) holds, we set Tn+1 = τn, define the new shifts ξ±n+1 as in (1.8.47)
and (1.8.49), which ensures that the ”shift gap” is decreased by a fixed factor, so that (1.8.48)
holds, and we can restart the argument at t = Tn+1, because

φ(x+ ξ−n+1)− qn+1 ≤ u(Tn+1, x) ≤ φ(x+ ξ+
n+1) + qn+1, for all x ∈ R. (1.8.57)

Of course, if at some time τn ∈ [Tn + T, Tn + 2T ] we have, instead of (1.8.46) that

sup
|x|≤R0+1

(
u(τn, x)− u(τn, x)

)
≤ δ(ξ+

n − ξ−n ), (1.8.58)

then we could repeat the above argument essentially verbatim, using the fact that now the
solution is very close to the sub-solution on a very large interval.

Case 2: the solution and the super-solution are never too close. Next, let us
assume that for all t ∈ [Tn + T, Tn + 2T ], we have

sup
|x|≤R0+1

(
un(t, x)− u(t, x)

)
≥ δ(ξ+

n − ξ−n ). (1.8.59)

Because ξ+
n (t) is increasing, we have, for all |x| ≤ R0 + 1 and t ∈ [Tn + T, Tn + 2T ]:

un(t, x) ≤ φ(x+ ξ+
n (Tn + 2T )) + qne

−T ≤ φ(x+ ξ+
n (Tn + 2T ) + qne

−Tρ0), (1.8.60)

with
ρ0 =

(
inf

|x|≤R0+M+10
φ′(x)

)−1
. (1.8.61)

Here, M is the constant in the upper bound (1.8.40) for ξ±n . Note that by choosing T
sufficiently large we can make sure that the argument in φ in the right side of (1.8.60) is
within the range of the infimum in (1.8.61). The function

wn(t, x) = φ(x+ ξ+
n (Tn + 2T ) + qne

−Tρ0)− u(t, x).
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that appears in the right side of (1.8.60) solves a linear parabolic equation

∂twn − ∂xxwn + an(t, x)wn = 0, (1.8.62)

with the coefficient an that is bounded in n, t and x:

an(t, x) = −f(φ(x+ ξ+
n (Tn + 2T ) + qne

−Tρ0))− f(u(t, x))

φ(x+ ξ+
n (Tn + 2T ) + qne−Tρ0)− u(t, x)

. (1.8.63)

It follows from assumption (1.8.59) and (1.8.60) that

sup
|x|≤R0+1

wn(t, x) ≥ δ(ξ+
n − ξ−n ), for all t ∈ [Tn + T, Tn + 2T ], (1.8.64)

but in order to improve the shift, we would like to have not the supremum but the infimum
in the above inequality. And here the Harnack inequality comes to the rescue: we will use
Theorem 1.6.9 for the intervals |x| ≤ R0 + 1 and |x| ≤ R0. For that, we need to make sure
that at least a fraction of the supremum in (1.8.64) is attained on [−R0, R0]: there exists k1

so that

sup
|x|≤R0

wn(t, x) ≥ k1δ(ξ
+
n − ξ−n ), for all Tn + T ≤ t ≤ Tn + 2T . (1.8.65)

However, if there is a time Tn + T ≤ sn ≤ Tn + 2T such that

sup
|x|≤R0

wn(sn, x) ≤ δ

2
(ξ+
n − ξ−n ), (1.8.66)

then we have

ū(sn, x)− u(sn, x) ≤ δ

2
(ξ+
n − ξ−n ) for all |x| ≤ R0. (1.8.67)

This is the situation we faced in Case 1, and we can proceed as in that case. Thus, we may
assume that

sup
|x|≤R0

wn(t, x) ≥ δ

2
(ξ+
n − ξ−n ) for all Tn + T ≤ t ≤ Tn + 2T . (1.8.68)

In that case, we may apply the Harnack inequality of Theorem 1.6.9 to (1.8.62) on the
intervals |x| ≤ R0 + 1 and |x| ≤ R0: there exists a Harnack constant hR0 that is independent
of T , such that

wn(t, x) ≥ hR0δ(ξ
+
n − ξ−n ), for all t ∈ [Tn + T + 1, Tn + 2T ] and |x| ≤ R0. (1.8.69)

Exercise 1.8.7 Show that, as a consequence, we can find ρ1 > 0 that depends on R0 but not
on n such that for |x| ≤ R0 and Tn + T + 1 ≤ t ≤ Tn + 2T , we have

w̃n(t, x) = φ
(
x+ ξ+

n (Tn + 2T ) + ρ0e
−T qn − ρ1hR0δ(ξ

+
n − ξ−n )

)
− u(t, x) ≥ 0. (1.8.70)
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Let us now worry about what w̃n does for |x| ≥ R0. In this range, the function w̃n solves
another linear equation of the form

∂tw̃n − ∂xxw̃n + ãn(t, x)w̃n = 0, (1.8.71)

with ãn(t, x) ≥ 1 that is an appropriate modification of the expression for an(t, x) in (1.8.63).
In addition, at the boundary |x| = R0, we have w̃n(t, x) ≥ 0, and at the time t = Tn + T , we
have an estimate of the form

w̃n(Tn + T, x) ≥ −K(ξ+
n − ξ−n ), |x| ≥ R0. (1.8.72)

Exercise 1.8.8 What did we use to get (1.8.72)?

Therefore, the maximum principle applied to (1.8.71) implies that

w̃n(Tn + 2T, x) ≥ −Ke−T (ξ+
n − ξ−n ), |x| ≥ R0. (1.8.73)

We now set Tn+1 = Tn + 2T . The previous argument shows that we have

u(Tn+1, x) ≤ φ
(
x+ ξ+

n (Tn+1) + ρ0e
−T qn − ρ1hR0δ(ξ

+
n − ξ−n )

)
+ qn+1, (1.8.74)

with
0 ≤ qn+1 ≤ Ke−T (ξ+

n − ξ−n ). (1.8.75)

In addition, we still have the lower bound:

u(Tn + 2T ) ≥ φ(x+ ξ−n (Tn+1))− e−T qn. (1.8.76)

It only remains to define ξ±n+1 and qn+1 properly, to convert (1.8.74) and (1.8.76) into the
form required to restart the iteration process. We take

qn+1 = max(e−T qn, Ke
−T (ξ+

n − ξ−n )), ξ−n+1 = ξ−n (Tn+1), (1.8.77)

and

ξ+
n+1 = ξ+

n (Tn+1) + ρ0e
−T qn − hR0ρ1δ(ξ

+
n − ξ−n ). (1.8.78)

It is easy to see that assumption (1.8.41) holds for qn+1 provided we take T sufficiently large,
so that

e−T � cq. (1.8.79)

The main point to verify is that the contraction in (1.8.38) does happen with the above choice.
We recall (1.8.37):

ξ+
n (Tn+1) = ξ+

n +
qn
k0

(1 +Mf )(1− e−2T ), ξ−n (Tn+1) = ξ−n −
qn
k0

(1 +Mf )(1− e−2T ). (1.8.80)

Hence, in order to ensure that

ξ+
n+1 − ξ−n+1 ≤ (1− hR0ρ1δ

2
)(ξ+

n − ξ−n ), (1.8.81)

it suffices to make sure that the term hR0ρ1δ(ξ
+
n − ξ−n ) dominates all the other multiples

of δ(ξ+
n −ξ−n ) in the expression for the difference ξ+

n+1−ξ−n+1 that come with the opposite sign.
However, all such terms are multiples of qn, thus it suffices to make sure that the constant cq
is small, which, in turn, can be accomplished by taking T sufficiently large. This completes
the proof. �
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1.8.2 Spreading in unbalanced Allen-Cahn equations, and related
models

Let us now discuss, informally, what one would expect, from the physical considerations, to
happen to the solution of the initial value problem if the balance condition (1.8.6) fails, that
is, ∫ 1

−1

f(u)du 6= 0. (1.8.82)

To be concrete, let us consider the nonlinearity f(u) of the form

f(u) = (u+ 1)(u+ a)(1− u), (1.8.83)

with a ∈ (0, 1). so that u = ±1 are still the two stable solutions of the ODE

u̇ = f(u),

but instead of (1.8.6) we have ∫ 1

−1

f(u)du > 0.

As an indication of what happens we give the reader the following exercises. They are by
no means short but they can all be done with the tools of this section, and we strongly
recommend them to a reader interested in understanding this material well.

Exercise 1.8.9 To start, show that for f(u) given by (1.8.83), we can find a special solu-
tion u(t, x) of the Allen-Cahn equation (1.8.2):

ut = uxx + f(u), (1.8.84)

of the form
u(t, x) = ψ(x+ ct), (1.8.85)

with c > 0 and a function ψ(x) that satisfies

cψ′ = ψ′′ + f(ψ), (1.8.86)

together with the boundary condition

ψ(x)→ ±1, as x→ ±∞. (1.8.87)

Solutions of the form (1.8.85) are known as traveling waves. Show that such c is unique,
and ψ is unique up to a translation: if ψ1(x) is another solution of (1.8.86)-(1.8.87) with c
replaced c1, then c = c1 and there exists x1 ∈ R such that ψ1(x) = ψ(x+ x1).

Exercise 1.8.10 Try to modify the proof of Lemma 1.8.4 to show that if u(t, x) is the solution
of the Allen-Cahn equation (1.8.84) with an initial condition u0(x) that satisfies (1.8.8):

u0(x)→ ±1, as x→ ±∞, (1.8.88)
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then we have
u(t, x)→ 1 as t→ +∞, for each x ∈ R fixed. (1.8.89)

It should be helpful to use the traveling wave solution to construct a sub-solution that will
force (1.8.89). Thus, in the ”unbalanced” case, the ”more stable” of the two states u = −1
and u = +1 wins in the long time limit. Show that the convergence in (1.8.89) is not uniform
in x ∈ R.

Exercise 1.8.11 Let u(t, x) be a solution of (1.8.84) with an initial condition u0(x) that
satisfies (1.8.88). Show that for any c′ < c and x ∈ R fixed, we have

lim
t→+∞

u(t, x− c′t) = 1, (1.8.90)

and for any c′ > c and x ∈ R fixed, we have

lim
t→+∞

u(t, x− c′t) = −1. (1.8.91)

Exercise 1.8.12 Let u(t, x) be a solution of (1.8.84) with an initial condition u0(x) that
satisfies (1.8.88). Show that there exists x0 ∈ R (which depends on u0) so that for all x ∈ R
fixed we have

lim
t→+∞

u(t, x− ct) = ψ(x+ x0). (1.8.92)

1.8.3 When the medium is inhomogeneous: pulsating waves

We will be interested, in this final section, in equations of the form

ut − uxx = f(x, u), t > 0, x ∈ R, (1.8.93)

with f 1-periodic in the variable x. We will assume the following form f : there is θ ∈ (0, 1)
such that f(x, u) ≡ 0 if u < θ, and f(x, u) > 0 if u > θ. In the vicinity of θ there holds

fu(x, u) ≥ f(x, u)

u
. (1.8.94)

Finally we assume that f(x, 1) ≡ 0, and that there is α > 0 such that fu(x, 1) < −α for all
x ∈ R. Of course, the set of such functions is by no means empty. For instance, (1.8.94) is
true when

f(x, u) = a(x)(u− θ)p+,

with a(x) > 0, 1-periodic, and p a sufficiently large integer.
We wish to understand the large time behavior of a solution u(t, x) which, at time t = 0,

tends to 1 as x → −∞ and to 0 as x → +∞. Clearly, the large time asymptotics cannot
be given by a traveling wave, as the function f depends explicitely on x. It turns out that,
for such a nonlinearity, there is a special class of solutions generalizing traveling waves, these
are called pulsating waves. The reason for that is simple: these solutions will be shown to be
periodic in a well chosen Galilan reference frame. We will also show that, in fact, they attract
all the solutions that, initially, has the afore-mentioned behavior.
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The notion of pulsating waves was introduced by Xin at the beginning of the 90’s, see
for instance the review paper [?]. It was much extended and generalized by Berestycki and
Hamel, especially for models posed in the whole space, where things are more subtle than in
the one-dimensional model that we present. See [?] for a much detailed account of the theory
- that is, by the way, still evolving. We note that, even in one space dimension, relaxing the
assumptions that we have (for instance, asking f(x, 1) ≡ 0 instead of a more natural looking
assumption allowing uniform boundedness of the solutions) made may not necessarily modify
the nature of the results that we are about to present, but it would certainly involve a good
deal of additional work, which would not be in the sprit of this chapter. Once again, we refer
to [?] for an account of what happens in the most general situations.

Exercise 1.8.13 Under the stated assumptions on f , the only solutions φ(x) ∈ [0, 1] of

− φ′′ = f(x, φ), x ∈ R, (1.8.95)

are all the constants between 0 and θ, and 1.

Exercise 1.8.14 Consider a nonlinearity f(x, u) that satisfies all the above assumptions,
except f(x, 1) ≡ 0. Assume, though, the existence of f0(x, u) that satisfies them all, and that
is additionally close to f in the C1 norm.

1. Show that the(1.8.95) has a unique minimal nonconstant solution φ+(x), that is C2-close
to 1.

2. Show that the first periodic eigenvalue of −∂xx − fu(x, φ+) is negative.

Why have we suddenly shifted from nonlinearities of the Allen-Cahn type to nonnegative
nonlinearities of the afore-mentioned type? As the reader may have guessed in view of the
previous exercise, we will construct waves that connect various solutions of (1.8.95), but we
will not be necessarily very easy to count - a very interesting exercise of course, but once
again outside the scope of this section. We may still propose the following exercise to the
interested reader.

Exercise 1.8.15 Let f(x, u) be C2-close to an unbalanced Allen-Cahn nonlinearity. Find all
the solutions of (1.8.95), as well as, for each of them, the sign of −∂xx−fu(x, φ+). Hint: there
is a catch, the limiting Allen-Cahn equation has nonconstant solutions!

These informal preliminaries being dealt with, let us now define precisely the object that will
be in our proccupations.

Definition 1.8.16 A function φ(t, x) is a pulsating wave of (1.8.93), with speed c > 0, and
connecting 1 to 0 if it satisfies the following properties:

1. φ solves (1.8.93) of R× R,

2. it is 1/c-periodic in a Galilean reference frame with speed c,

3. we have
lim

x→−∞
φ(t, x) = 1, lim

t→+∞
φ(t, x) = 0,

pointwise in t.
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Let us make the following simple remarks.

Remark 1.8.17 • The parabolic regularity and the time periodicity imply that the limits
are in fact uniform in t, as soon as one looks at the phenomenon in the reference frame
with speed c.

• For a pulsating wave with speed c, the time-periodicity 1/c is the only possible one.
This forced by the 1-periodicity in x: in the reference frame with speed ct, the function
f(x, φ) becomes f(x+ct, φ). If φ is T -periodic, then f(x+ct, .) should also be T -periodic.
Another ay to view it is the following: the speed being c, the wave takes the time 1/c to
cover the cell of length 1. When this is achieved, it retrieves its original shape.

• If φ(t, x) is a pulsating wave with speed c, then any translate in time φ(t+ t0, x) is also
a pulsating wave with speed c.

And we may state the main achievement of the section, namely the existence and uniqueness
of pulsating waves.

Theorem 1.8.18 Problem (1.8.93) has a one-dimensional family of pulsating waves φ(t, x)
(one can be deduced from another by a translate in t) with speed c, connecting 1 to the left to
0 to the right. The speed c is unique. moreover we have ∂tφ > 0.

The last statement is a striking parallel with the main property of the traveling waves, namely
that they are decreasing in x. Of course, here, monotonicity in x is not true, what replaces it
is monotonicity on t.

Monotonicity and uniqueness are very easily proved by the sliding ideas that we have
exposed at length in the first chapter, it is therefore a good time to propose a last refresh
to the reader. The idea is the same in both cases: take two different waves, and prove
that a sufficiently large translate of one is below the other. Then, translate back until it is
not possible anymore, and derive a contradiction. Let us give some more details and prove
monotonicity first. let φ be a wave with speed c > 0, we infer, simply by the fact that they
have limits as x→ ±∞, the existence of a large T > 0 such that

φ(t+ T, x) ≤ φ(t, x) for all (t, x) ∈ [0, 1
c
]× [−M,M ],

and we may choose M > 0 such that

φ(t, x) ≤ θ

2
for t ∈ [0, 1

c
], x ≥M, φ(t, x) ≥ 1− δ for t ∈ [0, 1

c
], x ≤ −M,

with fu(x, u) ≤ α

2
for u ≥ 1− δ. In the reference frame moving with velocity c, both the wave

(still denoted by φ) and its translate solve:

∂tφ− c∂xφ− ∂xxφ = f(x− ct, φ), (1.8.96)

and ψ(t, x) : φ(t+ T, x)− φ(t, x) solve

∂tψ − c∂xψ − ∂xxψ − a(t, x)ψ = 0, (1.8.97)
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where a(t, x) is, as usual, some convex combination of fu(x − ct, φ). Note that now, both φ
and its translate are 1/c-periodic in t. Therefore, ψ(t, x) ≥ 0 for t ≥ 0, −M ≤ x ≤ M . For
x ≤ −M we have a(t, x) ≥ α/2, while for x ≥M we have an inequation of the form

∂tψ − c∂xψ − ∂xxψ ≥ 0. (1.8.98)

Sending t→ +∞ allows us to infer, from (1.8.97) and (1.8.98):

lim inf
t→+∞

ψ(t, x) ≥ 0.

Exercise 1.8.19 Work out the details by placing a subsolution below ψ on R+× (−∞,−M)
and (M,+∞). Nothing difficult here, the only intermediate step is to prove that the solution
of the Dirichlet advection-diffusion equation

vt − vxx − cvx = 0, t > 0, x ≥M
v(t, 0) = 0

limt→+∞ v(0, x) = 0
(1.8.99)

tends to 0 as t increases to infinity, uniformly in x. One may proceed as follows.

1. Show that it is enough to assume v(0, x) ≥ 0 and to prove that the lim sup is zero.

2. Construct a super-solution of the form e−βt−γx, give explicit values to β and γ.

3. Prove the result if v(0, x) is compactly supported.

4. Show that (1.8.99) generates a weakly contracting semigroup, that is: ‖v1(t, .)−v2(t, .)‖∞ ≤
‖v1(0, .)− v2(0, .)‖∞.

5. Conclude.

In the area {t > 0, x ≥ −M}, use the fact that a(t, x) ≤ −α/2.

Sending t to infinity and remembering the 1/c-periodicity of ψ allows us to infer that, ac-
tually, we have φ(t + T, x) ≥ φ(t, x) everywhere. And so, there is tmin ≥ 0 such that
φ(t + tmin, x) ≤ φ(t, x) everywhere. Assume tmin > 0, the inequality has to be strict at
at least one point, otherwise we would have φ(t+ tmin, x) = φ(t, x), something that the posi-
tive speed of propagation as well as the limits as x→ ±∞ oppose vehemently. But then, the
≤ sign should be replaced by a < sign, just to appease the strong maximum principle. So,
on a large compact set that we still call [−M,M ], we may translate a little more and obtain,
for small δ > 0:

φ(t+ tmin − δ, x) ≤ φ(t, x), t ∈ R, −M ≤ x ≤M.

The previous argument can be repeated, so that the inequality holds in fact on R× R. This
contradicts the minimality of tmin, ensuring φ(t + δ, x) ≥ φ(t, x) for all δ > 0. This entails
the monotonicity of the wave, and the same argument may be used to show uniqueness.

The uniqueness of the speed is hardly any more difficult. Let c1 and c2 be two potential
wave speeds, write down (1.8.93) in the reference frame moving with speed c1. Translate φ1

enough so that it is below φ2 in a large compact set, then use the following

86



Exercise 1.8.20 Construct a sub-solution to (1.8.96) under the form

φ
1
(t, x) = φ1(t+ ξ(t), x)− qe−cx/2−c2t/4Γ(x)− qe−αt/2(1− Γ(x− x1)),

where Γ is a smooth function that is equal to 1 on R− and 0 on [1,+∞). The constant x1

should be large, and the constant q should be small. The inspiration should be taken from
Lemma 1.8.4. The monotonicity in x of the traveling wave should now be replaced by the
monotonicity in t of the pulsating wave.

Clearly, we may choose the constants to have φ
1
≤ φ2. Sending t → +∞ and using the 1/c

periodicity yields φ1(t+ t0, x) ≤ φ2(t, x), which implies c1 ≥ c2. And so, c1 = c2 by symmetry.
It is now a good time to explain why pulsating waves exist. The construction that we

are going to provide relies, once again, on rather simple comparison arguments. The idea
is to solve the Cauchy Problem for (1.8.93), with a sub-solution as an initial datum. Thus
we will obtain, for the resulting solution, monotonicity for free. We will then examine its
behavior as |x| becomes very large, and see that it has the correct limits, and that they are
taken uniformly with respect to t. This can be viewed as a finite thickness property for the
front, and it will provide a sufficient amount of compactness for us to prove that the limiting
solution is nontrivial. A last effort, where we will again use comparison and sliding, will tell
us that we have put our hand on the sought for pulsating wave.

The starting point is therefore the construction of a sub-solution. Pick θ1 ∈ (θ, 1) close
enough to 1, β > 0 small to be chosen later, and α > 0 small so that we have

f(x, u) ≥ α2(1− u), u ∈ [θ1, 1],

and define

f(u) =

{
α2(1− u), u ∈ [θ1, 1]
−β2u, u ∈ [0, θ1).

Hence f(u) ≤ f(x, u). A solution v(x) of

−v′′ = f(v), lim
x→−∞

v(x) = 1

is easily computed: we have

v(x) =
1

2

(
θ1 +

1− θ1

β

)
e−βx +

1

2

(
θ1 −

1− θ1

β

)
eβx.

The sought for sub-solution is simply chosen as u(x) = v+(x). Solve (1.8.93) with u(0, x) =
u(x): we obtain a solution u(t, x) that satisfies ∂tu ≥ 0, moreover u(t, x) assumes the correct
limits as x → ±∞; the trouble is, however, that there is no uniformity at this stage. Our
main tool will be the following

Proposition 1.8.21 There is a function λ 7→ q(λ), bounded and bounded away from 0 on
every compact of [0, 1), such that we have

ut(t, x) ≥ q(λ)u(t, x) if u(t, x) = λ. (1.8.100)
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Proof. To see that it is true on every compact set of (θ, 1) is not so difficult: pick λ ∈ (θ, 1)
and assume that there is a sequence (tn, xn) such that u(tn, xn) = λ and lim

n→+∞
ut(tn, xn) = 0.

Because ut ≥ 0, the sequence of functions

un(t, x) = u(t+ tn, x+ xn)

converges, uniformly on every compact, and up to the extraction of a subsequence, to a
function u∞(t, x) that satisfies (1.8.93). Because of the Harnack inequality we have (∂tun)n
converges to 0, so that u∞ does not depend on x, moreover u∞(0, 0) = λ. The positivity of f
yields a contradiction. Thus, the proposition is true for this range of λ.

Now, pick δ > 0 small, and let us study what happens for the remaining values of λ.
Define

Ω = {(t, x) ∈ R× R : u(t, x) < θ + δ}.

Obviously, (1.8.100) holds true on

{(t, x) ∈ R× R : u(t, x) = θ + δ},

provided q(θ+δ) is chosen appropriately. The inequality also holds at t = 0, by the definition
of f , with q(λ) = β2 for all λ ∈ [0, θ]. For short, we set

q = inf
λ∈[0,θ+δ]

q(λ).

The function v(t, x) = ut(t, x)− qu(t, x) solves, in Ω:

vt − vxx = fu(x, u)v + (fu(x, u)− f(x, u)

u
)u

≥ fu(x, u)v because of (1.8.94).

Thus, v(t, x) ≥ 0 in Ω, what we wanted to prove. �
Proposition 1.8.21 is a very important property that will allow us to conclude almost

effortlessly. Let us now denote, this time, Ω the set {u < θ}, and Γ its boundary within
R∗+ × R; because ut ≥ qθ on Γ it is a smooth curve {(τ(x), x), x ∈ R}. We choose, once and
for all:

q = inf{q(λ), 0 ≤ λ ≤ 1 + θ

2
}. (1.8.101)

We may always assume that τ is defined on [0,+∞), with τ(0) = 0. The main consequence of
Proposition 1.8.21 is the following statement, which says that the front has finite thickness.

Corollary 1.8.22 The level set Γ may be described as a smooth curve of the form (t,X(t)),
with Ẋ(t) ≥ µ > 0.

lim
x−X(t)→+∞

u(t, x) = 0, lim
x−X(t)→−∞

= 1, (1.8.102)

uniformly with respect to t ∈ R+.

Proof. For small t > 0, say, t ∈ [0, t0], continuity implies that ux(t, x) > 0 when (t, x) ∈ Γ.
This implies, for every t ∈ [0, t0], the existence and uniqueness of the function X(t) defined
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as in the proposition. And, for any t in this interval, the equation for u to the left of X(t)
becomes

−uxx + qu ≤ ut − uxx = 0,

so that u(t, x) ≤ θe−
√
q(x−X(t)), and ux(t,X(t))) ≤ −θ√q. What would make this beautiful

estimate break down would be a time tmax ≥ t0 and a point xmax such that tmax = τ(xmax
and τ ′(xmax) = 0, in other words ux(tmax, xmax) = 0. However, at time tmax, xmax is still the
rightmost point (or, at least, can be made the rightmost one if τ ′ vanishes on an interval)
x such that u(tmax, x) = θ; this makes the previous argument work, and, in particular,
ux(tmax, xmax) ≤ −θ

√
q. This is an impossibility. Consequently, the function X(t) is defined

for all time, moreover we have

Ẋ(t) = − ut(t,X(t))

ux(t,X(t))
∈ [

q

‖ux‖∞
,
‖ut‖∞
infΓ

ux], (1.8.103)

and each of the above quantities is a positive constant. Notice that we have also ruled out a
scenario where a hole of points where u would drop below θ would appear to the left of Γ,
simply because ut > 0.

Our argument also shows that u(t, x) goes to 0 exponentially fast as x − X(t) becomes
negative, so the only thing that should worry us now is the limit x−X(t)→ +∞. For this,
it is convenient to write the equation for u in the reference frame following X(t):

ut − uxx − Ẋ(t)ux = f(x+X(t), u), (1.8.104)

by the Implicit function Theorem there is δ > 0 and θ1 ∈ (θ, 1) such that

u(t, x) ≥ θ1 for x ≤ −δ.

The assumptions implies the existence of a small α > 0 such that

f(x, u) ≥ α2(1− u) for u ≥ θ1. (1.8.105)

The maximum principle implies that 1− u(t, x) ≤ v(t, x) on R+ × (−∞, δ], where

vt − vxx − Ẋ(t)vx + α2v = 0, t > 0, x < −δ
v(t,−δ) = 1− θ1

v(0, x) = 1− u(x).
(1.8.106)

The function v(x) = (1 − θ1)eεx is a super-solution to (1.8.106) as soon as 0 < ε ≤ 2
√
α,

which implies the uniform exponential decay to 0 of 1− u. This proves the corollary. �

Exercise 1.8.23 At the beginning of the proof, we merrily said ”continuity implies that
ux(t, x) > 0 when (t, x) ∈ Γ”’. Make this continuity argument a little more explicit.

To construct the pulsating wave, we send t to +∞; more precisely, we consider a sequence
(tn)n going to +∞ such that the sequence

un(t, x) = u(tn + t, [X(tn)] + x]
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converges, locally on every compact, to a function that we denote φ(t, x), as well as all its
derivatives. We still denote by X(t) the θ-level set of φ, we note that φ(t, x) and X(t, x) enjoy
all the properties listed in Proposition 1.8.21 and its corollary. Moreover, φ is now defined
on the whole plane R2. It remains to see that it is the sought for pulsating wave, and this is
where sliding will make a last appearance. In fact, our argument will be quite similar to the
one we used to prove the Krein-Rutman Theorem. We claim the existence of a large T > 0
such that

φ(t+ T, x) ≥ φ(t, x− 1), for all (t, x) ∈ R2. (1.8.107)

For all M > 0, we set

ΩM = {(t, x) ∈ R2 : −M ≤ x−X(t) ≤M}.

From Corollary 1.8.22, we may choose M > 0 large enough so that u(t, x) = 0 if (t, x) is at the
left of ΩM , whereas u(t, x) ≥ θ1 if (t, x) is at the left of ΩM . This being done, we notice that
indeed, there is a large T > 0 such that 1.8.107 holds on ΩM . To see that the inequality holds
everywhere, notice that an inequation for v(t, x) = φ(t + T, x) − φ(t, x − 1) in the reference
frame of X(t) is

vt − vxx − Ẋ(t)vx + a(t, x) ≥ 0,

with a(t, x) = 0 if x ≥ M , and a(t, x) ≥ α2 if x ≤ −M . Notice finally the existence of µ > 0
such that Ẋ(t) ≥ µ. This said, pick any time t ∈ R, we may assume for simplicity that t = 0,
just by translation. At the time −n (n is any integer) there is ε > 0 independent of n such
that

u(−n, x) ≤ θe−ε(x−M) for x ≥M ,

and
1− u(−n, x) ≤ θ1e

ε(x+M) for x ≥ −M .

Exercise 1.8.24 Show the existence of a constant K > 0 and δ > 0 such that

v(t, x) ≥ −Ke−δ(t+n) for t ≥ −n and x ≤ −M ,

whereas
v(t, x) ≥ −Ke−εx/2−δ(t+n) for t ≥ −n and x ≥M .

The second estimate is the one where Ẋ(t) ≥ µ is needed.

Sending n to +∞ reveals that v(0, x) ≥ 0, so that the T we have defined satisfies (1.8.107).
The reader who has accepted to follow us up to this point will have no problem with this
penultimate hurdle:

Exercise 1.8.25 Call 1/c the smallest T such that (1.8.107) holds. Then, for T = 1/c, the
inequality becomes an equality.

Simply by uniqueness for the Cauchy Problem, we have

φ(t+ 1/c, x) = φ(t, x− 1).

Thus, phi is 1/c-periodic in a Galilean reference frame with speed c, and we have found our
pulsating wave.
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Exercise 1.8.26 Prove that any solution of the Cauchy Problem (1.8.93) converges, expo-
nentially fast in time, to a pulsating wave, provided that (i) u(0, x) converges to 1 as x→∞,
and (ii) u(0, x) converges exponentially fast in x to 0 as x→ +∞. It will be useful to write the
equation in the reference frame moving like X(t), and to recycle the proof of Theorem 1.8.2
with the family of sub and super-solutions defined in Exercise 1.8.20. If you are challenged
by the task, look at [?].

With this last result, we are leaving the fascinating world of invasion in reaction-diffusion
models. We are not leaving the topic forever, we will meet it again in a few chapters, with
equations that look very similar, but where both the mechanisms and the tools used for their
investigation will be very different from those displayed here. As always, we do not claim
that we have exhausted the subject, as multi-dimensional models - and also some questions in
one dimensions - require arguments that are sometimes much more sophisticated than those
presented here. However, the material of this chapter will be a good basis to a reader who
will want to attack the numerous open questions of the field.
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Chapter 2

Inviscid Hamilton-Jacobi equations

2.1 Introduction to the chapter

We will consider in this chapter the Hamilton-Jacobi equations

ut +H(x,∇u) = 0 (2.1.1)

on the unit torus Tn ⊂ Rn, or, sometimes, in all of Rn. Note that here, unlike in the
viscous Hamilton-Jacobi equations we have considered in Chapter 1, the diffusion coefficient
vanishes. There are two reasons to do that in this book, where diffusion is remarkably
present everywhere. The first is to emphasize some of the difficulties and phenomena that
one encounters in the absence of diffusion. Another is that, as we will see, a physically
reasonable class of solutions to (2.1.1) behave very much like the solutions to a regularized
problem

uεt +H(x,∇uε) = ε∆uε, (2.1.2)

with a small diffusivity ε > 0. Most of the techniques we have introduced so far rely on the
positivity of the diffusion coefficient and will deteriorate badly when the diffusion coefficient
is small. However, we will see that some of the bounds may survive even as the diffusion term
vanishes, because they are helped by the nonlinear Hamiltonian H(x,∇u). Obviously, not
every nonlinearity is beneficial: for example, solutions to the linear advection equation

ut + b(x) · ∇u(x) = 0, (2.1.3)

are typically no better than the initial condition u0(x) = u(0, x), no matter how smooth the
drift b(x) is. Therefore, we will have to restrict ourselves to some class of Hamiltonians H(x, p)
that do help to regularize the problem. This nonlinear regularization effect is one of the main
points of this chapter.

The organization of the chapter

We begin with an informal derivation of the Hamilton-Jacobi equations in Section 2.2. Next,
we discuss in Section 2.3 a class of viscous Hamilton-Jacobi equations, that is, equations of
the form (2.1.1) with a Laplacian added:

ut +H(x,∇u) = ∆u. (2.1.4)
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Armed with the knowledge gathered in Chapter 1, we will (not so easily, but also not at an
immense cost) construct a particular type of solutions, that we will call wave solutions. Quite
similarly to what happens for traveling waves for the parabolic equations, these waves will
be unique up to a translation in time, and solutions to the Cauchy problem will converge
exponentially fast to them. In the remainder of the chapter, we will keep these features in
mind to investigate how far the behavior of solutions to the inviscid Hamilton-Jacobi equations
deviates from this simple picture.

We will then go through the most naive approach, looking for the smooth solutions
to (2.1.1) in Section 2.4. However, a reader familiar with the theory of conservation laws,
would see immediately the connection between them and the Hamilton-Jacobi equations: in
one dimension, n = 1, differentiating (2.1.1) in x, we get a conservation law for v = ux:

vt + (H(x, v))x = 0. (2.1.5)

The basic one-dimensional conservation laws theory tells us that it is reasonable to expect
that v(t, x) becomes discontinuous in x at a finite time t, forming a shock, which means that
we can not hope that solutions to the inviscid Hamilton-Jacobi equations are better than
Lipschitz continuous generally. We will say a few words about the classical theory and explain
why it breaks down very quickly. This is well-known, see for instance [?], where it is done
very nicely. For the reader’s convenience, we recall the basics here. This somehow pessimistic
message should, however, be softened: there are (perhaps, less well-known) instances where
a nice classical theory can be developed, and we are going to discuss one such example here.
This material will, hopefully, be a good introduction to the more abstract theory to come
next.

We proceed with a discussion of the viscosity solutions of the first order Hamilton-Jacobi
equations in Section 2.5. Similarly to the parabolic regularity theory in Chapter 1, it is
impossible to give a reasonable overview of the state of the art in this field. Rather, we will
focus on its two most elementary aspects: first, that a viscosity solution is a solution obtained
by sending a diffusion coefficient (viscosity) to zero, and, second, that the viscosity solutions
exhibit the power of the comparison principle, something we have very much seen in the
previous chapters. Our main goal will be to convince the reader that, although the viscous
terms will have disappeared from the equations, some nontrivial features remain, such as the
large time convergence to a steady state. One may call this the Cheshire cat smile effect [?].
This is explored, once again, in stages, where we first give a relatively accurate account of the
Cauchy problem without dwelling too much on technicalities.

With the solution theory of Sections 2.4 and 2.5 in hand, one may start looking for the
long time behavior of the solutions we have constructed, and their convergence to plane waves.
The first step in this direction, as in the viscous case, is to construct the wave solutions, and
consider the stationary version of (2.1.1):

H(x,∇u) = c, x ∈ Tn. (2.1.6)

This we will be done in Section 2.6. After what we will have done in Section 2.3, it should
be clear to the reader why (2.1.6) has a constant c in the right side – solutions to (2.1.6) lead
to the wave solutions for the time-dependent problem (2.1.1). As in the viscous case, we will
prove that under reasonable assumptions, solutions to (2.1.6) exist only for a unique value
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of c which has no reason to be equal to zero. Thus, the “standard” steady equation

H(x,∇u) = 0

typically would have no solutions.
The case of a strictly convex Hamiltonian is quite interesting, and has strong connections

with dynamical systems. We are going to dwell on it in Section 2.7, and show surprising
regularizing properties that are not due to diffusion anymore but to the convexity of the
Hamiltonian. After that, we will come back to the large time behavior of the solutions to the
Cauchy problem, in Sections 2.8 and 2.9. We will first settle on a particular, and important
class of equations in Section 2.8, for which we will prove, just as in the viscous case, the
convergence to a wave. Alas, even though the speed c is unique, we will lose the uniqueness of
the profile of the steady solutions – unlike in the diffusive case, (2.1.6) may have non-unique
solutions, even up to a translation. We are going to investigate this phenomenon, that may
be considered as the second main point of this chapter, in some detail. This major difference
with the diffusive Hamilton-Jacobi equations will not be enough to prevent the large time
convergence, but will force us to find a selection mechanism that will make up for the loss of
diffusion.

In the last section, we use these new ideas to explain that, in fact, convergence to a wave
holds for general equations of the form (2.1.1), as long as the Hamiltonian H is strictly convex
in its second variable. In order to achieve this objective, we will (although we do not pretend
to give a comprehensive treatment of this vast subject, that is still evolving at the time of
the writing) give a reasonably comprehensive view of the issues posed by these deceptively
simple models.

2.2 An informal derivation of the Hamilton-Jacobi equa-

tions

We begin by providing an informal derivation of the Hamilton-Jacobi equations, in the spirit
of what we have done in Section 1.2 for the linear and semi-linear parabolic equations. The
material of this section will reappear in Section 2.7 in the form of the Lax-Oleinik formula
for the solutions to the Hamilton-Jacobi equations.

As in Section 1.2, we start with a random walk on a lattice of size h in Rn, and a time
step τ . The walker evolves as follows. If the walker is located at a position X(t) ∈ hZn at a
time t = mτ , m ∈ N, then at a time t+ τ it finds itself at a position

X(t+ τ) = X(t) + v(t)τ + hξ(t). (2.2.1)

Here, ξ(t) ∈ Rn is an Rn-valued random variable such that each of the coordinates ξk(t),
with k = 1, . . . , n, are independent and take the values ±1 with probabilities equal to 1/2, so
that

E(ξk(t)) = 0, E(ξk(t)ξm(t′)) = δkmδt,t′ , (2.2.2)

for all 1 ≤ k,m ≤ n and all t, t′. The velocity v(t) is known as a control, that the walker
can choose from a set A of admissible velocities. The choice of the velocity v on the time
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interval [t, t + τ ] comes with a cost L(v)τ , where L(v) is a prescribed cost function. At
the terminal time T = Nτ the walker finds itself at a position X(T ) and pays the terminal
cost f(X(T )), where f(x) is also a given function. The total cost of the trajectory that starts
at a time t = mτ at a position x and continues until the time T = Nτ is

w(t, x;V ) =
N∑

k=m

L(v(kτ))τ + f(X(Nτ)). (2.2.3)

Note that the total cost involves both the running cost and the terminal cost. We have
denoted here by V = (v(t), v(t + τ), . . . , v((N − 1)τ)) the whole sequence of the controls
(velocities) chosen by the walker between the times t and T . The quantity of interest is the
least possible average cost, optimized over all choices of the velocities:

u(t, x) = inf
V ∈At,T

Ew(t, x;V ) = inf
V ∈At,T

E
N∑

k=m

L(v(kτ))τ + f(X(Nτ)). (2.2.4)

Here, the expectation E is taken with respect to the random variables ξ(s), for all s = kτ
with m ≤ k < N that describe the random contribution at each of the time steps between t
and T . The set At,T is the set of all possible controls chosen between the times t = nτ
and T = Nτ . The velocities v are viewed as not random, as they can be chosen by the
walker. The function u(t, x) is known as the value function and is the basic object of study
in the control theory.

As the velocities v(s) are chosen separately by the walker at each time s between t and T ,
and the random variables ξ(s) and ξ(s′) are independent for s 6= s′, the function u(t, x)
satisfies the following relation:

u(t, x) = inf
v∈A

E
[
L(v)τ + u(t+ τ, x+ vτ + hξ(t))

]
. (2.2.5)

This is the simplest version of a dynamic programming principle, a fundamental notion of
the control theory. Here, v is the velocity chosen at the initial time t and the expectation is
taken solely with respect to the random variable ξ(t).

A version of the dynamic programming principle, such as (2.2.5), is a very common starting
point for the derivation of the Hamilton-Jacobi and other related types of equations. To
illustrate this idea, let us assume that u(t, x) is a sufficiently smooth function. Expanding
the right side of (2.2.5) in h� 1 and τ � 1 gives

u(t, x) = inf
v∈A

E
[
L(v)τ + u(t+ τ, x+ vτ + hξ(t))

]
= u(t, x) + τut +

τ 2

2
utt(t, x)

+ inf
v∈A

E
[
L(v)τ + (vτ + hξ(t)) · ∇u(t, x) + τ(vτ + hξ(t)) · ∇ut(t, x)

+
1

2

n∑
i,j=1

(viτ + hξi(t))(vjτ + hξj(t))
∂2u(t, x)

∂xi∂xj

]
+ l.o.t.

(2.2.6)

Note that the terms of the order O(1) in the left and the right sides of (2.2.6) cancel auto-
matically. In addition, the terms that are linear in ξ(t) vanish after taking the expectation.
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It is easy to see then that, as in the random walk approximation of the diffusion equations
we have encountered in Section 1.2, the interesting choice of the temporal and spatial steps τ
and h is

h2 = 2Dτ, (2.2.7)

with a diffusion coefficient D. Then, after taking into account the aforementioned can-
cellations, the leading order terms in (2.2.6) are of the order O(τ) = O(h2). Keeping in
mind (2.2.2), we see that they combine to give the following equation for u(t, x):

ut(t, x) + inf
v∈A

[
L(v) + v · ∇u(t, x)

]
+D∆u(t, x) = 0. (2.2.8)

Let us introduce the function

H(p) = inf
v∈A

[
L(v) + v · p

]
, (2.2.9)

defined for p ∈ Rn. Then (2.2.8) can be written as

ut +H(∇u) +D∆u = 0. (2.2.10)

This equation should be supplemented by the terminal condition u(T, x) = f(x) that comes
from the definition of the value function. Recall that f(x) is the terminal cost function.

Equation (2.2.10) is backward in time. It is convenient to define the function

ū(t, x) = u(T − t, x),

which satisfies the forward in time Cauchy problem:

ūt = H(∇ū) +D∆ū, t > 0,

ū(0, x) = f(x),
(2.2.11)

and for the sake of convenience we will focus on this forward in time Cauchy problem.
This is how the viscous Hamilton-Jacobi equations can be derived informally. Their rig-

orous derivation starting with a continuous in space and time stochastic control problem is
not very different but requires the use of the stochastic calculus and the Ito formula. The
inviscid equations of the form

ut = H(∇u), (2.2.12)

are derived in a very similar way but the random walk is taken to be purely deterministic,
driven solely by the control v, with ξ(t) = 0.

Exercise 2.2.1 Generalize the above derivation to obtain a spatially inhomogeneous Hamilton-
Jacobi equation of the form

ut = H(x,∇u) +D∆u. (2.2.13)

Exercise 2.2.2 Show that the function H(p) defined in (2.2.9) is concave.

This exercise explains why we will often consider below the Hamilton-Jacobi equations of the
form

ut +H(x,∇u) = D∆u, (2.2.14)

with a convex Hamiltonian H(p), either with D > 0 or D = 0.
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2.3 The simple world of viscous Hamilton-Jacobi equa-

tions

As a warm-up to the chapter, we are going to use the knowledge gathered in Chapter 1 for the
study of the long time behavior of the solutions to the viscous Hamilton-Jacobi equations.
This problem falls in the same class as what we did in Section 1.8.1, where we proved,
essentially with the sole aid of the strong maximum principle and the Harnack inequality, the
convergence of the solutions to the Cauchy problem for the Allen-Cahn equation to a translate
of a stationary solution. The main difference is that now we will have to fight a little to show
the existence of a steady state, while the long time convergence will be relatively effortless.

We are interested in the large time behavior of the solutions to the Cauchy problem

ut −∆u = H(x,∇u), t > 0, x ∈ Tn, (2.3.1)

with a given initial condition u(0, x) = u0(x). This is an equation of the form (1.5.35) that we
have considered in Section 1.5.2, and we make the same assumptions on the nonlinearity, that
we now denote by H, the standard notation in the theory of the Hamilton-Jacobi equations,
as in that section. First, we assume that H is smooth and 1-periodic in x. We also make the
Lipschitz assumption on the function H(x, p): there exists CL > 0 so that

|H(x, p1)−H(x, p2)| ≤ CL|p1 − p2|, for all x, p1, p2 ∈ Rn. (2.3.2)

In addition, we assume that H is growing linearly in p at infinity: there exist α > 0 and β > 0
so that

0 < α ≤ lim inf
|p|→+∞

H(x, p)

|p|
≤ lim sup
|p|→+∞

H(x, p)

|p|
≤ β < +∞, uniformly in x ∈ Tn. (2.3.3)

One consequence of (2.3.3) is that H(x, p) is uniformly bounded from below. Note also that
if u(t, x) solves (2.3.1) then u(t, x) +Kt solves (2.3.1) with the Hamiltonian H(x, p) replaced
by H(x, p)+K. Therefore, we may assume without loss of generality that there exist C1,2 > 0
so that

C1(1 + |p|) ≤ H(x, p) ≤ C2(1 + |p|), for all x ∈ Tn and p ∈ Rn, (2.3.4)

so that, in particular,
H(x, p) > C1 for all x ∈ Tn and p ∈ Rn. (2.3.5)

As we have seen in Section 1.5.2, these assumptions ensure the existence of a unique smooth 1-
periodic solution u(t, x) to (2.3.1) supplemented by a continuous, 1-periodic initial condi-
tion u0(x). In order to discuss its long time behavior, we need to introduce a special class of
solutions of (2.3.1).

Theorem 2.3.1 Under the above assumptions, there exists a unique c ∈ R so that (2.3.1)
has solutions (that we will call the wave solutions) of the form

w(t, x) = ct+ φ(x), (2.3.6)

with a 1-periodic function φ(x). The profile φ(x) is unique up to an additive constant:
if w1(t, x) and w2(t, x) are two such solutions then there exists k ∈ R so that φ1(x)−φ2(x) ≡ k
for all x ∈ Tn.
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The constant c is often referred to as the speed of the plane wave. The reason is that the
solutions to the Hamilton-Jacobi equations, apart from the optimal control theory context
that we have discussed above, also often describe the height of an interface, so that c may be
thought of as the speed at which the height of the interface is moving up, and φ(x) as the
fixed profile of that interface as it moves up at a constant speed.

Exercise 2.3.2 Consider the following discrete growing interface model, defined on the lat-
tice hZ, with a time step τ , with u(t, x) being the interface height at the time t at the
position x:

u(t+ τ, x) =
1

2

[
u(t, x− h) + u(t, x+ h)]

+
1

2

[
F (u(t, x+ h)− u(t, x)) + F (u(t, x)− u(t, x− h))

]
+ δV (t, x),

(2.3.7)

with a given function F (p), and a prescribed source V (t, x). The terms in the right side
of (2.3.7) can be interpreted as follows: (1) the first term has an equilibrating effect, leveling
the interface out, (2) the second term says that the rate of the interface growth depends on
its slope – things falling from above can stick to the interface, and (3) the last term is an
outside source of the interface growth (things falling from above). Find a scaling limit that
relates τ , h and δ so that in the limit you get a Hamilton-Jacobi equation of the form

ut = ∆u+H(x,∇u) + V (t, x). (2.3.8)

The large time behavior of u(t, x) is summarized in the next theorem.

Theorem 2.3.3 Let u(t, x) be the solution of the Cauchy problem for (2.3.1) with a contin-
uous 1-periodic initial condition u0. There is a wave solution w(t, x) of the form (2.3.6), a
constant ω > 0 that does not depend on u0 and C0 > 0 that depends on u0 such that

|u(t, x)− w(t, x)| ≤ C0e
−ωt, (2.3.9)

for all t ≥ 0 and x ∈ Tn.

We will first prove the existence part of Theorem 2.3.1, and that will occupy most of the
rest of this section, while its uniqueness part and the convergence claim of Theorem 2.3.3 will
be proved together rather quickly in the end.

2.3.1 The wave solutions

Outline of the existence proof

We first present an outline of the existence proof, before going into the details of the argument.
Plugging the ansatz (2.3.6) into (2.3.1) and integrating over Tn gives a relation

c =

∫
Tn
H(x,∇φ(x))dx. (2.3.10)

The equation for φ can, therefore, be written as

−∆φ = H(x,∇φ(x))−
∫
Tn
H(z,∇φ(z))dz, (2.3.11)
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and this will be the starting point of our analysis.
We are going to use a continuation method. As this strategy is typical for the existence

proofs for many nonlinear PDEs, it is worth sketching out the general plan. Instead of just
looking at (2.3.11) with a given Hamiltonian H(x, p), we consider a family of equations

−∆φσ = Hσ(x,∇φσ)−
∫
Tn
Hσ(z,∇φσ)dz, (2.3.12)

with the Hamiltonians

Hσ(x, p) = (1− σ)H0(x, p) + σH(x, p), (2.3.13)

parametrized by σ ∈ [0, 1]. At σ = 0, we start with a particular choice of H0(x, p) for which
we know that (2.3.12) has a solution: we take

H0(x, p) =
√

1 + |p|2,

so that φ0(x) ≡ 0 is an explicit solution to (2.3.12) with σ = 0. At σ = 1, we end with

H1(x, p) = H(x, p). (2.3.14)

The goal is show that (2.3.12) has a solution for all σ ∈ [0, 1] and not just for σ = 0 by
showing that the set Σ of σ for which (2.3.12) has a solution is both open and closed in [0, 1].

Showing that Σ is closed requires a priori bounds on the solution φσ of (2.3.12) that would
both be uniform in σ ∈ [0, 1] and ensure the compactness of the sequence φσn of solutions
to (2.3.12) as σn → σ in a suitable function space. The estimates should be strong enough to
ensure that the limit φσ is a solution to (2.3.12).

In order to show that Σ is open, one relies on the implicit function theorem. Let us assume
that (2.3.12) has a solution φσ(x) for some σ ∈ [0, 1]. In order to show that (2.3.12) has a
solution for σ + ε, with a sufficiently small ε, we are led to consider the linearized problem

−∆h− ∂Hσ(x,∇φσ)

∂pj

∂h

∂xj
+

∫
Tn

∂Hσ(z,∇φσ)

∂pj

∂h(z)

∂zj
dz = f, (2.3.15)

with

f(x) = H(x,∇φσ)−H0(x,∇φσ)−
∫
Tn
H(z,∇φσ(z))dz +

∫
Tn
H0(z,∇φσ(z))dz. (2.3.16)

The implicit function theorem guarantees existence of the solution φσ+ε, provided that the
linearized operator in the left side of (2.3.15) is invertible, with the norm of the inverse a priori
bounded in σ. This will show that the set Σ of σ ∈ [0, 1] for which the solution to (2.3.12)
exists is open.

The bounds on the operator that maps f → h in (2.3.15) also require the a priori bounds
on φσ. Thus, both proving that Σ is open and that it is closed require us to prove the a
priori uniform bounds on φσ. Therefore, our first step will be to assume that a solution φσ(x)
to (2.3.12) exists and obtain a priori bounds on φσ. Note that if φσ is a solution to (2.3.12),
then k+φσ is also a solution for any k ∈ R. Thus, it is more natural to obtain a priori bounds
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on ∇φσ than on φσ itself, and then normalize the solution so that φσ(0) = 0 to ensure that φσ
is bounded.

It is important to observe that the Hamiltonians Hσ(x, p) obey the Lipschitz bound (2.3.2),
with a Lipschitz constant CL that does not depend on σ ∈ [0, 1], and estimate (2.3.4) also
holds for Hσ with the same C1,2 > 0 for all σ ∈ [0, 1]. The key bound to prove will be to
show that there exists a constant K > 0 that depends only on the Lipschitz constant of H
in (2.3.2) and the two constants in the linear growth estimate (2.3.4) such that any solution
to (2.3.12) satisfies

‖∇φσ‖L∞(Tn) ≤ K. (2.3.17)

We stress that this bound will be obtained not just for one Hamiltonian but for all Hamiltoni-
ans with the same Lipschitz constant CL in (2.3.2) that satisfy (2.3.4) with the same C1,2 > 0.
The estimate (2.3.17) will turn out to be sufficient to apply the argument we have outlined
above.

An a priori L1-bound on the gradient

Before establishing the L∞-bound (2.3.17), let us first prove that there exists a constant C > 0
that only depends on CL in (2.3.2) and C1,2 in (2.3.4) such that any solution φσ(x) of (2.3.12)
satisfies ∫

Tn
Hσ(x,∇φσ)dx ≤ C. (2.3.18)

Because of the lower bound in (2.3.3), this is equivalent to an a priori L1-bound on |∇φσ|:∫
Tn
|∇φσ(x)|dx ≤ C, (2.3.19)

with a possibly different C > 0 that still depends only on CL and C1,2. To prove (2.3.18),
we will rely on Proposition 1.7.10 in Chapter 1 that we recall here for the convenience of the
reader.

Proposition 2.3.4 Let b(x) be a smooth vector field over Tn. The linear equation

−∆e+∇ · (eb) = 0, x ∈ Tn, (2.3.20)

has a unique solution e∗1(x) normalized so that

‖e∗1‖L∞ = 1, (2.3.21)

and such that e∗1 > 0 on Tn. Moreover, for all α ∈ (0, 1), the function e∗1 is α-Hölder contin-
uous, with the α-Hölder norm bounded by a universal constant depending only on ‖b‖L∞(Tn).

Let us first see why it implies (2.3.18). An immediate consequence of the normalization (2.3.21)
and the claim about the Hölder norm of e∗1, together with the positivity of e∗1 is that∫

Tn
e∗1(x)dx ≥ K1 > 0, (2.3.22)
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with a constant K1 > 0 that depends only on ‖b‖L∞ . Now, given a solution φσ(x) of (2.3.12),
set

bj(x) =

∫ 1

0

∂pjHσ(x, r∇φσ(x))dr, (2.3.23)

so that

b(x) · ∇φσ(x) =
n∑
j=1

bj(x)
∂φσ
∂xj

= Hσ(x,∇φσ)−Hσ(x, 0), (2.3.24)

and (2.3.12) can be re-stated as

−∆φσ − bj(x)
∂φσ
∂xj

= Hσ(x, 0)−
∫
Tn
Hσ(z,∇φσ)dz. (2.3.25)

Note that while b(x) does depend on ∇φσ, the L∞-norm of b(x) depends only on the Lipschitz
constant CL of the function Hσ(x, p) in the p-variable. Let now e∗1 be the solution to (2.3.20)
given by Proposition 2.3.4, with the above b(x). Multiplying (2.3.25) by e∗1 and integrating
over Tn yields

0 =

∫
Tn
e∗1(x)Hσ(x, 0)dx−

(∫
Tn
e∗1(x)dx

)(∫
Tn
Hσ(z,∇φσ)dz

)
, (2.3.26)

hence ∫
Tn
Hσ(x,∇φσ)dx ≤

(∫
Tn
e∗1(x)dx

)−1
∫
Tn
e∗1(x)Hσ(x, 0)dx, (2.3.27)

and (2.3.19) follows from (2.3.22) and (2.3.4). As the constant K1 in (2.3.22) depends only
on the L∞-norm of b(x) that, in turn, depends only on CL, the constant C in the right side
of (2.3.18), indeed, depends only on CL and C1,2.

An a priori L∞ bound on the gradient

So far, we have obtained an a priori L1-bound (2.3.19) for the gradient of any solution φσ
to (2.3.12). Now, we improve this estimate to an L∞ bound.

Proposition 2.3.5 There is a constant C > 0 that depends only on the constants CL and C1,2,
such that any solution φσ to

−∆φσ = Hσ(x,∇φσ)−
∫
Tn
Hσ(z,∇φσ)dz, (2.3.28)

satisfies
‖∇φσ‖L∞(Tn) ≤ C. (2.3.29)

As a consequence, if φσ is normalized such that φσ(0) = 0, then we also have ‖φσ‖L∞(Tn) ≤ C.

Proof. We borrow the strategy in the proof of Proposition 1.7.10. Let φσ be a solution
to (2.3.28) such that φσ(0) = 0. The only estimate we have so far is the L1-bound (2.3.19)
for ∇φσ – the idea is to estimate the L∞-norm ‖∇φσ‖L∞(T) solely from the L1-norm of φσ
and the equation.
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Let Γ(x) be as in the proof of Proposition 1.7.10: a nonnegative smooth function equal
to 1 in the cube [−2, 2]n and to zero outside of the cube (−3, 3)n, and set ψ(x) = Γ(x)φσ(x).
The function ψ(x) satisfies an equation similar to what we have seen in (1.7.34):

−∆ψ = −2∇Γ · ∇φσ − φσ∆Γ + F (x), x ∈ Rn, (2.3.30)

with

F (x) = Γ(x)
[
Hσ(x,∇φσ(x))−

∫
Tn
Hσ(z,∇φσ(z))dz

]
. (2.3.31)

The only a priori information we have about F (x) and the term ∇Γ·∇φσ(x) so far is that they
are supported inside [−3, 3]n and are uniformly bounded in L1(Rn) via (2.3.18) and (2.3.19).
Here, we use the assumption (2.3.4) that the Hamiltonian H(x, p) is uniformly positive. It
helps to combine these two terms:

G(x) = F (x)− 2∇Γ(x) · ∇φσ(x), (2.3.32)

with G(x) supported inside [−3, 3]n, and∫
Rn
|G(x)|dx ≤ C, (2.3.33)

with a constant C > 0 that depends only on CL and C1,2, due to (2.3.18) and (2.3.19). We
also know that

|G(x)| ≤ C(1 + |∇φσ(x)|, (2.3.34)

because of (2.3.4).
Next, we use the fundamental solution E(x) to the Laplace equation in Rn to write

ψ(x) =

∫
Rn
E(x− y)[G(y)− φσ(y)∆Γ(y)]dy. (2.3.35)

Differentiating (2.3.35) in x gives

∇ψ(x) =

∫
Rn
∇E(x− y)[G(y)− φσ(y)∆Γ(y)

]
dy. (2.3.36)

Exercise 2.3.6 Note that the function E(x − y) has a singularity at y = x. Show that
nevertheless one can differentiate in (2.3.35) under the integral sign to obtain (2.3.36).

The function ∇E(x−y) has an integrable singularity at y = x, of the order |x−y|−n+1, and is
bounded everywhere else. Thus, for all ε > 0 we have, with the help of (2.3.33) and (2.3.34):∣∣∣∣∫

Rn
G(y)∇E(x− y)dy

∣∣∣∣≤ ∣∣∣∣∫
|x−y|≤ε

G(y)∇E(x− y)dy

∣∣∣∣+∣∣∣∣∫
|x−y|≥ε

G(y)∇E(x− y)dy

∣∣∣∣
≤ C(1 + ‖∇φσ‖L∞)

∫
|x−y|≤ε

dy

|x− y|n−1
+ Cε−n+1

∫
|x−y|≥ε

|G(y)|dy

≤ Cε(1 + ‖∇φσ‖L∞) + Cε1−n. (2.3.37)
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The integral in (2.3.36) also contains a factor of φσ, whereas our bounds so far deal
with ∇φσ. However, we have assumed without loss of generality that φσ(0) = 0, hence for
any δ > 0 we may write

φσ(y) =

∫ 1

0

y · ∇φσ(sy)ds =

∫ δ

0

y · ∇φσ(sy)ds+

∫ 1

δ

y · ∇φσ(sy)ds,

so that both, as |y| ≤ 1, we have

|φσ(y)| ≤ ‖∇φσ‖L∞ , (2.3.38)

and ∫
Tn
|φσ(y)|dy ≤ Cδ‖∇φσ‖L∞ +

∫ 1

δ

∫
Tn
|y||∇φσ(sy)|dyds

≤ Cδ‖∇φσ‖L∞ + C

∫ 1

δ

∫
sTn
|y||∇φσ(y)|dy ds

sn+1
≤ Cδ‖∇φσ‖L∞ + C

∫ 1

δ

ds

s1+n

≤ Cδ‖∇φσ‖L∞ + Cδ−n. (2.3.39)

We used above the a priori bound (2.3.19) on ‖∇φ‖L1(Tn). Combining (2.3.38) and (2.3.39),
we obtain, as in (2.3.37):∣∣∣∣∫

Rn
φσ(y)∆Γ(y)∇E(x− y)dy

∣∣∣∣≤ ∫
|x−y|≤ε

|φσ(y)||∆Γ(y)|∇E(x− y)|dy

+

∫
|x−y|≥ε

|φσ(y)||∆Γ(y)||∇E(x− y)|dy ≤ Cε‖φσ‖L∞ + Cε1−n
∫
Tn
|φσ(y)|dy

≤ Cε‖∇φσ‖L∞ + Cε1−nδ‖∇φσ‖L∞ + Cε1−nδ−n. (2.3.40)

Together, (2.3.37) and (2.3.40) tell us that

‖∇ψ‖L∞ ≤ Cε(1+‖∇φσ‖L∞)+Cε1−n+Cε‖∇φσ‖L∞+Cε1−nδ‖∇φσ‖L∞+Cε1−nδ−n. (2.3.41)

Next, observe that, because Γ ≡ 1 in [−2, 2]n and φσ is 1-periodic, we have

‖∇φσ‖L∞(Tn) = ‖∇(Γφσ)‖L∞([−1,1]n) ≤ ‖∇(Γφσ)‖L∞([−3,3]n) = ‖∇ψ‖L∞ . (2.3.42)

Thus, if we take δ = εn in (2.3.41), we would obtain

‖∇φσ‖L∞ ≤ Cε‖∇φσ‖∞ + Cε, (2.3.43)

with a universal constant C > 0 and Cε that does depend on ε. Now, the proof of (2.3.29) is
concluded by taking ε > 0 small enough. �

Going back to equation (2.3.11) for φ:

−∆φ = H(x,∇φ)−
∫
Tn
H(x,∇φ)dx, (2.3.44)

the reader should do the following exercise.

Exercise 2.3.7 Use the L∞-bound on ∇φ in Proposition 2.3.5 to deduce from (2.3.44) that,
under the assumption that H(x, p) is smooth (infinitely differentiable) in both variables x
and p, the function φ(x) is, actually, infinitely differentiable, with all its derivatives of order n
bounded by a priori constants Cn that do not depend on φ.
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The linearized problem

We need one more ingredient to finish the proof of the existence part of Theorem 2.3.1: to
set-up an application of the implicit function theorem. Let φσ be a solution to (2.3.12) and
let us consider the linearized problem, with an unknown h:

−∆h− ∂pjHσ(x,∇φσ)∂xjh+

∫
Tn
∂pjHσ(y,∇φσ)∂xjh(y)dy = f x ∈ Tn. (2.3.45)

We assume that f ∈ C1,α(Tn) for some α ∈ (0, 1), and f has zero mean over Tn:∫
Tn
f(x)dx = 0,

and require that the solution h to (2.3.45) also has zero mean:∫
Tn
h(x)dx = 0. (2.3.46)

Proposition 2.3.8 Equation (2.3.45) has a unique solution h ∈ C3,α(Tn) with zero mean.
The mapping f 7→ h is continuous from the set of C1,α functions with zero mean to the set
of C3,α(Tn) functions with zero mean.

Proof. The Laplacian is a one-to-one map between the set of Cm+2,α functions with zero
mean and the set of Cm,α(Tn) functions with zero mean, for any m ∈ N. Thus, we may talk
about its inverse that we denote by (−∆)−1. Equation (2.3.45) is thus equivalent to

(I +K)h = (−∆)−1f, (2.3.47)

with the operator

Kh = (−∆)−1

(
−∂pjHσ(x,∇φσ)∂xjh+

∫
Tn
∂pjH(y,∇φσ)∂xjh(y)dy

)
. (2.3.48)

Exercise 2.3.9 Show that K is a compact operator on the set of functions in C1,α(Tn) with
zero mean.

The problem has been now reduced to showing that the only solution of

(I +K)h = 0 (2.3.49)

with h ∈ C1,α(Tn) with zero mean is h ≡ 0. Note that (2.3.49) simply says that h is a solution
of (2.3.45) with f ≡ 0. Let e∗1 > 0 be given by Proposition 2.3.4, with

bj(x) = −∂pjHσ(x,∇φσ). (2.3.50)

That is, e∗1 is the positive solution of the equation

−∆e∗1 +∇ · (e∗1b) = 0, (2.3.51)
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normalized so that ‖e∗1‖L∞(Tn) = 1. The uniform Lipschitz bound on Hσ(x, p) in the p-variable
implies that b(x) is in L∞(Tn), and thus Proposition 2.3.4 can be applied. Multiplying (2.3.45)
with f = 0 by e∗1 and integrating gives, as e∗1 > 0:∫

Tn
∂pjHσ(y,∇φσ)∂xjh(y)dy = 0.

But then, the equation for h becomes simply

−∆h+ bj(x)∂xjh = 0, x ∈ Tn,

which entails that h is constant, by the Krein-Rutman theorem. Because h has zero mean,
we get h ≡ 0. �

Exercise 2.3.10 Let H0(x, p) satisfy the assumptions of Theorem 2.3.3, and assume that
equation (2.3.11), with H = H0,:

−∆φ0 = H0(x,∇φ0)−
∫
Tn
H0(z,∇φ0)dz, (2.3.52)

has a solution φ0 ∈ C(Tn). Consider H1(x, p) ∈ C∞(T × Rn). Prove, with the aid of
Propositions 2.3.5 and 2.3.8, and the implicit function theorem that there exist R0 > 0
and ε0 > 0 such that if

|H1(x, p)| ≤ ε0, for x ∈ Tn and |p| ≤ R0, (2.3.53)

then equation (2.3.11) with H = H0 +H1:

−∆φ = H(x,∇φ)−
∫
Tn
H(z,∇φ)dz, (2.3.54)

has a solution φ.

Existence of the solution

We finally prove the existence part of Theorem 2.3.1. Consider H(x, p) satisfying the assump-
tions of the theorem. As before, we set

H0(x, p) =
√

1 + |p|2 − 1,

and
Hσ(x, p) = (1− σ)H0(x, p) + σH(x, p),

so that H1(x, p) = H(x, p), and consider existence of a solution to (2.3.12):

−∆φσ = Hσ(x,∇φσ)−
∫
Tn
Hσ(z,∇φσ)dz, (2.3.55)

Consider the set

Σ = {σ ∈ [0, 1] : equation (2.3.55) has a solution}.
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Our goal is to show that Σ = [0, 1]. We know that Σ is non empty, because 0 ∈ Σ: in-
deed, φ0(x) ≡ 0 is a solution to (2.3.55) at σ = 0. Thus, if we show that Σ is both open and
closed in [0, 1], this will imply that Σ = [0, 1], and, in particular, establish the existence of a
solution to (2.3.55) for H1(x, p) = H(x, p).

Now that we know that the linearized problem is invertible, the openness of Σ is a direct
consequence of the inverse function theorem, as explained in Exercise 2.3.10. Closedness of Σ
is not too difficult to see either: consider a sequence σn ∈ [0, 1] converging to σ̄ ∈ [0, 1], and
let φn be a solution to (2.3.55) with H(x, p) = Hσn(x, p), normalized so that

φn(0) = 0. (2.3.56)

Proposition 2.3.5 implies that
‖∇φn‖L∞(Tn) ≤ C,

and thus
‖H(x,∇φn)‖L∞ ≤ C.

However, this means that φn solve an equation of the form

−∆φn = Fn(x), x ∈ Tn, (2.3.57)

with a uniformly bounded function

Fn(x) = Hσn(x,∇φn)−
∫
Tn
Hσn(z,∇φn(z))dz. (2.3.58)

It follows that that φn is bounded in C1,α(Tn), for all α ∈ [0, 1):

‖φn‖C1,α(Tn) ≤ C. (2.3.59)

But this implies, in turn, that the functions Fn(x) in (2.3.58) are also uniformly bounded
in Cα(Tn), hence φn are uniformly bounded in C2,α(Tn):

‖φn‖C2,α(Tn) ≤ C. (2.3.60)

Now, the Arzela-Ascoli theorem implies that a subsequence φnk will converge in C2(Tn) to a
function φ̄, which is a solution to (2.3.19) with H = Hσ̄. Thus, σ̄ ∈ Σ, and Σ is closed. This
finishes the proof of the existence part of the theorem.

2.3.2 Long time convergence and uniqueness of the wave solutions

We will now prove simultaneously the claim of the uniqueness of the speed c and of the
profile φ(x) in Theorem 2.3.1, and the long time convergence for the solutions to the Cauchy
problem stated in Theorem 2.3.3.

Let u(t, x) be the solution to (2.3.1)

ut = ∆u+H(x,∇u), t > 0, x ∈ Tn, (2.3.61)

with u(0, x) = u0(x) ∈ C(Tn). We also take a speed c ∈ R and a solution φ(x) to

∆φ+H(x,∇φ) = c, (2.3.62)
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without assuming that either c or φ is unique.
We wish to prove that there exists k̄ ∈ R so that u(t, x) − ct is attracted exponentially

fast in time to φ(x) + k̄:
|u(t, x)− ct− k̄ − φ(x)| ≤ C0e

−ωt, (2.3.63)

with some C0 > 0 and ω > 0, such that C0 depends on the initial condition u0 but ω does not.
The idea is the same as in the proof of Theorem 1.8.2 for the Allen-Cahn equation: squeeze
the solution between two different wave solutions, and show that the difference between the
squeezers tends to zero as t→ +∞. However, the situation here is much simpler: we do not
have any tail as |x| → +∞ to control, because we are now considering the problem for x ∈ Tn.
Actually, the present setting realizes what would be the dream scenario for the Allen-Cahn
equation.

As a simple remark, we may assume that c = 0, just by setting

H̃(x, p) = H(x, p)− c,

and dropping the tilde, and this is what we will do. In other words, φ(x) is the solution to

∆φ+H(x,∇φ) = 0. (2.3.64)

Let φ be any solution to (2.3.64), and set

k−0 = sup{k : u(0, x) ≥ φ(x) + k for all x ∈ Tn},

and
k+

0 = inf{k : u(0, x) ≤ φ(x) + k for all x ∈ Tn.}

Because φ(x) + k±0 solve (2.3.64) with c = 0, and u(t, x) solves (2.3.61), we have, by the
maximum principle:

φ(x) + k−0 ≤ u(t, x) ≤ φ(x) + k+
0 , for all t ≥ 0 and x ∈ Tn. (2.3.65)

Now, for all q ∈ N, let us set

k−q = sup{k : u(t = q, x) ≥ φ(x) + k for all x ∈ Tn} = inf
x∈Tn

[u(t = q, x)− φ(x)], (2.3.66)

and

k+
q = inf{k : u(t = q, x) ≤ φ(x) + k for all x ∈ Tn} = sup

x∈Tn
[u(t = q, x)− φ(x)]. (2.3.67)

The strong maximum principle implies that the sequence k−q is increasing, whereas k+
q is

decreasing, and that, as in (2.3.65), we have

φ(x) + k−q ≤ u(t, x) ≤ φ(x) + k+
q , for all t ≥ q and x ∈ Tn. (2.3.68)

Hence, the theorem will be proved if we manage to show that

0 ≤ k+
q − k−q ≤ Caq, for all q ≥ 0, (2.3.69)
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with some C ∈ R that may depend on the initial condition u0 and a ∈ (0, 1) that does not
depend on u0. In order to prove (2.3.69), it suffices to show that

k+
q+1 − k−q+1 ≤ (1− r0)(k+

q − k−q ), (2.3.70)

with some r0 ∈ (0, 1). This is a quantification of the strong maximum principle: by the
time t = q + 1 u(x) has to detach ”by a fixed amount” from the respective lower and upper
bounds φ(x) +k±q that hold at t = q. Such estimates typically rely on the Harnack inequality,
and this is what we will use.

To bring the Harnack inequality in, note that the function

w(t, x) = u(t, x)− φ(x)− k−q
is nonnegative for t ≥ q, and solves an equation of the form

∂tw −∆w + bj(t, x)∂xjw = 0, t > q, x ∈ Tn, (2.3.71)

with a bounded drift b(t, x) given by

b(t, x) =

∫ 1

0

∇pH(x, (1− s)∇φ(x) + s∇u(t, x))ds, (2.3.72)

so that
b(t, x) · [∇u(t, x)−∇φ(x)] = H(x,∇u(t, x))−H(x,∇φ(x)),

and
|bj(t, x)| ≤ CL, for all t ≥ q and x ∈ Tn. (2.3.73)

The Harnack inequality in Theorem ?? and (2.3.73) imply that there exists r0 > 0 that
depends only on CL such that

inf
x∈Tn

w(q + 1, x) ≥ r0 sup
x∈Tn

w(q, x). (2.3.74)

Using (2.3.66) and (2.3.67), together with (2.3.74), we may write

r0 sup
x∈Tn

w(q, x) = r0 sup
x∈Tn

[u(q, x)− φ(x)− k−q ] = r0[k+
q − k−q ] ≤ inf

x∈Tn
w(q + 1, x)

= inf
x∈Tn

[u(q + 1, x)− φ(x)− k−q ] = k−q+1 − k−q ,
(2.3.75)

so that
k−q+1 ≥ k−q + r0[k+

q − k−q ]. (2.3.76)

As k+
q+1 ≤ k+

q , it follows that

k+
q+1 − k−q+1 ≤ k+

q − k−q − r0(k+
q − k−q ) ≤ (1− r0)(k+

q − k−q ), (2.3.77)

which is (2.3.70). This implies the geometric decay as in (2.3.69), hence the theorem, because
of (2.3.68) and (2.3.69). Note that the constant

a = 1− r0

comes from the Harnack inequality and does not depend on the initial condition u0 but only
on the Lipschitz constant CL of H(x, p). �
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Exercise 2.3.11 (i) Why does the uniqueness of c and of the profile φ(x) follow?
(ii) How is the constant ω in Theorem 2.3.3 related to the constant a in the above proof?

Exercise 2.3.12 Consider a modified equation, not quite of the Hamilton-Jacobi form:

ut −∆u = R(x, u)
√

1 + |∇u|2, (2.3.78)

where R(x, u) is a smooth, positive function, that is 1-periodic in x and 1-periodic in u.

(i) Let u0 ∈ C(TN), and show that the Cauchy problem for (2.3.78) with u(0, x) = u0(x)
is well posed.

(ii) Prove the existence of a unique T > 0 such that equation (2.3.78) has solutions of the
form

u(t, x) =
t

T
+ φ(t, x), (2.3.79)

where φ is T -periodic in t and 1-periodic in x. We will call such a solution a wave
solution. Why is it not reasonable to expect that under the above assumptions (2.3.78)
has a wave solution of the form u(t, x) = ct+ ψ(x) with a 1-periodic function ψ(x)?

(iii) Show that every solution of the Cauchy problem which is initially 1-periodic in x con-
verges, exponentially fast in time, to a wave solution of the form (2.3.79).

If in doubt, you may consult [?]. Note that the topological degree argument used in that
reference can be replaced by a more elementary implicit function theorem argument we have
used in the existence proof here.

2.4 A glimpse of the classical solutions to the Hamilton-

Jacobi equations

2.4.1 Smooth solutions and their limitations

We now turn our attention to first order inviscid Hamilton-Jacobi equations of the form

ut +H(x,∇u) = 0. (2.4.1)

The standard philosophy of the construction of a solution to a first order equation is to find
its values on special curves, known as characteristics, that will, hopefully, fill the whole space.
This is the strategy that is also classically used to solve (2.4.1). Consider a time t > 0 and a
point x ∈ Rn. In order to assign a value to u(t, x) we consider a curve γ(s), with s ∈ [0, t],
such that γ(t) = x, and set

p(s) = ∇u(s, γ(s)).

Here, u(t, x) is the sought for solution to (2.4.1). Assuming that everything is smooth we
have, using the dot to denote the differentiation in s:

ṗk(s) = ∂xkut(s, γ(s)) +
∂2u(s, γ(s))

∂xk∂xm
γ̇m(s)

= −∂H(γ(s), p(s))

∂xk
− ∂H(γ(s), p(s))

∂pm

∂2u(s, γ(s))

∂xk∂xm
+
∂2u(s, γ(s))

∂xk∂xm
γ̇m(s).

(2.4.2)
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We see that it is convenient to choose γ(s) that satisfies the following system of ODEs:

γ̇(s) = ∇pH(γ(s), p(s))

ṗ(s) = −∇xH(γ(s), p(s))
(2.4.3)

for 0 ≤ s ≤ t. This dynamical system is to be complemented by the boundary conditions
at s = 0 and s = t:

p(0) = ∇u0(γ(0)), γ(t) = x. (2.4.4)

The system (2.4.3) has the form of a Hamiltonian system with the Hamiltonian H(x, p), and
the curves (γ(s), p(s)) are called the characteristic curves. In order to solve (2.1.1), we need
to find a solution to (2.4.3)-(2.4.4), and it would be excellent to prove that such solution is
unique. The trouble is that there is no good reason, in general, for existence and uniqueness
of a solution to this boundary value problem.

Exercise 2.4.1 Consider x0 ∈ Rn and t > 0 and assume that u(t, x) is smooth in a ball
around x0. Prove, for instance, with the help of the implicit function theorem, that the
boundary value problem (2.4.3)-(2.4.4) has a unique solution (γ(s), p(s)) as soon as t is small
enough and x is in the vicinity of x0, and that this solution is smooth in t and x.

Once γ(s) and p(s) are constructed, we may assign a value to u(t, x) as follows. The function

ϕ(s) = u(s, γ(s))

satisfies
ϕ̇(s) = ut(s, γ(s)) + γ̇(s) · p(s) = −H(γ(s), p(s)) + γ̇(s) · p(s). (2.4.5)

Integrating (2.4.5) from s = 0 to s = t gives an expression for u(t, x) in terms of the curves γ(s)
and p(s), 0 ≤ s ≤ t:

u(t, x) = u0(γ(0)) +

∫ t

0

(
−H(γ(s), p(s)) + γ̇(s) · p(s)

)
ds. (2.4.6)

Exercise 2.4.2 Check that (2.4.6) indeed gives a solution to (2.4.1) such that u(0, x) = u0(x).

To see that this strategy can not always lead to smooth solutions for all times, just consider
the simplest nonlinear equation in one space dimension

ut +
u2
x

2
= 0 for t > 0 and x ∈ R, u(0, x) = u0(x). (2.4.7)

The solution to the boundary value problem (2.4.3)-(2.4.4) amounts (this is very easily
checked) to finding γ(0) solving the equation

x = γ(0) + tu′0(γ(0)),

for a given t > 0 and x ∈ R. The issue is that this equation may, or may not have a unique
solution γ(0). If u′′0 > 0, solution is unique and we are on the safe side. But if u′′0(x0) < 0 at
some point x0, uniqueness fails as soon as

t ≥ 1

sup(−u′′0)
.
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Thus, we need a more elaborate theory. Nevertheless, in the rest of this section, we wish to
show the reader one interesting situation where smooth solutions can be constructed.

Before we end this short section, let us mention, in the form of an exercise (this will be
revisited in the context of viscosity solutions), a very strong form of uniqueness.

Exercise 2.4.3 (Finite speed of propagation). Let H be uniformly Lipschitz with respect
to its second variable, as well as ∇pH. Let u0 and v0 be two smooth, compactly supported
initial conditions, and assume that each generates a smooth solution to the Cauchy problem
for (2.4.1), on a common time interval [0, T ]. Compute, in terms of Hp, a constant K such
that, if

dist
(
x, supp(u0 − v0))

)
> Kt,

then u(t, x) = v(t, x). Hint: it may be helpful to solve, first, the following question: let b(t, x)
be smooth and uniformly Lipschitz in its second variable. Let u0 be a smooth compactly
supported function, and u(t, x) the solution to

ut + b(t, x) · ∇u = 0, t > 0, x ∈ Rn

u(0, x) = u0(x)
(2.4.8)

If
dist(x, supp(u0)) > t‖b‖∞,

then u(t, x) = 0.

2.4.2 An example of classical global solutions

We now discuss a situation when classical smooth solutions do exist. Consider solutions to
the equation

ut +
1

2
|∇u|2 −R(x) = 0, (2.4.9)

with an initial condition u(0, x) = u0(x). We assume that both u0 and R are strictly convex
smooth functions on Rn, such that there is α ∈ (0, 1) so that, for all x ∈ Rn and all ξ ∈ Rn

we have:

α|ξ|2 ≤ (D2u0(x)ξ · ξ) ≤ α−1|ξ|2, α|ξ|2 ≤ (D2R(x)ξ · ξ) ≤ α−1|ξ|2. (2.4.10)

Exercise 2.4.4 First, consider the case R = 0. Argue informally, just by looking at the
equation and using pictures that if u0(x) is strictly convex but its Hessian is uniformly bounded
then the graph of u(t, x) should not form a corner, and if u0(x) is strictly concave but its
Hessian is uniformly bounded then it is plausible that the graph of u(t, x) will form a corner.
It may be helpful to start by looking at u(0, x) = |x|2 and u(0, x) = −|x|2. Explain, also
informally, how the comparison principle should may come into play.

We now use the approach via the characteristic curves to show that a smooth solution
exists under the above assumptions. Note that the Hamiltonian for (2.4.9) is

H(x, p) =
1

2
|p|2 −R(x),
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and the characteristic system (2.4.3)-(2.4.4) reduces to

γ̇(s) = p(s), ṗ(s) = ∇R(γ(s)),

which can be written as
− γ′′ +∇R(γ) = 0, (2.4.11)

with the boundary conditions

γ′(0)−∇u0(γ(0)) = 0, γ(t) = x. (2.4.12)

To establish uniqueness and smoothness of the solution u(t, x) to (2.4.9) with the initial
condition u(0, x) = u0(x), we need to prove that (2.4.11)-(2.4.12) has a unique solution γ(s)
that depends smoothly on t and x. Then, u(t, x) will be given by (2.4.6):

u(t, x) = u0(γ(0)) +

∫ t

0

(
−H(γ(s), p(s)) + γ̇(s) · p(s)

)
ds. (2.4.13)

Existence of the characteristic curves

To construct a solution to (2.4.11)-(2.4.12), we observe that (2.4.11) is the Euler-Lagrange
equation for the energy functional

Jt,x(γ) = u0(γ(0)) +

∫ t

0

( |γ′(s)|2
2

+R(γ(s))
)
ds, (2.4.14)

over H1([0, t]), with the constraint γ(t) = x.

Exercise 2.4.5 Verify that claim: show that if the minimizer of Jt,x(γ) over the set

S = {γ ∈ H1[0, t] : γ(t) = x}

exists and is smooth then it satisfies both (2.4.11) and the boundary condition at s = 0
in (2.4.12). Next, define what it means for γ ∈ H1[0, t] (without assuming γ is smooth) to be
a weak solution to (2.4.11)-(2.4.12) and show that a minimizer of Jt,x over S (if it exists) is
a weak solution.

As both u0(x) and R(x) are strictly convex, they are bounded from below, and it is easy to
see that the functional Jt,x is bounded from below over S. Let us set

J̄t,x = inf
γ∈S

Jt,x(γ),

and let γn ∈ S be a minimizing sequence, so that Jt,x(γn) decreases to J̄t,x. Once again, as u0

and R are bounded from below, there exists C > 0 so that∫ t

0

|γ′n(s)|2ds ≤ C,

for all n. As, in addition, γn(t) = x for all n, there is a subsequence, that we will still denote
by γn that converges uniformly over [0, t], and weakly in H1([0, t]) to a limit γ̄t,x ∈ S.
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To prove that Jt,x(γ̄t,x) = J̄t,x we simply observe that by the weak convergence we have

‖γ̄′t,x‖2
L2 ≤ lim inf

n→+∞
‖γ′n‖2

L2 ,

which, combined with the uniform convergence of γn to γ̄t.x on [0, t] implies that

Jt,x(γ̄t,x) ≤ lim
n→+∞

Jt,x(γn) = J̄t,x,

and thus
Jt,x(γ̄t,x) = J̄t,x.

Uniqueness of the characteristic curve

To prove the uniqueness of the minimizer, we will use the convexity of u0(x) and R(x) and
not just their boundedness from below. Let γ1 and γ2 be two solutions to (2.4.11)-(2.4.12).
The difference

γ̃ = γ2 − γ1.

satisfies
− γ̃′′k + Akj(s)γ̃j = 0, 1 ≤ k ≤ n, (2.4.15)

with the boundary conditions

γ̃′k(0)−Bkj γ̃j(0) = 0, γ̃k(t) = 0, 1 ≤ k ≤ n. (2.4.16)

The matrices A and B are given by

Akj(s) =

∫ 1

0

∂2R(γ1(s) + σ(γ2(s)− γ1(s)))

∂xk∂xj
dσ,

and

Bkj =

∫ 1

0

∂2u0(γ1(0) + σ(γ2(0)− γ1(0)))

∂xk∂xj
dσ.

Let us take the inner product of (2.4.15) with γ̃, and integrate. This gives∫ t

0

(
|γ̃′(s)|2 + (Aγ̃(s) · γ̃(s))

)
ds+ (Bγ̃(0) · γ̃(0)) = 0. (2.4.17)

Using (2.4.10), we deduce that the matrices A anB are strictly positive definite. Thus, (2.4.17)
implies that γ̃(s) ≡ 0, so that the minimizer is unique. Hence, u(t, x) is well-defined by (2.4.6):

u(t, x) = u0(γ(0)) +

∫ t

0

(
− |p(s)|

2

2
+R(γ(s)) + γ̇(s) · p(s)

)
ds

= u0(γ(0)) +

∫ t

0

( |γ̇(s)|2

2
+R(γ(s))

)
ds.

(2.4.18)

This may be rephrased as

u(t, x) = inf
γ(t)=x

(
u0(γ(0)) +

∫ t

0

( |γ′(s)|2
2

+R(γ(s))
)
ds
)
. (2.4.19)
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This formula, known as the Lax-Oleinik formula, is the starting point of the Lagrangian theory
of Hamilton-Jacobi equations, and has immense implications. We will spend some time with
this aspect of Hamilton-Jacobi equations later in this chapter. We will see that we can take
it as a good definition of a solution to the Cauchy problem, at least when the Hamiltonian is
strictly convex in p.

Smoothness of the solution

Let us quickly examine the smoothness of u(t, x) in x in the set-up of the present section. We
see from (2.4.13) that it is equivalent to the smoothness of the minimizer γ in x. If h ∈ R
and i ∈ {1, ..., n}, consider the partial difference

γih(s) =
γt,x+hei(s)− γt,x(s)

h
.

It solves a system similar to (2.4.15), except for the boundary condition at s = t that is
now γih(t) = ei. The exact same integration by parts argument yields the uniform boundedness
of ‖γih‖H1 , hence the uniform boundedness of γih. Sending h to 0 and repeating the analysis
shows that γih converges to the unique solution of an equation of the type (2.4.15), with

A(s) = D2R(γt,x(s)), B = D2u0(γt,x(0)).

This argument may be repeated over and over again, to yield the C∞ smoothness of γt,x
in t and x, as long as u0 and R(x) are infinitely differentiable. Finally, using (2.4.6) we can
conclude that

u(t, x) = J̄t,x,

is infinitely differentiable as well.

Exercise 2.4.6 Show that u is convex in x, for all t > 0, in two ways. First, fix ξ ∈ Rn

and get a differential equation for Q(t, x) = (D2u(t, x)ξ · ξ). Use a maximum principle type
argument to conclude that Q(t, x) > 0 for all t > 0 and x ∈ Rn. An alternative and more
elegant way is to proceed as follows.

(i) Assume the existence of κ > 0 such that, for all (x, y) ∈ Rn × Rn and σ ∈ [0, 1], we
have:

u(t, σx+ (1− σ)y) ≤ σu(t, x) + (1− σ)u(t, y)− κσ(1− σ)|x− y|2. (2.4.20)

Show that then the function u(t, x) is strictly convex.

(ii) Show that there exists λ > 0 such that if γt,x and γt,y are, respectively, the minimizing
curves for u(t, x) and u(t, y), then

u(t, σx+ (1− σ)y) ≤ σu(t, x) + (1− σ)u(t, y)

− λσ(1− σ)

(
|γt,x(0)− γt,y(0)|2 + ‖γt,x − γt,y‖2

H1([0,t])

)
.

(2.4.21)

Hint: use the test curve γσ = σγt,x + (1 − σ)γt,y in the Lax-Oleinik formula (2.4.19)
for u(t, σx+ (1− σ)y), together with the convexity of the functions u0(x) and R(x).
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(iii) Finish the proof of (2.4.20), by noticing that

|γt,x(0)− γt,y(0)|2 = |x− y|2 −
∫ t

0

d

ds
|γt,x(s)− γt,y(s)|2ds.

The qualitative behavior of u(t, x) can be investigated further, implying the large time sta-
bilization of the whole solution. We will come back to this class of questions later, when we
study the large time behavior of viscosity solutions on the torus. For the time being, we leave
the classical theory.

2.5 Viscosity solutions

We have just seen that, in order to find reasonable solutions to an inviscid Hamilton-Jacobi
equation

ut +H(x,∇u) = 0, (2.5.1)

we should relax the constraint that ”u is continuously differentiable”. The first idea would be
to replace it by ”u is Lipschitz”, and require (2.5.1) to hold almost everywhere. Alas, there
are, in general, several such solutions to the Cauchy problem for (2.5.1) with a Lipschitz
(or even smooth) initial condition. This parallels the fact that the weak solutions to the
conservation laws are not unique – for uniqueness, one must require that the weak solution
satisfies the entropy condition. See, for instance, [?] for a discussion of these issues. A simple
illustration of this phenomenon is to consider the Hamilton-Jacobi equation

ut +
1

2
u2
x = 0, (2.5.2)

in one dimension, with the Lipschitz continuous initial condition

u0(x) = 0 for x ≤ 0 and u0(x) = x for x > 0. (2.5.3)

It is easy to check that one Lipschitz solution to (2.5.2) that satisfies this equation almost
everywhere and obeys the initial condition (2.5.3) is

u(1)(t, x) = 0 for x < t/2 and u(1)(t, x) = x− t/2 for x > t/2.

However, another solution to (2.5.4)-(2.5.3) is given by

u(2)(t, x) = 0 for x < 0, u(2)(t, x) =
x2

2t
for 0 < x < t and u(t, x) = x− t

2
for x > t.

Exercise 2.5.1 Consider the solution uε(t, x) to a viscous version of (2.5.4):

uεt +
1

2
(uεx)

2 = εuεxx, (2.5.4)

also with the initial condition uε(0, x) = u0(x), as in (2.5.3). Use the Hopf-Cole transform

vε(t, x) = exp
(
− uε(t/ε, x)

2ε

)
,

116



to show that vε satisfies the standard heat equation

vεt = vεxx.

Find vε(t, x) explicitly and use this to show that

uε(t, x)→ u(2)(t, x) as ε→ 0.

A natural question is, therefore, to know if an additional condition, less stringent than
the C1-regularity, but stronger than the mere Lipschitz regularity, enables us to select a unique
solution to the Cauchy problem – as the notion of the entropy solutions does for the conser-
vation laws. Exercise 2.5.1 suggests that regularizing the inviscid Hamilton-Jacobi equation
with a small diffusion can provide one such approach, but for more general Hamilton-Jacobi
equations than (2.5.4), for which the Hopf-Cole transform is not available, this procedure
would be much less explicit.

The above considerations have motivated the introduction, by Crandall and Lions [?], at
the beginning of the 1980’s, of the notion of a viscosity solution to (2.1.1). The idea is to
select, among all the solutions of (2.1.1), “the one that has a physical meaning”, intrinsically,
without directly appealing to the small diffusion regularization, – though understanding the
connection to physics may require some additional thought. Being weaker than the notion of
a classical solution, it introduces new difficulties to the existence, regularity and uniqueness
issues, as well as into getting insight into the qualitative properties of solutions.

Finally, looking ahead, we mention that even if there is a unique viscosity solution to
the Cauchy problem associated to (2.1.1), there will be no clear reason for the stationary
equation (2.1.6) to have a unique steady viscosity solution – unlike what we have seen in the
diffusive situation.

As a concluding remark to this introduction, we must mention that we will by no means
do justice to a very rich subject in this short section and provide just a brief glance of a
still developing subject. The reader interested to learn more may enjoy reading Barles [?], or
Lions [?] as a starting point.

2.5.1 The definition and the basic properties of the viscosity solu-
tions

The definition of a viscosity solution

Let us begin with more general equations than (2.1.1) – we will restrict the assumptions as
the theory develops. Consider the Cauchy problem

ut + F (x, u,∇u) = 0, t > 0, x ∈ Tn, (2.5.5)

with a continuous initial condition u(0, x) = u0(x), and F ∈ C(Tn × R× Rn;R).
In order to motivate the notion of a viscosity solution, one takes the point of view that

the smooth solutions to the regularized problem

uεt + F (x, uε,∇uε) = ε∆uε (2.5.6)
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are a good approximation to u(t, x). Existence of the solution to the Cauchy problem
for (2.5.6) for ε > 0 is not really an issue – we have already seen how it can be proved.
Hence, a natural attempt would be to pass to the limit ε ↓ 0 in (2.5.6). It is possible to
prove that there is a unique limiting solution and that one actually ends up with a nonlinear
semigroup. In particular, one may show that, if we take this notion of solution as a definition,
there are uniqueness and contraction properties analogous to what we will see below – see [?]
for further details. Taking this limit as a definition, however, raises an important issue: there
is always the danger that the solution depends on the underlying regularization – why reg-
ularize with the Laplacian? What if we were to regularize differently? For instance, what if
we would consider a dispersive regularization in one dimension

uεt + F (x, uε, uεx) = εuεxxx, x ∈ R, (2.5.7)

which is a generalized Korteweg-de Vries equation, and let ε→ 0 in (2.5.7) instead?
We now describe an alternative and more intrinsic approach, instead of using (2.5.6) in

this very direct fashion of passing to the limit ε ↓ 0. The idea is that the key property
that should be inherited from the diffusive regularization is the maximum principle, as it is
usually inherent in the origins of such models in the corresponding applications, be it physics,
such as motion of interfaces, or optimal control problems. There is an interesting separate
question of what happens as ε→ 0 to the solutions coming from regularizations that do not
admit the maximum principle, such as (2.5.7). The situation is not quite trivial, especially
for non-convex fluxes F – we refer an interested reader to [?].

Our approach will be to use the comparison principle idea to extend the notions of a sub-
solution and a super-solution to (2.5.5) and then simply say that a function u(t, x) is a solution
to (2.5.5) if it is both a sub-solution and a super-solution. To understand the upcoming
definition of a viscosity sub-solution to (2.5.5), consider first a smooth sub-solution u(t, x) to
the regularized problem (2.5.6):

ut + F (x, u,∇u) ≤ ε∆u. (2.5.8)

Let us take a smooth function φ(t, x) such that the difference φ− u attains its minimum at a
point (t0, x0). One may simply think of the case when φ(t0, x0) = u(t0, x0) and φ(t, x) ≥ u(t, x)
elsewhere. Then, at this point we have

ut(t0, x0) = φt(t0, x0), ∇φ(t0, x0) = ∇u(t0, x0),

and
D2φ(t0, x0) ≥ D2u(t0, x0),

in the sense of the quadratic forms. It follows that

φt(t0, x0) + F (x0, u(t0, x0),∇φ(t0, x0))− ε∆φ(t0, x0) (2.5.9)

≤ ut(t0, x0) + F (x0, u(t0, x0),∇u(t0, x0))− ε∆u(t0, x0) ≤ 0.

In other words, if u is a smooth sub-solution to (2.5.6), and φ is a smooth function that
touches u at the point (t0, x0) from above, then φ is also a sub-solution to (2.5.6) at this
point.
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In a similar vein, if u(t, x) is a smooth super-solution to the regularized problem:

ut + F (x, u,∇u) ≥ ε∆u, (2.5.10)

we consider a smooth function φ(t, x) such that the difference φ− u attains its maximum at
a point (t0, x0). Again, we may assume without loss of generality that φ(t0, x0) = u(t0, x0)
and φ(t, x) ≤ u(t, x) elsewhere. Then, at this point we have

φt(t0, x0) + F (x0, u(t0, x0),∇φ(t0, x0))− ε∆φ(t0, x0) ≥ 0, (2.5.11)

by a computation similar to (2.5.9). That is, if u is a smooth super-solution to (2.5.6), and φ
is a smooth function that touches u at (t0, x0) from below, then φ is also a super-solution
to (2.5.6) at this point.

These two observations lead to the following definition, where we simply drop the require-
ment that u is smooth, only use the regularity of the test function that touches it from above
or below, and send ε→ 0 in (2.5.9) and (2.5.11).

Definition 2.5.2 A continuous function u(t, x) is a viscosity sub-solution to

ut + F (x, u,∇u) = 0, (2.5.12)

if, for all test functions φ ∈ C1([0,+∞)×Tn) and all (t0, x0) ∈ (0,+∞)×Tn such that (t0, x0)
is a local minimum for φ− u, we have:

φt(t0, x0) + F (x0, u(t0, x0),∇φ(t0, x0)) ≤ 0. (2.5.13)

Furthermore, a continuous function u(t, x) is a viscosity super-solution to (2.5.12) if, for all
test functions φ ∈ C1((0,+∞)×Tn) and all (t0, x0) ∈ (0,+∞)×Tn such that the point (t0, x0)
is a local maximum for the difference φ− u, we have:

φt(t0, x0) + F (x0, u(t0, x0),∇φ(t0, x0)) ≥ 0. (2.5.14)

Finally, u(t, x) is a viscosity solution to (2.5.12) if it is both a viscosity sub-solution and a
viscosity super-solution to (2.5.12).

Definition 2.5.2 extends to steady equations of the type

F (x, u,∇u) = 0 on Tn,

by requiring that u(x) is a viscosity sub-solution (respectively, super-solution) to

ut + F (x, u,∇u) = 0,

that happens to be time-independent.
This definition was introduced by Crandall and Lions in their seminal paper [?]. The

name “viscosity solution” comes out of the diffusive regularization we have discussed above.
Definition 2.5.2 is intrinsic and bypasses the philosophical question we have mentioned above:
”Why regularize with the Laplacian?” much like the notion of an entropy solution does this
for the conservation laws. We stress, however, that it does make the assumption that the
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underlying model must respect the comparison principle. Let us also note that the notion
of a viscosity solution has turned out to be also very much relevant to the second order
elliptic and parabolic equations – especially those fully nonlinear with respect to the Hessian
of the solution. There have been spectacular developments, which are out of the scope of this
chapter.

The main issue we will need to face soon is whether such a seemingly weak definition has
any selective power – can it possibly ensure uniqueness of the solution? The expectation is
that it should, due to the general principle that ”the comparison principle implies uniqueness”.

First, the following exercises may help the reader gain some intuition.

Exercise 2.5.3 Show that a C1 solution to

ut + F (x, u,∇u) = 0, t > 0, x ∈ Tn, (2.5.15)

is a viscosity solution.

Exercise 2.5.4 Consider the Hamilton-Jacobi equation

ut + u2
x = 0, x ∈ R. (2.5.16)

(i) Which of the following two functions is a viscosity solution to (2.5.16): v(t, x) = |x| − t
or w(t, x) = −t − |x|? Hint: pay attention to the fact that at the point x = 0 a smooth
function φ(t, x) can only touch v(t, x) from the bottom, and w(t, x) from the top. This will
tell you something about |φx(t, 0)| and determine the answer to this question.
(ii) Consider (2.5.16) with a zigzag initial condition u0(x) = u(0, x):

u0(x) =

{
x, 0 ≤ x ≤ 1/2,

1− x, 1/2 ≤ x ≤ 1,
(2.5.17)

extended periodically to R. How will the viscosity solution u(t, x) to the Cauchy problem
look like? Where will it be smooth, and where will it be just Lipschitz? Hint: it may help to
do this in at least two ways: (1) use the definition of the viscosity solution, (2) use the notion
of the entropy solution for the Burgers’ equation for v(t, x) = ux(t, x) if you are familiar with
the basic theory of one-dimensional conservation laws.

Exercise 2.5.5 (Intermezzo: a Laplace asymptotics of integrals). Let ϕ : Rn → R be a
real-valued smooth function such that there are two positive constants α and β such that

ϕ(x) ≥ α|x|2 − β.

For ε > 0, consider the integral

Iε =

∫
Rn
e−ϕ(x)/εdx.

The goal of this exercise is to show that

lim
ε→0

(
− εlogIε

)
= min

x∈Rn
ϕ(x). (2.5.18)

Note that it suffices to assume that

min
x∈Rn

ϕ(x) = 0, (2.5.19)

and show that
lim
ε→0

(
− εlogIε

)
= 0. (2.5.20)
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Exercise 2.5.6 Let us add the term εuxx to the right side of (2.5.16), which produces a
solution uε(t, x). Use the Hopf-Cole transformation zε(t, x) = exp(uε(t, x)/ε), solve the linear
problem for z(t, x) and then pass to the limit ε→ 0 using Exercise 2.5.5. Study what happens
when u′0(x) has limits at ±∞.

Basic properties of the viscosity solutions

We now describe some basic corollaries of the definition of a viscosity solution.

Exercise 2.5.7 Show that the maximum of two viscosity subsolutions to (2.5.15) is a viscos-
ity subsolution, and the minimum of two viscosity supersolutions is a viscosity supersolution.

Exercise 2.5.8 (Stability) Let Fj(x, u, p) be a sequence of functions in C(Tn × R × Rn),
which converges locally uniformly to F ∈ C(Tn × R × Rn). Let uj(t, x) be a sequence of
viscosity solutions to (2.5.5) with F = Fj:

∂tuj + Fj(x, uj,∇uj) = 0, t > 0, x ∈ Tn, (2.5.21)

and assume that uj converges locally uniformly to u ∈ C([0,+∞),Tn). Show that then u is
a viscosity solution to the limiting problem

ut + F (x, u,∇u) = 0, t > 0, x ∈ Tn, (2.5.22)

Hint: if (t0, x0) is, for instance, a local minimum of the difference φ − u, one can turn it
into a strict minimum by changing φ(t, x) into φ(x) + M((t − t0)2 + |x − x0|2), without
changing φt(t0, x0) and ∇φ(t0, x0). In this situation, show that there is a sequence (tj, xj)
of minima of φ−j converging to (t0, x0), and use the fact that each uj is a viscosity solution
to (2.5.21) to conclude.

The above exercise is extremely important: it shows that, somewhat similar to the weak
solutions, we do not need to check the convergence of the derivatives of uj to the derivatives
of u to know that u is a viscosity solution – this is an extremely useful property to have.
Exercise 2.5.8 asserts that one may safely “pass to the limit” in equation (2.5.5), as soon
as estimates on the moduli of continuity of the solutions are available rather than on the
derivatives.

The next proposition says that viscosity solutions that are Lispchitz continuous do satisfy
the equation in the classical sense almost everywhere.

Proposition 2.5.9 Let u be a locally Lipschitz viscosity solution to

ut + F (x, u,∇u) = 0, t > 0, x ∈ Tn. (2.5.23)

Then it satisfies (2.5.23) almost everywhere.

This property relies on the following lemma [?].

Lemma 2.5.10 At a point of differentiability (t0, x0) of u, one may construct a C1 test
function φ(t, x) such that (t0, x0) is a local maximum (respectively, a local minimum) of φ−u.
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Proof. For simplicity, we do not take the t-dependence into account, leaving this to the
reader, so we assume that u(x) is a function of x that is differentiable at x0. Without loss of
generality, we assume that x0 = 0, u(0) = 0, and that ∇u(0) = 0, so that u(x) satisfies, in
the vicinity of x = 0:

u(x) = |x|ε(x), lim
|x|→0

ε(x) = 0. (2.5.24)

Our goal is to construct a C1 function φ(x) such that φ(x) ≤ u(x) and φ(0) = 0. Note
that this could be impossible for u(x) that is merely Lipschitz and not differentiable – the
simple counterexample is u(x) = −|x|. We look for a radially symmetric function φ(x) in the
form φ(x) = |x|ζ(|x|) with a C1-function ζ(r) such that

ζ(|x|) ≤ ε(x), lim
r→0

ζ(r) = 0. (2.5.25)

To this end, consider the decreasing sequence

εn = inf
2−n−1≤|r|<0

ε(r),

and produce the function ζ(r) ≤ ε(r) by smoothing the piecewise constant function

+∞∑
n=0

εn12−n−1≤r<2−n .

As the sequence εn → 0 as n → +∞, and we have chosen the dyadic intervals in the above
sum, we may ensure that

|ζ ′(r)| ≤ α(r)

r
,

with α(r)→ 0 as r → 0. It follows that φ(x) = |x|ζ(|x|) is the sought C1-function. �
Proof of Proposition 2.5.9. The conclusion of this proposition follows essentially im-

mediately from Lemma 2.5.10 and the Rademacher theorem. The latter says that a Lipschitz
function is differentiable a.e., see for instance [?]. At any differentiability point we can con-
struct a C1-function φ(t, x) such that the difference φ− u attains its minimum at (t0, x0), so
that

φt(t0, x0) = ut(t0, x0) and ∇φ(t0, x0) = ∇u(t0, x0). (2.5.26)

The definition of a viscosity sub-solution together with (2.5.26) implies that

ut(t0, x0) +H(x, u(t0, x0),∇u(t0, x0)) = φt(t0, x0) +H(x, u(t0, x0),∇φ(t0, x0)) ≤ 0.

Similarly, we can show that

ut(t0, x0) +H(x, u(t0, x0),∇u(t0, x0)) ≥ 0,

using the fact that u(t, x) is a viscosity super-solution. This finishes the proof. �
Warning. For the rest of this section, a solution of (2.1.1) or (2.1.6) will always be meant

in the viscosity sense.
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2.5.2 Uniqueness of the viscosity solutions

Let us first give the simplest uniqueness result, that we will prove by the method of doubling
of variables. This argument appears in almost all uniqueness proofs, in more or less elaborate
forms.

Proposition 2.5.11 Assume that the Hamiltonian H(x, p) is continuous in all its variables,
and satisfies the coercivity assumption

lim
|p|→+∞

H(x, p) = +∞, uniformly in x ∈ Tn. (2.5.27)

Consider the equation
H(x,∇u) + u = 0, x ∈ Tn. (2.5.28)

Let u and u be, respectively, a viscosity sub- and a super-solution to (2.5.28), then u ≤ u.

Proof. Assume for a moment that both u and u are C1-functions, so that we can use each of
them as a test function in the definition of the viscosity sub- and super-solutions. First, we
use the fact that u is a super-solution to (2.5.28) and take u as a test function. Let x0 be a
maximum of u−u, then we deduce from the definition of a viscosity super-solution to (2.5.28)
that

H(x0,∇u(x0)) + u(x0) ≥ 0. (2.5.29)

On the other hand, u−u attains its minimum at the same point x0, and, as u is a viscosity
sub-solution to (2.5.28), and u can serve as a test function, we have

H(x0,∇u(x0)) + u(x0) ≤ 0. (2.5.30)

As x0 is a minimum of u − u, and u and u are differentiable, we have ∇u(x0) = ∇u(x0),
whence (2.5.29) and (2.5.30) imply

u(x0) ≤ u(x0).

Once again, as u− u attains its minimum at x0, we conclude that u(x) ≥ u(x) for all x ∈ Tn
if both of these functions are in C1(Tn). Unfortunately, we only know that u and u are
continuous, so we can not use the elegant argument above unless we know, in addition, that
they are both C1-functions.

In the general case, the method of doubling the variables gives a way around the technical
difficulty that u(x) and u(x) are merely continuous and not necessarily differentiable. Let us
define, for ε > 0, the penalization

uε(x, y) = u(x)− u(y) +
|x− y|2

2ε2

and let (xε, yε) ∈ T2n be a minimum for uε(x, y).

Exercise 2.5.12 Show that
lim
ε→0
|xε − yε| = 0. (2.5.31)

and that the family (xε, yε) converges, as ε → 0, up to a subsequence, to a point (x0, x0),
where x0 is a minimum for u(x)− u(x).
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Consider the function

φ(x) = u(yε)−
|x− yε|2

2ε2
,

as a (smooth) quadratic function of the variable x. The difference

φ(x)− u(x) = −uε(x, yε)

attains its maximum, as a function of x, at the point x = xε. As u(x) is a viscosity super-
solution to (2.5.28), we have

H(xε,
yε − xε
ε2

) + u(xε) ≥ 0. (2.5.32)

Next, we apply the viscosity sub-solution part of Definition 2.5.13 to the quadratic test func-
tion

ψ(y) = u(xε) +
|xε − y|2

2ε2
.

The difference

ψ(y)− u(y) = u(xε) +
|xε − y|2

2ε2
− u(y) = uε(xε, y)

attains its minimum at y = yε. As u(y) is a viscosity sub-solution to (2.5.28), we obtain

H(yε,
yε − xε
ε2

) + u(yε) ≤ 0. (2.5.33)

The coercivity of the Hamiltonian and (2.5.33), together with the boundedness of uε, imply
that |xε − yε|/ε2 is bounded, uniformly in ε: there exists R so that

|xε − yε|
ε2

≤ R.

The uniform continuity of H(x, p) on the set {(x, p) : x ∈ Tn, p ∈ B(0, R)} implies that, as
consequence, we have

H(yε,
yε − xε
ε2

) = H(xε,
yε − xε
ε2

) + o(1), as ε→ 0.

Subtracting (2.5.33) from (2.5.32), we obtain

u(xε)− u(yε) ≥ o(1), as ε→ 0.

Sending ε→ 0 with the help of the result of Exercise 2.5.12 implies

u(x0)− u(x0) ≥ 0,

and, as x0 is the minimum of u− u, the proof is complete. �
An immediate consequence of Proposition 2.5.11 is that (2.5.28) has at most one solution.
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The comparison principle and weak contraction

The proof of Proposition 2.5.11 can be adapted to establish two fundamental properties for the
viscosity solutions to the Cauchy problem: the comparison principle and the weak contraction
property.

Exercise 2.5.13 (The comparison principle) Assume that H(x, p), is a continuous function
that satisfies the coercivity property (2.5.27). Let u1(t, x) and u2(t, x) be, respectively, a
viscosity sub-solution, and a viscosity super-solution to

ut +H(x,∇u) = 0, t > 0, x ∈ Tn, (2.5.34)

with the initial conditions u10 and u20 such that u10(x) ≤ u20(x) for all x ∈ Tn. Modify the
proof of Proposition 2.5.11 to show that then u1(t, x) ≤ u2(t, x) for all t ≥ 0 and x ∈ Tn.
This proves the uniqueness of the viscosity solutions.

Exercise 2.5.14 (Weak contraction) Let H(x, p) be a continuous function that satisfies the
coercivity property (2.5.27), and u1 and u2 be two solutions to (2.5.34) with continuous initial
conditions u10 and u20, respectively. Show that then we have

‖u1(t, ·)− u2(t, ·)‖L∞ ≤ ‖u10 − u20‖L∞ .

Hint: notice that if u(t, x) solves (2.5.34) then so does u(t, x) + k for any k ∈ R, and use
Exercise 2.5.13.

2.5.3 Finite speed of propagation

We are now going to prove a finite speed of propagation property, partly to acquire some
further familiarity with the notion of a viscosity solution, and partly to emphasize the sharp
contrast with viscous models: if the equation carried a Laplacian, an initially nonnegative
solution would instantly become positive everywhere. As this property makes better sense
in Rn and not on the torus, this is the case we will consider.

Proposition 2.5.15 Let H be uniformly Lipschitz with respect to its second variable:

|H(x, p1)−H(x, p2)| ≤ CL|p1 − p2| for all x ∈ Rn and p1, p2 ∈ Rn. (2.5.35)

Let u0 and v0 be two continuous, compactly supported initial conditions, and assume that each
generates a globally Lipschitz solution, respectively denoted by u(t, x) and v(t, x) to the Cauchy
problem

ut +H(x,∇u) = 0, vt +H(x,∇v) = 0, 0 < t ≤ T, x ∈ Rn, (2.5.36)

with u(0, x) = u0(x) and v(0, x) = v0(x) for all x ∈ Rn. Then, if x0 ∈ Rn and t0 ∈ [0, T ]
satisfy

dist
(
x0, supp(u0 − v0))

)
> t0CL,

then u(t0, x0) = v(t0, x0).
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Proof. The idea is simple: assuming that everything is smooth, the function w = u − v
satisfies the inequalities

wt ≤ CL|∇w|, (2.5.37)

and
wt ≥ −CL|∇w|. (2.5.38)

Exercise 2.5.16 Use the method of characteristics to show that if w is a smooth function
that satisfies (2.5.37) and

dist
(
x0, supp(w(0, ·))

)
> CLt0, (2.5.39)

then w(t0, x0) ≤ 0, and if a smooth function w satisfies (2.5.38)-(2.5.39), then w(t0, x0) ≥ 0.

Thus, the conclusion of this proposition follows from Exercise 2.5.16 if u and v are smooth.
Unfortunately, if u and v are not smooth, then we can not use the characteristics but only
the definition of a viscosity solution. Let us fix a point x0 ∈ Rn and t0 > 0 so that

dist
(
x0, supp(u0 − v0))

)
> CLt0, (2.5.40)

take ε > 0 sufficiently small, so that

ε <
1

2

(
dist
(
x0, supp(u0 − v0))

)
− CLt0

)
, (2.5.41)

and let φ0(r) be a C1-function equal to 1 outside of the the ball BCLt0+ε(0), and to 0 in the
ball BCLt0(0). The function

w(t, x) = ‖u0 − v0‖L∞φ0(|x− x0|+ CLt) (2.5.42)

is a smooth solution to
∂tw − CL|∇w| = 0, t > 0, x ∈ Rn, (2.5.43)

such that w(t, x0) = 0 for t ≤ t0. Moreover, because of (2.5.41), at t = 0 we have

w(0, x) = ‖u0 − v0‖L∞φ0(|x− x0|) ≥ |u0(x)− v0(x)| for all x ∈ Rn. (2.5.44)

Our goal is to show this inequality persists until the time t0:

|u(t, x)− v(t, x)| ≤ w(t, x) for all 0 ≤ t ≤ t0 and x ∈ Rn. (2.5.45)

Indeed, using (2.5.45) at x = x0 and t = t0 would give

|u(t0, x0)− v(t0, x0)| ≤ ‖u0 − v0‖L∞φ0(CLt0) = 0, (2.5.46)

which is what we need.
The comparison principle in Exercise 2.5.13 together with (2.5.44) implies that (2.5.45)

would follow if we show that v(t, x) = u(t, x)+w(t, x) is a viscosity super-solution to (2.5.36):

∂tv +H(x,∇v) ≥ 0. (2.5.47)
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Observe that (2.5.47) and (2.5.44) together would imply

v(t, x) ≤ v(t, x) = u(t, x) + w(t, x) for all 0 ≤ t ≤ t0 and x ∈ Rn. (2.5.48)

As the roles of u and v can be reversed, we would deduce (2.5.45).
Thus, we need to prove the viscosity super-solution property for v(t, x). Let ϕ(t, x) be a

smooth test function, and (t1, x1) be a minimum point for

v(t, x)− ϕ(t, x) = u(t, x) + w(t, x)− ϕ(t, x) = u(t, x)− ψ(t, x), (2.5.49)

with a C1-function
ψ(t, x) = ϕ(t, x)− w(t, x).

In other words, (t1, x1) is a minimum point for u(t, x) − ψ(t, x). As u is a viscosity solution
to (2.5.36), it follows that

∂tψ(t1, x1) +H(x1,∇ψ(t1, x1)) ≥ 0, (2.5.50)

which is nothing but

∂tϕ(t1, x1)− ∂tw(t1, x1) +H
(
x1,∇ϕ(t1, x1)−∇w(t1, x1)

)
≥ 0, (2.5.51)

Using the inequality
H(x̄,∇ϕ−∇w) ≤ H(x̄,∇ϕ) + CL|∇w|.

in (2.5.51) gives

∂tϕ(t1, x1)− ∂tw(t1, x1) +H
(
x1,∇ϕ(t1, x1)

)
+ CL|∇w(t1, x1)| ≥ 0. (2.5.52)

Recalling (2.5.43), we obtain

∂tϕ(t1, x1) +H
(
x1,∇ϕ(t1, x1)

)
≥ 0. (2.5.53)

We conclude that v(t, x) is a viscosity super-solution to (2.5.36), finishing the proof. �

Exercise 2.5.17 (Hole filling property). Let u(t, x) be a viscosity solution to

ut = R(t, x)|∇u|, t > 0, x ∈ Rn,

with R(t, x) ≥ R0 > 0. Assume that (i) u(0, x) = u0(x) ≥ δ0 > 0 outside a ball B(0, R), and
(ii) the set Rn\

(
supp(u0)

)
is compact. Prove that there exists T0 > 0 such that u(t, x) > 0

for all t ≥ T0, and all x ∈ Rn.

2.6 Construction of solutions

So far, we have set up a beautiful notion of viscosity solutions, and we have also proved
that this works well in settling our worries about uniqueness, distinguishing them from the
Lipschitz solutions. Now, we have to prove that, as far as existence is concerned, this new
notion does better than the classical solutions, in the sense that solutions to the Cauchy
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problem exist for all t > 0 under reasonable assumptions. In this section, we will show
how these solutions can be constructed. First, we will produce wave solutions to the time-
dependent problem

∂tu+H(x,∇u) = 0, x ∈ Tn. (2.6.1)

Next, we are going to prove that the Cauchy problem for (2.6.1) is well-posed as soon as
a continuous initial condition is specified. Eventually, we will show that the wave solutions
describe the long time behavior of the solutions to the Cauchy problem.

2.6.1 Existence of waves, and the Lions-Papanicolaou-Varadhan
theorem

Wave solutions for (2.6.1) will be sought in the same form as viscous waves, that is

v(t, x) = −ct+ u(x), (2.6.2)

with a constant c ∈ R. A function v(t, x) of this form is a solution to (2.6.1) if u(x) solves a
time-independent problem

H(x,∇u) = c, x ∈ Tn. (2.6.3)

Exercise 2.6.1 Show that a function v(t, x) of the form (2.6.2) is a viscosity solution to (2.6.1)
if and only if u(x) is a viscosity solution to (2.6.3).

As before, we will think of v(t, x) as the height of an interface, and refer to the constant c as the
speed of the wave, and to u(x) as its shape. Let us point out that the speed is unique: (2.6.3)
may have viscosity solutions for at most one c. Indeed, assume there exist c1 6= c2, such
that (2.6.3) has a viscosity solution u1 for c = c1 and another viscosity solution u2 for c = c2.
Let K > 0 be such that

u1(x)−K ≤ u2(x) ≤ u1(x) +K, for all x ∈ Tn.

By Exercise 2.6.1 the functions

v1,±(t, x) = −c1t+ u1(x)±K

and
v2(t, x) = −c2t+ u2(x)

are the viscosity solutions to the Cauchy problem (2.1.1) with the respective initial conditions

v1,±(x) = u1(x)±K, v2(0, x) = u2(x).

By the comparison principle (Exercise 2.5.13), we have

−c1t+ u1(x)−K ≤ −c2t+ u2(x) ≤ −c1t+ u1(x) +K, for all t ≥ 0 and x ∈ Tn.

This is a contradiction since c1 6= c2, and the functions u1 and u2 are bounded. Therefore,
the wave speed c is unique. Note that this does not address the question of uniqueness of the
shape u(x) – we leave this question for later.

The main result of this section is the following theorem, due to Lions, Papanicolaou,
Varadhan [?], that asserts the existence of a constant c for which (2.6.3) has a solution.
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Theorem 2.6.2 Assume that H(x, p) is continuous, uniformly Lipschitz:

|H(x, p1)−H(x, p2)| ≤ CL|p1 − p2|, for all x ∈ Tn, and p1, p2 ∈ Rn, (2.6.4)

the coercivity condition

lim
|p|→+∞

H(x, p) = +∞, uniformly in x ∈ Tn. (2.6.5)

holds, and
|∇xH(x, p)| ≤ K0(1 + |p|), for all x ∈ Tn, and p ∈ Rn. (2.6.6)

Then there is a unique c ∈ R for which

H(x,∇u) = c, x ∈ Tn. (2.6.7)

has a solution.

It is important to point out that the periodicity assumption in x on the Hamiltonian is
indispensable – for instance, when H(x, p) is a random function (in x) on Rn × Rn, the
situation is much more complicated – an interested reader should consult the literature on
stochastic homogenization of the Hamilton-Jacobi equations, a research area that is active and
evolving at the moment of this writing. We also mention that the only assumption made in [?]
is that H(x, p) is continuous and coercive. The Lipschitz condition (2.6.4) in p and (2.6.6) in
x have been added here for convenience.

The homogenization connection

Before proceeding with the proof of the Lions-Papanicolaou-Varadhan theorem, let us explain
how the steady equation (2.6.7) appears in the context of periodic homogenization, which was
probably the main motivation behind this theorem. We can not possibly do justice to the
area of homogenization here – an interested reader should explore the huge literature on the
subject, with the book [?] by G. Pavliotis and A. Stuart providing a good starting point. Let
us just briefly illustrate the general setting on the example of the periodic Hamilton-Jacobi
equations. Consider the Cauchy problem

uεt +H(x,∇uε) = 0, t > 0, x ∈ Rn, (2.6.8)

in the whole space Rn (and not on the torus), with the Hamiltonian H(x, p) that is 1-periodic
in all coordinates xj, j = 1, . . . , n. We are interested in the regime where the initial condition
is slowly varying and large:

uε(0, x) = ε−1u0(εx). (2.6.9)

Let us note that if one thinks of the solution to (2.6.8) as the height of some interface at the
position x ∈ Rn at a time t > 0, then it is very natural that if uε(0, x) varies on a scale ε−1 in
the x-variable, then its height should also be of the order ε−1, which is exactly what we see
in (2.6.9).

The general question of homogenization is how the ”microscopic” variations in the Hamil-
tonian that varies on the scale O(1) affect the evolution of the initial condition that varies on
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the ”macroscopic” scale O(ε−1). The goal is to describe the evolution in purely ”macroscopic”
terms, and extract an effective macroscopic problem that approximates the full microscopic
problem well. This allows to avoid, say, in numerical simulations, modeling the microscopic
variations of the Hamiltonian, and do the simulations on the macroscopic scale – a huge ad-
vantage in engineering problems. It also happens that from the purely mathematical view
point, homogenization is also an extremely rich subject.

This general philosophy translates into the following strategy. As the initial condition
in (2.6.9) is slowly varying, one should observe the solution on a macroscopic spatial scale,
in the ”slow” variable y = εx. Since uε(0, x) is also very large itself, of the size O(ε−1), it
is appropriate to rescale it down. In other words, instead of looking at uε(t, x) directly, we
would represent it as

uε(t, x) = ε−1wε(t, εx),

and consider the evolution of wε(t, y), which satisfies

wεt + εH(
y

ε
,∇wε) = 0, (2.6.10)

with the initial condition wε(0, y) = u0(y) that is now independent of ε. However, we see
that wε evolves very slowly in t – its time derivative is of the size O(ε). Hence, we need
to wait a long time until it changes. To remedy this, we introduce a long time scale of the
size t = O(ε−1). In other words, we write

wε(t, y) = vε(εt, y).

In the new variables the problem takes the form

vεs +H
(y
ε
,∇vε

)
= 0, y ∈ Rn, s > 0, (2.6.11)

with the initial condition vε(0, y) = u0(y).
It seems that we have merely shifted the difficulty – we used to have ε in the initial

condition in (2.6.9) while now we have it appear in the equation itself – the Hamiltonian
depends on y/ε. However, it turns out that we may now find an ε-independent problem that
has a spatially uniform Hamiltonian that provides a good approximation to (2.6.11). The
reason this is possible is that we have chosen the correct temporal and spatial scales to track
the evolution of the solution.

Here is an informal way to find the approximating problem. Let us seek the solution
to (2.6.11) in the form of an asymptotic expansion

vε(s, y) = v̄(s, y) + εv1(s, y,
y

ε
) + ε2v2(s, y,

y

ε
) + . . . (2.6.12)

The functions vj(s, y, z) are assumed to be periodic in the “fast” variable z but not in the
”slow” variables s and y. Inserting this expansion into (2.6.11), and collecting the terms with
various powers of ε, we obtain in the leading order

v̄s(s, y) +H
(y
ε
,∇yv̄(s, y) +∇zv1(s, y,

y

ε
)
)

= 0. (2.6.13)
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As is standard in such multiple scale expansions, we consider (2.6.13) as

v̄s(s, y) +H(z,∇yv̄(s, y) +∇zv1(s, y, z)) = 0, z ∈ Tn, (2.6.14)

an equation for v1 as a function of the fast variable z ∈ Tn, for each s > 0 and y ∈ Rn fixed.
In other words, for each pair of the ”macroscopic” variables s and y we consider a microscopic
problem in the z-variable. In the area of numerical analysis, one would call this ”sub-grid
modeling”: the variables s and y live on the macroscopic grid, and the z-variable lives on the
microscopic sub-grid.

The function v̄(s, y) will then be found from the solvability condition for (2.6.13). Indeed,
the terms v̄s(s, y) and ∇yv̄(s, y) in (2.6.14) do not depend on the fast variable z and should
be treated as constants – we solve (2.6.14) independently for each s and y. Let us then, for
each fixed p ∈ Rn, consider the problem

H(z, p+∇zw) = c, z ∈ Tn. (2.6.15)

The case of interest is p = ∇yv̄(s, y) and c = −v̄s(s, y) but one needs to momentarily look
at (2.6.15) for an arbitrary choice of p ∈ Rn and c ∈ R. The Lions-Papanicolaou-Varadhan
theorem says that for each p ∈ Rn there is a unique c that we will denote by H̄(p) such
that (2.6.15) has a solution. We then write (2.6.15) as

H(z, p+∇zw) = H̄(p), z ∈ Tn. (2.6.16)

Hence, the solvability condition for (2.6.14) is that the function v̄(s, y) satisfies the homoge-
nized (also known as ”effective”) equation

v̄s + H̄(∇yv̄) = 0, v̄(0, y) = u0(y), s > 0, y ∈ Rn, (2.6.17)

and the function H̄(p) is called the effective, or homogenized Hamiltonian. Note that the
effective Hamiltonian does not depend on the spatial variable – the “small scale” variations are
averaged out via the above homogenization procedure. The point is that the solution vε(s, y)
of (2.6.11), an equation with highly oscillatory coefficients is well approximated by v̄(s, y),
the solution of (2.6.17), an equation with spatially uniform coefficients, that is much simpler
to study analytically or solve numerically.

Thus, the existence and uniqueness of the constant c for which solution of the steady
equation (2.6.15) exists, is directly related to the homogenization (long time behavior) of the
solutions to the Cauchy problem (2.6.8) with slowly varying initial conditions, as it provides
the corresponding effective Hamiltonian. Unfortunately, there is a catch: not so much is
known in general on how the effective Hamiltonian H̄(p) depends on the original Hamilto-
nian H(x, p), except for some very generic properties. Estimating and computing numerically
the effective Hamiltonian H̄(p) is a separate interesting line of research.

Exercise 2.6.3 (The one-dimensional case) Compute the effective Hamiltonian H̄(p) for

H(x, p) = R(x)
√

1 + p2, x ∈ T1, p ∈ R,

where R(x) is a smooth 1-periodic function.
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Exercise 2.6.4 Show that for every p ∈ Rn one can find a periodic in x function u(x; p),
x ∈ Tn, p ∈ Rn such that the function

v(t, x; p) = p · x+ u(x; p)− tH̄(p)

is a solution to

vt +H(x;∇v) = 0.

What is the function u(x; p) in terms of the approximate expansion (2.6.12)? Explain why it
is natural that the function u(x; p) appears when we try to approximate the solution to

uεt +H(x,∇uε) = 0,

with an initial condition of the form uε(0, x) = ε−1u0(εx).

The proof of the Lions-Papanicolaou-Varadhan theorem

Recall that our goal is to construct a solution to (2.6.7):

H(x,∇u) = c, x ∈ Tn. (2.6.18)

As we have already proved uniqueness of the constant c, we only need to prove its existence,
and, of course, construct the solution u(x). We will make use of the viscosity solution to the
auxiliary problem

H(x,∇uε) + εuε = 0, x ∈ Tn, (2.6.19)

with ε > 0. Note that the regularization parameter ε > 0 in (2.6.19) has nothing to do with
the small parameter ε > 0 that we have used in the discussion of the periodic homogenization
theory, where it referred to the separation of scales between the scale of variation of the
initial condition and that of the periodic Hamiltonian. Unfortunately, it is common to use
the notation ε in both of these settings. We hope that the reader will find it not too confusing.

We have already shown that (2.6.19) has at most one solution. Let us for the moment
accept that the solution to the regularized problem (2.6.19) exists and show how one can
finish the proof of Theorem 2.6.2 from here. Then, we will come back to the construction of
a solution to (2.6.19). Our task is to pass to the limit ε ↓ 0 in (2.6.19).

Exercise 2.6.5 Show that for all ε > 0, the solution uε(x) of (2.6.19) satisfies

− ‖H(·, 0)‖L∞
ε

≤ uε(x) ≤ ‖H(·, 0)‖L∞
ε

, (2.6.20)

for all x ∈ Tn. Hint: use the comparison principle.

Note that the fact that uε(x) is of the size ε−1 is not a fluke of the estimate. For instance,
if the function H(x, p) is bounded from below by a positive constant c0, then the solution
to (2.6.19) will clearly satisfy |uε(x)| ≥ c0/ε for all x ∈ Tn. Therefore, one can not expect
that the solution to (2.6.19) converges as ε→ 0 to a solution to (2.6.18). One can, however,
hope that the solution becomes large but its gradient stays bounded, so if we subtract the
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large mean the difference will be bounded. Accordingly, we will decompose uε into its mean
and oscillation:

uε(x) = 〈uε〉+ vε(x), (2.6.21)

where

〈uε〉 =

∫
Tn
uε(y)dy. (2.6.22)

Recall that the torus Tn is normalized so that Vol(Tn) = 1. We will then show that there is
a sequence εk → 0 so that the limit

c = − lim
εk→0

εk〈uεk〉 (2.6.23)

exists, and vεk(x) also converge uniformly on Tn to a limit u that satisfies (2.6.18) with c
given by (2.6.23).

In order to pass to the limit ε ↓ 0 in (2.6.19), we need a modulus of continuity estimate
on uε (and hence vε) that does not depend on ε ∈ (0, 1).

Lemma 2.6.6 There is C > 0 independent of ε such that |Lip uε| ≤ C.

Proof. Again, we use the doubling of the independent variables. Fix x ∈ Tn and, for K > 0,
consider the function

ζ(y) = uε(y)− uε(x)−K|y − x|. (2.6.24)

Let x̂ be a maximum of ζ(y) (the point x̂ depends on x). If x̂ = x for all x ∈ Tn, then,
as ζ(x) = 0, we obtain

uε(y)− uε(x) ≤ K|x− y|, (2.6.25)

for all x, y ∈ Tn, which implies that uε is Lipschitz with the constant K. If there exists some x
such that x̂ 6= x, then the function

ψ(y) = uε(x) +K|y − x|

is, in a vicinity of the point y = x̂, an admissible test function, as a function of y. Moreover,
the difference

ψ(y)− uε(y) = −ζ(y)

attains its minimum at y = x̂. As uε(y) is a viscosity solution to (2.6.19), and

∇ψ(x̂) = K
x̂− x
|x̂− x|

,

it follows that

H
(
x̂, K

x̂− x
|x̂− x|

)
+ εuε(x̂) ≤ 0. (2.6.26)

Since εuε(x) is bounded by ‖H(·, 0)‖L∞ , as in (2.6.20), we deduce that

H
(
x̂, K

x̂− x
|x̂− x|

)
≤ ‖H(·, 0)‖L∞ . (2.6.27)
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On the other hand, the coercivity condition (2.6.5) implies that we can take K sufficiently
large, so that

‖H(·, 0)‖L∞ < inf
x∈Tn,|p|=K

H(x, p). (2.6.28)

Hence, if we take K as in (2.6.28), then (2.6.27) can not hold. As a consequence, for such K
we must have x̂ = x for all x ∈ Tn. It follows that for such K the inequality (2.6.25) holds
for all x, y ∈ Tn. This finishes the proof. �

To finish the proof of Theorem 2.6.2, we go back to the decomposition (2.6.21)-(2.6.22).
The function

vε = uε − 〈uε〉
satisfies

H(x,∇vε) + ε〈uε〉+ εvε = 0. (2.6.29)

As ∫
Tn
vε(x)dx = 0,

and because of Lemma 2.6.6, the family vε is both uniformly bounded in L∞ and is uniformly
Lipschitz. As a consequence, it converges uniformly, up to extraction of a subsequence, to
a function v ∈ C(Tn), and εvε → 0. The bound (2.6.20) implies that the family ε〈uε〉 is
bounded. We may, therefore, assume its convergence (along a subsequence) to a constant
denoted by −c, as in (2.6.23). By the stability result in Exercise 2.5.8, we deduce that v is a
viscosity solution of

H(x,∇v) = c. (2.6.30)

This finishes the proof of Theorem 2.6.2 except for the construction of a solution to (2.6.19).

Existence of the solution to the auxiliary problem

Let us now construct a solution to (2.6.19).

Proposition 2.6.7 If H(x, p) satisfies the assumptions of Theorem 2.6.2, then for all ε > 0
the problem

H(x,∇u) + εu = 0, x ∈ Tn, (2.6.31)

has a viscosity solution.

We will treat a solution to (2.6.31) as a fixed point of the map S[v] = u defined via

H(x,∇u) +Mu = (M − ε)v, x ∈ Tn, (2.6.32)

with M > 0 to be chosen appropriately. The point is that if M is sufficiently large, we will
be able to prove that this map is a contraction on C(Tn), hence has a fixed point. Any such
fixed point is a solution to (2.6.31). Our first task is to prove the following lemma.

Lemma 2.6.8 There exists M0 > 0 so that for all M > M0 and all f ∈ C(Tn) there exists a
solution to

H(x,∇u) +Mu = f, x ∈ Tn. (2.6.33)

This lemma shows that the map S is well-defined for M > M0. Its proof will use an explicit
construction of the solutions via a limiting procedure that will give us sufficiently strong a
priori bounds that will allow us to deduce that S is a contraction.
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The proof of Lemma 2.6.8

We take a function f ∈ C(Tn), and consider a regularized problem

− δ∆uγ,δ +H(x,∇uγ,δ) +Muγ,δ = fγ(x), x ∈ Tn, (2.6.34)

with δ > 0 and γ > 0, and
fγ = Gγ ? f. (2.6.35)

Here, Gγ is a compactly supported smooth approximation of identity:

Gγ(x) = γ−nG
(x
γ

)
, G(x) ≥ 0,

∫
Rn
G(x)dx = 1,

so that fγ(x) is smooth, and fγ → f in C(Tn). In particular, there exists Kγ that depends
on γ ∈ (0, 1) so that

‖fγ‖L∞ ≤ ‖f‖L∞ , ‖fγ‖C1 ≤ Kγ‖f‖L∞ . (2.6.36)

It is straightforward to adapt what we have done in Section 1.5.2 for the time-dependent prob-
lems with a positive diffusion coefficient to show that (2.6.34) admits a smooth solution uγ,δ

for each γ > 0 and δ > 0. The difficulty is to pass to the limit δ ↓ 0, followed by γ ↓ 0 to
construct in the limit a viscosity solution to (2.6.33). This will require a priori bounds on uγ,δ

summarized in the following lemma.

Lemma 2.6.9 There exists M0 > 0 so that if M > M0 then the solution uγ,δ to (2.6.34)
obeys the following gradient bound, for all δ ∈ (0, 1):

|∇uγ,δ(x)| ≤ Cγ(1 + ‖f‖L∞) for all x ∈ Tn. (2.6.37)

Here, the constant Cγ may depend on γ ∈ (0, 1) but not on δ ∈ (0, 1). There also exists a
constant C > 0 that does not depend on γ ∈ (0, 1) or δ ∈ (0, 1) so that

|uγ,δ(x)| ≤ C

M
(1 + ‖f‖L∞) for all x ∈ Tn. (2.6.38)

Proof. Let us look at the point x0 where |∇uγ,δ(x)|2 attains its maximum. Note that (we
drop the super-scripts γ and δ for the moment)

∂

∂xi
(|∇u|2) = 2

∂u

∂xj

∂2u

∂xi∂xj
,

so that, using (2.6.34), we compute

∆(|∇u|2) = 2
n∑

i,j=1

( ∂2u

∂xi∂xj

)2

+ 2
n∑
j=1

∂u

∂xj

∂∆u

∂xj
= 2

n∑
i,j=1

( ∂2u

∂xi∂xj

)2

+
2M

δ
|∇u|2

+
2

δ

n∑
j=1

∂u

∂xj

∂H(x,∇u)

∂xj
+

2

δ

n∑
k,j=1

∂u

∂xj

∂H(x,∇u)

∂pk

∂2u

∂xj∂xk
− 2

δ

n∑
j=1

∂u

∂xj

∂fγ
∂xj

= 2
n∑

i,j=1

( ∂2u

∂xi∂xj

)2

+
2M

δ
|∇u|2 +

2

δ

n∑
j=1

∂u

∂xj

∂H(x,∇u)

∂xj
+

1

δ

n∑
k=1

∂H(x,∇u)

∂pk

∂|∇u|2

∂xk

−2

δ

n∑
j=1

∂u

∂xj

∂fγ
∂xj

.
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Thus, at the maximum x0 of |∇u|2 we have

0 ≥ ∆(|∇u|2)(x0) = 2
n∑

i,j=1

( ∂2u

∂xi∂xj

)2

+
2M

δ
|∇u|2 +

2

δ

n∑
j=1

∂u

∂xj

∂H(x,∇u)

∂xj
− 2

δ

n∑
j=1

∂u

∂xj

∂fγ
∂xj

.

(2.6.39)
Let us recall the gradient bound (2.6.6) on H(x, p):

|∇xH(x, p)| ≤ K0(1 + |p|). (2.6.40)

We see from (2.6.39) and (2.6.40) that

Q = |∇u(x0)| = sup
x∈Tn
|∇u(x)|

satisfies

MQ2 ≤ K0Q(1 +Q) +Q‖fγ‖C1 ≤ 5K0(1 +Q2) +KγQ‖f‖L∞ . (2.6.41)

We used (2.6.36) above. It follows from (2.6.41) that there exist M0 > 0 and C1 that depend
on K0 but not on γ ∈ (0, 1) and Cγ that depends on γ ∈ (0, 1) so that for all M > M0 we
have

Q ≤ C1 + Cγ‖f‖L∞ . (2.6.42)

This proves (2.6.37).
To prove (2.6.38) we look at the point xM where u attains its maximum over Tn. At this

point we have

Mu(xM) = fγ(xM) + δ∆u(xM)−H(xM , 0) ≤ ‖fγ||L∞ + ‖H(·, 0)‖L∞ , (2.6.43)

hence

u(xM) ≤ C

M
(1 + ‖f‖L∞).

A similar estimate holds at the minimum of u, proving (2.6.38). �
The Lipschitz bound (2.6.37) and (2.6.38) show that if M > M0, after passing to a

subsequence δk ↓ 0, the family uγ,δk(x) converges uniformly in x ∈ Tn, to a function uγ(x).

Exercise 2.6.10 Show that uγ(x) is the viscosity solution to

H(x,∇uγ) +Muγ = fγ(x), x ∈ Tn. (2.6.44)

Hint: Exercise 2.5.8 and its solution should be helpful here.

The next step is to send γ → 0.

Exercise 2.6.11 Mimic the proof of Lemma 2.6.6 to show that uγ(x) are uniformly Lipschitz:
there exists a constant Cf > 0 that may depend on ‖f‖L∞ but is independent of γ ∈ (0, 1)
and of M > M0 such that

|Lip uγ| ≤ Cf . (2.6.45)

Also show that

‖uγ‖L∞ ≤
1

M
(‖H(·, 0)‖L∞ + ‖f‖L∞). (2.6.46)
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This exercise shows that as long as M ≥ M0, the family uγk converges, along as subse-
quence γk ↓ 0, uniformly in x ∈ Tn, to a limit u(x) ∈ C(Tn) that obeys the same uniform
Lipschitz and L∞-bounds in Exercise 2.6.11. Invoking again the stability result of Exer-
cise 2.5.8 shows that u(x) is the unique viscosity solution to

H(x,∇u) +Mu = f(x), x ∈ Tn. (2.6.47)

This finishes the proof of Lemma 2.6.8. �

The end of the proof of Proposition 2.6.7

We now explain how this construction implies the conclusion of Proposition 2.6.7. Let us
take ε < M , and re-write equation (2.6.31)

H(x,∇u) + εu = 0, x ∈ Tn. (2.6.48)

for which we need to find a solution, as

H(x,∇u) +Mu = (M − ε)u, x ∈ Tn. (2.6.49)

As we have mentioned, we define the map S : C(Tn) → C(Tn) as follows: given v ∈ C(Tn),
let u = S[v] be the unique viscosity solution to

H(x,∇u) +Mu = (M − ε)v, x ∈ Tn. (2.6.50)

We claim that S is a contraction in C(Tn). We have shown that u = S[v] can be constructed
via the above procedure of passing to the limit δ → 0 , followed by γ → 0 in the regularized
problem

− δ∆uγ,δ +H(x,∇uγ,δ) +Muγ,δ = (M − ε)vγ, x ∈ Tn. (2.6.51)

Given v1, v2 ∈ C(Tn), consider the corresponding solutions to the regularized problems (2.6.51):

− δ∆uγ,δ1 +H(x,∇uγ,δ1 ) +Muγ,δ1 = (M − ε)v1,γ, x ∈ Tn, (2.6.52)

and
− δ∆uγ,δ2 +H(x,∇uγ,δ2 ) +Muγ,δ2 = (M − ε)v2,γ, x ∈ Tn. (2.6.53)

Assume that the difference
w = uγ,δ1 − u

γ,δ
2

attains its maximum at a point x0. The function w satisfies

− δ∆w +H(x,∇uγ,δ1 )−H(x,∇uγ,δ2 ) +Mw = (M − ε)(v1,γ − v2,γ), x ∈ Tn. (2.6.54)

Evaluating this at x = x0, as ∇uγ,,δ1 (x0) = ∇uγ,,δ2 (x0), we see that

− δ∆w(x0) +Mw(x0) = (M − ε)(v1,γ(x0)− v2,γ(x0)), x ∈ Tn. (2.6.55)

As x0 is the maximum of w, we deduce that

w(x0) ≤ M − ε
M
‖v1,γ − v2,γ‖C(Tn).
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Using a nearly identical computation for the minimum, we conclude that

‖uγ,δ1 − u
γ,δ
2 ‖C(Tn) ≤

M − ε
M
‖v1,γ − v2,γ‖C(Tn). (2.6.56)

Passing to the limit δ ↓ 0 and γ ↓ 0, we obtain

‖u1 − u2‖C(Tn) ≤
M − ε
M
‖v1 − v2‖C(Tn), (2.6.57)

hence S is a contraction on C(Tn), as claimed. Thus, this map has a fixed point, which is the
viscosity solution to

H(x,∇u) + εu = 0, x ∈ Tn. (2.6.58)

This completes the proof of Proposition 2.6.7. �

2.6.2 Existence of the solution to the Cauchy problem

We will now construct the viscosity solution to the Cauchy problem

ut +H(x,∇u) = 0, t > 0, x ∈ Tn,
u(0, x) = u0(x), x ∈ Tn,

(2.6.59)

with a continuous initial condition u0(x). Recall that Exercise 2.5.13 implies the uniqueness
of the solution with a given initial condition, so we do not need to address that issue. We
make the same assumptions as in Theorem 2.6.2: there exists CL > 0 so that

|H(x, p1)−H(x, p2)| ≤ CL|p1 − p2|, for all x, p1, p2 ∈ Rn, (2.6.60)

and
lim
|p|→+∞

H(x, p) = +∞, uniformly in x ∈ Tn. (2.6.61)

We will again assume the gradient bound (2.6.6):

|∇xH(x, p)| ≤ K0(1 + |p|), for all x ∈ Tn, and p ∈ Rn. (2.6.62)

Theorem 2.6.12 The Cauchy problem (2.6.59) has a unique viscosity solution u(t, x). More-
over, the weak contraction property holds: if u(t, x) and v(t, x) are two solutions to (2.6.59)
with the corresponding initial conditions u0 ∈ C(Tn) and v0 ∈ C(Tn), then

‖u(t, ·)− v(t, ·)‖L∞ ≤ ‖u0 − v0‖L∞ . (2.6.63)

The weak contraction property is recorded here simply for the sake of completeness: we have
seen in Exercise 2.5.14 that it follows immediately from the comparison principle. Therefore,
we will focus on the existence of the solutions.

An important consequence of the weak contraction principle is that we may restrict our-
selves to initial conditions that are smooth. Indeed, suppose that we managed to prove the
theorem for smooth initial conditions, and consider u0 ∈ C(Tn). Let u

(k)
0 be a sequence of
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smooth functions converging to u0 in C(Tn) as k → +∞, and u(k)(t, x) be the corresponding

sequence of solutions to (2.6.59), with the initial conditions u
(k)
0 . It follows from the weak

contraction principle that

‖u(k) − u(m)‖L∞(R+×Tn) ≤ ‖u(k)
0 − u

(m)
0 ‖L∞ ,

ensuring that u(k) is a uniformly Cauchy sequence on C([0,+∞) × Tn). Hence, it converges
uniformly to a continuous function u ∈ C(R+ × Tn). The stability result in Exercise 2.5.8
implies that u is a solution to the Cauchy problem (2.6.59) with the initial condition u0(x).

We are now left with the actual construction of a solution to (2.6.59), with the assumption
that u0 is smooth. We are going to use the most pedestrian way to do it: a time discretization.
Take a family of time steps ∆t→ 0. For a fixed ∆t > 0, consider the sequence un∆t(x) defined
by setting u0(x) := u0(x) and the recursion relation:

un+1
∆t − un∆t

∆t
+H(x,∇un+1

∆t ) = 0, x ∈ Tn, (2.6.64)

that is an implicit time discretization of (2.6.59). Given un∆t(x), we look at (2.6.64) as a
time-independent Hamilton-Jacobi equation

H(x,∇un+1
∆t ) +

1

∆t
un+1

∆t =
1

∆t
un∆t, x ∈ Tn. (2.6.65)

It is of the type, for which Proposition 2.6.7 guarantees existence of a unique continuous
solution un+1

∆t , as long as un∆t is continuous. This produces the sequence un∆t(x), for n ≥ 0. An
approximate solution u∆t to the Cauchy problem (2.6.59) is then constructed by interpolating
linearly between the times n∆t and (n+ 1)∆t:

u∆t(t, x) = un∆t(x) +
t− n∆t

∆t

(
un+1

∆t (x)− un∆t(x)
)
, t ∈ [n∆t, (n+ 1)∆t). (2.6.66)

The help provided by the smoothness assumption on u0 manifests itself in the next proposition.

Proposition 2.6.13 There is C > 0, depending on ‖u0‖∞ and Lip(u0) but not on ∆t ∈ (0, 1),
such that the function u∆t(t, x) is uniformly Lipschitz continuous in t and x on [0,+∞)×Tn,
and the Lipschitz constant Lip(u∆t) of u∆t both in t and x, over the set [0,+∞)×Tn, satisfies

Lip(u∆t) ≤ C. (2.6.67)

This ensures that there exists a sequence ∆tn → 0, such that the corresponding sequence u∆tn

converges as n → ∞ to a Lipschitz function u(t, x) with the Lipschitz constant Lip(u) ≤ C.
The next step will be to prove

Proposition 2.6.14 The function u(t, x) is a viscosity solution to the Cauchy problem (2.6.59):

ut +H(x,∇u) = 0, t > 0, x ∈ Tn,
u(0, x) = u0(x), x ∈ Tn.

(2.6.68)
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Proof. Let us prove this claim first, assuming the conclusion of Proposition 2.6.13. Note
that the initial condition u(0, x) = u0(x) is satisfied by construction, so we only need to
check that u is a viscosity solution to (2.6.68). We will only prove that u is a super-solution,
the sub-solution property of u can be proved identically. Let ϕ(t, x) be a C1-test function
and (t0, x0) be a minimum point for the difference u − ϕ. As we have seen in the hint to
Exercise 2.5.8, we may assume, possibly after subtracting a quadratic polynomial in t and x
from the function ϕ, that the minimum is strict. Consider the linearly interpolated time
discretization ϕ∆t of ϕ: set ϕn(x) = ϕ(n∆t, x), for n ≥ 0, and

ϕ∆t(t, x) = ϕn(x) +
t− n∆t

∆t

(
ϕn+1(x)− ϕn(x)

)
, for t ∈ [n∆t, (n+ 1)∆t).

Note a slight abuse of notation: the function ϕ∆t is a linear interpolation of the function ϕ,
while u∆t is not the linear interpolation of the function u but rather the linear interpolation
of the solution to the time-discretized problem (2.6.64),with the time step ∆t. Nevertheless,
as the minimum (t0, x0) of u−ϕ is strict, and u∆t converges to u uniformly, for ∆t sufficiently
small, there exists a minimum point (t∆t, x∆t) for u∆t − ϕ∆t, such that

lim
∆t→0

(t∆t, x∆t) = (t0, x0).

In addition, because both u∆t and ϕ∆t are piecewise linear in t, we have t∆t = (n+ 1)∆t for
some n ≥ 0. Then we have, again, because (t∆t, x∆t) is a minimum for u∆t − ϕ∆t:

un+1
∆t (x∆t)− un∆t(x∆t)

∆t
= ∂−t u∆t((n+ 1)∆t, x∆t) ≤ ∂−t ϕ∆t((n+ 1)∆t, x∆t) = ∂tϕ(t0, x0) + o(1),

(2.6.69)
as ∆t→ 0. We also have, in the vicinity of (t0, x0):

ϕ(t, x)− ϕ∆t(t, x) = O(∆t2), ∂tϕ(t, x)− ∂tϕ∆t(t, x) = O(∆t), as ∆t→ 0, (2.6.70)

with the slight catch here that we have to speak of the left and right derivatives of ϕ∆t at the
discrete times n∆t. On the other hand, the point x∆t is a minimum of

un+1
∆t (x)− ϕ∆t((n+ 1)∆t, x)

in the x-variable. Since un+1
∆t is a viscosity solution to (2.6.64), we have

un+1
∆t (x∆t)− un∆t(x∆t)

∆t
≥ −H(x∆t,∇ϕ∆t((n+ 1)∆t, x∆t)) = −H(x0,∇φ(t0, x0)) + o(1),

(2.6.71)
as ∆t→ 0. Putting together (2.6.69)-(2.6.71) and sending ∆t to 0, we obtain

∂tϕ(t0, x0) +H(x0,∇ϕ(t0, x0)) ≥ 0,

hence u is a super-solution to (2.6.68). This proves Proposition 2.6.14. �
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Proof of Proposition 2.6.13

The reason behind this proposition is quite simple: if u is a smooth solution to

ut +H(x,∇u) = 0, (2.6.72)

then the function v(t, x) = ut(t, x) solves

vt +∇pH(x,∇u) · ∇v = 0, (2.6.73)

with the initial condition v(0, x) = −H(x,∇u0(x)). It follows from the maximum principle,
or the method of characteristics for smooth solutions, that

‖v(t, ·)‖L∞ ≤ ‖H(·,∇u0(·))‖L∞ . (2.6.74)

Moreover, (2.6.72) and (2.6.74) together with the coercivity of H(x, p) yield the uniform
boundedness of ∇u. The proof of the proposition consists in making this idea rigorous.

Let us recall that un∆t is the solution to the recursive equation (2.6.64)

un+1
∆t − un∆t

∆t
+H(x,∇un+1

∆t ) = 0, x ∈ Tn, (2.6.75)

interpolated between the times of the form n∆t as in (2.6.66):

u∆t(t, x) = un∆t(x) +
t− n∆t

∆t

(
un+1

∆t (x)− un∆t(x)
)
, t ∈ [n∆t, (n+ 1)∆t). (2.6.76)

The viscosity solution un+1
∆t to (2.6.75) can be constructed using the by now familiar idea of

a diffusive regularization:

− δ∆un+1,δ
∆t +H(x,∇un+1,δ

∆t ) +
un+1,δ

∆t − un,δ∆t

∆t
= 0, x ∈ Tn, (2.6.77)

with δ > 0, and then sending δ ↓ 0. As we have assumed that u0(x) is smooth, all un,δ∆t (x) are
also smooth, for all δ > 0.

Exercise 2.6.15 Show that

‖un+1,δ
∆t ‖L∞ ≤ ‖u

n,δ
∆t ‖L∞ + (∆t)‖H(·, 0)‖L∞ . (2.6.78)

Hint: look at the maximum x0 of the smooth function un+1,δ
∆t over Tn.

Exercise 2.6.16 Use the argument in the proof of Lemma 2.6.9 and Exercise 2.6.15 to show
that there exists a constant Cn,∆t that may depend on n and ∆t but not on δ > 0, so that

‖∇un,δ∆t ‖L∞ ≤ Cn,∆t. (2.6.79)

141



The bound (2.6.79) is quite poor as we did not track the dependence of Cn,∆t on n or ∆t, but
we have extra help. The differential quotient

vn,δ∆t =
un+1,δ

∆t − un,δ∆t

∆t

satisfies

− δ∆vn+1,δ
∆t +

vn+1,δ
∆t

∆t
+

1

∆t

(
H(x,∇un+1,δ

∆t )−H(x,∇un,δ∆t )
)

=
vn,δ∆t

∆t
, (2.6.80)

for all n ≥ 0. At the maximum xM and minimum xm of the smooth function vn,δ∆t we have

∇un+1,δ
∆t (xM) = ∇un,δ∆t (xM), ∇un+1,δ

∆t (xm) = ∇un,δ∆t (xm).

Using this in (2.6.80) we obtain

‖vn+1,δ
∆t ‖L∞ ≤ ‖v

n,δ
∆t ‖L∞ ≤ · · · ≤ ‖v

0,δ
∆t‖L∞ . (2.6.81)

For the last term in the right side we observe that

v0,δ
∆t =

u1,δ
∆t − u0

∆t

satisfies, instead of (2.6.80), the equation

− δ∆v0,δ
∆t +

v0,δ
∆t

∆t
+

1

∆t
H(x,∇u1,δ

∆t) =
δ

∆t
∆u0. (2.6.82)

Again, the maximum principle implies

‖v0,δ
∆t‖L∞ ≤ ‖H(·,∇u0)‖L∞ + δ‖∆u0‖L∞ . (2.6.83)

Using this in (2.6.81), we conclude that

‖vn,δ∆t ‖L∞ ≤ ‖H(·,∇u0)‖L∞ + δ‖∆u0‖L∞ , (2.6.84)

for all n ≥ 0. This bound is the reason why we have assumed that u0 is smooth.
We may now pass to the limit δ → 0 in (2.6.84) and recall the convergence of un,δ∆t to un∆t,

to conclude that

vn,δ∆t =
un+1,δ

∆t − un,δ∆t

∆t
→ vn∆t :=

un+1
∆t − un∆t

∆t
as δ ↓ 0. (2.6.85)

Combining this with the uniform bound (2.6.84) , we conclude that∥∥∥un+1
∆t − un∆t

∆t

∥∥∥
L∞
≤ ‖H(·,∇u0)‖L∞ , (2.6.86)

which is a uniform Lipschitz bound on u∆t in the t-variable that we need. The reader should
compare it to the bound (2.6.74) that we have obtained easily for smooth solutions.
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The Lipschitz bound for un∆t in the x-variable follows easily. Recall that the functions un∆t
satisfy (2.6.64):

H(x,∇un+1
∆t ) +

1

∆t
un+1

∆t =
1

∆t
un∆t, x ∈ Tn. (2.6.87)

We know from Exercise 2.6.16 that un∆t are Lipschitz – even though we do not know if they
have a Lipschitz constant that does not depend on n or ∆t. However, this already tells us
that un∆t satisfy (2.6.87) almost everywhere. We write this equation in the form

H(x,∇un+1
∆t ) = −vn∆t(x), x ∈ Tn. (2.6.88)

The uniform bound on vn∆t in (2.6.86) together with the coercivity of H(x, p) imply that there
exists a constant K > 0 that does not depend on n or ∆t so that

‖∇un+1
∆t ‖L∞ ≤ K. (2.6.89)

This finishes the proof of Proposition 2.6.13. �

Exercise 2.6.17 Prove the following elementary fact that we used in the very last step in
the above proof: if u(x) is a Lipschitz function then Lip(u) = ‖∇u‖L∞ .

Exercise 2.6.18 (Hamiltonians that are coercive in u). So far, we have been remarkably
silent about Hamilton-Jacobi equations of the form

ut +H(x, u,∇u) = 0, t > 0, x ∈ Tn, (2.6.90)

with the Hamiltonian that depends also on the function u itself. There is one case when the
above theory can be developed without any real input of new ideas: assume that H(x, u, p)
is non-decreasing in u, and that there exists C0 > 0 so that for all R > 0, there exists δ1,2(R)
such that

0 < δ1(R) ≤ δ2(R) < C0,

and, for all u ∈ [−R,R], we have

δ1(R)(|p| − 1) ≤ H(x, u, p) ≤ δ2(R)(|p|+ 1) for all |u| ≤ R, x ∈ Tn and p ∈ Rn.

Prove a well-posedness theorem analogous to Theorem 2.6.12. How far can one stretch the
assumptions on H(x, u, p)? Hint: coercivity is really something one has to assume, one way
or another.

2.7 When the Hamiltonian is strictly convex: the La-

grangian theory

Let us recall that in Section 2.4 we considered the Cauchy problem

ut +
1

2
|∇u|2 −R(x) = 0, (2.7.1)

143



with an initial condition u(0, x) = u0(x). We have shown that when both R(x) and u0(x)
are convex, this problem has a smooth solution given by the (at first sight) strange looking
expression (2.4.19)

u(t, x) = inf
γ(t)=x

(
u0(γ(0)) +

∫ t

0

( |γ′(s)|2
2

+R(γ(s))
)
ds
)
. (2.7.2)

Moreover, this expression is well-defined even if the boundary value problem for the char-
acteristic curves may be not well-posed. Hence, a natural idea is to generalize this formula
to other Hamiltonians and take this generalization as the definition of a solution. On the
other hand, we already have the notion of a viscosity solution, so an issue is if these objects
agree. In this section, we investigate when the variational approach is possible and whether
the solution you construct in this way is, indeed, a viscosity solution. We also discuss how
the strict convexity of the Hamiltonian gives an improved regularity of the solution.

2.7.1 The Lax-Oleinik formula and viscosity solutions

In the construction of the viscosity solutions, we assumed very little about the Hamiltonian H:
all we really needed was coercivity and continuity. The other regularity assumptions we have
made are mostly of the technical nature and can be avoided. From now on, we will adopt an
even stronger technical assumption that H(x, p) is C∞(Tn×Rn) smooth but more crucially we
will assume that H(x, p) is uniformly strictly convex in its second variable: there exists α > 0
so that

D2
pH(x, p) ≥ αI, [D2

pH(x, p)]ij =
∂2H(x, p)

∂pi∂pj
, (2.7.3)

in the sense of quadratic forms, for all x ∈ Tn and p ∈ Rn. Unlike the regularity assumptions,
the convexity of H(x, p) in p is essential not only for this section, but also for many results
on the Hamilton-Jacobi equations.

Exercise 2.7.1 The reader may be naturally concerned that in the construction of the vis-
cosity solutions we have assumed that H(x, p) is uniformly Lipschitz:

|H(x, p1)−H(x, p2)| ≤ CL|p1 − p2| for all x ∈ Tn and p1, p2 ∈ Rn, (2.7.4)

and differentiable in x:

|∇xH(x, p)| ≤ C0(1 + |p|) for all x ∈ Tn and p ∈ Rn, (2.7.5)

These assumptions are, of course, incompatible with the strict convexity assumption onH(x, p)
in (2.7.3). Go through the proofs of existence and uniqueness of the viscosity solutions and
show that the coercivity assumption

lim
|p|→+∞

H(x, p) = +∞ (2.7.6)

together with the assumption that (2.7.4) and (2.7.5) hold locally in p, in the sense that for
ever compact set K ⊂ Rn there exist two constants CL(K) and C0(K) such that

|H(x, p1)−H(x, p2)| ≤ CL|p1 − p2| for all x ∈ Tn and p1, p2 ∈ K,

|∇xH(x, p)| ≤ C0(1 + |p|) for all x ∈ Tn and p ∈ K,
(2.7.7)
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are sufficient to prove existence and uniqueness of the viscosity solutions both in the Lions-
Papanicolaou-Varadhan Theorem 2.6.2 and in Theorem 2.6.12 for the solutions to the Cauchy
problem.

The Legendre transform and extremal paths

Recall that in Section 2.2 we have informally argued as follows: given a path γ(s), t ≤ s ≤ T ,
with the starting point γ(t) = x, we can define its cost as

C(γ)(t) =

∫ T

t

L̃(γ̇(s))ds+ f(x(T )). (2.7.8)

Here, the function L̃(v) represents the running cost, and the function f(x) is the terminal
cost. The corresponding value function is

ũ(t, x) = inf
γ: γ(t)=x

C(γ)(t), (2.7.9)

with the infimum taken over all curves γ ∈ C1 such that γ(t) = x. We have shown, albeit
very informally, that ũ(t, x) satisfies the Hamilton-Jacobi equation

ũt + H̃(∇ũ) = 0, (2.7.10)

with the terminal condition u(T, x) = f(x). The Hamiltonian H̃(p) is given in terms of the

running cost L̃(v) by (2.2.9):

H̃(p) = inf
v∈A

[
L̃(v) + v · p

]
. (2.7.11)

It is convenient to reverse the direction of time and set

u(t, x) = ũ(T − t, x). (2.7.12)

This function satisfies the forward Cauchy problem

ut +H(∇u) = 0, (2.7.13)

with the initial condition u(0, x) = f(x) and the Hamiltonian given by

H(p) = −H̃(p) = − inf
v∈Rn

[
L̃(v) + v · p

]
= sup

v∈Rn
[−p · v − L̃(v)] = sup

v∈Rn
[p · v − L(v)], (2.7.14)

with the time-reversed cost function

L(v) = L̃(−v). (2.7.15)

The natural questions are, first, if the above construction, using the minimizer in (2.7.9),
indeed, produces a solution to the initial value problem for (2.7.13) – so far, our arguments
were rather informal, and, second, how it is related to the notion of the viscosity solution.

This bring us to the terminology of the Legendre transforms. One of the standard ref-
erences for the basic properties of the Legendre transform is [?], where an interested reader
may find much more information on this beautiful subject. Given a function L(v), known as
the Lagrangian, we define its Legendre transform as in (2.7.14)

H(p) = sup
v∈Rn

(p · v − L(v)). (2.7.16)
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Exercise 2.7.2 Show the function H(p) defined by (2.7.16) is convex. Hint: use the fact
that H(p) is the supremum of a family of linear functions in p.

This shows that if we hope to connect the Hamilton-Jacobi equations to the above optimal
control problem, this can only be done for convex Hamiltonians. Hence, our assumption (2.7.3)
that the Hamiltonian H(x, p) is convex in p.

If the function L(v) is smooth and strictly convex, then, for a given p ∈ Rn, the maxi-
mizer v̄(p) in (2.7.16) is explicit: it is the unique solution to

p = ∇L(v̄). (2.7.17)

Exercise 2.7.3 Show that if L(v) is strictly convex, and H(p) is its Legendre transform given
by (2.7.16), then we have the duality

L(v) = sup
p∈Rn

(p · v −H(p)),

so that the Lagrangian L is the Legendre transform of the Hamiltonian H. Hint: this is easier
to verify if L(v) is smooth, in addition to being convex.

As a consequence, if a function H(p) is strictly convex, then we can define the Lagrangian L
as the Legendre transform of H. If the Hamiltonian H(x, p) depends, in addition, on a
variable x ∈ Tn as a parameter, then the Lagrangian L(x, v) is defined as the Legendre
transform of H(x, p) in the variable p:

L(x, v) = sup
p∈Rn

(p · v −H(x, p)), (2.7.18)

with the dual relation

H(x, p) = sup
v∈Rn

(p · v − L(x, v)). (2.7.19)

We usually refer to x as the spatial variable, and to p as the momentum variable.

Exercise 2.7.4 Compute the Lagrangian L(x, v) for the classical mechanics Hamiltonian

H(x, p) =
|p|2

2m
+ U(x),

with a given m > 0. Why is it called the classical mechanics Hamiltonian? What is the
meaning of the two terms in its definition? Hint: consider the characteristic curves for this
Hamiltonian.

Exercise 2.7.5 Consider a sequence of smooth strictly convex Hamiltonians Hε(p) that con-
verges locally uniformly, as ε → 0, to H(p) = |p|. What happens to the corresponding
Lagrangians Lε(v) as ε→ 0?
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In the context of the forward in time Hamilton-Jacobi equations, with the Hamiltonian
that depends on the spatial variable as well, the variational problem (2.7.8)-(2.7.9) is defined
as follows. For t > 0, and two points x ∈ Tn and y ∈ Tn, we define the function

ht(y, x) = inf
γ(0)=y,γ(t)=x

∫ t

0

L(γ(s), γ̇(s)) ds. (2.7.20)

Here, the infimum is taken over all paths γ on Tn, that are piecewise C1[0, t], and L(x, v) is
the Lagrangian given by (2.7.18). The quantity

A(γ) =

∫ t

0

L(γ(s), γ̇(s)) ds

is usually referred to as the Lagrangian action, or simply the action. This is a classical
minimization problem, which admits the following result (Tonelli’s theorem).

Proposition 2.7.6 Given any (t, x, y) ∈ R∗+ × Tn × Tn, there exists at least one minimizing
path γ(s) ∈ C2([0, t];Tn), such that

ht(y, x) =

∫ t

0

L(γ(s), γ̇(s)) ds.

Moreover there is C(t, |x− y|) > 0 such that

‖γ̇‖L∞([0,t]) + ‖γ̈‖L∞([0,t]) ≤ C(t, |x− y|). (2.7.21)

The function C tends to +∞ as t → 0 – keeping |x − y| fixed. The function γ(s) solves the
Euler-Lagrange equation

d

ds
∇vL(γ(s), γ̇(s))−∇xL(γ(s), γ̇(s)) = 0. (2.7.22)

We leave the proof as an exercise but give a hint for the proof. Think of how we proceeded in
Section 2.4.2 as blueprint. Consider a minimizing sequence γn. First, use the strict convexity
of L to obtain the H1-estimates for γn, thus ensuring compactness in the space of continuous
paths and weak convergence to γ ∈ H1([0, t]) with fixed ends. Next, show that the convexity
of L implies that γ is, indeed, a minimizer. Finally, derive the Euler-Lagrange equation and
show that γ is actually C∞. Such a curve γ is called an extremal.

The Lax-Oleinik semigroup and viscosity solutions

We now relate the solutions to the Cauchy problem for the Hamilton-Jacobi equations

ut +H(x,∇u) = 0, t > 0, x ∈ Tn,
u(0, x) = u0(x),

(2.7.23)

with a strictly convex Hamiltonian H(x, p), to the minimization problem. We let L(x, v) be
the Legendre transform of H(x, p), and define the corresponding function ht(y, x). Given the
initial condition u0 ∈ C(Tn), we define the function

u(t, x) = T (t)u0(x) = inf
y∈Tn

(u0(y) + ht(y, x)). (2.7.24)

The following exercise gives the dynamic programming principle, the continuous in time analog
of relation (2.2.5) in the time-discrete case we have considered in Section 2.2 .
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Exercise 2.7.7 Show that the infimum in (2.7.24) is attained. Also show that (T (t))t>0 is a
semi-group: for all u0 ∈ C(Tn) one has

T (t+ s)u0 = T (t)T (s)u0, for all t ≥ 0 and s ≥ 0,

that is,
u(t, x) = inf

y∈Tn
(u(s, y) + ht−s(y, x)), (2.7.25)

for all 0 ≤ s ≤ t, and T (0) = I.

This semigroup is sometimes referred to as the Lax-Oleinik semigroup. Here is its link to the
Hamilton-Jacobi equations and the viscosity solutions.

Theorem 2.7.8 Given u0 ∈ C(Tn), the function u(t, x) := T (t)u0(x) is the unique viscosity
solution to the Cauchy problem

ut +H(x,∇u) = 0,

u(0, x) = u0(x).
(2.7.26)

Proof. The initial condition for u(t, x) holds essentially automatically so we only need to
check that u is the viscosity solution. We first show the super-solution property: take t0 > 0
and x0 ∈ Tn and let φ be a test function such that (t0, x0) is a minimum for u− φ. As usual,
without loss of generality, we may assume that u(t0, x0) = φ(t0, x0). Consider the minimizing
point y0 such that

u(t0, x0) = u0(y0) + ht0(y0, x0).

Let also γ be an extremal of the action between the times t = 0 and t = t0, going from y0

to x0: γ(0) = y0, γ(t0) = x0. We have, for all 0 ≤ t ≤ t0:

φ(t, γ(t)) ≤ u(t, γ(t)) ≤ u0(y0) +

∫ t

0

L(γ(s), γ̇(s)) ds. (2.7.27)

The first inequality above holds because (t0, x0) is a minimum of u−φ and u(t0, x0) = φ(t0, x0),
and the second follows from the definition of u(t, γ(t)) in terms of the Lax-Oleinik semi-
group. Note that at t = t0 both inequalities in (2.7.27) become equalities: the first one
because u(t0, x0) = φ(t0, x0), and the second because the curve γ is a minimizer for u(t0, x0).
This implies

d

dt

(
u0(y0) +

∫ t

0

L(γ(s), γ̇)(s) ds− φ(t, γ(t))
)∣∣∣

t=t0
≤ 0, (2.7.28)

or, in other words

φt(t0, x0) + γ̇(t0) · ∇φ(t0, x0)− L(γ(t0), γ̇(t0)) ≥ 0. (2.7.29)

Using the test point v = γ̇(t0) in the definition (2.7.19) of H(x, p), we then obtain

φt(t0, x0) +H(x0,∇φ(t0, x0)) ≥ 0. (2.7.30)

Hence, u(t, x) is a viscosity super-solution to (2.7.26).
To show the sub-solution property, consider a test function φ(t, x), as well as t0 > 0

and x0 ∈ Tn, such that the difference u − φ attains its maximum at (t0, x0), and assume,
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once again, that u(t0, x0) = φ(t0, x0). Using the semigroup property (2.7.25), we obtain, for
all t ≤ t0 and any curve γ(t) such that γ(t0) = x0:

u(t0, x0) ≤ u(t, γ(t)) + ht0−t(γ(t), x0) ≤ φ(t, γ(t)) + ht0−t(γ(t), x0). (2.7.31)

Given v ∈ Rn, we take the test curve

γ(s) = x0 − (t0 − s)v

in (2.7.31), so that
γ(t) = x0 − (t0 − t)v.

Note that the curve
γ1(s) = x0 − (t0 − t)v + sv,

can be used as a test curve in the definition of ht0−t(γ(t), x0) because we have γ1(0) = γ(t),
and γ1(t0 − t) = x0. Using this in (2.7.31) gives

u(t0, x0) ≤ φ(t, x0 − (t0 − t)v) +

∫ t0−t

0

L(x0 − (t0 − t)v + sv, v)ds

= φ(t, x0 − (t0 − t)v) +

∫ t0−t

0

L(x0 − sv, v)ds,

(2.7.32)

and, once again, this inequality becomes an equality at t = t0, since u(t0, x0) = φ(t0, x0). Just
as before, differentiating in t at t = t0 gives

φt(t0, x0) + v · ∇φ(t0, x0)− L(x0, v) ≤ 0. (2.7.33)

As (2.7.33) holds for all v ∈ Rn, it follows that

φt(t0, x0) +H(x0,∇φ(t0, x0)) ≤ 0. (2.7.34)

Therefore, u is also a viscosity sub-solution to (2.7.26), and the proof is complete. �

Exercise 2.7.9 Show the weak contraction and the finite speed of propagation properties,
directly from the Lax-Oleinik formula.

Instant regularization to Lipschitz

We conclude this section with a remarkable result on instant smoothing. We will show that
if the initial condition u0 is continuous on Tn, then the solution to the Cauchy problem

ut +H(x,∇u) = 0, t > 0, x ∈ Tn,
u(0, x) = u0(x)

(2.7.35)

becomes instantaneously Lipschitz. The improved regularity comes from the strict convexity
of the Hamiltonian: indeed, nothing of that sort is true without this assumption, as can be
seen from the following exercise.
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Exercise 2.7.10 Consider the initial value problem

ut + |ux| = 0, t > 0, x ∈ T1,

u(0, x) = u0(x).
(2.7.36)

(i) Show that the solution to (2.7.36) is given by

u(t, x) = inf
|x−y|≤t

u0(y). (2.7.37)

Hint: one may do this directly but also by considering a family of strictly convex Hamiltoni-
ans Hε(p) that converges to H(p) = |p| as ε→ 0, and using the Lax-Oleinik semi-group for

uεt +Hε(u
ε
x) = 0, t > 0, x ∈ T1,

uε(0, x) = u0(x).
(2.7.38)

Exercise 2.7.5 may be useful here.
(ii) Given an example of a continuous initial condition u0(x) such that the viscosity solution
to (2.7.36) is not Lipschitz.

On the other hand, if the Hamiltonian is strictly convex we have the following result.

Theorem 2.7.11 Let H(x, p) be strictly convex, and u(t, x) be the unique solution to the
Cauchy problem

ut +H(x,∇u) = 0,

u(0, x) = u0(x),
(2.7.39)

with u0 ∈ C(Tn). Then, the function u(t, x) is Lipschitz in t and x for all t > 0.

Let us point the key difference with Proposition 2.6.13: as can be seen from the proof of
that proposition, we used the Lipschitz property of the initial condition u0, and showed that
the solution remains Lipschitz at t > 0. Here, the initial condition is not assumed to be
Lipschitz but only continuous, and the improved regularity comes from the convexity of the
Hamiltonian.

Proof. It is sufficient to consider time intervals of length one, and repeat the argument
on the subsequent intervals. Given 0 < t ≤ 1, and x ∈ Tn, consider the extremal curve γ(s)
such that γ(t) = x, and

u(t, x) = u0(γ(0)) +

∫ t

0

L(γ(s), γ̇(s)) ds. (2.7.40)

As 0 ≤ s ≤ 1, both γ(s) and γ̇(s) are uniformly bounded. Of course, on the torus γ(s)
is always bounded but it would also be bounded for 0 ≤ s ≤ 1 if we were considering the
problem on Rn. Take h ∈ Rn, and define the curve

γ1(s) = γ(s) +
s

t
h, 0 ≤ s ≤ t,

so that
γ1(0) = γ(0), γ1(t) = x+ h. (2.7.41)
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We may use the Lax-Oleinik formula for u(t, x+h) and (2.7.40) for u(t, x), as well as (2.7.41),
to write

u(t, x+ h) = u(t, γ1(t)) ≤ u(γ1(0)) +

∫ t

0

L(γ1(s), γ̇1(s))ds

= u(t, x) +

∫ t

0

(L(γ1(s), γ̇1(s))− L(γ(s), γ̇(s))) ds.

(2.7.42)

The integral in the right side can be estimated as∫ t

0

(L(γ1(s), γ̇1(s))− L(γ(s), γ̇(s)) ds =

∫ t

0

[L(γ(s) +
s

t
h, γ̇(s) +

1

t
h)− L(γ(s), γ̇(s))] ds

≤
∫ t

0

1

t

(
sh · ∇xL(γ(s), γ̇(s)) + h · ∇vL(γ(s), γ̇(s))

)
ds+ Ct|h|2,

(2.7.43)
with a constant Ct > 0 that may blow up as t ↓ 0. We may now use the Euler-Lagrange
equation

d

ds
∇vL(γ(s), γ̇(s))−∇xL(γ(s), γ̇(s)) = 0

to rewrite (2.7.43) as∫ t

0

(L(γ1(s), γ̇1(s))− L(γ(s), γ̇(s)) ds

≤ 1

t

∫ t

0

h ·
(
s
d

ds
∇vL(γ(s), γ̇(s)) +∇vL(γ(s), γ̇(s))

)
ds+ Ct|h|2

= h · ∇vL(γ(t), γ̇(t)) + Ct|h|2.

(2.7.44)

Using (2.7.44) in (2.7.42), we obtain

u(t, x+ h)− u(t, x) ≤ h · ∇vL(γ(t), γ̇(t)) + Ct|h|2, (2.7.45)

which proves the Lipschitz regularity in the spatial variable for all 0 < t ≤ 1, because both γ(t)
and γ̇(t) are bounded. Again, the boundedness of γ(t) would only play a role if we considered
the problem on Rn, of course. Here, we use the fact that (2.7.45) holds for arbitrary x
and y = x+ h so that the role of x and y can be switched.

In order to prove the Lipschitz regularity in time, let us examine a small variation of t,
denoted by t+ τ with t+ τ > 0. Perturbing the extremal curve γ into

γ2(s) = γ(
t

t+ τ
s),

we still have
γ2(0) = γ(0), γ2(t+ τ) = γ(t) = x.

The same computation as above gives

u(t+ τ, x) = u(t+ τ, γ2(t+ τ)) ≤ u(γ2(0)) +

∫ t+τ

0

L(γ2(s), γ̇2(s))ds

= u(t, x) +

∫ t

0

(L(γ2(s), γ̇2(s))− L(γ(s), γ̇(s))) ds+

∫ t+τ

t

L(γ2(s), γ̇2(s))ds.

(2.7.46)
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It is now straightforward to see that there exists C ′t > 0 that depends on t so that

u(t+ τ, x)− u(t, x) ≤ C ′t|τ |.

Once again, the role of t and t′ = t+ τ can be switched, hence u(t, x) is Lipschitz in t as well,
for any t > 0, finishing the proof. �

Exercise 2.7.12 (i) Where did we use the strict convexity of the Hamiltonian in the above
proof?
(ii) Consider again the initial value problem (2.7.36) with the convex but non strictly con-
vex Hamiltonian H(p) = |p| and a continuous initial condition u0(x) that is not Lips-
chitz continuous. Consider a sequence of smooth strictly convex Hamiltonians Hε(p) such
that Hε(p) → H(p) as ε → 0, locally uniformly on R. Review the above proof and see what
will happen to the Lispchitz constant of the corresponding solution uε(t, x) to the Cauchy
problem

uεt +H(uεx) = 0, t > 0, x ∈ T1,

uε(0, x) = u0(x),
(2.7.47)

constructed by the Lax-Oleinik formula. Hint: again, Exercise 2.7.5 may be useful here.

Exercise 2.7.13 Take t > 0 and γ(s) an extremal such that u is differentiable at x = γ(t).
Show that

∇u(t, x) = ∇vL(x, γ̇(t)). (2.7.48)

and
ut(t, x) = −H(x,∇u(t, x)). (2.7.49)

2.7.2 Semi-concavity and C1,1 regularity

As we have mentioned, the Cauchy problem for a Hamilton-Jacobi equation

ut +H(x,∇u) = 0, (2.7.50)

with a prescribed initial condition u(0, x) = u0(x), may have more than one Lipschitz solution,
so it is worth asking whether the unique viscosity solution has some additional regularity when
the Hamiltonian is strictly convex, so that the solution can be constructed by the Lax-Oleinik
semigroup. A relevant notion is that of semi-concavity. Most of the material of this section
comes from [?].

Semi-concavity

We begin with the following definition.

Definition 2.7.14 If B is an open ball in Rn, F a closed subset of B and K a positive
constant, we say that u ∈ C(B) is K-semi-concave on F if for all x ∈ F , there is lx ∈ Rn

such that for all h ∈ Rn satisfying x+ h ∈ B, we have:

u(x+ h) ≤ u(x) + lx · h+K|h|2. (2.7.51)

The function u is said to be K-semi convex on F if −u is K-semi-concave on F .
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Exercise 2.7.15 Examine the proof of Theorem 2.7.11 and check that it actually proves that
for any t > 0 there exists Ct > 0 so that u(t, x) is Ct-semi-concave in x.

The next theorem is crucial for the sequel. If u is continuous in an open ball B in Rn,
and F is a closed subset of B, we say that u ∈ C1,1(F ) if u is differentiable in F and ∇u is
Lipschitz over F .

Theorem 2.7.16 Let B be an open ball of Rn and F closed in B. If u ∈ C(B) is K-semi-
concave and K-semi-convex in F , then u ∈ C1,1(F ).

Proof. As u is both K semi-concave and K-semi-convex, for all x ∈ F , there are two
vectors lx and mx such that for all h such that x+ h ∈ B we have

u(x+ h) ≤ u(x) + lx · h+K|h|2,
u(x+ h) ≥ u(x) +mx · h−K|h|2

(2.7.52)

which yields

(mx − lx) · h ≤ 2K|h|2.

As this is true for all h sufficiently small, we conclude that lx = mx and, therefore, u is
differentiable at x, and

lx = mx = ∇u(x).

Next, we show that ∇u is Lipschitz over F . Given (x, y, h) ∈ F × F × Rn, such that
both x + h ∈ B and y + h ∈ B, the semi-convexity and semi-concavity inequalities, written,
respectively, between x+ h and x, x and y, and x+ h and y, give:

|u(x+ h)− u(x)−∇u(x) · h| ≤ K|h|2

|u(x)− u(y)−∇u(y) · (x− y)| ≤ K|x− y|2

|u(y)− u(x+ h) +∇u(y) · (x+ h− y)| ≤ K|x+ h− y|2.

Adding the three inequalities above, we obtain:

|(∇u(x)−∇u(y)) · h| ≤ 3K(|h|2 + |x− y|2). (2.7.53)

Taking

h = |x− y| ∇u(x)−∇u(y)

|∇u(x)−∇u(y)|
,

in the inequality (2.7.53) gives

|∇u(x)−∇u(y)| ≤ 6K|x− y|,

which is the Lipschitz property of ∇u that we sought. �
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Improved regularity of the viscosity solutions

Let us come back to the solution u(t, x) to the Cauchy problem

ut +H(x,∇u) = 0,

u(0, x) = u0(x).
(2.7.54)

We first prove that if γ is a minimizing curve for u(t, x), with γ(t) = x, then it is also a
minimizer for u(s, γ(s)) for all 0 ≤ s ≤ t.

Proposition 2.7.17 Fix t > 0 and x ∈ Tn, and a minimizing curve γ such that γ(t) = x,
and

u(t, x) = u0(γ(0)) +

∫ t

0

L(γ(s), γ̇(s)) ds. (2.7.55)

Then for all 0 ≤ s ≤ s′ ≤ t we have

u(s′, γ(s′)) = u0(γ(0)) +

∫ s′

0

L(γ(σ), γ̇(σ)) dσ = u(s, γ(s)) +

∫ s′

s

L(γ(σ), γ̇(σ)) dσ. (2.7.56)

Exercise 2.7.18 Relate the result of this proposition to the dynamic programming principle.

Proof. The Lax-Oleinik formula implies that for all 0 < s < t we have

u(s, γ(s)) ≤ u0(γ(0)) +

∫ s

0

L(γ(σ), γ̇(σ)) dσ.

Assume that for some 0 < s < t, we have a strict inequality

u(s, γ(s)) < u0(γ(0)) +

∫ s

0

L(γ(σ), γ̇(σ)) dσ. (2.7.57)

Then, there exists a curve γ1(s′), 0 ≤ s′ ≤ s, such that γ1(s) = γ(s), and

u0(γ1(0)) +

∫ s

0

L(γ1(σ), γ̇1(σ)) dσ < u0(γ(0)) +

∫ s

0

L(γ(σ), γ̇(σ)) dσ.

Then, we can consider the concatenated curve γ2(s) so that γ2(s′) = γ1(s′) for 0 ≤ s′ ≤ s,
and γ2(s′) = γ(s′) for s ≤ s′ ≤ t. The resulting curve is piece-wise C1[0, t], hence is an allowed
trajectory. This would give

u(t, γ(t)) = u0(γ(0)) +

∫ s

0

L(γ(σ), γ̇(σ)) dσ +

∫ t

s

L(γ(σ), γ̇(σ))dσ

> u0(γ2(0)) +

∫ t

0

L(γ2(s), γ̇2(s)) ds,

(2.7.58)

which would contradict the extremal property of the curve γ between the times 0 and t.
Therefore, (2.7.57) can not hold, and for all 0 ≤ s ≤ s′ ≤ t we have:

u(s′, γ(s′)) = u0(γ(0)) +

∫ s′

0

L(γ(σ), γ̇(σ)) dσ = u(s, γ(s)) +

∫ s′

s

L(γ(σ), γ̇(σ)) dσ. (2.7.59)

This finishes the proof of Proposition 2.7.17. �
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Definition 2.7.19 We say that γ : [0, t]→ Tn is calibrated by u if (2.7.55) holds.

Let us define the conjugate semigroup of the Lax-Oleinik semigroup by:

T̃ (t)u0(x) = sup
y∈Tn

(u0(y)− ht(x, y)), ∀u0 ∈ C(Tn), t > 0. (2.7.60)

We will denote ũ(t, x) = T̃ (t)u0(x). The following lemma is proved exactly as Theorem 2.7.11.

Lemma 2.7.20 Let u0 ∈ C(Tn) and σ > 0. There is K(σ) > 0 such that T̃ (σ)u0 is K(σ)-
semi-convex. The constant K(σ) blows up as σ → 0.

Given 0 < s < s′, we define the set Γs,s′ [u0] as the union of all points (s1, x) ∈ [s, s′] × Tn,
so that the extremal calibrated by u, which passes through the point x at the time s1 can be
continued forward in time until the time s′, and backward in time until the time s.

Corollary 2.7.21 Let u0 ∈ C(Tn) and u(t, x) = T (t)u0(x), and 0 < s1 < s2, then for
any ε > 0, the function u ∈ C1,1(Γs1,s2+ε ∩ ([s1, s2]× Tn)).

Proof. Let us take (s, x0) ∈ Γs1,s2+ε, with s1 ≤ s ≤ s2, so that that the extremal γ such
that x0 = γ(s) can be continued past the time s, until the time s2 + ε.

Let us first deal with the spatial regularity. As we have mentioned in Exercise 2.7.15,
there is K > 0 depending on s1 such that the function u(s, x) is K-semi-concave at all x ∈ Tn
for all s ≥ s1, in particular, at x0. Hence, we only need to argue that u is semi-convex at x0,
and here we are going to use the fact that (s, x0) ∈ Γs1,s2+ε. Note that for all y ∈ Rn we have,
by the Lax-Oleinik formula,

u(s2 + ε, y) ≤ u(s, x0) + hs2+ε−s(x0, y). (2.7.61)

In addition, the calibration relation (2.7.59) implies that if x0 = γ(s) and (s, x0) ∈ Γs1,s2+ε,
then equality is attained when y = γ(s2 + ε). We conclude that in this case we have

u(s, x0) = sup
y∈Tn

(u(s2 + ε, y)− hs2+ε−s(x0, y)) = T̃ (s2 + ε− s)[u(s2 + ε, ·)](x0).

It follows from Lemma 2.7.20 that there is a constant K̃ depending on ε, such that u(s, ·)
is K̃-semi-convex in x on Γs1,s2+ε ∩ ([s1, s2]× Tn).

Theorem 2.7.16 now implies that the function u(s, ·) is C1,1 in x on the set Γs1,s2+ε for
all s1 ≤ s ≤ s2. To end the proof, one just has to invoke relation (2.7.49) in Exercise 2.7.13
to obtain the corresponding regularity in the time variable. �

This corollary may not, at first sight, look so striking. To enjoy its scope, let us specialize
it to the solutions to the stationary equation

H(x,∇u) = 0, (2.7.62)

assuming that they exist. Corollary 2.7.21 allows us to discover the following
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Corollary 2.7.22 Consider a solution u of (2.7.62), and let F be the set of all points x ∈ Tn
such that there exists εx > 0 and a C1 curve γ : (−εx, εx)→ Tn such that γ(0) = x and

u(γ(εx))− u(γ(−εx)) =

∫ εx

−εx
L(γ(s), γ̇(s))ds. (2.7.63)

Then u ∈ C1,1(F ).

In other words, u is C1,1 at every point through which an extremal of the Lagrangian passes,
as opposed to ending at this point.

Let us examine some further consequences of this fact, in the form of a few exercises, just
to give a glimpse of how far reaching these considerations can be. Their solution does not
need more tools or ideas than the ones already presented, but they are fairly elaborate. We
begin with an application of the finite speed of propagation property.

Exercise 2.7.23 Let u(x) be a Lipschitz viscosity solution of

H(x,∇u) = 0

in a bounded open subset Ω of Rn. Show that, for every open subset Ω1 of Ω such that Ω1 is
compactly embedded in Ω, there is ε > 0 such that, for all t ∈ [0, ε] and x ∈ Ω1 we have

u(x) = T (t)u(x).

We continue with a statement that looks surprisingly elementary. However its solution is
not.

Exercise 2.7.24 Let Ω be an open subset of Rn and up a sequence in C1(Ω), such that

|∇up| = 1 for all p.

Show that all uniform limits of up are C1 functions. Hint: if x0 ∈ Ω, then, for small ε > 0, the

function up(x) coincides, in a small neighborhood of x, with both T (ε)up and T̃ (ε)up. Note
that the Hamiltonian is not strictly convex, so some care needs to be given to the definition
of the Lax-Oleinik semigroup and its adjoint. If in doubt, look at (2.7.64) below.

We end the section with two regularity properties of the distance function. Recall that,
if S is a subset of Rn, the distance function to S is given by

dS(x) = inf
v∈S
|x− v|.

It is, obviously, a Lipschitz function with Lipschitz constant 1. We can say much more, just
recalling the age-old fact that the shortest path between two points is the line joining these
two points: this makes dS a viscosity solution of |∇d| = 1, or, even better:

|∇d|2 = 1. (2.7.64)

We may use the previous theory for the following results.

Exercise 2.7.25 If S is a compact set, x0 /∈ S and v is such that

|x− v| = dS(x),

then dS is C1,1 on the line segment [v, x].

Exercise 2.7.26 If S is a convex set, then dS is C1,1 outside S.

If you are stuck with any of the above three exercises, see [?].
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2.8 Large time behavior in particular cases

For the rest of this chapter, we go back to the long term behavior of the solutions to the
Hamilton-Jacobi equations but unlike in Section 2.3, we now consider the inviscid case. In
this initial section, we will focus on two examples. First, we will consider equations of the
form

ut +
1

2
|∇u|2 = f(x), (2.8.1)

with the classical Hamiltonian

H(x, p) =
|p|2

2
− f(x). (2.8.2)

This equation arises naturally in the context of classical mechanics. The strict convexity of
the classical Hamiltonian (2.8.2) will allow us to use the Lax-Oleinik formula to understand
the long time behavior for the solutions to (2.8.1), in a straightforward and elegant way.

Then, we will consider the Hamilton-Jacobi equation

ut +R(x)
√

1 + |∇u|2 = 0, (2.8.3)

with the Hamiltonian

H(x, p) = R(x)
√

1 + |p|2. (2.8.4)

The Hamiltonian in (2.8.4) is locally strictly convex in its second variable but not uniformly
strictly convex. We could also attack the problem via the Lax-Oleinik formula, with a little
extra technical argument due to the lack of the global strict convexity. We will not, however,
rely on the strict convexity in any form in the analysis of the long time behavior for the
solutions to (2.8.3). The separate arguments that we are going to display for this problem
will work, at almost no additional cost, for the important class of Hamiltonians of the form

H(x, p) = |∇u| − f(x), (2.8.5)

which are not strictly convex even locally. The proof is inspired by the arguments in [?].
Let us mention, looking ahead, that despite the difference in the approaches to the two

cases, we will see some strong similarities in the underlying dynamics that will allow us to
address the general case in the next section. We chose to start with these examples as the
proofs here are much more concrete.

On the technical side, we will assume for (2.8.1) that the function f(x) is smooth, and
that the function R(x) in (2.8.3) is smooth and positive: there exists R0 > 0 so that

R(x) ≥ R0 > 0 for all x ∈ Tn, (2.8.6)

and will use the notation

R̄ = ‖R‖L∞ . (2.8.7)

Note that the assumptions for the Hamiltonian H(x, p) = R(x)
√

1 + |p|2 fall in line with
those made in Section 2.3 on the convergence to the viscous waves, and in Section 2.6 on the
existence of the inviscid waves and of the solutions to the inviscid Cauchy problem. As usual,
the smoothness assumptions on the function f(x) and R(x) can be greatly relaxed.
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Let us first explain how equation (2.8.3) comes up from simple geometric considerations.
Consider a family of hypersurfaces Σ(t) of Rn+1, moving according to an imposed normal
velocity R(y):

Vn = R(y), y ∈ Rn+1, (2.8.8)

the function R(y) being given and positive. Assume that, at each time t ≥ 0, the surface Σ(t)
is the level set of a function v(t, y):

Σ(t) = {y ∈ Rn+1 : v(t, y) = 0}.

It is easy to see that the normal velocity Vn at the point y, at time t, is given by

Vn(t, y) =
vt(t, y)

|∇v(t, y)|
,

so that the evolution equation for the function v(t, y) is

vt = R(y)|∇v| on Σ(t). (2.8.9)

This evolution equation is interesting in itself, and is known in the literature on the math-
ematical theory of combustion as the G-equation. It also appears in many computational
methods where it is often called the level sets equation. In particular, it allows to model
coalescence of objects in digital animation.

We are going to consider a special situation when Σ(t) is given in the form of a graph of
a periodic function u(t, x), x ∈ Rn, that is, writing y = (x, yn+1), with x ∈ Tn and yn+1 ∈ R,
we have

v(t, y) = yn+1 − u(t, x), x ∈ Tn,

and also that R(y) is actually a function of the form R(x) – it depends only on the first n
coordinates of y. Then we obtain from (2.8.9)

ut +R(x)
√

1 + |∇xu|2 = 0, x ∈ Tn, (2.8.10)

which is (2.8.3).
We will begin with the analysis of the wave solutions to (2.8.1) and (2.8.3) – as we will

soon see, this study is essentially identical for both problems. Then, we will consider the long
time convergence to the wave solutions, and there the two analyses will diverge.

2.8.1 Counting the waves

The first step is to understand the wave solutions to (2.8.1) and (2.8.3). Note that a wave
solution to (2.8.3) satisfies

R(x)
√

1 + |∇u|2 = c, x ∈ Tn, (2.8.11)

an equation that can be alternatively stated as

|∇u(x)|2 = g(x), x ∈ Tn, (2.8.12)
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with

g(x) =
c2

R2(x)
− 1. (2.8.13)

On the other hand, a wave solution to (2.8.1) solves

1

2
|∇u(x)|2 = f(x) + c, x ∈ Tn, (2.8.14)

that can also be re-stated as (2.8.13), but now with

g(x) = 2(f(x) + c). (2.8.15)

Thus, in both cases, existence of the wave solutions is equivalent to the question of existence
of steady solutions to (2.8.12).

Identification of the speed

We begin with the following.

Proposition 2.8.1 A solution to an equation of the form

|∇u(x)|2 = f(x) + γ, x ∈ Tn, (2.8.16)

with a smooth function f exists if and only if

γ = −min
x∈Tn

f(x). (2.8.17)

In other words, a solution to

|∇u(x)|2 = f(x), x ∈ Tn, (2.8.18)

exists if and only if

min
x∈Tn

f(x) = 0. (2.8.19)

A consequence of this proposition is that that the only c such that equation

R(x)
√

1 + |∇u∞|2 = c, x ∈ Tn, (2.8.20)

has a solution u∞(x) is c = R̄, as seen from (2.8.12)-(2.8.13).

To understand the main idea of the proof, note that the unique γ for which (2.8.16) has
a solution, can be alternatively defined as the only value of γ such that each solution to the
Cauchy problem

ut + |∇u|2 = f(x) + γ, t > 0, x ∈ Tn,
u(0, x) = u0(x),

(2.8.21)

is uniformly bounded in time. This is an immediate consequence of the comparison principle
for the viscosity solutions.
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Exercise 2.8.2 (i) Explain this point: show that if γ 6= c then the solution to the Cauchy
problem (2.8.21) can not remain bounded as t → +∞, and, conversely, if γ = c then it
remains bounded as t→ +∞.
(ii) Show also that c is the unique value γ such that there exists both a sub-solution u and a
super-solution u to

|∇u|2 = f(x) + γ, x ∈ Tn. (2.8.22)

Hint: solutions to (2.8.21) may be helpful here.

Proof of Proposition 2.8.1. We know from the Lions-Papanicolaou-Varadhan theorem
that for each f ∈ C(Tn) there exists some γ ∈ R such that a solution to

|∇u(x)|2 = f(x) + γ, x ∈ Tn, (2.8.23)

exists. We need to show that

γ = −min
x∈Tn

f(x). (2.8.24)

As in Exercise 2.8.2(ii), we only need to construct a sub-solution and a super-solution to (2.8.23)
for γ as in (2.8.24). First, observe that if

γ + min
x∈Tn

f(x) ≥ 0, (2.8.25)

then all constants are sub-solutions to (2.8.23).

On the other hand, a quadratic function of the form

u(x) =
α

2
|x− x0|2, (2.8.26)

with some x0 ∈ Tn, is a super-solution to (2.8.23) if

α2|x− x0|2 ≥ f(x) + γ, for all x ∈ Tn. (2.8.27)

It follows that, in particular,

f(x0) + γ ≤ 0,

hence such super-solution can exist only if

γ + min
x∈Tn

f(x) ≤ 0. (2.8.28)

On the other hand, if (2.8.28) does hold, x0 is a minimum of f(x), and f is smooth, as we
assume here, then (2.8.27) does hold if we choose α > 0 to be sufficiently large.

Thus, if γ = −minx∈Tn f(x) then we can find both a sub-solution and a super-solution
to (2.8.23), finishing the proof. �

Exercise 2.8.3 Note that the super-solution we have constructed in (2.8.26) is not periodic.
Explain why this is not an issue.
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Exercise 2.8.4 We did use the assumption that f(x) is smooth in the construction of the
super-solution in the above proof. Show that nevertheless the conclusion of Proposition 2.8.1
holds for f ∈ C(Tn). Hint: approximate f ∈ C(Tn) by a sequence of smooth functions fk
that converges uniformly to f and obtain a uniform Lipschitz bound for the solutions to

|∇uk|2 = fk(x) + γk, γk := −min
x∈Tn

fk(x),

such that uk(0) = 0. Finally, use the stability property of the viscosity solutions to show
that uk converges, along a subsequence, to a viscosity solution to

|∇u|2 = f(x) + γ, γ := −min
x∈Tn

f(x). (2.8.29)

A simple example of the non-uniqueness of the waves

Before proceeding with the description of the set of the solutions to

|∇u(x)|2 = f(x), x ∈ Tn, (2.8.30)

under the assumption that
min
x∈Tn

f(x) = 0, (2.8.31)

let us explain why the solutions may be not unique. This is a big difference with the viscous
case

−∆u+H(x,∇u) = c, (2.8.32)

described in Theorem 2.3.1, where both the speed c and the solution u are unique.
We consider a very simple example in one dimension:.

|u′| = f(x), x ∈ T1. (2.8.33)

Assume that f ∈ C1(T1) is 1/2-periodic, satisfies

f(x) > 0 on (0, 1/2) ∪ (1/2, 1), and f(0) = f(1/2) = f(1) = 0.

and is symmetric with respect to x = 1/4 (and thus x = 3/4). Let u1 and u2 be 1-periodic
and be defined, over a period, as follows:

u1(x) =


∫ x

0

f(y) dy, 0 ≤ x ≤ 1

2
,∫ 1

x

f(y) dy,
1

2
≤ x ≤ 1,

u2(x) =



∫ x

0

f(y) dy, 0 ≤ x ≤ 1

4
,∫ 1/2

x

f(y) dy,
1

4
≤ x ≤ 1

2
,

u2 is
1

2
-periodic.

Note that u1(x) is continuously differentiable but u2(x) is only Lipschitz: its graph has corners
at x = 1/4 and x = 3/4.

Exercise 2.8.5 Verify that both u1 and u2 are viscosity solutions of (2.8.33), and u2 cannot
be obtained from u1 by the addition a constant. Pay attention to what happens at x = 1/4
and x = 3/4 with u2(x). Why can’t you construct a solution that would have a corner at a
minimum rather than the maximum?
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Trajectories at very negative times

The above example of non-uniqueness inspires a more systematic study of the steady solu-
tions to

|∇u|2 = f(x), x ∈ Tn, (2.8.34)

in order to understand how many steady solutions this problem may have. We assume that
the function f is smooth and non-negative:

f(x) ≥ 0 for all x ∈ T1, (2.8.35)

This ensures existence of a solution to (2.8.34), via Proposition 2.8.1. The smoothness as-
sumption on the function f is adopted merely for convenience, continuity of f would certainly
suffice.

A non-technical assumptions is that the function f(x) has finitely many zeroes x1,..., xN .
We will see that an absolutely crucial role in the analysis will be played by the set

Z = {x : f(x) = 0} = {x1, . . . , xN}. (2.8.36)

What follows is a (much simplified) adaptation of the last chapter of the book of Fathi [?].
As we have mentioned, the viscosity solutions to (2.8.34) exist by Proposition 2.8.1 and

our assumptions on f . They satisfy the Lax-Oleinik formula: for any t < 0 we have

u(x) = inf
γ(0)=x

(
u(γ(t)) +

∫ 0

t

( |γ̇(s)|2

4
+ f(γ(s))

)
ds
)
. (2.8.37)

We know from the preceding section that the infimum is, in fact, a minimum, attained at an
extremal of the Lagrangian, that we denote γt(s), t ≤ s ≤ 0. The Lagrangian associated to
the Hamiltonian H(x, p) = |p|2 − f(x) is

L(x, v) =
|v2|
4

+ f(x). (2.8.38)

This means, in particular, that L(x, v) is nonnegative and vanishes only at the points of the
form (x, v) = (xi, 0), i ∈ {1, ..., N}. Hence, we expect that the minimizers in (2.8.37) should
prefer to stay near the points where f vanishes, and move very slowly around those points.
To formalize this idea, we would like to send the starting time t → −∞ and say that each
minimizing curve γt(s) is near one of xi ∈ Z, for s sufficiently large and negative.

Proposition 2.8.6 The function u(x) can be written as

u(x) = inf
xi∈Z

inf
γ(−∞)=xi,γ(0)=x

(
u(xi) +

∫ 0

−∞

( |γ̇(s)|2

4
+ f(γ(s))

)
ds
)
, (2.8.39)

with the infimum taken over all curves γ(s) such that γ(0) = x and γ(s)→ xi as s→ −∞.

Proof. First, note that u(x) is bounded by the right side of (2.8.39), as follows immediately
from the Lax-Oleinik formula (2.8.37). We need to show that equality is actually attained. Let
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us fix x ∈ Tn, take t < 0 large and negative, and consider the corresponding minimizer γt(s),
calibrated by u, so that

u(x) = u(γt(s)) +

∫ 0

s

( |γ̇t(σ)|2

4
+ f(γt(σ))

)
dσ, for all t ≤ s ≤ 0. (2.8.40)

The uniform bounds on γt(s) and γ̇t(s) imply that there is a sequence tn → −∞ such
that γtn(s) converges, locally uniformly, to a limit γ(s) that is defined for all s < 0. Passing
to the limit tn → −∞ in (2.8.40) we see that γ(s) is also calibrated by u: for all s < 0 we
have

u(x) = u(γ(s)) +

∫ 0

s

( |γ̇(σ)|2

4
+ f(γ(σ))

)
dσ. (2.8.41)

We claim that there exists xk ∈ Z so that

lim
s→−∞

γ(s) = xk. (2.8.42)

To see that (2.8.42) holds, take ε > 0 and consider the set

Dε = {y ∈ Tn : |y − xi| ≤ ε for some xi ∈ Z}.

If ε > 0 is sufficiently small, then Dε is a union of N pairwise disjoint balls

B(k)
ε = {y ∈ Tn : |y − xk| ≤ ε}.

The function f(y) is strictly positive outside of Dε: there exists λε > 0 so that f(y) > λε for
all y 6∈ Dε. It follows from (2.8.41) that the total time that γ(s) spends outside of Dε is also
bounded:

|{s < 0 : γ(s) 6∈ Dε}| ≤
2‖u‖L∞
λε

. (2.8.43)

Exercise 2.8.7 Show that there exists µε > 0 such that if s1 < s2 < 0, and γ(s1) ∈ B
(k)
ε

while γ(s2) ∈ B(k′)
ε with k 6= k′, then∫ s2

s1

( |γ̇(s)|2

4
+ f(γ(s))

)
ds ≥ µε. (2.8.44)

Hint: show that if the switch from B
(k)
ε to B

(k′)
ε happens ”quickly” then the contribution of

the first term inside the integral is bounded from below, and if this switch happens ”slowly”,
then the contribution of the second term inside the integral is bounded from below.

A consequence of (2.8.43) and Exercise 2.8.7 is that there exists Tε and 1 ≤ k ≤ N such
that γ(s) ∈ Bε(xk) for all t < Tε. This implies (2.8.42).

Now, we may let s→ −∞ in (2.8.41) to obtain

u(x) = u(xk) +

∫ 0

−∞

( |γ̇(σ)|2

4
+ f(γ(σ))

)
dσ. (2.8.45)

It follows that u(x) is bounded from below by the right side of (2.8.39), and the proof of
Proposition 2.8.6 is complete. �
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Classification of steady solutions

We can now classify all solutions to

|∇u|2 = f(x), x ∈ Tn. (2.8.46)

The reader may remember that the proof of uniqueness of the waves in Theorems 2.3.1 and
the long time behavior in Theorem 2.3.3 in the viscous case relied crucially on the strong
maximum principle and the Harnack inequality for parabolic equations. It is exactly the lack
of these properties for the inviscid Hamilton-Jacobi equations that leads to the non-uniqueness
of the solutions to (2.8.87), and to different possible long time behaviors of the solutions to
the corresponding Cauchy problem.

Let us set

S(xi, x) = inf
γ(−∞)=xi

∫ 0

−∞

( |γ̇(s)|2

4
+ f(γ(s))

)
ds. (2.8.47)

It may be seen as the energy of a connection between xi and x, or, in a more mathematically
precise way, as a sort of distance between xi and x. This fruitful point of view, developed
in [?], will not be pushed further here. The next theorem classifies all solutions to (2.8.46).

Theorem 2.8.8 Let {x1, . . . , xN} be the set of zeros of a smooth non-negative function f(x).
Given a collection of numbers {a1, ..., aN} there is a unique solution u(x) to (2.8.46), such
that

u(xi) = ai for all 1 ≤ i ≤ N , (2.8.48)

if and only if
aj ≤ ai + S(xi, xj), for all 1 ≤ i, j ≤ N . (2.8.49)

Condition (2.8.49) has a simple interpretation: in order to be able to assign a value aj at the
zero xj, the trajectory γ(t) ≡ xj for all t < 0, should be a minimizer.

Proof. Proposition 2.8.6 already shows that the values of u(xi) determine the value
of u(x) for all x ∈ Tn, and that if a solution exists and (2.8.48) holds, then

aj = inf
i∈{1,...,N}

(
ai + S(xi, xj)

)
. (2.8.50)

This implies (2.8.49).
To prove existence of a solution to (2.8.46) such that u(xi) = ai for all 1 ≤ i ≤ N , for

given ai, i = 1, . . . , N , that satisfy (2.8.49), set

u(x) = inf
i∈{1,...,N}

(
ai + S(xi, x)

)
. (2.8.51)

Using the by now familiar arguments, it is easy to see that u is a solution to (2.8.46). Moreover,
we have

u(xj) = inf
i∈{1,...,N}

(
ai + S(xi, xj)

)
.

This, together with (2.8.49) implies u(xj) = aj. �

Exercise 2.8.9 Apply the above theorem to the equation |u′| = f(x) on T1, with a non-
negative function f(x) vanishing at 2 or 3 distinct points. Find out how many different
solutions one may have.
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Exercise 2.8.10 Let Ω be a smooth bounded subset of Rn. Assume that f is nonnegative
and vanishes only at a finite number of points and u0 ∈ C(∂Ω). Find a necessary and sufficient
condition on the values of u0 so that the boundary value problem

|∇u|2 = f(x), x ∈ Ω,

u(x) = u0(x), x ∈ ∂Ω,
(2.8.52)

is well-posed. Count its solutions. If you have difficulty, we recommend that you read the
very remarkable study of the non-uniqueness in Lions [?].

2.8.2 The large time behavior: a strictly convex example

The above analysis for the classification of the wave solutions can be adapted to understand
the long time behavior of the solutions to the Cauchy problem

ut + |∇u|2 = f(x), t > 0, x ∈ Tn,
u(0, x) = u0(x).

(2.8.53)

The next theorem gives an (almost) explicit form of the asymptotic limit of the solution
to (2.8.53), and exhibits again the role of the set Z in the dynamics.

Theorem 2.8.11 Let u(t, x) be the solution to (2.8.53) with a smooth non-negative func-
tion f(x) that vanishes on a finite set Z = {x1, . . . , xN}, and u0 ∈ C(Tn). Then, the func-
tion u(t, x) is non-increasing in t on the set Z, so that for each xk ∈ Z the limit

ak := lim
t→+∞

u(t, xk) (2.8.54)

exists. Moreover, for all x ∈ Tn we have

lim
t→+∞

u(t, x) = inf
xk∈Z

(
ak + S(xk, x)

)
, (2.8.55)

with S(xi, x) as in (2.8.47):

S(xi, x) = inf
γ(−∞)=xi

∫ 0

−∞

( |γ̇(s)|2

4
+ f(γ(s))

)
ds. (2.8.56)

We will use throughout the proof the fact that the unique viscosity solution to (2.8.53) is
uniformly bounded and is uniformly Lipschitz: there exists C > 0 so that for all t ≥ 1 we
have

‖u(t, ·)‖L∞ ≤ C, ‖ut(t, ·)‖L∞ + ‖∇u(t, ·)‖L∞ ≤ C. (2.8.57)

The Lipschitz bound in (2.8.57) follows from Theorem 2.7.11, while the uniform bound
on u(t, x) is a simple consequence of the fact that steady solutions to (2.8.53) exist under our
assumptions on f(x). These estimates already tell us that there exists a sequence tn → +∞
such that the sequence of functions vn(t, x) = u(t + tn, x) converges in L∞(Tn) and locally
uniformly in t, to a limit ũ(t, x). However, we do not know that the limit is unique, nor that
it is time-independent, nor that it is a solution to (2.8.53).
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Monotonicity on Z

We first prove that u(t, x) is non-increasing in t for x ∈ Z. If u(t, x) were actually smooth
at xk ∈ Z, then, as f(xk) = 0 for xk ∈ Z, we would have

ut(t, xk) = −|∇u(t, xk)|2 ≤ 0, (2.8.58)

as desired. However, we only know that u(t, x) is a viscosity solution, hence we can not
use (2.8.58) directly. Instead, we fix t0 ≥ 0 and consider the function

ū(t, x) = u(t0, x) + (t− t0)f(x). (2.8.59)

We claim that ū(t, x) is a viscosity super-solution to (2.8.53). Consider a test function ϕ such
that the difference ū− ϕ attains its minimum at (t1, x1). As ū(t, x) is smooth in t, we have,
in particular, that

0 ≤ ϕt(t1, x1)− ūt(t1, x1),

which implies

0 ≤ ϕt(t1, x1)− ūt(t1, x1) = ϕt(t1, x1)− f(x1) ≤ ϕt(t1, x1) + |∇ϕ(t1, x1)|2 − f(x1). (2.8.60)

We deduce that ū(t, x) is a super-solution to (2.8.53). Moreover, at t = t0 we have

ū(t0, x) = u(t0, x) for all x ∈ Tn.

As a consequence, it follows that u(t, x) ≤ ū(t, x) for all t ≥ t0 and x ∈ Tn. Specifying this
at xk ∈ Z gives

u(t, xk) ≤ u(t0, xk) for all t ≥ t0,

thus u(t, x) is non-increasing in t on Z, proving the first claim of Theorem 2.8.11: the limit

ak := lim
t→+∞

u(t, xk) (2.8.61)

exists for all xk ∈ Z, 1 ≤ k ≤ N .

Convergence on the whole torus

The proof of the second part of Theorem 2.8.11 is similar to that of Proposition 2.8.6 but
some technical points are different. For a fixed t > 0 and x ∈ Tn, consider the Lax-Oleinik
formula written as

u(t, x) = inf
γ(t)=x

(
u(s, γ(s)) +

∫ t

s

( |γ̇(σ)|2

4
+ f(γ(σ))

)
dσ
)
, (2.8.62)

with any 0 ≤ s ≤ t. Taking a test curve γs,t(σ), s ≤ σ ≤ t such that γs,t(s) = xk ∈ Z, with
both s and t large, and passing to the limit t, s→ +∞ with t− s→ +∞, we deduce that for
all x ∈ Tn we have

lim sup
t→+∞

u(t, x) ≤ inf
xi∈Z

(
ai + S(xi, x)

)
, (2.8.63)

with S(xi, x) defined in (2.8.56). We used here the existence of the limit in (2.8.61).
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The longer step is to show the reverse inequality to (2.8.63). Let γt(s), 0 ≤ s ≤ t, be a
minimizer in the Lax-Oleinik formula

u(t, x) = inf
γ(t)=x

(
u0(γ(0)) +

∫ t

0

( |γ̇(σ)|2

4
+ f(γ(σ))

)
dσ
)
. (2.8.64)

As γt(s) is calibrated by u, we have

u(t, x) = u(t+ s, γt(t+ s)) +

∫ t

t+s

( |γ̇t(σ)|2

4
+ f(γt(σ))

)
dσ

= u(t+ s, γt(t+ s)) +

∫ 0

s

( |γ̇t(t+ σ)|2

4
+ f(γt(t+ σ))

)
dσ, for all −t ≤ s ≤ 0.

(2.8.65)
Let us introduce the path ηt(σ) = γt(t+ σ), −t ≤ σ ≤ 0, and write (2.8.65) as

u(t, x) = u(t+ s, ηt(s)) +

∫ 0

s

( |η̇t(σ)|2

4
+ f(ηt(σ))

)
dσ, for all −t ≤ s ≤ 0. (2.8.66)

We now pass to the limit t → +∞. The uniform a priori bounds on γt(σ) and γ̇t(σ) imply
the corresponding bounds on ηt(σ) and η̇t(σ). Hence, there exists a sequence tn → +∞ such
that ηtn(σ) converges as n → +∞, locally uniformly in σ, to a limit η(σ), −∞ < σ ≤ 0.
In addition, η(s) inherits the minimizing property of ηt: for any s ≤ 0, the curve η(σ) is a
minimizer of ∫ 0

s

( |γ̇(σ)|2

4
+ f(γ(σ))

)
dσ,

over all curves γ(σ), s ≤ σ ≤ 0, that connect the point γ(s) = η(s) to x = γ(0) = η(0).
By the same token, the bounds (2.8.57)

‖u(t, ·)‖ ≤ C, ‖ut(t, ·)‖L∞ + ‖∇u(t, ·)‖L∞ ≤ C (2.8.67)

on the function u(t, x) imply that the sequence

vn(s, x) = u(tn + s, x),

possibly after extracting a subsequence, converges in L∞(Tn) and locally uniformly in s, to a
limit v(s, x) such that

v(s, xk) = ak, for all xk ∈ Z and s ∈ R. (2.8.68)

The uniformity of the limits of ηt(σ) and vn(s, x) and the uniform in t Lipschitz bounds
on u(t, x) allow us to pass to the limit tn → +∞ in (2.8.66), giving

lim
tn→+∞

u(tn, x) = v(0, x) = v(s, η(s)) +

∫ 0

s

( |η̇(σ)|2

4
+ f(η(σ))

)
dσ, for all −∞ ≤ s ≤ 0.

(2.8.69)
As in the proof of Proposition 2.8.6, we deduce from (2.8.69) the boundedness of the integral∫ 0

−∞

( |η̇(σ)|2

4
+ f(η(σ))

)
dσ < +∞.
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This, in turn, as in that proof, implies that there exists xj ∈ Z such that

lim
s→−∞

η(s) = xj.

Using (2.8.68) together with the uniform in s Lipschitz bound on v(s, x) we may now pass to
the limit s→ −∞ in the right side of (2.8.69) to conclude that

lim
tn→+∞

u(tn, x) = aj +

∫ 0

−∞

( |η̇(σ)|2

4
+ f(η(σ))

)
dσ. (2.8.70)

The minimizing property of η(σ) implies that

lim
tn→+∞

u(tn, x) = aj + S(xj, x) ≥ inf
xk∈Z

(
ak + S(xk, x)

)
. (2.8.71)

Comparing to (2.8.63), we see that

lim
tn→+∞

u(tn, x) = inf
xk∈Z

(
ak + S(xk, x)

)
:= u∞(x). (2.8.72)

On the other hand, as we have seen before, u∞(x) is a solution to

|∇u∞|2 = f(x).

The weak contraction property for the viscosity solutions implies that not only we have the
limit along a sequence tn → +∞ but actually

lim
t→+∞

u(t, x) = u∞(x). (2.8.73)

This finishes the proof. �

Exercise 2.8.12 Explain how the weak contraction property is used in the very last step of
the proof.

An equation with a drift

The minimizers for the problem
ut + |∇u|2 = f(x),

that we have just considered, spend most of their time near one of the finitely many points
in the zero set Z of f . To illustrate a different possible behavior of the minimizers, consider
the Cauchy problem

ut + cux + u2
x = 0, t > 0, x ∈ T1,

u(0, x) = u0(x).
(2.8.74)

The Lagrangian corresponding to the Hamiltonian

H(p) = |p|2 + cp (2.8.75)

is

L(v) = sup
p∈R

[pv − cp− p2] =
(v − c)2

4
, (2.8.76)
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and the solution to (2.8.74) is given by the Lax-Oleinik formula:

u(t, x) = inf
γ(0)=y, γ(t)=x

[
u0(y) +

1

4

∫ t

0

(γ̇(s)− c)2ds
]
. (2.8.77)

It is easy to see that the minimizer γt(s;x) for (2.8.77) is a straight line γ(s) = x+ ct(s− t).
The optimal speed ct is given by

ct = argminv∈R

[
u0(x− vt) +

t

4
(v − c)2

]
. (2.8.78)

This is a very different behavior from that in Theorem 2.8.11: the minimizers visit every point
on the torus infinitely many times. An immediate consequence of (2.8.77) is that

u(t, x) ≥ min
y∈Tn

u0(y). (2.8.79)

On the other hand, if x0 is a minimum of u0(y), we can take

v =
x− x0 − [x− x0 − ct]

t
(2.8.80)

in (2.8.77). Here, [ξ] is the integer part of ξ ∈ R. This gives

x− vt = x0 + [x− x0 − ct], u0(x− vt) = u0(x0), (2.8.81)

leading to an upper bound

u(t, x) ≤ u0(x− vt) +
t(v − c)2

4
≤ u0(x0) +

1

4t
= min

y∈Tn
u0(y) +

1

4t
. (2.8.82)

We deduce from (2.8.79) and (2.8.82) that

lim
t→+∞

u(t, x) = min
y∈Tn

u0(y), (2.8.83)

uniformly in x ∈ Tn. Note that (2.8.83) holds even though the minimizers do not spend any
more time near the minima of u0(y) than at any other points. Thus, the specific behavior of
the minimizers we have seen in Theorem 2.8.11 is helpful but is not needed for the long time
limit of the solution to exist. We will revisit this issue in a more general setting in Section 2.9.

2.8.3 The large time behavior: without the Lax-Oleinik formula

We now turn to the long time behavior of the solutions to the Cauchy problem (2.8.3):

ut +R(x)
√

1 + |∇u|2 = 0, t > 0, x ∈ Tn,
u(0, x) = u0(x).

(2.8.84)

Let us recall that we assume that the function R(x) is smooth and non-negative:

R(x) ≥ R0 > 0 for all x ∈ Tn, (2.8.85)
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and we use the notation
R̄ = ‖R‖L∞ . (2.8.86)

We will assume for simplicity that the set Z where R(x) attains its maximum is finite, though
this assumption may be very much relaxed. As we have seen in the discussion following
Proposition 2.8.1, this problem admits wave solutions of the form ct + u∞(x), moving with
the speed c = R̄. Our goal will be to prove the following long time behavior result.

Theorem 2.8.13 Let u(t, x) be the solution to (2.8.84) with u0 ∈ C(Tn) and assume that R(x)
is smooth, satisfies (2.8.85), and attains its maximum on a finite set. There is a solu-
tion u∞(x) to

R(x)
√

1 + |∇u∞|2 = R̄, x ∈ Tn, (2.8.87)

such that we have, uniformly with respect to x ∈ Tn:

lim
t→+∞

(
u(t, x) + tR̄− u∞(x)

)
= 0, (2.8.88)

with R̄ defined in (2.8.86).

Note that there is no claim of uniqueness of the solutions to (2.8.87) in Theorem 2.8.13, even
up to addition of a constant. Indeed, as we have seen, uniqueness need not hold, as soon as
the function R(x) attains its maximum at more than one point. Unlike in the strictly convex
case considered in the previous section, we will not use the Lax-Oleinik formula to understand
the long time behavior, to illustrate the fact that the strict convexity of the Hamiltonian is
also not needed for the solutions to have a long time limit. Nevertheless, the set

Z = {x ∈ Tn : R(x) = R̄} (2.8.89)

will play an important role in the proof, and in the dynamics, very similar to that of the
minima of the function f(x) in the proofs of Theorems 2.8.8 and 2.8.11.

We start the proof of Theorem 2.8.13 by writing

u(t, x) = v(t, x) + tR̄,

which transforms (2.8.84) into

vt +R(x)
√

1 + |∇v|2 − R̄ = 0, x ∈ Tn

v(0, x) = u0(x).
(2.8.90)

Our goal is to show that there is a solution u∞(x) to

R(x)
√

1 + |∇u∞|2 = R̄, x ∈ Tn, (2.8.91)

such that
lim
t→+∞

v(t, x) = u∞(x), uniformly in x ∈ Tn. (2.8.92)

It is easy to see from the weak contraction principle that we may assume without loss of
generality that the initial condition u0 ∈ C1(Tn). As a technical remark, we have seen that
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the unique viscosity solution to (2.8.90) is uniformly bounded and uniformly Lipschitz: there
exists C > 0 so that for all t ≥ 1 we have

‖v(t, ·)‖ ≤ C, ‖vt(t, ·)‖L∞ + ‖∇v(t, ·)‖L∞ ≤ C. (2.8.93)

The uniform bound on v in (2.8.93) follows from the existence of a steady solution to (2.8.91)
and the comparison principle, and the Lipschitz bound is an implication of Theorem 2.7.11.
These bounds will be useful again when we pass to the limit t→ +∞.

Note that if we can show that v(t, x) converges uniformly, as t → +∞, to a limit u∞(x),
as in (2.8.92), then the limit is a viscosity solution to (2.8.91). Indeed, in that case the
functions vn(t, x) = v(t+n, x) are solutions to (2.8.90), and converge, as n→ +∞, to u∞(x),
in L∞(Tn), and locally uniformly in t. The stability property of the viscosity solutions implies
that u∞(x) is a steady solution to (2.8.90), and thus solves (2.8.91). Thus, it suffices to prove
that the limit in (2.8.92) exists. We will do this in two steps: first we will prove existence of
the limit for x ∈ Z, and then show that convergence on Z implies converges on Tn \Z as well.
In other words, what happens on Z controls the behavior off Z. This is very similar to the
dynamics in Theorem 2.8.11 even though unlike in that case we will not use the Lax-Oleinik
minimizers.

Convergence on Z

To show convergence on Z, we are going to prove that v(t, x) is non-increasing in t on Z. This
is intuitively obvious: if v(t, x) is continuously differentiable at x ∈ Z at some time t > 0, so
that (2.8.90) holds in the classical sense, then, as R(x) = R̄ for x ∈ Z, we have

vt(t, x) = R̄
(
1−

√
1 + |∇v(t, x)|2

)
≤ 0,

so that v(t, x) is non-increasing in t. The familiar problem is that v(t, x) is merely Lipschitz,
and not necessarily differentiable, hence (2.8.90) holds only almost everywhere, and we have
no guarantee that it holds at any given (t, x).

To make the above simple reasoning rigorous, the argument is close to the corresponding
step in the proof of Theorem 2.8.11: consider t0 > 0 and x0 ∈ Z and set

v(t, x) = v(t0, x) + (t− t0)(R̄−R(x)).

We claim that v is a super-solution to (2.8.90) on [t0,+∞)× Tn, such that

v(t0, x) = v(t0, x) for all x ∈ Tn. (2.8.94)

The latter follows immediately from the definition of v(t, x). To see the super-solution prop-
erty, consider a test function ϕ(t, x), and let (t1, x1) ∈ [t0,+∞) be a minimum point for v−ϕ.
Since v(t, x) is smooth in t, we have

0 ≤ ϕt(t1, x1)− vt(t1, x1) = ϕt(t1, x1) +R(x1)− R̄. (2.8.95)

Hence, we have

ϕt(t1, x1) +R(x1)
√

1 + |∇ϕ(t1, x1)|2 − R̄ ≥ ϕt(t1, x1) +R(x1)− R̄ ≥ 0. (2.8.96)
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This proves the super-solution property of v(t, x). Together with (2.8.94), this implies

v(t, x) ≤ v(t, x) for (t, x) ∈ [t0,+∞)× Tn. (2.8.97)

As R(x0) = R̄ for x0 ∈ Z, we obtain

v(t, x0) ≤ v(t0, x0), for all t ≥ t0 and x0 ∈ Z. (2.8.98)

Since t0 is arbitrary, it follows that v(t, x0) is non-increasing in t. As a consequence, for
each x ∈ Z the limit

u∞(x) = lim
t→+∞

v(t, x)

exists.

Exercise 2.8.14 Show that for any δ > 0 we can find tδ such that, for all x ∈ Z, h > 0
and t ≥ tδ we have

0 ≤ v(t, x)− v(t+ h, x) ≤ δ. (2.8.99)

Convergence outside of Z

The heart of the proof is to show that convergence of v(t, x) as t→ +∞ on the set Z forces
the convergence off Z as well, without the use of the Lax-Oleinik minimizers. Instead, the
large time convergence of v(t, x) outside of Z will follow from the fact that a transform of v
solves a Hamilton-Jacobi equation that is more complex than (2.8.90), but that has the merit
of carrying an absorption term. We will use the Kruzhkov transform:

w(t, x) = −e−v(t,x). (2.8.100)

Because of the L∞ and gradient bounds for the Lipschitz function v, the function w is also
Lipschitz and satisfies L∞ and gradient bounds of the same type, and, in particular, we have

wt = |w|vt = −wvt, ∇w = |w|∇v = −w∇v.

Moreover, because the function v 7→ −e−v is increasing in v, the function w is a viscosity
solution to

wt +R(x)
√
w2 + |∇w|2 = −R̄w, (2.8.101)

which can be written as

wt +R(x)
|∇w|2

|w|+
√
w2 + |∇w|2

+ (R̄−R(x))w = 0, t > 0, x ∈ Tn. (2.8.102)

The last term in the left side of (2.8.102) is the aforementioned absorption that will eventually
save the day.

Exercise 2.8.15 Show that if z(t, x) is a viscosity solution to

zt +H(x,∇z) = 0,

and the function G(z) is increasing, then ζ = G(z) is a viscosity solution to

ζt +
1

Q′(ζ)
H(x,Q′(ζ)∇ζ) = 0.

Here, Q(ζ) is the inverse function of G(z). Is this necessarily true if the function G is not
monotonic?
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Let Zδ be the closed set of all points that are at distance at most δ > 0 from Z. Under our
simplifying assumption that the set Z is finite, the set Zδ is a finite union of closed balls. The
uniform bounds on ∇v, together with the result of Exercise 2.8.14 imply that there is C > 0
so that

|w(t, x)− w(t+ h, x)| ≤ Cδ for t ≥ tδ and x ∈ Zδ. (2.8.103)

Our task is now to extend this inequality outside of Zδ. Note that there is ρδ > 0 such that

R̄−R(x) ≥ ρδ for x outside Zδ,

meaning that the pre-factor in the last term in the left side of (2.8.102) is uniformly positive
off Zδ. Intuitively this means that the dynamics for w outside of Zδ is ”uniformly absorbing”.
Let us set

wδ(t, x) = w(t+ h, x)− Cδ − ‖w(tδ, ·)‖L∞e−ρδ(t−tδ), t ≥ tδ, x /∈ Zδ. (2.8.104)

To show that (2.8.103) holds outside of Zδ, we are going to prove that w(t, x) is a sub-solution
to (2.8.102) for t ≥ tδ, and x 6∈ Zδ, and, in addition,

wδ(t, x) ≤ w(t, x) for (t, x) ∈ [tδ,+∞)×Zδ, and t = tδ, x ∈ Tn. (2.8.105)

This will imply w(t, x) ≥ wδ(t, x) for t ≥ tδ and x 6∈ Zδ, which, in turn, entails

w(t, x) ≥ w(t+ h, x)− C(δ + e−ρδ(t−tδ)), for t ≥ tδ, x ∈ Tn and h > 0. (2.8.106)

Since ρδ > 0 is positive, and δ > 0 is arbitrary, this implies the pointwise convergence of w(t, x)
to a limit w∞(x) as t → +∞, and, consequently, its uniform convergence that follows from
the Lipschitz bound on w(t, x). Therefore, the function v(t, x) also converges to a limit

v∞(x) = − log(−w∞(x)),

as t→ +∞. Note that the absorbing nature of the dynamics for w exhibits itself in the fact
that ρδ > 0 outside of Zδ – this is why the Kruzhkov transform is helpful here.

Thus, to finish the proof of Theorem 2.8.13, we only need to show that wδ is a sub-solution
to (2.8.102) for t ≥ tδ, and x 6∈ Zδ, and check that (2.8.105) holds. We see from (2.8.103)
that

w(t, x) ≥ wδ(t, x) for t ≥ tδ and x ∈ Zδ. (2.8.107)

At the time t = tδ we have

w(tδ, x)− wδ(tδ, x) =w(tδ, x) + ‖w(tδ, ·)‖L∞ + Cδ − w(tδ + h, x) ≥ Cδ > 0, for all x ∈ Tn.
(2.8.108)

We used here the fact that w(t, x) ≤ 0 for all t > 0 and x ∈ Tn. Putting (2.8.107) and (2.8.108)
together, we conclude that (2.8.105) does hold.

It remains to check the sub-solution property for wδ, outside of Zδ. Let ϕ be a test function
and (t1, x1) a minimum point of ϕ−wδ, with x1 6∈ Zδ. In other words, (t1, x1) is a minimum
point of the function(

ϕ(t, x) + Cδ + ‖w(tδ, ·)‖L∞e−ρδ(t−tδ)
)
− w(t, x+ h).
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As w is a viscosity solution to (2.8.102):

wt +R(x)
|∇w|2

|w|+
√
w2 + |∇w|2

+ (R̄−R(x))w = 0, t > 0, x ∈ Tn, (2.8.109)

we deduce that the following inequality holds at (t1, x1):

ϕt−‖w(tδ, ·)‖L∞ρδe−ρδ(t−tδ)+R(x1)
|∇ϕ|2

|τhw|+
√

(τhw)2 + |∇ϕ|2
+(R̄−R(x1))τhw ≤ 0. (2.8.110)

Here, we have set τhw(t, x) = w(t+ h, x). The definition of wδ implies that

τhw(t, x) ≥ wδ(t, x) for t ≥ tδ and x 6∈ Zδ,

so that
|τhw(t, x)| ≤ |wδ(t, x)|. (2.8.111)

Also, as
R̄−R(x) ≥ ρδ for x 6∈ Zδ,

we have

(R̄−R(x1))τhw(t, x1)− ‖w(tδ, ·)‖L∞ρδe−ρδ(t−tδ)

≥ (R̄−R(x1))w(τ + h, x1)− (R̄−R(x1))‖w(tδ, ·)‖L∞e−ρδ(t−tδ)

= (R̄−R(x1))[wδ(t, x1) + Cδ] ≥ (R̄−R(x1))wδ(t, x1).

(2.8.112)

Using the inequalities (2.8.111) and (2.8.112) in (2.8.110) leads to

ϕt +R(x1)
|∇ϕ|2

|wδ|+
√

(wδ)
2 + |∇ϕ|2

+ (R̄−R(x1))wδ ≤ 0, (2.8.113)

at (t1, x1). This is the desired viscosity sub-solution inequality for wδ. Thus, wδ(t, x) is,
indeed, a sub-solution to (2.8.102) for t ≥ tδ, and x 6∈ Zδ, This finishes the proof of Theo-
rem 2.8.13. �

Exercise 2.8.16 Carry out the same analysis for the equation

ut + |∇u| = f(x), t > 0, x ∈ Tn,

where f ∈ C(Tn) satisfies the usual assumptions of this section: continuous, nonnegative,
with a nontrivial zero set.

2.9 Convergence of the Lax-Oleinik semigroup

In this section, we prove that the solutions to the Cauchy problem

ut +H(x,∇u) = 0, x ∈ Tn,
u(0, x) = u0(x)

(2.9.1)
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converge to a wave solution as t→ +∞, under the assumption of uniform strict convexity of
the Hamiltonian H(x, p). So far, we have seen a very particular mechanism for convergence:
the dynamics on a special set dictates in turn the convergence in the area where the equation
is coercive. This was the zero set of the function f(x) in Theorem 2.8.11, and the set Z
where the function R(x) attains its maximum in the proof of Theorem 2.8.13. In both cases,
the key is a monotonicity property on this ”controlling’ set. This is also the set where, in
the strictly convex situation of Theorem 2.8.11 characteristics spend most of the time. On
the other hand, in the example following Theorem 2.8.11, we have seen a situation where
the minima of the initial condition u0(y) dictate the long time behavior, even though the
minimizing curves do not spend any extra time near these points.

It turns out that the existence of such ”controlling” set is a general fact. For a general
Hamilton-Jacobi equation of the type (2.9.1), there is a set where the extremals associated to
the wave solutions accumulate, and which orchestrates the convergence to a steady solution.
The reader interested to learn more may consult [?] or [?], where their general theory by Fathi
is exposed. Our goal here is much more modest: we want to identify a set where, following
the ideas of the preceding section, the dynamics of u will dictate the behavior on the whole
torus. The following theorem is due to Fathi [?] but we present an alternative proof inspired
by [?].

Theorem 2.9.1 Let H(x, p) be smooth and uniformly strictly convex in p:

αI ≤ D2
pH(x, p), in the sense of quadratic forms,

and c be the corresponding wave speed: there exists a solution u∞(x) to

H(x,∇u) = c, x ∈ Tn. (2.9.2)

Then, for any given u0 ∈ C(Tn), there exists a solution u∞(x) to (2.9.2) such that the solution
to the Cauchy problem

ut +H(x,∇u) = 0, x ∈ Tn,
u(0, x) = u0(x)

(2.9.3)

converges to u∞(x) as t→ +∞:

lim
t→+∞

‖u(t, ·) + ct− u∞(·)‖L∞ = 0. (2.9.4)

We will assume throughout the proof, without loss of generality, that c = 0. Otherwise, we
would simply replace the Hamiltonian H(x, p) by H(x, p)− c.

As usual, existence of the steady solutions implies, via the comparison principle, that there
exists C0 > 0 such that

|u(t, x)| ≤ C0, for all t > 0 and x ∈ Tn. (2.9.5)

In addition, we have the uniform Lipschitz bound:

Lipt,x[u] ≤ C, for all t ≥ 1 and x ∈ Tn. (2.9.6)
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Here, Lipt,x[u] is the Lipschitz constant of u both in the t and x variables. These uniform
bounds show that, at least along a sequence tn → +∞, the uniform limits

u∞(t, x) = lim
tn→+∞

u(t+ tn, x) (2.9.7)

exist but may exist on the sequence tn. Our goal is to show that there is actually a limit
in (2.9.7) that does nto depend on the sub-sequence, this limit is time-independent, and is a
solution to the steady equation

H(x,∇u∞) = 0.

Before going directly into the proof of Theorem 2.9.1, we would like to explain the con-
struction of the set Z, and what sort of monotonicity we can use for the proof, as we did in the
proofs of Theorem 2.8.11 and Theorem 2.8.13. This will require the notion of the ω-limit set
of a solution, and that is where we will start the discussion. After introducing these objects
and discussing their basic properties we will turn to the bona fide proof of Theorem 2.9.1 that
will be quite short once we have obtained the desired properties of the set Z.

The ω-limit set

The ω-limit set for a given initial condition u0 ∈ C(Tn) with respect to the Lax-Oleinik semi-
group is denoted by ω(u0) ⊂ C(Tn), and is constructed as follows. The uniform bounds (2.9.5)
and (2.9.6) imply that there is a sequence tn → +∞ such that the family vn(t, x) = u(t+tn, x)
converges :

vn(t, x) = u(t+ tn, x)→ v(t, x), (2.9.8)

in L∞(Tn) and uniformly on compact intervals of t ∈ R. Here and below, u(t, x) is the solution
to (2.9.3). The function v(t, x) is a solution to

vt +H(x,∇v) = 0, (2.9.9)

defined for all t ∈ R, and not just for t > 0. Sometimes such solutions are called ”entire
in time”, to indicate that they are also defined for negative times. The set ω(u0) consists
of all ”one-time” snapshots of the limits: the functions ψ ∈ C(Tn) such that there is a
sequence tn → +∞ and the corresponding limit v(t, x) so that (2.9.8) holds, and

ψ(x) = v(0, x) = lim
n→+∞

u(tn, x). (2.9.10)

It will be convenient for us to consider, in addition, the set ω̃(u0) ⊂ C(R × Tn) of all func-
tions v ∈ C(R × Tn) that can be obtained by the limiting procedure in (2.9.8). A simple
observation is that if v ∈ ω̃0(u0) then for any s ∈ R fixed, the function v(s, ·) is in ω(u0). This
can be seen simply by taking the sequence t′n = tn + s.

The claim of Theorem 2.9.1 can be now reformulated as saying that each v ∈ ω̃(u0) does
not depend on t, and that ω(u0) contains exactly one function ψ. The following exercise gives
a sufficient condition for this to be true.

Exercise 2.9.2 (i) Assume that v ∈ ω̃(u0) does not depend on t. Show that then v(x) is a
viscosity solution to

H(x,∇v) = 0. (2.9.11)
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(ii) Show that if there exists v ∈ ω̃(u0) that does not depend on t, then the limit

lim
t→+∞

u(t, x),

exists, is unique, and is a viscosity solution to (2.9.11). Hint: use the contraction property
for the solutions to (2.9.3).

Exercise 2.9.2 gives us a blueprint for the proof of Theorem 2.9.1: it suffices to show that
any v ∈ ω̃(u0) does not depend on t. As in the proof of Theorem 2.8.13, we will first identify
a set Z where it is easier to show that v(t, x) is time-independent, and then show this outside
of Z.

Monotonicity along the minimizers

Our first goal is to recycle the main idea of the proofs of Theorems 2.8.11 and 2.8.13, namely, to
find a set where convergence will hold because of some monotonicity property. The following
easy and very general remark can be made: let φ(x) be a steady solution to

H(x,∇φ) = 0, (2.9.12)

and γ : [0, t]→ Tn be an extremal path calibrated by φ. For all 0 ≤ s ≤ s′ ≤ t we have

φ(γ(s′)) = φ(γ(s)) +

∫ s′

s

L(γ(σ), γ̇(σ))dσ, (2.9.13)

whereas, by the definition of the Lax-Oleinik semigroup we have

u(s′, γ(s′)) ≤ u(s, γ(s)) +

∫ s′

s

L(γ(σ), γ̇(σ))dσ. (2.9.14)

Subtracting, we obtain

u(s′, γ(s′))− φ(γ(s′)) ≤ u(s, γ(s))− φ(γ(s)) if s ≤ s′. (2.9.15)

Thus, the difference u(s, γ(s)) − φ(γ(s) is non-increasing in s along any extremal path cali-
brated by φ. This simple observation will bear a lot of fruit.

The ω-limits of paths and the set Z

We now use the monotonicity property (2.9.15) to construct a candidate for the set Z. It will
contain paths that calibrate all steady solutions but it will also do more. Let us fix a steady
solution φ. We define Zφ as the collection of all ”eternal” extremal paths calibrated by φ,
which is the set of all trajectories γ : R→ Tn such that

φ(γ(s′)) = φ(γ(s)) +

∫ s′

s

L(γ(σ), γ̇(σ))dσ, for all −∞ < s ≤ s′ < +∞. (2.9.16)

The next exercise shows that eternal extremal paths calibrated by φ exist, so the set Zφ is
not empty.
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Exercise 2.9.3 (i) Fix x ∈ Tn and consider a family of extremal paths γt(s), t ≤ s ≤ 0,
calibrated by φ. Show that there is a sequence tn → −∞ such that γtn(s) → γ(s), locally
uniformly in s ≤ 0, and γ(0) = x.
(ii) Let γ(s) be constructed as in part (i). Show that there exists a sequence sn → −∞ such
that the paths γn(s) = γ(sn + s), −∞ ≤ s ≤ −sn, converge, locally uniformly on R, to a
path γ̄(s), s ∈ R.
(iii) Show that the path γ̄(s), s ∈ R, is calibrated by φ.

The set Z is then defined as follows: a point x ∈ Tn is in Z if there is a path γ∞ : R→ Tn
that passes through x, a path γ ∈ Zφ, and a sequence sn → +∞ such that

γ∞(s) = lim
n→+∞

γ(s+ sn), (2.9.17)

with the limit uniform on every bounded interval of R. In other words, Z is the union
of ω-limits of the paths in Zφ.

Exercise 2.9.4 (i) Find the set Z for the Hamiltonian H(x, p) = |p|2 − f(x) with a smooth
non-negative function f(x), x ∈ Tn. Does it depend on the steady solution φ(x) with which
you start?
(ii) Find the set Z for the Hamiltonian H(p) = |p|2 + cp, with c > 0.

The following exercise will be important when we discuss the time monotonicity of the eternal
solutions on Z in the proof of of Theorem 2.9.1.

Exercise 2.9.5 Show that if γ∞(σ), σ ∈ R is in Z, then so is the time-shifted path

γ(s)
∞ (σ) = γ∞(σ + s), σ ∈ R,

for any s ∈ R fixed. Hint: this is because the original solution φ, that we used to construct Zφ
and then Z, is time-independent, so that if a path γ ∈ Zφ calibrates φ, then any time-shifted
path γs(s

′) = γ(s+ s′) also calibrates φ, and is therefore in Zφ.

Calibration by paths in Z

Let us now take a path γ∞(s), s ∈ R that lies in Z, obtained as the limit in (2.9.17), with a
given γ ∈ Zφ. Writing

φ(γ(s′ + sn)) = φ(γ(s− sn)) +

∫ s′+sn

s+sn

L(γ(σ), γ̇(σ))dσ

= φ(γ(s+ sn)) +

∫ s′

s

L(γ(σ + sn), γ̇(σ + sn))dσ,

(2.9.18)

and passing to the limit sn → +∞, we see immediately that γ∞(s) is also calibrated by φ.
The miracle is that γ∞(s) is also calibrated by every other steady solution ψ(x) to (2.9.12).
Indeed, it follows from the monotonicity property (2.9.15) used with u(t, x) = ψ(x) that for
any path γ ∈ Zφ the limit

lim
s→−∞

[ψ(γ(s))− φ(γ(s))] = K(γ),

178



exists. It follows that if γ(s + sn) → γ∞(s) as sn → +∞, then the two solutions differ by a
constant on γ∞:

ψ(γ∞(s)) = φ(γ∞(s)) +K(γ), for all −∞ < s < +∞. (2.9.19)

As γ∞(s) is calibrated by φ, we conclude from (2.9.19) that it is calibrated by ψ as well. We
stress that it is not true that every path in Zφ is calibrated by any other steady solution –
this is only true for their ω-limits that form the set Z. The following proposition shows that
we can say even more.

Proposition 2.9.6 Let γ∞(s), s ∈ R be a path in Z and v ∈ ω̃(u0). There exists K(γ) ∈ R
such that

v(t, γ∞(t))− φ(γ∞(t)) = K(γ), for all t ∈ R. (2.9.20)

In particular, the path γ∞(s), s ∈ R, is calibrated by v(t, x).

Proof. By definition of γ∞, there is a global extremal path γ calibrated by φ, and a se-
quence sn → +∞ such that

γ∞(σ) = lim
n→+∞

γ(σ + sn),

uniformly in every compact in σ ∈ R. Observe that to prove (2.9.20) it suffices to find a
subsequence snk such that

lim
k→+∞

[v(s, γ(s+ snk))− φ(γ(s+ snk))] = const, independent of s ∈ R. (2.9.21)

Let u(t, x) be the solution to (2.9.3).

ut +H(x,∇u) = 0, t > 0, x ∈ Tn,
u(0, x) = u0(x).

(2.9.22)

Since v ∈ ω̃(u0), we may also find a sequence tn → +∞ such that for all s ∈ R we have

v(s, x) = lim
n→+∞

u(tn + sn + s, x), in L∞(Tn), (2.9.23)

locally uniformly in s ∈ R. Thus, for every compact set K ⊂ R and ε > 0 there exists Nε,K

such that for all n > Nε,K we have

|v(s, γ(s+ sn))− u(tn + sn + s, γ(s+ sn))| < ε for all s ∈ K. (2.9.24)

Hence, (2.9.21) would follow if we can show that, along a sub-sequence nk → +∞, we have

lim
k→+∞

[u(tnk + snk + s, γ(s+ snk))− φ(γ(s+ snk))] = const, independent of s ∈ R. (2.9.25)

Note that that there is a sub-sequence nk → +∞ such that that the limit

ṽ(t, ·) = lim
k→+∞

u(t+ tnk , ·), in L∞(Tn) (2.9.26)

exists, locally uniformly in t, and set

ψ1(·) = ṽ(0, ·) = lim
k→+∞

u(tnk , ·), in L∞(Tn). (2.9.27)
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By the weak contraction property, we have

‖u(tnk + t, ·)− ṽ(t, ·)‖L∞ ≤ ‖u(tnk , ·)− ψ1‖L∞ → 0, as k → +∞, (2.9.28)

and, very importantly, this limit is uniform in t ≥ 0. Thus, for any ε > 0 we can find Nε so
that for all k > Nε we have

|u(tnk + snk + s, γ(snk + s))− ṽ(snk + s, γ(snk + s))| ≤ ε, (2.9.29)

locally uniformly in s ∈ R. Hence, (2.9.25) would follow if we show that

lim
k→+∞

[ṽ(snk + s, γ(snk + s))− φ(γ(snk + s))] = const, independent of s ∈ R. (2.9.30)

However, the monotonicity property (2.9.15) along the extremals implies that the limit

` = lim
ξ→+∞

(
ṽ(ξ + s, γ(ξ + s))− φ(γ(ξ + s))

)
.

exists and is independent of s. It follows that

lim
k→+∞

[ṽ(snk + s, γ(snk + s))− φ(γ(snk + s))] = ` for all s ∈ R, (2.9.31)

finishing the proof. �
We will also need the following proposition which says that paths calibrated by solutions

in ω̃(u0) come arbitrarily close to the set Z – this is what eventually leads to the fact that
the behavior of the solutions on Z controls the behavior outside of Z as well.

Proposition 2.9.7 Let v ∈ ω̃(u0). Given any path γ(s), s ∈ R, that is calibrated by v, there
exists a sequence tn → +∞ such that dist(γ(tn),Z)→ 0 as n→ +∞.

Proof. Let γ(s), s ∈ R, be a path calibrated by v(t, x), and φ(x) be the steady solution used
to generate Z. The Lax-Oleinik formula tells us that for any s < s′ ≤ t we have

v(s′, γ(s′)) = v(s, γ(s)) +

∫ s′

s

L(γ(σ), γ̇(σ))dσ,

and

φ(γ(s′)) ≤ φ(γ(s)) +

∫ s′

s

L(γ(σ), γ̇(σ))dσ.

Subtracting we get the monotonicity relation

v(s′, γ(s′))− φ(γ(s′)) ≥ v(s, γ(s))− φ(γ(s)), for all s < s′. (2.9.32)

As both v(s, x) and φ(x) are uniformly bounded, it follows that the limit

lim
s→+∞

[v(s, γ(s))− φ(γ(s)] (2.9.33)

exists. In addition, the uniform bounds on γ(s) and γ̇(s) imply that there exists a se-
quence sn → +∞ so that the paths γn(s) = γ(s + sn) converge, as n → +∞, to a limiting
path γ∞(s), s ∈ R, locally uniformly in s.
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Exercise 2.9.8 Show that the path γ∞(s) is calibrated by any steady solution, in particular,
by φ.

Exercise 2.9.8 shows that γ∞(s), s ∈ R, lies in Zφ but we do not yet know that the
path γ∞(s), s ∈ R, is in Z. Since γ∞(s) inherits the uniform bounds obeyed by γ(s) and γ̇(s),
we can find a sequence s′n → +∞ such that

γ(n)
∞ (s) := γ∞(s+ s′n)→ γ̄∞(s),

locally uniformly in s ∈ R. As all γ
(nk)
∞ (s) are calibrated by φ, we know that the limiting

path γ̄∞(s), s ∈ R, lies in Z, by the definition of the set Z.
To finish the proof of the proposition, consider the points γ(sn + s′m). First, we fix m and

choose n = Nm sufficiently large, so that

|γ(sNm + s′m)− γ∞(s′m)| < ε

2
.

Next, we choose m sufficiently large, so that |γ∞(s′m)− γ̄∞(0)| < ε/2. This gives

|γ(sNm + s′m)− γ̄∞(0)| < ε.

Since γ̄∞(0) is in Z, the proof is complete. �

Convergence on Z

After setting up the required objects, we turn to the proof of of Theorem 2.9.1. The strategy
comes from Exercise 2.9.2: we need to show that any solution to

vt +H(x,∇v) = 0, t ∈ R, x ∈ Tn, (2.9.34)

such that v ∈ ω̃(u0), is time-independent. The reader has certainly guessed what will happen:
the set Z will play the same role as the zero set of the function f(x) in Theorem 2.8.11, and
the set where the function R(x) attains its maximum in the proof of Theorem 2.8.13. This
is confirmed by the following proposition, showing that such v(t, x) is independent of t ∈ R
on the closure Z of the set Z, though we do not know yet that this happens everywhere.

Proposition 2.9.9 Any v ∈ ω̃0(u0) does not depend on t ∈ R for all x ∈ Z.

Proof. Consider an eternal extremal path γ∞(s), s ∈ R, in Z. We are going to show that

∂tv(t, γ∞(t)) = 0, for all t ∈ R. (2.9.35)

We have shown in Proposition 2.9.6 that γ∞(s), s ∈ R, is calibrated both by φ and by v. It
follows then from Corollary 2.7.21 that both φ and v are C1,1 on γ∞, and we have

∇v(t, γ∞(t)) = ∇vL(γ∞(t), γ̇∞(t)), ∇φ(γ∞(t)) = ∇vL(γ∞(t), γ̇∞(t)),

for all t ∈ R, as in (2.7.48) in Exercise 2.7.13. This gives

∇v(t, γ∞(t)) = ∇φ(γ∞(t)), for all t ∈ R. (2.9.36)
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This relation holds in the classical sense, as both v and φ are C1,1 on γ∞(t). Since φ is a
solution to the steady equation (2.9.12):

H(x,∇φ) = 0, (2.9.37)

we deduce that

H(γ∞(t),∇v(t, γ∞(t))) = 0.

As v is C1,1 at (t, γ∞(t)), this entails (2.9.35):

∂tv(t, γ∞(t)) = 0, for all t ∈ R. (2.9.38)

Consider x ∈ Z and an eternal extremal path γ∞(σ), σ ∈ R, in Z that passes through x,
so that γ∞(t) = x, with some t ∈ R. Given any s ∈ R, Exercise 2.9.5 allows us to use (2.9.38)
with the shifted path

γ(s)
∞ (σ) = γ∞(σ + t− s).

Note that

x = γ∞(t) = γ(s)
∞ (s),

and (2.9.38) applied to γ
(s)
∞ (σ) at σ = s gives

0 = ∂tv(s, γ(s)
∞ (s) = ∂tv(s, γ∞(t)) = ∂tv(s, x). (2.9.39)

Since s is arbitrary, we conclude that v(t, x) does not depend on t for all x ∈ Z. The continuity
of v(t, x) implies that the same is true for Z as well. �

Convergence away from Z

To finish the proof of Theorem 2.9.1 we now show that the claim of Proposition 2.9.9 holds
also outside of Z. This step relies crucially on Proposition 2.9.7.

Proposition 2.9.10 Any v ∈ ω̃0(u0) does not depend on t ∈ R for all x ∈ Tn.

Proof. Proposition 2.9.9 shows that we only need to consider x 6∈ Z. Using the by now
familiar arguments based on the uniform bounds on minimizers, for any x ∈ Tn and t > 0
fixed, we can find a path γt(σ), σ ≤ t, calibrated by v, so that for any s < t we have

v(t, x) = v(s, γt(s)) +

∫ t

s

L(γt(σ), γ̇t(σ))dσ.

Our first goal is to show that γt(s) has visited positions x ∈ Tn that are arbitrarily close
to the set Z at some times s ≤ t. As usual, we know that there exists a sequence sn → +∞ so
that the time-shifted paths γn(s) = γt(s+ t−sn), s ≤ sn, converge, as n→ +∞, to a limiting
path γ∞(s), s ∈ R. The path γ∞(s) is also calibrated by v(t, x), hence Proposition 2.9.7
shows that for any ε > 0 there exists tε > 0 so that

dist(γ∞(tε),Z) <
ε

2
.
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Let us fix ε > 0 and the corresponding tε, and choose n > Nε sufficiently large, so that

|γt(tε + t− sn)− γ∞(tε)| = |γn(tε)− γ∞(tε)| <
ε

2
.

We deduce that
dist(γt(tε + t− sn),Z) < ε.

Therefore, we can find a sequence τn → +∞ such that

dist(γt(−τn),Z)→ 0, as n→ +∞.

That is, as we have claimed, the path γt(s) did get arbitrarily close to Z in the past. Hence,
there exists z ∈ Z and a subsequence τnk → +∞ such that

γt(−τnk)→ z as k → +∞.

Since the function v(t, x) is Lipschitz in x, uniformly in t ∈ R and in x ∈ Tn, we know that

∆k(t, x) = v(−τnk , γt(−τnk))− v(−τnk , z)→ 0 as k → +∞. (2.9.40)

Let us then write

v(t, x) = v(−τnk , z) +

∫ t

−τnk

L(γt(σ), γ̇t(σ))dσ + ∆k(t, x). (2.9.41)

As z ∈ Z, by Proposition 2.9.9 we know that v(s, z) does not depend on s, so that for
any s ∈ R we have

v(−τnk , z) = v(−τnk − t+ s, z),

and (2.9.41) can be written as

v(t, x) =v(−τnk − t+ s, z) +

∫ t

−τnk

L(γt(σ), γ̇t(σ))dσ + ∆k(t, x)

= v(−τnk − t+ s, z) +

∫ s

−τnk−t+s
L(γt(σ + t− s), γ̇t(σ + t− s))dσ + ∆k(t, x)

= v(−τnk − t+ s, z) +

∫ s

−τnk−t+s
L(γ̃t(σ), ˙̃γt(σ))dσ + ∆k(t, x),

(2.9.42)
with the path

γ̃t(σ) = γt(σ + t− s), σ ≤ s.

Note that γ̃t(s) = γt(t) = x, and

γ̃t(−τnk − t+ s) = γt(−τnk) = z + δk, δk → 0 as k → +∞. (2.9.43)

Therefore, the Lax-Oleinik formula, together with the uniform Lipschitz property of the func-
tion v(t, x), tells us that

v(s, x) ≤ v(−τnk − t+ s, γ̃t(−τnk − t+ s)) +

∫ s

−τnk−t+s
L(γ̃t(σ), ˙̃γt(σ))dσ

≤ v(−τnk − t+ s, z) +

∫ s

−τnk−t+s
L(γ̃t(σ), ˙̃γt(σ))dσ + ∆k(t, x) + Cδk.

(2.9.44)
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Comparing to (2.9.42) and passing to the limit k → +∞ we conclude that

v(s, x) ≤ v(t, x) for all t, s ∈ R. (2.9.45)

As t and s are arbitrary, it follows that v(t, x) does not depend on t, finishing the proof of
Proposition 2.9.10, and thus that of Theorem 2.9.1 as well. �

Our tour of the Hamilton-Jacobi equations ends here. One could say much more on the
organization of the steady solutions, and the reader should consult [?]. They would be,
however, outside the scope of this book. Let us just notice that the results of the present
section provide a complete parallel with the large time behavior of the solutions to viscous
Hamilton-Jacobi equations, which was the goal we wanted to achieve: the viscosity solutions
of the inviscid problem still converge to waves, although their organization, that we have
largely uncovered, is much more complicated.

184



Chapter 3

Adaptive dynamics models in biology

We mostly follow the material from the books by Benoit Perthame, with some research articles
in the latter sections of this chapter. The plan for this chapter is as follows. We will start
with a simple ODE system that models evolution of a population with various traits that
correspond to different birth rates and compete for common resources. We will show, quite
easily that the trait with the highest birth rate dominates in the long time limit. Next, we will
allow both the birth and death rates to depend on the trait, and show the selection mechanism
in that case. Mutations will be introduced next: the off-spring may have a different trait than
the parent. This leads to a nonlinear integral equation for the population density. Existence
of its solutions will be quite straightforward. In the limit of small mutations, we will obtain a
Hamilton-Jacobi equation with a constraint. The zero set of the solution corresponds to the
traits that survive in the long time limit. If such point is unique, the constrained Hamilton-
Jacobi equation describes the evolution of a monomorphic population. The last step will be
to investigate the Hamilton-Jacobi equations with such constraint, bringing us to the results
obtained in the last 5-7 years.

3.1 Adaptive dynamics

Adaptive dynamics studies two biological effects: (i) the selection principle, which favors
population with the best adapted trait, and (ii) mutations which allow the off-spring to have
a slightly different trait from the parent. Here, we look at simple ODE models and study how
the selection principle arises as the long time limit of small mutations.

A simple of example of a structured population and the selection
principle

We begin with a very simple example of the logistic ordinary differential equation

dn

dt
= bn− n2,

modified to take into account the traits. We assumed that the population is structured by a
trait x ∈ R and assume that (i) the reproduction rate b depends only on the trait , and (ii)
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the death rate depends on the total population. This is reasonable because of the competition
between various traits. The resulting system of ODEs is

∂n(t, x)

∂t
= b(x)n(t, x)− ρ(t)n(t, x), (3.1.1)

where ρ(t) is the total population:

ρ(t) =

∫
R
n(t, x)dx.

The ODEs in (3.1.1) for various x ∈ R are coupled via the term ρ(t) that depends on n(t, x)
at all x ∈ R.

We assume that the initial condition for (3.1.1) is n(0, x) = n0(x) such that n0(x) > 0
for all x ∈ (xm, xM), and n0(x) = 0 otherwise. It follows that n(t, x) = 0 for all x outside
of (xm, xM) for t > 0 as well. Note that there are no mutations in this model, and any state
of the form

n(t, x) = b(y)δ(x− y)

is a steady solution, for all y ∈ R. The question is which of these states will be selected in
the long time limit for the time-dependent problem (3.1.1). We have the selection principle –
the best adapted population will be selected.

Theorem 3.1.1 Assume that b(x) is continuous, b(x) ≥ b > 0 for all x ∈ [xm, xM ], and
that b(x) attains its maximum over the interval [xm, xM ] at a single point x̄ ∈ (xm, xM).
Then the solution to (3.1.1) satisfies

lim
t→+∞

ρ(t) = ρ̄ = b(x̄), n(t, x)→ b(x̄)δ(x− x̄), as to→ +∞, (3.1.2)

the last convergence in the sense of distributions.

Proof. In this simple case, we give a computational proof. The function

N(t, x) = n(t, x) exp
{∫ t

0

ρ(s)ds
}

satisfies
dN

dt
= b(x)N(t, x),

hence
N(t, x) = n0(x)eb(x)t.

We also have

d

dt

(
exp

{∫ t

0

ρ(s)ds
})

= ρ(t) exp
{∫ t

0

ρ(s)ds
}

=

∫
R
N(t, x)dx =

∫
R
n0(x)eb(x)tdx,

so that (recall that b(x) > 0 by assumption)

exp
{∫ t

0

ρ(s)ds
}

=

∫
R

n0(x)

b(x)
eb(x)tdx+K, K = 1−

∫
R

n0(x)

b(x)
dx,
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whence ∫ t

0

ρ(s)ds = log
(∫

R

n0(x)

b(x)
eb(x)tdx+K

)
.

Differentiating, we get an explicit expression for the total population density:

ρ(t) =
(∫

R

n0(x)

b(x)
eb(x)tdx+K

)−1
∫
R
n0(x)eb(x)tdx.

To see what happens as t→ +∞, we note that

ρ(t) ≤
(∫

R

n0(x)

b(x)
eb(x)tdx+K

)−1

b(x̄)

∫
R

n0(x)

b(x)
eb(x)tdx→ b(x̄),

as t → +∞, because of the assumption that b(x) ≥ b > 0 for all x ∈ [xm, xM ]. For the
converse, we take ε > 0 and look at the set

Iε = {x : b(x) ≥ b(x̄)− ε}.

Then, we have

ρ(t) ≥
(∫

R

n0(x)

b(x)
eb(x)tdx+K

)−1
∫
Iε

n0(x)eb(x)tdx

≥
(∫

R

n0(x)

b(x)
eb(x)tdx+K

)−1

(b(x̄)− ε)
∫
Iε

n0(x)

b(x)
eb(x)tdx =

(b(x̄)− ε)
Aε(t)

,

where

Aε(t) =
(∫

R

n0(x)

b(x)
eb(x)tdx+K

)(∫
Iε

n0(x)

b(x)
eb(x)tdx

)−1

=
(∫

R

n0(x)

b(x)
eb(x)tdx

)(∫
Iε

n0(x)

b(x)
eb(x)tdx

)−1

+ o(1).

Note that ∫
Iε

n0(x)

b(x)
eb(x)tdx ≥

∫
Iε/2

n0(x)

b(x)
eb(x)tdx ≥ Ce(b(x̄)−ε/2)t,

while ∫
R\Iε

n0(x)

b(x)
eb(x)tdx ≤ Ce(b(x̄)−ε)t.

It follows that Aε(t)→ 1 as t→ +∞ for each ε > 0 fixed, and therefore

ρ(t)→ b(x̄) as t→ +∞. (3.1.3)

Next, from the expression for N(t, x) we know that

n(t, x) = n0(x)eb(x)t exp
{
−
∫ t

0

ρ(s)ds
}

(3.1.4)

It is easy to see from (3.1.3) and (3.1.4) that for x 6= x̄ we have n(t, x) → 0, uniformly on
each set of the form |x− x̄| > ε. It then follows from (3.1.3) that

n(t, x)→ b(x̄)δ(x− x̄) as t→ +∞,

in the sense of distributions. This finishes the proof. �

187



A more general situation

A more general model than (3.1.1) may have the form

∂n(t, x)

∂t
= b(x, ρ(t))n(t, x)− d(x, ρ(t))n(t, x), (3.1.5)

so that the birth and death rates of the population with a trait x ∈ R depend both on x and
the total population

ρ(t) =

∫
R
n(t, x)dx.

We will assume for simplicity that the functions b(x, ρ) and g(x, ρ) factorize:

b(x, ρ) = b(x)Qb(ρ), d(x, ρ) = d(x)Qd(ρ), (3.1.6)

the functions b and d are smooth and positive, as are Qb and Qd, and the following uniform
bounds hold:

0 < bm ≤ b(x) ≤ bM , 0 < dm ≤ d(x) ≤ dM , for all x ∈ R.

Then (3.1.5) becomes

∂n(t, x)

∂t
= [b(x)Qb(ρ(t))− d(x)Qd(ρ(t))]n(t, x). (3.1.7)

Hence, for a given population size ρ(t), we may characterize x such that

b(x)Qb(ρ(t))− d(x)Qd(ρ(t)) > 0 (3.1.8)

as a favourable region, and x such that

b(x)Qb(ρ(t))− d(x)Qd(ρ(t)) < 0 (3.1.9)

as an unfavourable region.
The following bounds will ensure that the population does not explode or disappear com-

pletely: first, there exists ρM > 0 so that

αM = max
x∈R

[b(x)Qb(ρM)− d(x)Qd(ρM)] < 0, (3.1.10)

and, second, there exists ρm ∈ (0, ρM) such that

αm = min
x∈R

[b(x)Qb(ρm)− d(x)Qd(ρm)] > 0. (3.1.11)

In other words, if the population is too large then all of R becomes unfavourable, and if it is
too small, then all of R becomes favourable.

Proposition 3.1.2 Assume that n0(x) ≥ 0 and ρm ≤ ρ(t = 0) ≤ ρM , then ρm ≤ ρ(t) ≤ ρM
for all t > 0.
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Proof. We will just show that ρ(t) ≥ ρm. This is a consequence of the maximum principle.
Indeed, assume that τ0 is the first time such that ρ(τ0) = ρm, then

dρ

dt

∣∣∣
t=τ0

=

∫
R
[b(x)Qb(ρm)− d(x)Qd(ρm)]n(τ0, x)dx ≥ αmρm > 0.

It follows that ρ(t) ≥ ρm for all t > 0. �
Next, we will assume that

Q′b(ρ) < 0, Q′d(ρ) > 0, for all ρ ∈ R, (3.1.12)

that is, the growth rate decreases, and the death rate increases, as the population grows. We
will make an additional assumption that there exists a unique ρ = ρ̄ such that

max
R

[b(x)Qb(ρ)− d(x)Qd(ρ)] = 0, (3.1.13)

and that there exists a unique x̄ such that

b(x̄)Qb(ρ̄)− d(x̄)Qd(ρ̄) = 0. (3.1.14)

Therefore, if ρ = ρ̄, then

∂n(t, x)

∂t
< 0, for all x 6= x̄. (3.1.15)

The last assumption we need is that there exists δ0 > 0 and R > 0 so that for all |ρ− ρ̄| < δ0

we have

βR = max
|x|≥R

[b(x)Qb(ρ)− d(x)Qd(x)] < 0. (3.1.16)

Under these assumptions, we still have the selection principle.

Theorem 3.1.3 With the above assumptions, if n0(x) > 0 and ρm ≤ ρ(t = 0) ≤ ρM , then

ρ(t)→ ρ̄, n(t, x)→ ρ̄δ(x− x̄), as t→ +∞. (3.1.17)

Proof. Consider an auxiliary function Z(r) that satisfies

Z ′(r) = Q(r), Q(r) =
Qd(r)

Qb(r)
, ρm ≤ r ≤ ρM . (3.1.18)

This function is defined only up to constant: Z(r) = Z0(r) + λ, where Z0(r) is a particular
solution and λ ∈ R is a constant we are free to choose but, regardless, Z(r) is uniformly
bounded on [ρm, ρM ]. Let us also define the Lyapunov functional

L(t) =

∫
R

b(x)

d(x)
n(t, x)dx− Z(ρ(t)). (3.1.19)
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Our first goal will be to show that L(t) has a limit as t→ +∞. Note that L(t) is uniformly
bounded – this follows from our assumptions and Proposition 3.1.2. We compute:

dL(t)

dt
=

∫
R

b(x)

d(x)

(
b(x)Qb(ρ(t))− d(x)Qd(ρ(t)

)
n(t, x)dx− Z ′(ρ(t))

dρ(t)

dt

=

∫
R

b(x)

d(x)

(
b(x)Qb(ρ(t))− d(x)Qd(ρ(t)

)
n(t, x)dx

=

∫
R

Qd(ρ(t))

Qb(ρ(t))

(
b(x)Qb(ρ(t))− d(x)Qd(ρ(t)

)
n(t, x)dx

=

∫
R

( b(x)

d(x)
− Qd(ρ(t))

Qb(ρ(t))

)
(b(x)Qb(ρ(t))− d(x)Qd(ρ(t)))

)
n(t, x)dx

=

∫
R
d(x)Qb(ρ(t))

( b(x)

d(x)
−Q(ρ(t))

)2

n(t, x)dx ≥ dmQb(ρM)D(t).

(3.1.20)

We used the uniform bounds on b(x) and Qd(ρ(t)) in the last inequality. Here, the dissipation
rate is

D(t) =

∫
R

( b(x)

d(x)
−Q(ρ(t))

)2

n(t, x)dx. (3.1.21)

We used above the fact that Qb(ρ) is decreasing in ρ, and ρ(t) ≤ ρM for all t > 0. The
above computation shows that L(t) is increasing. As Z(r) is bounded, this function is also
uniformly bounded:

L(t) ≤ bM
dm

ρM + max
r∈[ρm,ρM ]

|Z(r)|, for all t ≥ 0,

thus it approaches a limit as t→ +∞:

L(t)→ L̄, as t→ +∞. (3.1.22)

Now, we need to boost (3.1.22) to show that ρ(t) has a limit. If L(t) were a function of ρ(t),
that would be simple but as it is not, we need to do some work.

Our next goal is to show that D(t)→ 0 as t→ +∞. We deduce from (3.1.20) a bound∫ ∞
0

D(t)dt < +∞. (3.1.23)

Let us now compute

dD(t)

dt
=

∫
R

( b(x)

d(x)
−Q(ρ(t))

)2

(b(x)Qb(ρ(t))− d(x)Qd(ρ(t)))n(t, x)dx (3.1.24)

−2Q′(ρ(t))

∫
R

( b(x)

d(x)
−Q(ρ(t))

)
n(t, x)dx

∫
R
(b(y)Qb(ρ(t))− d(y)Qd(ρ(t)))n(t, y)dy = I + II.

As ρ(t) is a priori bounded, we have

|I| ≤ C1D(t),
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with a constant C > 0 that depends on ρm, ρM , bm, bM , dm and dM . The second term can
be bounded using the bound on ρ and the Cauchy-Schwartz inequality as

|II| ≤ C
(∫

R

( b(x)

d(x)
−Q(ρ(t))

)2

n(t, x)dx
)1/2

ρ(t)1/2

×
(∫

R
(b(y)Qb(ρ(t))− d(y)Qd(ρ(t)))2n(t, y)dy

)1/2

ρ(t)1/2 ≤ C2D(t),

once again, with the constant C2 > 0 that depends on the same quantities as C1. We conclude
that ∫ ∞

0

∣∣∣dD(t)

dt

∣∣∣dt ≤ C

∫ ∞
0

D(t)dt < +∞. (3.1.25)

Therefore, D(t) has a limit as t→ +∞. In addition, as D(t) is integrable, we conclude that

D(t)→ 0 as t→ +∞. (3.1.26)

The Cauchy-Schwartz inequality implies that∫
R

∣∣∣ b(x)

d(x)
−Q(ρ(t))

∣∣∣n(t, x)dx ≤ (D(t))1/2ρ(t)1/2 → 0 as t→ +∞. (3.1.27)

Note that, by the definition of Z(t), we have

ρ(t)Q(ρ(t))− Z(ρ(t)) = L(t) +

∫
R

(
Q(ρ(t))− b(x)

d(x)

)
n(t, x)dx,

thus (3.1.22) and (3.1.27) together imply that

G(ρ(t)) := ρ(t)Q(ρ(t))− Z(ρ(t))→ L̄, as t→ +∞.

The function G(ρ(t)) not only has a limit as t→ +∞, but unlike L(t) is a function of ρ. Note
that G(ρ) is increasing:

G′(r) = (rQ(r)− Z(r))′ = rQ′(r) > 0,

because the function Q(r) is increasing in r. It follows that ρ(t) has a limit:

ρ(t)→ ρ∗, (3.1.28)

where ρ∗ is the unique ρ ∈ [ρm, ρM ] such that G(ρ∗) = L. Let us now show that ρ∗ = ρ̄.
Indeed, if ρ∗ > ρ̄ then

max
x∈R

[b(x)Qb(ρ
∗)− d(x)Qd(ρ

∗)] < 0,

which implies that n(t, x) → 0 as t → +∞, uniformly in x ∈ R., which is a contradiction
since ρ(t) ≥ ρm. On the other hand, if ρ∗ < ρ̄, then

max
x∈R

[b(x)Qb(ρ
∗)− d(x)Qd(ρ

∗)] > 0,
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which, in turn, implies that ρ(t)→ +∞ as t→ +∞ contradicting ρ(t) ≤ ρM . Therefore, we
have ρ∗ = ρ̄. It follows from assumption (3.1.16) that for t sufficiently large we have

d

dt

∫
|x|≥R

n(t, x)dx ≤ βR

∫
|x|≥R

n(t, x)dx, (3.1.29)

thus ∫
|x|≥R

n(t, x)dx→ 0 as t→ +∞.

Hence, n(t, x) has a weak limit n∗(x) in the space of measures along a sequence tn → +∞,
and ∫

R
n∗(x)dx = ρ̄.

Finally, we know from (3.1.27) that n∗(x) has to be concentrated on the set where

b(x)

d(x)
− Qd(ρ̄)

Qb(ρ̄)
= 0,

which consists of one point x̄. It follows that the limit is unique and

n∗(x) = ρ̄δ(x− x̄).

The proof is complete.

Mutations and spatial heterogeneities

A slight variation of the previous system is dynamics of the form

∂n(t, x)

∂t
= b(x)Qb(ρb(t))n(t, x)− d(x)Qd(ρd(t))n(t, x). (3.1.30)

Here, we have set

ρb(t) =

∫
R
ψb(x)n(t, x)dx, ρd(t) =

∫
R
ψd(x)n(t, x)dx.

The function ψb(y) measures how much the presence of the species of the trait y hurts the
ability of other species to reproduce, and the function ψd(y) measures how much stronger the
competition becomes if species with the trait y are present. It is natural to assume, as before,
that the functions b(x) and d(x) are continuous, and

0 < bm ≤ b(x) ≤ bM , 0 < dm ≤ d(x) ≤ dM , for all x ∈ R. (3.1.31)

The functions Qb and Qd are C1(R+) and

Q′b(ρ) ≤ a1 < 0, Q′d(ρ) ≥ a2 > 0 for all ρ > 0. (3.1.32)

For the birth and death competition rates we assume that

0 < ψm ≤ ψd(x), ψb(x) ≤ ψM for all x ∈ R. (3.1.33)
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These assumptions help prevent the blow-up of the total population in a finite time that
potentially may be an issue because the equation is quadratic in n(t, x). We also introduce a
generalization of (3.1.10) and (3.1.11): first, there exists ρM such that:

αM = max
x∈R

[b(x)Qb(ψmρM)− d(x)Qd(ψmρM)] < 0, (3.1.34)

and, second, there exists ρm ∈ (0, ρM) such that

αm = min
x∈R

[b(x)Qb(ψMρm)− d(x)Qd(ψMρm)] > 0. (3.1.35)

The second modification is to also add the possibility of mutations – an individual with a
trait x may give birth to offspring with a trait y, and not just with trait x as we have so far
assumed. This would lead to the following dynamics:

∂n(t, x)

∂t
= Qb(ρb(t))

∫
R
b(y)K(x− y)n(t, y)dy − d(x)Qd(ρd(t))n(t, x). (3.1.36)

Here, K(x) is a non-negative probability density:∫
R
K(x)dx = 1.

The case of no mutations corresponds to K(x) = δ(x). Note that only the birth rate is
affected in (3.1.36).

Let us mention in passing that (3.1.36) is a very simple nonlinear kinetic model which is
very natural as it comes from a branching process with jumps that results from the mutations.

Existence of the solutions

The first step is to prove existence of the solutions. This is reasonably standard but one needs
to be careful that there is no possibility of a blow-up in the ”quadratic-like” dynamics (3.1.36).

Theorem 3.1.4 Assume that the non-negative initial condition n0(x) ∈ L1(R), and

ρm ≤ ρ0 ≤ ρM .

Then (3.1.36) has a non-negative solution such that

n,
∂n

∂t
∈ C(0,+∞;L1(R)),

and for all t ≥ 0 we have
ρm ≤ ρ(t) ≤ ρM . (3.1.37)

Proof. The proof is similar to that for the Cauchy-Kovalevskaya theorem.
An a priori bound. We first obtain the a priori bound (3.1.37) on the solution (assuming

that it exists). Let us integrate (3.1.36). Note that∫
R×R

b(y)K(x− y)n(t, y)dydx =

∫
R
b(y)n(t, y)dy.
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It follows that

dρ(t)

dt
= Qb(ρb(t))

∫
R
b(x)n(t, x)dx−Qd(ρd(t))

∫
R
d(x)n(t, x)dx (3.1.38)

=

∫
[Qb(ρb(t))b(x)−Qd(ρd(t))d(x)]n(t, x)dx ≤ ρ(t) max

y
[Qb(ρb(t))b(y)−Qd(ρd(t))d(y)].

Note that
ρb(t) ≥ ψmρ(t), ρd(t) ≥ ψmρ(t),

thus
Qb(ρb(t)) ≤ Qb(ψmρ(t)),

and
Qd(ρd(t)) ≥ Qd(ψmρ(t)).

Using this in (3.1.38) gives

dρ(t)

dt
≤ ρ(t) max

y
[Qb(ψmρ(t))b(y)−Qd(ψmρ(t))d(y)].

Therefore, if ρ(t) > ρM then
dρ(t)

dt
< 0,

and ρ(t) decreases. Similarly, if ρ(t) < ρm, then

dρ(t)

dt
> 0,

and ρ(t) increases. Hence, if initially we have ρm ≤ ρ0 ≤ ρM , then for all t > 0 we still
have ρm ≤ ρ(t) ≤ ρM .

Existence. We will use the fixed point theorem for the existence. The argument is
applicable to other kinetic models as long as good a priori bounds are available, which is
usually the case for linear models.

Consider the Banach space

X = C([0, T ];L1(R)), ‖m‖X = sup
0≤t≤T

‖m(t)‖L1(R),

for some T > 0 to be chosen. The choice of this space is, again, very natural for branching
kinetic models as it measures the total number of particles. Let us choose C0 = 2ρM and T
sufficiently small so that

ρ0 + TbMQb(0)C0 ≤ C0,

and set
S = {m ∈ X, m ≥ 0, ‖m‖X ≤ C0}.

Given a function m ∈ S, define

Rb(t) =

∫
R
ψb(x)m(t, x)dx, Rd(t) =

∫
R
ψd(x)m(t, x)dx,
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and let n(t, x) be the solution of the ODE, that we solve x by x:

∂n(t, x)

∂t
= Qb(Rb(t))

∫
R
b(y)K(x− y)m(t, y)dy − d(x)Qd(Rd(t))n(t, x),

with the initial condition n(0, x) = n0(x). We may then define the mapping m→ Φ(m) = n,
and the claim is that Φ has a unique fixed point in S if we choose a good C0 and a sufficiently
small T . We need to verify two conditions: (i) Φ maps S into S, and (ii) that Φ is a contraction
for T sufficiently small. If we can verify these conditions then the Banach-Picard fixed point
theorem implies that Φ has a fixed point in S, which is a solution we seek. We can then
iterate this argument on the intervals [T, 2T ], [2T, 3T ], . . . Note that on each time step the
solution will satisfy ρm ≤ ρ(t) ≤ ρM , hence we can restart the argument each time.

To check (i) we simply write down the solution formula:

n(t, x) = n0(x) exp
(
− d(x)

∫ t

0

Qb(Rd(s))ds
)

(3.1.39)

+

∫ t

0

Qb(Rb(s))

∫
R
b(y)K(x− y)m(s, y)dy exp

{
− d(x)

∫ t

s

Qd(Rd(s
′))ds′

}
ds.

It follows that n ≥ 0, and we also have

∂n(t, x)

∂t
≤ Qb(Rb(t))

∫
R
b(y)K(x− y)m(t, y)dy, (3.1.40)

so that
‖n(t)‖L1 ≤ ρ0 + TQb(0)bMC0 ≤ C0, (3.1.41)

if T is sufficiently small. Thus, Φ maps S to S.
To check that Φ is a contraction, take m1,2 ∈ S, and write

∂

∂t
(n1 − n2) = Qb(R

1
b(t))

∫
R
b(y)K(x− y)m1(t, y)dy − d(x)Qd(R

1
d(t))n1(t, x)

−Qb(R
2
b(t))

∫
R
b(y)K(x− y)m2(t, y)dy + d(x)Qd(R

2
d(t))n

2(t, x)

= [Qb(R
1
b(t))−Qb(R

2
b(t))]

∫
R
b(y)K(x− y)m1(t, y)dy

+Qb(R
2
b(t))

∫
R
b(y)K(x− y)[m1(t, y)−m2(t, y)]dy

−d(x)Qd(R
1
d(t))(n1(t, x)− n2(t, x)) + d(x)[Qd(R

2
d(t))−Qd(R

1
d(t))]n2(t, x).

Integrating in x we obtain

‖n1 − n2‖X ≤ ψMC0TbM‖m1 −m2‖X +Qb(0)bMT‖m1 −m2‖X
+dMQd(ρM)T‖n1 − n2‖X + dMρMψMT‖m1 −m2‖X .

Therefore, if T is sufficiently small, then

‖n1 − n2‖X ≤ c‖m1 −m2‖X ,

with c < 1. Thus, for such T the mapping Φ : S → S is a contraction, and has a fixed point,
which is the solution we seek. �
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Small mutations: the asymptotic limit

We now consider the situation when mutations are small: this is modeled by taking a smooth
compactly supported kernel K(x) of the form

Kε(x) =
1

ε
K
(x
ε

)
, k(x) ≥ 0,

∫
R
K(z)dz = 1. (3.1.42)

Of course, one would not expect small mutations to have a non-trivial effect on times of the
order t ∼ O(1), because∫

R
b(y)Kε(x−y)n(t, y)dy =

∫
R
b(x−εz)K(z)n(t, x−εz)dz →

∫
R
b(x)K(z)n(t, x)dz = b(x)n(t, x),

(3.1.43)
as ε → 0. That is, the model with small mutations should be well-approximated by the
model (3.1.30) with no mutations. In order for the small mutations to have a non-trivial
effect, we need to wait for times of the order t ∼ O(ε−1). Accordingly, we consider the system
in the rescaled time variable:

ε
∂nε(t, x)

∂t
= Qb(ρ

ε
b(t))

∫
R
b(y)Kε(x− y)nε(t, y)dy − d(x)Qd(ρ

ε
d(t))n

ε(t, x), (3.1.44)

with

ρεb(t) =

∫
ψb(x)nε(t, x)dx, ρεd(t) =

∫
ψd(x)nε(t, x)dx.

We will show that in the limit ε→ 0 there is a selection principle, so that at every time t there
is only one dominant trait x̄(t) but x̄(t) itself has a non-trivial dynamics, so that typically we
will have

nε(t, x)→ n̄(t, x) = ρ̄(t)δ(x− x̄(t)). (3.1.45)

Our goal will be to understand the dynamics of x̄(t) and ρ̄(t). Such limiting population
is called monomorphic. It is also possible that the limit is a sum of several Dirac masses
at x̄1(t), x̄2(t), . . . , x̄N(t), and then the population is called polymorphic.

We will assume that the initial population is nearly monomorphic:

nε0(x) = eφ
ε
0(x)/ε, (3.1.46)

with a function φε0(x) such that

φε0(x)→ φ0(x) ≤ 0, uniformly in R, (3.1.47)

and ∫
R
nε0(x)dx→M0 > 0, ε→ 0. (3.1.48)

Note that nε0(x) is very small where φε0(x) � −ε, which is, approximately, the region
where φ0(x) < 0. Thus, in order to ensure we have initially a nearly monomorphic popu-
lation, we will assume that

max
x∈R

φ0(x) = 0 = φ0(x̄0) for a unique x̄0 ∈ R. (3.1.49)
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A typical example is the Gaussian family

nε0(x) =
1√
2πε

e−|x|
2/(2ε), φε0(x) = −|x|

2

2
− ε

2
log(2πε).

Let us write the equation for φε:

∂φε(t, x)

∂t
= e−φ

ε(t,x)/εQb(ρ
ε
b(t))

∫
R
b(y)Kε(x− y)eφ

ε(t,y)/εdy − d(x)Qd(ρ
ε
d(t)) (3.1.50)

= Qb(ρ
ε
b(t))

∫
R
b(x− εy)K(y)e[φε(t,x−εy)−φε(t,x)]/εdy − d(x)Qd(ρ

ε
d(t)).

It is convenient to assume that K is even: K(y) = K(−y), then, expanding in ε we get the
formal limit:

∂φ(t, x)

∂t
= Qb(ρb(t))b(x)

∫
R
K(y) exp

{
y
∂φ(t, x)

∂x

}
dy − d(x)Qd(ρd(t)). (3.1.51)

Let us define

H(p) =

∫
R
K(y)epydy.

The limiting constrained Hamilton-Jacobi problem should be understood as follows: the func-
tion φ(t, x) satisfies the Hamilton-Jacobi equation

∂φ(t, x)

∂t
= Qb(ρb(t))b(x)H

(∂φ(t, x)

∂x

)
− d(x)Qd(ρd(t)). (3.1.52)

This equation is not closed yet, since ρb(t) and ρd(t) are unknown. They are determined from
an additional constraint:

max
x∈R

φ(t, x) = 0 for all t ≥ 0. (3.1.53)

The total density ρ̄(t) is a Lagrange multiplier that ensures that the constraint (3.1.53) holds.
If the maximum x̄(t) is unique then, thinking of

n(t, x) = ρ̄(t)δ(x− x̄(t)),

we can postulate that

ρ̄b(t) = ψb(x̄(t))ρ̄(t), ρ̄d(t) = ψd(x̄(t))ρ̄(t). (3.1.54)

Therefore, the formal limit is as follows: find a function φ(t, x), and ρ̄(t) and x̄(t), so
that φ(t, x) satisfies (3.1.52) with ρb(t) and ρd(t) given in terms of ρ̄(t) and x̄(t) by (3.1.54),
the constraint (3.1.53) holds, and φ(t, x) attains its maximum at x̄(t), where

φ(t, x̄(t)) = 0. (3.1.55)

197



An example of the constrained Hamilton-Jacobi problem

Let us explain the above scheme on a simple example. Let us assume that Qb ≡ 1, d ≡ 1,
ψd ≡ 1 and Qd(u) = u, so that the starting problem is

∂nε(t, x)

∂x
=

∫
R
b(y)Kε(x− y)nε(t, y)dy − ρε(t)nε(t, x), (3.1.56)

with

ρε(t) =

∫
R
nε(t, x)dx.

For short times this model reduces to the familiar simple problem

∂n(t, x)

∂t
= b(x)n(t, x)− ρ(t)n(t, x),

with which we have started. The function φε(t, x) satisfies

∂φε(t, x)

∂t
=

∫
R
b(x+ εy)K(y)e[φε(t,x+εy)−φε(t,x)]/εdy − ρε(t). (3.1.57)

This gives the following constrained Hamilton-Jacobi problem (3.1.52):

∂φ(t, x)

∂t
= b(x)H

(∂φ(t, x)

∂x

)
− ρ̄(t), (3.1.58)

max
x∈R

φ(t, x) = 0 = φ(t, x̄(t)), for all t ≥ 0,

φ(0, x) = φ0(x).

The Hamiltonian is, as before,

H(p) =

∫
R
K(y)epydy.

In this simple example, we can use the following trick: set

R(t) =

∫ t

0

ρ̄(s)ds, ψ(t, x) = φ(t, x) +R(t),

then we arrive at the unconstrained Hamilton-Jacobi equation for the function ψ(t, x):

∂ψ(t, x)

∂t
= b(x)H

(∂ψ(t, x)

∂x

)
, (3.1.59)

ψ(0, x) = φ0(x).

Then, after solving (3.1.59) we may simply set

R(t) = max
x∈R

ψ(t, x),

enforcing the constraint on φ(t, x). Note that the point x̄(t) where the function φ(t, x) vanishes
(and attains its maximum) is simply

x̄(t) = argmaxRψ(t, x).
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Exercise 3.1.5 Is it true that x̄(t) → argmaxRb(x) as t → +∞ under some reasonable
assumptions on b(x)?

Theorem 3.1.6 Under the above assumptions, assume, in addition, that

φε0(x) ≤ Cε
0 − |x|,

then the function

ψε(t, x) = φε(t, x) +Rε(t), Rε(t) =

∫ t

0

ρε(t)dt, (3.1.60)

satisfies
ψε(t, x)→ ψ(t, x), locally uniformly in x.

Here, ψ(t, x) is the viscosity solution of the Hamilton-Jacobi equation (3.1.59), and

φε(t, x)→ φ(t, x) = ψ(t, x)−max
y∈R

ψ(t, y).

The first step toward the proof are the following propositions.

Proposition 3.1.7 We have, for all t ≥ 0 the bound

min
(

min
y∈R

b(y), ρε0

)
≤ ρε(t) ≤ max

(
max
y∈R

b(y), ρε0

)
. (3.1.61)

Proof. Indeed, integrating (3.1.56) in x gives

dρε(t)

dt
=

∫
R
b(y)nε(t, x)dx− (ρε(t))2. (3.1.62)

It follows that

dρε(t)

dt
≤ bMρ

ε(t)− (ρε(t))2,
dρε(t)

dt
≥ bmρ

ε(t)− (ρε(t))2,

with
bm = min(b(y)), bM = max b(y).

The maximum principle implies then (3.1.61). �

Proposition 3.1.8 If the initial condition satisfies

φε0(x) ≤ Cε
0 − |x|,

then ψε(t, x) defined by (3.1.60) satisfies

ψε(t, x) ≤ Cε
0 − |x|+ t

(
max
y∈R

b(y)
)(

max
|p|≤1

H(p)
)
, (3.1.63)

and ∣∣∣∂ψε(t, x)

∂t

∣∣∣ ≤ 2
(

max
y∈R

b(y)
)
H(‖∇φε0‖L∞). (3.1.64)

199



Proof. The function ψε(t, x) satisfies

∂ψε(t, x)

∂t
=

∫
R
b(x+ εy)K(y)e[ψε(t,x+εy)−ψε(t,x)]/εdy. (3.1.65)

The function
ψ(t, x) = Cε

0 − |x|+ tB, B = (max
x∈R

b(x))(max
|p|≤1

H(p))

is a super-solution to (3.1.65): indeed, we have

∂ψε(t, x)

∂t
= B, (3.1.66)

and ∫
R
b(x+ εy)K(y)e[ψ(t,x+εy)−ψ(t,x)]/εdy ≤ (max

x∈R
b(x))

∫
R
K(y)e(|x|−|x+εy|)/εdy

≤ (max
x∈R

b(x))

∫
R
K(y)e|y|dy ≤ B.

We used here the fact that K(y) is non-negative and even in y. Now, (3.1.63) follows from
the maximum principle in a slightly roundabout way: set

mε(t, x) = eψε(t,x)/ε, m̄(t, x) = eψ̄(t,x)/ε,

then
∂mε(t, x)

∂t
=

∫
b(y)Kε(x− y)mε(t, y)dy, (3.1.67)

and
∂m̄(t, x)

∂t
≥
∫
b(y)Kε(x− y)m̄(t, y)dy. (3.1.68)

It is easy to see that (3.1.67) and (3.1.68) together with the inequality mε(0, x) ≤ m̄(0, x)
imply that

mε(t, x) ≤ m̄(t, x), (3.1.69)

and (3.1.63) follows.
Finally, to get (3.1.64) we define

Ψε(t, x) =
∂ψε(t, x)

∂t
,

and differentiate (3.1.65) to get

∂Ψε(t, x)

∂t
=

1

ε

∫
R
b(x+ εy)K(y)e[ψε(t,x+εy)−ψε(t,x)]/ε[Ψε(t, x+ εy)−Ψε(t, x)]dy. (3.1.70)

Therefore, at the point x0 where Ψε(t, x) attains its maximum we have

∂Ψε(t, x0)

∂t
=

1

ε

∫
R
b(x0 + εy)K(y)e[ψε(t,x0+εy)−ψε(t,x0)]/ε[Ψε(t, x0 + εy)−Ψε(t, x0)]dy ≤ 0,

(3.1.71)
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whence
max
x∈R

Ψε(t, x) ≤ max
x∈R

Ψε(t = 0, x).

The same argument shows that

min
x∈R

Ψε(t, x) ≥ min
x∈R

Ψε(t = 0, x).

Finally, we use (3.1.65) at t = 0 to observe that, with some intermediate point ξ(y) we have

|Ψε(t = 0, x)| =
∫
R
b(x+ εy)K(y)e[φε0(x+εy)−φε0(x)]/εdy

≤ (max
y∈R

b(y))

∫
R
K(y) exp{y∂φ

ε
0(ξ(y))

∂x
}dy ≤ 2(max

y∈R
b(y))H

(
‖∇φε0‖L∞

)
. (3.1.72)

In the last step we used the following inequality: if |f(y)| ≤M , then∫
K(y)eyf(y)dy ≤

∫
y<0

K(y)e−Mydy +

∫
y>0

K(y)eMydy

≤
∫
y<0

K(y)e−Mydy +

∫
y>0

K(y)e−Mydy +

∫
y>0

K(y)eMydy +

∫
y<0

K(y)eMydy

= 2

∫
R
K(y)eMy = 2H(M).

Proof of Theorem 3.1.6

First, we would like to bound the spatial derivative of ψε, in order to get some compactness.
Fix a time T > 0 and let

Φε(t, x) =
∂ψε(t, x)

∂x
.

In order not to get a large term from differentiating b(x+ εy) in x, let us write

∂

∂t

(ψε(t, x)

b(x)

)
=

∫
R

b(x+ εy)

b(x)
K(y)e[ψε(t,x+εy)−ψε(t,x)]/εdy, (3.1.73)

and differentiate in x only now:

∂

∂t

(Φε(t, x)

b(x)

)
=

1

b(x)2

∂b(x)

∂x

∂ψε(t, x)

∂t
+

∫
R

∂

∂x

(b(x+ εy)

b(x)

)
K(y)e[ψε(t,x+εy)−ψε(t,x)]/εdy

+
1

ε

∫
R

b(x+ εy)

b(x)
K(y)e[ψε(t,x+εy)−ψε(t,x)]/ε(Φε(t, x+ εy)− Φε(t, x))dy. (3.1.74)

Note that by dividing by b(x) we achieved a better situation in the sense that∣∣∣ ∂
∂x

b(x+ εy)

b(x)

∣∣∣ ≤ Cε.

We consider the maximal point of |Φε|:

Qε(t) = max
x∈R
|Φε(t, x)|.
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This maximum is attained either at a point where Φε(t, x) has a positive maximum, or a
negative minimum. The last term in the right side of (3.1.74) is non-positive where Φε(t, x)
attains its maximum in x and non-negative where Φε attains its minimum, while the first
term is bounded by Proposition 3.1.8. We obtain therefore

dQε

dt
≤ C + Cε

∫
R
K(y)e[ψε(t,x+εy)−ψε(t,x)]/εdy ≤ C + Cε

∫
K(y)e|y|Qε(t)dy.

As K(y) is compactly supported, we deduce that Qε(t) satisfies

dQε

dt
≤ C + CεeCQε(t).

It follows that for each T > 0 there exist ε0(T ) and CT so that we have Qε(t) ≤ CT for
all ε < ε0(T ). Therefore, the family of functions ψε(t, x) is locally compact due to the Arzela-
Ascoli theorem.

Thus, we may extract a subsequence εk → 0, so that both Rε(t), which is Lipschitz
continuous in time, and ψε(t, x) have local uniform limits. The limit ψ(t, x) satisfies the
Hamilton-Jacobi equation in the viscosity sense (this is a non-trivial step but part of the
general theory of stability of the viscosity solutions that we have seen already in the lecture
notes). The fact that the maximum of φ(t, x) has to be equal to zero follows from the upper
and lower bounds on ρε(t) – if the maximum were different from zero, then ρ(t) would either
tend to zero or grow at a rate which is unbounded in ε.

Dynamics of the dominant trait: the monomorphic population

Let us now explain how the dominant trait x̄(t) can be recovered from the solution of the
Hamilton-Jacobi equation in the general case, as long as the population is monomorphic, that
is, the function φ(t, x) attains a single maximum x̄(t) where

φ(t, x̄(t)) = 0. (3.1.75)

Let us recall that φ(t, x) satisfies

∂φ(t, x)

∂t
= Qb(ρb(t))b(x)H

(∂φ(t, x)

∂x

)
− d(x)Qd(ρd(t)). (3.1.76)

We will assume that φ(t, x) is smooth even though at the moment we only know that φ(t, x)
is merely a viscosity solution. Later, we will see a situation when it is actually smooth. Note
that (3.1.75) implies that, in addition to

∂φ(t, x̄(t)

∂x
= 0, (3.1.77)

which holds simply because x̄(t) is the maximum of φ(t, x), we have

0 =
d

dt
φ(t, x̄(t)) =

∂φ(t, x(t))

∂t
+
dx̄(t)

dt

∂φ(t, x̄(t))

∂x
=
∂φ(t, x̄(t))

∂t
. (3.1.78)
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We deduce then from (3.1.76) that (again we assume that φ(t, x) is smooth at x = x̄(t))

Qb(ρb(t))b(x̄)H(0)− d(x̄)Qd(ρd(t)) = 0. (3.1.79)

We know that

H(0) =

∫
K(y)dy = 1, (3.1.80)

and we get an important relation

Qb(ρb(t))b(x̄) = d(x̄)Qd(ρd(t)). (3.1.81)

In order to get the evolution of x̄(t) let us differentiate (3.1.77) in t:

0 =
d

dt

∂φ(t, x̄(t)

∂x
=
∂2φ(t, x̄(t))

∂t∂x
+
∂2φ(t, x̄(t))

∂x2

dx̄(t)

dt
. (3.1.82)

On the other hand, differentiating (3.1.76) in x gives

∂2φ(t, x̄(t))

∂t∂x
= Qb(ρb(t))

∂b(x̄)

∂x
H
(∂φ(t, x̄)

∂x

)
+ b(x̄)Hp

(∂φ(t, x̄)

∂x

)∂2φ(t, x̄)

∂x2
(3.1.83)

−∂d(x̄)

∂x
Qd(ρd(t)).

However, as K(y) is even, we have H(0) = 1 and

Hp(0) =

∫
R
yK(y)dy = 0,

thus we get

∂2φ(t, x̄(t))

∂t∂x
= Qb(ρb(t))

∂b(x̄)

∂x
− ∂d(x̄)

∂x
Qd(ρd(t)).

Using this in (3.1.82) leads to an evolution equation for x̄(t):

dx̄(t)

dt
= −

(∂2φ(t, x̄(t))

∂x2

)−1[
Qb(ρb(t))

∂b(x̄(t))

∂x
− ∂d(x̄(t))

∂x
Qd(ρd(t))

]
. (3.1.84)

The pre-factor (φxx(t, x̄(t))−1 is very natural – if the second derivative is very small, the
function φ(t, x) is very flat near x = x̄(t), so that it is easier for the maximum to move.

Equation (3.1.84) is still not closed – we need to find ρb(t) and ρd(t). To close it, observe
that if the population is monomorphic, that is, φ(t, x) attains a unique maximum, then

n(t, x) = ρ̄(t)δ(x− x̄(t)) (3.1.85)

and
ρb(t) = ψb(x̄(t))ρ̄(t), ρd(t) = ψd(x̄(t))ρ̄(t). (3.1.86)

We may then re-write (3.1.81) as an equation for ρ̄(t) in terms of x̄(t):

Qb(ψb(x̄(t)ρ̄(t))b(x̄(t)) = d(x̄(t))Qd(ψd(x̄(t)ρ̄(t)). (3.1.87)

Then we may use (3.1.86) and (3.1.87) in (3.1.84) to get a closed equation for x̄(t) as soon as
the function φ(t, x) is known.

The above argument assumes that there is a unique maximum x̄(t), we will see below a
case when this assumption may be rigorously justified.
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The dimorphic case

Let us see what happens if the population is dimorphic: the density n(t, x) has the form

n(t, x) = ρ̄1(t)δ(x− x̄1(t)) + ρ̄2(t)δ(x− x̄2(t)), (3.1.88)

and
0 = max

x∈R
φ(t, x) = φ(t, x̄1(t)) = φ(t, x̄2(t)). (3.1.89)

As before, we may derive (3.1.81) both at x̄1(t) and x̄2(t), so that

R(t) :=
Qb(ρb(t))

Qd(ρd(t)
=
d(x̄1(t))

b(x̄1(t))
=
d(x̄2(t))

b(x̄2(t))
. (3.1.90)

Thus, a necessary condition for dimorphism is that the function s(x) = d(x)/b(x) is not one-
to-one. If s(x) has a ”parabolic profile”, so that for every y we can find two pre-images x1

and x2 so that
y = s(x1) = s(x2),

then x̄1(t) and x̄2(t) determine each other. The functions ρb(t) and ρd(t) are now given by

ρb(t) = ψb(x̄1(t))ρ̄1(t) + ψb(x̄2(t))ρ̄2(t), (3.1.91)

ρd(t) = ψd(x̄1(t))ρ̄1(t) + ψd(x̄2(t))ρ̄2(t).

Then, ρ̄1(t) and ρ̄2(t) are two Lagrange multipliers that are needed in the Hamilton-Jacobi
equation to ensure that the solution φ(t, x) has exactly two maxima and it vanishes at both
of them.

3.2 Hamilton-Jacobi equations with a constraint

This section is based on a paper by S. Mirrahimi and J.-M. Roquejoffre. Motivated by the
models of adaptive dynamics we have discussed above, they consider equations of the form

φt = |∇φ|2 +R(x, I), (3.2.1)

for unknown functions I(t) and φ(t, x), with the constraint

max
x∈Rd

φ(t, x) = 0, (3.2.2)

and the initial conditions I(0) = I0 > 0 and φ(0, x) = φ0(x). As in the mutation models,
the function R(x, I) is prescribed, and satisfies the familiar assumptions: first, that there
exists IM > 0 so that

max
x∈Rd

R(x, IM) = 0. (3.2.3)

Second, we assume that R(x, I) is strictly decreasing in I: there exist K1 > K2 > 0 so that

−K1 ≤
∂R(x, I)

∂I
< −K2. (3.2.4)
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One may think of R(x, I) as a parabolic profile in x for each I ∈ R fixed, such that for
each I < IM there is an interval (`(I), r(I)) so that R(x, I) > 0 for all x ∈ (`(I), r(I)),
and R(x, I) < 0 for x 6∈ [`(I), r(I)], with `(I) − r(I) → 0 as I ↑ IM . In addition, we
have R(x, I) < 0 for all x ∈ R for I > IM .

As for the initial condition φ0(x), we assume that it has a unique maximum x̄0:

max
x∈Rd

φ0(x) = φ0(x̄0) = 0, (3.2.5)

and that the initial condition I0 is consistent, in the sense that

R(x̄0, I0) = 0. (3.2.6)

The above assumptions are very natural and follow the reasoning of the mutation models.
We now make some extra technical assumptions. We will strengthen the assumption that the
maximum of φ0(x) is unique by assuming that φ0(x) is strictly concave and is bounded by
two quadratics: there exist K1 > K2 > 0 and K0 > 0 so that for all x ∈ R we have

−K1 ≤ D2
xφ0(x) ≤ −K2, (3.2.7)

−K0 −K1|x|2 ≤ φ0(x) ≤ K0 −K2|x|2. (3.2.8)

We will also make additional convexity assumptions on R(x, I) in the x-variable, that hold
uniformly for all 0 ≤ I ≤ IM : there exist K1 > K2 > 0 and K0 > 0 so that

−K1Id ≤ D2
xR(x, I) ≤ −K2Id, (3.2.9)

−K1|x|2 ≤ R(x, I) ≤ K0 −K2|x|2, (3.2.10)

so that, indeed, R(x, I) looks like a parabolic profile in x for each I fixed (but is, of course,
not necessarily exactly a parabola). The inequalities in (3.2.7) and (3.2.9) hold in the sense of
positive-definite matrices. Our goal will be to prove existence and uniqueness of solutions to
the constrained Hamilton-Jacobi equation (3.2.1)-(3.2.2) under these assumptions, together
with the regularity assumptions

u0 ∈ C3
b (Rd), and R ∈ C3

b (Rd × [0, IM ]). (3.2.11)

Unlike the other assumptions made above, the regularity of φ0(x) and R(x, I) in (3.2.11) is
needed in the proof but for purely technical reasons – the reader may think of both φ0(x)
and R(x, I) as smooth functions.

Theorem 3.2.1 Under the above assumptions, the Hamilton-Jacobi equation (3.2.1) with
the constraint (3.2.2) and the initial conditions φ(0, x) = φ0(x) and I(0) = I0, has a unique
solution φ(t, x), I(t) such that

I ∈ W 1,∞(R), and φ ∈ L∞loc((0,+∞);W 3,∞
loc (Rd)) ∩W 1,∞

loc ((0,+∞);L∞loc(Rd)). (3.2.12)
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3.2.1 The unconstrained problem

The first step is to look at the unconstrained problem.

φt = |∇φ|2 +Q(t, x), (3.2.13)

with a prescribed function Q(t, x). We make the following assumptions on Q(t, x) that mimic
the assumptions on R(x, I):

−K1Id ≤ D2
xQ(t, x) ≤ −K2Id, (3.2.14)

−K1|x|2 ≤ Q(t, x) ≤ K0 −K2|x|2, (3.2.15)

‖D3
xQ(t, ·)‖L∞(Rd) ≤ K0, for all t ≥ 0. (3.2.16)

Once again, assumption (3.2.16) is purely technical – one can think of Q(t, x) as a smooth
function. We also make the same assumptions on the initial condition φ0(x) as in Theo-
rem 3.2.1.

Theorem 3.2.2 Equation (3.2.13) has a unique viscosity solution φ(t, x) that is bounded
from above. Moreover, it is a classical solution, is strictly concave:

− C1Id ≤ D2
xφ(t, x) ≤ −C2Id, (3.2.17)

with the constants C1 > 0 and C2 > 0 that depend only on the constants K0, K1 and K2

above, and, in addition, we have φ ∈ L∞loc((0,+∞);W 3,∞
loc (Rd)) ∩ W 1,∞

loc ((0,+∞);L∞loc(Rd)),
with ‖D3φ‖L∞ ≤ C, with C that depends only on the constants K0, K1 and K2 above.

The assumption that φ(t, x) is bounded from above is natural in our context – after all, we
are looking for solutions to the constrained problem that achieve their maximum at a point
where they equal to zero.

The strict concavity of solutions will be essential for us later when we use this result for
the constrained problem as it tells us that solutions may achieve their maximum only at a
single point.

Uniqueness of the solution

Let us recall from the theory of viscosity solutions that comparison principle applies to vis-
cosity solutions that satisfy

|φ(t, x)| ≤ CT (1 + |x|2), for all x ∈ Rd, 0 ≤ t ≤ T . (3.2.18)

This is similar to the uniqueness of the solutions to the heat equation that grow at most
as exp(c|x|2) as |x| → +∞. As we have assumed that u(t, x) is bounded from above, we only
need to show that

φ(t, x) ≥ −CT (1 + |x|2), for all x ∈ Rd, 0 ≤ t ≤ T . (3.2.19)

Taking
v(t, x) = φ(t, x) +K1t|x|2,
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we see that v(t, x) satisfies

∂v

∂t
= K1|x|2 + |∇φ|2 +Q(t, x) ≥ K1|x|2 −K1|x|2 ≥ 0. (3.2.20)

This inequality only holds in the viscosity sense but it still implies that v(t, x) ≥ v(s, x) for
all 0 ≤ s ≤ t. Indeed, let us fix T and assume that there exists some 0 < s < s′ ≤ T and x0

so that v(s, x0) > v(s′, x0). Consider the test function

wε(t, x) = v(s, x0)− ε

T − t
− |x− x0|2

ε2
.

If ε is sufficiently small, then the difference

z(t, x) = v(t, x)− wε(t, x) = v(t, x)− v(s, x0) +
ε

T − t
+
|x− x0|2

ε2

satisfies z(s′, x0) < 0 while z(t, x) > 0 for |x − x0| = 1 and s ≤ t ≤ T . It follows that
the function z(t, x) attains a local minimum over all (s, x) ∈ [s, T ] × {|x − x0| ≤ 1} at a
point (tε, xε) with s ≤ tε < T , and xε → x0 as ε → 0. The viscosity inequality (3.2.20) then
implies that at the minimum point we have

∂wε(tε, xε)

∂t
≥ 0,

which translates simply into

0 ≤ ∂

∂t

(
− 1

T − t

)
= − 1

(T − t)2
,

which is a contradiction. It follows that v(t, x) is increasing in t. In addition, at t = 0 we
have

v(0, x) = φ0(x) ≥ −K0 −K1|x|2,
thus

φ(t, x) = v(t, x)−K1t|x|2 ≥ v(0, x)−K1t|x|2 ≥ −K0 − (1 + t)K1|x|2,
and (3.2.19) follows. Hence, comparison principle can be applied to any pair of solutions to
the initial value problem that are uniformly bounded from above, which gives uniqueness.

Existence and regularity of the solution

A viscosity solution to (3.2.13) is given by the dynamic programming principle

φ(t, x) = sup
{
F (γ) : γ ∈ C1([0, t];Rd), γ(t) = x

}
, (3.2.21)

where

F (γ) = φ0(γ(0)) +

∫ t

0

(
− |γ̇(s)|2

4
+Q(s, γ(s))

)
ds. (3.2.22)

It is bounded from above because Q(t, x) and u0(x) are, thus the uniqueness argument above
shows that this is the unique solution bonded from above. Let us show that the maximizing

207



trajectory exists and is unique for each (t, x) fixed. Let γn ∈ C1([0, t];Rd) be a sequence of
trajectories such that F (γn)→ u(t, x). As F (γn) ≥ F (Γ)− 1, where Γ(t) ≡ x, we know that

1

4

∫ t

0

|γ̇n(s)|2ds ≤ 1+φ0(γn(0))+

∫ t

0

Q(s, γn(s))ds−φ0(x)−
∫ t

0

Q(s, x)ds ≤ C(1+ |x|2)(1+t).

It follows that there exists γ̄ ∈ W 1,2([0, t] × Rd) such that γn → γ̄ strongly in C([0, t] × Rd)
and weakly in W 1,2([0, t]× Rd). Hence, we have

φ0(γn(0))→ φ0(γ̄(0)),

as well as ∫ t

0

Q(s, γn(s))ds→
∫ t

0

Q(s, γ̄(s))ds,

and ∫ t

0

| ˙̄γ(s)|2ds ≤ Ct,x.

Thus, we have

φ(t, x) = φ0(γ̄(0)) +

∫ t

0

(
− |

˙̄γ(s)|2

4
+Q(s, γ̄(s))

)
ds. (3.2.23)

We claim that a trajectory γ̄(t) that realizes (3.2.23) is unique. Indeed, the concavity as-
sumptions (3.2.7) on φ0(x) and (3.2.14) on Q(t, x) imply that F (γ) is strictly concave in γ,
hence the minimizer is unique. In addition, it has to satisfy the Euler-Lagrange equations

d2γ̄(s)

ds2
= −2∇Q(s, γ̄(s)), (3.2.24)

with the boundary conditions

dγ̄(0)

ds
= −2∇φ0(γ̄(0)), γ̄(t) = x. (3.2.25)

Now, the regularity for φ(t, x) claimed in Theorem 3.2.2 follows simply from differentiat-
ing (3.2.23) and the regularity of the solution γ̄(t) of (3.2.24) in t and x that, in turn, follows
from our regularity assumptions on φ0(x) and Q(t, x). We skip the details.

Concavity of the solution

We now prove that φ(t, x) is strictly concave by showing that there exists λ > 0 so that for
all σ ∈ [0, 1] and x, y ∈ Rd we have

σφ(t, x) + (1− σ)φ(t, y) + λσ(1− σ)|x− y|2 ≤ φ(t, σx+ (1− σ)y). (3.2.26)

Let γ̄x(t) and γ̄y(t) be the optimal trajectories, solutions to (3.2.24) corresponding to x and
y, respectively, so that

φ(t, x) = φ0(γ̄x(0)) +

∫ t

0

(
− |

˙̄γx(s)|2

4
+Q(s, γ̄x(s))

)
ds, (3.2.27)
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and

φ(t, y) = φ0(γ̄y(0)) +

∫ t

0

(
− |

˙̄γy(s)|2

4
+Q(s, γ̄y(s))

)
ds. (3.2.28)

Taking γ(s) = σγ̄x(s) + (1 − σ)γ̄y(s) as a test trajectory for the point σx + (1 − σ)y, which
we can do because

σγ̄x(t) + (1− σ)γ̄y(t) = σx+ (1− σ)y,

gives

φ(t, σx+ (1− σ)y) ≥ φ0(σγ̄x(0) + (1− σ)γ̄y(0)) (3.2.29)

+

∫ t

0

(
− |σ

˙̄γx(s) + (1− σ) ˙̄γy(s)|2

4
+Q(s, σγ̄x(s) + (1− σ)γ̄y(s))

)
ds.

Strict concavity (3.2.7) of φ0 implies that

φ0(σγ̄x(0)+(1−σ)γ̄y(0)) ≥ σφ0(γ̄x(0))+(1−σ)φ0(γ̄y(0))+kσ(1−σ)|γ̄x(0)− γ̄y(0)|2, (3.2.30)

and, similarly, the strict concavity (3.2.14) of Q(t, x) implies that∫ t

0

Q(s, σγ̄x(s) + (1− σ)γ̄y(s))
)
ds ≥ σ

∫ t

0

Q(s, σγ̄x(s))ds+ (1− σ)

∫ 2

0

Q(s, γ̄y(s))ds

+kσ(1− σ)

∫ t

0

|γ̄x(s)− γ̄y(s)|2ds. (3.2.31)

Finally, we also have∫ t

0

(
− |σ

˙̄γx(s) + (1− σ) ˙̄γy(s)|2

4

)
ds ≥ σ

∫ t

0

(
− |

˙̄γx(s)|2

4

)
ds+ (1− σ)

∫ t

0

(
−

˙̄γy(s)|2

4

)
ds

+kσ(1− σ)

∫ t

0

| ˙̄γx(s)− ˙̄γx(s)|2ds, (3.2.32)

with k sufficiently small. Putting (3.2.29)-(3.2.32) together gives

φ(t, σx+ (1− σ)y) ≥ σφ(t, x) + (1− σ)φ(t, y) (3.2.33)

+kσ(1− σ)
(
|γ̄x(0)− γ̄y(0)|2 +

∫ t

0

(
|γ̄x(s)− γ̄y(s)|2 + | ˙̄γx(s)− ˙̄γx(s)|2

)
ds.

Now, to bound the integral in the right side, note that

|x− y|2 = |γ̄x(t)− γ̄y(t)|2 = |γ̄x(0)− γ̄y(0)|2 +

∫ t

0

d

ds

(
|γ̄x(s)− γ̄y(s)|2

)
ds

≤ |γ̄x(0)− γ̄y(0)|2 +

∫ t

0

(
|γ̄x(s)− γ̄y(s)|2 + | ˙̄γx(s)− ˙̄γy(s)|2

)
ds. (3.2.34)

Using this in (3.2.33) gives

φ(t, σx+ (1− σ)y) ≥ σφ(t, x) + (1− σ)φ(t, y) + kσ(1− σ)|x− y|2, (3.2.35)

which is the strict concavity in (3.2.26).
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The constrained system

We now go back to the constrained system (3.2.1)-(3.2.2):

φt = |∇φ|2 +R(x, I), (3.2.36)

max
x∈Rd

φ(t, x) = 0, (3.2.37)

with the initial conditions I(0) = I0 > 0 and φ(0, x) = φ0(x). Recall that we assume that the
initial condition φ0(x) satisfies the concavity conditions (3.2.7)-(3.2.8), that φ0(x) attains its
unique maximum at a point x̄0 such that

max
x∈Rd

φ0(x) = φ0(x̄0) = 0, (3.2.38)

and that the initial condition I0 is consistent, in the sense that

R(x̄0, I0) = 0. (3.2.39)

The reformulated constrained system

We now reformulate the constrained system. As the function R(x, I) is concave in x by
assumption (3.2.9), Theorem 3.2.2 implies that if the solution φ(t, x) to the constrained sys-
tem exists, then it is strictly concave. In addition, assumptions (3.2.8) and (3.2.10) imply
that φ(t, x) is sandwiched between two parabolas. Hence, in particular, φ(t, x) has a unique
maximum x̄(t), and (3.2.37) implies that

φ(t, x̄(t)) = 0. (3.2.40)

Note that
∇φ(t, x̄(t)) = 0, (3.2.41)

because x̄(t)) is the maximum of φ(t, x). Thus, differentiating (3.2.40) in t gives

∂φ(t, x̄(t))

∂t
= 0. (3.2.42)

Together, (3.2.41) and (3.2.42) imply that

R(t, x̄(t)) = 0, (3.2.43)

so that (3.2.39) propagates to later times.
Next, observe that differentiating (3.2.41) in t gives

(∂t∂kφ)(t, x̄(t)) + ∂2
kjφ(t, x̄(t))

dx̄j
dt

= 0, (3.2.44)

for all fixed k = 1, . . . , d, with summation over the repeated index j. On the other hand,
differentiating (3.2.36) in xk gives

∂t∂kφ(t, x̄(t)) = 2∂jφ(t, x̄(t))∂2
kjφ(t, x̄(t)) + ∂kR(x̄(t), I(t)) = ∂kR(x̄(t), I(t)), (3.2.45)
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because of (3.2.41). We conclude from (3.2.44) and (3.2.45) that x̄(t) satisfies

dx̄(t)

dt
= (−D2φ(t, x̄(t))−1∇R(x̄(t), I(t)). (3.2.46)

Summarizing, we have shown that if φ(t, x) satisfies the constrained system, then φ(t, x), x̄(t)
and I(t) satisfy the following ODE-PDE system

φt = |∇φ|2 +R(x, I(t)), (3.2.47)

dx̄(t)

dt
= (−D2φ(t, x̄(t))−1∇R(x̄(t), I(t)), (3.2.48)

R(x̄(t), I(t)) = 0, (3.2.49)

supplemented by the initial condition φ(0, x) = φ0(x), I(0) = I0, and x̄(0) = x0, such
that (3.2.38) holds, and I0 satisfies (3.2.39). Note that I(t) is determined in terms of x̄(t)
by (3.2.49), hence we can think of (3.2.47)-(3.2.48) as a system for φ(t, x) and x̄(t), with I(t)
determined by (3.2.49).

In addition, if (3.2.47)-(3.2.49) holds, then Theorem 3.2.2 implies that φ(t, x) is concave
and three times differentiable. It is straightforward to check that then if the initial conditions
are consistent, so that x̄(0) is the unique maximum for φ0(x), and R(x̄0, I0) = 0, then x̄(t)
is the unique maximum for φ(t, x) and, moreover, if φ0(x̄(0)) = 0 then φ(t, x̄(t)) = 0 for
all t ≥ 0. Therefore, the system (3.2.47)-(3.2.49) is completely equivalent to the original
constrained system.

Let us note that for all t > 0 the trajectory x̄(t) stays in the bounded region Ω0 that
consists of all x ∈ Rd for which R(x, I0) ≥ 0. The key observation to this end is that I(t) is
increasing. Indeed, differentiating (3.2.49) in t gives

dx̄(t)

dt
· ∇R(x̄(t), I(t)) +

∂R(x̄(t), I(t))

∂I

dI(t)

dt
= 0. (3.2.50)

In addition, multiplying (3.2.48) by ∇R(x̄(t), I(t)) gives

dx̄(t)

dt
· ∇R(x̄(t), I(t)) = ((−D2φ(t, x̄(t))−1∇R(x̄(t), I(t)) · ∇R(x̄(t), I(t))) ≥ 0, (3.2.51)

because the function φ(t, x) is strictly concave. As R(x, I) is strictly decreasing in I, we
deduce from (3.2.50)-(3.2.51) that

dI(t)

dt
≥ 0. (3.2.52)

Hence, I(t) increasing in t, so that I(t) ≥ I0. It follows that

R(x̄(t), I0) ≥ R(x̄(t), I(t)) = 0,

thus x̄(t) ∈ Ω0.
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Existence and uniqueness for the reformulated system

The previous analysis shows that instead of proving existence and uniqueness of solutions
for the constrained Hamilton-Jacobi equation, we may do the same for the reformulated
system (3.2.47)-(3.2.49). This is what we will do here via a fixed point argument. The set-up
is as follows. Let us fix a ”nice” path x̄(t) with x̄(0) = x̄0. Given x̄(t), we can find I(t) as the
solution to (3.2.49). With I(t) in hand, we can solve the initial value problem

vt = |∇v|2 +R(x, I(t)), (3.2.53)

with the initial condition v(0, x) = φ0(x). Next, given v(t, x), we may find the solution y(t)
to the ODE

dy

dt
= (−D2v(t, x(t)))−1∇R(x(t), I(t)), y(0) = x̄0, (3.2.54)

simply by integrating the right side in time. This defines the map Φ that sends x(t) to y(t).
A solution x̄(t) to (3.2.47)-(3.2.49) is a fixed point of this map, and vice versa. To prepare
an application of the contraction mapping principle, take δ > 0 and r > 0, to be determined
later, and define

A = {x(·) ∈ C([0, δ];B(x0, r)) : x(0) = x̄0}.

Our goal will be to show that if we choose δ sufficiently small, with an appropriate r = rδ,
then Φ has a unique fixed point in A. To this end, we need to show first that we can take δ
and r so that Φ maps A into A. Note that Theorem 3.2.2 implies that for any x(t) the
solution v(t, x) to (3.2.53) satisfies

− c1Id ≤ D2v(t, x) ≤ −c2Id, ‖D3v‖L∞ ≤ c3, (3.2.55)

with the constants c1, c2 and c3 that do not depend on x(t). In addition, as I(t) is increasing,
and R(x̄0, I(t)) ≥ 0 for all t ≥ 0, it satisfies

I0 ≤ I(t) ≤ IM .

Let us take C so that |∇R(x, I)| ≤ C for all |x− x̄0| ≤ 1 and 0 ≤ I ≤ IM . Then y(t) satisfies

|y(t)− x̄0| ≤ Cc−1
2 δ. (3.2.56)

Thus if we take δ sufficiently small so that |Cc−1
2 δ| < 1 and then take r = rδ := Cc−1

2 δ, then Φ
maps A to itself.

Our next goal is to show that Φ is a contraction on A if δ is sufficiently small and r = rδ.
First, given x1 and x2, let I1 and I2 be the corresponding solutions to (3.2.49):

R(x1, I1) = R(x2, I2) = 0.

Then, we can write
R(x1, I1)−R(x2, I1) = R(x2, I2)−R(x2, I1),

so that there exist c ∈ (0, 1) and J ∈ (I1, I2), such that

∇R(cx1 + (1− c)x2, I1) · (x2 − x1) =
∂R(x2, J)

∂I
(I2 − I1).
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As R is strictly decreasing in I and x(t) is in B(x̄0, rδ), it follows that

|I(x1(t))− I(x2(t))| ≤ C‖x2 − x1‖C[0,δ], (3.2.57)

that is, the mapping x(·)→ I(·) is Lipschitz.
Next, we look at how the solution v(t, x) to (3.2.53) depends on I(t).

Lemma 3.2.3 Let v(1)(t, x) and v(2)(t, x) be the solutions to (3.2.53) with the initial condi-
tions v(k)(0, x) = φ0(x) and I(t) = Ik(t), k = 1, 2. Assume that I1, I2 ∈ C([0, δ]; [0, IM ]),
then

‖v(1) − v(2)‖W 2,∞([0,δ]×Rd) ≤ Cδ‖I1 − I2‖L∞[0,δ]. (3.2.58)

We do not prove this lemma, the proof is quite standard if a bit long due to the need to
estimate the difference of the derivatives.

Let yk, k = 1, 2 be the corresponding solutions to (3.2.54):

dyk
dt

= (−D2vk(t, xk(t)))
−1∇R(xk(t), Ik(t)), yk(0) = x̄0. (3.2.59)

Then we have

|y1(t)− y2(t)| (3.2.60)

≤ δ sup
0≤s≤δ

|(−D2v1(t, x1(s)))−1∇R(x1(s), I1(s))− (−D2v2(s, x2(s)))−1∇R(x2(s), I2(s))|

≤ δ sup
0≤s≤δ

|(D2v1(s, x1(s)))−1∇R(x1(s), I1(s))− (D2v1(s, x2(s)))−1∇R(x1(s), I1(s))|

+δ sup
0≤s≤δ

|(D2v1(s, x2(s)))−1∇R(x1(s), I1(s))− (D2v2(s, x2(s)))−1∇R(x2(s), I2(s))|

≤ δ‖x1 − x2‖C[0,δ]‖D3v1‖L∞([0,δ]×B(x̄0,rδ))‖∇R‖L∞(B(x̄0,rδ)×[0,IM ])

+δ sup
0≤s≤δ

|(D2v1(s, x2(s)))−1∇R(x1(s), I1(s))− (D2v2(s, x2(s)))−1∇R(x1(s), I1(s))|

+δ sup
0≤s≤δ

|(D2v2(s, x2(s)))−1∇R(x1(s), I1(s))− (D2v2(s, x2(s)))−1∇R(x2(s), I2(s))|

≤ δ‖x1 − x2‖C[0,δ]‖D3v1‖L∞([0,δ]×B(x̄0,rδ))‖∇R‖L∞(B(x̄0,rδ)×[0,IM ])

+δ‖v1 − v2‖W 2,∞([0,δ]×Rd)‖∇R‖L∞(B(x̄0,rδ)×[0,IM ])

+δ‖(D2v2)−1‖L∞([0,δ]×Rd) sup
0≤s≤δ

|∇R(x1(s), I1(s))−∇R(x2(s), I2(s))| (3.2.61)

≤ δ‖x1 − x2‖C[0,δ]‖D3v1‖L∞([0,δ]×B(x̄0,rδ))‖∇R‖L∞(B(x̄0,rδ)×[0,IM ])

+δ‖v1 − v2‖W 2,∞([0,δ]×Rd)‖∇R‖L∞(B(x̄0,rδ)×[0,IM ])

+Cδ‖(D2v2)−1‖L∞([0,δ]×Rd)‖D2
x,IR‖Rd×[0,IM ](‖x1 − x2‖C[0,δ] + ‖I1 − I2‖C[0,δ]) (3.2.62)

≤ Cδ‖x1 − x2‖C[0,δ].

We conclude that Φ is a contraction on C([0, δ];B(x̄0, rδ)) if δ is sufficiently small. Hence,
the reformulated system has a unique solution for 0 ≤ t ≤ δ.

To extend this result to existence and uniqueness for all t ∈ [0, T ], one cans use the
standard argument, constructing the solution on [0, δ], then [δ, 2δ] and so on. Note that δ
does not depend on the initial condition, as long as x̄0 is such that there exists Ī0 ∈ [0, IM ]
such that R(x̄0, Ī0) = 0. This remains true as x̄(t) stays in Ω0 because of the argument
in (3.2.50)-(3.2.52). Therefore, we can extend the existence and uniqueness of the solution to
all t ∈ [0, T ], for any T > 0 fixed, and the proof of Theorem 3.2.1 is complete.
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