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Chapter 1

Maximum principle and the symmetry
of solutions of elliptic equations

1 Act I. The maximum principle enters

We will have two main characters in this chapter: the maximum principle and the sliding
method. The latter has a twin, the moving plane method – they are often so indistinguishable
that we will count them as one character. They will be introduced separately, and then
blended together to study the symmetry properties of the solutions of elliptic equations. In
this introductory section, we recall what the maximum principle is. This material is very
standard and can be found in almost any undergraduate or graduate PDE text, such as the
books by Evans [52], Han and Lin [71], and Pinchover and Rubinstein [104].

We will consider equations of the form

∆u+ F (x, u) = 0 in Ω, (1.1)

u = g on ∂Ω.

Here, Ω is a smooth bounded domain in Rn and ∂Ω is its boundary. There are many ap-
plications where such problems appear. We will mention just two – one is in the realm of
probability theory, where u(x) is an equilibrium particle density for some stochastic process,
and the other is in classical physics. In the physics context, one may think of u(x) as the equi-
librium temperature distribution inside the domain Ω. The term F (x, u) corresponds to the
heat sources or sinks inside Ω, while g(x) is the (prescribed) temperature on the boundary ∂Ω.
The maximum principle reflects a basic observation known to any child – first, if F (x, u) = 0
(there are neither heat sources nor sinks), or if F (x, u) ≤ 0 (there are no heat sources but
there may be heat sinks), the temeprature inside Ω may not exceed that on the boundary –
without a heat source inside a room, you can not heat the interior of a room to a warmer
temperature than its maximum on the boundary. Second, if one considers two prescribed
boundary conditions and heat sources such that

g1(x) ≤ g2(x) and F1(x, u) ≤ F2(x, u),

then the corresponding solutions will satisfy u1(x) ≤ u2(x) – stronger heating leads to warmer
rooms. It is surprising how such mundane considerations may lead to beautiful mathematics.
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The maximum principle in complex analysis

Most mathematicians are first introduced to the maximum principle in a complex analysis
course. Recall that the real and imaginary parts of an analytic function f(z) have the following
property.

Proposition 1.1 Let f(z) = u(z) + iv(z) be an analytic function in a smooth bounded do-
main Ω ⊂ C, continuous up to the boundary Ω. Then u(z) = Ref(z), v(z) = Imf(z)
and w(z) = |f(z)| all attain their respective maxima over Ω on its boundary. In addition,
if any of these functions attains its maximum inside Ω, it has to be equal identically to a
constant in Ω.

This proposition is usually proved via the mean-value property of analytic functions (which
itself is a consequence of the Cauchy integral formula): for any disk B(z0, r) contained in Ω
we have

f(z0) =

∫ 2π

0

f(z0 +reiθ)
dθ

2π
, u(z0) =

∫ 2π

0

u(z0 +reiθ)
dθ

2π
, v(z0) =

∫ 2π

0

v(z0 +reiθ)
dθ

2π
, (1.2)

and

w(z) ≤
∫ 2π

0

w(z0 + reiθ)
dθ

2π
. (1.3)

It is immediate to see that (1.3) implies that if one of the functions u, v and w attains a local
maximum at a point z0 inside Ω, it has to be equal to a constant in a disk around z0. Thus,
the set where it attains its maximum is both open and closed, hence it is all of Ω and this
function equals identically to a constant.

The above argument while incredibly beautiful and simple, relies very heavily on the
rigidity of analytic functions that is reflected in the mean-value property. The same rigidity
is reflected in the fact that the real and imaginary parts of an analytic function satisfy the
Laplace equation

∆u = 0, ∆v = 0,

while w2 = u2 + v2 is subharmonic: it satisfies

∆(w2) ≥ 0.

We will see next that the mean-value principle is associated to the Laplace equation and not
analyticity in itself, and thus applies to harmonic (and, in a modified way, to subharmonic)
functions in higher dimensions as well. This will imply the maximum principle for solutions
of the Laplace equation in an arbitrary dimension. One may ask whether a version of the
mean-value property also holds for the solutions of general elliptic equations rather than just
for the Laplace equation – the answer is “yes if understood properly”, and the mean value
property survives as the general elliptic regularity theory, an equally beautiful sister of the
complex analysis which is occasionally misunderstood as “technical”.
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Interlude: a probabilistic connection digression

Another good way to understand how the Laplace equation comes about, as well as many
of its properties, including the maximum principle, is via its connection to the Brownian
motion. It is easy to understand in terms of the discrete equations, which requires only very
elementary probability theory. Consider a system of many particles on the n-dimensional
integer lattice Zn. They all perform a symmetric random walk: at each integer time t = k
each particle jumps (independently from the others) from its current site x ∈ Zn to one of
its 2n neighbors, x ± ek (ek is the unit vector in the direction of the xk-axis), with equal
probability 1/(2n). At each step we may also insert new particles, the average number of
inserted (or eliminated) particles per unit time at each site is F (x). Let now um(x) be the
average number of particles at the site x at time m. The balance equation for um+1(x) is

um+1(x) =
1

2n

n∑
k=1

[un(x+ ek) + un(x− ek)] + F (x).

If the system is in an equilibrium, so that un+1(x) = un(x) for all x, then u(x) (dropping the
subscript n) satisfies the discrete equation

1

2n

n∑
k=1

[u(x+ ek) + u(x− ek)− 2u(x)] + F (x) = 0.

If we now take a small mesh size h, rather than one, the above equation becomes

1

2n

n∑
k=1

[u(x+ hek) + u(x− hek)− 2u(x)] + F (x) = 0.

Doing a Taylor expansion in h leads to

h2

2n

n∑
k=1

∂2u(x)

∂x2
k

+ F (x) = lower order terms.

Taking F (x) = h2/(2n)G(x) – this prevents us from inserting or removing too many particles,
we arrive, in the limit h ↓ 0, at

∆u+G(x) = 0. (1.4)

In this model, we interpret u(x) as the local particle density, and G(x) as the rate at which
the particles are inserted (if G(x) > 0), or removed (if G(x) < 0). When equation (1.4) is
posed in a bounded domain Ω, we need to supplement it with a boundary condition, such as

u(x) = g(x) on ∂Ω.

Here, it means the particle density on the boundary is prescribed – the particles are injected
or removed if there are “too many” or “too little” particles at the boundary, to keep u(x) at
the given prescribed value g(x).
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The mean value property for sub-harmonic and super-harmonic functions

We now return to the world of analysis. A function u(x), x ∈ Ω ⊂ Rn is harmonic if it satisfies
the Laplace equation

∆u = 0 in Ω. (1.5)

This is equation (1.1) with F ≡ 0, thus a harmonic function describes a heat distribution
in Ω with neither heat sources nor sinks in Ω. We say that u is sub-harmonic if it satisfies

−∆u ≤ 0 in Ω, (1.6)

and it is super-harmonic if it satisfies

−∆u ≥ 0 in Ω, (1.7)

In other words, a sub-harmonic function satisfies

∆u+ F (x) = 0, in Ω,

with F (x) ≤ 0 – it describes a heat distribution in Ω with only heat sinks present, and no
heat sources, while a super-harmonic function satisfies

∆u+ F (x) = 0, in Ω,

with F (x) ≥ 0 – it describes an equilibrium heat distribution in Ω with only heat sources
present, and no sinks.

Exercise 1.2 Give an interpretation of the sub-harmonic and super-harmonic functions in
terms of particle probability densities.

Note that any sub-harmonic function in one dimension is convex:

−u′′ ≤ 0,

and then, of course, for any x ∈ R and any l > 0 we have

u(x) ≤ 1

2
(u(x+ l) + u(x− l)) , and u(x) ≤ 1

2l

∫ x+l

x−l
u(y)dy.

The following generalization to sub-harmonic functions in higher dimensions shows that lo-
cally u(x) is bounded from above by its spatial average. A super-harmonic function will be
locally above its spatial average. A word on notation: for a set S we denote by |S| its volume
(or area), and, as before, ∂S denotes its boundary.

Theorem 1.3 Let Ω ⊂ Rn be an open set and let B(x, r) be a ball centered at x ∈ Rn of
radius r > 0 contained in Ω. Assume that the function u(x) satisfies

−∆u ≤ 0, (1.8)

for all x ∈ Ω and that u ∈ C2(Ω). Then we have

u(x) ≤ 1

|B(x, r)|

∫
B(x,r)

udy, u(x) ≤ 1

|∂B(x, r)|

∫
∂B(x,r)

udS. (1.9)
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If the function u(x) is super-harmonic:

−∆u ≥ 0, (1.10)

for all x ∈ Ω and that u ∈ C2(Ω). Then we have

u(x) ≥ 1

|B(x, r)|

∫
B(x,r)

udy, u(x) ≥ 1

|∂B(x, r)|

∫
∂B(x,r)

udS. (1.11)

Moreover, if the function u is harmonic: ∆u = 0, then we have equality in both inequalities
in (1.9).

One reason to expect the mean-value property is from physics – if Ω is a ball with no heat
sources, it is natural to expect that the temperature in the center of the ball may not exceed
the average temperature over any sphere concentric with the ball. The opposite is true if
there are no heat sinks (this is true for a super-harmonic function). Another can be seen from
the discrete version of inequality (1.8):

u(x) ≤ 1

2n

n∑
j=1

(u(x+ hej) + u(x− hej)).

Here, h is the mesh size, and ej is the unit vector in the direction of the coordinate axis
for xj. This discrete equation says exactly that the value u(x) is smaller than the average
of the values of u at the neighbors of the point x on the lattice with mesh size h, which is
similar to the statement of Theorem 1.3 (though there is no meaning to “nearest” neighbor
in the continuous case).

Proof. We will only treat the case of a sub-harmonic function. Let us fix the point x ∈ Ω
and define

φ(r) =
1

|∂B(x, r)|

∫
∂B(x,r)

u(z)dS(z). (1.12)

It is easy to see that, since u(x) is continuous, we have

lim
r↓0

φ(r) = u(x). (1.13)

Therefore, we would be done if we knew that φ′(r) ≥ 0 for all r > 0 (and such that the
ball B(x, r) is contained in Ω). To this end, passing to the polar coordinates z = x + ry,
with y ∈ ∂B(0, 1), we may rewrite (1.12) as

φ(r) =
1

|∂B(0, 1)|

∫
∂B(0,1)

u(x+ ry)dS(y).

Then, differentiating in r gives

φ′(r) =
1

|∂B(0, 1)|

∫
∂B(0,1)

y · ∇u(x+ ry)dS(y).

Going back to the z-variables gives

φ′(r) =
1

|∂B(x, r)|

∫
∂B(x,r)

1

r
(z − x) · ∇u(z)dS(z) =

1

|∂B(x, r)|

∫
∂B(x,r)

∂u

∂ν
dS(z).
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Here, we used the fact that the outward normal to B(x, r) at a point z ∈ ∂B(x, r) is

ν = (z − x)/r.

Using Green’s formula∫
U

∆gdy =

∫
U

∇ · (∇g) =

∫
∂U

(ν · ∇g) =

∫
∂U

∂g

∂ν
dS,

gives now

φ′(r) =
1

|∂B(x, r)|

∫
B(x,r)

∆u(y)dy ≥ 0.

It follows that φ(r) is a non-decreasing function of r, and then (1.13) implies that

u(x) ≤ 1

|∂B(x, r)|

∫
∂B(x,r)

udS, (1.14)

which is the second identity in (1.9).
In order to prove the first equality in (1.9) we use the polar coordinates once again:

1

|B(x, r)|

∫
B(x,r)

udy =
1

|B(x, r)|

∫ r

0

(∫
∂B(x,s)

udS

)
ds ≥ 1

|B(x, r)|

∫ r

0

u(x)nα(n)sn−1ds

= u(x)α(n)rn
1

α(n)rn
= u(x).

We used above two facts: first, the already proved identity (1.14) about averages on spherical
shells, and, second, that the area of an (n− 1)-dimensional unit sphere is nα(n), where α(n)
is the volume of the n-dimensional unit ball. Now, the proof of (1.9) is complete. The proof
of the mean-value property for super-harmonic functions works identically. �

The weak maximum principle

The first consequence of the mean value property is the maximum principle that says that a
sub-harmonic function attains its maximum over any domain on the boundary and not inside
the domain1. Once again, in one dimension this is obvious: a smooth convex function does
not have any local maxima.

Theorem 1.4 (The weak maximum principle) Let u(x) be a sub-harmonic function in
a connected domain Ω and assume that u ∈ C2(Ω) ∩ C(Ω̄). Then

max
x∈Ω̄

u(x) = max
y∈∂Ω

u(y). (1.15)

Moreover, if u(x) achieves its maximum at a point x0 in the interior of Ω, then u(x) is
identically equal to a constant in Ω. Similarly, if u ∈ C2(Ω) ∩ C(Ω̄) is a super-harmonic
function in Ω, then

min
x∈Ω̄

u(x) = min
y∈∂Ω

u(y). (1.16)

Moreover, if u(x) achieves its minimum at a point x0 in the interior of Ω, then u(x) is
identically equal to a constant in Ω.

1A sub-harmonic function is nothing but the heat distribution in a room without heat sources, hence it is
very natural that it attains its maximum on the boundary (the walls of the room)
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Proof. Again, we only treat the case of a sub-harmonic function. Suppose that u(x) attains
its maximum at an interior point x0 ∈ Ω, and set

M = u(x0).

Then, for any r > 0 sufficiently small (so that the ball B(x0, r) is contained in Ω), we have

M = u(x) ≤ 1

|B(x0, r)|

∫
B(x0,r)

udy ≤M,

with the equality above holding only if u(y) = M for all y in the ball B(x0, r). Therefore,
the set S of points where u(x) = M is open. Since u(x) is continuous, this set is also closed.
Since S us both open and closed in Ω, and Ω is connected, it follows that S = Ω, hence
u(x) = M at all points x ∈ Ω. �

We will often have to deal with slightly more general operators than the Laplacian, of the
form

Lu = ∆u(x) + c(x)u. (1.17)

We may ask the same question: when is it true that the inequality

−∆u(x)− c(x)u(x) ≤ 0 in Ω (1.18)

guarantees that u(x) attains its maximum on the boundary of Ω? It is certainly not always
true that any function satisfying (1.18) attains its maximum on he boundary: consider the
function u(x) = sin x on the interval (0, π). It satisfies

u′′(x) + u(x) = 0, u(0) = u(π) = 0, (1.19)

but achieves its maximum at x = π/2. In order to understand this issue a little better,
consider the following exercise.

Exercise 1.5 Consider the boundary value problem

−u′′ − au = f(x), 0 < x < 1, u(0) = u(1) = 0,

with a given non-negative function f(x), and a constant a ≥ 0. Show that if a < π2, then the
function u(x) is positive on the interval (0, 1).

One possible answer to our question below (1.18) comes from our childish attempts at
physics: if u(x) ≥ 0, we may interpret u(x) as a heat distribution in Ω. Then, u(x) should not
be able to attain its maximum inside Ω if there are no heat sources in Ω. If u(x) satisfies (1.18),
the only possible heat source is c(x)u(x). Keeping in mind that u(x) ≥ 0, we see that absence
of heat sources is equivalent to the condition c(x) ≤ 0 (this, in particular, rules out the
counterexample (1.19)). Mathematically, this is reflected in the following.

Corollary 1.6 Suppose that c(x) ≤ 0 in Ω, and a function u ∈ C2(Ω)∩C(Ω) satisfies u ≥ 0
and

∆u(x) + c(x)u(x) ≥ 0 in Ω.

Then u attains its maximum on ∂Ω. Moreover, if u(x) attains its maximum inside Ω then u
is identically equal to a constant.

Proof. A non-negative function u(x) that satisfies (1.18) is sub-harmonic, and application
of Theorem 1.4 finishes the proof.

Exercise 1.7 Give an interpretation of this result in terms of particle densities.
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2 Act II. The moving plane method

2.1 The isoperimeteric inequality and sliding

We now bring in our second set of characters, the moving plane and sliding methods. As
an introduction, we show how the sliding method can work alone, without the maximum
principle. Maybe the simplest situation when the sliding idea proves useful is in an elegant
proof of the isoperimetric inequality. We follow here the proof given by X. Cabré in [27]2.
The isoperimetric inequality says that among all domains of a given volume the ball has the
smallest surface area.

Theorem 2.1 Let Ω be a smooth bounded domain in Rn. Then,

|∂Ω|
|Ω|(n−1)/n

≥ |∂B1|
|B1|(n−1)/n

, (2.1)

where B1 is the open unit ball in Rn, |Ω| denotes the measure of Ω and |∂Ω| is the perimeter
of Ω (the (n − 1)-dimensional measure of the boundary of Ω). In addition, equality in (2.1)
holds if and only if Ω is a ball.

A technical aside: the area formula

The proof will use the area formula (see [53] for the proof), a generalization of the usual change
of variables formula in the multi-variable calculus. The latter says that if f : Rn → Rn is a
smooth one-to-one map (a change of variables), then∫

Rn
g(x)Jf(x)dx =

∫
Rn
g(f−1(y))dy. (2.2)

For general maps we have

Theorem 2.2 Let f : Rn → Rn be a Lipschitz map with the Jacobian Jf . Then, for each
function g ∈ L1(Rn) we have

∫
Rn
g(x)Jf(x)dx =

∫
Rn

 ∑
x∈f−1{y}

g(x)

 dy. (2.3)

We will, in particular, need the following corollary.

Corollary 2.3 Let f : Rn → Rn be a Lipschitz map with the Jacobian Jf . Then, for each
measurable set A ⊂ Rn we have

|f(A)| ≤
∫
A

Jf(x)dx. (2.4)

2Readers with ordinary linguistic powers may consult [28].
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Proof. For a given set S we define its characteristic functions as

χS(x) =

{
1, for x ∈ S,
0, for x 6∈ S,

We use the area formula with g(x) = χA(x):

∫
A

Jf(x)dx =

∫
Rn
χA(x)Jf(x)dx =

∫
Rn

 ∑
x∈f−1{y}

χA(x)

 dy
=

∫
Rn

[#x ∈ A : f(x) = y] dy ≥
∫
Rn
χf(A)(y)dy = |f(A)|,

and we are done. �
A more general form of this corollary is the following.

Corollary 2.4 Let f : Rn → Rn be a Lipschitz map with the Jacobian Jf . Then, for each
nonnegative function p ∈ L1(Rn) and each measurable set A, we have∫

f(A)

p(y)dy ≤
∫
A

p(f(x))Jf(x)dx. (2.5)

Proof. The proof is as in the previous corollary. This time, we apply the area formula to the
function g(x) = p(f(x))χA(x):

∫
A

p(f(x))Jf(x)dx =

∫
Rn
χA(x)p(f(x))Jf(x)dx =

∫
Rn

 ∑
x∈f−1{y}

χA(x)p(f(x))

 dy
=

∫
Rn

[#x ∈ A : f(x) = y] p(y)dy ≥
∫
f(A)

p(y)dy,

and we are done. �

The proof of the isoperimetric inequality

We now proceed with Cabré’s proof of the isoperimetric inequality in Theorem 2.1.
Step 1: sliding. Let v(x) be the solution of the Neumann problem

∆v = k, in Ω, (2.6)

∂v

∂ν
= 1 on ∂Ω.

Integrating the first equation above and using the boundary condition, we obtain

k|Ω| =
∫

Ω

∆vdx =

∫
∂Ω

∂u

∂ν
= |∂Ω|.

Hence, solution exists only if

k =
|∂Ω|
|Ω|

. (2.7)
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It is a classical result that with this particular value of k there exist infinitely many solutions
that differ by addition of an arbitrary constant. We let v be any of them. As Ω is a smooth
domain, v is also smooth.

Let Γv be the lower contact set of v, that is, the set of all x ∈ Ω such that the tangent
hyperplane to the graph of v at x lies below that graph in all of Ω̄. More formally, we define

Γv = {x ∈ Ω : v(y) ≥ v(x) +∇v(x) · (y − x) for all y ∈ Ω̄.} (2.8)

The crucial observation is that
B1 ⊂ ∇v(Γv). (2.9)

Exercise 2.5 Explain why this is trivial in one dimension.

Here, B1 is the open unit ball centered at the origin. The geometric reason for this is as
follows: take any p ∈ B1 and consider the graphs of the functions

rc(y) = p · y + c.

We will now slide this plane upward – we will start with a “very negative” c, and start
increasing it, moving the plane up. Note that there exists M > 0 so that if c < −M , then

rc(y) < v(y)− 100 for all y ∈ Ω̄,

that is, the plane is below the graph in all of Ω. On the other hand, if c > M , then

rc(y) > v(y) + 100 for all y ∈ Ω̄,

in other words, the plane is above the graph in all of Ω. Let

α = sup{c ∈ R : rc(y) < v(y) for all y ∈ Ω̄} (2.10)

be the largest c so that the plane lies below the graph of v in all of Ω. It is easy to see that
the plane rα(y) = p · y + α has to touch the graph of v: there exists a point y0 ∈ Ω̄ such
that rα(y0) = v(y0) and

rα(y) ≤ v(y) for all y ∈ Ω̄. (2.11)

Furthermore, the point y0 can not lie on the boundary ∂Ω. Indeed, for all y ∈ ∂Ω we have∣∣∣∂rc
∂ν

∣∣∣ = |p · ν| ≤ |p| < 1 and
∂v

∂ν
= 1.

This means that if rc(y) = v(y) for some c, and y is on the boundary ∂Ω, then there is
a neighborhood U ∈ Ω of y such that rc(y) > v(y) for all y ∈ U . Comparing to (2.11),
we see that c 6= α, hence it is impossible that y0 ∈ ∂Ω. Thus, y0 is an interior point
of Ω, and, moreover, the graph of rα(y) is the tangent plane to v at y0. In particular, we
have ∇v(y0) = p, and (2.11) implies that y0 is in the contact set of v: y0 ∈ Γv. We have
now shown the inclusion (2.9): B1 ⊂ ∇v(Γv). Note that the only information about the
function v(x) we have used so far is the Neumann boundary condition

∂v

∂ν
= 1 on ∂Ω,
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but not the Poisson equation for v in Ω.
Step 2: using the area formula. A trivial consequence of (2.9) is that

|B1| ≤ |∇v(Γv)|. (2.12)

Now, we will apply Corollary 2.3 to the map∇v : Γv → ∇v(Γv), whose Jacobian is |det[D2v]|.
Exercise 2.6 Show that if Γv is the contact set of a smooth function v(x), then det[D2v] is
non-negative for x ∈ Γv, and, moreover, all eigenvalues of D2v are nonnegative on Γv.

As det[D2v] is non-negative for x ∈ Γv, we conclude from Corollary 2.3 and (2.12) that

|B1| ≤ |∇v(Γv)| ≤
∫

Γv

det[D2v(x)]dx. (2.13)

It remains to notice that by the classical arithmetic mean-geometric mean inequality applied
to the (nonnegative) eigenvalues λ1, . . . , λn of the matrix D2v(x), x ∈ Γv we have

det[D2v(x)] = λ1λ2 . . . λn ≤
(
λ1 + λ2 + · · ·+ λn

n

)n
. (2.14)

However, by a well-known formula from linear algebra,

λ1 + λ2 + · · ·+ λn = Tr[D2v],

and, moreover, Tr[D2v] is simply the Laplacian ∆v. This gives

det[D2v(x)] ≤
(

Tr[D2v]

n

)n
=

(
∆v

n

)n
for x ∈ Γv. (2.15)

Recall that v is the solution of (2.6):

∆v = k, in Ω, (2.16)

∂v

∂ν
= 1 on ∂Ω.

with

k =
|∂Ω|
|Ω|

.

Going back to (2.13), we deduce that

|B1| ≤
∫

Γv

det[D2v(x)]dx ≤
∫

Γv

(
∆v

n

)n
dx ≤

(
k

n

)n
|Γv| =

(
|∂Ω|
n|Ω|

)n
|Γv| ≤

(
|∂Ω|
n|Ω|

)n
|Ω|.

In addition, for the unit ball we have |∂B1| = n|B1|, hence the above implies

|∂B1|n

|B1|n−1
≤ |∂Ω|n

|Ω|n−1
, (2.17)

which is nothing but the isoperimetric inequality (2.1).
In order to see that the inequality in (2.17) is strict unless Ω is a ball, we observe that it

follows from the above argument that for the equality to hold in (2.17) we must have equality
in (2.14), and, in addition, Γv has to coincide with Ω. This means that for each x ∈ Ω all
eigenvalues of the matrix D2v(x) are equal to each other. That is, D2v(x) is a multiple of the
identity matrix for each x ∈ Ω.
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Exercise 2.7 Show that if v(x) is a smooth function such that

∂2v(x)

∂x2
i

=
∂2v(x)

∂x2
j

,

for all 1 ≤ i, j ≤ n and x ∈ Ω, and
∂2v(x)

∂xi∂xj
= 0,

for all i 6= j and x ∈ Ω, then there exists a = (a1, . . . , an) ∈ Rn and b ∈ R, so that

v(x) = b
[
(x1 − a1)2 + (x2 − a2)2 + · · ·+ (xn − an)2

]
+ c, (2.18)

for all x ∈ Ω.

Our function v(x) satisfies the assumptions of Exercise 2.7, hence it must have the form (2.18).
Finally, the boundary condition ∂v/∂ν = k on ∂Ω implies that Ω is a ball centered at the
point a ∈ Rn. �

3 Act III. Their first meeting

The maximum principle returns, and we study it in a slightly greater depth. At the end of
this act the maximum principle and the moving plane method are introduced to each other.

The Hopf lemma and the strong maximum principle

The weak maximum principle leaves open the possibility that u attains its maximum both
on the boundary and inside Ω. The strong maximum principle will rule out this possibility
unless u is identically equal to a constant. Let us begin with the following exercises.

Exercise 3.1 Show that if the function u(x) satisfies an ODE of the form

u′′ + c(x)u = 0, a < x < b, (3.1)

and u(x0) = 0 for some x0 ∈ (a, b) then u can not attain its maximum (or minimum) over
the interval (a, b) at the point x0 unless u ≡ 0.

This exercise is relatively easy – one has to think about the initial value problem for (3.1)
with the data u(x0) = u′(x0) = 0. Now, look at the next exercise, which is slightly harder.

Exercise 3.2 Show that, once again, in one dimension, if u(x), x ∈ R satisfies a differential
inequality of the form

u′′ + c(x)u ≥ 0, a < x < b,

and u(x0) = 0 for some x0 ∈ (a, b) then u can not attain its maximum over the interval (a, b)
at the point x0 unless u ≡ 0.

The proof of the strong maximum principle relies on the Hopf lemma which guarantees
that the point on the boundary where the maximum is attained is not a critical point of u.
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Theorem 3.3 (The Hopf Lemma) Let B = B(y, r) be an open ball in Rn with x0 ∈ ∂B, and
assume that c(x) ≤ 0 in B. Suppose that a function u ∈ C2(B) ∩ C(B ∪ x0) satisfies

∆u+ c(x)u ≥ 0 in B,

and that u(x) < u(x0) for any x ∈ B and u(x0) ≥ 0. Then, we have
∂u

∂ν
(x0) > 0.

Proof. We may assume without loss of generality that B is centered at the origin: y = 0.
We may also assume that u ∈ C(B̄) and that u(x) < u(x0) for all x ∈ B̄\{x0} – otherwise,
we would simply consider a smaller ball B1 ⊂ B that is tangent to B at x0.

The idea is to modify u to turn it into a strict sub-solution of the form

w(x) = u(x) + εh(x).

We also need w to inherit the other properties of u: it should attain its maximum over B̄
at x0, and we need to have w(x) < w(x0) for all x ∈ B. In addition, we would like to have

∂h

∂ν
< 0 on ∂B,

so that the inequality
∂w

∂ν
(x0) ≥ 0

would imply
∂u

∂ν
(x0) > 0.

An appropriate choice is
h(x) = e−α|x|

2 − e−αr2 ,

in a smaller domain
Σ = B ∩B(x0, r/2).

Observe that h > 0 in B, h = 0 on ∂B (thus, h attains its minimum on ∂B – unlike u which
attains its maximum there), and, in addition:

∆h+ c(x)h = e−α|x|
2 [

4α2|x|2 − 2αn+ c(x)
]
− c(x)e−αr

2

≥ e−α|x|
2 [

4α2|x|2 − 2αn+ c(x)
]
≥ e−α|x|

2

[
4α2 |r|2

4
− 2αn+ c(x)

]
> 0,

for all x ∈ Σ for a sufficiently large α > 0. Hence, we have a strict inequality

∆w + c(x)w > 0, in Σ,

for all ε > 0. Thus, w may not attain its non-negative maximum over Σ inside Σ but only on
its boundary. We now show that if ε > 0 is sufficiently small, then w attains this maximum
only at x0. Indeed, as u(x) < u(x0) in B, we may find δ, so that

u(x) < u(x0)− δ for x ∈ ∂Σ ∩B.

15



Take ε so that
εh(x) < δ on ∂Σ ∩B,

then
w(x) < u(x0) = w(x0) for all x ∈ ∂Σ ∩B.

On the other hand, for x ∈ ∂Σ ∩ ∂B we have h(x) = 0 and

w(x) = u(x) < u(x0) = w(x0).

We conclude that w(x) attains its non-negative maximum in Σ̄ at x0 if ε is sufficiently small.
This implies

∂w

∂ν
(x0) ≥ 0,

and, as a consequence
∂u

∂ν
(x0) ≥ ε

∂h

∂ν
(x0) = εαre−αr

2

> 0.

This finishes the proof. �
The strong maximum principle is an immediate consequence of the Hopf lemma.

Theorem 3.4 (The Strong maximum Principle) Assume that c(x) ≤ 0 in Ω, and the func-
tion u ∈ C2(Ω) ∩ C(Ω̄) satisfies

∆u+ c(x)u ≥ 0,

and attains its maximum over Ω̄ at a point x0. Then, if u(x0) ≥ 0, then x0 ∈ ∂Ω unless u is
a constant. If the domain Ω has the internal sphere property, and u 6≡ const, then

∂u

∂ν
(x0) > 0.

Proof. Let M = supΩ̄ u(x) and define the set Σ = {x ∈ Ω : u(x) = M}, where the maximum
is attained. We need to show that either Σ is empty or Σ = Ω. Assume that Σ is non-empty
but Σ 6= Ω, and choose a point p ∈ Ω\Σ such that

d0 = d(p,Σ) < d(p, ∂Ω).

Consider the ball B0 = B(p, d0) and let x0 ∈ ∂B0 ∩ ∂Σ. Then we have

∆u+ c(x)u ≥ 0 in B0,

and
u(x) < u(x0) = M , M ≥ 0 for all x ∈ B0.

The Hopf Lemma implies that
∂u

∂ν
(x0) > 0,

where ν is the normal to B0 at x0. However, x0 is an internal maximum of u in Ω and
hence ∇u(x0) = 0. This is a contradiction. �

The following corollary of the strong maximum principle is more delicate than our baby
physics arguments – we make no assumption on whether c(x)u(x) is a heat source or sink.
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Corollary 3.5 Assume that c(x) is a bounded function, and u ∈ C2(Ω) ∩ C(Ω̄) satisfies

∆u+ c(x)u ≥ 0. (3.2)

If u ≤ 0 in Ω then either u ≡ 0 in Ω or u < 0 in Ω. Similarly, if u ∈ C2(Ω) ∩ C(Ω̄) satisfies

∆u(x) + c(x)u(x) ≤ 0 in Ω, (3.3)

with u ≥ 0 in Ω, with a bounded function c(x). Then either u ≡ 0 in Ω or u > 0 in Ω.

Proof. If c(x) ≤ 0, this follows directly from the strong maximum principle. In the general
case, as u ≤ 0 in Ω, the inequality (3.2) implies that, for any M > 0 we have

∆u+ c(x)u−Mu ≥ −Mu ≥ 0.

However, if M > ‖c‖L∞(Ω) then the zero order coefficient satisfies

c1(x) = c(x)−M ≤ 0,

hence we may conclude, again from the strong maximum principle that either u < 0 in Ω
or u ≡ 0 in Ω. The proof in the case (3.3) holds is identical. �

It is easy to understand the strong maximum principle from the point of view of (3.3) –
in this case, a non-negative u(x) can be interpreted as a particle density, and c(x)u(x) is the
rate at which the particles are inserted (where c(x) > 0) or eliminated (where c(x) < 0). The
strong maximum principle says that no matter how negative c(x) is, the random particles will
always access any point in the domain with a positive probability density.

Separating sub- and super-solutions

A very common use of the strong maximum principle is to re-interpret it as the “untouch-
ability” of a sub-solution and a super-solution of a linear or nonlinear problem – the basic
principle underlying what we will see below. Assume that the functions u(x) and v(x) satisfy

∆u+ f(x, u) ≥ 0, ∆v + f(x, v) ≤ 0 in Ω. (3.4)

We say that u(x) is a sub-solution, and v(x) is a super-solution. Assume that, in addition,
we know that

u(x) ≤ v(x) for all x ∈ Ω, (3.5)

that is, the sub-solution sits below the super-solution. In this case, we are going to rule out
the possibility that they touch inside Ω (they can touch on the boundary, however): there
can not be an x0 ∈ Ω so that u(x0) = v(x0). Indeed, if the function f(x, s) is differentiable
(or Lipschitz), the quotient

c(x) =
f(x, u(x))− f(x, v(x))

u(x)− v(x)

is a bounded function, and the difference w(x) = u(x)− v(x) satisfies

∆w + c(x)w ≥ 0 in Ω. (3.6)
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As w(x) ≤ 0 in all of Ω, the strong maximum principle implies that either w(x) ≡ 0, so
that u and v coincide, or w(x) < 0 in Ω, that is, we have a strict inequality: u(x) < v(x) for
all x ∈ Ω. In other words, a sub-solution and a super-solution can not touch at a point – this
very simple principle will be extremely important in what follows.

Let us illustrate an application of the strong maximum principle, with a cameo appearance
of the sliding method in a disguise as a bonus. Consider the boundary value problem

−u′′ = eu, 0 < x < L, (3.7)

with the boundary condition
u(0) = u(L) = 0. (3.8)

If we think of u(x) as a temperature distribution, then the boundary condition means that
the boundary is “cold”. On the other hand, the positive term eu is a “heating term”, which
competes with the cooling by the boundary. A nonnegative solution u(x) corresponds to
an equilibrium between these two effects. We would like to show that if the length of the
interval L is sufficiently large, then no such equilibrium is possible – the physical reason is that
the boundary is too far from the middle of the interval, so the heating term wins. This absence
of an equilibrium is interpreted as an explosion, and this model was introduced exactly in
that context in late 30’s-early 40’s. It is convenient to work with the function w = u + ε,
which satisfies

−w′′ = e−εew, 0 < x < L, (3.9)

with the boundary condition
w(0) = w(L) = ε. (3.10)

Consider a family of functions

vλ(x) = λ sin
(πx
L

)
, λ ≥ 0, 0 < x < L.

These functions satisfy (for any λ ≥ 0)

v′′λ +
π2

L2
vλ = 0, vλ(0) = vλ(L) = 0. (3.11)

Therefore, if L is so large that

π2

L2
s ≤ e−εes, for all s ≥ 0,

we have

w′′ +
π2

L2
w ≤ 0, (3.12)

that is, w is a super-solution for (3.11). In addition, when λ > 0 is sufficiently small, we have

vλ(x) ≤ w(x) for all 0 ≤ x ≤ L. (3.13)

Let us now start increasing λ until the graphs of vλ and w touch at some point:

λ0 = sup{λ : vλ(x) ≤ w(x) for all 0 ≤ x ≤ L.} (3.14)
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The difference
p(x) = vλ0(x)− w(x)

satisfies

p′′ +
π2

L2
p ≥ 0,

and p(x) ≤ 0 for all 0 < x < L. In addition, there exists x0 such that p(x0) = 0, and, as
vλ(0) = vλ(L) = 0 < ε = w(0) = w(L), it is impossible that x0 = 0 or x0 = L. We conclude
that p(x) ≡ 0, which is a contradiction. Hence, no solution of (3.7)-(3.8) may exist when L
is sufficiently large.

In order to complete the picture, the reader may look at the following exercise.

Exercise 3.6 Show that there exists L1 > 0 so that a nonnegative solution of (3.7)-(3.8)
exists for all 0 < L < L1, and does not exist for all L > L1.

The maximum principle for narrow domains

Before we allow the moving plane method to return, we describe the maximum principle for
narrow domains, which is an indispensable tool in this method. Its proof will utilize the
“ballooning method” we have seen in the analysis of the explosion problem. As we have
discussed, the usual maximum principle in the form “∆u + c(x)u ≥ 0 in Ω, u ≤ 0 on ∂Ω
implies either u ≡ 0 or u < 0 in Ω” can be interpreted physically as follows. If u is the
temperature distribution then the boundary condition u ≤ 0 means that ”the boundary is
cold” while the term c(x)u can be viewed as a heat source if c(x) ≥ 0 or as a heat sink
if c(x) ≤ 0. The conditions u ≤ 0 on ∂Ω and c(x) ≤ 0 together mean that both the boundary
is cold and there are no heat sources – therefore, the temperature is cold everywhere, and we
get u ≤ 0. On the other hand, if the domain is such that each point inside Ω is ”close to the
boundary” then the effect of the cold boundary can dominate over a heat source, and then,
even if c(x) ≥ 0 at some (or all) points x ∈ Ω, the maximum principle still holds.

Mathematically, the first step in that direction is the maximum principle for narrow do-
mains. We use the notation c+(x) = max[0, c(x)].

Theorem 3.7 (The maximum principle for narrow domains) Let e be a unit vector. There
exists d0 > 0 that depends on the L∞-norm ‖c+‖∞ so that if |(y−x) ·e| < d0 for all (x, y) ∈ Ω
then the maximum principle holds for the operator ∆ + c(x). That is, if u ∈ C2(Ω) ∩ C1(Ω̄)
satisfies

∆u(x) + c(x)u(x) ≥ 0 in Ω,

and u ≤ 0 on ∂Ω then either u ≡ 0 or u < 0 in Ω.

The main observation here is that in a narrow domain we need not assume c ≤ 0 – but “the
largest possible narrowness”, depends, of course, on the size of the positive part c+(x) that
competes against it.

Proof. Note that, according to the strong maximum principle, it is sufficient to show
that u(x) ≤ 0 in Ω. For the sake of contradiction, suppose that

sup
x∈Ω

u(x) > 0. (3.15)
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Without loss of generality we may assume that e is the unit vector in the direction x1, and
that

Ω̄ ⊂ {0 < x1 < d}.

Suppose that d is so small that

c(x) ≤ π2/d2, for all x ∈ Ω, (3.16)

and consider the function

w(x) = sin
(πx1

d

)
.

It satisfies

∆w +
π2

d2
w = 0, (3.17)

and w(x) > 0 in Ω̄, in particular

inf
Ω̄
w(x) > 0. (3.18)

A consequence of the above is

∆w + c(x)w ≤ 0, (3.19)

Given λ ≥ 0, let us set wλ(x) = λw(x). As a consequence of (3.18), there exists Λ > 0 so large
that Λw(x) > u(x) for all x ∈ Ω. Now we are going to push wλ down until it touches u(x):
set

λ0 = inf{λ : wλ(x) > u(x) for all x ∈ Ω.}

Note, that, because of (3.15), we know that λ0 > 0. The difference

v(x) = u(x)− wλ0(x)

satisfies

∆v + c(x)v ≥ 0.

The difference between u(x), which satisfies the same inequality, and v(x) is that we know
already that v(x) ≤ 0 – hence, we may conclude from the strong maximum principle again
that either v(x) ≡ 0, or v(x) < 0 in Ω. The former contradicts the boundary condition
on u(x), as wλ(x) > 0 on ∂Ω, hence v(x) < 0 in Ω. As v(x) < 0 also on the boundary ∂Ω,
there exists ε0 > 0 so that

v(x) < −ε0 for all x ∈ Ω̄,

that is,

u(x) + ε0 < wλ0(x) for all x ∈ Ω̄.

But then we may choose λ′ < λ0 so that we still have

wλ′(x) > u(x) for all x ∈ Ω.

This contradicts the minimality of λ0. Thus, it is impossible that u(x) > 0 for some x ∈ Ω,
and we are done. �
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The maximum principle for small domains

The maximum principle for narrow domains can be extended, dropping the requirement that
the domain is narrow and replacing it by the condition that the domain has a small volume.
We begin with the following lemma, which measures how far from the maximum principle a
force can push you.

Lemma 3.8 (The baby ABP Maximum Principle) Assume that c(x) ≤ 0 for all x ∈ Ω, and
let u ∈ C2(Ω) ∩ C(Ω̄) satisfy

∆u+ c(x)u ≥ f in Ω, (3.20)

and u ≤ 0 on ∂Ω. Then
sup

Ω
u ≤ Cdiam(Ω)

∥∥f−∥∥
Ln(Ω)

, (3.21)

with the constant C that depends only on the dimension n (but not on the function c(x) ≤ 0).

Proof. The idea is very similar to what we did in the proof of the isoperimetric inequality.
If M := supΩ u ≤ 0, then there is nothing to prove, hence we assume that M > 0. The
maximum is then achieved at an interior point x0 ∈ Ω, M = u(x0), as u(x) ≤ 0 on ∂Ω.
Consider the function v = −u+, then v ≤ 0 in Ω, v ≡ 0 on ∂Ω and

−M = inf
Ω
v = v(x0) < 0.

We proceed as in the proof of the isoperimetric inequality. Let Γ be the lower contact set of
the function v. As v ≤ 0 in Ω, we have v < 0 on Γ, hence v is smooth on Γ, and

∆v = −∆u ≤ −f(x) + c(x)u ≤ −f(x), for x ∈ Γ, (3.22)

as c(x) ≤ 0 and u(x) ≥ 0 on Γ. The analog of the inclusion (2.9) that we will now prove is

B(0;M/d) ⊂ ∇v(Γ), (3.23)

with d = diam(Ω) and B(0,M/d) the open ball centered at the origin of radius M/d. One
way to see that is by sliding: let p ∈ B(0;M/d) and consider the hyperplane that is the graph
of

zk(x) = p · x− k.
Clearly, zk(x) < v(x) for k sufficiently large. As we decrease k, sliding the plane up, let k̄
be the first value when the graphs of v(x) and zk̄(x) touch at a point x1. Then we have
v(x) ≥ zk̄(x) for all x ∈ Ω. If x1 is on the boundary ∂Ω then v(x1) = zk̄(x1) = 0, and we have

p · (x0 − x1) = zk̄(x0)− zk̄(x1) ≤ v(x0)− 0 = −M,

whence |p| ≥ M/d, which is a contradiction. Therefore, x1 is an interior point, which means
that x1 ∈ Γ (by the definition of the lower contact set), and p = ∇v(x1). This proves the
inclusion (3.23).

Mimicking the proof of the isoperimetric inequality we use the area formula (cn is the
volume of the unit bal in Rn):

cn

(
M

d

)n
= |B(0;M/d)| ≤ |∇v(Γ)| ≤

∫
Γ

|det(D2v(x))|dx. (3.24)
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Now, as in the aforementioned proof, for every point x in the contact set Γ, the matrix D2v(x)
is non-negative definite, hence (note that (3.22) implies that f(x) ≤ 0 on Γ)

|det[D2v(x)]| ≤
(

∆v

n

)n
≤ (−f(x))n

nn
. (3.25)

Integrating (3.25) and using (3.24), we get

Mn ≤ (diam(Ω))n

cnnn

∫
Γ

|f−(x)|ndx, (3.26)

which is (3.21). �
An important consequence of Lemma 3.8 is a maximum principle for a domain with a

small volume [5].

Theorem 3.9 (The maximum principle for domains of a small volume) Let u ∈ C2(Ω)∩C(Ω̄)
satisfy

∆u(x) + c(x)u(x) ≥ 0 in Ω,

and assume that u ≤ 0 on ∂Ω. Then there exists a positive constant δ which depends on the
spatial dimension n, the diameter of Ω, and ‖c+‖L∞, so that if |Ω| ≤ δ then u ≤ 0 in Ω.

Proof. If c ≤ 0 then u ≤ 0 by the standard maximum principle. In general, assume
that u+ 6≡ 0, and write c = c+ − c−. We have

∆u− c−u ≥ −c+u.

Lemma 3.8 implies that (with a constant C that depends only on the dimension n)

sup
Ω
u ≤ Cdiam(Ω)‖c+u+‖Ln(Ω) ≤ Cdiam(Ω)‖c+‖∞|Ω|1/n sup

Ω
u ≤ 1

2
sup

Ω
u,

when the volume of Ω is sufficiently small:

|Ω| ≤ 1

(2Cdiam(Ω)‖c+‖∞)n
. (3.27)

We deduce that supΩ u ≤ 0 contradicting the assumption u+ 6≡ 0, Hence, we have u ≤ 0 in Ω
under the condition (3.27). �

4 Act IV. Dancing together

We will now use a combination of the maximum principle (mostly for small domains) and
the moving plane method to prove some results on the symmetry of the solutions to elliptic
problems. We show just the tip of the iceberg – a curious reader will find many other results
in the literature, the most famous being, perhaps, the De Giorgi conjecture, a beautiful
connection between geometry and applied mathematics.
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4.1 The Gidas-Ni-Nirenberg theorem

The following result on the radial symmetry of non-negative solutions is due to Gidas, Ni and
Nirenberg. It is a basic example of a general phenomenon that positive solutions of elliptic
equations tend to be monotonic in one form or other. We present the proof of the Gidas-Ni-
Nirenberg theorem from [20]. The proof uses the moving plane method combined with the
maximum principles for narrow domains, and domains of small volume.

Theorem 4.1 Let B1 ∈ Rn be the unit ball, and u ∈ C(B̄1) ∩ C2(B1) be a positive solution
of the Dirichlet boundary value problem

∆u+ f(u) = 0 in B1, (4.1)

u = 0 on ∂B1,

with the function f that is locally Lipschitz in R. Then, the function u is radially symmetric
in B1 and

∂u

∂r
(x) < 0 for x 6= 0.

To address an immediate question the reader may have, we give the following simple exercise.

Exercise 4.2 Show that the conclusion that a function u satisfying (4.1) is radially symmetric
is false without the assumption that the function u is positive.

The proof of Theorem 4.1 is based on the following lemma, which applies to general domains
with a planar symmetry, not just balls.

Lemma 4.3 Let Ω be a bounded domain that is convex in the x1-direction and symmetric
with respect to the plane {x1 = 0}. Let u ∈ C(Ω̄) ∩ C2(Ω) be a positive solution of

∆u+ f(u) = 0 in Ω, (4.2)

u = 0 on ∂Ω,

with the function f that is locally Lipschitz in R. Then, the function u is symmetric with
respect to x1 and

∂u

∂x1

(x) < 0 for any x ∈ Ω with x1 > 0.

Proof of Theorem 4.1. Theorem 4.1 follows immediately from Lemma 4.3. Indeed,
Lemma 4.3 implies that u(x) is decreasing in any given radial direction, since the unit ball
is symmetric with respect to any plane passing through the origin. It also follows from the
same lemma that u(x) is invariant under a reflection with respect to any hyperplane passing
through the origin – this trivially implies that u is radially symmetric. �

Proof of Lemma 4.3

We use the coordinate system x = (x1, y) ∈ Ω with y ∈ Rn−1. We will prove that

u(x1, y) < u(x∗1, y) for all x1 > 0 and −x1 < x∗1 < x1. (4.3)
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This, obviously, implies monotonicity in x1 for x1 > 0. Next, letting x∗1 → −x1, we get the
inequality

u(x1, y) ≤ u(−x1, y) for any x1 > 0.

Changing the direction, we get the reflection symmetry: u(x1, y) = u(−x1, y).
We now prove (4.3). Given any λ ∈ (0, a), with a = supΩ x1, we take the “moving plane”

Tλ = {x1 = λ},

and consider the part of Ω that is “to the right” of Tλ:

Σλ = {x ∈ Ω : x1 > λ}.

Finally, given a point x, we let xλ be the reflection of x = (x1, x2, . . . , xn) with respect to Tλ:

xλ = (2λ− x1, x2, . . . , xn).

Consider the difference
wλ(x) = u(x)− u(xλ) for x ∈ Σλ.

The mean value theorem implies that wλ satisfies

∆wλ = f(u(xλ))− f(u(x)) =
f(u(xλ))− f(u(x))

u(xλ)− u(x)
wλ = −c(x, λ)wλ

in Σλ. This is a recurring trick: the difference of two solutions of a semi-linear equation
satisfies a ”linear” equation with an unknown function c. However, we know a priori that the
function c is bounded:

|c(x)| ≤ Lip(f), for all x ∈ Ω. (4.4)

The boundary ∂Σλ consists of a piece of ∂Ω, where wλ = −u(xλ) < 0 and of a part of the
plane Tλ, where x = xλ, thus wλ = 0. Summarizing, we have

∆wλ + c(x, λ)wλ = 0 in Σλ (4.5)

wλ ≤ 0 and wλ 6≡ 0 on ∂Σλ,

with a bounded function c(x, λ). As the function c(x, λ) does not necessarily have a definite
sign, we may not apply the maximum principle and immediately conclude from (4.5) that

wλ < 0 inside Σλ for all λ ∈ (0, a). (4.6)

Nevertheless, using the moving plane method, we will be able to show that (4.6) holds. This
implies in particular that wλ assumes its maximum (equal to zero) over Σ̄λ along Tλ. The
Hopf lemma implies then

∂wλ
∂x1

∣∣∣∣
x1=λ

= 2
∂u

∂x1

∣∣∣∣
x1=λ

< 0.

Given that λ is arbitrary, we conclude that

∂u

∂x1

< 0, for any x ∈ Ω such that x1 > 0.
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Therefore, it remains only to show that wλ < 0 inside Σλ to establish monotonicity of u in x1

for x1 > 0. Another consequence of (4.6) is that

u(x1, x
′) < u(2λ− x1, x

′) for all λ such that x ∈ Σλ,

that is, for all λ ∈ (0, x1), which is the same as (4.3).
In order to show that wλ < 0 one would like to apply the maximum principle to the

boundary value problem (4.5). However, as we have mentioned, a priori the function c(x, λ)
does not have a sign, so the usual maximum principle may not be used. On the other hand,
there exists δc such that the maximum principle for narrow domains holds for the operator

Lu = ∆u+ c(x)u,

and domains of the width not larger than δc in the x1-direction. Note that δc depends only
on ‖c‖L∞ that is controlled in our case by (4.4). Moreover, when λ is sufficiently close to a:

a− δc < λ < a,

the domain Σλ does have the width in the x1-direction which is smaller than δc. Thus, for
such λ the maximum principle for narrow domains implies that wλ < 0 inside Σλ. This is
because wλ ≤ 0 on ∂Σλ, and wλ 6≡ 0 on ∂Σλ.

Let us now decrease λ (move the plane Tλ to the left, hence the name “the moving
plane” method), and let (λ0, a) be the largest interval of values so that wλ < 0 inside Σλ for
all λ ∈ (λ0, a). If λ0 = 0, that is, if we may move the plane Tλ all the way to λ = 0, while
keeping (4.6) true, then we are done – (4.6) follows. Assume, for the sake of a contradiction,
that λ0 > 0. Then, by continuity, we still know that

wλ0 ≤ 0 in Σλ0 .

Moreover, wλ0 is not identically equal to zero on ∂Σλ0 . The strong maximum principle implies
that

wλ0 < 0 in Σλ0 . (4.7)

We will show that then
wλ0−ε < 0 in Σλ0−ε (4.8)

for sufficiently small ε < ε0. This will contradict our choice of λ0 (unless λ0 = 0).
Here is the key step and the reason why the maximum principle for domains of small

volume is useful for us here: choose a simply connected closed set K in Σλ0 , with a smooth
boundary, which is “nearly all” of Σλ0 , in the sense that

|Σλ0\K| < δ/2

with δ > 0 to be determined. Inequality (4.7) implies that there exists η > 0 so that

wλ0 ≤ −η < 0 for any x ∈ K.

By continuity, there exits ε0 > 0 so that

wλ0−ε < −
η

2
< 0 for any x ∈ K, (4.9)
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for ε ∈ (0, ε0) sufficiently small. Let us now see what happens in Σλ0−ε \ K. As far as the
boundary is concerned, we have

wλ0−ε ≤ 0

on ∂Σλ0−ε – this is true for ∂Σλ for all λ ∈ (0, a), and, in addition,

wλ0−ε < 0 on ∂K,

because of (4.9) We conclude that

wλ0−ε < 0 on ∂(Σλ0−ε\K).

However, when ε is sufficiently small we have |Σλ0−ε\K| < δ. Choose δ (once again, solely
determined by ‖c‖L∞(Ω)), so small that we may apply the maximum principle for domains of
small volume to the function wλ0−ε in the domain Σλ0−ε\K. Then, we obtain

wλ0−ε ≤ 0 in Σλ0−ε\K.

The strong maximum principle implies that

wλ0−ε < 0 in Σλ0−ε\K.

Putting two and two together we see that (4.8) holds. This, however, contradicts the choice
of λ0. The proof of the Gidas-Ni-Nirenberg theorem is complete. �

4.2 The sliding method

The sliding method differs from the moving plane method in that one compares translations
of a function rather than its reflections with respect to a plane. We will illustrate it on an
example taken from [20].

Theorem 4.4 Let Ω be an arbitrary bounded domain in Rn which is convex in the x1-
direction. Let u ∈ C2(Ω) ∩ C(Ω̄) be a solution of

∆u+ f(u) = 0 in Ω (4.10)

u = η(x) on ∂Ω

with a Lipschitz function f . Assume that for any three points x′ = (x′1, y), x = (x1, y),
and x′′ = (x′′1, y) lying on a segment parallel to the x1-axis, x′1 < x1 < x′′1 with x′, x′′ ∈ ∂Ω,
the following hold:

η(x′) < u(x) < η(x′′) if x ∈ Ω (4.11)

and
η(x′) ≤ η(x) ≤ η(x′′) if x ∈ ∂Ω. (4.12)

Then u is monotone in x1 in Ω:

u(x1 + τ) > u(x1, y) for (x1, y), (x1 + τ, y) ∈ Ω and τ > 0.

Finally, u is the unique solution of (4.10) in C2(Ω) ∩ C(Ω̄) satisfying (4.11).
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Assumption (4.11) is usually checked in applications from the maximum principle and is not
as unverifiable and restrictive in practice as it might seem at a first glance. For instance,
consider (4.10) in a rectangle D = [−a, a]x × [0, 1]y with the Dirichlet data

η(−a, y) = 0, η(a, y) = 1,

prescribed at the vertical boundaries, while the data prescribed along the horizontal lines y = 0
and y = 1: η0(x) = u(x, 0) and η1(x) = u(x, 1) are monotonic in x. The function f is assumed
to vanish at u = 0 and u = 1:

f(0) = f(1) = 0, f(s) ≤ 0 for u /∈ [0, 1].

The maximum principle implies that then 0 ≤ u ≤ 1 so that both (4.11) and (4.12) hold.
Then Theorem 4.4 implies that the solution u(x, y) is monotonic in x.

Proof. The philosophy of the proof is very similar to what we did in the proof of the
Gidas-Ni-Nirenberg theorem. For τ ≥ 0, we let uτ (x1, y) = u(x1 + τ, y) be a shift of u to the
left. The function uτ is defined on the set Ωτ = Ω− τe1 obtained from Ω by sliding it to the
left a distance τ parallel to the x1-axis. The monotonicity of u may be restated as

uτ > u in Dτ = Ωτ ∩ Ω for any τ > 0, (4.13)

and this is what we will prove. As before, we first establish (4.13) for τ close to the largest
value τ0 – that is, those that have been slid almost all the way to the left, and the domain Dτ

is both narrow and small. This will be done using the maximum principle for domains of a
small volume. Then we will start decreasing τ , sliding the domain Ωτ to the right, and will
show that you may go all the way to τ = 0, keeping (4.13) enforced.

Consider the function

wτ (x) = uτ (x)− u(x) = u(x1 + τ, y)− u(x1, y),

defined in Dτ . Since uτ satisfies the same equation as u, we have from the mean value theorem

∆wτ + cτ (x)wτ = 0 in Dτ (4.14)

wτ ≥ 0 on ∂Dτ

where

cτ (x) =
f(uτ (x))− f(u(x))

uτ (x)− u(x)

is a uniformly bounded function:
|cτ (x)| ≤ Lip(f). (4.15)

The inequality on the boundary ∂Dτ in (4.14) follows from assumptions (4.11) and (4.12).
Let

τ0 = sup{τ > 0 : Dτ 6= ∅}
be the largest shift of Ω to the left that we can make so that Ω and Ωτ still have a non-zero
intersection. The volume |Dτ | is small when τ is close to τ0. As in the moving plane method,
since the function cτ (x) is uniformly bounded by (4.15), we may apply the maximum principle
for small domains to wτ in Dτ for τ close to τ0, and conclude that wτ > 0 for such τ .
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Then we start sliding Ωτ back to the right, that is, we decrease τ from τ0 to a critical
position τ1: let (τ1, τ0) be a maximal interval with τ1 ≥ 0 so that

wτ ≥ 0 in Dτ for all τ ∈ (τ1, τ0].

We want to show that τ1 = 0 and argue by contradiction assuming that τ1 > 0.
Continuity implies that wτ1 ≥ 0 in Dτ1 . Furthermore, (4.11) implies that

wτ1(x) > 0 for all x ∈ Ω ∩ ∂Dτ1 .

The strong maximum principle then implies that wτ1 > 0 in Dτ1 .
Now we use the same idea as in the proof of Lemma 4.3: choose δ > 0 so that the maximum

principle holds for any solution of (4.14) in a domain of volume less than δ. Carve out of Dτ1

a closed set K ⊂ Dτ1 so that
|Dτ1\K| < δ/2.

We know that wτ1 > 0 on K, hence, as the set K is compact, infK w
τ1(x) > 0. Thus, for ε > 0

sufficiently small, the function wτ1−ε is also positive on K. Moreover, for ε > 0 small, we have

|Dτ1−ε\K| < δ.

Furthermore, since
∂(Dτ1−ε\K) ⊂ ∂Dτ1−ε ∪K,

we see that
wτ1−ε ≥ 0 on ∂(Dτ1−ε\K).

Thus, wτ1−ε satisfies

∆wτ1−ε + cτ1−ε(x)wτ1−ε = 0 in Dτ1−ε\K (4.16)

wτ1−ε ≥ 0 on ∂(Dτ1−ε\K).

The maximum principle for domains of small volume implies that

wτ1−ε ≥ 0 on Dτ1−ε\K.

Hence, we have
wτ1−ε ≥ 0 in all of Dτ1−ε,

and, as
wτ1−ε 6≡ 0 on ∂Dτ1−ε,

it is positive in Dτ1−ε. However, this contradicts the choice of τ1. Therefore, τ1 = 0 and the
function u is monotone in the x1-variable.

Finally, to show that such solution u is unique, we suppose that v is another solution.
We argue exactly as before but with wτ = uτ − v. The same proof shows that uτ ≥ v for
all τ ≥ 0. In particular, u ≥ v. Interchanging the role of u and v we conclude that u = v. �

Another beautiful application of the sliding method allows to extend lower bounds ob-
tained in one part of a domain to a different part by moving a sub-solution around the
domain and observing that it may never touch a solution. This is a very simple and powerful
tool in many problems.
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Lemma 4.5 Let u be a positive function in an open connected set D satisfying

∆u+ f(u) ≤ 0 in D

with a Lipschitz function f . Let B be a ball with its closure B̄ ⊂ D, and suppose z is a
function in B̄ satisfying

z ≤ u in B

∆z + f(z) ≥ 0, wherever z > 0 in B

z ≤ 0 on ∂B.

Then for any continuous one-parameter family of Euclidean motions (rotations and transla-
tions) A(t), 0 ≤ t ≤ T , so that A(0) = Id and A(t)B̄ ⊂ D for all t, we have

zt(x) = z(A(t)−1x) < u(x) in Bt = A(t)B. (4.17)

Proof. The rotational invariance of the Laplace operator implies that the function zt satisfies

∆zt + f(zt) ≥ 0, wherever zt > 0 in Bt

zt ≤ 0 on ∂Bt.

Thus the difference wt = zt − u satisfies ∆wt + ct(x)wt ≥ 0 wherever zt > 0 in Bt with ct
bounded in Bt, where, as always,

ct(x) =


f(zt(x))− f(u(x))

zt(x)− u(x)
, if zt(x) 6= u(x)

0, otherwise.

In addition, wt < 0 on ∂Bt.
We now argue by contradiction. Suppose that there is a first t so that the graph of zt

touches the graph of u at a point x0. Then, for that t, we still have wt ≤ 0 in Bt, but
also wt(x0) = 0. As u > 0 in D, and zt ≤ 0 on ∂Bt, the point x0 has to be inside Bt, which
means that zt satisfies

zt + f(z) ≥ 0

in a neighborhood of x0. The maximum principle implies then that wt ≡ 0 in the whole
component G of the set of points in Bt where zt > 0 that contains x0. Consequently, wt(x̃) = 0
for all x̃ ∈ ∂G. But then zt(x̃) = u(x̃) > 0 on ∂G, which contradicts the fact that zt = 0
on ∂G. Hence the graph of zt may not touch that of u and (4.17) follows. �

Lemma 4.5 is often used to ”slide around” a sub-solution that is positive somewhere to
show that solution itself is uniformly positive.

5 Monotonicity in unbounded domains

We now consider the monotonicity properties of bounded solutions of

∆u+ f(u) = 0 in Ω (5.1)
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when the domain Ω is not bounded, so that monotonicity may not be ”forced” on the solution
as in (4.11)-(4.12). We will consider two examples, the first one is in the whole space, and
is part of very deep mathematics but the version we present is relatively simple – the main
result is that solution of a semi-linear equation depends only on one variable. The second
example is more technically difficult – it addresses domains bounded by a graph of a function
and shows monotonicity in any direction that does not touch the graph.

5.1 Monotonicity in Rn

Our first example taken from the paper [15] by Berstycki, Hamel and Monneau deals with
the whole space. We consider solutions of

∆u+ f(u) = 0 in Rn (5.2)

which satisfy |u| ≤ 1 together with the asymptotic conditions

u(x′, xn)→ ±1 as xn → ±∞ uniformly in x′ = (x1, . . . , xn−1). (5.3)

The given function f is Lipschitz-continuous on [−1, 1]. We assume that there exists δ > 0
so that

f is non-increasing on [−1,−1 + δ] and on [1− δ, 1]; and f(±1) = 0. (5.4)

The prototypical example is f(u) = u − u3. This problem appears in many applications,
ranging from biology and combustion to the differential geometry. The main feature of the
nonlinearity is that an ODE

du

dt
= f(u) (5.5)

has two stable solutions u = −1 and u = 1. Solutions of the partial differential differential
equation (5.2) describe diffusive transitions between regions in space where u is close to (−1)
and those where u is close to +1. The prototypical example is the solution of

u′′0 + f(u0) = 0 in R. u0(±∞) = ±1.

This equation may be solved explicitly: multiplying (5.6) by u′0 and integrating from −∞ to
x, using the boundary conditions, leads to

1

2
(u′0)2 + F (u0) = 0, u0(±∞) = ±1. (5.6)

Here, we have defined

F (s) =

∫ s

−1

f(u)du. (5.7)

A necessary condition for a solution of (5.6) to exist is that F (1) = 0, or∫ 1

−1

f(u)du = 0. (5.8)

Exercise 5.1 Find a sufficient condition on the nonlinearity f(u) for a monotonically in-
creasing solution of (5.6) to exist.
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Rather than study the existence question, we will assume that (5.2) has a solution, and show
that the asymptotic conditions (5.3) imply that the solution is actually one-dimensional.

Theorem 5.2 Let u be any solution of (5.2)-(5.3) such that |u| ≤ 1. Then u(x′, xn) = u0(xn)
where u0 is a solution of

u′′0 + f(u0) = 0 in R, u0(±∞) = ±1.

Moreover, u is increasing with respect to xn. Finally, such solution is unique up to a transla-
tion.

Without the uniformity assumption in (5.3) this is known as ”the weak form” of the De Giorgi
conjecture, and was resolved by Savin [108] who showed that all solutions are one-dimensional
in n ≤ 8, and del Pino, Kowalczyk and Wei [44] who showed that non-planar solutions exist
n ≥ 9. The additional assumption of uniform convergence at infinity made in this section
makes this question much easier. The full De Giorgi conjecture is that any solution of (5.4)
in dimension n ≤ 8 with f(u) = u − u3 such that −1 ≤ u ≤ 1 is one-dimensional. It is still
open in this generality, to the best of our knowledge. The motivation for the conjecture comes
from the study of the minimal surfaces in differential geometry but we will not discuss this
connection here.

First, we state a version of the maximum principle for unbounded domains.

Lemma 5.3 Let D be an open connected set in Rn, possibly unbounded. Assume that D̄ is
disjoint from the closure of an infinite open (solid) cone Σ. Suppose that a function z ∈ C(D̄)
is bounded from above and satisfies

∆z + c(x)z ≥ 0 in D (5.9)

z ≤ 0 on ∂D.

with some continuous function c(x) ≤ 0, then z ≤ 0.

Proof. If the function z(x) would, in addition, vanish at infinity:

lim sup
|x|→+∞

z(x) = 0, (5.10)

then the proof would be easy. Indeed, if (5.10) holds then we can find a sequence Rn → +∞
so that

sup
D̄∩{|x|=Rn}

z(x) ≤ 1

n
. (5.11)

The usual maximum principle in the domain Dn = D ∩ B(0;Rn) imples that z(x) ≤ 1/n
in Dn. Letting n→∞ gives

z(x) ≤ 0 in D.

Our next task is to reduce the case of a bounded function z to (5.11). To do this we will
construct a harmonic function g(x) > 0 in D such that

|g(x)| → +∞ as |x| → +∞. (5.12)
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Since g is harmonic, the ratio σ = z/g will satisfy a differential inequality in D:

∆σ +
2

g
∇g · ∇σ + cσ ≥ 0.

This is similar to (5.9) but now σ does satisfy the asymptotic condition

lim sup
x∈D,|x|→∞

σ(x) ≤ 0,

uniformly in x ∈ D. Moreover, σ ≤ 0 on ∂D. Hence one may apply the above argument to
the function σ(x), and conclude that σ(x) ≤ 0, which, in turn, implies that z(x) ≤ 0 in D.

In order to construct such harmonic function g(x) in D, the idea is to decrease the cone Σ

to a cone Σ̃ and to consider the principal eigenfunction ψ of the spherical Laplace-Beltrami
operator in the region G = Sn−1\Σ̃ with ψ = 0 on ∂G:

∆Sψ + µψ = 0, ψ > 0 in G,

ψ = 0 on ∂G.

Note that the eigenvalue µ > 0. Then, going to the polar coordinates x = rξ, r > 0, ξ ∈ Sn−1,
we set g(x) = rαψ(ξ), ξ ∈ G, defined on D, with

α(n+ α− 2) = µ.

With this choice of α, the function g is harmonic:

∆g =
∂2g

∂r2
+
n− 1

r

∂g

∂r
+

1

r2
∆Sg = [α(α− 1) + α(n− 1)− µ]rα−2Ψ = 0.

Moreover, as µ > 0 (the operator (−∆S) is positive), we have α > 0, thus (5.12) also holds,
and the proof is complete. �

This lemma will be most important in the proof of the Berestycki-Caffarelli-Nirenberg
result later on. For now we will need the following corollary that we will use for half-spaces.

Corollary 5.4 Let f be a Lipschitz continuous function, non-increasing on [−1,−1 + δ] and
on [1− δ, 1] for some δ > 0. Assume that u1 and u2 satisfy

∆ui + f(ui) = 0 in Ω

and are such that |ui| ≤ 1. Assume furthermore that u2 ≥ u1 on ∂Ω and that either u2 ≥ 1−δ
or u1 ≤ −1 + δ in Ω. If Ω ⊂ Rn is an open connected set so that Rn\Ω̄ contains an open
infinite cone then u2 ≥ u1 in Ω.

Proof. Assume, for instance, that u2 ≥ 1− δ, and set w = u1 − u2. Then

∆w + c(x, z)w = 0 in Ω

with

c(x) =
f(u1)− f(u2)

u1 − u2

≤ 0 where w ≥ 0.

Hence if the setG = {w > 0} is not empty, we may apply the maximum principle of Lemma 5.3
to the function w in G (note that w = 0 on ∂G), and conclude that w ≤ 0 in G giving a
contradiction. �
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Proof of Theorem 5.2

We are going to prove that

u is increasing in any direction ν = (ν1, . . . , νn) with νn > 0. (5.13)

This will mean that
1

νn

∂u

∂ν
=

∂u

∂xn
+

n−1∑
j=1

αj
∂u

∂xj
> 0

for any choice of αj = νj/νn. It follows that all ∂u/∂xj = 0, j = 1, . . . , n − 1, so that u
depends only on xn, and, moreover, ∂u/∂xn > 0. Hence, (5.13) implies the conclusion of
Theorem 5.2 on the monotonicity of the solution.

We now prove (5.13). Monotonicity in the direction ν can be restated as

ut(x) ≥ u(x), for all t ≥ 0 and all x ∈ D, (5.14)

where ut(x) = u(x+tν) are the shifts of the function u in the direction ν. We start the sliding
method with a very large t. Observe that there exists a real a > 0 so that

u(x′, xn) ≥ 1− δ for all xn ≥ a,

and
u(x′, xn) ≤ −1 + δ for all xn ≤ −a.

Take t ≥ 2a/νn, then the functions u and ut are such that

ut(x′, xn) ≥ 1− δ for all x′ ∈ Rn−1 and for all xn ≥ −a
u(x′, xn) ≤ −1 + δ for all x′ ∈ Rn−1 and for all xn ≤ −a (5.15)

ut(x′,−a) ≥ u(x′,−a) for all x′ ∈ Rn−1.

Hence, we may apply Corollary 5.4 separately in Ω1 = Rn−1 × (−∞,−a) and Ω2 = Rn−1 ×
(−a,+∞). In both cases, we conclude that ut ≥ u and thus

ut ≥ u in all of Rn for t ≥ 2a/νn.

Following the sliding method, we start to decrease t, and let

τ = inf{t > 0, ut ≥ u in Rn}.

By continuity, we still have uτ ≥ u in Rn. We need to show that τ = 0, and argue by
contradiction. Assume that τ > 0 and consider two cases.

Case 1. Suppose that

inf
Da

(uτ − u) > 0, Da = Rn−1 × [−a, a]. (5.16)

The function u is globally Lipschitz continuous – this follows from the standard elliptic es-
timates [69]. This implies that there exists η0 > 0 so that for all τ − η0 < t < τ we still
have

ut(x′, xn) > u(x′, xn) for all x′ ∈ Rn−1 and for all −a ≤ xn ≤ a. (5.17)
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As u(x′, xn) ≥ 1− δ for all xn ≥ a, it follows that

ut(x′, xn) ≥ 1− δ for all xn ≥ a and t > 0. (5.18)

We may then apply Corollary 5.4 in the half-spaces {xn > a} and {xn < −a} to conclude
that

uτ−η(x) > u(x)

everywhere in Rn for all η ∈ [0, η0]. This contradicts the choice of τ . Thus, the case (5.16) is
impossible.

Case 2. Suppose that

inf
Da

(uτ − u) = 0, Da = Rn−1 × [−a, a]. (5.19)

This would be a contradiction to the maximum principle if we could conclude from (5.19)
that the graphs of uτ and u touch at one internal point. This, however, is not clear, as there
may exist a sequence of points ξk with |ξk| → +∞, such that uτ (ξk) − u(ξk) → 0, without
the graphs ever touching. In order to deal with this issue, we will use the usual trick of
moving “the interesting part” of the domain to the origin and passing to the limit. We know
from (5.19) that there exists a sequence ξk ∈ Da so that

uτ (ξk)− u(ξk)→ 0 as k →∞.

Let us re-center: set
uk(x) = u(x+ ξk).

Then the standard elliptic regularity estimates imply that uk(x) converge along a subsequence
to a function u∞(x), uniformly on compact sets. We have

uτ∞(0) = u∞(0),

and
uτ∞(x) ≥ u∞(x), for all x ∈ Rn,

because uτk ≥ uk for all k. The strong maximum principle implies that uτ∞ = u∞, that is,

u∞(x+ τν) = u∞(x),

that is, the function u∞ is periodic in the ν-direction. However, as all ξk ∈ Da, their n-
th components are uniformly bounded |(ξk)n| ≤ a. Therefore, when we pass to the limit
we do not lose the boundary conditions in xn: the function u∞ must satisfy the boundary
conditions (5.3). This is a contradiction. Hence, this case is also impossible, and thus τ = 0.
This proves monotonicity of u(x) in xn and the fact that u depends only on xn: u(x) = u(xn).

In order to prove the uniqueness of such solution, assuming there are two such solutions u
and v, one repeats the sliding argument above but applied to the difference

wτ (xn) = u(xn + τ)− v(x).

The same sliding argument will now imply that u(xn+τ) ≥ v(xn) for all xn ∈ R and all τ ≥ 0,
meaning that, in particular, u(xn) ≥ v(xn). Reversing the role of u and v we will conclude
that u(xn) = v(xn), showing uniqueness of such solution. �
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5.2 Monotonicity in general unbounded domains

We now consider the monotonicity properties of the bounded solutions of

∆u+ f(u) = 0 in Ω (5.20)

u = 0 on ∂Ω,

when the domain Ω is not all of Rn but it is not bounded so that monotonicity may not
be ”forced” on the solution as in (4.11)-(4.12). We assume that the solution u is uniformly
bounded: 0 < u ≤M <∞ in Ω and the domain Ω is defined by

Ω = {x ∈ Rn : xn > φ(x1, . . . , xn−1)}. (5.21)

For simplicity, we assume that φ : Rn−1 → R is a smooth, globally Lipschitz function. An
interested reader should consult [13] for the additional slightly technical arguments required
if we only assume that φ is a globally Lipschitz continuous function. A typical example would
be a half-space Ω – the main result we are going to prove says that u has to be a monotonic
function of the single variable xn in this case.

We will assume that f is Lipschitz continuous on R+, f(s) > 0 on (0, 1) and f(s) ≤ 0
for s ≥ 1. Furthermore, we assume that f satisfies

f(s) ≥ δ0s on [0, s0] for some s0 > 0, (5.22)

and
there exists s1 so that f is non-increasing on (s1, 1). (5.23)

The prototypical example is3 f(s) = s(1− s) . The main result of Berestycki, Caffarelli and
Nirenberg in [13] says that such u is unique, monotonic in xn and tends to one as distance
to the boundary tends to infinity. Note that unless the boundary is flat, that is, it has the
form ∂Ω = {xn = c0} with some c0 ∈ R, there is no reason to expect that the solution will
depend only on xn.

Theorem 5.5 The function u has the following properties:
(i) it is monotonic with respect to xn:

∂u

∂xn
> 0 in Ω,

(ii) 0 < u < 1 in Ω
(iii) u(x)→ 1 as dist(x, ∂Ω)→∞, uniformly in Ω.
(iv) u is the unique bounded solution of (5.20) that is positive inside Ω.
(v) Let κ be the Lipschitz constant of the graph function φ, then given any collection of

constants aj, j = 1, . . . , n− 1 so that
n−1∑
j=1

a2
j <

1

κ2
, we have

∂u

∂xn
+

n−1∑
j=1

aj
∂u

∂xj
> 0 in Ω. (5.24)

3Such nonlinearities arise naturally in reaction-diffusion modeling and are known as nonlinearities of the
Fisher-KPP (for Kolmogorov, Petrovskii, Piskunov) type. Apart from the original papers [63, 82] which are
both masterpieces, good recent introductions to reaction-diffusion problems are the books [14, 118], and the
review [117], where many more references can be found.
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Part (v) implies that u is increasing in any direction ξ such that there exists an orthonormal

change of variables x→ z with the zn-axis in the direction of ξ and ∂Ω = {zn = φ̃(z′)} with

a smooth function φ̃.
When φ = 0, that is, when Ω is a half-space, the constants αj in (5.24) may be arbitrary

which immediately implies that

∂u

∂xj
= 0 for all j = 1, . . . , n− 1,

so that u has to be a function of xn only in this case.
Let us explain heuristically why the limit in (iii) holds. Under our assumptions on the

function f , the ODE
u̇ = f(u)

has two steady states: u = 0 is unstable,while u = 1 is stable. Solutions of the elliptic
problem (5.20) can be thought of as steady solutions of the parabolic problem

vt = ∆v + f(v) in Ω (5.25)

v = 0 on ∂Ω,

v(0, x) = v0(x). (5.26)

The parabolic problem inherits from the ODE the stability of the steady state v = 1. The
boundary condition v = 0 on ∂Ω prevents v from being close to one near the boundary but
far away from the boundary its effect is weak, hence solutions tend to one as both distance
from the boundary and time tend to infinity. This, in turn, is reflected in the behavior of the
solutions of the elliptic problem as |x| → +∞.

Outline of the proof

The proof of Theorem 5.5 is fairly long and we prove each part separately. The general flow
is as follows. First, one uses the maximum principle of Lemma 5.3 to show that 0 < u < 1,
so that (ii) holds. Second, we show that f(u) → 0 as dist(x, ∂Ω)) → ∞ – roughly speaking,
because otherwise u would satisfy

∆u < −ε0, (5.27)

at infinity, with some ε0 > 0 which is impossible as 0 < u < 1.
It is easy to conclude from f(u)→ 0 that u→ 1. In the third step, uniqueness is proved

by the sliding method. Finally, monotonicity is established by constructing a solution that
is positive and monotonic. Uniqueness implies that the original solution coincides with that
one and hence is itself monotonic. Such solution is constructed first on bounded domains and
then we pass to the limit of the full domain. The tricky part is to make sure that the limit is
positive – this is done by ensuring that solution we construct stays above u.

Proof of (ii) in Theorem 5.5

Let us assume that u > 1 somewhere and let D be a connected component of the set {u > 1}.
The set D lies outside an open cone since the function φ that defines the boundary ∂Ω is
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Lipschitz. Consider the function z = u− 1 in D. It satisfes

∆z = −f(u) ≥ 0 in D,

as f(u) ≤ 0 in D. Furthermore, z vanishes on ∂D and is bounded in D. Thus, Lemma 5.3
implies that z ≤ 0 in D which is a contradiction. Therefore, we have u ≤ 1 in Ω. If u(x0) = 1
for some x0 ∈ Ω, the function z = u− 1 satisfies z ≤ 0 in Ω, z(x0) = 0 and

∆z + c(x)z = 0 in Ω,

with

c(x) =


f(u(x))

u(x)− 1
, if u(x) < 1

0, if u(x) = 1.

The function c(x) is bounded, hence the strong maximum principle implies that z ≡ 0 in Ω
which contradicts the fact that z = −1 on ∂Ω. �

Proof of (iii) in Theorem 5.5

The proof that u(x)→ 1 as dist(x, ∂Ω)→∞ is in two steps. First, we show that u is bounded
away from zero at a fixed distance away from the boundary: u(x) ≥ ε1 if dist(x, ∂Ω) > R0.
Second, we show that f(u(x)) → 0 as dist(x, ∂Ω) → ∞. This implies that u → 1, as u is
bounded away from zero in this region, and u = 0 and u = 1 are the only zeros of f(u) in the
interval 0 ≤ u ≤ 1.
Step 1: u is strictly positive away from the boundary.

Lemma 5.6 There exist ε1 > 0 and R0 > 0 so that

u(x) > ε1 if dist(x, ∂Ω) > R0. (5.28)

Proof. Let R0 be so large that the principle eigenvalue λ1 of the Dirichlet Laplacian in
a ball B(0;R0) of radius R0 is smaller than the constant δ0 in (5.22), so that f(u) ≥ λ1u
for u ∈ [0, s0]. Let φ1 be the corresponding positive eigenfunction with maxφ1 = 1:

−∆φ1 = λ1φ1 in B(0;R0), (5.29)

φ1 = 0 on ∂B(0;R0),

φ1 > 0 in B(0;R0),

max
x∈B(0;R0)

φ1(x) = 1.

Then the function z = εφ1 is a sub-solution of our equation for 0 < ε ≤ s0, that is,

∆z + f(z) ≥ 0 in B(0;R0) (5.30)

z = 0 on ∂B(0;R0).

Let us choose a ∈ Ω ”large enough” so that B(a;R0) ⊂ Ω and set

ε0 = min
B̄(a;R0)

u.
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The maximum principle implies that ε0 > 0. We set ε1 = min(ε0, s0), then, as φ1 ≤ 1 we have

ε1φ1(x− a) ≤ u(x) in B(a;R0).

We may now slide the ball B(a;R0) around the domain Ω and use Lemma 4.5 to deduce that

ε1φ1(x− y) ≤ u(x) in B(y;R0)

for all y ∈ Ω with dist(y, ∂Ω) > R0. In particular, u(y) > ε1 for such y. �
We see from the proof that the distance R0 depends only on the function f(s), though

the constant ε1 in the above proof depends on the function u. However, we will next show
that u(x) → 1 as dist(x, ∂Ω) → +∞. Therefore, we may choose the center a in the proof of
Lemma 5.6 sufficiently far from the boundary so that

min
x∈B(a,R0)

u(x) > s0.

This will allow us to set ε1 = s0, hence both R0 and ε1 in the statement of Lemma 5.6 depend
only on the function f(s).
Step 2: the nonlinearity vanishes at infinity. As we have explained above, in order to
complete the proof of part (iii) of Theorem 5.5 we show that f(u(x))→ 0 as dist(x, ∂Ω)→∞.
Once again, the heuristic reason is that the function u can not have a uniformly negative
Laplacian in too big a region without violating the condition 0 < u < 1. Here is how that is
formalized. Let v(x) be the solution of

−∆v = 1 in B(0; 1)

v = 0 on ∂B(0; 1).

It is given explicitly by

v(x) =
1− |x|2

2n
,

with
max
B(0;1)

v = v(0) = 1/(2n).

Let also |y| ≥ R0 with R0 as in the previous lemma, and set

γ(y) = min{f(s) : s ∈ [ε1, u(y)]}.

Here ε1 is also as in (5.28). We claim that

γ(y) ≤ 2n

[dist(y, ∂Ω)−R0]2
. (5.31)

This estimate immediately implies that f(u(x))→ 0 as dist(x, ∂Ω)→ +∞.
In order to prove(5.31) we argue by contradiction: suppose that (5.31) fails, that is,

γ(y0) >
2n

[dist(y0, ∂Ω)−R0]2
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for some y0 with dist(y0, ∂Ω) > R0. Fix R < dist(y0, ∂Ω)−R0 so that

γ(y0)

2n
>

1

R2
. (5.32)

The function u cannot have a local minimum at y0 since

∆u(y0) = −f(y0) < 0.

Thus, we may find y1 close to y0 so that u(y1) < u(y0) and dist(y1, ∂Ω) > R0 +R. Lemma 5.6
implies that u ≥ ε1 in B := B(y1;R). Let

z(y) = γ(y0)R2v

(
y − y1

R

)
,

then maxB z = γ(y0)R2/(2n) and z satisfies

−∆z = γ(y0) in B (5.33)

z = 0 on ∂B.

Now we do ”ballooning” (as opposed to ”sliding”) of z: let zτ (x) = τz(x). Then for τ > 0
small we have

zτ (x) < ε1 ≤ u(x) in B.

As we increase τ , there is the first value τ0 so that the graph of zτ0 touches the graph of
u(y) at some point x0. Since z = 0 on ∂B, x0 has to be inside B, hence u(x0) > ε1. Also,
as zτ0(y1) ≤ u(y1), we have

u(x0) = τ0z(x0) ≤ τ0z(y1) =
τ0γ(y0)R2

2n
≤ u(y1) < u(y0) < 1 (5.34)

Hence, by the choice of R (see (5.32)) we have

τ0 <
2n

γ(y0)R2
< 1.

It follows that
w := τ0z − u ≤ 0 in B, w(x0) = τ0z(x0)− u(x0) = 0. (5.35)

Note that, according to (5.34), u(x0) < u(y0) and so in an neighborhood N of x0 we still
have u(x) < u(y0), thus ε1 < u(x) < u(y0). The definition of γ(y0) implies that

∆u(x) ≤ −γ(y0) for x ∈ N,

and thus
∆w(x) ≥ −τ0γ(y0) + γ(y0) > 0 for x ∈ N,

as τ0 < 1. This contradicts the fact that w has a local maximum at x0.
Therefore, (5.31) holds, and γ(y) satisfies γ(y)→ 0 as dist(y, ∂Ω)→∞. As a consequence,

we conclude that f(u(y)) → 0 in this limit, which implies u(y) → 1, since u(y) ≥ ε1 in this
region. Moreover, the above proof shows that the rate at which u(x)→ 1 as dist(x, ∂Ω)→∞
depends only on function f(s), that is, for any ε > 0 there exists Lε so that for any positive
solution u(x) of (5.20) we have

u(x) > 1− ε, if dist(x, ∂Ω) > Lε.
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Proof of (iv) in Theorem 5.5

We now show uniqueness of a positive bounded solution of (5.20). Naturally, we will do this
by sliding. In order to start sliding, we will need the following estimate in strips.

Lemma 5.7 For any h > 0 the solution is bounded away from 1 in the strip

Ωh = {x ∈ Ω : φ(x′) < xn < φ(x′) + h}.

Proof. This follows immediately from the regularity of the solution u(x) up to the boundary
that follows from the standard elliptic estimates [69]. It is instructive also to see the argument
by contradiction and shifting. Assume there exists a sequence ξj ∈ Ωh so that u(ξj)→ 1. We
shift all ξj to the origin: set uj(x) = u(x+ξj), with Ω shifted to a domain Ωj = {xn > φj(x

′)}.
The shifted functions φj(x

′) are all translations of φ(x′) (up to an additive constant) and
thus all have the same Lipschitz constant. Thus, along a subsequence they converge to a
function φ̂(x). The shifted domains converge to a domain Ω̂ = {xn > φ̂(x′)}, with 0 an
interior point of Ω̂, while the shifted solutions converge along a subsequence (this also follows
from the standard elliptic estimates) to a solution of

∆û+ f(û) = 0, in Ω̂

0 ≤ û ≤ 1, in Ω̂,

û = 0 on ∂Ω,

such that û(0) = 1. This is impossible according to part (ii) of the present theorem that we
have already proved. �

Let now u and w be a pair of positive bounded solutions of (5.20). Note that the condition

d(x) := xn − φ(x′)→∞

implies dist(x, ∂Ω)→∞, as the function φ is Lipschitz. Hence, part (iii) of Theorem 5.5 that
we have already proved implies that both u(x) and w(x) tend to one uniformly as d(x)→∞.
Hence there exists A > 0 so that

u(x), w(x) ≥ s1 if d(x) ≥ A, (5.36)

with s1 as in (5.23): f(s) is non-increasing on (s1, 1). We set Ωε = {x ∈ Ω : d(x) > A}
and ΩA = {x ∈ Ω : d(x) < A}. A key point is that once we show u ≥ w in ΩA then this
inequality propagates to the whole Ω. More generally, we have the following lemma.

Lemma 5.8 Suppose that for some τ ≥ 0 the inequality

uτ (x) = u(x+ τen) ≥ w(x) (5.37)

holds in Ω̄A. Then (5.37) holds in all of Ω.

Proof. The proof is very similar to that of Corollary 5.4. Assume that (5.37) holds. The
function z = w − uτ satisfies an equation of the form

∆z + c(x)z = 0 in Ωε.
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Both w, uτ ≥ s1 in Ωε, thus

c(x) =
f(w(x))− f(uτ (x))

w(x)− uτ (x)
≤ 0,

wherever z(x) ≥ 0. Moreover, by assumption z ≤ 0 on ∂Ωε – this is all we need from (5.37).
We may now apply Lemma 5.3, the maximum principle for unbounded domains, to Ωε and
conclude that z ≤ 0 in Ωε, that is (5.37) holds in all of Ω. �

Let us now show that u(x) ≥ w(x) in ΩA. We do that by the sliding method. Note that

uτ (x) = u(x+ τen) > w(x) in ΩA for large τ > 0,

because uτ (x) → 1 as τ → +∞ (according to the already proved part (iii) of the present
theorem) while Lemma 5.7 implies that w(x) is bounded away from 1 in ΩA. As has been our
common practice, we let

T = inf{τ > 0 : uτ (x) ≥ w(x) in ΩA}.

By continuity,
uT (x) ≥ w(x) in ΩA. (5.38)

We have to prove that T = 0. Suppose that T > 0, then there is a sequence of points xj ∈ ΩA

and a sequence τj < T , τj → T , so that

u(xj + τjen) < w(xj). (5.39)

Once again, we shift the points xj to the origin. The domain Ω is moved to Ωj, and, as

before, along a subsequence, Ωj converge to a domain Ω̂ = {x : xn > φ̂(x′)} with a Lipschitz

function φ̂. The shifts of u and w converge to positive solutions û and ŵ of (5.20) in Ω̂ – this
also follows from the standard elliptic regularity estimates. In addition, as T > 0, we know
that û(x) ≥ q0 > 0 in Ω̂, with some q0 > 0. As follows from (5.38), we have

û(x+ Ten) ≥ ŵ(x) in Ω̂A. (5.40)

Lemma 5.8 implies that this inequality holds in the whole domain Ω̂. But passing to the limit
in (5.39) we obtain that at the origin

0 < û(Ten) ≤ ŵ(0).

This implies that
ûT (0) = ŵ(0), (5.41)

and, in particular, 0 is an interior point of Ω̂, as on the boundary of Ω̂ we have ŵ = 0
while ûT > 0 on ∂Ω̂ since T > 0. We have reached a contradiction: the function ẑ = ŵ − ûT
satisfies an elliptic equation

∆ẑ + ĉ(x)ẑ = 0,

and inequality (5.40) means that ẑ ≤ 0, while (5.41) implies that ẑ(0) = 0 and 0 ∈ Ω̂. It
follows that ẑ ≡ 0. However, at the boundary ∂Ω̂, ŵ = 0 while ûT > 0 , hence z < 0 on ∂Ω̂,
which is a contradiction. Thus, T = 0 and u(x) ≥ w(x) for all x ∈ ΩA, hence in all of Ω.
Similarly, we can show that w(x) ≥ u(x) for all x ∈ Ω, and uniqueness follows.
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Proof of (i) in Theorem 5.5

One would like to use Theorem 4.4 to show monotonicity. The problem is that the domain Ω
is unbounded. This should be remedied by the fact that u→ 1 as dist(x, ∂Ω)→∞ – hence,
one may think of infinity as another part of the boundary where the value u = 1 is prescribed
that guarantees that condition (4.11) still ”holds” with the boundary condition ”η(x′) = 0
and η(x′′) = 1”. In order to make this precise we will consider a family of approximating
domains

Ωh = {φ(x′) < xn < φ(x′) + h} (5.42)

and consider a sequence hn → ∞. We will construct a monotonic solution wh on Ωh and
let h→∞. The sequence whn will converge to a limit function w along a subsequence hn →∞.
The function w will be a monotonic solution of (5.20) and uniqueness (the already proved
part (iv) of the Theorem 5.5) will finish the proof. Moreover, in order to make sure that w 6= 0
identically, we will construct wh so that wh ≥ u in Ωh.

Let us construct the monotonic solution w. This is done in two steps. First, we consider
the cylinder

Ωh,R = {x ∈ Ωh : |x′| < R}

with Ωh as in (5.42). The standard Hölder regularity estimates up to the boundary (recall
that the boundary of Ω is smooth) imply that there exist M > 0 and α > 0 so that

|u(x)− u(y)| ≤M |x− y|α for x, y ∈ Ω. (5.43)

Using the constants α and M as above, we define

σ(t) =

{
Mtα, for 0 ≤ t ≤M−1/α,

1, for t ≥M−1/α.

We consider h > h0 = 1 +M−1/α and define a continuous function σR on ∂Ωh,R:

σR(t) =


0, for x ∈ ∂Ω,
1, for x s.t. xn = φ(x′) + h,

σ(xn − φ(x′)), otherwise on ∂Ωh,R.

Note that σR ≥ u on ∂Ωh by (5.43). Let w the solution of

∆wh,R + f(wh,R) = 0 in Ωh,R (5.44)

w = σR on ∂Ωh,R.

Existence of a solution to (5.44) follows from the fact that it has a sub-solution w = u and a
super-solution w = 1. Indeed, start with w0 = w and solve

∆wj+1 − kwj+1 = −f(wj)− kwj in Ωh,R

wj+1 = σR on ∂Ωh,R.

Here k is the Lipschitz constant of f . First, we have

∆w1 − kw1 = −f(w0)− kw0 = −f(u)− ku = ∆u− ku
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and hence
∆(w1 − u)− k(w1 − u) = 0 in Ωh,R,

while w1 ≥ u on ∂Ωh,R. Hence w1 ≥ u ≥ w0. The induction argument shows that

w0 ≤ w1 ≤ · · · ≤ w, (5.45)

because

∆(wj+1 − wj)− k(wj+1 − wj) = −k(wj − wj−1)− [f(wj)− f(wj−1)] ≤ 0

by the induction hypothesis. The last inequality in (5.45) also follows from induction applied
to

∆(wj+1 − w̄)− k(wj+1 − w̄) = −k(wj − w̄)− (f(wj)− f(w̄)) ≥ 0.

Hence, wj converge to a limit wh,R as j → +∞ – elliptic regularity implies that wh,R is a
solution of (5.44).

Theorem 4.4 implies that wh,R is monotonic in xn, and the maximum principle implies
that wh,R ≥ u.

We now pass to the limitR→∞. The standard elliptic estimates as before imply that wh,R
converges along a subsequence Rn →∞ to a function wh ≥ u that satisfies

∆wh + f(wh) = 0 in Ωh

wh = 0 on ∂Ω

wh = 1 on {xn = φ(x′) + h}.

Finally we let h → ∞, and by the same argument conclude that, along a subsequence, whn
converges to a monotonic solution of

∆w + f(w) = 0 in Ωh

w = 0 on ∂Ω

with w ≥ u. Hence uniqueness of a positive bounded solution implies that u has to coincide
with w and we are done. �

Proof of (v) of Theorem 5.5. This one is a trivial consequence of part (i): all it says
is that u is monotonic in any direction ξ such that there exists an orthonormal basis with en
along ξ so that the boundary ∂Ω may be represented as z = φ(z′) in the new variables. �
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Chapter 2

The parabolic maximum principle and
the principal eigenvalue

1 The parabolic maximum principle

The parabolic maximum principle in a bounded domain

The next step in the background review is to recall some basics on the maximum principle
for parabolic equations, which are very similar in spirit to what we have just described for
the elliptic equations. Now, we consider a more general elliptic operator of the form

Lu(x) = aij(x)
∂2u

∂xi∂xj
+ bj(x)

∂u

∂xj
, (1.1)

in a bounded domain Ω ⊂ Rn. Note that the zero-order coefficient c(x) is equal to zero.
We assume that the matrix aij(x) is uniformly elliptic and bounded: there exist two positive
constants λ > 0 and Λ > 0 so that, for any ξ ∈ Rn and any x ∈ Ω, we have

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2. (1.2)

We also assume that all coefficients aij(x) and bj(x) are continuous and uniformly bounded
in Ω. Given a time T > 0, define the parabolic cylinder ΩT = [0, T ) × Ω and the parabolic
boundary

ΓT = {x ∈ Ω, 0 ≤ t ≤ T : either x ∈ ∂Ω or t = 0},
that is, ΓT is the part of the boundary of ΩT without “the top” {(t, x) : t = T, x ∈ Ω}.

Theorem 1.1 (The weak maximum principle) Let a function u(t, x) satisfy

∂u

∂t
= Lu, x ∈ Ω, 0 ≤ t ≤ T, (1.3)

and assume that Ω is a smooth bounded domain. Then u(t, x) attains its maximum over ΩT

on the parabolic boundary ΓT , that is,

sup
ΩT

u(t, x) = sup
ΓT

u(t, x). (1.4)
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Proof. Take ε > 0 and consider the (once again, “corrected” to produce a strict sub-solution)
function

v(t, x) = u(t, x)− εt,
which satisfies

∂v

∂t
− Lv = −ε. (1.5)

In other words, v is, indeed, a strict sub-solution of the parabolic problem. The function v(t, x)
must attain its maximum over the set (the parabolic cylinder with the “top” included)

Ω̄T = ΩT

⋃
{(T, x) : x ∈ Ω},

at some point (t0, x0) ∈ Ω̄T . We claim that this point has to lie on the parabolic boundary ΓT .
Indeed, if 0 < t0 < T and x0 is not on the boundary ∂Ω, then the point (t0, x0) is an interior
maximum of v(t, x), so v(t, x) should satisfy

∂v(t0, x0)

∂t
= 0, ∇v(t0, x0) = 0,

and the matrix D2v(t0, x0) should be non-positive definite. This implies

aij(x0)
∂2v(t0, x0)

∂xi∂xj
≤ 0.

The last two conditions imply that

∂v(x0, t0)

∂t
− Lv(t0, x0) ≥ 0,

which is impossible because of (1.5). On the other hand, if t0 = T , x0 is an interior point of
Ω, and v attains its maximum over Ω̄ at this point, then we should have

∂v(t0, x0)

∂t
≥ 0, ∇v(t0, x0) = 0, aij(x0)

∂2v(t0, x0)

∂xi∂xj
≤ 0,

which, once again, contradicts (1.5). Hence, the function v attains its maximum over Ω̄T at
a point (t0, x0) that belongs to the parabolic boundary ΓT . It means that

max
(t,x)∈Ω̄T

v(t, x) = max
(t,x)∈ΓT

v(t, x) ≤ max
(t,x)∈ΓT

u(t, x).

However, we also have
max

(t,x)∈Ω̄T
u(t, x) ≤ εT + max

(t,x)∈Ω̄T
v(t, x).

Putting the last two inequalities together gives

max
(t,x)∈Ω̄T

u(t, x) ≤ εT + max
(t,x)∈ΓT

u(t, x).

As ε > 0 is arbitrary, it follows that

max
(t,x)∈Ω̄T

u(t, x) ≤ max
(t,x)∈ΓT

u(t, x),

and the proof is complete. �
As in the elliptic case, we also have the strong maximum principle.
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Theorem 1.2 (The strong maximum principle) Let a smooth function u(t, x) satisfy

∂u

∂t
= Lu, x ∈ Ω, 0 ≤ t ≤ T, (1.6)

in a smooth bounded domain Ω. Then if u(t, x) attains its maximum over Ω̄T at an interior
point (t0, x0) 6∈ ΓT then u(t, x) is constant in ΩT .

We will not prove it here, the reader may either use it as an exercise, or consult [52] for a
proof.

The comparison principle

A consequence of the maximum principle is the comparison principle, a result that holds
also for operators with zero order coefficients and in unbounded domains (under a proper
restriction on the growth at infinity).

Theorem 1.3 Let the smooth uniformly bounded functions u(t, x) and v(t, x) satisfy

∂u

∂t
= Lu+ c(x)u, 0 ≤ t ≤ T, x ∈ Ω (1.7)

and
∂v

∂t
= Lv + c(x)v, 0 ≤ t ≤ T, x ∈ Ω, (1.8)

in a smooth (and possibly unbounded) domain Ω. Assume that u(0, x) ≥ v(0, x) and

u(t, x) ≥ v(t, x) for all 0 ≤ t ≤ T and x ∈ ∂Ω.

Then, we have
u(t, x) ≥ v(t, x) for all 0 ≤ t ≤ T and all x ∈ Ω.

Moreover, if in addition, u(0, x) > v(0, x) on an open subset of Ω then u(t, x) > v(t, x) for
all 0 < t < T and all x ∈ Ω.

The assumption that both u(t, x) and v(t, x) are uniformly bounded is important – without
this condition even the Cauchy problem for the standard heat equation in Rn may have more
than one solution, and the comparison principle implies uniqueness trivially. Note that the
special case Ω = Rn is included in Theorem 1.3, and in that case only the comparison at
the initial time t = 0 is needed for the conclusion to hold. Once again, a reader who is not
interested in treating the proof as an exercise should consult [52].

A standard corollary of the parabolic maximum principle is the following estimate.

Exercise 1.4 Let Ω be a bounded domain, and u(t, x) be the solution of the initial boundary
value problem

ut = Lu+ c(x)u, in Ω, (1.9)

u(t, x) = 0 for x ∈ ∂Ω,

u(0, x) = u0(x).

Assume that the function c(x) is bounded, with c(x) ≤M for all x ∈ Ω, then u(t, x) satisfies

|u(t, x)| ≤ ‖u0‖L∞eMt, for all t > 0 and x ∈ Ω. (1.10)

The estimate (1.10) on the possible growth (or decay) of the solution of (1.9) is by no
means optimal, and we will soon see how it can be improved.
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2 The principal eigenvalue and the maximum principle

The principal eigenvalue

The maximum principle for elliptic and parabolic problems has a beautiful connection to the
eigenvalue problems, which also allows to extend it to operators with a zero-order term. Here,
we will consider operators of the form

Lu(x) = aij(x)
∂2u

∂xi∂xj
+ bj(x)

∂u

∂xj
+ c(x)u, (2.1)

with a uniformly elliptic matrix aij(x) and bounded and continuous coefficients aij(x), bj(x)
and c(x).

We assume that Ω is a bounded smooth domain and consider the corresponding eigenvalue
problem with the Dirichlet boundary conditions:

−Lu = λu, x ∈ Ω (2.2)

u = 0 on ∂Ω.

Let us recall that the eigenvalues λk, k ∈ N are discrete and have finite multiplicity1. As the
operator L is not necessarily self-adjoint, the eigenvalues need not be real.

The key spectral property of the operator L comes from the comparison principle. To this
end, we need to recall the Krein-Rutman theorem2 which says if M is a compact operator
which preserves a solid cone K of functions in the space C(Ω), and maps the boundary of K
into its interior, then it has an eigenfunction φ that lies in this cone:

Mφ = λφ.

Moreover, the corresponding eigenvalue λ has the largest real part of all eigenvalues of the
operator M . How can we apply this theorem to the elliptic operators? The operator L given
by (2.1) is not compact, nor does it preserve any interesting cone. However, let us assume
momentarily that c(x) ≤ 0 for all x ∈ Ω. Then the boundary value problem

−Lu = f, in Ω (2.3)

u = 0 on ∂Ω,

has a unique solution, and, in addition, if f(x) ≥ 0 and f 6≡ 0, then u(x) > 0 for all x ∈ Ω.
This means that we may define the inverse operator M = (−L)−1. This operator preserves
the cone of the positive functions, and maps its boundary (non-negative functions that vanish
somewhere in Ω) into its interior. Hence, the inverse operator satisfies the assumptions of
the Krein-Rutman theorem3. Thus, there exists a positive function f and µ ∈ R so that

1This comes from the elliptic regularity estimates but we will not dwell on this issue here, the reader should
really consult [52] or another reference for the proof.

2The classical reference [43] has an excellent discussion and proof of this theorem, as well as many of its
beautiful its consequences.

3Once again, compactness of the inverse would remain under the rug for the moment, as it follows from
the elliptic regularity estimates – please, see [52]
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the function u = µf satisfies (2.3). Positivity of f implies that the solution of (2.3) is also
positive, hence µ > 0. As µ is the eigenvalue of (−L)−1 with the largest real part, λ = µ−1 is
the eigenvalue of (−L) with the smallest real part (in particular, all λk have a positive real
part).

If the assumption c(x) ≤ 0 does not hold, we may take

M > max
x∈Ω

c(x),

and consider the operator
L′u = Lu−Mu.

The zero-order coefficient of L′ is c′(x) = c(x) −M ≤ 0. Hence, we may apply the previous
argument to the operator L′ and conclude that (−L′) has an eigenvalue µ1 that corresponds
to a positive eigenfunction, and has the smallest real part among all eigenvalues of (−L′).
The same is true for the operator (−L), with the eigenvalue λ1 = µ1 −M . We say that λ1

is the principal (Dirichlet) eigenvalue of the operator (−L). The same conclusion holds if
the domain Ω is a torus, and the Dirichlet boundary condition in (2.2) is replaced by the
requirement that the eigenfunction is periodic.

The comparison principle revisited

Let us now connect the principal eigenvalue and the comparison principle. The principal
eigenfunction φ1 > 0, solution of

−Lφ1 = λ1φ1, in Ω, (2.4)

φ1 = 0 on ∂Ω,

(2.5)

in particular, provides a special solution

ψ(t, x) = e−λ1tφ1(x) (2.6)

for the linear parabolic problem

∂ψ

∂t
= Lψ, t > 0, x ∈ Ω (2.7)

ψ = 0 on ∂Ω.

Consider then the Cauchy problem

∂v

∂t
= Lv, t > 0, x ∈ Ω (2.8)

v = 0 on ∂Ω,

v(0, x) = g(x), x ∈ Ω,

with a smooth bounded function g(x) that vanishes at the boundary ∂Ω. We can find a
constant M > 0 so that

−Mφ1(x) ≤ g(x) ≤Mφ1(x), for all x ∈ Ω.
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The comparison principle then implies that for all t > 0 we have a bound

−Mφ1(x)e−λ1t ≤ v(t, x) ≤Mφ1(x)e−λ1t, for all x ∈ Ω, (2.9)

which is very useful, especially if λ1 > 0. The assumption that the initial data g vanishes
at the boundary ∂Ω is not necessary but removes the technical step of having to show that
even if g(x) does not vanish on the boundary, for any positive time t0 > 0 we can find a
constant C0 so that |v(t0, x)| ≤ C0φ1(x). This leads to the bound (2.9) for all t > t0.

Let us now apply the above considerations to solutions of the elliptic problem

−aij(x)
∂2u

∂xi∂xj
− bj(x)

∂u

∂xj
− c(x)u = g(x), (2.10)

u = 0 on ∂Ω,

with a non-negative function g(x). When can we conclude that the solution u(x) is also
non-negative? Solution of (2.10) can be formally written as

u(x) =

∫ ∞
0

v(t, x)dt. (2.11)

Here, the function v(t, x) satisfies the Cauchy problem (2.8). If the principal eigenvalue λ1

of the operator L is positive, then the integral (2.11) converges for all x ∈ Ω because of
the estimates (2.9), and solution of (2.10) is, indeed, given by (2.11). On the other hand,
if g(x) ≥ 0 and g(x) 6≡ 0, then the parabolic comparison principle implies that v(t, x) > 0 for
all t > 0 and all x ∈ Ω.

Therefore, we have proved the following theorem that succinctly relates the notions of the
principal eigenvalue and the comparison principle.

Theorem 2.1 If the principal eigenvalue of the operator (−L) is positive then solutions of
the elliptic equation (2.10) satisfy the comparison principle: u(x) > 0 in Ω if g(x) ≥ 0 in Ω
and g(x) 6≡ 0.

This theorem allows to look at the maximum principle in narrow domains from a slightly
different point of view: the narrowness of the domain implies that the principal eigenvalue
of (−L) is positive no matter what the sign of the free coefficient c(x) is. This is because
the “size” of the second order term in L increases as the domain narrows, while the “size” of
the zero-order term does not change. Therefore, in a sufficiently narrow domain the principal
eigenvalue of (−L) will be positive (recall that the required narrowness does depend on the
size of c(x)).

We conclude this section with another characterization of the principal eigenvalue of an
elliptic operator in a bounded domain, which we leave as an (important) exercise for the
reader. Let us define

µ1(Ω) = sup{λ : ∃φ ∈ C2(Ω) ∩ C1(Ω̄), φ > 0 and (L+ λ)φ ≤ 0 in Ω}, (2.12)

and

µ′1(Ω) = inf{λ : ∃φ ∈ C2(Ω) ∩ C1(Ω̄), φ = 0 on ∂Ω, φ > 0 in Ω, and −(L+ λ)φ ≤ 0 in Ω}.
(2.13)
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Exercise 2.2 Let L be an elliptic operator in a smooth bounded domain Ω, and let λ1 be
the principal eigenvalue of the operator (−L), and µ1(Ω) and µ′1(Ω) be as above. Show that

λ1 = µ1(Ω) = µ′1(Ω). (2.14)

As a hint, say, for the equality λ1 = µ1(Ω), we suggest, assuming existence of some λ > λ1

and φ > 0 such that

(L+ λ)φ ≤ 0,

to consider the Cauchy problem

ut = (L+ λ)u, in Ω

with the initial data u(0, x) = φ(x), and with the Dirichlet boundary condition u(t, x) = 0
for t > 0 and x ∈ ∂Ω. One should prove two things: first, that ut(t, x) ≤ 0 for all t > 0, and,
second, that there exists some constant C > 0 so that

u(t, x) ≥ Cφ̄(x)e(λ−λ1)t,

where φ̄ is the principal Dirichlet eigenfunction of (−L). This will lead to a contradiction.
The second equality in (2.14) is proved in a similar way.

3 The periodic principal eigenvalue in unbounded do-

mains

We will now give a superficial but, hopefully, tempting discussion of the principle eigenvalue
of an elliptic operator in an unbounded domain (we will consider, for simplicity, only Ω = Rn).
The first issue is simply to understand what one could mean by the principal eigenvalue in
an unbounded domain. A “simpleton” way is to look for a true positive eigenfunction and
the corresponding eigenvalue, solution of

−Lφ = λφ, x ∈ Rn

with φ > 0. Alas, such positive eigenfunction may exist for infinitely many λ – just consider
the problem

−u′′ = λu in R,

which has two positive eigenfunctions (exponentials) for all λ > 0.

A natural “brute force” idea to overcome this issue would be to look at the Dirichlet
eigenvalue problems in a sequence of bounded domains Ωk that would fill Rn as k → +∞,
and pass to the limit. Let us illustrate what can happen with this approach – there are good
and bad news. We start with the good news – they come from the self-adjoint operators with
the periodic coefficients, of the form

Lu = −∆u− µ(x)u, (3.1)
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with a 1-periodic (in all xj) function µ(x). A natural candidate for the principal eigenvalue
of the operator L in the whole space is the principal eigenvalue of the periodic problem

−∆φ− µ(x)φ = λ1φ, (3.2)

φ(x) is 1-periodic in all its variables.

Indeed, he Krein-Rutman theorem implies that this problem has a positive eigenfunction that
corresponds to a simple eigenvalue. The corresponding function φ is also a positive bounded
eigenfunction of the operator L in the whole space in the most literal sense. Let us see whether
it can be obtained as a limit with the “exhaustion by bounded domains” procedure we have
mentioned above – consider the Dirichlet eigenvalue problem in the ball B(0;R)

−∆ψR(x)− µ(x)ψR = λRψR(x), |x| < R, (3.3)

ψR(x) > 0 for |x| < R,

ψR(x) = 0 on {|x| = R},

and investigate the limit R → +∞. It turns out that the two approaches are equivalent for
an operator of the form (3.1).

Theorem 3.1 Let λ1 be the principal periodic eigenvalue of the problem (3.2), and λR be the
principal Dirichlet eigenvalue of the problem (3.3), then

lim
R→+∞

λR = λ1. (3.4)

Proof. Let us first recall the variational principles for λ1 and λR in terms of the Rayleigh
quotient (a reader not yet familiar with these formulations should consult Section 6.5 of [52]):

λ1 = inf
v∈H1(Tn)

∫
Tn

(|∇v|2 − µ(x)v2)dx∫
Tn
|v|2dx

(3.5)

and

λR = inf
v∈H1

0 (B(0,R))

∫
Tn

(|∇v|2 − µ(x)v2)dx∫
Tn
|v|2dx

. (3.6)

The difference between the two expressions is in the collection of test functions: 1-periodic H1

functions in the case of λ1 and H1
0 (B(0;R)) functions in the case of λR. Uniqueness of the

positive eigenfunction shows that, for any positive integer m, λ1 is also the principal periodic
eigenvalue on the larger torus Tm = [0,m]n. Hence, λ1 can be written as

λ1 = inf
v∈H1(Tm)

∫
Tm

(|∇v|2 − µ(x)v2)dx∫
Tm

|v|2dx
. (3.7)
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That is, the infimum can be also taken over all m-periodic functions. Let us take m > 27R, set
the vector e = (1, 1, . . . , 1), and consider an m-periodic function vR,m (defined in the period
cell [0,m]n) that equals ψR(x− (m/2)e) in the ball B(me/2, R), and to zero everywhere else
in Tm = [0,m]n. Note that B(me/2, R) ⊂ Tm. The Rayleigh quotient of vR,m is exactly λR,
hence

λ1 ≤ λR. (3.8)

In order to establish the opposite bound, let φ1 be the 1-periodic eigenfunction and set

wR(x) = χR(x)φ1(x),

where χR(x) is a smooth cut-off function such that 0 ≤ χR(x) ≤ 1, χR(x) = 1 for |x| ≤ R−1,
and χR(x) = 0 for |x| ≥ R. We may assume that ‖χR‖C2 ≤ K with a constant K that does
not depend on R. The L2-norm of the gradient of wR is∫

B(0,R)

|∇wR(x)|2dx =

∫
B(0,R)

|∇χR(x)φ1(x) + χR(x)∇φ1(x)|2dx

=

∫
B(0,R)

(|∇χR|2|φ1(x)|2 + 2(φ1(x)χR(x)∇χR(x) · ∇φ1(x))dx+

∫
B(0,R)

|χR(x)|2|∇φ1(x)|2dx.

As ∇χR(x) = 0 and χR(x) = 1 for x outside the annulus R − 1 ≤ |x| ≤ R, it is easy to see
from the above that ∫

B(0,R)

|∇wR(x)|2dx =

∫
B(0,R)

|∇φ1(x)|2dx+O(Rn−1).

Furthermore, we can estimate, using the same idea:∫
B(0,R)

µ(x)|wR(x)|2dx =

∫
B(0,R)

µ(x)|φ1(x)|2dx+O(Rn−1).

The notation above means that the integrals in the left and right side differ by expressions
that can be bounded by CRn−1. And, finally, we have, in the same way:∫

B(0,R)

|wR(x)|2dx =

∫
B(0,R)

|φ1(x)|2dx+O(Rn−1).

The last observation is that, for instance,∫
B(0,R)

|φ1(x)|2dx = NR

∫
[0,1]n
|φ1(x)|2dx+O(Rn−1),

and similarly for the other integrals appearing in the Rayleigh quotient for wR. Here NR is
the number of disjoint [0, 1]n cubes that fit into the ball B(0, R). We deduce that

λR ≤

∫
BR

|(|∇wR(x)|2 − µ(x)|wR(x)|2)dx∫
BR

|wR(x)|2dx
=

∫
[0,1]n
|(|∇φ1(x)|2 − µ(x)|φ1(x)|2)dx∫

[0,1]n
|φ1(x)|2dx

+O(R−1)

= λ1 +O(R−1). (3.9)
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This estimate, together with (3.8) shows that

lim
R→+∞

λR = λ1, (3.10)

and the proof of Theorem 2.4 is complete. �
Theorem 2.4 can be generalized to other self-adjoint operators with periodic coefficients,

as the same argument using the Rayleigh quotient would still apply. To ensure the reader that
the matter is less trivial in general, consider the following example from [23]. The operator

Lu = −u′′ + u′

is periodic on the real line, with an arbitrary period. The principal periodic eigenvalue
is λ1 = 0 and the principal eigenfunction is φ1(x) ≡ 1. On the other hand, solution of the
Dirichlet problem on the interval [−R,R]

−φ′′R + φ′R = λRφR, −R < x < R, φR(−R) = φR(R) = 0,

is explicit:

φR(x) = ex/2 cos(
πx

2R
),

and the corresponding principal eigenvalue is

λR =
1

4
+

π2

4R2
.

Thus, we have

lim
R→+∞

λR =
1

4
6= λ1 = 0, (3.11)

and the result of Theorem 2.4 fails spectacularly in the non-self-adjoint case.
It is easy to understand the above phenomenon from the probabilistic inter-

pretation: continue here
Let us now revert to the philosophy of Exercise 2.2 and see what this would give us, and

whether it can reconcile the discrepancy in (3.11). For simplicity, we will consider periodic
operators in Rn – an interested reader should consult [23] for a much fuller picture. Given a
periodic elliptic operator

Lu = aij(x)
∂2u

∂xi∂xj
+ bi(x)

∂u

∂xi
+ c(x)u,

we let λ1 be the principal periodic eigenvalue of (−L), and also define

µ1 = sup{λ : ∃φ ∈ C2(Rn), φ > 0 and (L+ λ)φ ≤ 0 in Rn}, (3.12)

and
µ′1 = inf{λ : ∃φ ∈ C2

b (Rn), φ > 0 and −(L+ λ)φ ≤ 0 in Rn}. (3.13)

Note the subtle difference in the definition of µ1 and µ′1 – in the first case, the test functions
are just smooth, in the second, they are also bounded, a distinction unnecessary in a bounded
domain. Recall that µ1 and µ′1 coincide in a bounded domain – both are equal to the principal
Dirichlet eigenvalue in Ω. What happens in the whole space? It turns out that µ1 and µ′1
may be different.
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Theorem 3.2 (i) We have µ′1 = λ1.
(ii) Let λR be the principal Dirichlet eigenvalue of the operator (−L) in the ball B(0;R), then

lim
R→+∞

λR = µ1.

Proof. We first prove (i). Taking φ = φ1, the periodic eigenfunction of (−L), and λ = λ1 in
the definition of µ′1 we get µ′1 ≤ λ1. Next, take any λ < λ1. As φ1 > 0 is periodic, we can
find ε > 0 so that

−(L+ λ)φ1 = (λ1 − λ)φ1 ≥ ε > 0.

Assume now that there exists some bounded function φ ∈ C2
b (Rn) so that

−(L+ λ)φ ≤ 0.

We will show that φ has to be non-positive. Assume that supφ(x) > 0, set

m = sup
x∈Rn

φ(x)

φ1(x)
,

and define w(x) = mφ1(x)− φ(x) ≥ 0. We will show that

inf
x∈Rn

w(x) > 0,

which will give a contradiction to the definition of m. The function w(x) satisfies

−(L+ λ)w = m(λ1 − λ)φ1 + (L+ λ)φ ≥ mε > 0. (3.14)

If w(x) attains its infimum (which is equal to zero by the definition of m), we would get an
immediate contradiction to the maximum principle from (3.14). If there is a sequence xk
such that w(xk) → 0 as k → +∞, we need to do a little more work. Take a smooth
function θ(x) ≥ 0 such that θ(0) = 0, and

lim
|x|→+∞

θ(x) = 1.

We can find a constant K > 0 so that any translation θy(x) = θ(x − y) (with any y ∈ Rn)
satisfies

−(L+ λ)θy(x) ≥ −mεK
2

, for all x ∈ Rn.

Let us then choose a point x0 so that w(x0) ≤ ε1 < m/K, where ε1 is a sufficiently small
constant (which will depend on K, but also on ε and the coefficients of the operator L). We
may then choose R > 0 so large that

θ(x− x0)

K
> ε1 > w(x0), for all x ∈ ∂B(x0, R).

The function

w̃(x) = w(x) +
θ(x− x0)

K
,
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satisfies then w̃(x) > w(x0) = w̃(x0) on the boundary ∂B(x0, R), hence w̃ has to attain its
infimum over B(x0;R) at some interior point y0 ∈ B(x0, R). Finally, consider the function

χ(x) = w̃(x)− w̃(y0).

The function χ is non-negative in BR(x0, R) and vanishes at y0. But we also have

−(L+ λ)χ = −(L+ λ)w̃ + (c(x) + λ)w̃(y0)

= −(L+ λ)w − 1

K
(L+ λ)θx0 + (c(x) + λ)w̃(y0)

≥ mε− mε

2
− (‖c‖∞ + |λ|)ε1 >

ε

4
,

if we choose ε1 sufficiently small. This, however, contradicts the fact that χ attains an
interior minimum at the point y0 where χ(y0) = 0. This contradiction shows that λ1 ≤ µ′1,
and thus λ1 = µ′1.

We now prove part (ii) of the theorem:

lim
R→+∞

λR = µ1.

Notice that, by definition, we have

µ1(BR1) ≤ µ1(BR2), for all R1 > R2,

and
µ1 ≤ µ1(BR), for all R > 0.

As µ1(BR) = λR, it follows that

µ1 ≤ λ̄ := lim
R→+∞

λR. (3.15)

Consider now the eigenfunction φR:

−LφR = λRφR, in B(0;R),

φR = 0 on ∂B(0;R),

φR > 0 in B(0;R),

normalized so that φR(0) = 1. We will now, unfortunately, have to appeal to the elliptic
regularity estimates – a reader unfamiliar with them may either wait until Chapter 3, or
find them in [52, 69] and other classical books on elliptic equations. These estimates say that
the L∞loc-bounds on φR and the uniform bounds on λR imply that the family φR(x) is uniformly
bounded in C2,α

loc (Rn) for some α > 0. It follows that we may extract a sequence Rn → +∞ so
that the sequence φRn converges, locally uniformly, to a limit function φ̄ ∈ C2,α

loc (Rn), which,
in addition, satisfies

−Lφ̄ = λ̄φ̄, in Rn,

φ̄ > 0 in Rn.

This means that µ1 ≥ λ̄, whence µ1 = λ̄, and the proof is complete. �
The above discussion gives just a glimpse at what happens to the principal eigenvalue

in unbounded domains – an interested reader should investigate further, starting with the
variational formulations of [1] and [99], and continuing with the more recent papers [18, 23]
that we have followed in this section.

56



Chapter 3

Heat kernel bounds

In this chapter we will mostly consider the Cauchy problem for the parabolic equations of the
form

φt = ∇ · (a(x)∇φ), (0.1)

φ(0, x) = φ0(x),

in the whole space x ∈ Rn, t > 0. The diffusion matrix a(x) is assumed to be bounded and
uniformly elliptic. We are interested in estimates for the solutions of (0.1) that would exhibit
both temporal and spatial decay, as in the heat equation. Let us recall that solutions of the
heat equation

ψt = ∆ψ, (0.2)

with the initial data ψ(0, x) = ψ0(x) are given by

ψ(t, x) =

∫
Rn
G0(t, x, y)ψ0(y)dy. (0.3)

The Green’s function for the heat equation is given explicitly by

G0(t, x, y) =
1

(4πt)n/2
e−(x−y)2/(4t). (0.4)

Similarly, solutions of the inhomogeneous diffusion equation (0.1) can be expressed in terms
of the Green’s function for this problem as

φ(t, x, y) =

∫
Rn
G(t, x, y)φ0(y)dy. (0.5)

However, the Green’s function is no longer given explicitly and the best we can hope for
are interesting bounds for G(t, x, y). We will show that, in some sense, solution of (0.1)
behaves ”almost exactly” as a solution of the heat equation. More precisely, there exists a
constant C > 0 so that

1

Ctn/2
e−Cx

2/t ≤ G(t, x, y) ≤ C

tn/2
e−x

2/(Ct). (0.6)
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This result is originally due to Nash [97]. We will follow here a more recent version of the
proof due to Fabes and Stroock [56].

Following Fabes and Stroock we will also explain that the heat kernel estimates (0.6)
imply ”everything you ever wanted to know about parabolic equations”: such as the Hölder
regularity of solutions, and Harnack inequality. There is a physical reason for that: thermo-
dynamics tells us that solutions of heat equations tend to equilibrate. The bounds in (0.6)
are simply a quantification of that. We will see that the Gaussian bounds imply that the
oscillation OscDRφ of any solution φ over a set DR = {|x− x0| < R, |t− t0| < R2} goes down
to zero exponentially as R→ 0:

OscDR < γOscD2R
,

with a constant γ < 1. This implies the Hölder bound on φ.

Divergence and non-divergence forms: intuition or integration?

We will consider in this section only equations in the divergence form, occasionally with an
incompressible drift:

φt + u · ∇φ = ∇ · (a(x)∇φ), (0.7)

with a prescribed flow u(x) such that ∇· u = 0. The “practical reason” to consider equations
in the divergence form is that they are much more amenable to integration by parts than
their counterpart in the non-divergence form

φt + u · ∇φ = aij(x)
∂2φ

∂xi∂xj
. (0.8)

Of course, there is also a physical reason: advection-diffusion equations in the divergence form
appear in many physical problems where the total mass of u is conserved, there is an external
incompressible drift and diffusion is present due to the heterogeneous Fourier law. On the
other hand, solutions of the non-divergence form equations (0.8) have a nice probabilistic
interpretation. Consider the stochastic differential equation

dXt = −u(Xt)dt+ σ(Xt)dWt, X0 = x. (0.9)

Here Wt = (W 1
t , . . . ,W

n
t ) is the n-dimensional Brownian motion, that is, every compo-

nent W j
t , j = 1, . . . , n is a standard Brownian motion, and W j

t and W k
t are independent

for k 6= j. The matrix σ(x) is symmetric and satisfies σ2(x) = 2a(x). This SDE is related to
the PDE (0.8) in a way very similar to the connection between first order hyperbolic equations
and ODE’s. Let φ(t, x) be the solution of (0.8) with the initial data φ(0, x) = φ0(x). Then it
is given ”explicitly” by

φ(t, x) = Ex(φ0(X(t)). (0.10)

Here Xt is the solution of the stochastic differential equation (0.9), and the subscript x in
Ex refers to the fact that X(t) starts at the point x at time t = 0. It would be far too
ambitious for us to review the general theory of diffusions here, the reader may either think
of solutions of stochastic differential equations as ”randomized” solutions of classical ODEs,
or consult [8, 9, 100] that all consider the connections between PDEs and diffusions. A useful
exercise for the reader would be to try to convince oneself that the non-divergence form
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equations can be recovered from the discrete approximation by inhomogeneous random walks
on an integer lattice, generalizing what we have done before for the Laplace equation.

This probabilistic interpretation provides a very good intuition for how solutions of the
equations in the non-divergence form should behave. Much of this intuition applies also to
solutions of equations in the divergence form (though the probabilistic interpretation has to
be modified to take into account the additional drift coming from ∇a(x)), and we will often
appeal to it even when we consider equations in the divergence form. Of course, the physical
intuition about propagation of heat in a heterogeneous environment is also very useful.

1 The Nash inequality

Spreading in the heat equation

Before analyzing the inhomogeneous diffusions, let us first review ”why” solutions of the con-
stant coefficients heat equation spread and decay on the mathematical level (on the physical
level this is very intuitive – heat likes to equilibrate). One can, of course, deduce everything
starting with an explicit expression for the heat kernel:

G(t, x) =
1

(4πt)n/2
e−|x|

2/(4t),

but such expressions are not available for heterogenous diffusions so we need to learn to live
without them. The Nash inequality will be an indispensable tool here.

Ballpark arguments

We start with some integral balances that tell us that solutions spread as x ∼
√
t. There are

two basic balances: first, the integral of the solutions of the heat equation

ψt = ∆ψ, (1.1)

ψ(0, x) = ψ0(x)

posed in Rn, with rapidly decaying initial data ψ0(x), is conserved:∫
Rn
ψ(t, x)dx =

∫
Rn
ψ0(x)dx := M0. (1.2)

The evolution also preserves positivity: if ψ0 ≥ 0 then ψ(t, x) > 0 for all t > 0. The second
balance is for the second moment: multiplying (1.1) by |x|2 and integrating gives

d

dt

∫
Rn
|x|2ψ(t, x)dx =

∫
Rn
|x|2∆ψ(t, x)dx = 2n

∫
Rn
ψ(t, x)dx = 2nM0, (1.3)

so that

M2(t) :=

∫
Rn
|x|2ψ(t, x)dx = 2nM0t+

∫
Rn
|x|2ψ0(x)dx. (1.4)

Hence, the second moment M2(t) grows linearly in time, while the total mass stays constant.
It follows that solutions of the heat equation have to spread keeping their mass fixed –
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otherwise, M2(t) would not grow in time. We learn from (1.4) two things: first, as an upper
bound ∫

Rn
|x|2ψ(t, x)dx ≤ 2nM0t+

∫
Rn
|x|2ψ0(x)dx, (1.5)

it tells you that ”the mass outside of the ball B(0, R) is small for any R� t−1/2”:∫
|x|≥Nt1/2

ψ(t, x)dx ≤ 2nM0

N2
+

1

N2t

∫
Rn
|x|2ψ0(x)dx. (1.6)

On the other hand, as a lower bound∫
Rn
|x|2ψ(t, x)dx ≥ 2nM0t, (1.7)

it tells you that there has to be some mass at distance O(t1/2) from the origin – the mass can
not be concentrated in a ball B(0, R) of radius R � t1/2. Hence, solutions of the constant
coefficients heat equation have to spread over the ball of radius O(t1/2). On the other hand,
as they spread in a mass preserving way, the mass balance tells us that its maximum should
roughly satisfy

I0 ∼ ψmax(t)(t
1/2)n, (1.8)

hence the maximum should decay as ψmax ∼ t−n/2. The very last step (1.8), is, of course,
just a rough ballpark estimate but a combination of the above bounds lies at the heart of the
rigorous proof.

Careful accounting

In order to estimate the decay for the heat equation in a more careful way, let us multiply (1.1)
by ψ and integrate:

1

2

d

dt

∫
Rn
|ψ(t, x)|2dx = −

∫
Rn
|∇ψ(t, x)|2dx. (1.9)

If the problem were posed on a torus Tn and∫
Tn
ψ0(x)dx = 0,

then we would have ∫
Tn
ψ(t, x)dx = 0,

for all t > 0. Therefore, the Poincaré inequality would hold:∫
Tn
|ψ(t, x)|2dx ≤ C

∫
Tn
|∇ψ(t, x)|2dx.

Using this in (1.9) we would get

frac12
d

dt

∫
Tn
|ψ(t, x)|2dx ≤ −C

∫
Tn
|ψ(t, x)|2dx, (1.10)
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implying the exponential intake decay of the L2-norm of ψ(t, x):

‖ψ(t, ·)‖L2(Tn) ≤ ‖ψ0‖L2(Tn)e
−Ct. (1.11)

However, in the whole space the Poincaré inequality does not hold, hence we need a different
way to relation the dissipation

D =

∫
Rn
|∇ψ(t, x)|2dx, (1.12)

the conserved mass

M0 =

∫
Rn
ψ(t, x)dx, (1.13)

and the L2-norm of ψ itself. It is given by the Nash inequality.

Theorem 1.1 (The Nash inequality) There exists a constant C > 0, which depends only on
the dimension n so that for any φ ∈ H1(Rn) ∩ L1(Rn) we have

‖∇φ‖2
L2 ≥

C‖φ‖2+4/n

L2

‖φ‖4/n

L1

. (1.14)

Proof. Using the Fourier transform

φ̂(ξ) =

∫
e−2πiξ·xφ(x)dx,

we have, for any R > 0:∫
|φ(x)|2dx =

∫
|φ̂(ξ)|2dξ =

∫
|ξ|≤R

|φ̂(ξ)|2dξ +

∫
|ξ|≥R

|φ̂(ξ)|2dξ (1.15)

≤ CnR
n‖φ̂‖2

L∞ +
1

R2

∫
|ξ|≥R

|ξ|2|φ̂(ξ)|2dξ.

We may now estimate the two terms in the right side as

‖φ̂‖L∞ ≤ ‖φ‖L1 ,

and ∫
|ξ|≥R

|ξ|2|φ̂(ξ)|2dξ ≤
∫
Rn
|ξ|2|φ̂(ξ)|2dξ =

1

4π2

∫
|∇φ(x)|2dx.

Going back to (1.15) we conclude that, for any R > 0 we have∫
|φ(x)|2dx ≤ C

[
Rn‖φ‖2

L1 +R−2‖∇φ‖2
L2

]
. (1.16)

Choosing

R =

(
‖∇φ‖2

L2

‖φ‖2
L1

)1/(n+2)

leads to ∫
|φ(x)|2dx ≤ C‖∇φ‖2n/(n+2)

L2 ‖φ‖4/(n+2)

L1 ,

which is the same as (1.14). �
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Exercise 1.2 The L1-norm of the solutions of the heat equation does not increase in time:
if ψ(t, x) satisfies (1.1) then

‖ψ(t)‖L1 ≤ I0 := ‖ψ0‖L1for all t ≥ 0. (1.17)

The Nash inequality together with (1.17) implies that the L2-norm of the solution of (1.1)
satisfies

‖∇φ‖2
L2 ≥

C

I
4/n
0

‖φ‖2+4/n

L2 . (1.18)

Using this in (1.9) gives
dM

dt
≤ − C

I
4/n
0

(M(t))1+2/n , (1.19)

with

M(t) =

∫
|φ(t, x)|2dx.

Integrating this ODE in time gives

1

M(0)2/n
− 1

M(t)2/n
≤ − Ct

M
4/n
0

. (1.20)

It follows that the decay of the L2-norm can be estimated as

‖ψ(t)‖2
L2 = M(t) ≤ CM2

0

tn/2
=

C

tn/2
‖ψ0‖2

L1 . (1.21)

This estimate could, of course, be easily obtained directly from the explicit form of the heat
kernel but our goal here is exactly the opposite: to devise a method that would work without
the explicit formulas. This is just a baby example of how the strategy works: one starts
with physical balances and then tries to estimate the dissipation in terms of the conserved
quantities.

2 The temporal decay

Divergence form equations

We now show how the above strategy using the Nash inequality can be used to obtain the
temporal decay of solutions of the parabolic problem

φt = ∇ · (a(x)∇φ), (2.1)

φ(0, x) = φ0(x),

in the whole space x ∈ Rn, t > 0. The proof is essentially identical to what we have done
above for the heat equation. We assume that the matrix a(x) is bounded and uniformly
elliptic: for any ξ ∈ Rn and all x ∈ Rn we have

λ|ξ|2 ≤ aij(x)ξiξj ≤ Λ|ξ|2, (2.2)

with some λ,Λ > 0. The next theorem shows that solutions of (2.1) obey the same decay
bounds as solutions of the heat equation with constant coefficients.
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Theorem 2.1 Let the diffusion matrix a(x) satisfy (2.2) and assume that the initial data ψ0(x)
is sufficiently rapidly decaying. There exists a constant C that depends only on the dimen-
sion n so that the function ψ(t, x) satisfies

|φ(t, x)| ≤ C

(λt)n/2
‖φ0‖L1 , (2.3)

for all x ∈ Rn and all t > 0.

The estimate (2.3) is exactly the same as for the solutions of the heat equation with a
constant diffusivity. The L1 − L∞ decay (small initial L1-norm implies small L∞-norm at
times t > 0) comes from physics: if the initial data has small mass, then solution will “spread
around”, and, as it has to preserve the total mass, it has no choice but to have a small L∞-
norm. It also gives a guess of a scale on which the solution will spread by time t: as the total
mass is preserved, and the maximum decays at least as t−n/2, then the “spreading scale” L(t)
should satisfy, roughly, ∫

Rn
ψ0(x)dx =

∫
Rn
ψ(t, x)dx ≈ |L(t)|n 1

tn/2
,

thus
L(t) ∼

√
t,

the familiar estimate for diffusive spreading. Note, however, that here this estimate holds
not just for the solution of the heat equation with a constant diffusivity but for a much more
general class of equations.

The proof of this theorem proceeds as in the homogeneous case. First, we will show, using
the Nash inequality that φ(t, x) satisfies an L1 → L2 decay estimate:

‖φ(t)‖L2 ≤ C

(λt)n/4
‖φ0‖L1 . (2.4)

Next, we use a bit of functional analysis. Define the solution operator St as the mapping of
the initial data φ0 to the solution of (2.1) at time t:

St[φ0] = φ(t).

The estimate (2.4) means that St is a bounded operator from L1 to L2 for each t > 0, with
its norm bounded as

‖St‖L1→L2 ≤ C

(λt)n/4
. (2.5)

Therefore, the adjoint operator S∗t maps L2 to L∞ with the bound

‖S∗t ‖L2→L∞ ≤
C

(λt)n/4
. (2.6)

We claim that the operator St is self-adjoint. Indeed, let φ(t, x) and ψ(t, x) be the solutions
of (2.1) with the initial data φ(0, x) = f(x) and ψ(0, x) = g(x). Symmetry of St means that∫

f(x)ψ(t, x)dx =

∫
g(x)φ(t, x)dx. (2.7)
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In order to see that this identity holds for all t ≥ 0, set

B(s) =

∫
φ(s, x)ψ(t− s, x)dx,

then

dB

ds
=

∫
[∇ · (a(x)∇φ(s, x))ψ(t− s, x)− φ(s, x)∇ · (a(x)∇ψ(t− s, x))dx

=

∫
[(a(x)∇φ(s, x)) · ∇ψ(t− s, x)−∇φ(s, x) · (a(x)∇ψ(t− s, x))dx = 0.

It follows that
B(s) = B(0) for all 0 ≤ s ≤ t.

Setting s = t gives (2.7). Hence, the solution operator St is, indeed, self-adjoint and (2.6)
means nothing but

‖St‖L2→L∞ ≤
C

(λt)n/4
. (2.8)

The next observation is that the operators St form a semi-group so that

St = St/2 ◦ St/2, (2.9)

which simply says that solving the Cauchy problem with the data given at t = 0 until a
time T > 0 is equivalent to solving it until the time T/2, and using the result as the initial
data to run the evolution again for the time T/2. As St/2 maps L1 to L2 and, as we have just
shown, it also maps L2 to L∞, we know from (2.9) that St maps L1 to L∞ with the norm
bounded as

‖St‖L1→L∞ ≤ ‖St/2‖L1→L2‖St/2‖L2→L∞ ≤
C

(λt)n/4
C

(λt)n/4
=

C ′

(λt)n/2
. (2.10)

This exactly means that estimate (2.3) holds. Therefore, it only remains to prove the L1 → L2

estimate (2.4).
In order to show that (2.4) holds we proceed essentially exactly as in the heat equation

case: multiply (2.1) by φ and integrate:

1

2

d

dt

∫
|φ(t, x)|2dx = −

∫
(a(x)∇φ(t, x) · ∇φ(t, x))dx ≤ −λ

∫
|∇φ(t, x)|2dx. (2.11)

We also integrate (2.1) in space to get∫
φ(t, x)dx =

∫
φ0(x)dx := M0. (2.12)

We may assume that φ0(x) ≥ 0, otherwise we decompose φ = φ1 − φ2. Here φ1 and φ2 are
solutions φ1 and φ2 of (2.1) with the initial data φ+(x) and φ−(x), respectively. The bound
we prove for solutions with non-negative initial data will apply both to φ1 and φ2, hence to
their difference φ.
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If φ0 ≥ 0, then (2.12) means that ‖φ(t)‖L1 = M0 for all t > 0. The Nash inequality implies
then that ∫

|∇φ(t, x)|2dx ≥ C

M
4/n
0

(M(t))1+2/n . (2.13)

Here we have set

M(t) =

∫
|φ(t, x)|2dx.

We may now rewrite the inequality (2.11) as

dM

dt
≤ − Cλ

I
4/n
0

(M(t))1+2/n . (2.14)

Integrating this ODE in time gives

1

M(0)2/n
− 1

M(t)2/n
≤ − Cλt

M
4/n
0

. (2.15)

It follows that

M(t) ≤ CM2
0

(λt)n/2
. (2.16)

This is exactly (2.4), hence the proof of Theorem 2.1 is complete. �

Equations with an incompressible drift

It turns out that the previous argument can be easily generalized to the Cauchy problem for
parabolic equations with an incompressible drift, yielding decay estimates that are uniform
in the drift. Consider the initial value problem

φt + u · ∇φ = ∇ · (a(x)∇φ), (2.17)

φ(0, x) = φ0(x),

with a uniformly elliptic matrix a(x) satisfying (2.2), and a divergence-free flow u(x):

∇ · u(x) = 0 in Rn. (2.18)

The divergence-free condition (2.18) means that the fluid is incompressible, that is, the solu-
tion map of an ODE

Ẋ(t;x) = u(X), X(0;x) = x (2.19)

is measure-preserving. In other words, given any measurable set A and any t > 0 we have the
following property: the Lebesgue measure of A equals to the Lebesgue measure of the set

A(t) = {y ∈ Rn : y = X(t;x) for some x ∈ A}. (2.20)

That is, the set A is not compressed, hence the term ”incompressible”. This property plays
an enormously important role in the theory of fluids.
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Theorem 2.2 Solutions of (2.17) satisfy the estimate

|φ(t, x)| ≤ C

(λt)n/2
‖φ0‖L1 , (2.21)

with a constant C > 0 that depends only dimension n and does not depend on the flow u,
provided that the incompressibility constraint (2.18) holds.

The assumption that the flow u(x) is divergence-free is very important and the conclusion
of this theorem is false without this condition. The reason why estimate (2.21) holds with
a constant that is uniform in all incompressible flows can be seen from the probabilistic
interpretation of the solutions of (2.17) in the special case a(x) is the identity matrix. Let Xt

be the solution of a stochastic differential equation

dXt = −u(Xt)dt+
√

2dWt, X0 = x. (2.22)

Here Wt = (W 1
t , . . . ,W

n
t ) is the n-dimensional Brownian motion. As we have mentioned,

solution of the parabolic equation (2.17) can be written as1

φ(t, x) = E(φ0(X(t)). (2.23)

Let us consider for simplicity the case when φ0(x) is the characteristic function of a set A ⊂ Rn,
then

φ(t, x) = P(X(t) ∈ A), (2.24)

and (2.21) says that

P(X(t) ∈ A) ≤ C

(λt)n/2
|A|. (2.25)

If the flow u(x) is divergence free then the solution map St : x → y(t) of the ODE without
diffusion,

ẏ = −u(y), y(0) = x, (2.26)

is measure preserving and thus ”mixing things around”. ”Therefore”, it is unable to keep the
particle in any given set in the presence of a diffusion, and that is reflected in estimate (2.25)
– the probability to visit a given set A tends to zero as t→ +∞ uniformly in the flow u.

Proof. The proof follows that of Theorem 2.1 with one modification. We multiply (2.17)
by φ and integrate. As u is divergence-free, the term involving the drift vanishes:∫

(u · ∇φ)φdx =
1

2

∫
u · ∇(φ2)dx = −1

2

∫
φ(∇ · u)dx = 0. (2.27)

This cancellation means that we still have the identity (2.9):

1

2

d

dt

∫
|φ(t, x)|2dx = −

∫
(a(x)∇φ(t, x) · ∇φ(t, x))dx ≤ −λ

∫
|∇φ(t, x)|2dx. (2.28)

1As a(x) is the identity matrix, there is no difference between the divergence and non-divergence forms of
the equation, hence we may use the probabilistic interpretation directly.
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Moreover, as ∫
(u · ∇φ)dx = −

∫
φ(∇ · u)dx = 0, (2.29)

the integral of φ is still preserved:∫
φ(t, x)dx =

∫
φ0(x)dx. (2.30)

Therefore, using the Nash inequality we may proceed as in the proof of Theorem 2.1 to obtain

‖φ(t)‖L2 ≤ C

(λt)n/4
‖φ0‖L1 , (2.31)

with a constant C > 0 that depends only on dimension n and not on the flow u. Once again,
that means that the solution operator St for (2.17) satisfies the bound

‖St‖L1→L2 ≤ C

(λt)n/4
, (2.32)

and its adjoint satisfies

‖S∗t ‖L2→L∞ ≤
C

(λt)n/4
, (2.33)

However, St is not self-adjoint when u 6≡ 0. Rather, the adjoint operator S∗t is the solution
operator for the Cauchy problem

ψt − u · ∇ψ = ∇ · (a(x)∇ψ), (2.34)

ψ(0, x) = ψ0(x).

To verify this, set

B(s) =

∫
φ(s, x)ψ(t− s, x)dx,

then

dB

ds
=

∫
[∇ · (a(x)∇φ(s, x))− u(x) · ∇φ(s, x)]ψ(t− s, x)dx

−
∫
φ(s, x)[∇ · (a(x)∇ψ(t− s, x)) + u(x) · ∇ψ(t− s, x)]dx

=

∫
[(a(x)∇φ(s, x) · ∇ψ(t− s, x))− ψ(t− s, x)(u(x) · ∇φ(s, x))]dx

−
∫

[(a(x)∇ψ(t− s, x) · ∇φ(s, x))− ψ(t− s, x)(u(x) · ∇φ(s, x))]dx

+

∫
ψ(t− s, x)φ(s, x)∇ · u(x)dx = 0,

since ∇ · u = 0. Therefore, B(0) = B(t), that is,∫
φ(0, x)ψ(t, x)dx =

∫
φ(t, x)ψ(0, x),
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which means exactly that S∗t is the solution operator for (2.34). However, (2.34) has the
same form as our original problem (2.17), with the flow u replaced by (−u), which is also
incompressible. Hence, from what we have already proved we know that

‖S∗t ‖L1→L2 ≤ C

(λt)n/4
. (2.35)

This, in turn, implies that

‖St‖L2→L∞ ≤
C

(λt)n/4
. (2.36)

The rest is as in the proof of Theorem 2.1: the semigroup property implies that St = St/2◦St/2
whence

‖St‖L1→L∞ ≤ ‖St/2||L1→L2‖St‖L2→L∞ ≤
C

(λt)n/2
.

Therefore, (2.21) holds. �

3 Elliptic problems with an incompressible drift

Another application of the Nash inequality is to elliptic problems with an incompressible drift.

Theorem 3.1 Let the flow u(x) be divergence-free and let φ(x) be the solution of the elliptic
problem

−∇ · (a(x)∇φ) + u · ∇φ = f(x) in Ω, (3.1)

φ = 0 on ∂Ω,

with f(x) ∈ Lp(Ω), p > n/2. There exists a constant C(Ω, n, p) > 0 which depends on p, the
ellipticity constant λ of the matrix a, and the domain Ω but not on the flow u(x), so that

‖φ‖L∞(Ω) ≤ C‖f‖Lp(Ω). (3.2)

The spirit of this theorem is very close to that of Theorem 2.2. Estimate (3.2) always holds
for any flow u, whether divergence free or not – this is a standard elliptic regularity bound [69]
– but with a constant C that depends on u in an uncontrolled way. The point is that the
same constant in (3.2) works for all divergence free flows.

Exercise 3.2 Construct a flow u in the unit ball B = {|x| ≤ 1} ⊂ Rn which is not divergence-
free, so that for the functions φA(x) which satisfy

−∆φA + Au · ∇φA = 1 in B, (3.3)

φA = 0 on ∂B,

we have

lim
A→+∞

φA(0) = +∞. (3.4)
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The reason why estimate (3.1) holds, can be seen, once again, from the probabilistic
interpretation of the solutions of (3.1). Let Xt be the solution of the SDE

dXt = −u(Xt)dt+ σ(Xt)dWt, X0 = x, (3.5)

with a matrix σ such that σ(x)σT (x) = 2a(x), and let τ be the first exit time from the
domain Ω for the process Xt. Then solution of the boundary value problem (3.1) can be
written as

φ(x) = Ex
(∫ τ

0

f(X(s))ds

)
. (3.6)

Exercise 3.3 A reader not familiar with the stochastic differential equations may think of a
discrete equation on the on-dimensional lattice

un =
1

2
(un−1 + un+1) + fn, 0 ≤ n ≤ N, (3.7)

with the boundary condition u0 = uN = 0. Express the solution un in terms of a standard
random walk and get an analog of (3.6).

Let us assume, once again, that f(x) = χA(x) is the characteristic function of a set A.
Then (3.6) takes the form:

φ(x) = Ex (TA) , (3.8)

where TA is the total time the process Xt spends in the set A before exiting from Ω, and (3.2)
says that

Ex (TA) ≤ Cp|A|1/p, (3.9)

for any p > n/2. This means that a combination of an incompressible flow and a diffusion
can not keep a particle in any given set for too long time – the expected value of the exit
time is bounded from above by a constant that depends only on the Lebesgue measure of A.
If the flow is not divergence free then this is clearly not true – if a very strong flow points
radially toward a given point then the particle will take a very long time to escape a small
ball centered at that point, as shows Exercise 3.2.

One may wonder if we have some sort of a uniform lower bound for φ also: whether we
can say, for instance, that if a ball B(x0, r) is contained strictly inside Ω, then solutions of
(taking a(x) = Id)

−∆φ+ u · ∇φ = 1 in Ω, (3.10)

φ = 0 on ∂Ω,

obey a uniform lower bound: φ(x) ≥ C on B(x0, r) with the constant C > 0 that does not
depend on u as long as u is divergence-free. The probabilistic interpretation for solutions of
(3.10) is simple:

φ(x) = Ex(τ), (3.11)

where τ is the time the process Xt, solution of

dXt = −u(Xt)dt+
√

2dWt, X0 = x, (3.12)

spends inside Ω before it exits this domain. It turns out that there is no lower bound on φ(x)
that would be uniform in u – the reason is, roughly, that if u is very fast and very mixing
then the particle will exit Ω very quickly with a very high probability – see [16, 32] for various
results of this kind.
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Proof of Theorem 3.1

We may assume that f(x) ≥ 0 without loss of generality – if not, we decompose f = f+− f−
and φ = φ+ − φ−, where φ+ and φ− are solutions of (3.1) with f replaced by f+ and f−,
respectively. We write φ(x), the solution of (3.1), as

φ(x) =

∫ ∞
0

ψ(t, x)dt. (3.13)

The function ψ(t, x) satisfies the parabolic initial value problem

ψt −∇ · (a(x)∇ψ) + u · ∇ψ = 0 in Ω, (3.14)

ψ(t, x) = 0 on ∂Ω,

ψ(0, x) = f(x) in Ω.

We will now show that there exists a pair of constants C > 0 and α > 0 so that for any
incompressible flow u and any solution of (3.14) with initial data f(x), we have a uniform
bound

|ψ(t, x)| ≤ Ce−αt

tr
‖f‖L1 , (3.15)

with any r > n/2. The proof is close to that of Theorem 2.2, with a slight modification,
we present the details for the convenience of the reader. First, multiplying (3.14) by ψ and
integrating by parts we obtain

1

2

d

dt
‖ψ‖2

2 = −
∫

Ω

(a(x)∇ψ · ∇ψ)dx ≤ −λ‖∇ψ‖2
L2 . (3.16)

Using the Poincaré inequality

‖ψ‖2 ≤ Cp‖∇ψ‖L2 , (3.17)

for all functions ψ ∈ H1
0 (Ω), we conclude that there exists a constant α > 0 so that

‖ψ(t2)‖2 ≤ e−α(t2−t1)‖ψ(t1)‖2 (3.18)

for any pair of times t2 ≥ t1 ≥ 0.
In order to estimate the dissipation term in (3.16) we will use the following Nash-type

inequality in Ω.

Lemma 3.4 For all 0 < s < 4/n there exists a constant C that depends on Ω and s so that
for all smooth functions φ such that φ = 0 on ∂Ω, we have

‖∇φ‖2
L2 ≥ C

‖φ‖s+2
L2

‖φ‖sL1

. (3.19)

Proof. The Poincaré inequality implies that we have

‖φ‖Lq ≤ Cq‖∇φ‖L2 , for all 1 < q <
2n

n− 2
.
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Next, using the Hölder inequality, with 1/α + 1/β = 1 we obtain:

‖φ‖2
L2 =

∫
|φ|2 ≤

(∫
|φ|
)1/α(∫

|φ|(2−1/α)β

)1/β

≤ C‖φ‖1/α

L1 ‖∇φ‖2−1/α

L2 ,

provided that (
2− 1

α

)
β =

(
2− 1

α

)
α

α− 1
=

2α− 1

α− 1
<

2n

n− 2
,

or, equivalently:
α > (n+ 2)/4. (3.20)

Therefore, we have

‖∇φ‖2
L2 ≥ C

‖φ‖4α/(2α−1)

L2

‖φ‖2/(2α−1)

L1

= C
‖φ‖s+2

L2

‖φ‖sL1

,

with s = 2/(2α− 1), that is, for s < 4/n. �
We continue the proof of Theorem 3.1. Using Lemma 3.4 we may rewrite (3.16) as

1

2

d

dt
‖ψ‖2

L2 ≤ −C
‖ψ‖s+2

L2

‖ψ‖sL1

. (3.21)

In order to estimate the L1-norm above we integrate (3.14) over Ω:

d

dt

∫
Ω

ψdx =

∫
∂Ω

(a(x)∇ψ · ν)dy, (3.22)

as ∫
Ω

(u · ∇ψ)dx = 0

because u is divergence-free and ψ = 0 on ∂Ω. Here, ν is the outward normal to Ω. The
parabolic maximum principle implies that ψ(t, x) > 0 for x ∈ Ω and t > 0, hence ∇ψ · v < 0
for any vector v such that v · ν > 0. The matrix a(x) is positive-definite, hence v = a(x)ν
satisfies this condition for all x ∈ ∂Ω, thus

(a(x)∇ψ · ν) < 0 on ∂Ω.

We conclude from (3.22) that

‖ψ(t)‖L1 =

∫
Ω

ψ(t, x)dx ≤
∫

Ω

f(x)dx. (3.23)

Using this inequality in (3.21) gives

1

2

d

dt
‖ψ‖2

L2 ≤ −C
‖ψ‖s+2

L2

‖f‖sL1

, (3.24)

hence M(t) = ‖ψ(t)‖L2 satisfies

1

M s+1(t)

dM

dt
≤ − C

‖f‖sL1

.
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Integrating in time we obtain

1

M s(0)
− 1

M s(t)
≤ − Ct

‖f‖sL1

.

Setting q = 1/s, we conclude that

‖ψ(t)‖L2 ≤ C

tq
‖f‖L1 , for any q > n/4. (3.25)

Consider now the solution operator Pt : ψ0 → ψ(t). We have shown in (3.18) that

‖Pt‖L2→L2 ≤ Ce−αt, (3.26)

while (3.25) says that

‖Pt‖L1→L2 ≤ C

tq
, for any q > n/4. (3.27)

Once again, using the semi-group property we can write Pt = Pt/2 ◦ Pt/2, and deduce that

‖Pt‖L1→L2 ≤ ‖Pt/2‖L1→L2‖Pt/2‖L2→L2 ≤ Ce−αt/2

tq
. (3.28)

As we have already discussed, the adjoint operator P∗t is simply the solution operator corre-
sponding to the (also incompressible) flow (−u). Therefore, we have the dual bound

‖P∗t ‖L1→L2 ≤ Ce−αt/2

t1/s
,

which in turn implies that

‖Pt‖L2→L∞ ≤
Ce−αt/2

t1/s
.

Putting these bounds together we obtain

‖ψ(t)‖∞ = ‖Ptf‖∞ = ‖Pt/2 ◦ Pt/2f‖∞ ≤ ‖Pt/2‖L2→L∞‖Pt/2‖L1→L2‖f‖1 ≤
Cqe

−αt/2

t2q
‖f‖1,

which is (3.15).
The maximum principle also implies that we have a trivial bound

‖ψ‖L∞ ≤ ‖f‖L∞ . (3.29)

Interpolating between these two bounds2 we get the estimate

‖ψ(t)‖L∞ ≤
Cεe

−αpt

tn/(2p)+ε
‖f‖Lp , (3.30)

2We use here the Riesz-Thorin interpolation theorem [75]. The corollary that we need says that if an
operator A is a bounded linear operator from L1 to L∞ and also from L∞ to L∞ with ‖A‖L∞→L∞ ≤ 1, then
A is also a bounded operator from Lp to L∞ for any p ∈ (1,∞), with the norm bounded by ‖A‖Lp→L∞ ≤
‖A‖1/pL1→L∞ .
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for any ε > 0. Now, (3.13) implies that

‖φ‖L∞ ≤ Cε‖f‖Lp
∫ ∞

0

e−αpt

tn/(2p)+ε
dt. (3.31)

Note that for any p > n/2 we may choose ε > 0 sufficiently small so that the time integral
in (3.31) is finite. It follows that

‖φ‖L∞ ≤ C‖f‖Lp ,
and the constant C > 0 is independent of the incompressible flow u. This finishes the proof
of Theorem 3.1. �

4 The Gaussian bounds

The upper bounds in Theorems 2.1 and 2.2 are sharp – they have the correct decay in time
as t → +∞ – but have no information about the spatial decay of solutions. One may not
expect “uniform in an incompressible flow” bounds that would include the spatial decay – the
spreading rates in space do depend on the presence of a flow. Thus, for the sake of simplicity
we only obtain Gaussian bounds on solutions of the parabolic equations in the divergence
form. An interested reader should consult [98] for an extension of these bounds to equations
with an advection term when the coefficients are periodic. The matrix a(x) is assumed to
satisfy the usual uniform ellipticity condition:

λ|ξ|2 ≤ (a(x)ξ · ξ) ≤ Λ|ξ|2, (4.1)

for all t > 0, x ∈ Rn and ξ ∈ Rn. As we have mentioned, we will follow the proof of Fabes
and Stroock [56]. Consider the Cauchy problem:

φt = ∇ · (a(x)∇φ), t > 0, x ∈ Rn, (4.2)

φ(0, x) = g(x).

Solution of (4.2) can be written in terms of Green’s function Γ(t, x, y) for (4.2) as

φ(t, x) =

∫
Rn

Γ(t, x, y)g(y)dy. (4.3)

Recall that Γ(t, x, y) is the solution (in the sense of distributions) of the initial value problem

∂Γ(t, x, y)

∂t
= ∇x · (a(x)∇Γ(t, x, y)), t > 0, x ∈ Rn (4.4)

Γ(0, x, y) = δ(x− y), x ∈ Rn.

We will prove the following theorem.

Theorem 4.1 There exists a constant C > 0 that depends only on the ellipticity constants λ
and Λ of the matrix a(t, x), and dimension n so that

1

Ctn/2
e−C|x−y|

2/t ≤ Γ(t, x, y) ≤ C

tn/2
e−|x−y|

2/(Ct), (4.5)

for all 0 ≤ s < t.
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This result generalizes essentially verbatim to equations (4.1) with a diffusivity matrix a(t, x)
that depends both on t and x as long as the ellipticity condition (4.1) still holds for all t ≥ 0
and all x ∈ Rn. Then solution of the Cauchy problem starting at t = s:

φt = ∇ · (a(t, x)∇φ), t > s, x ∈ Rn, (4.6)

φ(s, x) = g(x)

is expressed via Green’s function (which depends now both on t and s) as

φ(t, x) =

∫
Rn

Γ(t, s, x, y)g(y)dy. (4.7)

One can show that

1

C(t− s)n/2
e−C|x−y|

2/(t−s) ≤ Γ(t, s, x, y) ≤ C

(t− s)n/2
e−|x−y|

2/[C(t−s)]. (4.8)

The proof is nearly identical to what we will present except for somewhat more cumbersome
notation so we will stick to the case when the diffusivity matrix a(x) is time-independent.

4.1 The proof of the upper bound

We first prove the upper bound.

Theorem 4.2 There exists a constant C > 0 that depends on the dimension n so that

Γ(t, x, y) ≤ C

(λt)n/2
e−|x−y|

2/8Λt), (4.9)

for all t > 0.

The constant 8 in the exponent in (4.9) is, of course, not optimal, we will point out the place
in the proof where we lose the optimality: it can be replaced by any constant larger than 4,
giving the upper bound

Γ(t, x, y) ≤ Cδ
(λt)n/2

e−|x−y|
2/((4+δ)Λt), (4.10)

with any δ > 0, which is nearly optimal, as can be seen in the special case a(x) ≡ Λ.

The test case: the heat equation and exponential solutions

Let us first explain how the Gaussian decay in the upper bound on the heat kernel for the
standard heat equation

ut = ∆u, t > 0, x ∈ Rn, (4.11)

can be obtained with a minimum of explicit formulas. Note that for any α ∈ Rn the function

φ(t, x;α) = exp{α · x+ α2t} (4.12)

is a solution of the heat equation (4.11). Let us think of it as a super-solution (and not as a
solution). Then, the function

v(t, x) = inf
α∈Rn

φ(t, x;α) (4.13)
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is a super-solution:

vt −∆v ≥ 0. (4.14)

This is a reflection of a general principle: infimum of super-solutions is a super-solution but
we may also compute it directly. Indeed, we can evaluate the infimum explicitly and write

v(t, x) = φ(t, x; ᾱ(t, x)) = e−|x|
2/(4t), ᾱ(t, x) = − x

2t
. (4.15)

This gives an explicit super-solution that obeys a Gaussian bound but it does not give the
factor tn/2 yet. In order to improve the super-solution (make it smaller) and incorporate the
Gaussian bound, we note that (4.14) is a strict inequality. In order to see that, we compute:

∂v

∂xk
=

∂φ

∂xk
+

n∑
j=1

∂φ

∂αj

∂ᾱj
∂xk

and

∆v =
n∑
k=1

∂2φ

∂xk2
+ 2

n∑
k,j=1

∂2φ

∂xk∂αj

∂ᾱj
∂xk

+
n∑

k,j,m=1

∂2φ

∂αj∂αm

∂ᾱm
∂xk

∂ᾱj
∂xk

+
n∑
j=1

∂φ

∂αj

∂2ᾱj
∂xk2

. (4.16)

This expression can be simplified. First, note that

∂φ

∂αj

∂2ᾱj
∂xk2

= 0,

simply because ᾱ(t, x) is linear in x. To deal with the other terms, note that, as ᾱ(t, x)
minimizes φ(t, x, α), we have

∇αφ(t, x, α)
∣∣∣
α=ᾱ(t,x)

= 0, D2
αφ(t, x, α)

∣∣∣
α=ᾱ(t,x)

> 0, (4.17)

with the second inequality holding in the sense positive-definite matrices. Differentiating the
first identity above in xk we get

∂2φ(t, x, ᾱ)

∂xk∂αi
+

n∑
m=1

∂2φ(t, x, ᾱ)

∂αi∂αm

∂ᾱm
∂xk

= 0, for all 1 ≤ i, k ≤ n. (4.18)

Using this in (4.16) gives

∆v =
n∑
k=1

∂2φ

∂xk2
−

n∑
k,j,m=1

∂2φ

∂αj∂αm

∂ᾱm
∂xk

∂ᾱj
∂xk

, (4.19)

so that

vt −∆v =
n∑

k,j,m=1

∂2φ

∂αj∂αm

∂ᾱm
∂xk

∂ᾱj
∂xk

> 0, (4.20)
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because of the inequality in (4.17). Thus, v(t, x) is a strict-subsolution, and the “extent of its
strictness” is given explicitly by the right side in (4.20). Using the explicit expression (4.15)
for ᾱ(t, x) we may simplify (4.20) to

vt −∆v =
1

4t2
∆αφ(t, x, ᾱ) =

1

4t2
[(x+ 2ᾱt)2 + 2nt]φ(t, x, ᾱ) =

n

2t
φ(t, x, ᾱ). (4.21)

Therefore, if we define

v̄(t, x) = a(t)φ(t, x, ᾱ(t, x)),

the function v̄(t, x) is still a super-solution, as long as

ȧ(t) +
n

2t
≥ 0. (4.22)

Therefore, we may take a(t) = t−n/2, obtaining a super-solution

v̄(t, x) =
e−|x|

2/(4t)

tn/2
, (4.23)

which happens to be also a solution of the heat equation.

The periodic case: trying to use super-solutions

Let us generalize this approach to the problem

ut = ∇ · (a(x)∇φ), (4.24)

with a periodic uniformly elliptic matrix a(x). We look for supersolutions in the form

φ(t, x;α) = ψ(x;α)eα·x+µ(α)t, (4.25)

with a periodic function ψα(x). The rate µ(α) comes from the eigenvalue problem for ψα(x).
We insert the ansatz (4.25) into (4.24) and get

e−α·x∇ · (a(x)eα·x(∇ψ(x;α) + αψ(x;α))) = µ(α)ψ(x;α), (4.26)

or, equivalently:

∇·(a(x)∇ψ(x;α))+α ·(a(x)∇ψ(x;α))+∇·(a(x)αψ(x;α))+(a(x)α ·α)ψ(x;α) = µ(α)ψ(x;α).
(4.27)

We obtain a super-solution by setting

v̄(t, x) = inf
α∈Rn

φ(t, x;α) = inf
α
ψ(t, x;α)eα·x+µ(α)t. (4.28)
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The general case: trying to use the subsolutions

For the general problem we may consider a family of solutions with exponential initial data:
for each α ∈ Rn let φ(t, x;α) be the solution of the Cauchy problem

∂φ(t, x;α)

∂t
= ∇ · (a(x)∇φ(t, x;α)), t > 0, x ∈ Rn, (4.29)

φ(0, x;α) = eα·x.

Let us get an upper bound for φ(t, x, α): set

w(t, x;α) = e−α·xφ(t, x, α).

The function w(t, x;α) satisfies

∂w

∂t
= e−α·x∇ ·

(
a(x)∇(eα·xw)

)
= e−α·x∇ ·

(
a(x)(eα·x(∇w + αw))

)
(4.30)

=
∂akj
∂xk

( ∂w
∂xj

+ αjw
)

+ akjαk(2
∂w

∂xj
+ αjw

)
+ akj

∂2w

∂xj∂xk
(4.31)

w(0, x;α) = 1.

The functions

φi(t, x;α) =
∂φ(t, x;α)

∂αi
, φij(t, x;α) =

∂2φ(t, x;α)

∂αi∂αj

satisfy the Cauchy problems

∂φi(t, x;α)

∂t
= ∇ · (a(x)∇φi(t, x;α)), t > 0, x ∈ Rn, (4.32)

φi(0, x;α) = xie
α·x,

and

∂φij(t, x;α)

∂t
= ∇ · (a(x)∇φij(t, x;α)), t > 0, x ∈ Rn, (4.33)

φij(0, x;α) = xixje
α·x.

The function φ(t, x;α) is convex in α: for any vector ξ ∈ Rn the function

ψ(t, x, α) =
n∑

i,j=1

φij(t, x;α)ξiξj

satisfies

∂ψ(t, x;α)

∂t
= ∇ · (a(x)∇φ(t, x;α)), t > 0, x ∈ Rn, (4.34)

ψ(0, x;α) = (x · ξ)2eα·x.

Thus, ψ(t, x;α) > 0, which means that the function φ(t, x;α) is convex in α for each t > 0
and x ∈ Rn.
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Exercise 4.3 Show that φ(t, x;α) has a unique minimum, as a function of α ∈ Rn, for
each t > 0 and x ∈ Rn.

Let us denote this minimum by ᾱ(t, x). The function

v̄(t, x) = φ(t, x; ᾱ(t, x)) = inf
α∈Rn

φ(t, x;α) (4.35)

is a super-solution:
∂v̄

∂t
≥ ∇ · (a(x)∇v̄), t > 0, x ∈ Rn, (4.36)

as it is an infimum of a family of super-solutions. Let us check how much room this gives us –
how strict of a super-solution v̄(t, x) is. We compute:

∂v̄

∂t
=
∂φ(t, x; ᾱ)

∂t
+
∂φ(t, x; ᾱ)

∂αj

∂ᾱj
∂t

=
∂φ(t, x; ᾱ)

∂t
,

as
∂φ(t, x; ᾱ)

∂αj
= 0, 1 ≤ j ≤ n. (4.37)

Differentiating the above in xk gives

∂2φ(t, x; ᾱ)

∂xk∂αj
+
∂2φ(t, x; ᾱ)

∂αj∂αm

∂ᾱm
∂xk

= 0, 1 ≤ j, k ≤ n. (4.38)

We also have

amk(x)
∂v̄

∂xk
= amk(x)

∂φ(t, x; ᾱ)

∂xk
+ amk(x)

∂φ(t, x; ᾱ)

∂αj

∂ᾱj
∂xk

,

so that

∇ · (a(x)∇v̄) =
∂

∂xm

(
amk(x)

∂v̄

∂xk

)
=

∂

∂xm

(
amk(x)

∂φ(t, x; ᾱ)

∂xk
+ amk(x)

∂φ(t, x; ᾱ)

∂αj

∂ᾱj
∂xk

)
= ∇ · (a(x)∇φ)(t, x; ᾱ) + amk(x)

∂2φ(t, x; ᾱ)

∂xk∂αj

∂ᾱj
∂xm

+
∂amk(x)

∂xm

∂φ(t, x; ᾱ)

∂αj

∂ᾱj
∂xk

+amk(x)
∂2φ(t, x; ᾱ)

∂xm∂αj

∂ᾱj
∂xk

+ amk(x)
∂2φ(t, x; ᾱ)

∂αj∂αl

∂ᾱl
∂xm

∂ᾱj
∂xk

+ amk(x)
∂φ(t, x; ᾱ)

∂αj

∂2ᾱj
∂xk∂xm

.

Using (4.37), (4.38) and the symmetry of amk, this simplifies to

∇ · (a(x)∇v̄) = ∇ · (a(x)∇φ)(t, x; ᾱ)− amk(x)
∂2φ(t, x; ᾱ)

∂αj∂αl

∂ᾱl
∂xk

∂ᾱj
∂xm

. (4.39)

Therefore, we have

v̄t −∇ · (a(x)∇v̄) = amk(x)
∂2φ(t, x; ᾱ)

∂αj∂αl

∂ᾱl
∂xk

∂ᾱj
∂xm

> 0. (4.40)
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Exercise 4.4 Show that φ(t, x;α) satisfies an estimate

φ(t, x;α) ≤ eα·x+Cα2t, (4.41)

with a constant C > 0 that depends only on Λ.

With this result in hand, we would already know that

v̄(t, x) ≤ φ(t, x;α1),

where
α1 = − x

2Ct
,

thus we have a Gaussian super-solution:

v̄(t, x) ≤ eα1·x+Cα2
1t = e−|x|

2/(4Ct). (4.42)

In order to improve, so that we could include the decay t−n/2, we need to find a good func-
tion β(t) so that

w(t, x) = β(t)v̄(t, x)

is still a super-solution. That is, we need to ensure that

β̇(t)φ(t, x; ᾱ) + β(t)amk(x)
∂2φ(t, x; ᾱ)

∂αj∂αl

∂ᾱl
∂xk

∂ᾱj
∂xm

≥ 0. (4.43)

This seems tough because amk(x) may be very small.

The general case: the Nash approach

The general strategy of the proof is similar to that of the uniform bound without the Gaussian
factor in Theorem 2.2 with several important modifications. An important role will be played
again by the exponentials: rather than consider only the function φ(t, x) we will use the
exponential moments of φ(t, x). Fix α ∈ Rn and consider the function

φα(t, x) = e−α·xψα(t, x).

Here ψα(t, x) is the solution of the initial value problem with exponentially weighted initial
data:

∂ψα
∂t

= ∇ · (a(x)∇ψα), t > 0, x ∈ Rn, (4.44)

ψα(0, x) = g(x)eα·x.

The key point is that L∞ bounds for φα will give us decay estimates on the function φ(t, x)
itself with a judiciously chosen α. We will show the following proposition.

Proposition 4.5 There exists a constant C > 0 that depends only on the dimension n so
that

‖φα(t)‖L∞ ≤
C

(λt)n/2
e2α2tΛ‖g‖L1 . (4.45)
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Exercise 4.6 Verify by a direct computation that the conclusion of Proposition 4.5 holds for
the standard heat equation.

Let us explain how Theorem 4.2 follows from Proposition 4.5. Consider the operator Pα
t

that maps g(x) to φα(t, x). It is given explicitly by

Pα
t g(x) = e−α·x

∫
Γ(t, x, y)g(y)eα·ydy =

∫
K(t, x, y)g(y)dy, (4.46)

with the integral kernel
K(t, x, y) = Γ(t, x, y)eα·(y−x). (4.47)

Proposition 4.5 says that the operator Pα
t obeys the bound

‖Pα
t g‖L∞ ≤

C

(λt)n/2
e2α2tΛ‖g‖L1 . (4.48)

However, we know that an integral operator of the form

[Ig](x) =

∫
M(x, y)g(y)dy, (4.49)

considered as a mapping L1 → L∞, has the norm

‖I‖L1→L∞ = sup
x,y
|M(x, y)|. (4.50)

Therefore, the (non-negative) integral kernel K(t, x, y) of the operator Pα
t satisfies the L∞-

bound

K(t, x, y) ≤ C

(λt)n/2
e2α2tΛ, (4.51)

and Green’s function itself satisfies

Γ(t, x, y) ≤ C

(λt)n/2
e2α2tΛeα·(x−y). (4.52)

As this estimate holds for all α ∈ Rn, given any x, y ∈ Rn, we can take, in particular,

α =
1

4tΛ
(y − x) (4.53)

and get the desired Gaussian upper bound

Γ(t, x, y) ≤ C

(λt)n/2
e−|x−y|

2/(8Λt). (4.54)

Thus, the Gaussian bound on the function Γ(t, x, y) is a consequence of the L∞ bound (4.45)
on the functions φα. Our task, therefore, is to prove the L1 → L∞ decay estimate (4.48) for
the operator Pα

t . In the proof of Theorem 2.2 we have obtained such bound for the solution
operator St for the original Cauchy problem (4.2):

Stg(x) =

∫
Γ(t, x, y)g(y)dy. (4.55)
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This was done by first establishing the L1 → L2 bound on St using the Nash inequality, and
then using the fact that St is self-adjoint, and duality to deduce the L2 → L∞ bound on St.
The final step was to use the semi-group property

St = St/2 ◦ St/2,

that gives the L1 → L∞ estimate for St as the product of L1 → L2 and L2 → L∞ bounds
for St/2. Here, the strategy is reversed: we will first show the L2 → L∞ bound and then use
duality and semi-group property of Pα

t to obtain the L1 → L∞ bound for Pα
t .

The operators Pα
t share a lot of common properties with the solution operator St. They

are not symmetric like St but the adjoint operator Pα∗
t is obtained by simply switching the

sign of α:
Pα∗
t = P−αt . (4.56)

Indeed, recall that, as we have seen in the proof of Theorem 2.1, the operator St is symmetric,
meaning that

Γ(t, x, y) = Γ(t, y, x). (4.57)

Therefore, the operator Pα∗
t has the form

Pα∗
t f(x) =

∫
K(t, y, x)f(y)dy = eα·x

∫
Γ(t, y, x)f(y)e−α·ydy (4.58)

= eα·x
∫

Γ(t, x, y)f(y)e−α·ydy.

In other words, (4.56) holds.
Continuing our analogy with St, the operators Pα

t form a semi-group:

Pα
t = Pα

t−s ◦ Pα
s , 0 ≤ s ≤ t. (4.59)

In order to verify (4.59) we will use the semigroup property of Green’s function:

Γ(t, x, z) =

∫
Γ(t− s, x, y)Γ(s, y, z)dy. (4.60)

We deduce from this property that

(Pα
t−s ◦ Pα

s )g(x) =

∫
e−α·xΓ(t− s, x, y)[Pα

s g](y)eα·ydy

=

∫
e−α·(x−y)Γ(t− s, x, y)Γ(s, y, z)e−α·(y−z)g(z)dzdy (4.61)

=

∫
e−α·(x−z)

(∫
Γ(t− s, x, y)Γ(s, y, z)dy

)
g(z)dz

=

∫
e−α·(x−z)Γ(t, x, y)g(z)dz = Ptg(x),

which is (4.59).
As we have mentioned, we will prove directly the L2 → L∞ bound rather than the L1 → L2

bound as we did in the proof of Theorem 2.2.
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Lemma 4.7 There exists a constant C > 0 that depends only on the dimension n so that

‖φα(t)‖L∞ ≤
C

(λt)n/4
e2α2tΛ‖g‖L2 , (4.62)

that is,

‖Pα
t ‖L2→L∞ ≤

C

(λt)n/4
e2α2tΛ. (4.63)

Here is how the conclusion of Proposition 4.5 follows from Lemma 4.7. As Pα∗
t = P−αt , the

adjoint operator also satisfies the L2 → L∞ estimate (4.63) (with α replaced by (−α) which
makes no difference):

‖Pα∗
t g‖L∞ ≤

C

(λt)n/4
e2α2tΛ‖g‖L2 . (4.64)

Therefore, for any function g ∈ L1 and f ∈ L2 we have∫
(Pα

t g(x))f(x)dx =

∫
g(x)Pα∗

t f(x)dx ≤ ‖g‖L1‖Pα∗
t f‖L∞ ≤

C

(λt)n/4
e2α2tΛ‖g‖L1‖f‖L2 ,

(4.65)
hence

‖Pα
t g‖L2 ≤ C

(λt)n/4
e2α2tΛ‖g‖L1 , (4.66)

or

‖Pα
t ‖L1→L2 ≤ C

(λt)n/4
e2α2tΛ. (4.67)

As the operators Pα
t form a semi-group, we have

Pα
t = Pα

t/2 ◦ Pα
t/2. (4.68)

Hence, as in the proof of Theorem 2.1 we get the bound

‖Pα
t ‖L1→L∞ ≤ ‖Pt/2‖L1→L2‖Pt/2‖L2→L∞ ≤

C

(λt)n/2
e2α2tΛ, (4.69)

which proves Proposition 4.5.

The proof of Lemma 4.7

The most technical part of the proof of the upper bound in Theorem 4.2 is the L2 → L∞

bound for the operators Pα
t in Lemma 4.7. We will get a family of differential inequalities for

the norms
Mp(t) = ‖φα(t)‖L2p , 1 ≤ p < +∞, (4.70)

of the form
dMp

dt
≤ −Cλ

2p

M
1+4p/n
p

M
4p/n
p/2

+ α2pΛMp, (4.71)

together with the ”boundary condition” at p = 1:

M1(t) = ‖φα(t)‖L2 ≤ eα
2Λt‖g‖L2 , t ≥ 0. (4.72)
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The second step will be to will use an ODE argument to get bounds on Mp(t) in terms of
M1(t) and finish the proof.

Let us show how (4.71) is obtained. The function φα satisfies the Cauchy problem

∂φα
∂t

= e−α·x∇ · (a(x)∇(eα·xφα)), (4.73)

φα(0, x) = g(x).

Multiplying this equation by φ2p−1
α gives

1

2p

d

dt

∫
|φα(t, x)|2pdx =

∫
e−α·xφ2p−1

α ∇ · (a(x)∇(eα·xφα))dx. (4.74)

Let us now rewrite the dissipation term in the right side as follows:

D :=

∫
e−α·xφ2p−1

α ∇ · (a(x)∇(eα·xφα))dx =

∫
e−α·xφ2p−1

α (a(x)α · ∇(eα·xφα))dx

−(2p− 1)

∫
e−α·xφ2p−2

α (a(x)∇φα · ∇(eα·xφα))dx =

∫
(a(x)α · α)φ2p

α dx

−(2p− 2)

∫
φ2p−1
α (a(x)α · ∇φα)dx− (2p− 1)

∫
φ2p−2
α (a(x)∇φα · ∇φα)dx. (4.75)

We will use Young’s inequality for the middle term in the last identity above:

|(a(x)α · ∇φ)| ≤ |φα|
2

(a(x)α · α) +
1

2|φα|
(a(x)∇φα · ∇φα). (4.76)

This gives

D ≤ p

∫
(a(x)α · α)φ2p

α dx− p
∫
φ2p−2
α (a(x)∇φα · ∇φα)dx

≤ pΛ|α|2
∫
|φα|2pdx−

λ

p

∫
|∇(φpα)|2dx. (4.77)

We will now use the Nash inequality for the function φpα(x):∫
|∇(φα)p|2dx ≥ Cn

(∫
|φα|2pdx

)1+2/n(∫
|φα|pdx

)−4/n

. (4.78)

Using this in (4.77) leads to the dissipation bound:

D ≤ pΛ|α|2
∫
|φα|2pdx−

Cλ

p

(∫
|φα|2pdx

)1+2/n(∫
|φα|pdx

)−4/n

. (4.79)

Going back to identity (4.74) and writing it in terms of the moments Mp gives

1

2p

d

dt
(M2p

p ) ≤ pΛ|α|2M2p
p −

Cλ

p

M
2p(1+2/n)
p

M
p(4/n)
p/2

, (4.80)
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or
dMp

dt
≤ pΛ|α|2Mp −

Cλ

p

M
1+4p/n
p

M
4p/n
p/2

, (4.81)

which is the differential inequality we were looking for. It is not closed as the right side
involves not only Mp but also on Mp/2. The constant C here depends only on dimension n.
One consequence of (4.81) is an exponentially growing in time bound

Mp(t) ≤ epΛ|α|
2t‖g‖L2p , (4.82)

which we will use later with p = 1.
We now use the differential inequalities (4.81) to bound the moments Mp(t) in terms

of Mp/2(t). Let us first take out the exponential factor: set

Gp(t) = Mp(t)e
−pΛ|α|2t. (4.83)

Then (4.81) implies that Gp satisfies

dGp

dt
≤ −Cλ

p

G
1+4p/n
p

M
4p/n
p/2

e−pΛ|α|
2tepΛ|α|

2(1+4p/n)t = −Cλ
p

G
1+4p/n
p

M
4p/n
p/2

e4p2Λ|α|2t/n, (4.84)

hence
n

4p

d

dt
(G−4p/n

p ) ≥ Cλ

p

1

M
4p/n
p/2

e4p2Λ|α|2t/n. (4.85)

It would be convenient to proceed if we knew that Mp/2(t) were increasing in time. Let us
see what we may expect in this regard: consider the standard heat kernel (corresponding to
g(x) = δ(x))

G0(t, x) =
e−x

2/(4t)

(4πt)n/2
,

and compute

|M (0)
p (t)|2p =

∫
e−2pα·xG2p

0 (t, x)dx =

∫
e−2pα·x e

−px2/(2t)

(4πt)pn
dx (4.86)

= e2pα2t

∫
exp{−p

2
(
x√
t

+ 2α
√
t)2} dx

(4πt)pn
= Cp

e2pα2t

tpn−n/2
.

Observe that while M
(0)
p (t) is not monotonic in time, it becomes monotonic if we multiply it

by tp(n−1)/(4p). This motivates the following: set

M̄p(t) = max
0≤s≤t

[
s(p−1)n/(4p)Mp(s)

]
, (4.87)

so that M̄p(t) is non-decreasing in time, and

1

Mp/2(t)4p/n
≥ tp−2

M̄p/2(t)4p/n
. (4.88)
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Using this in inequality (4.85) gives, with another constant C that depends only on dimen-
sion n:

1

Gp(t)4p/n
≥ Cλ

∫ t

0

sp−2

M̄p/2(s)4p/n
e4p2Λ|α|2s/nds. (4.89)

As the function M̄p(s) is non-decreasing in s we deduce that

1

Gp(t)4p/n
≥ Cλ

M̄p/2(t)4p/n

∫ t

0

sp−2e4p2Λ|α|2s/nds. (4.90)

The integral in the right side can be evaluated explicitly for integer p but we will only estimate
it: ∫ t

0

sp−2e4p2Λ|α|2s/nds =

(
nt

4p2Λ|α|2

)p−1 ∫ 4p2Λ|α|2/n

0

sp−2etsds

≥
(

nt

4p2Λ|α|2

)p−1 ∫ 4p2Λ|α|2/n

(1−1/p2)4p2Λ|α|2/n
sp−2etsds (4.91)

≥
(

nt

4p2Λ|α|2

)p−1

e(1−1/p2)4p2Λ|α|2t/n
∫ 4p2Λ|α|2/n

(1−1/p2)4p2Λ|α|2/n
sp−2ds

=
tp−1

p− 1
e(1−1/p2)4p2Λ|α|2t/n(1− (1− 1

p2
)p−1).

This estimate can be improved if we replace the lower limit of integration in (4.91) not by
(1−1/p2) times the upper limit but by (1−δ/p2) times the upper limit with an appropriately
chosen δ > 0. This improves the final constant in the estimates and gives the more precise
version (4.10) of the Gaussian upper bound3 but we will not pursue this avenue here as our
hands are already full with technicalities. As a slight simplification, the last factor above
satisfies

1− (1− 1

p2
)p−1 ≤ K

p
, for all p ≥ 1, (4.92)

with a universal constant K. Going back to (4.90) we obtain

1

Gp(t)4p/n
≥ λ

M̄p/2(t)4p/n

Ktp−1

p2
e(1−1/p2)4p2Λ|α|2t/n. (4.93)

We re-write this inequality in terms of Mp(t):

Mp(t) ≤ Cn/(4p)M̄p/2(t)

(
p2

λtp−1

)n/(4p)
epΛα

2te−(1−1/p2)4p2Λ|α|2t/(4p)

= Cn/(4p)M̄p/2(t)

(
p2

λtp−1

)n/(4p)
eΛ|α|2t/p. (4.94)

3In particular, the constant 8 in (4.10) can be turned into 4 + δ for any δ > 0 which is nearly optimal.
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Multiplying both sides by t(p−1)n/(4p) gives

Mp(t)t
(p−1)n/(4p) ≤ Cn/(4p)M̄p/2(t)

(
p2

λ

)n/(4p)
eΛ|α|2t/p. (4.95)

Therefore, for any 0 ≤ s ≤ t we have

Mp(s)s
(p−1)n/(4p) ≤ Cn/(4p)M̄p/2(s)

(
p2

λ

)n/(4p)
eΛ|α|2s/p ≤ Cn/(4p)M̄p/2(t)

(
p2

λ

)n/(4p)
eΛ|α|2t/p.

(4.96)
Taking the supremum over all 0 ≤ s ≤ t we arrive at

M̄p(t) ≤ Cn/(4p)M̄p/2(t)

(
p2

λ

)n/(4p)
eΛ|α|2t/p. (4.97)

Taking p = 2k we deduce that for all k ≥ 1 we have

M̄2k(t) ≤
C

λn/4
M̄1(t)eΛ|α|2t = CM1(t)eΛ|α|2t, (4.98)

since
∞∏
k=1

(2k)1/2k = exp
[
(log 2)

∞∑
k=1

k

2k

]
< +∞. (4.99)

Now, we are almost done: (4.98) means that

‖φα‖L2k ≤
Ceα

2ΛteΛ|α|2t

λn/4t(2k−1)n/(4·2k)
‖g‖L2 , (4.100)

for all k ≥ 1. Passing to the limit k → +∞, it follows that

‖φα‖L∞ ≤
Ce2α2Λt

(λt)n/4
‖g‖L2 , (4.101)

with a constant C > 0 that depends only on the dimension n, as we have claimed. This
competes the proof of Lemma 4.5 and Theorem 2.2.

4.2 The proof of the lower bound

In this section we prove the lower Gaussian bound for Green’s function.

Theorem 4.8 There exists a constant C > 0 that depends only on the ellipticity constants
λ, Λ and dimension n so that

Γ(t, x, y) ≥ 1

Ctn/2
e−C(x−y)2/t. (4.102)

We will not try to track the dependence of the constant on λ and Λ as we did in the proof of
Theorem 4.2, though that can also be done albeit at the expense of rather long expressions.
Thus, throughout this proof we will denote by C various constants that depend on λ, Λ and
dimension n. The main ingredient in the proof of Theorem 4.8 is the uniform lower bound on
Γ(t, x, y) on the set

{|x− y| ≤
√
t}.
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Theorem 4.9 There exists a constant C that depends only on the dimension n and ellipticity
constants λ and Λ so that

Γ(t, x, y) ≥ 1

Ctn/2
, (4.103)

for all x, y such that |x− y| ≤
√
t.

The uniform lower bound in Theorem 4.9 is actually sufficient to produce the Gaussian
decay in Theorem 4.8, and this is what we show first. Without loss of generality we may
assume that y = 0. We need to show that

Γ(t, x, 0) ≥ 1

Ctn/2
e−Cx

2/t (4.104)

Theorem 4.9 implies that we only need to consider |x| ≥
√
t. Let x ∈ Rn, t > 0 and k be the

smallest integer larger than 4|x|2/t:

k − 1 ≤ 4|x|2

t
< k. (4.105)

Consider a sequence of balls

Bj = B
(jx
k
,

√
t

2
√
k

)
=
{
y :

∣∣y − j

k
x
∣∣ ≤ √t

2
√
k

}
, j = 1, . . . , k − 1. (4.106)

As
|x|
k
<

√
t

2
√
k
, (4.107)

each pair of consecutive balls Bj and Bj+1 overlap, and, moreover, the center of Bj+1 lies
inside Bj and vice versa. In particular, the origin y = 0 lies inside B1, and the point x lies
inside Bk−1. Then, given any collection of points ξl ∈ Bl they satisfy the following properties:

|ξ1| ≤
√
t√
k
, |x− ξk−1| ≤

√
t√
k
, (4.108)

and

|ξl+1 − ξl| ≤
√
t√
k
, for all 1 ≤ k ≤ k − 2. (4.109)

The semigroup property of Green’s function Γ(t, x, y) implies that

Γ(t, x, 0) =

∫
Rn
. . .

∫
Rn

Γ
( t
k
, x, ξk−1

)
Γ
( t
k
, ξk−1, ξk−2

)
. . .Γ

( t
k
, ξ1, 0

)
dξ1 . . . dξk−1(4.110)

≥
∫
Bk−1

dξk−1

∫
Bk−2

dξk−2 . . .

∫
B1

dξ1Γ
( t
k
, x, ξk−1

)
Γ
( t
k
, ξk−1, ξk−2

)
. . .Γ

( t
k
, ξ1, 0

)
.

The uniform bound in Theorem 4.9 together with the bounds on distances (4.108) and (4.109)
imply that

Γ
( t
k
, ξj, ξj−1

)
≥ kn/2

Ctn/2
, for all 2 ≤ j ≤ k − 1, (4.111)
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as well as

Γ
( t
k
, x, ξk−1

)
≥ kn/2

Ctn/2
, Γ

( t
k
, ξ1, 0

)
≥ kn/2

Ctn/2
. (4.112)

Using these estimates in (4.110) leads to

Γ(t, x, 0) ≥ |B1|k−1

(
kn/2

Ctn/2

)k
= Ck−1

n

(√
t√
k

)n(k−1)(
kn/2

Ctn/2

)k
=
Ck−1
n kn/2

Cktn/2
= DKk

0

(
k

t

)n/2
,

(4.113)
with constants K0 and D that depend on λ and Λ. As 4x2/t < k < 8x2/t, we conclude that

Γ(t, x, 0) ≥ 1

Ctn/2
e−Cx

2/t, (4.114)

with a constant C that depends on λ, Λ and dimension n. Therefore, Theorem 4.8 is a
consequence of Theorem 4.9.

Proof of the uniform lower bound in Theorem 4.9

We now prove the lower bound in Theorem 4.9, that is, we show that

Γ(t, x, y) ≥ 1

Ctn/2
, (4.115)

for all x, y such that |x− y| ≤
√
t. The reason why this estimate holds is, roughly speaking,

the following. Solution of the Cauchy problem

φt = ∇ · (a(x)∇φ), (4.116)

with φ(0, x) = φ0(x) ≥ 0 conserves mass:∫
φ(t, x)dx =

∫
φ0(x)dx. (4.117)

The Gaussian upper bound in Theorem 4.2 means that the total mass outside of the ball
BN = {|x| ≥ N

√
t} is small for large N , so that∫

|x|≤N
√
t

φ(t, x)dx ≥ 1

2

∫
φ0(x)dx, (4.118)

for a sufficiently large N . If we imagine that φ(t, x) is more or less equally distributed over
the ball BN , we obtain the lower bound (4.115).

In order to simplify slightly the notation let us make the following observation. Let φ(t, x)
be the solution of

∂φ

∂t
= ∇ · (a(x)∇φ), (4.119)

and set φL(t, x) = φ(L2t), Lx). The function φL(t, x) satisfies

∂φL(t, x)

∂t
= L2∂φ(L2t, Lx)

∂t
= L2∇ · (a∇φ)(L2t, Lx) = ∇ · (aL(x)∇φL(t, x)), (4.120)
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which is an equation
∂φL(t, x)

∂t
= ∇ · (aL(x)∇φL(t, x)), (4.121)

of the same form as (4.119) but with the diffusion matrix a(x) replaced4 by aL(x) = a(Lx).
Let us investigate how the Green’s functions Γ(t, x, y) and ΓL(t, x, y) for (4.119) and (4.121)
are related. We know from the above that if φ(t, x) solves (4.119) with the initial data

φ(0, x) = φ0(x),

and φL(t, x) solves (4.121) with the initial data

φL(0, x) = φ0(Lx),

then

φL(t, x) = φ(L2t, Lx).

In other words, we have the identity∫
Γ(L2t, Lx, y)φ0(y)dy =

∫
ΓL(t, x, y)φ0(Ly)dy =

1

Ln

∫
ΓL(t, x,

y

L
)φ0(y)dy, (4.122)

for all initial data φ0 ∈ L1. As φ0 is an arbitrary function, we deduce the following scaling
relation

Γ(L2t, Lx, Ly) =
1

Ln
ΓL(t, x, y). (4.123)

Therefore, in order to show that

Γ(t, x, y) ≥ 1

Ctn/2
, for all |x− y| ≤

√
t, (4.124)

it is sufficient to show that there exists a constant C that does not depend on L so that

ΓL(1, x, y) ≥ 1

C
, for all |x− y| ≤ 1. (4.125)

The matrices a(x) and aL(x) have the same ellipticity constants. Hence, we can reformulate
Theorem 4.9 as the statement that there exists a constant C > 0 that depends only on the
ellipticity constants and dimension so that

Γ(1, x, y) ≥ 1

C
, for all |x− y| ≤ 1, (4.126)

and this is what we will prove.
The key ingredient in the proof is, once again, an integral bound.

4As a slight digression, we mention an important question of what happens when is L large, meaning that
we observe the original solution φ(t, x) after long times t ∼ L2 and on large scales x ∼ L. This is the scope
of the homogenization theory [12] that is particularly well developed when a(x) is either periodic or random
in x.
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Lemma 4.10 For every τ > 0 there exists a constant B that depends only on λ, Λ, τ and n
so that we have ∫

e−π|y|
2

log Γ(τ, x, y)dy ≥ −Bτ , (4.127)

for all x such that |x| ≤ 1.

Let us explain why this lemma is sufficient to prove the lower bound (4.126). Take any x
and y so that |x− y| ≤ 1. Without loss of generality we may assume that |x| ≤ 1 and y = 0.
The semi-group property implies that

Γ(1, x, 0) =

∫
Γ(1/2, x, ξ)Γ(1/2, ξ, 0)dξ ≥

∫
Γ(1/2, x, ξ)Γ(1/2, ξ, 0)e−π|ξ|

2

dξ.(4.128)

Applying Jensen’s inequality, recalling that Γ(t, ξ, 0) = Γ(t, 0, ξ), and using Lemma 4.10 gives

log Γ(1, x, 0) ≥
∫
e−π|ξ|

2

log Γ(1/2, x, ξ)dξ +

∫
e−π|ξ|

2

log Γ(1/2, ξ, 0)dξ ≥ −2B1/2, (4.129)

so that (4.126) holds.

The proof of Lemma 4.10

The very last step in the proof of Theorem 4.1 is to prove Lemma 4.10. Fix x such that |x| ≤ 1,
take any ε > 0, and set u(t, y) = Γ(t, y, x) + ε, and

G(t) =

∫
e−π|y|

2

log u(t, y)dy. (4.130)

The role of ε here is simply to make the integral above “clearly convergent” – otherwise, there
may be a hypothetical problem as |y| → +∞, where Γ(t, y, x) is very small. All our bounds
will be uniform in ε. If we momentarily set ε = 0 then∫

u(t, y)dy = 1,

for all t > 0, Jensen’s inequality implies then

0 = log

(∫
u(t, y)dy

)
≥ log

(∫
u(t, y)e−π|y|

2

dy

)
≥
∫

(log u(t, y))e−π|y|
2

dy = G(t), (4.131)

so G(t) ≤ 0 when ε = 0, showing it is the lower bound that is non-trivial. Our goal is to
show that, with ε > 0, G(t) is bounded from below for each t > 0, uniformly in |x| ≤ 1,
and ε > 0. Note that if ε = 0 then G(0) is not very well defined but G(s) → −∞ as s ↓ 0
since u(0, y) = δ(y − x). Therefore an estimate from below for G(s) that is uniform in ε is
not an a priori obvious fact. Let us obtain a differential inequality for G(t):

dG

dt
=

∫
1

u(t, y)
∇ · (a(y)∇u(t, y))e−π|y|

2

dy = −
∫
a(y)∇u(t, y) · ∇

(e−π|y|2
u(t, y)

)
dy

= 2π

∫
a(y)∇(log u(t, y)) · ye−π|y|2dy +

∫
(a(y)∇(log u(t, y)) · ∇(log u(t, y))e−π|y|

2

dy.
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Let us rewrite the integrands above:

a(y)∇(log u) · ∇(log u) + 2πa(y)∇(log u) · y =
1

2
a(y)∇(log u) · ∇(log u) (4.132)

+
1

2
a(y)(∇(log u) + 2πy) · (∇(log u) + 2πy)− 2π2(a(y)y · y).

The first term in the right side is positive, which is good for us. Dropping the first term in
the second line above gives

dG

dt
≥ −2π2

∫
(a(y)y · y)e−π|y|

2

dy +
1

2

∫
a(y)∇(log u(t, y)) · ∇(log u(t, y))e−π|y|

2

dy

≥ −A+
λ

2

∫
|∇(log u(t, y))|2e−π|y|2dy, (4.133)

with a constant A that depends only on the ellipticity constants of the matrix a(x). Therefore,
the function G(t) + At is non-decreasing for t > 0, which is the right direction. It is not,
however, sufficient since at the moment we do not have an ε-independent lower bound for
G(t) at any time, so saying that, for instance, G(1) > −A + G(0) will not be of much use.
What we will use is that the positive term in the right side of (4.133) is quadratic in log u.

We will need the result of the following exercise.

Exercise 4.11 Let dµ(x) = e−π|x|
2
dx. Show that there exists a constant C > 0 so that for

any function φ ∈ H1(R; dµ) we have∫
|φ(x)− 〈φ〉|2dµ(x) ≤ C

∫
|∇φ|2dµ(x), (4.134)

with

〈φ〉 =

∫
φ(x)dµ(x).

Thus, have the Poincaré inequality in the whole space∫
Rn

(logw(y)− 〈logw〉µ)2dµ(y) ≤ C

∫
R
|∇(logw(y))|2dµ(y). (4.135)

A good reference for such generalized Poincaré inequalities is the book [84].
In our situation, this inequality takes the form∫

(log u(t, y)−G(t))2e−π|y|
2

dy ≤ C

∫
|∇(log u(t, y))|2e−π|y|2dy. (4.136)

Therefore, we have

dG

dt
≥ −A+B

∫
(log u(t, y)−G(t))2e−π|y|

2

dy, (4.137)

with the constants A and B that depend only on the ellipticity constants of the matrix a(x).
Given any D ∈ R, the function

p(u) =
(log u−D)2

u
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is decreasing in u for u > e2+D. In addition, we know from the upper bound on Γ(t, x, y) that
there exists a constant Kτ so that u(s, y) ≤ Kτ for all y ∈ Rn and all τ/2 ≤ t ≤ τ . Therefore,
for all τ/2 ≤ t ≤ τ we have

dG

dt
≥ −A+B

∫
St

(log u(t, y)−G(t))2

u(t, y)
u(t, y)e−π|y|

2

dy (4.138)

≥ −A+B
(logK −G(t))2

K

∫
St

u(t, y)e−π|y|
2

dy.

Here St is the set

St = {u(t, y) ≥ e2+G(t)}.

If G(t) is very negative (which is what we are trying to avoid), the set St is very large. The
integral over St may be estimated as follows, using the fact that u(t, y) ≤ e2+G(t) for y 6∈ St,
and u(t, y) ≥ e2+G(t) for y ∈ St:∫

St

u(t, y)e−π|y|
2

dy ≥
∫
St

(u(t, y)− e2+G(t))e−π|y|
2

dy ≥
∫
Rn

(u(t, y)− e2+G(t))e−π|y|
2

dy

=

∫
Rn
u(t, y)e−π|y|

2

dy − e2+G(t). (4.139)

Next, as ∫
Rn

Γ(t, x, y)dy = 1, (4.140)

the upper Gaussian bounds on Γ(t, x, y) imply that for any τ > 0 there exists a constant c0

(that depends on τ) so that ∫
Rn

Γ(t, x, y)e−π|y|
2/2dy ≥ c0, (4.141)

for all τ/2 ≤ t ≤ τ . The same upper bound on Γ(t, x, y), together with (4.141) implies that
there exists R (that also depends on τ) so that∫

|y|≥R
u(t, y)e−π|y|

2/2dy ≤ c0

2
, (4.142)

also for all τ/2 ≤ t ≤ τ . This is the crucial step in the proof: the upper bound necessitates
the lower bound on Γ(t, x, y). Returning to (4.139) we get∫

St

u(t, y)e−π|y|
2

dy ≥ e−π|R|
2/2

∫
|y|≤R

u(t, y)e−π|y|
2/2dy − e2+G(t) ≥ c0e

−π|R|2

2
− e2+G(t). (4.143)

Inequality (4.138) now becomes

dG

dt
≥ −A+B

(logK −G(t))2

K

[
c0e
−π|R|2

2
− e2+G(t)

]
,

τ

2
≤ t ≤ τ. (4.144)
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Assume now that G(τ) < −M for some large M . The function G(s) + As is non-decreasing
in time, hence

G(t) ≤ G(τ) + Aτ − At < −M/2, (4.145)

for all t ∈ [τ/2, τ ] provided that M > 100Aτ . Suppose that M is so large that (4.145) implies
that

e−πR
2

> 10e2+G(s),

for all τ/2 ≤ s ≤ τ . Then, still under the assumption G(τ) < −M , (4.144) implies that

dG

dt
≥ −A+B

(logK −G(t))2

K

c0e
−π|R|2

5
, for

τ

2
≤ t ≤ τ . (4.146)

However, if M is much larger than all other constants appearing in (4.146), and G(t) ≤ −M/2
for all t ∈ [τ/2, τ ], it follows from the last inequality that

dG

dt
≥ cG(t)2, for

τ

2
≤ t ≤ τ , (4.147)

with the constant c that still depends only on τ and the ellipticity constants of the matrix a(x).
However, this quadratic inequality blows up in a finite “backward” time, so if G(t) satisfies
(4.147), and G(τ/2) > −∞, it is impossible that G(τ) < −M for too large M (that depends
explicitly on constant c). This gives an a priori lower bound on G(τ) that depends only on τ
and the ellipticity constants of the matrix a(x) and is uniform in ε > 0. In order to remove
the need for the regularization ε > 0 note that we have shown∫

e−π|y|
2

log(Γ(τ, x, y) + ε)dy > −Bτ . (4.148)

As the function Γ(τ, x, y) is uniformly bounded from above by a constant K(τ), it follows
from (4.148) that ∫

e−π|y|
2

log−(Γ(τ, x, y) + ε)dy > −B′τ , (4.149)

with some constant B′τ . Here log− u = 0 if u > 1 and log− u = log u if u ∈ (0, 1). Fatou’s
lemma now shows that ∫

e−π|y|
2

log− Γ(τ, x, y)dy > −B′τ . (4.150)

This completes the proof of Theorem 4.1!

5 Gaussian bounds on the heat kernel imply everything

We will now show, once again following Fabes and Stroock [56], that the bounds on the heat
kernel imply “all” classical regularity results on the parabolic equations in the divergence
form. The physical reason for this implication is simple. Parabolic and elliptic equations tend
to equilibrate locally, as can be seen, for instance, from the mean value property for harmonic
functions. A potential enemy of this tendency is the ”outside influence” – for example, if the
solution is wild outside a ball, it may spoil the equilibrating properties inside the ball too,
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The heat kernel bounds provide two remedies against the outside influence – first, the upper
Gaussian bounds impose limits on the influence of what happens outside the ball B(x,R) on
the solution inside a slightly smaller ball B(x, δR) with δ < 1. On the other hand, the lower
bounds on the heat kernel show that local influence is quite strong – the combination of the
two allows to prove local regularity results.

5.1 A lower bound for Green’s functions on a bounded domain

As before, we will denote by Γ(t, x, y) the Green’s function for the Cauchy problem

φt = ∇ · (a(x)∇φ), t > 0, x ∈ Rn, (5.1)

φ(0, x) = φ0(x).

That is, solution of (5.1) can be written as

φ(t, x) =

∫
Rn

Γ(t, x, y)φ0(y)dy. (5.2)

In order to bound the ”outside influence” on φ(t, x) in a ball B(ξ, R) we will consider the
worst case scenario (assume for the sake of intuition that φ0(x) ≥ 0), setting the Dirichlet
boundary condition on the boundary ∂B(ξ, R). The maximum principle implies that the true
solution satisfies φ(t, x) > 0 on ∂B(ξ, R), hence in that way we will account for the ”strongest
outside cooling influence”.

To formalize this idea, we will make use of the Green’s function for the Cauchy problem
on bounded domains. Let B(ξ, R) ⊂ Rn be a ball of radius R centered at a point ξ ∈ Rn. We
will denote by Γξ,R(t, x, y) the Green’s function for the problem

ψt = ∇ · (a(x)∇ψ), t > 0, x ∈ B(ξ, R), (5.3)

ψ(0, x) = ψ0(x), x ∈ B(ξ, R)

ψ(t, y) = 0 for y ∈ ∂B(ξ, R).

The function ψ(t, x) has a representation

ψ(t, x) =

∫
B(ξ,R)

Γξ,R(t, x, y)ψ0(y)dy. (5.4)

Our immediate task will be to find uniform lower bounds for Γξ,R(t, x, y) strictly inside the
ball B(ξ, R), that is, in a slightly smaller ball B(ξ, δR) – we can not possibly expect such
bounds all the way to the boundary as Γξ,R vanishes there.

It is instructive to write an equation for the function ψ(t, y) in the whole space, in the
sense of distributions. For any smooth test function η ∈ S(Rn) (the Schwartz class), we have∫

Rn
ψ(t, x)∇ · (a(x)∇η(x))dx =

∫
B(ξ,R)

ψ(t, x)∇ · (a(x)∇η(x))dx (5.5)

=

∫
∂B(x,R)

ψ(t, y)(a(y)∇η(y) · ν)dy −
∫
B(ξ,R)

(a(x)∇η(x) · ∇ψ(t, x))dx.
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Here, ν is the outward normal to the sphere ∂B(ξ, R). The first term in the right side vanishes
because of the Dirichlet boundary conditions, leading to∫

Rn
ψ(t, x)∇ · (a(x)∇η(x))dx = −

∫
B(ξ,R)

(a(x)∇η(x) · ∇ψ(t, x))dx (5.6)

= −
∫
∂B(x,R)

η(y)(a(y)∇ψ(t, y) · ν)dy +

∫
B(ξ,R)

η(x)∇ · (a(x)∇ψ(t, x))dx

= −
∫
∂B(x,R)

η(y)(a(y)∇ψ(t, y) · ν)dy +

∫
B(ξ,R)

η(x)ψt(t, x)dx.

Therefore, ψ(t, x) satisfies the following problem in the whole space:

ψt = ∇ · (a(x)∇ψ) + (a(x)∇ψ(t, x) · ν)δ∂B(ξ,R)(x), t > 0, x ∈ Rn, (5.7)

ψ(0, x) = ψ0(x), x ∈ Rn.

Recall that if ψ0(x) ≥ 0 then ψ(t, x) ≥ 0 inside B(ξ, R). Therefore, as ψ(t, x) = 0 on ∂B(ξ, R),
we have

(a(x)∇ψ · ν) ≤ 0 for x ∈ ∂B(ξ, R).

Hence, the source in (5.6) is negative, as it should be from the physical considerations – the
boundary has the cooling effect. Duhamel’s principle implies that ψ(t, x) can be written as

ψ(t, x) =

∫
B(ξ,R)

Γ(t, x, y)ψ0(y)dy +

∫ t

0

∫
∂B(ξ,R)

Γ(t− s, x, y)(a(y)∇ψ(s, y) · ν(y))dy. (5.8)

If we take the initial data ψ0(y) = δ(y − z) with some z ∈ B(ξ, R), we get from (5.8) an
integral equation for Γξ,R:

Γξ,R(t, x, z) = Γ(t, x, z) +

∫ t

0

∫
∂B(ξ,R)

Γ(t− s, x, y)(a(y)∇Γξ,R(s, y, z) · ν(y))dyds. (5.9)

The maximum principle implies, once again, that

(a(y)∇Γξ,R(s, y, z) · ν(y)) < 0,

so we may rewrite (5.10) as

Γξ,R(t, x, z) = Γ(t, x, z)−
∫ t

0

∫
∂B(ξ,R)

Γ(t− s, x, y)dµ(y)ds. (5.10)

Here, we have defined the measure

dµ(s, y) = −(a(y)∇Γξ,R(s, y, z) · ν(y))dy.

In order to estimate the effect of the cold boundary in (5.10), we go back to the equation
for Γξ,R:

∂Γξ,R
∂t

= ∇ · (a(x)∇Γξ,R), t > 0, x ∈ B(ξ, R), (5.11)

Γξ,R(0, x) = δ(x− z), x ∈ B(ξ, R)

Γξ,R(t, y) = 0 for y ∈ ∂B(ξ, R),

95



and integrate over the ball B(ξ, R) and in time:

∫
B(ξ,R)

Γξ,R(t, x, z)dx− 1 =

t∫
0

∫
∂B(ξ,R)

(a(y)∇Γξ,R(s, y, z) · ν(y))dyds = −
t∫

0

∫
∂B(ξ,R)

dµ(s, y)ds.

(5.12)
We conclude that ∫ t

0

∫
∂B(ξ,R)

dµ(s, y)ds < 1, (5.13)

for all t > 0. This is a very important point – we have a bound on the total effect of the cold
boundary over time.

A lower bound on Γξ,R(t, x, z) for nearby points and short times

Take now any δ ∈ (0, 1) and assume that both x and z lie in the “slightly smaller” ballB(ξ, δR).
Then the upper Gaussian bound on Γ(t, x, y) that we have already proved, together with (5.10)
and (5.13) imply that

Γξ,R(t, x, z) ≥ Γ(t, x, z)− sup
0≤τ≤t

C

τn/2
e−(1−δ)2R2/(Cτ). (5.14)

Note that the upper bound on Γ(t, x, y) gives a lower bound on the Dirichlet Green’s function
away from the boundary – this is exactly the phenomenon we have mentioned – the upper
bounds limit the influence of the cold boundary strictly inside the domain. Next, the lower
Gaussian bound on Γ(t, x, z) gives

Γξ,R(t, x, z) ≥ 1

Ctn/2
e−C|x−z|

2/t − sup
0≤τ≤t

C

τn/2
e−(1−δ)2R2/(Cτ). (5.15)

Here, we see the competition between the “heating from inside” given by the first term in the
right side, and the cooling by the boundary expressed by the second term in the right side
of (5.15). We deduce from (5.15) that there exists r ∈ (0, 1− δ), which depends only on δ, so
that for all 0 < t ≤ r2R2 and |z − x| < rR, with z, x ∈ B(ξ, δR), we have

Γξ,R(t, x, z) ≥ 1

2Ctn/2
e−C|x−z|

2/t. (5.16)

The constant C depends only on δ but not on R.

The fact that we obtained first a lower bound on Γξ,R(t, x, z) only for nearby points x
and z and at short times is very natural – by virtue of being inside B(ξ, δR), these points are
separated from the boundary of B(x,R) (where the Dirichelt boundary condition is imposed)
by the distance (1 − δ)R which is larger than |x − z|. Therefore, it is reasonable to expect
that the ”warming” influence of z at x at short times is stronger than the combined “cooling”
influence of all boundary points on ∂B(x,R) that are too far away to compete.
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Extension of the lower bound to all of B(ξ, δR) and larger times

In order to extend this estimate to all of the smaller ball B(ξ, δR) and all times in an interval
of the form γR2 ≤ t ≤ R2 with some γ > 0, we use a simpler version of the argument in the
proof of Theorem 4.9. Take any x, z ∈ B(ξ, δR) and t ≤ R2. Consider a sequence of balls

Bj = B(ξj, rR/3), j = 1, . . . , k − 1,

such that ξ1 = z, x ∈ Bk−1 and each next center ξj+1 ∈ Bj. By possibly increasing the number
of balls we can also ensure that t/k ≤ r2R2, our threshold for a “short time” in (5.16). The
total number k of the required balls is bounded by

k ≤ 1 + max

[
|x− z|
10rR

,
t

R2r2

]
≤ 1 + max

[
C(δ),

t

R2r2

]
. (5.17)

Therefore, as t ≤ R2, we conclude that k is bounded by a constant Kδ that only depends
on δ:

k ≤ Kδ for t ≤ R2. (5.18)

The semigroup property of Green’s function Γξ,R(t, x, z) implies that we may iterate:

Γξ,R(t, x, z) =

∫
B(ξ,R)

. . .

∫
B(ξ,R)

Γξ,R
( t
k
, x, ξk−1

)
Γξ,R

( t
k
, ξk−1, ξk−2

)
. . .Γξ,R

( t
k
, ξ1, z

)
dξ1 . . . dξk−1

≥
∫

Bk−1

dξk−1

∫
Bk−2

dξk−2 . . .

∫
B1

dξ1Γξ,R
( t
k
, x, ξk−1

)
Γξ,R

( t
k
, ξk−1, ξk−2

)
. . .Γξ,R

( t
k
, ξ1, z

)
. (5.19)

If t ≥ γR2 then for any z, z′ ∈ B(ξ, δR) we have

(z − z′)2

t
≤ δ2R2

γR2
=
δ2

γ
.

Moreover, our choice of the balls ensures that if ξj ∈ Bj and ξj+1 ∈ Bj+1, then estimate (5.16)
applies to Γξ,R(t/k, ξjξj+1). Hence, in the range γR2 ≤ t ≤ R2, the above bound, implies that

Γξ,R
( t
k
, ξj, ξj−1

)
≥ 1

C ′tn/2
, for all 2 ≤ j ≤ k, (5.20)

with a constant C ′ that depends only on γ and δ. Similarly, we have

Γξ,R
( t
k
, x, ξk

)
≥ 1

Ctn/2
, Γξ,R

( t
k
, ξ1, z

)
≥ 1

Ctn/2
. (5.21)

Using these estimates in (5.19) leads to

Γ(t, x, z) ≥ |B1|k−1

(
1

Ctn/2

)k
= Ck−1

n (rR)n(k−1)

(
1

Ctn/2

)k
=
DKk

0

Rn

(
r2R2

t

)nk/2
, (5.22)

with the constants K0 and D that only depend on δ. As γR2 < t ≤ R2, and k obeys the
upper bound (5.18) we simply get

Γ(t, x, z) ≥ C

Rn
, γR2 < t ≤ R2, x, z ∈ B(ξ, δR). (5.23)

Let us summarize this result.
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Theorem 5.1 For each δ ∈ (0, 1) and γ > 0 there exists c0 that depends only on the ellipticity
constants of the matrix a(x), dimension n, δ and γ so that for all ξ ∈ Rn and all R > 0 we
have a lower bound

Γξ,R(t, x, z) ≥ c0

Rn
, (5.24)

for all x, z ∈ B(ξ, δR) and all γR2 ≤ t ≤ R2.

It is this corollary of the Gaussian heat kernel bounds that will be crucial in the proof of
parabolic regularity properties below: it limits the outside influence!

5.2 A decay of oscillation estimate

The lower bound on the Green’s function in a ball that we have obtained above implies a
decay of oscillation estimate. Consider a parabolic cylinder

D(s, ξ;R) = {s−R2 ≤ t ≤ s, |x− ξ| ≤ R}, (5.25)

and the corresponding oscillation of a function u over D(s, ξ;R):

Osc(u; s, ξ, R) = sup{|u(t, x, )− u(t′, x′)| : (t, x), (t′, x′) ∈ D(s, ξ;R)}. (5.26)

We will now deduce from the Green function bounds the following decay of oscillation esti-
mate.

Theorem 5.2 For each δ ∈ (0, 1) there exists ρ < 1 that depends only on dimension n, the
ellipticity constants of the matrix a(x) and δ, so that any solution u ∈ C∞([s−R2, s]×B̄(ξ, R))
of

ut = ∇ · (a(x)∇u), s−R2 < t < s, x ∈ B(ξ, R), (5.27)

satisfies
Osc(u; s, ξ, δR) ≤ ρOsc(u; s, ξ, R). (5.28)

Proof. Let m(r) and M(r) denote the minimum and maximum of u over the parabolic
cylinder D(s, ξ; r). Consider the set

S =
{
x ∈ B(ξ, δR) : u(s−R2, x) ≥ M(R) +m(R)

2

}
,

where the solution is ”large” at time s − R2. Assume first that this set itself is relatively
large: |S| ≥ |B(ξ, δR)|/2. Together with the bounds on the Dirichlet Green’s function this
will be enough to show that at any time separated from s−R2:

s− δ2R2 < t ≤ s,

solution inside the ball B(ξ, δR) will be ”not too small”. That is, since u(s − R2, x) is large
on a big set inside B(x, δR), after a short time it will be ”large enough” on all of B(ξ, δR).
To this end, note that the function

u1(t, x) = u(t, x)−m(R)
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satisfies the same equation as u(t, x), and is positive for all x ∈ D(s, ξ, R). In particular, we
know that u1(t, x) ≥ 0 for all s−R2 ≤ t ≤ s and all x ∈ ∂B(ξ, R). The function

u2(x) =

∫
B(ξ,R)

(u(s−R2, y)−m(R))Γξ,R(t− (s−R2), x, y)dy

satisfies the same parabolic equation as u1(t, x), but u2(t, x) = 0 for all s − R2 ≤ t ≤ s and
all x ∈ ∂B(ξ, R), and, in addition, u1(s−R2, x) = u2(s−R2, x) for all x ∈ B(ξ, R). It follows
from the maximum principle that u1(t, x) ≥ u2(t, x) for all (t, x) ∈ D(s, ξ, R). Therefore,
for (t, x) ∈ D(s, ξ, δR) we have

u(t, x)−m(R) ≥
∫
B(ξ,R)

(u(s−R2, y)−m(R))Γξ,R(t− (s−R2), x, y)dy (5.29)

≥ M(R)−m(R)

2

∫
S

Γξ,R(t− (s−R2), x, y)dy ≥ M(R)−m(R)

2

cδ
Rn
|S|

= ε(M(R)−m(R)).

We used Theorem 5.1 in the last step above, since t − (s − R2) ≥ (1 − δ2)R2, and also the
assumption |S| ≥ |B(ξ, δR)|/2. The constant ε does not depend on R or u. It follows that

m(δR) ≥ m(R) + ε(M(R)−m(R)),

and thus
M(δR)−m(δR) ≤M(R)−m(δR) ≤ (1− ε)(M(R)−m(R)). (5.30)

On the other hand, if S is small: |S| ≤ |B(ξ, δR)|/2, we would simply consider the
difference M(R)− u(t, x) for any s− δ2R2 < t ≤ s, and x ∈ B(ξ, δR):

M(R)− u(t, x) ≥
∫
B(ξ,R)

(M(R)− u(s−R2, y))Γξ,R(t− (s−R2), x, y)dy (5.31)

≥ M(R)−m(R)

2

∫
Sc

Γξ,R(t− (s−R2), x, y)dy ≥ M(R)−m(R)

2

cδ
Rn
|Sc|

= ε(M(R)−m(R)),

which also implies (5.30). �

5.3 The Hölder regularity

The decay of oscillations implies the Hölder regularity of solutions – we will use an iterative
local blow-up argument. Consider some s > 0, ξ ∈ Rn and R such that s − R2 > 0, and
assume that u(t, x) satisfies the parabolic equation in the parabolic cylinder D(s, ξ, R):

ut = ∇ · (a(x)∇u), x ∈ B(ξ, R), s−R2 ≤ t ≤ s. (5.32)

We are going to show that if u(t, x) is bounded in D(s, ξ, R) then u(t, x) has to satisfy Hölder
a priori bounds in a smaller set

Dδ(s, ξ) = {s− (1− δ2)R2 ≤ t ≤ s, |x− ξ| ≤ (1− δ)R},
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for any δ ∈ (0, 1). The main point is that if we step slightly inside D(s, ξ, R), away from
the boundary |x − ξ| = R, and from the initial time t = s − R2, then the Hölder norm of u
depends only5 on the L∞ norm of u in the slightly bigger set D(s, ξ, R). Accordingly, take
some t, t′ so that

s− (1− δ2)R2 ≤ t′ ≤ t ≤ s,

and x, x′ ∈ B(ξ, (1− δ)R). Let us also denote

l =
√
t− t′ + |x− x′|,

so that
(t′, x′) ∈ [t− l2, t]×B(x, l), (5.33)

and set
M = sup{|u(r, y)| : s−R2 ≤ r ≤ s, |y − ξ| ≤ R}.

Note that
|u(t, x)− u(t′, x′)| ≤ Osc(u; t, x, l), (5.34)

because of (5.33). Iterating (5.34), going to larger and larger parabolic cylinders, with the
help of Theorem 5.2 gives

|u(t, x)− u(t′, x′)| ≤ Osc(u; t, x, l) ≤ ρOsc(u; t, x,
l

δ
) ≤ · · · ≤ ρm−1Osc(u; t, x,

l

δm
) ≤ 2Mρm−1.

(5.35)
We may iterate (blow-up the cylinder) as long as we stay inside D(s, ξ, R):

t− l2

δ2m
> s−R2, (5.36)

and

B(x,
l

δm
) ⊂ B(ξ, R). (5.37)

For (5.36) to hold, as t > s− (1− δ2)R2, it suffices to have

s− (1− δ2)R2 − l2

δ2m
> s−R2, (5.38)

that is,
l

δm+1
< R. (5.39)

On the other hand, as |x− ξ| ≤ (1− δ)R, for (5.37) to hold it is enough to ensure

(1− δ)R +
l

δm
< R, (5.40)

which is nothing but (5.39) again. Let us choose the largest m so that (5.39) holds, that is

δm+2 ≤ l

R
< δm+1,

5And of course, also on δ – on how far away from the boundary |x− ξ| = R and from the the initial time
s−R2 we are.
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then (5.35) gives

|u(t, x)− u(t′, x′)| ≤ 2Mρm−1 ≤ C(δ, ρ)M exp
{ log ρ

log δ
log
( l
R

)}
≤ CM

( l
R

)β
, (5.41)

with the constants C and β that depend only on δ and λ (recall that ρ itself depends only
on δ and λ). Therefore, we have shown that there exist a constant C > 0 and β > 0 that
depend only on δ and λ so that if u(t, x) satisfies

ut = ∇ · (a(x)∇u), x ∈ B(ξ, R), s−R2 ≤ t ≤ s, (5.42)

then for any t, t′ so that s− (1− δ2)R2 ≤ t′ ≤ t ≤ s and x, x′ ∈ B(ξ, (1− δ)R) we have

|u(t, x)− u(t′, x′)| ≤ C(λ, δ)M

(
|x− x′|+

√
t− t′

R

)β
, (5.43)

which is the desired Hölder estimate. Of course, the constant C(δ, λ) blows up as δ ↓ 0, as
expected – the initial condition is assumed to be only locally bounded, not Hölder! But for
any t > 0 any solution is Hölder continuous both in time and space.

5.4 The Harnack inequality

The last step in milking the heat kernel bounds is to prove the Harnack inequality.

Theorem 5.3 (The Harnack inequality) Let 0 < α < β < 1 and 0 < δ < 1 be given, and
let u(t, x) ≥ 0 be the solution of

ut = ∇ · (a(x)∇u), x ∈ B̄(x,R), s−R2 ≤ t ≤ s. (5.44)

There exist a constant M that depends on the dimension n, the ellipticity constants of the
matrix a(x), and α, β, and δ, but not on R and u such that for all

s− βR2 ≤ t ≤ s− αR2 and y ∈ B(x, δR),

we have
u(t, y) ≤Mu(s, x). (5.45)

The non-negativity of u(t, x) is absolutely essential for the Harnack inequality to hold.
Physically, this means that a hot point at distance r away will heat u(s, x) after a time

of the order r2 passes. The reason are the Hölder bounds – if u(t, y) is large, it is ”not too
small” in a neighborhood B(y, r0) of y. The fact that u ≥ 0 everywhere means that we may
bound u(s, x) from below if we simply restrict u to be zero away from B(y, r0) at time t, and
consider the corresponding Cauchy problem starting at time t with this cut-off initial data
and the Dirichlet boundary condition at ∂B(x,R). The lower bounds on the Dirichlet Green’s
function will imply a lower bound on u(s, x).

The above was the perspective that ”u at an earlier time bounds u at later time from
below”. Alternatively, we may think that the Harnack inequality says that ”u at a later time
bounds u at an earlier time from above”. To see it from that point of view, it is convenient
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to set (s, x) = (0, 0) and R = 1 – the general case follows by the usual shifting and scaling
argument. We may also assume that u(0, 0) = 1. The general strategy is as follows: as u ≥ 0,
we may get from the bounds in Theorem 5.1 on the Dirichlet Green’s function Γ0,1 in the unit
ball6 that for any t < 0 the measure of the set of points y such that u(t, y) > M can not be
too large for large M – otherwise, we would have u(0, 0) > 1. On the other hand, if this set is
small, then the oscillation of u(t, y) around any point where u(t, y) > 2M is large. Iterating
backward in time will produce larger and larger oscillation and show that u is unbounded on
the time interval [−1, 0] which would be a contradiction.

Let us now formalize the above argument. Given any r ∈ [−1,−α] let v(t, x) satisfy

vt = ∇ · (a(x)∇v), x ∈ B̄(0, 1), r ≤ t ≤ 0, (5.46)

with the initial condition v(r, x) = u(r, x) and the Dirichlet boundary condition v(t, y) = 0
for |y| = 1. As u(t, y) ≥ 0 on the boundary ∂B(0, 1), we know that

1 = u(0, 0) ≥
∫
B(0,1)

Γ0,1(−r, 0, y)u(r, y)dy. (5.47)

Theorem 5.1 implies that there exists ε > 0, which depends on α, so that for all M > 0, and
all −1 ≤ r ≤ −α, we have

1 = u(0, 0) ≥
∫
B(0,1)

Γ0,1(−r, 0, y)u(r, y)dy ≥ εM |S(r,M)|, (5.48)

where

S(t,M) = {y ∈ B(0, (1 + δ)/2) : u(t, y) ≥M}.

We conclude that

|S(t,M)| ≤ 1

εM
, (5.49)

for all t ∈ [−1,−α] and M > 0. Suppose that y ∈ S(t,M), and l is such that t − 4l2 ≥ −1,
and B(y, 2l) ∈ B̄(0, (1 + δ)/2). If B(y, l) is contained in the set S(t, σM) with some σ < 1,
then

cnl
n ≤ |S(t, σM)| ≤ 1

εσM
. (5.50)

Let us choose σ = (1 − ρ)/2 < 1, with ρ as in the decay of oscillation estimate (5.28) in
Theorem 5.2, and

l =

(
2

cnεσM

)1/n

.

Then (5.50) is false, meaning that B(y, l) is not contained inside S(t, σM), and there exists
a point y1 ∈ B(y, l) such that u(t, y1) < σM . It follows that

Osc(u; t, y, l) ≥ u(t, y)− u(t, y1) ≥ (1− σ)M. (5.51)

6Here Γ0,1 denotes the Green’s function for the parabolic Dirichlet problem on the unit ball B(0, 1), in
accordance with the notation of Theorem 5.1.

102



Applying Theorem 5.2 we deduce that

Osc(u; t, y, 2l) ≥ 1

ρ
Osc(u; t, y, l) ≥ (1− σ)

ρ
M = KM. (5.52)

In particular, there exists t′ ∈ [t− 4l2, t] and y′ ∈ B(y, 2l) such that

u(t′, y′) ≥ KM.

Note that if we set

σ =
1− ρ

2
,

then

K =
1− σ
ρ

=
1 + ρ

2ρ
> 1.

Let us now proceed inductively using the above argument. Assume that there is t0 ∈ [−β,−α]
and y0 ∈ B(0, δ) such that u(t0, y0) ≥M0. Then we may find a point t1, y1 such that (with a
constant c that does not depend on M0 but rather ε, ρ, etc.)

t0 −
4c

M
2/n
0

≤ t1 ≤ t0, |y1 − y0| ≤
2c

M
2/n
0

so that u(t1, y1) ≥M1 = KM0 > M0. Iterating, we obtain a sequence of points tm, ym so that

tm −
4c

M
2/n
m

≤ tm+1 ≤ tm, |ym+1 − ym| ≤
2c

M
2/n
m

so that u(tm+1, ym+1) ≥ Mm+1 = KMm = KmM0. Since K > 1, if M0 is sufficiently large
(depending on ε, ρ, α and β), the sequence tm, ym converges to a point t̄, ȳ in [−β,−α]×B(0, δ).
But then u(t̄, ȳ) is unbounded which is contradiction. This gives a bound on M0, proving
Theorem 5.3.
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Chapter 4

KPP invasions in periodic media

In this chapter we will consider equations of the form

ut −∆u = µ(x)u− u2, t > 0, x ∈ Rn, (0.1)

with a smooth function µ(x) that is 1-periodic in all variables xj, j = 1, . . . , n. The question
we will focus on is what happens to solutions of (0.1) with compactly supported initial data
u(0, x) = u0(x) such that 0 ≤ u0(x) ≤ 1. A crucial role in the final result will be played by
the periodic eigenvalue problem:

−∆φ− µ(x)φ = λφ, (0.2)

φ(x) is 1-periodic in all its variables.

A classical result of the spectral theory for second order elliptic operators (a good basic
reference is, as usual, [52]) is that this eigenvalue problem is self-adjoint, has a purely discrete
spectrum λk, k ∈ N, with

lim
k→+∞

λk = +∞,

and all eigenvalues of (0.2) are real. The Krein-Rutman theorem [43], together with the
comparison principle, implies that there is a unique eigenvalue λ1 that corresponds to a
positive eigenfunction φ1 (all other eigenfunctions change sign). Moreover, λ1 is a simple
eigenvalue, and it is is the smallest eigenvalue of (0.2). It is called the principal eigenvalue of
(0.2), and has a variational characterization in terms of the Rayleigh quotient:

λ1 = inf
ψ∈H1(Tn)

∫
Tn

(|∇ψ|2 − µ(x)ψ2)dx∫
Tn
|ψ(x)|2dx

. (0.3)

Here Tn = [0, 1]n is the n-dimensional torus (the unit period cell of µ(x)), and H1(Tn) is
the set of all 1-periodic functions in the Sobolev space H1. Our main assumption about the
function µ(x) will be that

λ1 < 0. (0.4)
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This condition holds, for instance, if the (continuous) function µ(x) is non-negative and not
identically equal to zero in Tn: this can be seen by simply taking the test function ψ(x) ≡ 1
in (0.4) Assuming (0.4), we will show the following: first, the steady equation

−∆u = µ(x)u− u2, x ∈ Rn, (0.5)

posed in the whole space, has a unique positive bounded solution u+(x). Moreover, u+(x)
is 1-periodic in all variables. Second, any solution of the Cauchy problem for (0.1) with a
nonnegative, bounded and compactly supported initial data u0(x) (that is positive on some
open set) will tend to u+(x) as t → +∞, uniformly on every compact subset of Rn. For
example, when µ(x) ≡ 1 (or any other constant) then u+(x) ≡ 1, and this result says that
u(t, x)→ 1 as t→ +∞, uniformly on compact sets in x.

Finally, and this is the core of this chapter, we will prove the following propagation result.
For each unit vector e ∈ Rn, |e| = 1, consider the solution of the linear equation

vt −∆v = µ(x)v, x ∈ Rn, (0.6)

of the form
v(t, x) = e−λ(x·e−ct)φ(x), (0.7)

with a positive 1-periodic function φ(x). Such exponential solutions are extremely important
in the theory for the nonlinear problem. It will be not hard to see that for each direction
e ∈ Sn−1 they exist only for c ≥ c∗(e), where c∗(e) is the smallest possible propagation speed
of such exponential. If we set

w∗(e) = inf
|e′|=1,(e·e′)>0

c∗(e
′)

(e · e′)
, (0.8)

then the following holds for solutions of the nonlinear problem (0.1) with a nonnegative
bounded and compactly supported initial data u0(x): for each w ∈ (0, w∗(e)) we have

lim
t→+∞

sup
r∈[0,w]

|u(t, rte)− u+(rte)| = 0, (0.9)

and for each w ∈ (w∗(e),+∞) we have

lim
t→+∞

sup
r≥wt

u(t, re) = 0. (0.10)

That is, if we observe the solution u(t, x) along the ray in the direction e, u(t, x) is close
to u+(x) at distances much smaller than w∗(e)t and u(t, x) is close to zero at distances
much larger than w∗(e)t. The remarkable fact is that the invasion speed w∗(e) is completely
determined by the linear problem (0.6)!

This propagation bound was discovered by Freidlin and Gärtner [66] who proved it with
probabilistic tools. Since then its scope was considerably extended and at least four additional
methods of proof are known:
(i) Probabilistic proofs using large deviation methods, due to Freidlin [67].
(ii) Viscosity solution methods (Evans and Souganidis [54, 55]).
(iii) Monotone dynamical systems methods (Weinberger [115]).
(iv) PDE methods (Berestycki, Hamel and Nadin [16]).

The goal of this chapter is to explain the Freidlin-Gärtner formula for the propagation
speed as well as its applications to biology.
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1 Origins of the model

The original motivation for considering the Fisher-KPP equation (0.1) (KPP stands for Kol-
mogorov, Petrovskii and Piskunov) in [63] and [82] was by problems in genetics, while Freidlin
and Gärtner motivated their study of (0.1) as a model for concentration waves in a periodic
medium. There is also a nice interpretation of this equation in terms of population dynam-
ics. Let a population of animals, or bacteria, or even some flora be described in terms of its
local density u(t, x). That is, u(t, x)dx is the number of individuals present at time t in an
infinitesimal volume dx around a point x – the total number of individuals present in a given
domain Ω at a time t is ∫

Ω

u(t, x)dx.

This description assumes implicitly that the number of individuals is large, or equivalently,
they are not too sparse – one would not be able to describe the animals in a desert in this
way. The individuals multiply and disappear. In other words, in the absence of a spatial
displacement, the population density evolves as

du

dt
= µ(x)u− u2 = (µ(x)− u)u. (1.1)

Here, x is the spatial position, and µ(x) is the local growth rate at x for small u. These
equations are uncoupled at different points x. The negative term in the right side of (1.1)
accounts for the fact that there are limited resources – too many individuals present at one
point prevent population growth due to competition. The threshold value at which the growth
becomes negative in this model is u = µ(x). Hence, µ(x) can be both interpreted as the growth
rate for small u and as the carrying capacity of the population.

An aspect missing in (1.1) is movement of the individuals, displacements and migrations.
Assume for the moment that there is no growth of the population but the species may disperse.
If the chances of entering a small volume dx around x from position y are k(x, y) then the
balance equation for the population density is

∂u(t, x)

∂t
=

∫
k(x, y)u(t, y)dy −

(∫
k(y, x)dy

)
u(t, x). (1.2)

The first term on the right accounts for individuals entering the volume dx from all other
positions y and the negative term accounts for those leaving dx. Assume now that the
transition kernel k(x, y) is localized and radially symmetric:

k(x, y) =
1

εn
r

(
|x− y|
ε

)
,

and the mean drift is zero: ∫
xr(x)dx = 0.

Then, expanding (1.2) in ε we obtain, in the leading order:

∂u

∂t
= Dε2∆u, (1.3)
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with the diffusion coefficient

D =

∫
|x|2r(x)dx.

Exercise 1.1 This formal procedure is not difficult to make rigorous – this limit is, essentially,
the (much simpler) PDE analog of the probabilistic result showing that a discrete time random
walk on a lattice converges to a Brownian motion if we scale the lattice step and the time
step appropriately. Make this connection in a careful fashion.

Putting (1.1) and (1.3) together (with the appropriate time rescaling in (1.3) to get rid of
the ε2 factor and setting D = 1) gives the Fisher-KPP equation

∂u

∂t
= ∆u+ µ(x)u− u2, (1.4)

that we will study in this chapter. A much more detailed explanation of the modeling issues
is given in Murray’s books [94, 95].

2 The steady solution as the long time limit for the

Cauchy problem

It is reasonable to expect that if solutions of (1.4) converge as t → +∞ to a certain limit
p(x), this function should satisfy the steady problem1

−∆p = µ(x)p− p2, x ∈ Rn, (2.1)

p(x) > 0 for all x ∈ Rn and p(x) is bounded.

In this section we will investigate existence of such steady solutions. One of the main points
here is that we impose neither periodicity nor any decay conditions on p(x) as |x| → +∞,
but only require that p(x) is positive and bounded. Let us recall that we denote by λ1 the
principal eigenvalue of

−∆φ− µ(x)φ = λ1φ, (2.2)

φ(x) is 1-periodic in all its variables, φ(x) > 0,

and that the requirement that the eigenfunction φ(x) is positive identifies λ1 uniquely. The
next theorem explains the role of the principal eigenvalue rather succinctly.

Theorem 2.1 The problem (2.1) has a unique solution if λ1 < 0 and no solutions if λ1 ≥ 0.

The existence part of Theorem 2.1 has been known for a long time now but the uniqueness
part is recent [18]. This result is important for two reasons: (1) it classifies all solutions to the
steady problem, and (2) is the key to understanding the long time behavior of the solutions
the corresponding Cauchy problem, as shown by the following theorem.

1Another reasonable possibility is that the limit is a solution of the time-dependent problem that is defined
for all times, positive and negative, of which a steady solution is just one example.
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Theorem 2.2 Let u(t, x) be the solution of the initial value problem

∂u

∂t
= ∆u+ µ(x)u− u2, t > 0, x ∈ Rn, (2.3)

u(0, x) = u0(x),

with a bounded non-negative function u0(x) such that u0(x) 6≡ 0, and let λ1 be the principal
eigenvalue of (2.2). Then if λ1 < 0 we have

u(t, x)→ p(x) as t→ +∞, (2.4)

uniformly on compact sets K ⊂ Rn. On the other hand, if λ1 ≥ 0 then

u(t, x)→ 0 as t→ +∞, (2.5)

uniformly in Rn.

In the rest of this section we will prove these two theorems – the proof of Theorem 2.1, in
particular, is not short but it utilizes various tools that are interesting in their own right.

Triviality of the steady solutions when λ1 ≥ 0

Let us first explain what happens if λ1 > 0. Let φ(x) be the corresponding (periodic) eigen-
function of (2.2), and let u(t, x) satisfy the time-dependent problem (2.3). As φ(x) is periodic,
its minimum is positive. Hence, as u0(x) is bounded, we can find M > 0 so that at t = 0 we
have

u(0, x) = u0(x) ≤ sup
x∈Rn

u0(x) ≤M min
x∈Tn

φ(x) ≤Mφ(x). (2.6)

The function

ψ(t, x) = Me−λ1tφ(x)

satisfies

ψt = ∆ψ + µ(x)ψ, (2.7)

which means that ψ(t, x) is a super-solution to (2.3):

ψt > ∆ψ + µ(x)ψ − ψ2. (2.8)

This, together with the inequality (2.6), by virtue of the parabolic maximum principle, implies
that for all t ≥ 0 we have

u(t, x) ≤ ψ(t, x) = Me−λ1tφ(x) ≤M‖φ‖L∞(Tn)e
−λ1t. (2.9)

It follows that

u(t, x)→ 0 as t→ +∞, (2.10)

uniformly in Rn, and, in particular, precludes the existence of non-trivial bounded solutions
to (2.1).

109



The argument in the case λ1 = 0 is similar albeit with a nice additional step. In this
situation, the eigenfunction is a periodic function φ(x) > 0 such that

−∆φ = µ(x)φ. (2.11)

By the same token as before, we know that for any solution of (2.3) with a bounded initial
data u0(x) ≥ 0 we can find a constant M > 0 so that

u(0, x) ≤Mφ(x). (2.12)

The parabolic maximum principle2 implies that this inequality holds for all t ≥ 0:

u(t, x) ≤Mφ(x), for all x ∈ Rn.

Let now Mk be the smallest constant M so that we have

u(k, x) ≤Mφ(x) for all x ∈ Rn, (2.13)

at the time t = k. The sequence Mk is non-increasing: since Mkφ(x) is a super-solution, (2.13)
together with the strong maximum principle guarantees that (with the strict inequality)

u(k + 1, x) < Mkφ(x), (2.14)

which implies that Mk+1 ≤Mk. Let us now show that the strong maximum principle implies
that this inequality is strict: Mk+1 < Mk. It suffices to verify this for k = 1: assume that
M2 = M1. Then there exists a sequence xk such that

u(2, xk) ≥
(
M1 −

1

k

)
φ(xk). (2.15)

Let us define the translates

vk(t, x) = u(t, x+ xk), φk(x) = φ(x+ xk).

The parabolic regularity theory implies that the shifted functions vk(t, x) and φk(x) are uni-
formly bounded in C2,α

loc for 1 ≤ t ≤ 2, hence we may extract a subsequence kn → +∞ so that
the limits

v̄(t, x) = lim
n→+∞

vkn(t, x), φ̄(x) = lim
n→+∞

φkn(x)

exist. The shifted coefficients µk(x) = µ(x+xk) also converge after extracting a subsequence,
locally uniformly to a limit µ̄(x). The limits satisfy

∂v̄

∂t
= ∆v̄ + µ̄(x)v̄ − v̄2, 1 ≤ t ≤ 2, x ∈ Rn, (2.16)

and
−∆φ̄ = µ̄(x)φ̄. (2.17)

2Recall that φ(x) is a super-solution to the problem (2.3) that u(t, x) satisfies.
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In addition, we have v̄(t = 1, x) ≤ M1φ̄(x) for all x ∈ Rn, and v̄(t = 2, x = 0) = M1φ̄(0).
This contradicts the strong maximum principle since φ̄ is a strict super-solution to (2.16).
Therefore, the sequence Mn is strictly decreasing.

Let now
M̄ = lim

k→+∞
Mk. (2.18)

We need to show that M̄ = 0, in order to conclude that u(t, x) → 0 as t → +∞, uniformly
in x ∈ Rn. As in the previous step, choose xk so that

v(k, xk) ≥ (Mk −
1

k
)φ(xk),

and define the translates

vk(t, x) = v(k + t, xk + x), φk(x) = φ(x+ xk), (2.19)

as well as µk(x) = µ(x + xk). Once again, the parabolic regularity theory implies that the
sequences vk(t, x), φk(x) and µk(x) = µ(x+ xk) (after extraction of a subsequence) converge
as k → +∞, locally uniformly, to the respective limits v̄(t, x), φ̄(x) and µ̄(x) that satisfy, in
this case,

∂v̄

∂t
= ∆v̄ + µ̄(x)v̄ − v̄2, −∞ < t < +∞, x ∈ Rn, (2.20)

and
−∆φ̄ = µ̄(x)φ̄. (2.21)

That is, v̄(t, x) is a global in time solution, defined for positive and negative t. In addition,
the normalization (2.19) implies that

v̄(0, 0) = M̄φ̄(0), (2.22)

while we also have
v̄(t, x) ≤ M̄φ̄(x), −∞ < t < +∞, x ∈ Rn. (2.23)

The parabolic strong maximum principle implies that then v̄(t, x) ≡ M̄φ̄(x) which is only
possible if M̄ = 0. Therefore, M̄ = 0, and

u(t, x)→ 0 as t→ +∞, uniformly in x ∈ Rn,

also when λ1 = 0.

Existence of the periodic steady solutions when λ1 < 0

We now turn to the most interesting case λ1 < 0. We need to show that then a non-trivial
steady solution p(x) of (2.1) exists, and, moreover, solution of the parabolic problem converges
to it as t→ +∞, locally uniformly in x.

Let φ(x) be the positive periodic eigenfunction of

−∆φ− µ(x)φ = λ1φ. (2.24)

111



Consider the function φε(x) = εφ(x). A simple but very important observation is that for
ε > 0 sufficiently small we have

−∆φε − µ(x)φε = λ1φε ≤ −φ2
ε, (2.25)

that is, φε(x) is a sub-solution for the steady nonlinear problem. More precisely, this inequality
holds as soon as

ε < − λ1

maxx∈Tn φ(x)
, (2.26)

and it is here that we need the assumption λ1 < 0. On the other hand, the constant function
w(x) ≡M satisfies

−∆w − µ(x)w = −µ(x)M ≥ −M2, (2.27)

as soon as

M ≥ max
x∈Tn

µ(x). (2.28)

Therefore, we have both a sub-solution φε(x) (with an ε that satisfies (2.26)) and a super-
solution w(x) (with M that satisfies (2.28)) for the steady problem (2.1). With these in hand,
a true solution of (2.1) can be constructed using a standard iteration scheme. First, choose a
number N > −2λ1 and restate (2.1) as

−∆p(x)− µ(x)p(x) +Np(x) = Np(x)− p2. (2.29)

The reason to add the term Np(x) on the left is to make sure that all eigenvalues of the
periodic problem

−∆φ− µ(x)φ+Nφ(x) = λφ, (2.30)

are strictly positive. In this case, the inhomogeneous elliptic problem

−∆φ− µ(x)φ+Nφ(x) = f(x) (2.31)

has a unique periodic solution p(x) for any bounded periodic function f(x). Moreover, The-
orem 2.1 says that if f(x) > 0 for all x ∈ Tn then the solution of (2.31) is also positive.

We set up the iteration scheme as follows: let p0 = φε(x) and for k ≥ 1 let pk(x) be the
periodic solution of

−∆pk − µ(x)pk +Npk(x) = Npk−1(x)− p2
k−1(x). (2.32)

We claim that the sequence pk(x) is increasing pointwise in x:

pk+1(x) ≥ pk(x), for all k ≥ 0 and all x ∈ Tn, (2.33)

and satisfies

pk(x) ≤ N

2
for all k ≥ 0 and all x ∈ Tn. (2.34)
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In order to prove the upper bound (2.34) we observe that p0(x) ≤ N/2 if ε is sufficiently
small, and then use induction: define wk(x) = N/2 − pk(x), assume that pk−1(x) ≤ N/2 for
all x ∈ Tn, and write

−∆wk − µ(x)wk +Nwk = −µ(x)
N

2
+
N2

2
+ ∆pk + µ(x)pk −Npk

= −µ(x)
N

2
+
N2

2
−Npk−1 + p2

k−1 ≥ −µ̄
N

2
+
N2

2
− N2

4
> 0,

as long as N > 2µ̄. This proves that wk(x) > 0, hence (2.34) holds. The reason for the
pointwise monotonicity of the sequence pk(x) is that p0 is a sub-solution for (2.30). The proof
is by induction: set

zk(x) = pk(x)− pk−1(x), k ≥ 1,

then z1 satisfies

−∆z1 − µ(x)z1 +Nz1 = −∆p1 − µ(x)p1 +Np1 + ∆p0 + µ(x)p0 −Np0 (2.35)

= Np0 − p2
0 − λ1p0 −Np0 = −λ1p0 − p2

0 > 0.

The last inequality above holds by virtue of (2.26), and, once again, requires that λ1 < 0.
Now, Theorem 2.1 implies that z1 ≥ 0 – as discussed above, just below (2.31). Next, assume
that zj(x) ≥ 0 for all x ∈ Tn and all j = 1, . . . , k. The function zk+1(x) satisfies

−∆zk+1 − µ(x)zk+1 +Nzk+1 = −∆pk+1 − µ(x)pk+1 +Npk+1 + ∆pk + µ(x)pk −Npk
= Npk − p2

k −Npk−1 + p2
k−1 = Nzk − (pk−1 + pk)zk > 0. (2.36)

We used the induction assumption zk ≥ 0 and the upper bound (2.34) in the last step. Once
again, Theorem 2.1 implies that zk+1(x) ≥ 0 for all x ∈ Tn. Thus, the sequence pk(x) is,
indeed, increasing. Therefore, the sequence pk(x) converges pointwise in x to a limit profile
p(x) that satisfies

φε(x) ≤ p(x) ≤ N

2
, (2.37)

and

−∆p− µ(x)p+Np = Np− p2, (2.38)

which is nothing but (2.1). Condition (2.37) is very important – it ensures that p(x) 6≡ 0.
We have, thus, established that when λ1 < 0 this equation has a non-trivial steady periodic
solution, finishing the proof of the existence part of Theorem 2.1.

Uniqueness of a bounded solution when λ1 < 0

Next, we show that the periodic solution of (2.1) that we have just constructed is unique in
the class of bounded solutions. That is, if s(x) is another bounded (not necessarily periodic)
solution of

−∆s = µ(x)s− s2 (2.39)

s(x) is bounded, and s(x) > 0 for all x ∈ Rn,

then s(x) coincides with the periodic solution p(x) that we have constructed above. The
crucial part in the proof of uniqueness is played by the following lemma.
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Lemma 2.3 Any solution of (2.39) is bounded from below by a positive constant:

inf
x∈Rn

s(x) > 0. (2.40)

Let us first explain why uniqueness of the solution of (2.39) follows from this lemma. Let
p(x) and s(x) be two solutions. Lemma 2.3 allows us to define r0 as the smallest r such that
s(x) ≤ rp(x):

r0 = inf{r : s(x) ≤ rp(x), for all x ∈ Rn}.

We claim that r0 ≤ 1. Indeed, the difference

v(x) = r0p(x)− s(x)

satisfies
−∆v − µ(x)v = −r0p

2 + s2,

and a simple computation shows that

−∆v + (−µ(x) + r0p(x) + s(x))v = r0pv + sv − r0p
2 + s2

= r0p(r0p− s) + s(r0p− s)− r0p
2 + s2 = r0(r0 − 1)p2(x).

Therefore, if r0 > 1 the function v(x) satisfies

−∆v + (−µ(x) + r0p(x) + s(x))v = r0(r0 − 1)p(x) > c0 = r0(r0 − 1) inf
x∈Rn

p(x) > 0,

v(x) ≥ 0 for all x ∈ Rn. (2.41)

As v(x) ≥ 0, the strong maximum principle implies that v(x) > 0 for all x ∈ Rn. Furthermore,
if there is a sequence xk such that |xk| → +∞ such and

lim
k→∞

v(xk) = 0,

this is also a contradiction to the strong maximum principle. Indeed, as we have seen several
times before, the elliptic regularity theory implies that we may extract a subsequence nk →
+∞ so that the shifted functions vk(x) = v(xk + x), pk(x) = p(x + xk), sk(x) = s(x + xk),
and µk(x) = µ(x+xk) converge to the respective limits v̄(x), p̄(x), s̄(x) and µ̄(x) that satisfy

−∆v̄ + (−µ̄(x) + r0p̄(x) + s̄(x))v̄ > c0 > 0,

v(x) ≥ 0 for all x ∈ Rn, (2.42)

with v̄(0) = 0, which is impossible.
We conclude that r0 ≤ 1, meaning that s(x) ≤ p(x). The only property of the solution

p(x) we have used above is that there exist two constants c1,2 > 0 so that

0 < c1 < p(x) < c2 < +∞ for all x ∈ Rn.

Lemma 2.3 asserts that “the other” solution s(x) obeys same bounds (with different con-
stants c1,2). Hence, an identical argument implies that p(x) ≤ s(x), and it follows that
p(x) = s(x) establishing uniqueness of the solutions of (2.39).
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The uniform lower bound: the proof of Lemma 2.3

We now prove Lemma 2.3, the last ingredient in the proof of Theorem 2.1. An immediate
trivial observation is that if s(x) is a periodic solution of

−∆s = µ(x)s− s2 (2.43)

s(x) is bounded and s(x) > 0 for all x ∈ Rn,

then, of course,
inf
x∈Rn

s(x) > 0. (2.44)

The main difficulty is, therefore, in dealing with general bounded solutions, that need not
be periodic. To this end, we would like to get a nice subsolution for (2.43) that we would
be able to put under s(x) to give a lower bound for s(x). As in the proof of existence of a
solution to (2.43), a good candidate is φε(x) = εφ(x), where φ(x) is the principal periodic
eigenfunction of

−∆φ− µ(x)φ = λ1φ, (2.45)

φ(x) > 0 for all x ∈ Tn.

Recall that the function φε(x) satisfies

−∆φε − µ(x)φε + φ2
ε = λ1φε + φ2

ε < 0, (2.46)

provided that (compare to (2.26))

ε < − λ1

maxx∈Tn φ(x)
. (2.47)

The difficulty in using this subsolution is that it is periodic – how can we put it under s(x)
unless we know that s(x) is uniformly positive? Instead, we are going to use the principal
Dirichlet eigenfunction in a ball B(m,R) wherem ∈ Zd is an integer point, and R is sufficiently
large. Its advantage is that this eigenfunction is compactly supported so that a sufficiently
small multiple of it can be put under any positive function. Let λR be the principal Dirichlet
eigenvalue in such ball. It does not depend on m since the coefficient µ(x) is periodic, hence
we set m = 0 for the moment:

−∆ψR(x)− µ(x)ψR = λRψR(x), |x| < R, (2.48)

ψR(x) > 0 for |x| < R,

ψR(x) = 0 on {|x| = R}.

This is where we use Proposition 3.1, that we restate as a

Lemma 2.4 Let λ1 be the principal periodic eigenvalue of the problem (2.45), and λR be the
principal Dirichlet eigenvalue of the problem (2.48), then

lim
R→+∞

λR = λ1. (2.49)
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Here is how we use it. Let ψR be the eigenfunction of (2.48) normalized so that

sup
|x|≤R

ψR(x) = 1.

Set φε,R = εψR(x), then, as in (2.46) we have

−∆φε,R − µ(x)φε,R + φ2
ε,R < 0, (2.50)

as long as

ε < −λR. (2.51)

Lemma 2.4 implies that there exists R so that for all R′ > R we have λR′ < −λ1/2.
Therefore, the function φε,R is a sub-solution to (2.46) on the ball B(0, R) for any ε < −λ1/2.

In addition, we know that for ε sufficiently small we have φε,R < p(x) for all x ∈ B(0, R)
simply because p(x) > 0 for all x ∈ Rn. Let us now start increasing ε until p(x) and φε,R
touch:

ε0 = sup{ε > 0 : p(x) ≥ εφR(x) for all x ∈ B(0, R)}.

We claim that ε0 ≥ −λR. Indeed, otherwise φε,R is a sub-solution and p(x) is a solution, hence
they can not touch without violating the maximum principle. Thus, we have ε0 ≥ −λR, that
is, ε0 is sufficiently large so that φε0,R is no longer a sub-solution. Therefore, we have shown
that

p(x) ≥
(
−λ1

2

)
φR(x) for all x ∈ B(0, R). (2.52)

By considering a shifted ball B(m,R) we see that, actually, we have a generalization of (2.52):

p(x) ≥
(
−λ1

2

)
φR(x−m) for all x ∈ B(m,R), and all m ∈ Zn. (2.53)

It follows immediately that there exists a constant c0 > 0 so that p(x) > c0 for all x ∈ Rn.
Note that we may only shift φR by an integer m - otherwise it would cease being a solution
since µ(x) is not a constant. Therefore, the proof of Lemma 2.3 is complete, as well as that f
of Theorem 2.1.

Convergence of the solutions of the Cauchy problem

We now prove Theorem 2.2. Recall that we need to prove that if λ1 < 0 then solutions of the
Cauchy problem

∂u

∂t
= ∆u+ µ(x)u− u2, t > 0, x ∈ Rn, (2.54)

u(0, x) = u0(x),

with a bounded non-negative function u0(x) such that u0(x) 6≡ 0, have the long time limit

u(t, x)→ p(x) as t→ +∞, (2.55)
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uniformly on compact sets K ⊂ Rn. Here, as before, p(x) is the unique bounded positive
solution of the steady problem

−∆p = µ(x)p− p2, x ∈ Rn.

Recall that we have already shown that if λ1 ≥ 0 then

u(t, x)→ 0 as t→ +∞, (2.56)

uniformly in Rn.
Let us first show that

lim inf
t→+∞

u(t, x) ≥ p(x). (2.57)

To this end, we will use the sub-solution εφR(x) we used in the proof of Lemma 2.3. First,
we wait until time t = 1 to make sure that u(t = 1, x) > 0 in Rn. Then, we may find ε > 0
sufficiently small, and R sufficiently large, so that φε(x) = εφR(x) is a sub-solution:

−∆φε ≤ µ(x)φε − φ2
ε,

and φε(x) < p(x) for all x ∈ Rn (we extend φε(x) = 0 outside the ball B(0, R)). We also
take ε so small that u(t = 1, x) > φε(x) for all x ∈ Rn. Let now v(t, x) be the solution of the
Cauchy problem

∂v

∂t
= ∆v + µ(x)v − v2, t > 1, x ∈ Rn, (2.58)

v(t = 1, x) = φε(x).

The parabolic comparison principle implies immediately that v(t, x) ≤ u(t, x) for all t > 1.

Exercise 2.5 Use the fact that φε(x) (which is the initial data for v(t, x)), is a sub-solution,
to show that v(t, x) ≥ φε(x) for all t ≥ 1 and x ∈ Rn.

Exercise 2.6 Use the result of the previous exercise to show that v(t, x) is strictly increasing
in time. Hint: set, for all h > 0,

vh(t, x) = v(t+ h, x)− v(t, x),

and verify that vh(t, x) satisfies

∂vh
∂t

= ∆vh + µ(x)vh − (v(t+ h, x) + v(t, x))vh,

with vh(t = 1, x) ≥ 0 for all x ∈ Rn. Use the parabolic comparison principle to deduce that
vh(t, x) ≥ 0 for all t ≥ 1, that is, the function v(t, x) is monotonically increasing in t.

Exercise 2.7 Use the fact that p(x) is a solution, while φε(x) is a sub-solution to show that
v(t, x) ≤ p(x) for all t ≥ 1, if ε > 0 is sufficiently small.
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A consequence of the above observations is that the limit

s(x) = lim
t→+∞

v(t, x)

exists and is a positive bounded steady solution:

−∆s = µ(x)s− s2.

Uniqueness of such solutions implies that s(x) = p(x), and thus

lim inf
t→+∞

u(t, x) ≥ lim
t→+∞

v(t, x) = p(x), (2.59)

as we have claimed. Moreover, if

u0(x) ≤ p(x) for all x ∈ Rn, (2.60)

then by the same token we have u(t, x) ≤ p(x) for all t ≥ 0, meaning that

lim
t→+∞

u(t, x) = p(x).

Let us finally see what happens if (2.60) does not hold. If we multiply p(x) by a number
M > 1 and set pM(x) = Mp(x), we get a super-solution:

−∆pM − µ(x)pM + p2
M = −M∆p−Mµ(x)p+M2p2 = −Mp2 +M2p2 > 0, (2.61)

as M > 1. If we choose M > 1 sufficiently large so that u0(x) ≤ pM(x) then u(t, x) ≤ w(t, x),
solution of

∂w

∂t
= ∆w + µ(x)w − w2, t > 0, x ∈ Rn, (2.62)

w(t, x) = Mp(x).

As pM(x) is a super-solution, the argument we used to show that v(t, x) was increasing in
time, shows that w(t, x) is monotonically decreasing in time. In addition, as M > 1, we
know from the comparison principle that w(t, x) ≥ p(x) for all t > 0. Its point-wise limit (as
t→ +∞) is therefore a non-trivial steady solution of our problem and thus equals to p(x):

lim
t→+∞

w(t, x) = p(x).

As a consequence, we obtain
lim sup
t→+∞

u(t, x) ≤ p(x). (2.63)

This, together with (2.59) proves that

lim
t→+∞

u(t, x) = p(x),

and the proof of Theorem 2.2 is complete.
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3 The speed of invasion

We now tackle the heart of this chapter: finding the speed of invasion of the stable steady
state p(x) – in this section we assume that µ(x) is such that λ1 < 0 so that the steady state
does exist.

3.1 The homogeneous case

We first consider the uniform case µ(x) ≡ 1, where the proof is much simpler, especially if we
replace the nonlinearity u− u2 by a function f(u) which is linear close to zero:

f(u) =

{
u if u ≤ θ,

u− u2 if u is close to 1.
(3.1)

We also assume that f(u) is smooth, and f(u) ≤ u for all u ∈ [0, 1] – this is a crucial
assumption. Thus, we momentarily consider the problem

ut = uxx + f(u), t > 0, x ∈ R, (3.2)

with a nonnegative initial condition u(0, x) = u0(x) 6≡ 0, and f(u) as above. The unique
stable steady state is p(x) ≡ 1, and we are interested in how fast it invades the areas where
u is small at t = 0.

An upper bound for the spreading speed

The function u(t, x) satisfies the inequality

ut − uxx ≤ u. (3.3)

Let us look for exponential super-solutions to (3.2) of the form

ū(t, x) = e−λ(x−ct).

Because of (3.3), the function ū(t, x) is a super-solution if

λ2 − cλ+ 1 = 0. (3.4)

As we need ū(t, x) to be real, (3.4) means that we have to take c ≥ 2, and that for c = 2 we
can take λ = 1. We conclude that if the initial u0(x) satisfies

u(x) ≤Me−|x|, (3.5)

then u(t, x) satisfies
u(t, x) ≤M min

(
e−(x−2t), ex+2t

)
, (3.6)

whence
lim
t→+∞

sup
|x|≥ct

u(t, x) = 0, (3.7)

for all c > 2. Therefore, the steady state u ≡ 1 can not invade with a speed larger than c∗ = 2.
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A lower bound for the spreading speed

Next, we show that the state u ≡ 1 invades with the speed at least equal to c∗ = 2 (or,
rather, faster than any speed smaller than c∗), matching the upper bound for the invasion
speed. It will be slightly easier to devise the lower bound in a moving frame. Let us take
some 0 < c < 2 and write v(t, x) = u(t, x+ ct), so that

vt − cvy = vyy + f(v). (3.8)

Because of the simplifying assumption (3.1) on the nonlinearity, any function u(t, x) such that

ut − cuy ≤ uyy + u, (3.9)

and such that u(t, y) ≤ θ for all t > 0 and x ∈ R is a sub-solution to (3.8). We consider a
time-independent exponential sub-solution

u(y) = e−λy,

but, as we take c < 2, the number λ, which satisfies (3.4), will have to be complex. In order
to keep the sub-solution real, we set, for t > 1:

u(y) =

{
m exp{−Re λx} cos(Im λy) if |y| ≤ π/(2Im λ),

0 otherwise.
(3.10)

The constant m > 0 is chosen so that u(y) ≤ θ, and, in addition, u(y) ≤ u0(y) – we assume
here that u0(y) > 0 on the interval [−π/(2Im λ), π/(2Im λ)], otherwise we may simply wait
until time t = 1, when v(t = 1, y) > 0 for all y ∈ R, and put a small multiple of u(y) below
v(t = 1, y). We conclude that v(t, y) ≥ u(y), for all t > 0. As a consequence, we immediately
obtain that

lim sup
t→+∞

u(t, ct) ≥ m, for all 0 ≤ c < 2. (3.11)

Exercise 3.1 Use the function u(y) as the initial data for the Cauchy problem in the moving
frame to bootstrap the above argument to

lim inf
t→+∞

u(t, ct) = 1, (3.12)

for all 0 ≤ c < 2. Hint: such solution will be monotonically increasing in time.

The above arguments, hopefully, convince the reader that with a little bit of simplification,
the speed of invasion can be found very easily. In the remainder of this section we will drop
the simplifying assumptions about the nonlinearity that we have used here – that will create
some technical difficulties but not change the moral of the story.

3.2 The exponential solutions

As in the homogeneous case considered in the previous section, exponential solutions of the
linearized problem play a crucial role in the general periodic case. These are solutions of the
equation

vt = ∆v + µ(x)v, x ∈ Rn, (3.13)
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of the form
v(t, x) = e−λ(x·e−ct)φ(x), (3.14)

with a fixed unit vector e ∈ Rn, |e| = 1, and a 1-periodic (in all directions) function φ(x). As
we will use v(t, x) as a super-solution, we will require that φ(x) > 0. It will be convenient to
factor φ(x) = φ̄(x)Φ(x). Here, φ̄(x) is the principal (positive) periodic eigenfunction of the
problem we have encountered before:

−∆φ̄− µ(x)φ̄ = λ1φ̄ (3.15)

φ̄(x) is 1-periodic,

φ̄(x) > 0 for all x ∈ Rn.

Recall that our main assumption in this section is that λ1 < 0. The function Φ(x) is the
solution of

L̃λΦ = −(λ1 + cλ)Φ (3.16)

Φ(x) is 1-periodic,

Φ(x) > 0 for all x ∈ Rn,

with the operator L̃λ given by

L̃λΦ = −eλx·e
[
∆(e−λx·eΦ)− 2

∇φ̄
φ̄
· ∇(e−λx·eΦ)

]
. (3.17)

Therefore, the speed c ∈ R of an exponential solution and its decay rate λ are related by the
equation

cλ = −λ1 − µper1 (L̃λ). (3.18)

Here µper1 (L̃λ) is the principal periodic eigenvalue of the operator L̃λ, and, as such, is a function
of λ. The main result of this section is the following.

Theorem 3.2 For every e ∈ Rn, with |e| = 1 there exists c∗(e) > 0 so that (i) if c < c∗(e),
equation (3.18) has no solution λ > 0, (ii) if c > c∗(e), equation (3.18) has two solutions
λ > 0, and (iii) if c = c∗(e), equation (3.18) has exactly one solution λ > 0.

The key step in the proof of Theorem 3.2 is the next observation.

Lemma 3.3 The function µper1 (L̃λ) is concave in λ.

Let us step back and see what this result means in dimension n = 1 and when µ(x) ≡ 1. Then

λ1 = −1, and both φ̄(x) ≡ 1 and Φ(x) ≡ 1, while µ1(L̃λ) = −λ2, so that (3.18) is simply

cλ = 1 + λ2.

We see that in this special case the claim of Theorem 3.2 is true with c∗ = 2, and that
µ1(L̃λ) = −λ2 is, indeed, concave in λ. In the general case, the key to the proof of Lemma 3.3
is the following observation: set

Eλ = {ψ ∈ C2(Rn) : eλx·eψ(x) is 1-periodic, ψ(x) > 0 for all x ∈ Rn}, (3.19)
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then µper1 (L̃λ) has the min-max characterization

k(λ) := µper1 (L̃λ) = max
ψ∈Eλ

inf
x∈Rn

Lψ(x)

ψ(x)
. (3.20)

Here we have denoted

Lψ = −∆ψ − 2
∇φ̄
φ̄
· ∇ψ.

With the above notation, we need to prove that for any t ∈ [0, 1] we have

tk(λ1) + (1− t)k(λ2) ≤ k(tλ1 + (1− t)λ2), (3.21)

for all λ1, λ2 > 0. Let φ1 and φ2 be the principal eigenfunctions of the operators L̃λ1 and L̃λ2 ,
respectively, and set

ψi(x) = e−λix·eφi(x), i = 1, 2, ψ(x) = ψt1(x)ψ1−t
2 (x).

Note that ψ ∈ Eλ, with λ = tλ1 + (1− t)λ2 and hence can be used as a test function in the
max-min principle for k(λ). We compute:

∇ψ
ψ

= t
∇ψ1

ψ1

+ (1− t)∇ψ2

ψ2

,

and
∆ψ

ψ
= t

∆ψ1

ψ1

+ (1− t)∆ψ2

ψ2

+ t(t− 1)

(
∇ψ1

ψ1

− ∇φ2

φ2

)2

.

It follows that

Lψ(x)

ψ(x)
= −∆ψ(x)

ψ(x)
− 2
∇φ̄
φ̄
· ∇ψ
ψ

= t
Lψ1(x)

ψ1(x)
+ (1− t)Lψ2(x)

ψ2(x)
− t(t− 1)

(
∇ψ1

ψ1

− ∇φ2

φ2

)2

≥ t
Lψ1(x)

ψ1(x)
+ (1− t)Lψ2(x)

ψ2(x)
,

and thus

inf
x∈Rn

Lψ(x)

ψ(x)
≥ t inf

x∈Rn
Lψ1(x)

ψ1(x)
+ (1− t) inf

x∈Rn
Lψ2(x)

ψ2(x)
,

We deduce that

sup
ψ∈Eλ

inf
x∈Rn

Lψ(x)

ψ(x)
≥ t sup

ψ1∈Eλ1
inf
x∈Rn

Lψ1(x)

ψ1(x)
+ (1− t) sup

ψ2∈Eλ2
inf
x∈Rn

Lψ2(x)

ψ2(x)
,

which is nothing but (3.21). Hence, the function µper1 (λ) is, indeed, concave in λ.
Now, we can prove Theorem 3.2. Let us first summarize some basic properties of the

function
s(λ) = −λ1 − µper1 (L̃λ).

We have just shown that it is convex and, in addition, by assumption we have s(0) = −λ1 > 0.
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Exercise 3.4 Show that

lim
λ→+∞

µper1 (L̃λ)

λ2
= −1

This exercise implies that the function s(λ) is super-linear at infinity:

lim
λ→+∞

s(λ)

λ
= +∞. (3.22)

Exercise 3.5 Use finite differences to show that the function k(λ) = µper1 (L̃λ) and the corre-

sponding eigenfunction φλ of L̃λ are differentiable in λ (in fact, analytic).

The last property of s(λ) that we will need is

s′(0) = k′(0) = 0. (3.23)

To see this, recall that

−∆φλ + 2λ(e · ∇φλ)− (λ2 +
2λ

φ̄
(e · ∇φ̄))φλ +

2∇φ̄
φ̄
· ∇φλ = k(λ)φλ, (3.24)

hence (with φ0 = φλ=0),

−∆φ0 +
2∇φ̄
φ̄
· ∇φ0 = k(0)φ0. (3.25)

It follows that
k(0) = 0 and φ0 = 1. (3.26)

Differentiating (3.24) in λ, we obtain, at λ = 0:

−∆ψ0 +
2∇φ̄
φ̄
· ∇ψ0 −

2

φ̄
(e · ∇φ̄)φ0 + 2(e · ∇φ0) = k(0)ψ0 + k′(0)φ0,

with the function

ψ0 =
dφλ
dλ
|λ=0.

Taking (3.26) into account, this simplifies to

−∆ψ0 +
2∇φ̄
φ̄
· ∇ψ0 −

2

φ̄
(e · ∇φ̄) = k′(0). (3.27)

The adjoint equation to (3.25) is

−∆φ∗0 − 2∇ ·
(
∇φ̄
φ̄
φ∗0

)
= 0, (3.28)

or

−∇ ·
(
∇φ∗0 +

2∇φ̄
φ̄

φ∗0

)
= 0.
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It is satisfied by φ∗0(x) = 1/φ̄2(x). Multiplying then (3.27) by φ̄−2(x) and integrating over the
period cell gives

k′(0)

∫
Tn

dx

φ2
1(x)

= −2

∫
Tn

e · ∇φ̄
φ̄3

dx = 0,

hence k′(0) = 0.
Let us summarize the above observations about the function s(λ): we know that s(λ) is

convex, super-linear at infinity, s(0) > 0 and s′(0) = 0. It follows that there exists a threshold
c∗(e) so that the equation

s(λ) = cλ, (3.29)

has no solutions for 0 < c < c∗(e), one solution for c = c∗(e) and two solutions for c > c∗(e)
– this proves Theorem 3.2.

We will denote below by λ∗(e) the unique solution of (3.29) at c = c∗(e), and by λe(c) the
smaller of the two positive solutions for c > c∗(e).

3.3 The Freidlin-Gärtner formula

As we have discussed above, in the introduction to this chapter, the speed of invasion in a
direction e ∈ Sn−1 is given not by c∗(e) but by (0.8):

w∗(e) = inf
|e′|=1,(e·e′)>0

c∗(e
′)

(e · e′)
. (3.30)

In order to understand where (3.30) comes from, recall that for any e ∈ Sn−1 the exponential
solution

ve(t, x) = e−λ∗(e)(x·e−c∗(e)t)φe(x),

with φe(x) = φλ∗(e)(x), is a super-solution to the Cauchy problem:

vt ≥ ∆v + µ(x)v − v2. (3.31)

Therefore, the function

v̄(t, x) = inf
|e|=1

e−λ∗(e)(x·e−c∗(e)t)φe(x)

is also a super-solution. Hence, any solution of the Cauchy problem

ut = ∆u+ µ(x)u− u2, (3.32)

with a compactly supported function u0(x), lies below a large multiple of v̄(t, x). In order to
see how small v̄(t, x) is on a given line Le = {re, r > 0} with a fixed e ∈ Sn−1, we need to
understand when

inf
|e′|=1

e−λ∗(e
′)(r(e·e′)−c∗(e′)t)φe′(re)

is exponentially small. Note that

inf
e′∈Sn−1,x∈Tn

φe′(x) > 0,
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thus v̄(t, re) is small if
r(e · e′)� c∗(e

′)t,

for all |e′| = 1, and large t, that is, for r � w∗(e)t. This is where the formula (3.30) for w∗(e)
comes from. More precisely, the above argument shows that if we take any c > w∗(e), then
we have, for all x ∈ Rn fixed:

lim
t→+∞

u(t, x+ cte) = 0. (3.33)

The next step is to prove that for each c ∈ (0, w∗(e)) we have

lim
t→+∞

sup
0≤r<c

|u(t, rte)− p(rte)| = 0. (3.34)

here p(x) is the unique positive bounded steady solution to (3.31). In turn, the crucial step
to establish (3.34) is to show that

lim inf
t→+∞

sup
0≤r<c

u(t, rte) > 0. (3.35)

With this in hand, we will proceed as before – put a compactly supported sub-solution under
u(t, x) at a large time t and let the solution of the corresponding Cauchy problem ”grow”
to p(x).

Thus, we take c < c∗(e) and go into the moving frame: set v(t, y) = u(t, y + cte):

vt − ce · ∇v = ∆v + µ(y + cte)v − v2. (3.36)

As in the homogeneous case, the proof of (3.34) boils down to the finding a compactly sup-
ported sub-solution to (3.36) that does not vanish as t → +∞. We will make a (slightly)
simplifying assumption that

µ(x) > 0, for all x ∈ Tn. (3.37)

We will establish the following.

Proposition 3.6 Let e ∈ Sn−1 and 0 ≤ c < w∗(e). There exists R0 > 0 sufficiently large,
γ > 0, and a positive bounded function se(t, y) that satisfies

∂se
∂t
− ce · ∇se = ∆se + µ(y + cte)se − γse, t ∈ R, |x| ≤ R0, (3.38)

with the Dirichlet boundary condition se(t, x) = 0 for |x| = R, and such that

lim inf
t→+∞

inf
|x|≤R0/2

se(t, x) > 0. (3.39)

Let us first explain how this result implies the Freidlin-Gärtner formula. The first step is the
following exercise that uses the techniques we have seen several times.

Exercise 3.7 Show that to prove the Freidlin-Gärtner formula it is sufficient to show that
solution of the KPP problem in the moving ball:

∂v

∂t
− ce · ∇v = ∆v + µ(y + cte)v − v2, t ∈ R, |x| ≤ 2R0, (3.40)

v = 0 on |x| = 2R0,

satisfies
lim inf
t→+∞

inf
|x|≤R/2

v(t, x) > 0. (3.41)
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The second observation is that the function sε(t, x) = εse(t, x) with se(t, x) as is in Proposi-
tion 3.6, is a sub-solution to (3.40), provided that ε > 0 is sufficiently small:

∂sε
∂t
−∆sε − µ(y + cte)sε + s2

ε = −βεs2
e + ε2s2

e < 0.

This implies that there exists β > 0 sufficiently small so that v(t, x) > βsε(t, x) (choosing β
so that this inequality holds at t = 1). Now, (3.41) follows from (3.39). Thus, the proof of
the Freidlin-Gärtner formula hinges on Proposition 3.6.

The proof of Proposition 3.6: rational angles

Let us first assume that e ∈ Qn is a “rational angle”, that is, all components of e are rationally
dependent. Then the coefficient a(t, y) = µ(y + cte) is 1-periodic in y and is also periodic in
time, with the period Tc = M/c. Here M is the smallest number so that all Mej are integers.
A key role is played by the principal eigenfunction for the problem

zt −∆z − ce · ∇z − a(t, y)z = λ1(c, R)z, t ∈ R, y ∈ BR = {|y| ≤ R}, (3.42)

z(t, y) > 0 is Tc-periodic in t,

z(t, y) = 0 for |y| = R.

To simplify slightly the notation we do not show explicitly the dependence of λ1(c, R) on e.

Lemma 3.8 There exists R1 so that for all R > R1 we can find c∗(R) such that

λ1(c∗(R), R) = 0.

The principal periodic eigenvalue λ1 of the operator

−∆− µ(x)

is negative when c = 0 – this is our main assumption. Lemma 2.4 tells us that then the
principal Dirichlet eigenvalue λ1(R) on the ball BR of the same operator is also negative – in
other words, in our curent notation, λ1(0, R) < 0 for R sufficiently large – this sets R1. The
function λ1(c, R) is analytic in c, thus λ1(c, R) < 0 for all c > 0 sufficiently small and R large
enough. On the other hand, for all c > 0 sufficiently large we have λ1(c, R) > 0. To see that,
set

z(t, x) = e−c(x·e)/2z̃(t, x).

The function z̃(t, x) satisfies

z̃t −∆z̃ +
c2

4
z̃ − a(t, y)z̃ = λ1(c, R)z̃, (3.43)

with the periodic boundary conditions in T and the Dirichlet boundary conditions on ∂BR.
It follows that λ1(c, R) > 0 if

c >
√

1 + 4‖a‖∞. (3.44)

Thus, there exist c(R) > 0 so that λ1(c(R), R) = 0 and we will denote by c∗(R) the smallest
such c > 0 (once again, c∗(R) depens also on e but we do not indicate this dependence
explicitly in our notation). Note that c∗(R) is bounded from above because of (3.44).
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Exercise 3.9 Show that c∗(R) is uniformly bounded from below as R→ +∞ (also uniformly
in e ∈ Sn−1).

Here is the key lemma. We use the notation T∗(R) = Tc∗(R).

Lemma 3.10 We have, for all e ∈ Rn with |e| = 1,

lim inf
R→+∞

c∗(R) ≥ w∗(e). (3.45)

Let zR(t, x) be the Dirichlet eigenfunction:

∂zR
∂t
−∆zR − c∗(R)e · ∇zR − a(t, y)zR = 0, t ∈ R, y ∈ BR (3.46)

zR(t, y) > 0 is T∗(R)-periodic in t,

zR(t, y) = 0 for |y| = R,

normalized so that zR(0, 0) = 1. Because of the uniform bounds on c∗(R), we can extract a
sub-sequence Rn → +∞ so that c∗(Rn) → c̄ and the periods T∗(Rn) = M/c∗(R) → M/c̄,
and, moreover the functions zRn(t, x) converge (after possibly extracting another subsequence)
locally uniformly to a positive T -periodic function q(t, x) that solves

qt −∆q − c̄e · ∇q − a(t, y)q = 0, t ∈ R, y ∈ Rn, (3.47)

and satisfies q(0, 0) = 1. We will now construct an exponential solution to (3.47) starting
with q(t, y). Let ê1 be the first coordinate vector. The Harnack inequality implies that there
exists a constant m so that

mq(t, y + ê1) ≤ q(t+ T, y), (3.48)

for all y ∈ R and t ∈ R. As the function q(t, y) is T -periodic, we conclude that there exist
m,M > 0 so that

mq(t, y + ê1) ≤ q(t+ T, y) ≤Mq(t, y + ê1), (3.49)

Let M1 be the smallest M so that this inequality holds. If there exists t0, y0 so that

q(t0, y0) = M1q(t0, y0 + ê1),

and q(t, y) ≤ M1q(t, y + ê1) for all t ∈ R and y ∈ Rn, the maximum principle would imply
that

q(t, y) = Mq(t, y + ê1), for all t ∈ R and y ∈ Rn. (3.50)

On the other hand, if there exists a sequence of points tn, yn such that

q(tn, yn) ≥ (M1 −
1

n
)q(tn, yn + ê1),

then by considering the shifted functions qm(t, y) = q(t+ tm, y+[ym]) and passing to the limit
n→ +∞ we would construct a solution q̄(t, x) of (3.47) such that

q̄(0, ȳ) = M1q̄(0, ȳ + ê1),
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with some ȳ ∈ [0, 1]n, and q̄(t, y) ≤ M1q̄(t, y + e) for all t ∈ R and y ∈ Rn. The maximum
principle would, once again, imply that q̄(t, x) satisfies (3.33). In other words, q̄(t, y) is a
solution of

q̄t −∆q̄ − c̄e · ∇q̄ − a(t, y)q̄ = 0, (3.51)

which, in addition, satisfies (with λ1 = logM1)

q̄(t, y) = e−λ1y1Ψ1(t, y), (3.52)

with a function Ψ1(t, y) which is 1-periodic in y1 and T -periodic in t. Iterating this process
we will construct a solution of (3.51) that is of the form

q̄(t, y) = e−
∑n
i=1 λiyiΨ(t, y). (3.53)

Here, the function Ψ(t, y) is T -periodic in t and 1-periodic in all yi. In the original variables
this corresponds to a solution of

rt = ∆r + µ(x)r (3.54)

of the form

r(t, x) = e−
∑n
i=1 λi(xi−c̄eit)Φ(t, x). (3.55)

As T = M/c̄, the function Φ(t, x) = Ψ(t, x − c̄te) is T -periodic in time, 1-periodic in all xi,
and satisfies an autonomous equation

Φt + c̄(e · λ)Φ = ∆Φ− 2λ · ∇Φ + |λ|2Φ + µ(x)Φ.

As in the previous step, it follows that for any τ there exists q so that Φ(t+ τ, y) = qΦ(t, y).
Periodicity of Φ(t, y) in t implies then that q = 1 so that Φ does not depend on t: Φ(x) is
a 1-periodic function of x. Then, we set e′i = λi/|λ| and write

n∑
i=1

λi(xi − c̄eit) = |λ|
n∑
i=1

(xie
′
i − c̄te′iei) = |λ|[(x · e′)− c̄′t],

with c̄′ = c̄(e · e′). Therefore, r(t, x) is an exponential solution in the direction e′ moving with
the speed c̄′. It follows that c̄(e · e′) ≥ c∗(e

′), hence

c̄ ≥ c∗(e
′)

(e · e′)
≥ w∗(e),

and the proof of Lemma 3.10 is complete.

Returning to the proof of Proposition 3.6 for rational angles, we conclude that for any
c < w∗(e), we can find R sufficiently large so that λ1(R) < 0. Taking the corresponding
eigenfunction for (3.46) on BR as the function se(t, x) in (3.38), we deduce the claim of that
proposition.
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The proof of Proposition 3.6: irrational angles

We now consider an irrational direction e – the proof is essentially by a density argument.
Here, we will use the simplifying assumption (3.37) that

m := inf
x∈Tn

µ(x) > 0. (3.56)

Exercise 3.11 It follows from (3.56) that the solution propagates in all directions at least at
the speed 2

√
m := c: for any 0 ≤ c < c and any x ∈ Rn we have

lim inf
t→+∞

u(t, x+ ct) > 0. (3.57)

Given c < w∗(e), we take ε > 0 sufficiently small, and consider a rational direction eε at
distance at most ε2 from e:

|e− eε| ≤ ε2,

and such that
|w∗(e)− w∗(eε)| ≤ ε2,

and so that we would have
cε = c(1 + ε) < w∗(eε).

Consider now a large time T > 0 and the corresponding positions along the two rays:

X = cεTe and Xε = cεTeε.

As cε < w∗(eε), if T is sufficiently large (possibly depending on ε), then, by what we have
shown for the propagation in a rational direction, the function u(T, x) is larger than some
δ > 0 in a large ball centred at Xε. Therefore, as follows from Exercise 3.11, at the time
T ′ = T + εT , u will be larger than δ in a ball of radius at least cεT , centered at Xε. However,
for small ε, the point X is in this ball:

|X −Xε| ≤ cε2T � cεT.

It follows that, for all T sufficiently large we have

u(T (1 + ε), c(1 + ε)Te) ≥ δ,

which implies that
lim inf
t→+∞

u(t, cte) > 0.
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Chapter 5

Counting the solutions of
Hamilton-Jacobi equations

1 Introduction

In this chapter, we will consider the Hamilton-Jacobi equations

ut +H(x,∇u) = 0 (t > 0, x ∈ Tn), (1.1)

on the unit torus Tn ⊂ Rn. Such problems arise in problems in physics (front propagation),
imaging (sharpening and other tools), optimal control theory, and finance, – this list may be
continued to a nearly arbitrary length, and we encourage the reader to investigate his favorite
applications. We will be interested both in the Cauchy problem, that is, (1.1) supplemented
with the initial data

u(0, x) = u0(x), (1.2)

as well as in a stationary version of (1.1):

H(x,∇u) = c, x ∈ Tn. (1.3)

It will soon become clear why (1.3) has a constant c in the right side – we will prove that under
reasonable assumptions, solutions exists only for a unique value of c which has no reason to
be equal to zero. Thus, the “standard” steady equation

H(x,∇u) = 0

typically would have no solutions.
We will ultimately make the assumption that the function H(x, p) is smooth and uniformly

strictly convex in its second variable, that is there exists α > 0 such that the inequality

D2
pH(x, p) ≥ αI, [D2

pH(x, p)]ij =
∂2H

∂pi∂pj
, (1.4)

is true, in the sense of quadratic forms, for all x ∈ Tn and p ∈ Rn.
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A reader familiar with the theory of conservation laws, would see immediately the con-
nection between them and the Hamilton-Jacobi equations: in one dimension, n = 1, differen-
tiating (1.1) in x we get a conservation law for v = ux:

vt + (H(x, v))x = 0. (1.5)

The basic conservation law theory tells us that it is reasonable to expect that v(t, x) becomes
discontinuous in x at a finite time t, which means that the function u(t, x) fails to be in C1

though it will remain Lipschitz. In agreement with this intuition, it is well known that,
for smooth initial data u0 on Tn, the Cauchy problem (1.1)-(1.2) has a unique local smooth
solution. That is, there exists a time t0 > 0, which depends on the initial data u0, such
that (1.1) has a C1 solution u(t, x) on the time interval [0, t0] such that u(0, .) = u0. However,
this solution is not global: in general, it is impossible to extend it in a smooth fashion
to t = +∞. This is described very nicely in [52]. On the other hand, if we relax the
smoothness constraint: “u is C1 on R+×Tn”, and replace it by: “u is Lipschitz on R+×Tn”
– and require (1.1)-(1.2) to hold almost everywhere, there are, in general, several solutions to
the Cauchy problem (this parallels the fact that the weak solutions to the conservation laws
are not unique). See, for instance, [85] for a discussion of these issues. A natural question
is, therefore, to know if an additional criterion, less stringent than the C1 regularity, but
stronger than the mere Lipschitz regularity, enables us to select a unique solution to the
Cauchy problem – as the notion of the entropy solutions does for the conservation laws.

The above considerations have motivated the introduction, by Crandall and Lions [42], at
the beginning of the 80’s, of the notion of a viscosity solution to (1.1). This notion selects,
among all the solutions of (1.1), “the one that has a physical meaning” – though understanding
the connection to physics may require some thought from the reader. Being weaker than the
notion of a classical solution, it introduces new difficulties to the existence and uniqueness
issues. Note that even if there is a unique viscosity solution to the Cauchy problem (1.1)-
(1.2), the stationary equation (1.3) has no reason to have a unique steady solution. The
classification of all solutions to (1.3) is the problem that motivates the present chapter.

The unique viscosity solution of (1.1)-(1.2) has, as we shall remind the reader, an (almost)
explicit expression, known as the Lax-Oleinik formula. At the end of the 90’s, A. Fathi, in
four notes [57], [58], [59], [60], shows how the exploration of this (at a first glance, intractable)
formula, combined to (simple) ideas coming from the Mather theory [90] - could shed a new
light on the qualitative properties of (1.1)-(1.2) and (1.3). The ideas present in these four notes
have been further developed in [61], and culminate at an important theorem asserting the
existence of smooth critical C1 sub-solutions, presented in Fathi-Siconolfi [62]. This chapter is
a self-contained introduction to the Fathi-Siconolfi theorem, and how it allows to understand
the qualitative properties of the Hamilton-Jacobi equations.

Section 2 of this chapter is an introduction to viscosity solutions, ending up with an
existence theorem (due to a preprint by Lions, Papanicolaou, Varardhan – perhaps, the most
cited unpublished paper in PDEs) for (1.3). Section 3 recalls the Lax-Oleinik formula as
an explicit solution to the Cauchy problem for (1.1)-(1.2), and outlines its main properties.
The short Section 4 presents, in quite a simple way, the C1,1 regularity properties that will
turn out to be crucial for the sequel. Section 5 analyses the Fathi-Siconolfi theorem, and
its applications to the uniqueness sets for (1.3), and existence of invariant regions for the
underlying hamiltonian system.
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We would be amiss not to mention that one could at no cost replace the torus Tn by a
smooth compact Riemaniann manifold without boundary. This would, however, only result
in a heavier presentation and would in no way lead to a deeper understanding.

2 Viscosity solutions

Here, we present the basic notions of the viscosity solutions for the first order Hamilton-
Jacobi equations, and prove a uniqueness result which is typical in this theory. This brings us
very quickly to the Lions-Papanicolaou-Varadhan fundamental theorem of existence of steady
solutions; this theorem raises uniqueness issues that will be one of the motivations to go
further. The reader interested in all the subtleties of the theory may enjoy reading Barles [6],
or Lions [85].

2.1 The definition of a viscosity solution

Let us begin with more general equations than (1.1) – we will restrict the assumptions as the
theory develops. Consider the Cauchy problem

ut + F (x, u,∇u) = 0 (t > 0, x ∈ Tn), u(0, x) = u0(x), (2.1)

with F ∈ C(Tn ×R×Rn;R). The initial datum u0 is assumed – this will always be the case
– continuous on Tn.

In order to motivate the notion of a viscosity solution, philosophically, one believes that
(smooth) solutions of the regularized problem

uεt + F (x, uε,∇uε) = ε∆uε (2.2)

are a good approximation to u(t, x). Hence, a natural attempt would be to pass to the
limit ε ↓ 0 in (2.2). This, however, is too blunt to succeed in general – we will comment more
on this below. To motivate a different route, instead, consider a smooth sub-solution of (2.2):

ut + F (x, u,∇u) ≤ ε∆u. (2.3)

Next, take a smooth function φ(t, x) such that the difference u− φ attains its maximum at a
point (t0, x0). Then, at this point we have

ut(t0, x0) = φt(t0, x0), ∇φ(t0, x0) = ∇u(t0, x0),

and
D2φ(t0, x0) ≥ D2u(t0, x0).

It follows that

φt(t0, x0) + F (x0, u(t0, x0),∇φ(t0, x0))− ε∆φ(t0, x0) (2.4)

≤ ut(t0, x0) + F (x0, u(t0, x0),∇u(t0, x0))− ε∆u(t0, x0) ≤ 0.

In a similar vein, if u(t, x) is a smooth super-solution to the regularized problem:

ut + F (x, u,∇u) ≥ ε∆u, (2.5)
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we consider a smooth function φ(t, x) such that the difference u− φ attains its minimum at
a point (t0, x0). Then, at this point we have

φt(t0, x0) + F (x0, u(t0, x0),∇φ(t0, x0))− ε∆φ(t0, x0) ≥ 0. (2.6)

Passing to the limit ε ↓ 0 for a smooth test function φ(t, x) (rather than an uncontrolled
approximation uε(t, x)) in (2.4) and (2.6) leads to the following.

Definition 2.1 We say that u(t, x) ∈ C([0,+∞),Tn) is a viscosity subsolution to (2.1) if,
for all test functions φ ∈ C1([0,+∞)× Tn) and all (t0, x0) ∈ (0,+∞)× Tn such that (t0, x0)
is a local maximum for u− φ, we have:

φt(t0, x0) + F (x0, u(t0, x0),∇φ(t0, x0)) ≤ 0. (2.7)

Furthermore, we say that u(t, x) is a viscosity supersolution to (2.1) if, for all test functions
φ ∈ C1((0,+∞) × Tn) and all (t0, x0) ∈ (0,+∞) × Tn such that the point (t0, x0) is a local
minimum for the difference u− φ, we have:

φt(t0, x0) + F (x0, u(t0, x0),∇φ(t0, x0)) ≥ 0. (2.8)

Finally, u(t, x) is a viscosity solution to (2.1) if it is both a viscosity subsolution and a viscosity
supersolution to (2.1).

Definition 2.1 trivially extends to steady equations of the type F (x, u,∇u) = 0 on Tn.

Exercise 2.2 A C1 solution to (2.1) is a viscosity solution. The maximum of two viscosity
subsolutions is a viscosity subsolution, and the minimum of two viscosity supersolutions is a
viscosity supersolution.

The reader may justly wonder whether such a seemingly weak definition has any selective
power. This is the case, and we give below, without proof, a list of some basic properties of
the viscosity solutions to (2.1), as exercises to the reader. These exercises are not so easy as
Exercise 2.2, but the hints below should be helpful.

Exercise 2.3 (Stability) Let Fj be a sequence of functions in C(Tn×R×Rn), which converges
locally uniformly to F ∈ C(Tn×R×Rn). Let uj be a viscosity solution to (2.1) with F = Fj,
and assume that uj converges locally uniformly to u ∈ C(R+,Tn). Then u is a viscosity
solution to (2.1).

Hint: this is not difficult.

Exercise 2.4 Let u be a locally Lipschitz viscosity solution to (2.1). Then it satisfies (2.1)
almost everywhere.

Hint: if u is Lipschitz, then u is differentiable almost everywhere. Prove that, at a point of
differentiability (t0, x0), one may construct a C1 test function φ(t, x) such that (t0, x0) is a
local maximum (respectively, a local minimum) of u− φ. If you have no idea of how to do it,
see [42].
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Exercise 2.5 (Maximum principle) Assume that the Hamiltonian F (x, u, p) has the form
H(x, p), where H ∈ C(Tn × Rn) satisfies the following (coercivity) property:

lim
|p|→+∞

H(x, p) = +∞, uniformly in x ∈ Tn. (2.9)

Let u10 ≤ u20 be two continuous initial data for (2.1), and assume that u10 (resp. u20)
generates at least one viscosity solution u1 (resp. u2) for (2.1). Then u1 ≤ u2.

Hint: try to reproduce the proof of Proposition 2.7 below.

Exercise 2.6 (Weak contraction) If F (x, u, p) = H(x, p), and under the coercivity assump-
tion (2.9), let u10 ≤ u20 be two continuous initial data for (2.1). Assume that u10 (respec-
tively, u20) generates at least one viscosity solution u1 (respectively, u2) for (2.1). Then, we
have ‖u1(t, .)− u2(t, .)‖∞ ≤ ‖u10 − u20‖∞.

Hint: notice that the constants solve the equation and use Exercise 2.5.
Definition 2.1 has been introduced by Crandall and Lions in their seminal paper [42]. Let

us notice one of the main advantages of the notion: Exercise 2.3 asserts that one may safely
“pass to the limit” in equation (2.1), as soon as estimates on the moduli of continuity of
the solutions are available (This, however, may be very difficult to prove, even impossible).
Exercise 2.5 implies uniqueness of the solutions to the Cauchy problem - without, however,
implying existence.

The name “viscosity solution” comes out of trying to identify a “physically meaningful”
solution to (2.1). A natural idea is to regularize (2.1) by a second order dissipative term, and
to solve the – apparently more complicated – problem (2.2):

ut + F (x, u,∇u) = ε∆u (t > 0, x ∈ Tn), u(0, x) = u0(x), (2.10)

Then one tries to pass to the limit ε → 0. This can be carried out when the Hamilto-
nian F (x, u, p) has, for instance, the form H(x, p). It is possible to prove that there is a
unique limiting solution and that one actually ends up with a nonlinear semigroup. In partic-
ular, one may show that, if we take this notion of solution as a definition, there are uniqueness
and contraction properties analogous to above – see [85] for further details. Taking (2.10) as
a definition is, however, not intrinsic: there is always the danger that the solution depends
on the underlying regularization (why regularize with the Laplacian?), and Definition 2.1 by-
passes this philosophical question. Let us finally note that the notion of a viscosity solution
has turned out to be especially relevant to the second order elliptic and parabolic equations –
especially those fully nonlinear with respect to the Hessian of the solution. There have been
spectacular developments, which are out of the scope of this chapter.
Warning. For the rest of this chapter, a solution of (1.1) or (1.3) will always be meant in
the viscosity sense.

One of the main issues of viscosity solutions theory is uniqueness. So, let us give the
simplest uniqueness result, and prove it by the method of doubling of variables. This argument
appears in almost all uniqueness proofs, in more or less elaborate forms.

Proposition 2.7 Assume that the Hamiltonian H is continuous in all its variables, and
satisfies the coercivity assumption (2.9). Consider the equation

H(x,∇u) + u = 0, x ∈ Tn. (2.11)

Let u and u be, respectively, a viscosity sub- and a super-solution (1.1), then u ≤ u.
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Proof. Assume for a moment that both u and u are C1. If x0 is a minimum of u−u we have,

H(x0,∇u(x0)) + u(x0) ≥ 0, (2.12)

as u is a super-solution, and u can be considered a test function. On the other hand, u − ū
attains its maximum at x0, and, as u is a sub-solution, and u can serve as a test function, we
have

H(x0,∇u(x0)) + u(x0) ≤ 0. (2.13)

As x0 is a minimum of u− u, we have ∇u(x0) = ∇u(x0), whence (2.12) and (2.13) imply

u(x0) ≤ u(x0).

As x0 is a minimum of u − u, we conclude that u(x) ≥ u(x) for all x ∈ Rn if both of these
functions are C1(Rn). Unfortunately, u are u only continuous, so we can not always use the
argument above. Let us define, for all ε > 0, the penalization

uε(x, y) = u(x)− u(y) +
|x− y|2

2ε2

and let (xε, yε) be a minimum for uε.

Exercise 2.8 Show that
lim
ε→0
|xε − yε| = 0.

and that the family (xε, yε) converges, as ε → 0, up to a subsequence, to a point (x0, x0),
where x0 is a minimum to u− u.

Consider the function

φ(x) = u(yε)−
|x− yε|2

2ε2
,

as a (smooth) function of the variable x. The difference

u(x)− φ(x; yε) = uε(x, yε)

attains its minimum at the point x = xε, where, as u(x) is a super-solution, we have

H(xε,
yε − xε
ε2

) + u(xε) ≥ 0. (2.14)

Next, we apply the sub-solution part of Definition 2.7 to the test function

ψ(y) = u(xε) +
|xε − y|2

2ε2
,

considered as a function of y. The difference

u(y)− ψ(y) = u(y)− u(xε)−
|xε − y|2

2ε2
= −uε(x, yε)

attains its maximum at y = yε, hence

H(yε,
yε − xε
ε2

) + u(yε) ≤ 0; (2.15)
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The coercivity of the Hamiltonian and (2.15) imply that |xε − yε|/ε2 is bounded. Hence,
as |xε − yε| → 0, it follows that

H(yε,
yε − xε
ε2

) = H(xε,
yε − xε
ε2

) + o(1).

Subtracting (2.15) from (2.14), we obtain

u(xε)− u(yε) ≥ o(1).

Sending ε→ 0 implies
u(x0)− u(x0) ≥ 0,

and, as x0 is the minimum of u− u, the proof is complete. �
An immediate consequence is that (2.11) has at most one solution. It has the following

easy extension:

Proposition 2.9 Let u (respectively, u) be an upper semicontinuous (u.s.c.) subsolution
(respectively, a lower semicontinuous supersolution) to (2.11), then u ≤ u.

2.2 Steady solutions

If one were to look for solutions of (1.1) which do not depend on t, that is, solutions to

H(x,∇u) = 0,

one would quickly realize that there is no reason why such an equation should have solutions:
think, for instance, of H(x, p) such that H ≥ 1 on Tn×Rn – this is something that we have by
no means excluded yet. It is, therefore, desirable to extend a bit the class of solutions and a
natural attempt is to look for solutions of (1.1) of the form −ct+u(x), with a constant c ∈ R.
Such function u solves

H(x,∇u) = c, x ∈ Tn. (2.16)

Let us point out that (2.16) may have solutions for at most one c. Indeed, assume there
exist c1 6= c2, such that (2.16) has a solution u1 for c = c1 and another solution u2 for c = c2.
Let K > 0 be such that

u1 −K ≤ u2 ≤ u1 +K.

The functions −c1t+u1±K and −c2t+u2 solve the Cauchy problem (1.1) with the respective
initial data u1 ±K and u2. By the maximum principle (Exercise 2.5), we have

−c1t+ u1(x)−K ≤ −c2t+ u2(x) ≤ −c1t+ u1 +K.

This is a contradiction since c1 6= c2, and the functions u1 and u2 are bounded.
The main result of this section is the following theorem (due to Lions, Papanicolaou,

Varadhan [86]) that asserts the existence of a constant c for which (2.16) has a solution.

Theorem 2.10 Assume H(x, p) is continuous, and the coercivity condition (2.9) holds. There
is a unique c ∈ R for which (2.16) has solutions.

It is important to point out that the periodicity assumption on the Hamiltonian is indispens-
able – for instance, when H(x, p) is a random function (in x) on Rn × Rn, the situation is
totally different – an interested reader should consult the literature on stochastic homoge-
nization of the Hamilton-Jacobi equations, a research area that is active and evolving at the
moment of this writing.
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The homogenization connection

Before proceeding with the proof of the Lions-Papanicolaou-Varadhan theorem, let us explain
how the steady equation (2.16) appears in the homogenization context, which was probably
the main motivation behind this theorem. Consider the Cauchy problem

uεt +H(x,∇uε) = 0, (2.17)

in the whole space x ∈ Rn (and not on the torus). We assume that the initial datum is slowly
varying and large: uε(0, x) = ε−1u0(εx), and introduce the “slow” variables y = εx and s = εt,
as well as the function

vε(s, y) = εuε(
s

ε
,
y

ε
).

In the new variables the problem takes the form

vεs +H(
y

ε
,∇vε) = 0, y ∈ Rn, t > 0, (2.18)

with the initial data vε(0, y) = u0(y). Let us seek the solution in the form of an asymptotic
expansion

vε(s, y) = v̄(s, y) + εv1(s, y,
y

ε
) + ε2v2(s, y,

y

ε
) + . . .

The functions vj(s, y, z) are assumed to be periodic in the “fast” variable z. Inserting this
expansion into (2.18), we obtain in the leading order

v̄s(s, y) +H(
y

ε
,∇yv̄(s, y) +∇zv1(s, y,

y

ε
)) = 0. (2.19)

As is standard in such multiple scale expansions, we consider (2.19) as

v̄s(s, y) +H(z,∇yv̄(s, y) +∇zv1(s, y, z)) = 0, (2.20)

an equation for v1 as a function of the fast variable z ∈ Tn, for each s > 0 and y ∈ Rn fixed.
The function v̄(s, y) will then be found from the solvability condition for (2.19). The latter
is obtained as follows: for each fixed p ∈ Rn consider the problem

H(z, p+∇zw) = H̄(p), (2.21)

posed on the torus z ∈ Tn, for an unknown function w. Here, H̄(p) is the unique constant (that
depends on p), whose existence is guaranteed by the Lions-Papanicolaou-Varadhan theorem,
for which the equation

H(z, p+∇zw) = c, (2.22)

has a solution. Then, the function v̄(s, y) satisfies the homogenized (or effective) equation

v̄s + H̄(∇yv̄) = 0, v̄(0, y) = u0(y), s > 0, y ∈ Rn, (2.23)

and the function H̄(p) is called the homogenized Hamiltonian. Note that the effective Hamil-
tonian does not depend on the spatial variable – the “small scale” variations are averaged
out via the above homogenization procedure. Thus, the existence and uniqueness of the
constant c for which solution of the steady equation (2.22) exists, is directly related to the
homogenization (long time behavior) of solutions of the Cauchy problem (2.17) with slowly
varying initial data.
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The proof of the Lions-Papanicolaou-Varadhan theorem

As we have already proved uniqueness of the constant c, it only remains to prove its existence.
We start with a double approximation problem

−δ∆uε,δ +H(x,∇uε,δ) + εuε,δ = 0, x ∈ Tn, (2.24)

with δ > 0 and ε > 0. The idea is to send first δ ↓ 0, and then ε ↓ 0. Sending δ ↓ 0 will be
harmless, while the limit of εu will produce the correct constant c. The first step is to show
that solution of (2.24) exists.

Exercise 2.11 Show that for all δ > 0 and for all ε > 0, (2.24) has a solution uε,δ, which
satisfies

−‖H(·, 0)‖∞
ε

≤ uε,δ(x) ≤ ‖H(·, 0)‖∞
ε

, (2.25)

for all x ∈ Tn. Hint: this can be seen by the sub and supersolution method for the elliptic
equations, as

−‖H(·, 0)‖∞
ε

and
‖H(·, 0)‖∞

ε

are a pair of ordered sub and super-solutions.

The limit δ ↓ 0 is taken care of by the Barles-Perthame lemma [7]:

Lemma 2.12 Fix ε > 0 and consider

uε(x) = lim sup
y→x,δ→0

uε,δ(y), uε(x) = lim inf
y→x,δ→0

uε,δ(y).

Then, uε (respectively, uε) is a l.s.c super-solution (respectively, u.s.c sub-solution) to

H(x,∇u) + εu = 0 (x ∈ Tn) (2.26)

We leave the proof of this lemma as an exercise. As a hint, we note that if xε is a minimum
of uε − φ, one may use the definition of uε to construct a sequence of minima to uε,δ − φ.

We have uε ≥ uε, from the definition of uε and uε, thus uε = uε by Proposition 2.9.
Let uε be this common value – it is a solution to (2.26). As uε is both upper- and lower-
semicontinuous, it is continuos, and satisfies

ε|uε(x)| ≤ ‖H(·, 0)‖∞,

as seen from (2.25). In order to pass to the limit ε → 0 in (2.26), we need a modulus of
continuity estimate.

Lemma 2.13 There is C > 0 independent of ε such that |Lip uε| ≤ C.

Proof. Fix x ∈ Tn and, for K > 0, consider the function

ζ(y) = uε(y)− uε(x)−K|y − x|.
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Let x̂ be a maximum of ζ(y) (the point x̂ depends on x). If x̂ = x for all x ∈ Tn, we have

uε(y)− uε(x) ≤ K|x− y|,

for all x, y ∈ Tn, which implies that uε is Lipschitz. If there exists some x such that x̂ 6= x,
then the function

ψ(y) = uε(x) +K|y − x|
is, in a vicinity of the point x̂, an admissible test function. Moreover, the difference

uε(y)− ψ(y) = ζ(y)

attains its maximum at y = x̂. The sub-solution condition (2.7) at this point gives:

H(x̂, K
x̂− x
|x̂− x|

) + εuε(x̂) ≤ 0.

As εuε(x) is bounded by ‖H(·, 0)‖∞, the coercivity condition (2.9) implies the existence of a
constant C > 0 independent of ε such that K ≤ C. Therefore, if we take K = 2C, we must
have x̂ = x for all x ∈ Tn, which implies

u(y)− u(x)− 2C|y − x| ≤ 0.

The points x and y being arbitrary, this finishes the proof. �
In order to finish the proof of Theorem 2.10, denote by 〈uε〉 the mean of uε over Tn, and

set
vε = uε − 〈uε〉.

This function satisfies
H(x,∇vε) + ε〈uε〉+ εvε = 0.

Because of Lemma 2.13, the family vε converges uniformly, up to a subsequence, to a func-
tion v ∈ C(Tn), and εvε → 0. The bound (2.25) implies that the family ε〈uε〉 is bounded. We
may, therefore, assume it convergence (along a subsequence) to a constant denoted by −c.
By the stability result in Exercise 2.3, v is a viscosity solution of

H(x,∇v) = c. (2.27)

This finishes the proof of Theorem 2.10. �

Non-uniqueness of steady solutions

Once the correct c has been identified, one may wonder about uniqueness of the solution
for equation (2.16). Clearly, if u is a solution, u + q is also a solution for every constant q.
However, uniqueness modulo constants is also not true. Consider the very simple example

|u′| = f(x), x ∈ T1. (2.28)

Assume that f ∈ C1(T1) is 1/2-periodic, satisfies

f(x) > 0 on (0, 1/2) ∪ (1/2, 1), and f(0) = f(1/2) = f(1) = 0.
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and is symmetric with respect to x = 1/4 (and thus x = 3/4). Let u1 and u2 be 1-periodic
and be defined, over a period, as follows:

u1(x) =


∫ x

0

f(y) dy 0 ≤ x ≤ 1

2∫ 1

x

f(y) dy
1

2
≤ x ≤ 1

u2(x) =



∫ x

0

f(y) dy 0 ≤ x ≤ 1

4∫ 1/2

x

f(y) dy
1

4
≤ x ≤ 1

2

u2 is
1

2
-periodic.

Both are viscosity solutions of (2.28), and u2 cannot be obtained from u1 by the addition a
constant. A more subtle mechanism is at work. A very remarkable study of this fact may be
found in Lions [85] for a multi-dimensional generalization of (2.28), that is,

|∇u| = f(x), x ∈ Ω

where Ω is a bounded open subset of RN and f is nonnegtive and vanishes only at a finite
number of points. The zero set of f is shown to play an important role: essentially, imposing u
at those points ensures uniqueness – but not always existence. Fathi’s contribution (which
we will describe below in detail) is to understand, for a general H, what is going on.

3 The Lagrangian representation of solutions

The Legendre transform and extremal paths

We already know that there is at most one solution to the Cauchy problem (1.1)-(1.2). In
this section, we will recall an “explicit” formula for this solution. In the preceding section,
we assumed very little about the Hamiltonian H: only a bit of coercivity and continuity.
From now on, we will make the smoothness and strict convexity assumptions given in the
introduction: H(x, p) is C∞(Tn × Rn), uniformly strictly convex in its second variable, and
the existence of α > 0 so that

D2
pH(x, p) ≥ αI, [D2

pH(x, p)]ij =
∂2H

∂pi∂pj
, (3.1)

in the sense of quadratic forms, for all x ∈ Tn and p ∈ Rn.
The Legendre transform of H in p (also called the Lagrangian) is

L(x, v) = sup
p∈Rn

(p · v −H(x, p)), x ∈ Tn, v ∈ Rn. (3.2)

Under our assumptions on H(x, p), the Lagrangian L(x, v) is C∞ in x and v, and is uniformly
strictly convex in its second variable. Moreover, we have the duality

H(x, p) = sup
v∈Rn

(p · v − L(x, v)),

and for all x ∈ Tn, the mapping v 7→ ∇vL(x, v) is a C∞-diffeomorphism, with

(∇vL)−1 = ∇pH.

141



One of the standard references for the basic properties of the Legendre transform is [106].
However, given our smoothness assumptions on H, they may be deduced in an elementary
fashion: strict convexity ensures the existence of a unique minimum, as well as the equivalence
between minima and zeros of the gradient of H in p. The implicit function theorem and a
few computations will then do the job.

For every time t > 0, and two points x ∈ Tn and y ∈ Tn, we define the function

ht(x, y) = inf
γ(0)=x,γ(t)=y

∫ t

0

L(γ, γ̇) ds. (3.3)

Here, the infimum is taken over all paths γ on Tn, that are piecewise C1. The quantity∫ t

0

L(γ, γ̇) ds

is usually referred to as the Lagrangian action, or simply the action. This is a classical
minimisation problem, which admits the following result (Tonelli’s theorem).

Proposition 3.1 Given any (t, x, y) ∈ R∗+ × Tn × Tn, there exists at least one minimizing
path γ(s) ∈ C2([0, t];Tn), such that

ht(x, y) =

∫ t

0

L(γ, γ̇) ds.

Moreover there is C(t, |x− y|) > 0 such that

‖γ̇‖L∞([0,t]) + ‖γ̈‖L∞([0,t]) ≤ C(t, |x− y|).

The function C tends to +∞ as t → 0 – keeping |x − y| fixed. The function γ(t) solves the
Euler-Lagrange equation

d

ds
∇vL(γ, γ̇)−∇xL(γ, γ̇) = 0. (3.4)

Once again, we leave the proof as an exercise but give a hint for the proof: consider a
minimizing sequence γn. First, use the strict convexity of L to obtain the H1-estimates
for γn, thus ensuring compactness in the space of continuous paths and weak convergence
to γ ∈ H1([0, t]) with fixed ends. Next, show that the convexity of L implies that γ is, indeed,
a minimizer. Finally, derive the Euler-Lagrange equation and show that γ is actually C∞.
Such a curve γ is called an extremal.

Back to the Hamilton-Jacobi equations

We now relate the solutions of the Cauchy problem for the Hamilton-Jacobi equations to the
Lagrangian. Given the initial data u0 ∈ C(Tn), define the function

u(t, x) = T (t)u0(x) = inf
y∈Tn

(u0(y) + ht(y, x)). (3.5)

142



Exercise 3.2 Show that the infimum in (3.5) is attained. Also show that (T (t))t>0 is a
semi-group: one has

T (t+ s)u0 = T (t)T (s),

that is,
u(t, x) = inf

y∈Tn
(u(s, y) + ht−s(y, x)), (3.6)

for all 0 ≤ s ≤ t, and T (0) = I.

This semigroup is referred to as the Lax-Oleinik semigroup. Here is its link to the Hamilton-
Jacobi equations.

Theorem 3.3 The function u(t, x) := T (t)u0(x) is the unique solution to the Cauchy problem

ut +H(x,∇u) = 0, (3.7)

u(0, x) = u0(x).

Proof. Let us first show the super-solution property: take t0 > 0 and x0 ∈ Tn and let φ be
a test function such that (t0, x0) is a minimum for u− φ. Without loss of generality, we may
assume that u(t0, x0) = φ(t0, x0). Consider y0 such that

u(t0, x0) = u0(y0) + ht0(y0, x0).

Let also γ be an extremal of the action between the times t = 0 and t = t0, going from y0

to x0: γ(0) = y0, γ(t0) = x0. We have, for all 0 ≤ t ≤ t0:

φ(t, γ(t)) ≤ u(t, γ(t)) ≤ u0(y0) +

∫ t

0

L(γ, γ̇) ds,

both ≤ being an equality for t = t0, which implies

d

dt

(
u0(y0) +

∫ t

0

L(γ, γ̇) ds− φ(t, γ(t))

)∣∣∣∣
t=t0

≤ 0,

or, in other words

φt(t0, x0) + γ̇(t0) · ∇φ(t0, x0)− L(γ(t0), γ̇(t0)) ≥ 0.

Which implies, via (3.2):
φt(t0, x0) +H(x0,∇φ(t0, x0)) ≥ 0.

To show the sub-solution property, consider a test function φ(t, x), as well as t0 > 0
and x0 ∈ Tn, where the difference u − φ attains its maximum, and assume, once again,
that u(t0, x0) = φ(t0, x0). Given v ∈ Rn, define the curve

γ(s) = x0 + (t0 − s)v.

Using the semigroup property (3.6), we obtain, for all t ≤ t0, since u(t, x) ≤ φ(t, x) for
all 0 ≤ t ≤ t0 and x ∈ Tn:

u(t0, x0) ≤ u(t, x0 − (t0 − t)v) + ht0−t(x− (t0 − t)v, x0)

≤ φ(t, x0 − (t0 − t)v) + ht0−t(x− (t0 − t)v, x0),
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both inequalities becoming an equality at t = t0. Just as above, differentiating in t at t = t0
gives

φt(t0, x0) + v · ∇φ(t0, x0)− L(x0, v) ≤ 0,

that is
φt(t0, x0) +H(x0,∇φ(t0, x0)) ≤ 0,

by (3.2), beacuse v is arbitrary. �

Instant regularization to Lipschitz

We conclude this section with a remarkable result on instant smoothing. We will show that if
the initial datum u0 is continuous on Tn, the solution of the Cauchy problem u(t, x) becomes
instantaneously Lipschitz. The improved regularity comes from the strict convexity of the
Hamiltonian: indeed, nothing of that sort is true for the eikonal equation, as can be seen from
the following example. Consider the initial value problem

ut + |ux| = 0, u(0, x) = u0(x), x ∈ T1

whose solution is
u(t, x) = inf

|x−y|≤t
u0(y).

If u0(x) is not Lipschitz in x, neither is u(t, x). On the other hand, if the Hamiltonian is
strictly convex we have the following result.

Theorem 3.4 Let u(t, x) be the unique solution to the Cauchy problem

ut +H(x,∇u) = 0, (3.8)

u(0, x) = u0(x),

with u0 ∈ C(Tn). For all t > 0, there is Ct > 0 such that |Lip u(t, x)| ≤ Ct on [t,+∞)× Tn.
The constant Ct does not depend on the initial condition and blows up as t ↓ 0.

Proof. It is sufficient to consider time intervals of length one, and repeat the argument on
the subsequent intervals. Given 0 < t ≤ 1, and x ∈ Tn, consider the extremal γ such that

u(t, x) = u0(γ(0)) +

∫ t

0

L(γ, γ̇) ds.

Take h ∈ Rn (we may always assume x+ h ∈ Tn), and define the curve

γ̃(s) = γ(s) +
s

t
h, 0 ≤ s ≤ t,

so that γ̃(0) = γ(0) and γ̃(t) = x+ h. We have∫ t

0

(L(γ̃, ˙̃γ)− L(γ, γ̇)) ds =

∫ t

0

[L(γ(s) +
s

t
h, γ̇(s) +

1

t
h)− L(γ(s), γ̇(s))] ds

≤
∫ t

0

1

t

(
sh · ∇xL(γ, γ̇) + h · ∇vL(γ, γ̇)

)
ds+ Ct|h|2.
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We may now use the Euler-Lagrange equation

d

ds
∇vL(γ(s), γ̇(s))−∇xL(γ(s), γ̇(s)) = 0

to rewrite the last line above as∫ t

0

(L(γ̃, ˙̃γ)− L(γ, γ̇)) ds ≤ h · ∇vL(γ(t), γ̇(t)) + Ct|h|2.

It is now sufficient to write, in view of formula (3.5) for u(t, x):

u(t, x+ h) = u(t, γ̃(t)) ≤ u(γ(0)) +

∫ t

0

L(γ̃, ˙̃γ) ds = u(t, x) +

∫ t

0

(L(γ̃, ˙̃γ)− L(γ, γ̇)) ds.

We obtain

u(t, x+ h)− u(t, x) ≤ h · ∇vL(γ(t), γ̇(t)) +K|h|2, (3.9)

which proves the Lipschitz regularity in space, because both γ and γ̇ are bounded, as long
as t ≥ t0 > 0.

In order to prove the Lipschitz regularity in time, let us examine a small variation of t,
denoted by t+ τ with t+ τ > 0. Perturbing the extremal γ into

γ̃(s) = γ(
t

t+ τ
s),

we still have γ̃(0) = γ(0), γ̃(t + τ) = γ(t) = x. The same computation as above gives
u(t+ τ, x)− u(t, x) ≤ Ct|τ |, hence the result. �

Remark 3.5 (i) It follows that u(t, x) is almost everywhere differentiable.
(ii) Take t > 0 and γ(s) an extremal such that u is differentiable at x := γ(t). We have then

∇u(t, x) = ∇u(t, γ(t)) = ∇vL(x, γ̇(t)).

The Hamilton-Jacobi equation yields

ut(t, γ(t)) = −H(x,∇u(t, x)) = −H(γ(t),∇u(t, γ(t)).

4 Semi-concavity and C1,1 regularity

As we have mentioned, equation (1.1) may have several Lipschitz solutions, so it is worth
asking whether the unique viscosity solution has additional regularity features. A relevant
notion is that of semi-concavity.
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Semi-concavity

Definition 4.1 If B is an open ball in Rn, F a closed subset of B and K a positive constant,
we say that u ∈ C(B) is K-semi-concave on F if: for all x ∈ F , there is lx ∈ Rn such that
for all h ∈ Rn satisfying x+ h ∈ B, we have:

u(x+ h) ≤ u(x) + lx · h+K|h|2. (4.1)

The function u is said to be K-semi convex on F if −u is K-semi-concave on F .

The next theorem is crucial for the sequel. If u is continuous in an open ball B in Rn, and F
is a closed set of B, we say that u ∈ C1,1(F ) if u is differentiable in F and ∇u is Lipschitz
over F .

Theorem 4.2 Let B be an open ball of Rn and F closed in B. Assume u ∈ C(B) is K-semi-
concave and K-semi-convex in F , then u ∈ C1,1(F ).

Proof. For all x ∈ F , there are two vectors lx and mx such that:

∀h ∈ RN ,
u(x+ h) ≤ u(x) + lx · h+K|h|2
u(x+ h) ≥ u(x) +mx · h−K|h|2

which yields, after subtracting:

(lx −mx) · h ≤ 2K|h|2.

As this is true for all h, we conclude that lx = mx and, therefore, u is differentiable at x.

Consider then (x, y, h) ∈ F ×F ×Rn. The semi-convexity and semi-concavity inequalities,
written, respectively, between x+ h and x, x and y, x+ h and y, give:

|u(x+ h)− u(x)−∇u(x) · h| ≤ K|h|2

|u(x)− u(y)−∇u(y) · (x− y)| ≤ K|x− y|2

|u(y)− u(x+ h) +∇u(y) · (x+ h− y)| ≤ K|x+ h− y|2.

Adding the three inequalities, we obtain:

|(∇u(x)−∇u(y)) · h| ≤ 3K(|h|2 + |x− y|2). (4.2)

Taking

h = |x− y| ∇u(x)−∇u(y)

|∇u(x)−∇u(y)|
,

inequality (4.2) becomes

|(∇u(x)−∇u(y))| ≤ 3K|x− y|,

which is the Lipschitz property of ∇u that we sought. �
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Improved regularity of the viscosity solutions

Let us come back to the solution u(t, x) of the Cauchy problem

ut +H(x,∇u) = 0, (4.3)

u(0, x) = u0(x).

Choose t > 0 and x ∈ Tn, and an extremal curve γ such that

u(t, x = γ(t)) = u0(γ(0)) +

∫ t

0

L(γ, γ̇) ds.

We also have, for all s ∈ (0, t):

u(s, γ(s)) ≤ u0(γ(0)) +

∫ s

0

L(γ, γ̇) dσ.

Imagine that for some 0 ≤ s ≤ t, we have

u(s, γ(s)) < u0(γ(0)) +

∫ s

0

L(γ, γ̇) dσ.

That is, there exists a curve γ1(s′), 0 ≤ s′ ≤ s, such that γ1(s) = γ(s), and

u0(γ1(0)) +

∫ s

0

L(γ, γ̇) dσ < u0(γ(0)) +

∫ s

0

L(γ, γ̇) dσ.

Then, we would consider the concatenated curve γ̃(s) so that γ̃(s′) = γ1(s′) for 0 ≤ s′ ≤ s,
and γ̃(s′) = γ(s′) for s ≤ s′ ≤ t. We would have

u(t, γ(t)) = u0(γ(0)) +

∫ s

0

L(γ, γ̇) dσ +

∫ t

s

L(γ, γ̇)dσ > u0(γ̃(0)) +

∫ t

0

L(γ̃, ˙̃γ) ds,

which would contradict the extremal property of the curve γ between the times 0 and t. So,
for all 0 ≤ s ≤ s′ ≤ t we have:

u(s′, γ(s′)) = u0(γ(0)) +

∫ s′

0

L(γ, γ̇) dσ = u(s, γ(s)) +

∫ s′

s

L(γ, γ̇) dσ. (4.4)

Definition 4.3 We say that γ : [0, t]→ Tn is calibrated by u.

Let us define the conjugate semigroup of the Lax-Oleinik semigroup by:

∀u0 ∈ C(Tn), T̃ (t)u0(x) = sup
y∈Tn

(u0(y)− ht(x, y)). (4.5)

We will often denote ũ(t, x) = T̃ (t)u0(x). The following lemma is proved exactly as Theo-
rem 3.4:

Lemma 4.4 Let u0 ∈ C(Tn) and σ > 0. There is K(σ) > 0 such that T̃ (σ)u0 is K(σ)-semi-
convex. The constant K(σ) blows up as σ → 0.
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Given 0 < s < s′, we define the set Γs,s′ [u0] as follows: it is the union of all points x ∈ Tn
so that the extremal calibrated by u, which passes through the point x at the time s can be
continued until the time s′.

Corollary 4.5 Let u(t, x) = T (t)u0(x), and 0 < s1 < s2, then for any 0 < ε < s1, the
function u ∈ C1,1([s1, s2]× Γs1,s2+ε).

Proof. We are under the assumptions of Theorem 3.4, so there is K > 0 depending on s1

such that inequality (3.9) is true:

u(s, x+ h)− u(s, x) ≤ h · ∇vL(γ(s), γ̇(s)) +K|h|2. (4.6)

The function u(s, ·) is thus K-semi-concave on Γs for all s1 ≤ s ≤ s2. Furthermore, note that
for all y ∈ Rn we have

u(s2 + ε, y) ≤ u(s, γ(s)) + hs2+ε−s(γ(s), y),

and the calibration relation (4.4) implies that equality is attained when y = γ(s2+ε). Here, we
use the assumption that the extremal γ can be continued past the time s, until the time s2 +ε.
We conclude that, for all s1 ≤ s ≤ s2:

u(s, γ(s)) = sup
y∈Tn

(u(s2 + ε, y)− hs2+ε−s(γ(s), y)) = T̃ (s2 + ε− s)u(s2 + ε, ·)(γ(s)).

It follows now from Lemma 4.4 that there is a constant K̃ depending on ε, such that u(s, ·)
is K̃-semi-convex in x on [s1, s2] × Γs1,s2+ε. We conclude from Theorem 4.2 that the func-
tion u(s, ·) is C1,1 in x on Γs. To end the proof, one just has to invoke Remark 3.5 to obtain
the corresponding regularity in the time variable. �

5 Critical sub-solutions and the Fathi-Siconolfi theorem

5.1 Sub-solutions of the steady problem

Basic properties of the sub-solutions

We now shift from the Cauchy problem to the main subject of this chapter, the steady
problem (1.3):

H(x,∇u) = c. (5.1)

Note that, without loss of generality, we may assume c = 0: we just have to redefine H
as H − c. Hence, we study “the true steady equation”

H(x,∇u) = 0, x ∈ Tn. (5.2)

Warning. We will from now on always assume that the constant c is chosen so that (5.2)
has solutions. In this section we do not worry about the existence issue and assume that the
Hamiltonian is such that the solutions exist.

A solution u of (5.2) is a solution of the Cauchy problem for

ut +H(x,∇u) = 0,
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with itself as the initial data, in other words:

u(x) = T (t)u(x), (5.3)

for all t ≥ 0. The proof of Corollary 4.5 (see (4.6) above) implies the semi-concavity of u.
Moreover, if x ∈ Tn lies on an extremal calibrated by u, so that x = γ(s) with s > 0, and
this extremal can be extended until a time s′ > s, then u is C1,1 at x, with the corresponding
regularity constants depending only on s and s′ − s.

Note that (5.3) means that

u(x) = inf
y∈Tn

[u(y) + ht(y, x)], (5.4)

for all t ≥ 0. It follows that
u(x)− u(y) ≤ ht(y, x), (5.5)

for all x, y ∈ Tn and t ≥ 0. The following criterion, in the spirit of (5.5), will be useful to
decide whether or not a function is a subsolution to (5.2).

Proposition 5.1 A function u ∈ C(Tn) is a subsolution to (5.2) if and only if

u(x)− u(y) ≤ ht(y, x), (5.6)

for all t > 0 and x, y ∈ Tn. Here, ht(y, x) is the minimum of the action between y and x, and
is given by (3.3).

Proof. First, assume that u(x) is a sub-solution, and consider the solution of the Cauchy
problem

vt +H(x,∇v) = 0 (5.7)

v(0, x) = u(x).

As u(x) is a sub-solution also to the time-dependent problem, we have v(t, x) ≥ u(x) for
all t ≥ 0 and x ∈ Rn, by the maximum principle. However, v(t, x) is given by

v(t, x) = inf
y∈Tn

[u(y) + ht(y, x)].

It follows that
u(x) ≤ v(t, x) ≤ u(y) + ht(y, x),

for all x, y ∈ Tn and t ≥ 0.
On the other hand, if u(y) satisfies (5.6), we may simply follow the corresponding part of

the proof of Theorem 3.3. Consider a function φ(x) such that the difference u− φ attains its
maximum at a point x0. Again, without loss of generality we may assume that u(x0) = φ(x0).
Given v ∈ Rn and t > 0, define the curve

γ(s) = x0 − (t− s)v, 0 ≤ s ≤ t,

so that γ(0) = x0 − tv, and γ(t) = x0, and write

u(x0) ≤ u(x0 − tv) + ht(x0 − tv, x0) ≤ φ(x0 − tv) + ht(x0 − tv, x0)

≤ φ(x0 − tv) +

∫ t

0

L(x0 − (t− s)v, v)ds.
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All inequalities above are equalities at t = 0. Differentiating in t at t = 0 gives

−v · ∇φ(x0) + L(x0, v) ≥ 0.

As this inequality holds for all v ∈ Rn, we conclude that

H(x0,∇φ) = sup
v∈Rn

[v · ∇φ− L(x0, v)] ≤ 0,

whence u(x) is, indeed, a sub-solution. �
Next, we give a criterion (in terms of the extremal curves) for a sub-solution to be a

solution.

Proposition 5.2 A subsolution to (5.2) is a solution of this equation in an open subset U
of Tn if and only if: for all x ∈ U , there is tx > 0 and a curve γ : [0, tx] → Tn, such
that γ(tx) = x, and

u(x) = u(γ(0)) +

∫ tx

0

L(γ, γ̇)ds. (5.8)

Proof. The proof follows that of Theorem 3.3 – we will show that if (5.8) holds then u(x) is
not only a sub-solution but also a super-solution. Let φ be a function such that u−φ attains
its minimum at a point x0 ∈ Tn, and φ(x0) = u(x0), and assume that x0 ∈ U , so that there
exist a curve γ, and a time t0 so that γ(t0) = x0

u(x0) = u(γ(0)) +

∫ t0

0

L(γ, γ̇)ds. (5.9)

Then we have, as u is a sub-solution:

φ(γ(t)) ≤ u(γ(t)) ≤ u(γ(0)) +

∫ t

0

L(γ, γ̇)ds,

with the equality at t = t0. Differentiating at t = t0 we get

γ̇(t0) · ∇φ(x0)− L(x0, γ̇(t0)) ≥ 0,

whence
H(x0,∇φ0) ≥ 0.

Therefore, u(x) is a both a sub- and super-solution, hence a solution on the open set U . �

Proposition 5.3 For every solution u of (5.2), and for all x ∈ Tn, there is an “eternal”
extremal γ : (−∞, 0]→ Tn, such that γ(0) = x and

∀t > 0, u(x)− u(γ(−t)) =

∫ 0

−t
L(γ, γ̇) ds.

Proof. Consider, for all T > 0, an extremal γT : [−T, 0] → Tn calibrating u and such
that γT (0) = x. The family γT is relatively compact in the C1

loc topology – this follows from
Proposition 3.1. Extraction of a subsequence converging in C1

loc(R−) does the job. �

150



The critical sub-solutions

If solutions of (5.2) exist, then
H(x,∇u) ≤ c

admits sub-solutions (but not solutions) for all c > 0, but not for c < 0. This motivates the
following.

Definition 5.4 A subsolution of (5.2) is called a critical subsolution. A critical subsolution u
is said to be strict at a point x ∈ Tn if there exists U , open neighbourhood of x and cx < 0
such that u solves H(x,∇u) ≤ cx in U , in the viscosity sense. A critical subsolution is strict
in an open subset U of Tn if it is strict at each point of U .

5.2 The Mañé potential and the Peierls barrier

We introduce now the basic players in the study of the critical sub-solutions: the Mañé
potential and the Peierls barrier, and describe some of their basic properties. They are
defined as follows:

φ(x, y) = inf
t>0

ht(x, y), h(x, y) = lim inf
t→+∞

ht(x, y). (5.10)

The function φ is known as the Mañé potential, and the function h as the Peierls barrier.
Note that both are finite: to see that, we first observe that the function ht(x, y) is uniformly
bounded from below. Indeed, as throughout this section we assume that solutions of

H(x,∇u) = 0, (5.11)

exist, we automatically have
u(x)− u(y) ≤ ht(x, y),

thus ht(x, y) ≥ −2‖u‖L∞ . On the other hand, it is easy to see that there exists C0 so
that |ht=1(x, y)| ≤ C0 for all x, y ∈ Tn. This immediately implies that φ(x, y) is finite. To see
that h(x, y) is finite, note that for each x ∈ Tn and t > 0 there exists ȳt(x) so that

u(x) = u(ȳt(x)) + ht(x, ȳt(x)),

and thus
ht(x, ȳt(x)) ≤ 2‖u‖L∞ .

Hence, we can write

ht(x, y) ≤ ht−1(x, ȳt−1(x)) + ht=1(ȳt−1(x), y) ≤ 2‖u‖L∞ + C0,

and we conclude that h(x, y) is also finite if a solution of (5.11) exists.
The definition of φ(x, y) and h(x, y) as “the smallest cost of transport disregarding the

time” from x to y shows that

φ(x, z) ≤ φ(x, y) + ht(y, z), (5.12)

h(x, z) ≤ h(x, y) + ht(y, z),
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for all t ∈ R and x, y, z ∈ Tn. It follows that φx(y) = φ(x, y) and hx(y) = h(x, y) are (as
functions of y ∈ Tn with x fixed) Lipschitz sub-solutions of (5.2). In fact, more is true: hx
is, actually, a solution (hence, for it to be finite the Hamiltonian has to be such that at least
one solution of (5.11) exists).

Proposition 5.5 For all x ∈ Tn, the function hx is a solution of (5.2) over Tn. The func-
tion φx is a solution of (5.2) over Tn\{x}.

Proof. To show that hx is a solution, consider a point y ∈ Tn, and a sequence tn → +∞ such
that htn(x, y) tends to h(x, y) = hx(y). Consider also a sequence of extremals γn achieving
the minimum of the action between x and y in the time tn, such that γn(tn) = y, as well as
the time shifts γ̃n(s) = γn(tn + s), −tn ≤ s ≤. Then, for any 0 ≤ t ≤ tn we have

htn(x, y) =

∫ 0

−tn
L(γ̃n, ˙̃γn) ds, htn(x, γ̃n(−t)) ≤

∫ −t
−tn

L(γ̃n, ˙̃γn) ds,

so that

htn(x, γ̃n(−t)) +

∫ 0

−t
L(γ̃n, ˙̃γn) ds ≤ htn(x, y).

Using the relative compactness of the sequence γ̃n in the C1
loc topology, and the fact that h is

a lim inf, we may pass to the limit n→ +∞ above:

h(x, γ(−t)) +

∫ 0

−t
L(γ, γ̇) ds ≤ h(x, y),

where γ : (−∞, 0] is an eternal extremal which is the local uniform limit of γ̃n. It follows that

h(x, y) ≥ h(x, γ(−t)) + ht(γ(−t), y),

Because hx is a subsolution, we obtain

hx(y) = hx(γ(−t)) + ht(γ(−t), y),

and

h(x, γ(−t)) +

∫ 0

−t
L(γ, γ̇) ds = h(x, y).

Invoking Proposition 5.2 shows that hx(y) is a solution.
To show that φx is a solution on Tn \ {x}, consider once again y ∈ Tn, y 6= x. It is

enough to assume that the inf in formula (5.10) is attained at some finite time t0 > 0: if
not, we have φx(y) = hx(y), and the previous result applies. Thus, φx(y) < hx(y), hence
there exists t0 > 0 so that φx(y) = ht0(x, y), and, in particular, there exists an extremal γ so
that γ(0) = x, γ(t0) = y, and

φx(y) =

∫ t1

0

L(γ, γ̇)ds.

Moreover, the same is true for z close enough to y. As t0 > 0, we may take z = γ(t1) for
some time 0 < t1 < t0, sufficiently close to t0. It is easy to see that the curve γ(s), 0 ≤ s ≤ t1
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realizes the infimum for the point z as well (otherwise it would not realize the minimum for
the point y), so that

φx(z) =

∫ t1

0

L(γ, γ̇)ds.

Consider the piece of γ that connects z and y: γ1(s) = γ(t+ s), 0 ≤ s ≤ t0 − t1, then

φx(y) = φx(γ1(0)) +

∫ t0−t1

0

L(γ1, γ̇1)ds,

thus Proposition 5.2, once again, implies that φx(y) is a solution, not just a sub-solution. �
Let us close this initial presentation of the Mañé potential and the Peierls barrier by

the following formulae, which are once again simple consequences of (5.10), (5.12), and of
relation (5.6) for any solution of equation (5.2): first, for all x ∈ Tn we have

h(x, x) ≥ 0, φ(x, x) = 0, (5.13)

and, second:
∀x, y ∈ Tn, h(x, y) + h(y, x) ≥ 0. (5.14)

5.3 The Fathi-Siconolfi theorem and uniqueness sets

We define the Aubry set as
A = {x ∈ Tn : h(x, x) = 0}. (5.15)

The Aubry set is closed (recall that h is Lipschitz). The PDE interest in the Aubry set comes
from its connection to the uniqueness of the solutions to

H(x,∇u) = 0. (5.16)

We say that a closed set B ∈ Tn is a uniqueness set for a Hamiltonian H(x, p) if the Dirichlet
problem

H(x,∇u) = 0, x ∈ Tn\B, (5.17)

with u imposed on B, admits at most one solution. Furthermore, B is a strong uniqueness set
for (5.16) if given an u.s.c. subsolution u, and an l.s.c supersolution u to (5.16), with u ≤ u
on B, then u ≤ u on Tn. The PDE interest of the Aubry set comes from the following.

Theorem 5.6 The Aubry set A is a strong uniqueness set for (5.2).

As an example, let us see what happens for the classical mechanics Hamiltonian

H(x, p) = |p|2 − f(x).

Here, f is a positive potential with a nontrivial zero set. Equation

|∇u(x)|2 − f(x) = 0 (5.18)

admits solutions – and thus c = 0. In order to see that, consider the Cauchy problem

vt + |∇v(x)|2 − f(x) = 0, (5.19)

v(0, x) = 0.
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Exercise 5.7 Prove that v(t, x) ≥ 0, and the function v(t, x) is monotonically increasing in
time.

In addition to the monotonicity of v(t, x) in time, we also know that v(t, x) = 0 on the
set {f = 0}.

Exercise 5.8 Prove that (5.18) has a solution, which is the limit of v(t, x) as t→ +∞.

The Lagrangian is

L(x, v) =
|v|2

4
+ f(x),

thus

h(x, y) = lim inf
t→+∞

inf
γ

∫ t

0

(
|γ̇|2

4
+ f(γ)

)
ds ≥ 0.

We have h(x, x) = 0 if and only if f(x) = 0. Indeed, if f(x) = 0, we trivially have h(x, x) = 0.
On the other hand, if f(x) > 0, it follows from Proposition 3.1 that the velocity of an
extremal is bounded, hence h(x, x) > 0 as soon as f(x) > 0. On the other hand, the
constants provide a family of smooth critical subsolutions, which are strict outside of the
Aubry set {h(x, x) = 0} = {f(x) = 0}.

Exercise 5.9 What happens if the Hamiltonian is even in p: H(x, p) = H(x,−p)?.

Exercise 5.10 (Lions [85]). If f is smooth over Tn and has d zeroes, find all the viscosity
solutions of

|∇u(x)| = f(x), x ∈ Tn.

In general, the situation is less obvious. There is, however, an easily obtained family of C∞

sub-solutions of the super-critical equation

H(x,∇v) = c with c > 0,

starting with a solution of

H(x,∇u) = 0.

Indeed, if ρε is an approximation of the identity, we have

H(x, ρε ∗ u) = H
(
x,

∫
Tn
ρε(y)∇u(x− y) dy

)
≤
∫
Tn
ρε(y)H(x,∇u(x− y)) dy (by Jensen)

≤ O(ε) +

∫
Tn
ρε(x− y)H(x− y,Du(x− y)) dy = O(ε). (5.20)

It is easy to see that the critical value c = 0 cannot be attained with this argument. However,
it is not useless to mention it here, because it will reappear later.
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Strong uniqueness and strict sub-solutions

The following lemma (due to Barles [6]) is a criterion for a set to be a strong uniqueness set,
and will be the basis for the proof of Theorem 5.6.

Lemma 5.11 Assume there exists a C1 subsolution of the steady equation (5.16), which is
strict outside a set B ⊂ Tn. Then, B is a strong uniqueness set for (5.16), that is: if u
(resp. u) is an u.s.c. subsolution (resp. a l.s.c supersolution) to (5.16), with u ≤ u on B,
then u ≤ u.

Proof. Assume that there exists x̄ such that u(x̄) < u(x̄) – we must have x̄ 6∈ B. Let ψ be
the critical C1 sub-solution, strict outside B.

Exercise 5.12 Let u(x) be a sub-solution, and ψ(x) a C1 strict sub-solution to (5.16). Then,
if the Hamiltonian H(x, p) is convex, the function

u(x; t) = (1− t)u(x) + tψ(x)

is also a strict subsolution outside B, for all t ∈ (0, 1].

In addition, we have

u(x) < u(x; t), (5.21)

in a neighborhood of x̄, when t > 0 is sufficiently small. We will now apply the argument of
Proposition 2.7. Define the function

uε(x, y) = u(x)− u(y; t) +
|x− y|2

2ε2
,

and let (xε, yε) be the minimum for uε over Tn × Tn. One immediately sees that

|xε − yε| → 0, as ε→ 0, (5.22)

and, of course, the family (xε, yε) converges, along a subsequence to a limit (x0, x0) (which
depends on t ∈ (0, 1).

Consider the function

η(x) = u(yε; t)−
|x− yε|2

2ε2
,

then the difference

u(x)− η(x) = uε(x, yε)

attains its minimum at the point x = xε. Since u is a super-solution, we have

H(xε,
yε − xε
ε2

) ≥ 0. (5.23)

On the other hand, for the function

ψ(y) = u(xε) +
|x− xε|2

2ε2
,
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the difference

u(y; t)− ψ(y) = ut(y)− u(xε)−
|x− xε|2

2ε2
= −uε(xε, y),

attains its maximum at y = yε, hence

H(yε,
yε − xε
ε2

) ≤ 0. (5.24)

We deduce from (5.24) that
|yε − xε| ≤ Cε2.

Moreover, if x0 6∈ B, then, there exists α0 > 0 so that for ε > 0 sufficiently small, we have

dist(xε, B), dist(yε, B) ≥ α0 > 0,

and thus
H(yε,∇u(yε; t)) ≤ −ct < 0, H(xε,∇u(xε; t)) ≤ −ct < 0,

with some ct > 0. It follows that

o(1) = H(yε,
yε − xε
ε2

)−H(xε,
yε − xε
ε2

) ≥ ct > 0 independent of ε,

which is a contradiction. We conclude that x0 ∈ B for all t ∈ (0, 1). It is easy to see, however,
that, as u(x) ≥ u(x) for x ∈ B, the points xε, yε can not be too close to B,when t > 0 is
small, because of (5.21), which means that x0 ∈ B is impossible. �

A proof of Theorem 5.6

We will prove Theorem 5.6 using Lemma 5.11. The existence result for critical subsolu-
tions [62] is as follows.

Theorem 5.13 There is a critical subsolution ψ of (5.2), of class C1 over Tn, which is strict
over Tn\A. Moreover, ψ is of class C1,1 over A.

Theorem 5.6 is an immediate consequence of Theorem 5.13 and Lemma 5.11.
We now turn to the proof of Theorem 5.13. The idea is to choose, as a critical sub-solution,

a convex combination of subsolutions of the form

ψ(x) =
∑
n∈IN

φxn(x)

2n+1
,

the base points xn being chosen outside of the Aubry set A. This will define a strict subso-
lution, which is C1,1 over A. The problem with this direct approach is that φx(y) does not
have to be C1 at y = x – to overcome this, we will regularize each φxn outside of A. This
will ensure that (a properly redefined) ψ is globally C1 on Tn while keeping the sub-solution
property. Many extensions are available in [62].
Step 1. Behaviour of φx on A. If u is a critical subsolution, define I(u) as the set of
points in Tn which are passed by some extremal γ : R → Tn calibrated by u. A priori, if u
is a sub-solution (and not a solution) we do not know if there are any extremals calibrated
by u. The main result here is
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Lemma 5.14 For every point x ∈ A there exists an extremal γ : R→ Tn such that γ(0) = x,
which is calibrated by every subsolution.

Proof. Let us construct the extremal, with the help of the function h. Given a point x ∈ A,
we are going to construct an extremal γ : R→ Tn, such that γ(0) = x, and

h(γ(t), x) = −
∫ t

0

L(γ, γ̇) ds, h(x, γ(−t)) = −
∫ 0

−t
L(γ, γ̇) ds, (5.25)

for any t > 0. As h(x, x) = 0, we may find a sequence of extremals γm : [0, tm]→ Tn, with

γm(0) = γm(tm) = x,

such that

lim
m→+∞

∫ tm

0

L(γm, γ̇m) ds = 0. (5.26)

We may assume that γm converges, as well at its derivatives, locally uniformly. Let γ be this
local uniform limit, fix t > 0, and set

dm = |γ(t)− γm(t)|.

Let µm : [0, dm]→ Tn be an extremal of the action between the points γ(t) and γm(t). Gluing
together µm and γm, suitably reparametrized, yields a Lipschitz curve

γ̃ : [t− dm, tm]→ Tn,

which connects the point γ(t) to x. We have∫ tm

t−dm
L(γ̃, ˙̃γ) ds ≤ Cdm +

∫ tm

t

L(γm, γ̇m) ds = Cdm +

∫ tm

0

L(γm, γ̇m)ds−
∫ t

0

L(γm, γ̇m) ds.

Minimizing the left side over all paths going from γ(t) to x gives

htm−t+dm(γ(t), x) ≤ Cdm +

∫ tm

0

L(γm, γ̇m)−
∫ t

0

L(γm, γ̇m) ds.

This, thanks to (5.26) and the definition of h as a lower limit, implies

h(γ(t), x) ≤ −
∫ t

0

L(γ, γ̇) ds.

On the other hand, (5.14) implies that

h(γ(t), x) ≥ −h(x, γ(t)) ≥ −
∫ t

0

L(γ, γ̇) ds.

This implies the first part of (5.25). The second part is obtained in an analogous fashion.
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With (5.25) in hand, let u be a critical sub-solution. We have, for the constructed ex-
tremal γ and x ∈ A, and t > 0:

u(γ(t))− u(x) ≤
∫ t

0

L(γ, γ̇) ds = −h(γ(t), x), (5.27)

by the definition of a sub-solution. But we also have, for all s:

u(x)− u(γ(t)) ≤ hs(γ(t), x).

Passing to the lower limit leads to:

u(x)− u(γ(t)) ≤ h(γ(t), x). (5.28)

Putting (5.27) and (5.28) together gives

u(γ(t))− u(x) =

∫ t

0

L(γ, γ̇) ds. (5.29)

A similar argument applies to t < 0. We see that γ is calibrated by u on [0,+∞). �
An important consequence is that, for all x ∈ Tn \ A, the function φx is C1,1 on A.

Moreover, the Lipschitz constant of ∇φx on A only depends on the Hamiltonian, any point
of A belonging to an extremal calibrated by φx.
Step 2: Construction of a critical subsolution outside of the set A. The key ingredient
this time is the

Lemma 5.15 If x ∈ Tn\A, then φx is not a viscosity solution on Tn.

Proof. Assume that φx is a solution of (5.2) over all of Tn. According to Proposition 5.3,
we may then find an extremal γ : R− → Tn such that γ(0) = x and such that, for all t > 0:

−φx(γ(−t)) = φx(x)− φx(γ(−t)) =

∫ 0

−t
L(γ, γ̇) ds. (5.30)

Fix now t > 0 and ε > 0. The definition of φx implies the existence of a time tε > 0 and of
an extremal γε : [0, tε]→ Tn such that γε(0) = x, γε(tε) = γ(−t), and such that∫ tε

0

L(γε, γ̇ε) ds ≤ φx(γε(tε)) + ε = φx(γ(−t)) + ε. (5.31)

Next, define the (Lipschitz) glued curve

γ̃ε(s) = γε(s) for 0 ≤ s ≤ tε, and γ̃ε(s) = γ(s− tε − t) for tε ≤ s ≤ t+ tε.

Combining (5.30) and (5.31), we obtain:∫ t+tε

0

L(γ̃, ˙̃γε) ds ≤ ε.

We may thus go to the lower limit t→ +∞ to obtain h(x, x) ≤ ε, hence, x ∈ A. �
Lemmas 5.15 and 5.14 imply
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Corollary 5.16 The Mañé potential φx is a viscosity solution on the whole Tn if and only
if x ∈ A.

The construction of a critical subsolution goes as follows. For all x ∈ U := Tn\A,
the function φx is not a solution at x. As φx is a sub-solution on Tn but not a solution
at x, it is not a super-solution at x. Thus, there exist an open neighbourhood Ux of x, a
function θx ∈ C1(Ux) and a real number cx < 0 such that φx ≥ θx on Ux, φx(x) = θx(x) and

H(y,∇θx) ≤ cx,

over Ux. Subtracting a quadratic function from θx we may ensure that φx > θx on Ux\{x}.
Then, there is εx > 0 and Ωx, an open neighbourhood of x inside Ux, such that φx = θx + εx
on ∂Ωx. So, denote

ux(y) =

{
θx(y) + εx for y ∈ Ωx

φx(y) for y /∈ Ωx.

We will choose Ux so that, in addition, they do not intersect the Aubry set A, which leads
to ux(y) = φx(y) for all y ∈ A. The function ux is still a critical subsolution over Tn, as the
maximum of subsolutions, but it is now strict over Ωx. It is not yet C1 on Tn since it is only
Lipschitz on ∂Ωx. Let us extract from the cover

U =
⋃
x∈U

Ωx

a countable sub-cover
U =

⋃
n∈IN

Ωxn .

By the convexity of H, the function

φ =
∑
n∈N

uxn
2n+1

(5.32)

is still a critical subsolution, which coincides with

φ =
∑
n∈N

φxn
2n+1

(5.33)

on A. It is of the class C1,1 on A, as seen from the convergence of the series∑ ∇φxn
2n+1

over A. As a simple exercise, the reader may check that φ is a strict subsolution over Tn\A.
Step 3: Regularization. The next task is to smooth the subsolution φ constructed in

Step 2 over U := Tn\A (for the moment it is only Lipschitz outside A because each uxn is
only Lipschitz on ∂Ωxn), keeping it a strict subsolution over U , and keeping its values over A
unchanged. What is going to help here is that φ is Lipschitz, as well as the mollification
computation (5.20). First, we need a special partition of unity.
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Lemma 5.17 There is a covering Bn of U by open balls of radii rn, and a sequence ψn of C∞

functions over U such that

• The number N(n) of indices k such that suppψn ∩ suppψk is not empty, is finite for
each n.

• For all n ∈ N, we have ‖∇ψn‖∞ ≤
1

rn
;

• for all x ∈ U we have
∑
n∈N

ψn(x) = 1.

Proof. Let, for all n ≥ 1:

Fn = {x ∈ U, 1

n+ 2
≤ d(x,A) ≤ 1

n+ 1
}, Un = {x ∈ U, 1

n+ 3
< d(x,A) <

1

n
}.

It suffices to cover Fn with Ñ(n) closed balls, each of them in Un, and to consider a classical
partition of unity: (ψk,n)1≤k≤Ñ(n) relative to these balls. �

Define the function φ as

∀x /∈ A, φ(x) =
∑
n∈IN

ψnρεn ∗ φ, ∀x ∈ A, φ(x) = φ(x).

The function ρε = ε−nρ(x/ε) is a classical approximation of identity. Recall the existence
of cn < 0 such that H(x,∇φ) ≤ cn over Bn; we choose

εn � min(cn, min
k∈N(n)

rk,
1

|N(n)|
min
k∈N(n)

d(∂Uk,A)2). (5.34)

Now, arguing as in computation (5.20), using the estimates

‖∇ψn‖∞ ≤
1

rn

and finally the definition (5.34) of εn, we obtain

H(x,∇φ) ≤ cn +O(
εn
rn

)

over Bn. This guarantees that φ is a strict C1 critical subsolution over U .
To show that φ is C1 over Tn, it suffices to show that this function and its gradient match

at the interface ∂A – everywhere else it is smooth by its definition. To this end, choose x ∈ U
and n ∈ N such that x ∈ Bn. Because φ is Lipschitz, there is C > 0 such that

‖ρεn ∗ φ− φ‖∞ ≤ Cεn

for all n, and we deduce:

|φ(x)− φ(x)| ≤ C
∑

k∈N(n)

εk ≤ C min
k∈N(n)

d(∂Uk,A)2 ≤ Cd(x,A)2

This implies the matching of φ and its gradient at the interface.
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5.4 Invariant regions

We finish this chapter with some implications to the invariant regions of the corresponding
Hamiltonian system. The following result comes almost immediately.

Theorem 5.18 Choose x ∈ A and let γ : R→ Tn be calibrated by the critical subsolution φ
of Theorem 5.13, such that γ(0) = x. Then, for all t ∈ R, γ ∈ A.

Proof. Take t ∈ R and apply Lemma 5.14: the extremal γt(s) = γ(t+s) is calibrated by every
critical subsolution, so, in particular, by the C1 critical subsolution φ of Theorem 5.13. If γ(t)
were outside the Aubry set A, this would be a contradiction to φ being a strict subsolution
at that point. �

The value of the result is in its interpretation. Here is a corollary of Theorem 5.13:

Corollary 5.19 Let φ the critical subsolution of Theorem 5.13. Then ∇u = ∇φ on A, for
all critical subsolutions u of (5.2).

Proof. If x ∈ A and u is a critical subsolution, let γ : R→ Tn be an extremal calibrated by
all critical solutions. From remark 3.5, we have

∇φ(γ(t)) = ∇vL(γ(t), γ̇(t)) = ∇u(γ(t)).

This is the sought for result. �
Another consequence of the invariance of the set A and the fact that φ is a solution on A, is

Theorem 5.20 The set {(x,∇φ(x)), x ∈ A} is an invariant region for the Hamiltonian
system {

Ẋ = ∇H(X,P )

Ṗ = −∇H(X,P )
(5.35)

The (widespread) appellation “weak KAM theory” originates from this type of property.
Notice that we are here outside every perturbative framework.
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Chapter 6

The two dimensional Euler equations

1 Introduction: the Euler equations and the vorticity

formulation

In this chapter, we will study the 2D incompressible Euler equations of the fluid mechanics.
These equations describe the flow of an incompressible, inviscid fluid, and were first derived
by Leonhard Euler in 1755 [51]. Let D be a compact smooth domain in Rd, d = 2 or 3. The
equation is given by

∂tu+ (u · ∇)u+∇p = 0, (1.1)

∇ · u = 0,

u(x, 0) = u0(x),

along with the no flow on the boundary condition

u · ν|∂D = 0. (1.2)

Here, u(x) is the vector field describing the fluid velocity, and p is the pressure which mathe-
matically can be thought of as a Lagrange multiplier needed to accommodate the incompress-
ibility constraint. The Euler equations are also often considered in the whole space case with
the decay conditions at infinity, or on the torus – which is equivalent to taking periodic initial
data in Rd. There are many great texts outlining the derivation and the basic properties of
the equation, see for example [31], [87], [48] and [89].

The Euler equations are maybe the most fundamental and widely used partial differential
equations. They are nonlinear and nonlocal, the latter property a consequence of the nonlocal
dependence of pressure on the fluid velocity. On the physical level this simply because pushing
the fluid in one region produces an instantaneous pressure in a different region, because of
the fluid incompressibility. Mathematically, taking the divergence of (1.1) and using the
incompressibility of u, we obtain the Poisson equation for there pressure:

−∆p = ∇ · (u · ∇u),

which shows the non locality of the pressure-velocity relation. This will be even more clear
from the nonlocal Biot-Savart law for the vorticity form of the equation presented below.
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This explains, from the mathematical point of view, why the analysis of the Euler equation is
challenging. From the intuitive point of view, anyone who observed the flow of a river, or the
intricate structures of the fluid motion in a rising smoke, or a tornado, can understand that
only a very rich and complex equation has a chance of modeling these exquisite phenomena.
The solutions of the Euler equations are often very unstable, and prone to creation of small
scale structures. Due to the central role of these equations in mathematical physics, a lot of
studies have focused on these problems over the 250 years that have passed since its discovery.
We have no hope of covering much of this research here, so after a brief overview we will focus
on a few specific questions, including some very recent developments.

The theory of the existence, uniqueness and regularity of solutions to the Euler equations
is quite different in two and three spatial dimensions. In the two dimensional case, for
smooth initial data there exists a unique global in time smooth solution, while for the three
dimensional case an analogous result is only known locally in time. The question of global
existence of smooth solutions to the Euler equations in three dimensions is a major open
problem. This difference can be illustrated on a basic level by rewriting the Euler equations
in a different form. An important quantity in the fluid mechanics is the vorticity ω, which
describes the rotational motion of the fluid and is given by ω = curlu. In three dimensions, if
we apply curl to equation (1.1), we obtain the Euler equation in the vorticity form:

ωt + (u · ∇)ω = (ω · ∇)u, (1.3)

with the initial condition ω(0, x) = ω0(x).

Exercise 1.1 Use vector algebra to derive the vorticity equation (1.3) in three dimensions.

The vector field u can be recovered from ω via the Biot-Savart law. Consider the (vector-
valued) stream function ψ defined by the Dirichlet problem

−∆ψ = ω, ψ|∂D = 0. (1.4)

This problem has a unique solution by the classical results of the elliptic theory (see e.g. [69]).
We denote this solution by ψ = (−∆D)−1ω. One can also write

ψ(x) =

∫
D

GD(x, y)ω(y) dy (1.5)

where GD is the Dirichlet Green’s function of the Laplacian. Then one can show that u is
given by (see, for example, [48, 87])

u = curlψ. (1.6)

In particular, the velocity u defined by the Biot-Savart law (1.5)-(1.6), satisfies the no flow
boundary condition (1.2).

Exercise 1.2 Verify that u given by (1.5)-(1.6) satisfies curlu = ω in D, and u ·ν = 0 on ∂D.
You have to use the divergence free property of u and some vector identities (or brute force
computations).
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On the other hand, in the two dimensional case the term in the right side of (1.3) vanishes.
Indeed, the solutions of the two-dimensional Euler equations can be thought of as solutions
of the three-dimensional equations of the special form (u1(x1, x2), u2(x1, x2), 0). In that case,
the vorticity vector has only one non-zero component:

ω = (0, 0, ∂1u2 − ∂2u1),

and can be regarded as a scalar. Then, the term in the right side of (1.3) is simply

(ω · ∇)u = ω3∂3u,

but the two dimensional u does not depend on x3. Thus, in two dimensions, the vorticity
equation simplifies. We will use the notation

ω = ∂1u2 − ∂2u1, (1.7)

instead of ω3. This scalar vorticity satisfies

∂tω + (u · ∇)ω = 0, (1.8)

u = ∇⊥(−∆D)−1ω, (1.9)

ω(0, x) = ω0(x),

where ∇⊥ = (∂2,−∂1). Note that the flow u defined by (1.9) automatically satisfies the
boundary condition

u · ν = 0 on ∂D.

This is because the gradient of the stream function

ψ = (−∆D)−1ω, u = ∇⊥ψ,

is normal to ∂D at the boundary.

Exercise 1.3 Verify that if u(t, x) satisfies the Euler equations in two dimensions, then the
vorticity ω(t, x) given by (1.7) satisfies (1.8), and u(t, x) and ω(t, x) are related via (1.9).

This simpler form of the Euler equations in two dimensions has significant consequences.
As we will see, any Lp norm of the vorticity is conserved for smooth solutions of (1.8). In
particular, ‖ω‖L∞ does not change. In contrast, in three dimensions, the amplitude of vorticity
can and usually does grow due to the non-zero term on the right hand side of (1.3). This
term is often called the vortex stretching term in the literature.

Our focus in the present chapter will be on the basic questions of existence, uniqueness,
and regularity properties of the solutions to the two dimensional Euler equations. First, we
will present the existence and uniqueness theory of solutions due to Yudovich [121] which
works for a very natural class of initial data. We will then study the small scale formation in
the smooth solutions of the 2D Euler equations, proving an upper bound for the growth of
the derivatives of the solution as well as constructing examples that show that in general this
upper bound is sharp. The set of techniques we will need in this chapter is a beautiful mix of
Fourier analysis, ODE methods, comparison principles, and all sorts of other PDE estimates.
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2 The Yudovich theory

The Yudovich theory proves existence and uniqueness of solutions to the 2D Euler equations
with a bounded initial vorticity. Thus, the regularity assumptions on the initial data are fairly
mild. The L∞ class for the vorticity is very natural since it is preserved by the evolution. In
addition, many phenomena in nature, such as hurricanes or tornados, feature vorticities with
a sharp variation. As we will see, if the initial condition is more regular, this regularity is
reflected in the additional regularity of the solution, even though the quantitative estimates
can deteriorate very quickly. Our exposition in this section roughly follows [89].

It is not immediately clear how one can define the low regularity solutions (such as L∞) of
the vorticity equation (1.8) since we need to take derivatives. A “canonical” way around that
is to define a weak solution of a nonlinear equation via the multiplication of the equation by
a test function and integration by parts, and then try to obtain some a priori bounds and use
some compactness arguments to show that such weak solution exists. However, there is a more
elegant (and efficient) approach for the two-dimensional Euler equations, via a reformulation
of the problem that allows us to define a weak solution in an appropriate sense. Given a
divergence-free flow u(t, x), we may define the particle trajectories Φt(x) by

dΦt(x)

dt
= u(t,Φt(x)), Φ0(x) = x. (2.1)

If u is sufficiently regular and incompressible, (2.1) defines a volume preserving map for each t.

Exercise 2.1 Verify the claim that the map x→ Φt(x) is measure-preserving for each t fixed
if ∇ · u = 0. You can find the proof for example in [31] or [87].

A direct calculation using the method of characteristics shows that if ω(t, x) is a smooth
solution of (1.8), then

ω(t,Φt(x)) = ω0(x), thus ω(t, x) = ω0(Φ−1
t (x)). (2.2)

In addition, if we denote, as before, by GD(x, y) the Green’s function for the Dirichlet
Laplacian in a domain D (in the sense that the solution of (1.4) is given by (1.5)), and
set KD(x, y) = ∇⊥xGD(x, y), then the Biot-Savart law in two dimensions can be written as

u(t, x) =

∫
D

KD(x, y)ω(t, y) dy. (2.3)

A classical C1 solution of the two-dimensional Euler equations (1.8) satisfies the sys-
tem (2.1), (2.2) and (2.3). On the other hand, a direct computation shows that a smooth
solution of (2.1), (2.2) and (2.3) gives rise to the classical solution of (1.8). Thus, for smooth
solutions the two problems are equivalent. We will generalize the notion of the solution to
the 2D Euler equations by saying that a triple (ω, u,Φt(x)) solves the 2D Euler equations if
it satisfies (2.1), (2.2) and (2.3). The obvious next task is to make sense of the solutions of
the latter system with the only requirement that ω0 ∈ L∞. Classically, for the trajectories
of (2.1) to be well-defined, the flow u(t, x) needs to be Lipschitz in x. Thus, if it were true that
if ω(t, x) is in L∞, the Biot-Savart law would give a Lipschitz function u(t, x), then it would
be very reasonable to expect (2.1), (2.2) and (2.3) to be a well-posed system. This, however,
is not quite true – the regularity for u(t, x) when ω ∈ L∞ is slightly lower than Lipschitz.
Nevertheless, we will see that this lower regularity is sufficient to define the trajectories of the
ODE (2.1), making the system well-posed.
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The regularity of the flow

To construct the solutions of the 2D Euler equations in the trajectory formulation (2.1)-(2.3)
with the vorticity ω0 ∈ L∞, we need to establish the regularity of the fluid flow given by (2.3)
for a vorticity in L∞. The following proposition summarizes some well known properties of
the Dirichlet Green’s function (see, e.g. [69]).

Proposition 2.2 If D ⊂ R2 is a domain with a smooth boundary, the Dirichlet Green’s
function GD(x, y) has the form

GD(x, y) =
1

2π
log |x− y|+ h(x, y).

Here, for each y ∈ D, h(x, y) is a harmonic function solving

∆xh = 0, h|x∈∂D = − 1

2π
log |x− y|. (2.4)

We have GD(x, y) = GD(y, x) for all (x, y) ∈ D, and GD(x, y) = 0 if either x or y belongs
to ∂D. In addition, we have the estimates

|GD(x, y)| ≤ C(D)(log |x− y|+ 1) (2.5)

|∇GD(x, y)| ≤ C(D)|x− y|−1, (2.6)

|∇2GD(x, y)| ≤ C(D)|x− y|−2. (2.7)

Sometimes, GD can be computed explicitly in a closed form (for example for a plane, a half-
plane, a disk, a corner, see e.g. [52]), or as an infinite series (for example for a square or a
rectangle, or a torus). For most domains only estimates are available. The following lemma
outlines a key property which allows to construct unique solutions for bounded vorticity.

Lemma 2.3 The kernel KD(x, y) = ∇⊥GD(x, y) satisfies∫
D

|KD(x, y)−KD(x′, y)| dy ≤ C(D)φ(|x− x′|), (2.8)

where

φ(r) =

{
r(1− log r) r < 1
1 r ≥ 1,

(2.9)

with a constant C(D) which depends only o the domain D.

Proof. In what follows, C(D) denotes constants that may depend only on the domain D,
and may change from line to line. To show (2.8), we may assume that r = |x − x′| < 1,
otherwise (2.8) follows from the simple observation that

|KD(x, y)| ≤ C(D)|x− y|−1,

so that ∫
D

|KD(x, y)|dy ≤ C(D),
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which implies (2.8) for x, x′ ∈ D such that |x− x′| > 1. Assume now that r < 1 and suppose
first that the interval connecting the points x and x′ lies entirely inside D. Let us set

A = {y ∈ D : |y − x| ≤ 2r}.

The estimate (2.6) implies∫
D∩A
|KD(x, y)−KD(x′, y)| dy ≤ C(D)

∫
B2r(x)

1

|x− y|
dy ≤ C(D)r.

To bound the remainder of the integral, observe that for every y,

|K(x, y)−K(x′, y)| ≤ r|∇K(x′′(y), y)|, (2.10)

where x′′(y) lies on the interval connecting x and x′. This follows from the mean value theorem
and the assumption that the interval connecting x and x′ lies in D. Then, by (2.7) and the
choice of the set A, so that the distances |x − y|, |x′ − y| and |x′′ − y| are all comparable
if y ∈ Ac, we have∫

D∩Ac
|KD(x, y)−KD(x′, y)| dy ≤ C(D)r

∫
D∩Ac

dy

|x′′(y)− y|2

≤ C(D)r

∫ C(D)

r

s−1 ds ≤ C(D)r(1− log r).

The case where the interval connecting x and x′ does not lie entirely in D is similar, one
just needs to replace this interval by a curve connecting x and x′ with the length of the order r.
We briefly sketch the argument. The following lemma can be proved by standard methods
using the compactness of the domain and the regularity of the boundary, so we do not present
its proof.

Lemma 2.4 Fix ε > 0 and let D ⊂ R2 be bounded domain with a smooth boundary. Then
there exists r0 = r0(D, ε) > 0 such that if x0 ∈ ∂D, and r ≤ r0, then Br(x0) ∩ ∂D is a
curve that, by a rotation and a translation of the coordinate system, can be represented as a
graph x2 = f(x1), with x0 = (0, 0). The function f is C∞, and f ′(x0,1) = 0. Moreover, the part
of the boundary ∂D within Br(x0) lies in the narrow angle between the the lines x2 = ±εx1.

With this lemma, suppose we have x and x′ such that the interval connecting these points
does not lie in D. It is enough to consider the case where |x− x′| = r < r0/2, where r0 is as
in Lemma 2.4 corresponding to a sufficiently small ε. Indeed, the larger values of |x− x′| can
be handled by adjusting C(D) in (2.8). Find a point x0 ∈ ∂D closest to x (it does not have
to be unique). Note that by the assumption that the interval (x, x′) crosses the boundary, we
must have |x − x0| ≤ r0/2 and |x′ − x0| < r0. Thus,. both x and x′ lie in the disk B(x0, r)
where ∂D lies between the lines x2 = ±εx1. It is also not hard to see that x must lie on
the vertical x2-axis of a system of coordinates centered at x0, with the horizontal x1-axis
tangent to ∂D at x0. Since by assumption the interval between x and x′ does not lie in D,
we know that x′ must lie in the narrow angle between the lines x2 = ±εx1. Otherwise, the
interval (x, x′) could not have crossed the boundary. Now take a curve connecting x and x′

consisting of a straight vertical interval from x′ to a point on one of the lines x2 = ±εx1 which
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is closest to x, and then an interval connecting this point to x. We can smooth out this curve
without changing its length by much. It is easy to see that the length of this curve does not
exceed 2r if ε is small enough. The rest of the proof goes through as before. �

Now we can state the regularity result for the fluid velocity.

Corollary 2.5 The fluid velocity u satisfies

‖u‖L∞ ≤ C(D)‖ω‖L∞ , (2.11)

and

|u(x)− u(x′)| ≤ C‖ω‖L∞φ(|x− x′|), (2.12)

with the function φ(r) defined in (2.9).

Proof. By (2.6), we have, for any x, y ∈ D,

|KD(x, y)| ≤ C(D)|x− y|−1,

so that ∣∣∣∣∫
D

KD(x, y)ω(y) dy

∣∣∣∣ ≤ C(D)‖ω‖L∞
∫
D

1

|x− y|
dy ≤ C(D)‖ω‖L∞ ,

which is (2.11). The proof of (2.12) is immediate from Lemma 2.3, as

u(t, x) =

∫
D

KD(x, y)ω(t, y)dy,

and we are done. �
We say that u is log-Lipschitz if it satisfies (2.12). We will see that this bound is in fact

sharp; there are velocities that correspond to bounded vorticities which are just log-Lipschitz
and in particular fail to be Lipschitz.

Trajectories for log-Lipschitz velocities

As the fluid velocity with an L∞-vorticity is not necessarily Lipschitz but only log-Lipschitz,
we may not use the classical results on the existence and uniqueness of the solutions of
ODEs with Lipschitz velocities. Nevertheless, as we show next, the log-Lipschitz regularity is
sufficient for determining fluid trajectories uniquely.

Lemma 2.6 Assume that the velocity field b(t, x) satisfies

b ∈ C([0,∞)× Rd) |b(t, x)− b(t, y)| ≤ Cφ(|x− y|), ∀t > 0, (2.13)

with the function φ(r) given by (2.9). Then the Cauchy problem in Rd

dx

dt
= b(t, x), x(0) = x0, (2.14)

has a unique solution.
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Note that the log-Lipschitz regularity is border-line: the familiar example of the ODE

ẋ = xβ, x(0) = 0,

with β ∈ (0, 1) has two solutions: x(t) ≡ 0, and

x(t) =
tp

pp
, p =

1

1− β
,

so that ODE’s with Hölder (with an exponent smaller than one) velocities may have more
than one solution. Existence of solutions, on the other hand, does not really require the
log-Lipschitz condition: uniform continuity of b(t, x) and at most linear growth as |x| → +∞
would be sufficient.

Proof. Let us first show existence of a solution using the standard Picard iteration: set

xn(t) = x0 +

∫ t

0

b(s, xn−1(s)) ds, x0(t) ≡ x0.

Then, as usual, we have

|xn(t)− xn−1(t)| ≤
∫ t

0

|b(s, xn−1(s))− b(s, xn−2(s))| ds ≤ C

∫ t

0

φ(|xn−1(s)− xn−2(s)|) ds.

(2.15)
As the function φ(r) is concave, we have

φ(r) ≤ ε(1 + log ε−1) + (r − ε) log ε−1 = ε+ r log ε−1,

for every ε < 1. Using this in (2.15) gives

|xn(t)− xn−1(t)| ≤ C log(ε−1)

∫ t

0

|xn−1(s)− xn−2(s)| ds+ Ctε.

Iterating, we get for any 0 ≤ t ≤ T (check this using the induction on n)

|xn(t)− xn−1(t)| ≤ CTε

n−2∑
k=0

Ck(log ε−1)ktk

k!
+
Cn−1tn−1(log ε−1)n−1

(n− 1)!
sup0≤t≤T |x1(t)− x0|.

As
|x1(t)− x0| ≤ Ct,

we have

|xn(t)− xn−1(t)| ≤ CTε exp(CT log ε−1) +
CnT n(log ε−1)n−1

(n− 1)!
.

Choose now ε = exp(−n) and T sufficiently small so that 1− CT > 1/2, so that

|xn(t)− xn−1(t)| ≤ CT exp(−n/2) +
CnT nnn−1

(n− 1)!
.

The Stirling formula

n! ∼
√

2πn
(n
e

)n
,
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implies that if T is sufficiently small (independently of n and x0), then

|xn(t)− xn−1(t)| ≤ αn(T ),

with α(T ) < 1. Thus, xn(t) converges uniformly to a limit x(t). The uniformity of the
convergence implies that the limit satisfies the integral equation

x(t) = x0 +

∫ t

0

b(x(s), s) ds.

As b is locally bounded, we may differentiate this formula and obtain the desired ODE

dx(t)

dt
= b(t, x(t)), x(0) = x0.

Since the existence time T is independent of the starting point x0, the construction can be
iterated in time, leading to a global in time solution.

Next, we show the uniqueness of the solution – here, the log-Lipchitz property will play
a crucial role. Suppose that x(t) and y(t) are two different solutions of (2.14) with the same
initial data, and set z(t) = x(t)− y(t). Then by the log-Lipschitz assumption on b, we have

|ż(t)| ≤ Cφ(z(t)), z(0) = 0.

In order to show that z(t) ≡ 0, define fδ(t) as the solution of

ḟδ = 2Cφ(fδ(t)), fδ(0) = δ > 0.

We claim that |z(t)| ≤ fδ(t) for all t. Indeed, this is true for some initial time interval,
since δ > 0 and both z(t) and fδ(t) are continuous. Let t1 > 0 be the smallest time such
that z(t1) = fδ(t1) (the case z(t1) = −fδ(t1) is similar). But then

ż(t1)− ḟδ(t1) ≤ −Cφ(z(t1)) < 0,

contradicting the definition of t1. Thus, no such t1 exists and

|z(t)| ≤ fδ(t) for all t ≥ 0, and all δ > 0. (2.16)

Next, we show that for any t > 0 fixed we have

lim
δ→0+

fδ(t) = 0. (2.17)

It suffices to consider the case where δ is small and times are small enough so that fδ(t) < 1.
Then we have

d

dt
log fδ(t) = 2C(1− log fδ(t)).

Solving this differential equation leads to

1− log fδ(t) = (1− log δ)e−2Ct,

whence (2.17) follows. Together, (2.16) and (2.17) imply that z(t) ≡ 0, that is, the solu-
tion x(t) of (2.14) is unique. �

Exercise 2.7 Identify the place the uniqueness proof above where we have used the log-
Lipschitz condition on the function b(t, x), that is, where the proof would have failed, for
example, for φ(r) = rβ, with β ∈ (0, 1).
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The approximation scheme

Now let us return to our plan to construct a triple (ω, u,Φt(x)) solving (2.1), (2.2) and (2.3),
with the initial vorticity ω0 ∈ L∞. Let us define a sequence of approximations

d

dt
Φn
t (x) = un(Φn

t (x), t), (2.18)

un(x, t) =

∫
D

KD(x, y)ωn−1(y, t) dy,

ωn(x, t) = ω0((Φn
t )−1(x)),

with ω0(t, x) ≡ ω0(x) ∈ L∞ for all t ≥ 0. Each successive approximation involves solving a
linear problem

ωnt + (un · ∇)ωn = 0,

with the flow

un(t, x) =

∫
D

KD(x, y)ωn−1(t, y) dy,

computed from the previous iteration. By Corollary 2.5 and Lemma 2.6, the solutions are
well-defined and unique. Note that each ωn ∈ L∞, with

‖ωn(t)‖L∞ ≤ ‖ω0‖L∞ .

Therefore, Corollary 2.5 implies that all un(x, t) are uniformly bounded and log-Lipschitz:

|un(t, x)− un(t, x′)| ≤ C(D)φ(|x− x′|). (2.19)

The Hölder regularity of the approximate trajectories

We have a uniform continuity bound on Φn
t (x).

Lemma 2.8 For every n and any x, y with |x− y| ≤ 1, we have

|x− y|eCt ≤ |Φn
t (x)− Φn

t (y)| ≤ C|x− y|e−Ct . (2.20)

This is a rather remarkable estimate: we can show that Φn
t (x) is Hölder continuous in space for

any t ≥ 0, but the Hölder exponent deteriorates in time. This is a reflection of the complexity
of the dynamics: the exponent in the upper bound in (2.20) tends to zero as t→ +∞ because
two trajectories that start very close at t = 0 may diverge very far at large times. On the
other hand, the exponent in the lower bound in (2.20) grows as t → +∞ because even if at
the time t = 0 the starting points x and y are ”relatively far apart” (but with |x − y| ≤ 1),
they can extremely close at large times. This deterioration of estimates is not an artefact of
the proof – we will later see that the trajectories of the Euler equations can get extremely
close at large times.

Proof. Let us fix x and y, and set F (t) = |Φt(x)− Φt(y)|. We compute∣∣∣∣ ddtF 2(t)

∣∣∣∣ = 2 |(Φn
t (x)− Φn

t (y)) · (u(Φn
t (x))− u(Φn

t (y)))| ≤ 2CF (t)φ(F (t)),
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so that

|F ′(t)| ≤ CF (t)max(1, 1− logF (t)).

Clearly |F (t)| ≤ C(D) for all t, so it suffices to consider the case when F (t) ≤ 1/2. Then, we
have

|F ′(t)| ≤ CF (t) logF (t)−1,

which leads to

[logF (0)]eCt ≤ logF (t) ≤ [logF (0)]e−Ct.

The estimate (2.20) follows immediately from integrating this inequality and taking into
account that F (0) = |x− y|. �

Convergence of the approximation scheme

Let us now investigate the convergence of the sequence (ωn, un,Φn
t ). The estimate (2.20)

implies that for every T > 0, we have

Φn
t (x) ∈ Cα(T )([0, T ]×D),

for some α(T ) > 0. The Arzela-Ascoli theorem implies that we can find a subsequence nj such
that Φ

nj
t (x) converges uniformly to Φt(x) ∈ C([0, T ]×D). Moreover, since (2.20) is uniform

in n, the limit Φt(x) also satisfies (2.20) and

Φt(x) ∈ Cα(T )([0, T ]×D).

In addition, as all Φn
t are measure-preserving, so is Φt(x). The lower bound in (2.20) im-

plies that Φt(x) is invertible. As Φ−1
t satisfies the same estimate (2.20), it also belongs

to Cα(T )([0, T ]×D). We may then define the vorticity

ω(t, x) = ω0(Φ−1
t (x)),

and the fluid velocity

u(t, x) =

∫
D

KD(x, y)ω(t, y) dy.

For simplicity of notation, we relabel the subsequence nj by n.

Lemma 2.9 We have |u(t, x)−un(t, x)| → 0, as n→∞, uniformly in D for every t ∈ [0, T ].

Proof. Note that

|u(t, x)− un(t, x)| =
∣∣∣∣∫
D

(KD(x,Φt(z))−KD(x,Φn
t (z)))ω0(z) dz

∣∣∣∣ .
Given ε > 0, choose n so that |Φt(x)− Φn

t (x)| < δ, for every x ∈ D, t ∈ [0, T ], with δ > 0 to
be determined later. Then we have

|u(t, x)− un(t, x)| ≤ ‖ω0‖L∞
∫
D

|KD(x, z)−KD(x, y(z))| dz. (2.21)
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Here, the map y(z) = Φn
t ◦ Φ−1

t (z) is measure preserving, and

|y(z)− z| = |Φn
t (Φ−1

t (z))− Φt(Φ
−1
t (z))| < δ,

for every z. As usual, we split the integral in (2.21) into two regions: in the first one we have∫
B3δ(x)∩D

|KD(x, z)−KD(x, y(z))| dz ≤ 2C

∫
B3δ(x)

dz

|x− z|
≤ 2Cδ,

while in the second∫
Bc3δ(x)∩D

|KD(x, z)−KD(x, y(z))| dz ≤ Cδ

∫
Bc3δ(x)∩D

|∇KD(x, p(z))| dz

≤ Cδ

∫
Bcδ

dz

|x− z|2
≤ Cδ log δ−1. (2.22)

Here, p(z) is a point on a curve of length ≤ 2δ that connects z and y(z). If the interval
connecting these points lies in D then this interval can be used as this curve. If not, one can
use an argument similar to that in the proof of Lemma 2.3. Thus choosing δ sufficiently small
we can make sure that the difference of the velocities does not exceed ε. �

Exercise 2.10 Fill in all the details in the last step in the proof of the Lemma.

We are now ready to show that

d

dt
Φt(x) = u(t,Φt(x)).

Indeed, we have

Φn
t (x) = x+

∫ t

0

un(Φn
s (x), s) ds,

and, taking n→∞, using Lemma 2.9 and the definition of Φt(x), we obtain

Φt(x) = x+

∫ t

0

u(Φs(x), s) ds.

Thus, the limit triple (ω(t, x), u(t, x),Φt(x)) satisfies the Euler equations, completing the proof
of the existence of solutions.

Uniqueness of the solutions

Let us now, finally, state the main result on the existence and uniqueness of the solutions
with ω0 ∈ L∞. The existence part of this theorem summarizes what has been proved above
using the approximation scheme.

Theorem 2.11 Given T > 0, there exists α(T ) > 0 so that for any ω0 ∈ L∞(D) there
is a unique triple (ω(t, x), u(t, x),Φt(x)), with the vorticity ω ∈ L∞([0, T ], L∞(D)), the fluid
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velocity u(t, x) uniformly bounded and log-Lipschitz in x, and Φt ∈ Cα(T )([0, T ]×D) a measure
preserving, invertible mapping of D, which satisfy

dΦt(x)

dt
= u(Φt(x)), Φ0(x) = x, (2.23)

ω(t, x) = ω0(Φ−1
t (x)),

u(t, x) =

∫
D

KD(x, y)ω(y, t) dy.

It is clear from the statement of the theorem that ω(t, x) converges to ω0(x) as t→ 0 in the
weak-∗ sense in L∞: for any test function η ∈ L1(D) we have∫

D

ω(t, x)η(x)dx =

∫
D

ω0(Φ−1
t (x))η(x)dx =

∫
D

ω0(x)η(Φt(x))dx→
∫
D

ω0(x)η(x)dx, (2.24)

as t→ 0. Indeed, as ω is uniformly bounded in L∞(D), it suffices to check (2.24) for smooth
functions η, for which we have∫

D

|η(Φt(x))− η(x)|dx ≤ ‖∇η‖L∞
∫
D

|Φt(x)− x|dx ≤ C(D)‖∇η‖L∞‖u‖L∞t.

Proof of Theorem 2.11. As we have already established the existence and regularity of
the solutions, it remains only to prove the uniqueness. Suppose that there are two solution
triples (ω1, u1,Φ1

t ) and (ω2, u2,Φ2
t ) and set

η(t) =
1

|D|

∫
D

|Φ1
t (x)− Φ2

t (x)| dx.

Let us write

|Φ1
t (x)− Φ2

t (x)| ≤
∫ t

0

|u1(s,Φ1
s(x))− u1(s,Φ2

s(x))| ds+

∫ t

0

|u1(s,Φ2
s(x))− u2(s,Φ2

s(x))| ds.

(2.25)
By Corollary 2.5, the first integral in the right side of (2.25) can be bounded by

C‖ω0‖L∞
∫ t

0

φ(|Φ1
s(x)− Φ2

s(x)|) ds.

For the second integral in (2.25), consider the difference

u1(s,Φ2
s(x))− u2(s,Φ2

s(x)) =

∫
D

KD(Φ2
s(x), y)ω1(s, y) dy −

∫
D

KD(Φ2
s(x), y)ω2(s, y) dy

=

∫
D

(
KD(Φ2

s(x),Φ1
s(y))−KD(Φ2

s(x),Φ2
s(y))

)
ω0(y) dy.

Averaging (2.25) in x, we now obtain

η(t) ≤ C‖ω0‖L∞
|D|

∫ t

0

ds

∫
D

φ(|Φ1
s(x)− Φ2

s(x)|) dx

+
C

|D|

∫ t

0

ds

∫
D

|ω0(y)|
∫
D

|KD(x,Φ1
s(y))−KD(x,Φ2

s(y))| dxdy

≤ C(D)‖ω0‖L∞
∫ t

0

ds

∫
D

φ(|Φ1
s(x)− Φ2

s(x)|) dx
|D|

. (2.26)
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We used Lemma 2.3 in the last step. As the function φ is concave, we may use Jensen’s
inequality to exchange φ and averaging in the last expression in (2.26):

η(t) ≤ C(D)‖ω0‖L∞
∫ t

0

φ(η(s)) ds.

In addition, we have η(0) = 0. An argument very similar to the proof of uniqueness in
Lemma 2.6 (based on the log-Lipschitz property of the function φ) can be now used to prove
that η(t) = 0 for all t ≥ 0.

Exercise 2.12 Work out the details of this argument.

This completes the proof of the theorem. �

Regularity of the solutions for regular initial data

If ω0 possesses additional regularity, then so does the solution ω(t, x). This is expressed by
the following theorem.

Theorem 2.13 Suppose that ω0 ∈ Ck(D), k ≥ 1. Then the solution described in Theo-
rem 2.11, satisfies, in addition, the following properties, for each t > 0 fixed:

ω(t) ∈ Ck(D), Φt(x) ∈ Ck,α(t), and u ∈ Ck,β(D),

for all β < 1. In addition, the kth order derivatives of u are log-Lipschitz.

The first proof of a related result goes back to works of Wolibner and of Hölder in the
early 1930s. We will provide a detailed argument for the case of k = 1, larger values of k will
be left as an exercise. The following result is classical.

Theorem 2.14 Suppose that D is a domain in Rd with a smooth boundary, and let ψ be the
solution of the Dirichlet problem

−∆ψ = ω,

ψ|∂D = 0.

If ω ∈ Cα(D), α > 0, then ψ ∈ C2,α(D) and ‖∂ijψ‖Cα ≤ C(α,D)‖ω‖Cα .

This result was originally proved by Kellogg in 1931. Schauder later established a similar
bound for more general elliptic operators. Such estimates are commonly called the Schauder
estimates, see [69].

We have already proved that if ω0 ∈ L∞, then Φ−1
t (x) ∈ Cα(t)(D). Since

ω(t, x) = ω0(Φ−1
t (x)),

if, in addition, we know that ω0 ∈ C1(D), we would automatically have ω(t, x) ∈ Cα(t)(D). By
Theorem 2.14, we then have u(x, t) ∈ C1,α(t)(D). A simple calculation using the trajectories
equation leads to

d

dt
|Φt(x)− Φt(y)|2 ≤ C‖∇u(·, t)‖L∞|Φt(x)− Φt(y)|2, (2.27)
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where we now know that the derivatives of u are bounded for all t, even though their size
may grow with time. Integrating (2.27) in time and using the initial condition

|Φ0(x)− Φ0(y)| = |x− y|,

we obtain

exp
{
−
∫ t

0

‖∇u(·, s)‖L∞ ds
}
≤ |Φt(x)− Φt(y)|

|x− y|
≤ exp

{∫ t

0

‖∇u(·, s)‖L∞ ds
}
. (2.28)

This inequality will be useful for us later. For now, we observe that it implies that Φt(x) is
Lipschitz for every t ≥ 0. By the Rademacher theorem (see e.g. [53]), it follows that Φt(x) is
differentiable almost everywhere. We would like to show that in fact Φt(x) ∈ C1,α(t)(D) for
every t ≥ 0. For this purpose we need a couple of technical lemmas. In what follows we adopt
the summation convention: we sum over repeated indexes.

Lemma 2.15 For every t ≥ 0, for a.e. x, we have

∂jΦ
k
t (x) = δjk +

∫ t

0

∂lu
k(Φs(x), s)∂jΦ

l
s(x) ds. (2.29)

Proof. Note that at this point we can talk only about almost everywhere representation
for the derivatives of Φt(x) since this is what Rademacher theorem gives us. Let y = x+ej∆x,
where ej is a unit vector in jth direction. Consider

Φk
t (y)− Φk

t (x)

∆x
= δjk +

∫ t

0

uk(Φs(y), s)− uk(Φs(x), s)

∆x
ds. (2.30)

Now

uk(Φs(y), s)− uk(Φs(x), s)

∆x
=
uk(Φ1

s(y),Φ2
s(y))− uk(Φ1

s(x),Φ2
s(y))

Φ1
s(y)− Φ1

s(x)

Φ1
s(y)− Φ1

s(x)

∆x

+
uk(Φ1

s(x),Φ2
s(y))− uk(Φ1

s(x),Φ2
s(x))

Φ2
s(y)− Φ2

s(x)

Φ2
s(y)− Φ2

s(x)

∆x
.

Since u ∈ C1,α(D) it is not difficult to show, using mean value theorem, that the first factors
in both products on the right hand side converge uniformly in x to ∂lu

k(Φs(x), s), l = 1, 2
respectively. On the other hand, the ratios (∆x)−1(Φl

s(y) − Φl
s(x)) we control in L∞ by the

Lipschitz estimate (2.28). Moreover, by the Fubini theorem, for a.e. x, for a.e. s, the ratio
converges to ∂jΦ

l
s(x). By the dominated convergence theorem, we have the convergence of the

integral in (2.30) to the integral in (2.29).
Observe that (2.29) allows us to define ∇Φt(x) for almost every x for all t ≥ 0.

Lemma 2.16 For every t ≥ 0, the function ∂jΦ
k
t (x) satisfies Hölder estimate in x for a.e.

x. This allows us to extend the function ∂jΦ
k
t (x) for all x so that it belongs to Cα(t)(D) and

(2.29) holds for all x, t.
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Proof. From (2.29) we find that

∂t∂jΦ
k
t (x) = ∂lu

k(Φt(x), t)∂jΦ
l
t(x)

for a.e. x for all t. Consider

∂t(∂jΦ
k
t (x)−∂jΦk

t (y)) = (∂lu
k(Φt(x), t)−∂luk(Φt(y), t))∂jΦ

l
t(x)+∂lu

k(Φt(y), t)(∂jΦ
l
t(x)−∂jΦl

t(y)).

It follows that

∂t|∂jΦk
t (x)− ∂jΦk

t (y)| ≤ ‖Φt‖Lip‖∇u‖Cα(t)|Φt(x)− Φt(y)|α(t) + ‖∇u‖L∞|∂jΦl
t(x)− ∂jΦl

t(y)|,

where we denote by ‖Φt‖Lip the Lipschitz bound we have on Φt(x) in x for a given t. Let us
denote

F (t) =
∑
k,j

|∂jΦk
t (x)− ∂jΦk

t (y)|.

Then we get
F ′(t) ≤ ‖∇u‖L∞F (t) + |x− y|α(t)‖Φt‖2

Lip‖∇u‖Cα(t) .
By applying Gronwall Lemma we obtain that on any time interval [0, T ], the first order
derivatives of Φt(x) are Hölder in x with exponent α(T ) > 0.

Exercise. Fill in all the details in the proofs of the above two lemmas.

Now the proof of Theorem 2.13 in the case k = 1 is immediate.
Proof. [Proof of Theorem 2.13] Since Φt(x) is measure preserving, we have that det∇Φt =

1 and the derivatives of the inverse map Φ−1
t (x) satisfy the same bounds as those of Φt. This

and Lemma 2.16 imply immediately that ω(x, t) = ω0(Φ−1
t (x)) is C1(D) for all times.

Exercise. Carry out the analogous computations for the case of k > 1, proving Theo-
rem 2.13 in this case.

2.1 The Kato estimate and upper bound on growth of the gradient
of vorticity

In the case of a regular initial vorticity ω0, an interesting question is how fast the higher
derivatives of the solution may grow. This question is linked with small scale creation in
fluids, a phenomenon that is ubiquitous in nature and engineering. We witness this process in
observing thin filaments in turbulent flows, in the structure of hurricanes and in boiling water
in our kitchen. Our main result in this section addresses such upper bound on the growth of
small scales in solutions.

Theorem 2.17 Assume that ω0 ∈ C1(D). Then the gradient of the solution ω(x, t) satisfies
the following bound

‖ω(·, t)‖Ck ≤ (‖ω0‖Ck + 1)C exp ‖ω0‖L∞ t (2.31)

for all t ≥ 0.

Remark. This bound is implicit already in the work of Wolibner; it has been stated explicitly
by Yudovich.

A key step in the proof is the following inequality due to Kato.
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Proposition 2.18 (Kato) Let D be a smooth compact domain, ω ∈ Cα(D), α > 0, u =
∇⊥(−∆D)−1ω. Then

‖∇u‖L∞ ≤ C(α,D)‖ω‖L∞
(

1 + log

(
1 +
‖ω‖Cα
‖ω‖L∞

))
. (2.32)

Remarks. 1. The operators ∂jk(−∆)−1 are called (iterated) Riesz transforms. Calderon-
Zygmund theory proves that Riesz transforms are bounded on all Lp, 1 < p < ∞ (see e.g.
[109]). The derivatives of the fluid velocity u are exactly Riesz transforms of vorticity. However
we need L∞ bound since this is what appears in (2.28). The L∞ bound on Riesz transform
is not true, and we need a little extra - a logarithm - of a higher order norm of ω to control
the L∞ norm of ∇u.
2. The proposition also has applications to three dimensional case, where it leads to a well
known conditional regularity statement for the solutions of 3D Euler equation called Beale-
Kato-Majda criterion [11]. In three dimensions, there is no control on ‖ω‖L∞ anymore.

However, using the bound (2.32), one can show that finiteness of the integral
∫ T

0
‖ω‖L∞ dt

implies regularity of the solution on [0, T ]. Thus ‖ω‖L∞ ”controls” the possible blow up in 3D

case: solutions cannot develop a singularity without
∫ T

0
‖ω‖L∞ dt also becoming infinite.

Before proving Proposition 2.18, we need the following lemma.

Lemma 2.19 Let D be a smooth compact domain, and u(x) be given by the Biot-Savart law

u(x) =

∫
D

KD(x, y)ω(y) dy.

Then

∇u(x) = P.V.

∫
D

∇KD(x, y)ω(y) dy +
(−1)i

2
ω(x)(1− δij). (2.33)

Proof. Notice that the derivative of u needs to be defined and computed in the distribu-
tional sense due to the singularity of the kernel. Such computation is fairly standard and can
be found for example in [87].

Exercise. Carry out the computation to verify (2.33).

Now we are ready to prove Proposition 2.18.
Proof. [Proof of Proposition 2.18] Let

δ = min

(
c,

(
‖ω0‖L∞
‖ω(x, t)‖Cα

)1/α
)
,

where c > 0 is some fixed constant that depends on D, chosen so that the set of points
x ∈ D with dist(x, ∂D) ≥ 2δ is not empty. Consider first any interior point x such that
dist(x, ∂D) ≥ 2δ. Let us look at the representation (2.33). The part of the integral over the
complement of the ball centered at x with radius δ can be estimated as∣∣∣∣∣
∫
Bcδ(x)

∇KD(x, y)ω(y) dy

∣∣∣∣∣ ≤ C‖ω0‖L∞
∫
Bcδ(x)

|x− y|−2 dy ≤ C‖ω0‖L∞(1 + log δ−1), (2.34)
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where we used a bound (2.7) from the Proposition 2.2.
Now recall that the Dirichlet Green’s function is given by

GD(z, y) =
1

2π
log |z − y|+ h(z, y), (2.35)

where h is harmonic in D in z for each fixed y and has boundary values − 1
2π

log |z − y|. Any
second order partial derivative at z = x of the first summand on the right hand side of (2.35)
is of the form r−2Ω(φ) where r, φ are radial variables centered at x, and Ω(φ) is mean zero.
For this part, we can write∣∣∣∣P.V.∫

Bδ(x)

∂2
xixj

log |x− y|ω(y) dy

∣∣∣∣ =

∣∣∣∣∫
Bδ(x)

∂2
xixj

log |x− y|(ω(y)− ω(x)) dy

∣∣∣∣
≤ C‖ω(x, t)‖Cα

∫ δ

0

r−1+α dr ≤ C(α)δα‖ω(x, t)‖Cα ≤ C(α)‖ω0‖L∞ (2.36)

by our choice of δ. Finally, notice that our assumptions on x, the boundary values for h,
and the maximum principle together guarantee that we have |h(z, y)| ≤ C log δ−1 for all
y ∈ Bδ(x), z ∈ D. Standard estimates for harmonic functions (see e.g. [52]) give, for each
fixed y ∈ Bδ(x),

|∂2
xixj

h(x, y)| ≤ Cδ−4‖h(z, y)‖L1(Bδ(x),dz) ≤ Cδ−2 log δ−1.

This gives ∣∣∣∣∫
Bδ(x)

∂2
xixj

h(x, y)ω(y, t) dy

∣∣∣∣ ≤ C‖ω0‖L∞ log δ−1. (2.37)

Together, (2.37), (2.36) and (2.34) prove the Proposition at interior points.
Now if x′ is such that dist(x′, ∂D) < 2δ, find a point x such that dist(x, ∂D) ≥ 2δ and

|x′ − x| ≤ C(D)δ. By Schauder estimate (see Theorem 2.14) we have

|∇u(x′)−∇u(x)| ≤ C(α,D)δα‖ω‖Cα . (2.38)

At x, interior bounds apply, which together with Theorem 2.14 gives desired bound at any
x′ ∈ D.

Given Proposition 2.18, the proof of the estimate (2.31) and so of Theorem 2.17 follows.
Proof. [Proof of Theorem 2.17] Let us come back to the two sided bound (2.28) and use

the estimate (2.32). We obtain

f(t)−1 ≤ |Φt(x)− Φt(y)|
|x− y|

≤ f(t), (2.39)

where

f(t) = exp

(
C‖ω0‖L∞

∫ t

0

(
1 + log

(
1 +
‖∇ω(x, s)‖L∞
‖ω0‖L∞

))
ds

)
.

Of course, the bound (2.39) also holds for Φ−1
t . On the other hand,

‖∇ω(x, t)‖L∞ = supx,y
|ω0(Φ−1

t (x))− ω0(Φ−1
t (y))|

|x− y|
≤ ‖∇ω0‖L∞supx,y

|Φ−1
t (x)− Φ−1

t (y)|
|x− y|

.

(2.40)
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Combining (2.40) and (2.39), we obtain

‖∇ω(x, t)‖L∞ ≤ ‖∇ω0‖L∞ exp

(
C‖ω0‖L∞

∫ t

0

(
1 + log

(
1 +
‖∇ω(x, s)‖L∞
‖ω0‖L∞

))
ds

)
,

or

log ‖∇ω(x, t)‖L∞ ≤ log ‖∇ω0‖L∞ + C‖ω0‖L∞
∫ t

0

(
1 + log

(
1 +
‖∇ω(x, s)‖L∞
‖ω0‖L∞

))
ds.

Let A = ||ω0||L∞ , B = ||∇ω0||L∞ and consider the solution y = y(t) of

y′

y
= CA (1 + log(1 + y)) , y(0) =

B

A
= y0 . (2.41)

By Gronwall’s lemma it is enough to bound y(t). The solution of (2.41) is given by∫ y(t)

y0

dy

y (1 + log(1 + y))
= CAt . (2.42)

Hence

log (1 + log(1 + y(t)))− log (1 + log(1 + y0))

+

∫ y(t)

y0

dy

[
1

y(1 + log(1 + y))
− 1

(1 + y)(1 + log(1 + y))

]
= CAt .

The integrand in the last expression is positive and hence

1 + log(1 + y(t)) ≤ (1 + log(1 + y0)) exp(CAt) . (2.43)

This implies the double exponential upper bound we seek.
The question of how sharp the double exponential bound is has been open for a long time.

This is what we will discuss in the next three sections.

2.2 The Denisov example

The first works constructing examples with growth in derivatives of vorticity are due to Yu-
dovich [119, 120]. He considered growth on the boundary of the domain, and his construction
required that the boundary has a flat piece. The bounds on the growth are not explicit,
but it is shown that lim supt→∞ ‖∇ω(·, t)‖L∞ = ∞. Generally, small scale generation at the
boundary fits well with physical intuition. It is known that boundaries are important for fluid
motion, and in particular influence generation of turbulence (see e.g. [68]). In later works
[81, 92], it was shown that the small scale generation at the boundary is in some sense generic.

Nadirashvili [96] has constructed examples with linear growth in the vorticity gradient in
the bulk of the domain in the case of an annulus. He called such solutions ”wandering”, since,
at least in a relatively strong norm, they travel to infinity as time passes. The argument is
based on constructing a stable background flow that can stretch a small perturbation, creating
small scales. We will outline a similar philosophy in more detail below when discussing
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Denisov’s example. This example provides the best known rate of growth for the gradient
of vorticity in the bulk of the fluid, away from the boundary, when starting with smooth
initial data. The example is set on the torus T2. The existence and global regularity of the
solutions to 2D Euler equation on the torus can be proved similarly to the bounded domain
case considered in the previous section. We will spell out some of the differences (such as
the form of the Biot-Savart law) below. Amazingly, the rate of growth that the example
provides is just superlinear, leaving a huge gap with the double exponential upper bound. In
Section 2.4 below, we will see an example showing that growth on the boundary (as opposed
to in the bulk) can indeed happen at a double exponential rate.

Let us now build an explicit example of solution to 2D Euler equation with infinite growth
of the gradient. This example is due to Denisov [45]. Such specific examples are very useful
for developing intuition. The basic idea behind building this example will be simple: try
finding a stable stationary flow, and perturb it a little. The background stable flow should be
chosen so that it will then stretch the perturbation, creating gradients. Since it is stable, the
process will continue indefinitely, resulting in unbounded gradient growth. The plan is not
easy to implement, however, since the equation is strongly nonlinear and nonlocal. No matter
how small the perturbation is, it will interact with the background flow, and this interaction
is difficult to control for large times. Let us start with some examples of stationary 2D Euler
flows and see what sort of small scale creation they can be expected to provide.

In the periodic case, the Biot-Savart law is given by u = ∇⊥(−∆)−1ω, where −∆ is the
Lapalacian on T2. Suppose for simplicity that our torus T2 has size 2π in both directions.
This is of course not crucial but will make the computations simpler by eliminating some
constant factors. The inverse of the Laplacian is easiest to define through Fourier transform:

(−∆)−1f(x) =
∑
k∈Z2

eikx|k|−2f̂(k),

where

f̂(k) =

∫
T2

e−ikxf(x) dx.

Note that the inverse Laplacian is only defined on functions which have mean zero. We will
assume in this section that ω0 satisfies this requirement. It is not hard to see that the solution
ω(x, t) in this case satisfies the same requirement for all times.

A stationary flow satisfies (u · ∇)ω = 0, or ∇⊥(−∆)−1ω · ∇ω = 0 at every x. Denote
ψ = (−∆)−1ω the stream function of the flow. The flow is clearly stationary if −∆ψ = f(ψ)
for some smooth function f. The simplest examples of stream functions of stationary flows
are just eigenfunctions of periodic Laplacian.

Example 1. Shear flow: ψ(x1, x2) = ω(x1, x2) = cosx2; u(x1, x2) = (sinx2, 0). This is a
flow with straight line trajectories. Indeed, the characteristics are given by X1 = x1− t sinx2,
X2 = x2. Consider the passive scalar equation

∂tϕ+ (u · ∇)ϕ = 0, ϕ(x, 0) = ϕ0(x). (2.44)

The equation has the same form as 2D Euler, except u and ϕ are independent; u is given and
the initial data ϕ0 is arbitrary, and doesn’t have to be the vorticity corresponding to u. Taking
a shear flow in (2.44), we can solve for ϕ(x, t) explicitly. We have ϕ(X1, X2, t) = ϕ0(x1, x2),
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and taking into account formulas for X1, X2 we get ϕ(x1, x2, t) = ϕ0(x1 + t sinx2, x2). On
the torus, all coordinates are taken modulo 2π. This suggests that we can only expect linear
growth in the gradient and higher order Sobolev norms of ϕ if we adopt shear flow as our
background flow. This is closely related to the setting of Nadirashvili example where he proves
linear growth.

Example 2. Cellular flow. A simple cellular flow is given by ψ(x1, x2) = 1
2
ω(x1, x2) =

sinx1 sinx2; u(x1, x2) = (cosx2 sinx1,− cosx1 sinx2). This flow has four vortices in the four
quadrants of the plane, and, in particular, a hyperbolic point near the origin. The x2 direction
is contracting. A trajectory starting at (0, x2) is a straight line with X2(t) a solution of
X ′2 = − sinX2. Thus if x2 is small, then X2(t) ∼ x2e

−t. Then for a solution ϕ(x1, x2, t) of
the passive scalar equation (2.44) with such u, we have ϕ(0, x2, t) ∼ ϕ0(0, x2e

t). Therefore
exponential growth in gradient can be expected here. The example that we will discuss is a
version of a cellular flow; for technical reasons it will be defined a little differently. Also, due
to nonlinearity and nonlocality of 2D Euler equation, we will not be able to prove exponential
growth but will settle for a weaker result.

Before we start the actual construction, it is worthwhile to note that even for the simpler
passive scalar, we only presented a scenario with exponential growth, but not double expo-
nential. For smooth solutions, the double exponential growth is strictly nonlinear phenomena
and cannot be captured by passive scalar. However there is a stationary flow generated by
singular stationary vorticity that can lead to double exponential growth in passive scalar.
Such example is due to Bahouri and Chemin, and we will discuss it in the next section.

Exercise. To explain the statement that double exponential growth cannot happen in a
smooth passive flow, prove that if u is smooth in (2.44), then ‖ϕ(x, t)‖s ≤ CeCt for all times,
where C depends only on u, s and ϕ0.

The following more explicit form of the periodic Biot-Savart law will be useful for us in
the construction.

Proposition 2.20 Let ω ∈ L∞(T2) be a mean zero function. Then the vector field u =
∇⊥(−∆)−1ω is given by

u(x) = − 1

2π
lim
γ→0

∫
R2

(x− y)⊥

|x− y|2
ω(y)e−γ|y|

2

dy, (2.45)

where ω has been extended periodically to all R2.

Proof. We have by definition u = ∇⊥(−∆)−1ω, that is

u(x) =
∑
k∈Z2

eikx
ik⊥

|k|2
ω̂(k).

To link this expression with (2.45), observe first that for a smooth ω,

∑
k∈Z2

eikx
ik⊥

|k|2
ω̂(k) = lim

γ→0

∫
R2

eipx
ip⊥

|p|2

∫
R2

e−ipy−γ|y|
2

ω(y) dydp, (2.46)

where the function ω(y) is extended periodically to the whole plane.
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Exercise. Check the above identity by substituting Fourier series for ω(y) on the right
hand side and integrating in y to obtain Gaussian approximation of identity.

On the other hand, recall that the inverse Laplacian on the whole plane is given by

(−∆)−1f(x) =

∫
R2

eikx
1

|k|2

∫
R2

e−ikyf(y) dy = − 1

2π

∫
R2

log |x− y|f(y) dy

if the function f is sufficiently regular and quickly decaying.
Therefore the expression on the right hand side of (2.46) is equal to∫

R2

eipx
1

|p|2

∫
R2

e−ipy∇⊥
(
ω(y)e−γ|y|

2
)
dydp = − 1

2π

∫
R2

log |x− y|∇⊥
(
ω(y)e−γ|y|

2
)
.

Integrating by parts we obtain (2.45).
Exercise. Observe that the decay of the kernel in (2.45) is not sufficient to guarantee the

convergence of the integral when γ = 0. Prove that nevertheless the limit on (2.45) exists and
is finite if ω is periodic, mean zero and bounded.

The formula (2.45) shows that 2D Euler evolution on torus can be equivalently viewed as
evolution on the plane with periodic initial data if we understand Biot-Savart law in the sense
of the principal value integral (2.45).

We now start the construction of an example where gradient of the solution of 2D Euler
equation grows faster than linearly. More precisely, we will prove the following theorem.

Theorem 2.21 There exists ω0 ∈ C∞(T2) such that for the corresponding solution of 2D
Euler equation ω(x, t) we have

1

T 2

∫ T

0

‖∇ω(·, t)‖L∞ dt
T→∞−→ +∞. (2.47)

This shows faster than linear growth on average, or on a subsequence of times tending to
infinity.

Our basic background flow will be really similar to that in the Example 2 above, in fact it
will be the same flow, but arranged slightly differently. We will set ω∗(x1, x2) = cos x1+cosx2.
Then the stream function ψ∗(x1, x2) = ω∗(x1, x2), and u∗(x1, x2) = (− sinx2, sinx1). The
torus (−π, π]2 contains two stagnation points of the flow, (0, 0) and (π, π). The four lines
x2 = ±x1±π are separatrices of the flow, and the points (π, 0) and (0, π) where the separatrices
intersect are hyperbolic points. Consider the D ≡ (π, 0) point. The change of coordinates
ξ = (x1 + x2 − π)/2, η = (x2 − x1 + π)/2 transforms characteristic equations near the point
D to

ξ′ = sin ξ cos η, η′ = − sin η cos ξ.

Let us now consider the 2D Euler equation

∂tω + (u · ∇)ω = 0, u = (∂2(−∆)−1ω,−∂1(−∆)−1ω), ω(x, 0) = ω0(x), x ∈ T2. (2.48)

We set ω(x, t) = ω∗(x)+ϕ(x, t) and u(x, t) = u∗(x)+v(x, t). In the construction, we will take
ϕ(x, 0) as a small perturbation of ω∗(x). We will need several auxiliary lemmas in the proof,
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starting with stability and symmetry lemmas proving that solution will remain close to ω∗(x)
in L2 sense. Let P1 be the orthogonal projector on the unit sphere in Z2 on Fourier side,
and P2 be the projection on the orthogonal complement of functions supported on the unit
sphere on Fourier side. Namely, if f(x) =

∑
k∈Z2 f̂(k)eikx, then P1f(x) =

∑
|k|=1 f̂(k)eikx,

P2f(x) =
∑
|k|6=1 f̂(k)eikx.

Lemma 2.22 [Stability Lemma] Suppose that the initial data ω0(x) is mean zero. Suppose
that ‖P2ω0(x)‖L2 ≤ ε for some ε > 0. Then ‖P2ω(·, t)‖L2 ≤

√
2ε for all t > 0.

Proof. Observe that the mean zero property is conserved by 2D Euler evolution, as can
be checked by integrating (2.48) over T2 and integrating by parts in nonlinear term. Next,
observe that the following two quantities are conserved by Euler evolution:∫

T2

ω(x, t)2 dx = C1,

∫
T2

ω(x, t)ψ(x, t) dx = C2. (2.49)

Note that the second quantity in (2.49) is just the energy of the flow
∫
T2 |u|2 dx.

Exercise. Prove (2.49) directly from (2.48).
Observe now that ∑

|k|>1

(
1− 1

|k|2

)
|ω̂(k, t)|2 = C1 − C2

does not depend on time. At time t = 0 by assumption this expression does not exceed ε2.
The same is then true for all times. But since 1 − |k|−2 ≥ 1/2 if |k| > 1, it follows that
‖P2ω(·, t)‖2

L2 ≤ 2ε2.
Note that the Fourier transform of ω∗ is supported on the unit sphere in Z2, with ω̂∗(1, 0) =

ω̂∗(−1, 0) = ω̂∗(0, 1) = ω̂∗(0,−1) = 1/2. We also work with real valued solutions ω(x, t), so
ω̂(k, t) = ω̂(−k, t). Yet the Stability Lemma alone is not enough to conclude L2 stability of
ω∗ to small perturbations, as energy might shift between different modes with |k| = 1.

Lemma 2.23 [Symmetries Lemma] Consider 2D Euler equation on T2. Let ω0(x) be smooth
initial data. Assume that ω0 is even: ω0(x) = ω0(−x). Then the solution ω(x, t) remains even
for all t > 0. Assume that ω0 is invariant under rotation by π/2 : ω0(x1, x2) = ω0(−x2, x1).
Then the solution ω(x, t) remains invariant under rotation by π/2.

Proof. The proof uses uniqueness of smooth solutions to (2.48). We show that if ω(x1, x2, t)
is a solution, then so is ω(−x1,−x2, t) and ω(−x2, x1, t). Given the assumption on symmetry
of initial data, this would imply, by uniqueness, that the solution must possess the same
symmetry.

To prove that ω(−x1,−x2, t) and ω(−x2, x1, t) are also solutions, consider the Fourier
transform of the 2D Euler equation:

∂tω̂(k) =
∑
l+m=k

〈m⊥, l〉
|m|2

ω̂(m)ω̂(l), m⊥ = (−m2,m1). (2.50)

Consider ω1(x, t) = ω(−x, t). Observe that ω̂1(k) = ω̂(k). Applying complex conjugation to
(2.50), we see that ω1 solves 2D Euler equation, too.
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Similarly, consider ω2(x1, x2, t) = ω(−x2, x1, t). A simple computation shows that in this
case ω̂2(k1, k2, t) = ω̂(−k2, k1, t). Then

∂tω̂(k1, k2, t) = ∂tω̂(−k2, k1, t) =
∑

l+m=k⊥

〈m⊥, l〉
|m|2

ω̂(m1,m2, t)ω̂(l1, l2, t).

Relabeling indices, we get that ω2 solves 2D Euler equation.
Exercise. Does 2D Euler equation preserve the ω(x1, x2) = ω(−x1, x2) symmetry? How

about ω(x1, x2) = −ω(−x1, x2)? ω(x1, x2) = ω(x2, x1)? ω(x1, x2) = −ω(−x1,−x2)?

Now suppose that our perturbation ϕ(x, 0) of ω∗(x) is such that ω0(x) is even and sym-
metric under rotation by π/2. Then the following Corollary follows from Lemma 2.23 and
Lemma 2.22.

Corollary 2.24 Suppose that ‖ω0(x)−ω∗(x)‖L2 ≤ ε. Then ‖ω(x, t)−ω∗(x)‖L2 ≤ C0ε for all
times t > 0.

Proof. Lemma 2.22 implies that ‖P2ω(·, t)‖L2 ≤
√

2ε. Furthermore, Lemma 2.23 implies
that ω̂(1, 0, t) = ω̂(0, 1, t) = ω̂(−1, 0, t) = ω̂(0,−1, t) and are real valued. Therefore, ω(x, t) =
c(t)ω∗(x) + P2ω(x, t). A calculation leads to the estimates |c(t) − 1| ≤ C1ε, from which the
Corollary follows.

Before we start the construction let us state one more general elementary lemma we will
need.

Lemma 2.25 Let aj > 0 be such that
∑∞

j=1 aj <∞. Then

1

N2

N∑
j=1

a−1
j

N→∞−→ ∞.

Proof. Observe that

minxi>0,x1+···+xn=σ

n∑
i=1

x−1
i = n2σ−1,

and the minimum is achieved when xi = σ/n for each i.

Exercise Prove this claim.

Now set

τN =
N∑

j=N/2

aj
N→∞−→ 0.

Finally, note that

1

N2

∞∑
j=1

a−1
j ≥

1

N2

N∑
j=N/2

a−1
j ≥ N−2N

2

4

1

τN
→∞

as N →∞.
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Now let us designate the initial data that we will use in our construction. While the
construction is carried out on the torus, it is sometimes more convenient to think of functions
defined on R2 which are 2π−periodic in both x1 and x2. Let Uδ be a disc of radius

√
δ cen-

tered at the origin (0, 0). Recall the coordinates ξ = (x1 + x2 − π)/2, η = (x2 − x1 + π)/2 in
which the saddle point D corresponds to ξ = η = 0. The direction ξ is expanding at D and
the direction η is contracting. Define Pδ = {|ξ| < 0.1, |η| < δ}. Rotate Pδ by π/2 around
the origin in the original (x1, x2) coordinate system and denote its image by P ′δ. Consider ω0

defined on T2 as follows.

• ω0(x) = ω∗(x) outside Pδ, P
′
δ, and Uδ.

• In (ξ, η) coordinate system, ω0 = f(ξ, η) in Pδ. The function f ∈ C∞0 (Pδ) is even, and
satisfies 4 ≥ f ≥ −1. The level set f(ξ, η) = 4 is equal to {η = 0, |ξ| ≤ 0.08}, the level
set f(ξ, η) = 3 is equal to the ellipse {(ξ/0.09)2 + (2η/δ)2 = 1}. In P ′δ, define ω0(x) so
that it is invariant under rotation by π/2 with respect to the origin.

• Inside Uδ, we set ω0 = ω∗ + φδ, where φδ ∈ C∞0 (Uδ) is designed so that
∫
T2 ω0(x) dx = 0

and ω0 obeys symmetry conditions as described in the next item.

• ω0 is even and symmetric with respect to rotation by π/2.

Observe that by this construction, ω0 is smooth. We note also that since we chose f to be
even in (ξ, η) coordinates, and ω∗ is even with respect to the hyperbolic point D as well, then
ω0 is even with respect to the point D : ω0(x1 − π, x2) = ω0(−x1 − π,−x2). By Lemma 2.23,
solution ω(x, t) inherits this property. Moreover, if a function g(x) is even with respect to
some point, then (−∆)−1g(x) is also even with respect to the same point. This has a useful
consequence that u(D, t) = ∇⊥(−∆)−1ω(D, t) = 0 for all time, so the point D is left fixed
by the flow. Notice that D is not hyperbolic anymore, as our definition of f(ξ, η) destroys
hyperbolicity near D. However, the flow still possesses hyperbolic structure outside the small
region near D, and we will use this to prove the growth of ∇ω.

Let us recall our notation ω(x, t) = ω∗(x) + ϕ(x, t), u(x, t) = u∗(x) + v(x, t). By Corol-
lary 2.24 and definition of ω0, ‖ϕ(·, t)‖L2 ≤ Cδ1/2 for all t ≥ 0. Due to L∞ maximum principle
for ω(x, t), we also have ‖ϕ(x, t)‖L∞ ≤ C. Interpolating, we get ‖ϕ(·, t)‖Lp ≤ Cδ1/p, for every
p ≥ 2. We also have

Lemma 2.26
‖v(·, t)‖L∞ ≤ C(p)δ1/p,

for every p > 2.

Proof. Recall that by (2.45),

v1,2(x, t) =
1

2π
lim
γ→0

∫
R2

∓y2,1

|y|2
ϕ(x− y, t)e−γ|x−y|2 dy,

where ϕ is extended periodically to all R2. Split integration into two parts, over the unit ball
B1 and its complement. Then by Hölder inequality,∣∣∣∣∫

B1

|y|−1|ϕ(x− y, t)| dy
∣∣∣∣ ≤ C‖ϕ(·, t)‖Lp(2− q)−1/q ≤ C(p)δ1/p,
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where p−1 + q−1 = 1, p > 2. For the rest of the estimate, set ϕ = ∆ψ, and integrate by parts.
We obtain∣∣∣∣∣
∫
Bc1

y1,2

|y|2
∆ψ(x− y)e−γ|x−y|

2

dy

∣∣∣∣∣ ≤ C

∫
∂B1

(∣∣∣∣∂ψ∂n
∣∣∣∣+ |ψ|

)
dσ+

∫
Bc1

ψ(x−y)∆

(
y1,2

|y|2
e−γ|x−y|

2

)
dy.

Using Sobolev imbedding theorem and the bounds we have for ϕ, as well as some straightfor-
ward estimates, we can complete the proof of the lemma.

Exercise Carry out the calculations carefully to complete the proof.

Let us now choose δ so that ‖v(·, t)‖L∞ ≤ 0.001 for all t. Let us zoom into the point
D. Characteristic curves near D are given by solutions of x′1(t) = sinx2 − v1(x, t), x′2(t) =
− sinx1 − v2(x, t). In the ξ, η coordinates this becomes ξ′ = cos η sin ξ − (v1 + v2)/2, η′ =
sin η cos ξ + (v1 − v2)/2. We will write this in a shortcut notation

ξ′ = sin ξ cos η + µ1, η
′ = − sin η cos ξ + µ2, (2.51)

where ‖µ1,2‖L∞ ≤ 0.001.

Lemma 2.27 Consider the Cauchy problem (2.51) with initial data ξ(t0) = ξ0, η(t0) = η0. If
|ξ0| ≤ 0.03 and |η0| ≤ 0.1, then |η(t0 + 1)| ≤ 0.1. Also, if 0.03 > |ξ0| > 0.02 and |η0| < 0.1,
then |ξ(t0 +1)| > 0.03. More generally, if 0.03 > |ξ0| > (3−τ)/100, 0 ≤ τ ≤ 1, and |η0| < 0.1,
then |ξ(t0 + τ)| > 0.03.

Proof. Observe that |ξ′| < |ξ|+ 0.001, |ξ0| ≤ 0.03 imply that

|ξ(t)| ≤ |ξ0|e+ 0.001

∫ 1

0

et dt < 0.04e

for t ∈ (t0, t0 + 1). Now at η = 0.1 we have η′ ≥ − sin 0.1 cos 0.2 + 0.001 < 0 for all times in
(t0, t0 + 1) and so the trajectory cannot pass or arrive at this value of η. The case of η = −0.1
is similar. Thus, for t ∈ (t0, t0 + 1) we have |η(t)| < 0.1. For the second statement of the
lemma notice that for 0.04 > ξ0 > 0.02, due to bounds we showed, ξ′(t) ≥ 0.9ξ− 0.001 in the
time interval (t0, t0 + 1). Then ξ(t) ≥ 0.02e0.9 − 0.001(e− 1) > 0.003.

For the last statement, following the same estimates, we have to check that

(3− τ)e0.9τ − 0.1(eτ − 1) ≥ (3− τ)(1 + 0.9τ)− 0.3τ ≥ 3 + 0.5τ ≥ 3,

which is correct.
Now we are ready to prove Theorem 2.21.
Proof. [Proof of Theorem 2.21] Denote Rs the rectangle |η| < 0.1, |ξ| < 0.01s. Denote

E(t1, t2) the Euler flow map from time t1 to time t2. E(t1, t2) is a smooth area preserving
diffeomorphism given by solutions to characteristic equations (2.51). The map E(t1, t2) has a
fixed point D and is centrally symmetric with respect to D. Consider S0 = R3∩{x : ω0(x) ≥
3}. This set is bounded by intervals lying on lines ξ = ±0.03 and parts of the ellipse where
ω0(x) = 3. Split S0 = S1

0 ∪S2
0 , where S1

0 = S0∩R2, and S2
0 is the rest of S0. Look at E(0, 1)S0.
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By Lemma 2.27, this set is contained in |η| < 0.1. Denote S1 = E(0, 1)S0 ∩ R3, and keep
only simply connected component of this set containing the point D. S1 will be bounded by
intervals lying on the lines ξ = ±0.03 and parts of the level set ω(x, 1) = 3. By Lemma 2.27
the set E(0, 1)S2

0 gets transported out of R3, and so |S1| ≤ |S0|−|S2
0 |. Notice that S1 contains

a part of the level set ω(x, 1) = 4. Moreover, since E(0, 1)S0 is contained in |η| < 0.1 and
the ends of ω0 = 4 curve get transported out of R3, the part of the level set ω = 4 lying
in S1 contains a curve passing through the point D and connecting two points P±1 lying on
ξ = ±0.03. Now let us split S1 = S1

1∪S2
1 , where S1

1 = S1∩R2, and S2
1 is the rest of S1. We now

iterate time in unit steps, obtaining a sequence of sets Sn+1 = E(n, n+1)Sn. All properties of
the set S1 described above continue to hold for Sn. In particular, |Sn+1| ≤ |Sn| − |S2

n|, which
implies that

∑
n |S2

n| <∞. On the other hand, for each fixed ξ, 0.02 < |ξ| < 0.03, a section of
the set S2

n at level ξ must contain an interval [η1, η2] such that ω(η1, ξ) = 3 and ω(η2, ξ) = 4.
This implies that

|S2
n| ≥ 0.01‖∇ω(·, n)‖−1

L∞ .

The application of Lemma 2.25 then gives

lim
N→∞

1

N2

∞∑
n=0

‖∇ω(·, n)‖L∞ = +∞.

This is a discrete version of (2.47). One can obtain the continuous version by using the last
statement of Lemma 2.27.

Exercise. Prove (2.47), and thus finish the proof of the Theorem. You will need to use the
last statement of Lemma 2.27, taking τ small (and passing to the limit τ → 0). Otherwise
the argument above will require only a few adjustments.

2.3 The Bahouri-Chemin example

The scenario of the previous section gave us an example of superlinear growth in vorticity
gradient. One could guess that, since the scenario is based on a hyperbolic point of a cellular
flow, it may be possible to obtain exponential growth in a similar scenario with a better
technical effort. This is what a computation in the Example 2 in the previous section would
suggest. Of course, in the Denisov’s construction, the flow is modified near the hyperbolic
point so that it is no longer clear if exponential growth should persist. But in principle,
the mechanism by which exponential growth of the derivatives can appear in solutions of 2D
Euler equation is more or less clear. But how can one get double exponential growth? In
this section we discuss an example of a singular stationary solution to 2D Euler equation
which provides a hint into how double exponential growth can be achieved. This example is
due to Bahouri and Chemin [4]. It also shows that many of the estimates we obtained when
developing Yudovich theory of solutions with bounded vorticity are optimal. In this example,
the fluid velocity u is just log-Lipschitz, and the flow map Φt(x) is indeed Hölder continuous
with the exponent that is exponentially decaying in time.

Consider the singular “cross” solution corresponding to ω0(x1, x2) = 1 for 0 ≤ x1, x2 ≤ π,
ω0(x1, x2) = −ω0(−x1, x2) = −ω0(x1,−x2) on the torus (x1, x2) ∈ [−π, π)2. The solution
corresponding to such ω can be rigorously defined, as it has been proved by Yudovich that
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any initial data in L∞ leads to unique solution of 2D Euler equation. The first observation is
an important conservation of symmetry.

Lemma 2.28 The oddness with respect to an axis property is preserved by the 2D Euler
evolution. That is, if ω0 ∈ L∞, ω0(−x1, x2) = −ω0(x1, x2), then the corresponding Yudovich
solution ω(x1, x2, t) satisfies ω(−x1, x2, t) = −ω(x1, x2, t) for every t ≥ 0.

Remark. Clearly it is sufficient to prove conservation of odd symmetry with respect to x1 = 0
axis, since the choice of coordinates does not affect the properties of the solutions.

Proof. The proof is similar to that of Lemma 2.23. Suppose that (ω(x1, x2, t), u(x1, x2, t),Φt(x1, x2))
is a Yudovich solution of the 2D Euler equation. A direct computation verifies that in
this case (−ω(−x1, x2, t), (−u1(−x1, x2, t), u2(−x1, x2, t)), (−Φ1

t (−x1, x2),Φ2
t (−x1, x2)) is also

a Yudovich solution of the 2D Euler equation. But if ω0 is odd with respect to x1, the initial
data for these two solutions coincide. Hence by uniqueness of solutions these two solutions
must be equal.

Now we can verify that the singular cross solution is stationary.

Lemma 2.29 The solution of the 2D Euler equation corresponding to the initial data ω0

described above is stationary, that is, ω(x, t) ≡ ω0(x) for all t.

Proof. Since ω0 is odd with respect to both x1 and x2, then by Lemma 2.28 the solution
ω(x, t) has the same property. The stream function ψ(x, t) is also odd with respect to both
variables by a simple computation. Then u1 = ∂2ψ is odd with respect to x1. Therefore,
u1(0, x2, t) = 0 for all t. Similarly, u2(x1, 0, t) = 0 for all t. Moreover, by choosing a different
system of coordinates and running the same argument, we see that u1(π, x2, t) = u2(x1, π, t) =
0. This shows that the particle trajectories never cross the lines x1 = 0, π and x2 = 0, π. Since
ω(x, t) = ω0(Φ−1

t (x)) and given the structure of ω0, this shows that ω(x, t) ≡ ω0 for all times.

For simplicity of notation and in order to work with positive rather than negative quanti-
ties, we will change the sign of the Biot-Savart law in this and next sections. This of course
has no influence on the essence of the results and essentially is just a convention.

We now establish a key property of the fluid velocity in the Bahouri-Chemin example.

Proposition 2.30 Consider the singular cross solution described above. Then for small pos-
itive x1, we have

u1(x1, 0) =
4

π
x1 log x1 +O(x1). (2.52)

Proof. Let us use the Biot-Savart law (2.45) (changing the sign as we discussed):

u1(x1, 0) = − 1

2π
lim
γ→0

∫
R2

y2

(x1 − y1)2 + y2
2

ω(y)e−γ|y|
2

dy. (2.53)

Denote S = [−1, 1]×[−1, 1]. Let us represent u1(x1, 0) as a sum of two components uS1 (x1, 0)+
uF1 (x1, 0). Here uS1 (x1, 0) contains a contribution over integration over S in (2.53), while
uF1 (x1, 0) contains the contribution from integration over the complement of S (the ”far field”).
We first claim that |uF1 (x1, 0)| ≤ C‖ω‖L∞x1, and this will be left as an exercise.
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Exercise. Verify that∣∣∣∣limγ→0

∫
R2\S

y2

(x1 − y1)2 + y2
2

ω(y)e−γ|y|
2

dy

∣∣∣∣ ≤ C‖ω‖L∞x1.

One way to perform this computation is to use the oddness of ω which leads to extra cancel-
lation and faster decay in the kernel.

Next, in the uS1 (x1, 0) part, we can freely pass to the limit γ → 0 and use symmetry to
simplify the expression:

πuS1 (x1, 0) = −1

2

∫
S

y2

(x1 − y1)2 + y2
2

ω(y) dy = −
∫ 1

0

dy2

∫ 1

−1

y2

(x1 − y1)2 + y2
2

ω(y1, y2) =

−2x1

∫ 1

0

∫ 1

0

y1y2

((x1 − y1)2 + y2
2)((x1 + y1)2 + y2

2)
dy1dy2.(2.54)

In the last step we used that ω(y1, y2) = 1 on [0, 1]× [0, 1]. Let us consider the contributions
from different regions of integration in (2.54).

1. The region [0, 1]× [0, 2x1].∫ 1

0

∫ 2x1

0

y1y2

((x1 − y1)2 + y2
2)((x1 + y1)2 + y2

2)
dy1dy2 ≤

C

∫ 1

0

dz1

∫ x1

0

dz2
x1z2

(z2
1 + z2

2)(x2
1 + z2

2)
≤ C

∫ x1

0

x1

x2
1 + z2

2

arctan z−1
2 dz2 ≤ C.

2. The region [0, 2x1]× [2x1, 1].∫ 2x1

0

dy1

∫ 1

2x1

dy2
y1y2

((x1 − y1)2 + y2
2)((x1 + y1)2 + y2

2)
dy1dy2 ≤

C

∫ x1

0

dz1

∫ 1

x1

dz2
x1z2

(z2
1 + z2

2)2
≤ C

∫ x1

0

dz1

z2
1 + x2

1

≤ C.

3. The region [2x1, 1]× [2x1, 1]. Here, the first observation is that∣∣∣∣∫ 1

2x1

∫ 1

2x1

y1y2

((x1 − y1)2 + y2
2)((x1 + y1)2 + y2

2)
dy1dy2 −

∫ 1

x1

∫ 1

x1

y1y2

(y2
1 + y2

2)2
dy1dy2

∣∣∣∣ ≤ C.

Exercise. Verify this claim by direct computation.
Next, we have∫ 1

x1

∫ 1

x1

y1y2

(y2
1 + y2

2)2
dy1dy2 =

∫ 1

x1

y1

(
1

y2
1 + x2

1

− 1

y2
1 + 1

)
dy1 =∫ 1

x21

dz1

z1 + x2
1

+O(1) = −2 log x1 +O(1).

Collecting all the estimates, we arrive at (2.52).
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Observe that the estimate (2.52) corresponds to u1 being just log-Lipchitz near the origin.
Hence the estimates on fluid velocity in Yudovich theory are qualitatively sharp. A char-
acteristic curve starting at a point (x0

1, 0) will be just a line Φt((x
0
1, 0)) ≡ (x1(t), 0) moving

towards the origin. If x0
1 is sufficiently small, it will satisfy x′1(t) ≤ x1(t) log x1(t), and so

(log x1(t))′ ≤ log x1(t), log x1(t) ≤ et log x0
1, x1(t) ≤ x1(0)exp(t). Such an estimate has several

consequences. First, since the origin is a stationary point of the flow, the inverse flow map
Φ−1
t (x) can be Hölder continuous only with decaying in time exponent (at most e−t). In fact,

the exponent is a little weaker than that since our estimate on the characteristic convergence
to zero is not sharp. Of course, the direct flow map Φt(x) also has a similar property; to
establish it one needs to look at characteristic lines moving along the vertical separatrix.

Exercise. Verify the latter claim by direct calculations. You do not have to redo the proof
of Proposition 2.30, you can use symmetry to conclude the analogous asymptotic behavior
for u2(0, x2), with a different sign.

This observation shows that the bounds on the flow map in Yudovich theory are also
qualitatively sharp. Finally, let us observe what sort of gradient growth one can expect in a
passive scalar advected by the fluid velocity u produced by singular cross. Suppose that as
in (2.44), ∂tϕ + (u · ∇ϕ) = 0, ϕ(x, 0) = ϕ0(x). Choose ϕ0(x) to be a smooth function such
that ϕ0(0) = 0 and ϕ0(δ) = 1 for a small number δ > 0 such that u1(x1, 0) ≤ x1 log x1 for all
0 ≤ x1 ≤ δ. Then as we discussed in Example 1 in Section 2.2, ϕ(Φt((δ, 0)), t) = ϕ0(δ) = 1
and ϕ(0, t) = 0 since the origin is a stagnation point. On the other hand, due to the above
estimates, we have Φt(δ, 0) ≤ δexp(t). By the mean value theorem, we have that

‖∇ϕ(·, t)‖L∞ ≥ δ− exp(t),

thus resulting in double exponential growth in the gradient of passively advected scalar.

One may ask how such scenario may be relevant for 2D Euler with smooth initial data.
One could try to smooth out the singular cross flow, and arrange for a small perturbation of it
to play the role of a passive scalar on top of singular behavior, similar to the Nadirashvili’s and
Denisov’s examples philosophy. If one could somehow arrange for the solution to approach,
in some sense, the singular cross solution of the background flow, then one could provide an
example of double exponential in time growth. A similar idea was exploited by Denisov in [47]
to design a finite time double exponential growth example. However, one would face serious
difficulties to extend this approach to infinite time. First, to keep the background scenario
stable, one needs symmetry - and odd symmetry bans nonzero perturbation right where the
velocity is most capable of producing double exponential growth for all times, on the x2 = 0
separatrix. Second, it is not clear how to make a smooth solution approach the “cross” in
some suitable sense. Third, the perturbation will not be passive, and, for large times, will
be difficult to decouple from the equation. In Denisov example, nonlinearity is something to
fight; the growth of the vorticity gradient is driven by linear mechanism. To build example
with double exponential growth, the nonlinearity would have to become our friend. We will
consider such example in the next section. The growth of vorticity gradient in that example
will be double exponential, and it will happen at the boundary of the domain. The latter
is crucial for the construction. Essentially, the boundary will play a role of a separatrix in
Bahouri-Chemin flow, but if voriticity has to vanish on a separatrix if we want to keep the
symmetry, on the boundary it does not have to be zero.
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2.4 The Kiselev-Sverak example

In this section, we will prove the following theorem [80].

Theorem 2.31 Consider two-dimensional Euler equation on a unit disk D. There exists a
smooth initial data ω0 with ‖∇ω0‖L∞/‖ω0‖L∞ > 1 such that the corresponding solution ω(x, t)
satisfies

‖∇ω(x, t)‖L∞
‖ω0‖L∞

≥
(
‖∇ω0‖L∞
‖ω0‖L∞

)c exp(c‖ω0‖L∞ t)

(2.55)

for some c > 0 and for all t ≥ 0.

As the first step towards the proof of Theorem 2.31, let us start setting up the scenario
we will be considering. From now on, let D be a closed unit disk in the plane. It will be
convenient for us to take the system of coordinates centered at the lowest point of the disk,
so that the center of the disk is at (0, 1). Our initial data ω0(x) will be odd with respect to
the vertical axis: ω0(x1, x2) = −ω0(−x1, x2). We checked the conservation of such symmetry
in the periodic initial data case; it can be checked similarly for the case of a domain with
vertical symmetry axis.

We will take smooth initial data ω0(x) so that ω0(x) ≥ 0 for x1 > 0 (and so ω0(x) ≤ 0
for x1 < 0). This configuration makes the origin a hyperbolic fixed point of the flow; in
particular, u1 vanishes on the vertical axis. It will be clear from analysis of the Biot-Savart
law. The Dirichlet Green’s function for the disk is given explicitly by GD(x, y) = 1

2π
(log |x−

y| − log |x− ȳ| − log |y− e2|), where with our choice of coordinates ȳ = e2 + (y− e2)/|y− e2|2,
e2 = (0, 1) (see e.g. [52]). Given the symmetry of ω, we have

u(x, t) = ∇⊥
∫
D

GD(x, y)ω(y, t) dy =
1

2π
∇⊥

∫
D+

log

(
|x− y||x̃− ȳ|
|x− ȳ||x̃− y|

)
ω(y, t) dy, (2.56)

where D+ is the half disk where x1 ≥ 0, and x̃ = (−x1, x2). The following Lemma will be
crucial for the proof of Theorem 2.31. Let us introduce notation Q(x1, x2) for a region that
is the intersection of D+ and the quadrant x1 ≤ y1 <∞, x2 ≤ y2 <∞.

Lemma 2.32 Take any γ, π/2 > γ > 0. Denote Dγ
1 the intersection of D+ with a sector

π/2− γ ≥ φ ≥ 0, where φ is the usual angular variable. Then there exists δ > 0 such that for
all x ∈ Dγ

1 such that |x| ≤ δ we have

u1(x1, x2, t) = − 4

π
x1

∫
Q(x1,x2)

y1y2

|y|4
ω(y, t) dy1dy2 + x1B1(x1, x2, t), (2.57)

where |B1(x1, x2, t)| ≤ C(γ)‖ω0‖L∞ .
Similarly, if we denote Dγ

2 the intersection of D+ with a sector π/2 ≥ φ ≥ γ, then for all
x ∈ Dγ

2 such that |x| ≤ δ we have

u2(x1, x2, t) =
4

π
x2

∫
Q(x1,x2)

y1y2

|y|4
ω(y, t) dy1dy2 + x2B2(x1, x2, t), (2.58)

where |B2(x1, x2, t)| ≤ C(γ)‖ω0‖L∞ .
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Exercise The Lemma holds more generally than in the disk; perhaps the simplest proof is
for the case where D is a square. The computation for that case is quite similar to Bahouri-
Chemin example. Carry out the proof of the Lemma for this case.

Exercise The exclusion of a small sector does not appear to be a technical artifact. The
vorticity can be arranged (momentarily) in a way that the hyperbolic picture provided by the
Lemma is violated outside of Dγ

1 , for example the direction of u1 may be reversed near the
vertical axis. Verify this for the case of a square.

Let us denote

Ω(x1, x2, t) =
4

π
x2

∫
Q(x1,x2)

y1y2

|y|4
ω(y, t) dy1dy2. (2.59)

This term appears both in (2.57) and (2.58), and, as will become clear soon, can be thought of
as the main term in these estimates in certain regime. Indeed, while the remainder in (2.57),
(2.58) satisfies Lipschitz estimates, the nonlocal term Ω(x1, x2, t) can grow as a logarithm if
the support of the vorticity approaches the origin. This growth through nonlinear feedback
can lead to double exponential growth in the gradient of solution. Essentially, Lemma 2.32
makes it possible to ensure in certain regimes that the flow near the origin is hyperbolic, with
fluid trajectories just hyperbolas in the main term. The speed of motion along trajectories is
controlled by the nonlocal factor in (2.57), (2.58), and this factor is the same for both u1 and
u2.

We also note a certain comparison property, monotonicity imbedded in the form of Ω(x1, x2, t).
The size of the expression in (2.59) tends to increase as x approaches origin since the region
of integration grows. This property will be important in the construction of our example.

Proof. Let us prove (2.57), the proof of (2.58) is similar. Fix a small γ > 0. Fix a
point x = (x1, x2) ∈ Dγ

1 , |x| ≤ δ. By the definition of Dγ
1 , we have x2 ≤ x1 cot γ. Define

r = 10(1 + cot γ)x1, then x ∈ Br(0). Let us assume that δ is small enough so that r < 0.1
whenever |x| ≤ δ.

Note that the contribution to u1 from integration over Br(0) in the Biot-Savart law (2.56)
does not exceed

C‖ω0‖L∞
∫
D+∩Br(0)

1

|x− y|
dy ≤ C(γ)‖ω‖L∞x1.

For y ∈ D+ \ Br(0), we have |y| ≥ 10|x|. Let us rewrite the four logarithms in (2.56) as
follows:

log

(
1− 2xy

|y|2
+
|x|2

|y|2

)
− log

(
1− 2xy

|y|2
+
|x|2

|y|2

)
−

log

(
1− 2x̃y

|y|2
+
|x|2

|y|2

)
+ log

(
1− 2x̃y

|y|2
+
|x|2

|y|2

)
. (2.60)

For small t,

log(1 + t) = t− t2

2
+O(t3).

Therefore, after a direct computation the expression (2.60) leads to

πGD(x, y) = −x1y1

|y|2
+
x1y1

|ȳ|2
− 2x1x2y1y2

|y|4
+

2x1x2y1y2

|ȳ|4
+O

(
|x|3

|y|3

)
.
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In the last term, we used that |ȳ| ≥ |y| for y ∈ D+, something one can check by computation.
A direct calculation shows that

y1

|ȳ|2
=

y1

|y|2
,

y2

|ȳ|2
= 1− y2

|y|2
.

Therefore we obtain

πGD(x, y) = −4x1x2y1y2

|y|4
+

2x1x2y1

|y|2
+O

(
|x|3

|y|3

)
. (2.61)

It is not difficult to verify that the expression (2.61) can be differentiated with respect to x2,
yielding

π
∂GD(x, y)

∂x2

= −4x1y1y2

|y|4
+

2x1y1

|y|2
+O

(
|x|2

|y|3

)
. (2.62)

Now ∫
D+\Br

|x|2

|y|3
dy ≤ C|x|2

∫ 1

r

1

s2
ds ≤ Cr−1|x|2 ≤ C(γ)x1.

Also, ∫
D+\Br

y1

|y|2
dy ≤ C

∫ 1

r

ds ≤ C.

Therefore, the last two terms in (2.62) give regular contributions to u1. It remains to reconcile
the regions of the integration in the main term, namely to show that∫

D+\Br

y1y2

|y|4
ω(y) dy = O(1) +

∫
Q(x1,x2)

y1y2

|y|4
ω(y) dy.

Indeed, ∫
Br∩Q(x1,x2)

y1y2

|y|4
dy ≤

∫ Cx1

x1

dy1

∫ Cx1

0

dy2
y1y2

|y|4
≤

C

∫ Cx1

x1

y1

∫ C2x21

0

1

(y + y2
1)2

dydy1 = C

∫ Cx1

x1

dy1y
−1
1 ≤ C.

Finally, the set D+ \ (Q(x1, x2) ∪ Br) consists of two strips along x1 and x2 axis. The
contribution of the integral over the strip along the x1 axis does not exceed∫ x1

0

dy1

∫ 1

x1

dy2
y1y2

|y|4
≤
∫ x1

0

y1

y2
1 + x2

1

dy1 ≤ C

since r >> x1. The integral over the strip along the x2 axis does not exceed∫ x2

0

dy2

∫ 1

x1

dy1
y1y2

|y|4
.

Since x2 ≤ C(γ)x1, the latter integral can also be bounded by a constant via similar compu-
tation. This completes the proof of the lemma.
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Exercise. Fill in all the computations in the proof of the lemma.

Before proving Theorem 2.31, we make a simpler observation: with the aid of Lemma 2.32
it is fairly straightforward to find examples with exponential in time growth of vorticity
gradient. Indeed, take smooth initial data ω0(x) which is equal to one everywhere in D+

except on a thin strip of width equal to δ near the vertical axis x1 = 0, where 0 < ω0(x) < 1
(and ω0 vanishes on the vertical axis as it must by our symmetry assumptions). Observe
that due to incompressibility, the distribution function of ω(x, t) is the same for all times. In
particular, the measure of the complement of the set where ω(x, t) = 1 does not exceed 2δ.
In this case for every |x| < δ, x ∈ D+, we can derive the following estimate for the integral
appearing in the representation (2.57):∫

Q(x1,x2)

y1y2

|y|4
ω(y, t) dy1dy2 ≥

∫ 1

2δ

∫ π/3

π/6

ω(r, φ)
sin 2φ

2r
dφdr ≥

√
3

4

∫ 1

2δ

∫ π/3

π/6

ω(r, φ)

r
dφdr.

The value of the integral on the right hand side is minimal when the area where ω(r, φ) is less
than one is concentrated at small values of the radial variable. Using that this area does not
exceed 2δ, we obtain

4

π

∫
Q(x1,x2)

y1y2

|y|4
ω(y, t) dy1dy2 ≥ c1

∫ 1

c2
√
δ

∫ π/3

π/6

1

r
dφdr ≥ C1 log δ−1, (2.63)

where c1, c2 and C1 are positive universal constants.
Putting the estimate (2.63) into (2.57), we get that for all for |x| ≤ δ, x ∈ D+ that lie on

the disk boundary, we have

u1(x, t) ≤ −x1(C1 log δ−1 − C2),

where C1,2 are universal constants. We can choose δ > 0 sufficiently small so that u1(x, t) ≤
−x1 for all times if |x| < δ. Due to the boundary condition on u, the trajectories which start at
the boundary stay on the boundary for all times. Taking such a trajectory starting at a point
x0 ∈ ∂D with x0,1 ≤ δ, we get Φ1

t,1(x0) ≤ x0,1e
−t for this characteristic curve. Since ω(x, t) =

ω(Φ−1
t (x)), we see that ‖∇ω(x, t)‖L∞ grows exponentially in time if we pick ω0 which does

not vanish identically at the boundary near the origin (for example, if ω0(δ, 1−
√

1− δ2) 6= 0).
To construct examples with double exponential growth, we have to work a little harder.

For the sake of simplicity, we will build our example with ω0 such that ‖ω0‖L∞ = 1.
Proof. [Proof of Theorem 2.31] We first fix some small γ > 0. We will take the smooth

initial data like in the end of the previous paragraph, with ω0(x) = 1 for x ∈ D+ apart from
a narrow strip of width at most δ > 0 (with δ small enough so that (2.57), (2.58) apply)
near the vertical axis where 0 ≤ ω0(x) ≤ 1. Then (2.63) holds. We will also choose δ so that
C1 log δ−1 > 100C(γ) where C(γ) is the constant in the bound for the error terms B1, B2

appearing in (2.57), (2.58).
For 0 < x′1 < x′′1 < 1 we denote

O(x′1, x
′′
1) =

{
(x1, x2) ∈ D+ , x′1 < x1 < x′′1 , x2 < x1

}
. (2.64)
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For 0 < x1 < 1 we let

u1(x1, t) = min
(x1,x2)∈D+ , x2<x1

u1(x1, x2, t) (2.65)

and
u1(x1, t) = max

(x1,x2)∈D+ , x2<x1
u1(x1, x2, t) . (2.66)

It is easy to see that these functions are locally Lipschitz in x1 on [0, 1), with the Lipschitz
constants being locally bounded in time. Hence we can define a(t) by

ȧ = u1(a, t) , a(0) = ε10 (2.67)

and b(t) by
ḃ = u1(b, t) , b(0) = ε , (2.68)

where 0 < ε < δ is sufficiently small, its exact value to be determined later. Let

Ot = O(a(t), b(t)) . (2.69)

At this stage we have not yet ruled out that Ot perhaps might become empty for some t > 0.
However, it is clear from the definitions that Ot will be non-empty at least on some non-trivial
interval of time. Our estimates below show that in fact Ot will be non-empty for all t > 0.

We will choose ω0 so that ω0 = 1 on O0 with smooth sharp (on a scale . ε10) cutoff to
zero into D+. This leaves some ambiguity in the definition of ω0(x) away from O0. We will
see that it does not really matter how we define ω0 there, as long as we satisfy the conditions
above. For simplicity, one can think of ω0(x) being just zero for |x| < δ away from a small
neighborhood of O0. Using the estimates (2.57), (2.58), the estimate (2.63) and our choice of
δ ensuring that C1 log δ−1 >> C(γ) we see that both a and b are decreasing functions of time
and that near the diagonal x1 = x2 in {|x| < δ} we have

x1(log δ−1 − C)

x2(log δ−1 + C)
≤ −u1(x1, x2)

u2(x1, x2)
≤ x1(log δ−1 + C)

x2(log δ−1 − C)
. (2.70)

This means that all particle trajectories for all times are directed into the φ > π/4 region on
the diagonal. We claim that ω(x, t) = 1 on Ot. Indeed, it is clear that the “fluid particles”
which at t = 0 are in D+ \O0 cannot enter Ot′ through the diagonal {x1 = x2} due to (2.70)
at any time 0 ≤ t′ ≤ t. Due to the very definition of a(t), b(t) and Ot, they cannot enter Ot′
through the vertical segments {(a(t′), x2) ∈ D+ , x2 < a(t′)} or {(b(t′), x2) ∈ D+ , x2 < b(t′)}
at any time 0 ≤ t′ ≤ t either. Finally, they obviously cannot enter through the boundary
points of D. Hence the “fluid particles” in Ot must have been in O0 at the initial time and
we conclude that ω( · , t) = 1 in Ot.

By Lemma 2.32, we have

u1(b(t), t) ≥ −b(t) Ω(b(t), x2(t))− C b(t),

for some x2(t) ≤ b(t) , (x2(t), b(t)) ∈ D+ as ‖ω(x, t)‖L∞ ≤ 1 by our choice of the initial datum
ω0. A simple calculation shows that

Ω(b(t), x2(t)) ≤ Ω(b(t), b(t)) + C.
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Indeed, since x2(t) ≤ b(t) we can write∫ 2

b

∫ b

0

y1y2

|y|4
dy2dy1 =

1

2

∫ 2

b

y1

(
1

y2
1

− 1

y2
1 + b2

)
dy1 ≤ b2

∫ 2

b

y−3
1 dy1 ≤ C. (2.71)

Thus we get
u1(b(t), t) ≥ −b(t) Ω(b(t), b(t))− 2C b(t). (2.72)

At the same time, for suitable x̃2(t) with x̃2(t) ≤ a(t) , (a(t), x̃2(t)) ∈ D̄ we have

u1(a(t), t) ≤ −a(t) Ω(a(t), x̃2(t)) + C̃a(t) ≤ −a(t) Ω(a(t), 0) + Ca(t),

by an estimate similar to (2.71) above. Observe that

Ω(a(t), 0) ≥ 4

π

∫
Ot

y1y2

|y|4
ω(y, t) dy1dy2 + Ω(b(t), b(t)).

Since ω(y, t) = 1 on Ot,∫
Ot

y1y2

|y|4
ω(y, t) dy1dy2 ≥

∫ π/4

ε

∫ b(t)/ cosφ

a(t)/ cosφ

sin 2φ

2r
drdφ >

1

8
(− log a(t) + log b(t))− C.

Therefore

u1(a(t), t) ≤ − a(t)

(
1

2π
(− log a(t) + log b(t)) + Ω(b(t), b(t))

)
+ 2Ca(t). (2.73)

Note that from estimates (2.72), (2.73) it follows that a(t) and b(t) are monotone decreasing
in time, and by finiteness of ‖u‖L∞ these functions are Lipschitz in t. Hence we have sufficient
regularity for the following calculations.

d

dt
log b(t) ≥ −Ω(b(t), b(t))− 2C , (2.74)

d

dt
log a(t) ≤ 1

2π
(log a(t)− log b(t))− Ω(b(t), b(t)) + 2C. (2.75)

Subtracting (2.74) from (2.75), we obtain

d

dt
(log a(t)− log b(t)) ≤ 1

2π
(log a(t)− log b(t)) + 4C. (2.76)

From (2.76), the Gronwall lemma leads to

log a(t)− log b(t) ≤ log (a(0)/b(0)) exp(t/2π) + 4C exp(t/2π) ≤ (9 log ε+ 4C) exp(t/2π).
(2.77)

We should choose our ε so that − log ε is larger than the constant 4C that appears in (2.77).
In this case, we obtain from (2.77) that log a(t) ≤ 8 exp(t/2π) log ε, and so a(t) ≤ ε8 exp(t/2π).
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Note that by the definition of a(t), the first coordinate of the characteristic that originates
at the point on ∂D near the origin with x1 = ε10 does not exceed a(t). To arrive at (2.55), it
remains to note that we can arrange ‖∇ω0‖L∞ . ε−10.

Let us make a few remarks regarding the construction we just completed. It is clear from
the proof that the double exponential growth in our example is fairly robust. In particular,
it will be present for any initial data in a sufficiently small L∞ ball around ω0 provided that
the odd symmetry is conserved. Essentially, what we need for the construction to work is
symmetry and the dominance of Ω terms in Lemma 2.32. The axial symmetry does appear
crucial for the construction. It is an interesting question whether one can relax the ’symmetry
requirement and get examples of double exponential growth in arbitrary smooth domain.

Another natural question is whether double exponential growth can happen in the bulk of
the fluid. As we discussed, the doubly odd symmetry is very useful for controlling the solution,
but also impedes growth where the fluid velocity would be most effective in creating it - on
the separatrices. Recently, Zlatos [122] has proved that exponential growth of the second
order derivatives of vorticity is possible starting from smooth initial data. The argument uses
an upgrade of Lemma 2.32, and the geometry is similar to Bahouri-Chemin example. Yet
exponential growth is still a linear phenomenon at heart, so the prospects for upgrading the
result to double exponential in this framework are not clear. There could be other scenarios
for double exponential growth but overall the question remains wide open.

It is also very interesting to understand how the solution looks in the long time limit in
our scenario. One general philosophy of how to prove a finite time singularity in a PDE is
as follows. Find a singular solution that is in some sense stable - namely, it should be such
that there exists a smooth trajectory which is attracted to it in finite time. One can wonder
if our scenario comes from a similar phenomenon. Of course, we know that solutions to the
2D Euler equation do not blow up in finite time. But it is not unreasonable to hypothesise
that in the large time limit small areas where vorticity is less than 1 in absolute value get
completely homogenized by the flow. Here we make contact with a broad and exciting field
in the study of 2D Euler equation that is beyond the scope of this text - the study of long
time dynamics of Euler solutions. Very little is known rigorously here, but ideas of statistical
mechanics have been used to make conjectures and predictions that seem to be corroborated
to some extent by numerical simulations. We refer the interested reader to the accessible
note by Wayne in the Notices of the AMS [114] where more references can be found. In
these theories, one relies on conserved quantities and ergodicity-type (mixing) assumptions
(rather than the actual dynamics). Such assumptions are notoriously difficult to verify. In
our situation this approach (conjecturally) predicts that as t→∞, the vorticity field ω(x, t)
should weakly∗ approach a steady-state solution, which - under our symmetry assumptions -
can be expected to have a discontinuity along the axis of symmetry {x1 = 0}. Hence one can
view the growth in the gradient of vorticity that we proved as a manifestation of the approach
to such singular solution. Of course, proving that in our example there exists such singular
steady limit is quite hard and appears to be beyond reach of current methods.

The double exponential growth example we discussed has been inspired by numerical
simulations of Tom Hou and Guo Luo [73] who propose a new scenario for the development of
a finite time singularity in solutions to the 3D Euler equation at a boundary. The geometry
of the Kiselev-Sverak example bears resemblance to the geometry of the scenario of Hou and
Luo. The problem of the finite time singularity of 3D Euler equation is one of the major open
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problems in fluid mechanics and PDE, and we refer the interested reader to [73] for more
information and to [30] for recent analytical work explaining the connection with 3D case in
more detail.
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Chapter 7

More general active scalars: the
Surface Quasi-Geostrophic equation
and the Burgers equation

1 Introduction

The 2D Euler equations, the subject of the previous chapter are an example of a broader class
of equations called ”active scalars”. A function θ(t, x) is called a (dissipative) active scalar if
it satisfies an equation of the form

θt + u · ∇θ = −(−∆)αθ, θ(0, x) = θ0(x). (1.1)

Here, the parameter α ≥ 0 measures the dissipation strength, and is typically taken in the
range 0 ≤ α ≤ 1, though the case α > 1 can also be considred. When we talk about α = 0, we
mean that the dissipative term is simply missing from the equation, and we are dealing with
the inviscid case. In this chapter, we will consider equations set on the whole space Rd or on
the torus Td, so that the issue of the boundaries and defining the fractional Laplacian in a
bounded domain does not come into play. To define the fractional Laplacian on the torus or
in the whole space, one can go to the Fourier side, where it becomes a multiplication operator.
For example, in Rn if f = (−∆)αg, then the Fourier transforms of f and g are related by

f̂(ξ) = |2πξ|2αĝ(ξ).

We will also give below an explicit formula for the fractional Laplacian in the physical space.
The vector field u in (1.1) is determined by θ, hence the name “active scalar”: θ itself defines
how it is advected. The 2D Euler equations, written in vorticity form:

ωt + u · ∇ω = 0, (1.2)

are an example of inviscid active scalar – the velocity is related to the vorticity via the
Biot-Savart law:

u = ∇⊥(−∆)−1ω, (1.3)

where ∇⊥ = (∂2,−∂1). There are many more active scalar equations. These equations are
nonlinear and the relation between the active scalar and the advecting velocity in most of
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them is nonlocal, as in the Biot-Savart law (1.3) for the Euler equations (1.2). Their solutions
are often prone to small scale creation, just as in the 2D Euler equations. For many active
scalars, the questions of finite time singularity vs. global in time regularity remain open.
The scalar itself obeys the maximum principle: the maximum of θ(t, x) in space can not
grow in time, as long as the advecting velocity u(t, x) remains smooth. Therefore, the loss of
regularity is related not to the growth of θ but to the growth of ∇θ, or other loss of spatial
regularity of θ. Our main interest in this chapter is to illustrate some of techniques and results
available for the study of these fundamental questions. We will focus on two main examples:
the Burgers equation and the surface quasi-geostrophic equation.

The Burgers equation

This is the simplest active scalar, which has been first discussed in [10] and [64], and studied
more extensively by Burgers [26] in 1948 as a model to study turbulence. The Burgers’
equation is

∂tθ + θθx + (−∂2
x)
αθ = 0, (1.4)

in one space dimension. The advecting velocity here is simply u = θ. The original work of
Burgers, as well as the vast majority of the consequent work, focused on α = 1, where the
Burgers equation has some special properties and, in particular, can be linearized by the Cole-
Hopf transformation (see e.g. [52]). But more general values of α have also been considered.
This equation is the simplest model of an interaction between the dissipative term and a
fluid-type nonlinearity. It is local, as opposed to most other active scalars. Not surprisingly,
as we will see, much is known for this equation due to its local nature. It is well known that
when α = 0, the solutions of the Burgers equation form shocks, which are jump discontinuity
singularities, in a finite time, while no shocks can be formed and solutions remain smooth
in the “diffusive case” α = 1. In Section 1.4 below, we will discuss which value of α will be
critical for the transition between the possibility of a finite time singularity and global in time
regularity.

The 2D Surface Quasi-Geostrophic (SQG) equation

The outward appearance of the non-dissipative 2D Surface Quasi-Geostrophic equation is
identical to that of the 2D Euler equation in the vorticity formulation (1.2):

θt + u · ∇θ = 0,

but the vector field u is one derivative less regular relative to the 2D Euler case and is given by

u = ∇⊥(−∆)−1/2θ, (1.5)

or, equivalently,

u(x) = cP.V.

∫
R2

θ(x− y)

(
y2

|y|3
,− y1

|y|3

)
dy, (1.6)

with an appropriately chosen constant c. We will explain why (1.5) and (1.6) are equivalent
below. The higher singularity in the kernel of this analog of the Biot-Savart law has significant
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consequences for the properties of the solutions of the SQG equation. The surface quasi-
geostrophic equation appears in atmospheric science, and we will sketch the derivation of this
model in Section 2.

In the mathematical literature, the SQG equation was first considered by Constantin,
Majda and Tabak in [33] (in the non-dissipative case α = 0). A scenario for a finite time
singularity, a closing saddle, was proposed and numerically investigated there. A close con-
nection between the SQG equation and the 3D Euler equations was also pointed out – we
will discuss this point below in more detail. It was later proved by D. Cordoba [39] that
blow up does not happen in the scenario proposed by Constantin, Majda and Tabak [33]. In
Section 3, we will discuss a later argument by D. Cordoba and C. Fefferman [40], which shows
that the solutions to the SQG equation cannot form sharp front singularities. The general
question of the finite time singularity vs global regularity remains open for the inviscid SQG
equation. We will close our discussion of the SQG equation by proving the global regularity
for the critical SQG equation, where the strength of dissipation is α = 1/2. We will explain
the origin of this terminology below, but for now we will simply say that, as we will see in
this chapter, the proof of regularity is much more standard for α > 1/2. This is close to the
best currently available regularity result for the SQG equation.

For all active scalar equations we consider here, proving local existence and uniqueness of
solutions in a sufficiently regular Sobolev space is not a problem. Moreover, if the dissipation
is present, then the local in time solution is smooth for short times even if the initial condition
is not C∞, while in the inviscid case, solution is only as smooth as the initial data. We will
not discuss this standard part of the argument which, while somewhat technical, is also well
developed. We refer to the well known textbooks such as [87], [113] or [36] for the proofs of
the local existence for related (and more complex) fluid mechanics equations. The main goal
of this chapter is to outline and explain some of the themes and terminology in the field of
nonlinear and, in particular, fluids PDEs that are most often used in the modern research –
such as subcritical, critical, supercritical, and to show them in action. We also cover many of
the most actively used methods – functional analytic estimates, a version of the comparison
principle, and the Lyapunov functional-style blow up argument.

2 The derivation of the SQG equation

The SQG equation has been a focus of intense research in recent years, perhaps because it
is the simplest looking, physically motivated model of fluid mechanics for which the basic
question of finite time singularity vs global regularity remains open. In this section, we will
sketch its derivation. We will mostly follow the exposition in the book of Majda [88], which
contains most of the relevant arguments but stops one step short of explicitly writing the
SQG equation. This last step is explained, for instance, in [72].

The rotating Boussinesq equations

The starting point for the derivation are the rotating Boussinesq equations

ρ(ut + u · ∇u) + fe3 × u+∇p = −ρge3 (2.1)

ρt +∇ · (ρu) = 0, (2.2)
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for the fluid density ρ(t, x) and velocity u(t, x), as well as the pressure p(t, x). The term fe3×u
comes from the Coriolis force due to the planetary rotation, with f the frequency of rotation,
and g is the acceleration due to gravity in the direction of e3. These equations neglect further
important effects that are included into more sophisticated models, such as, for example,
humidity, rain, and cloud formation. Yet, the Boussinesq equations are already a reasonable
model. At the same time, one can appreciate their complexity as well as the usefulness of
simpler models which can be used to gain analytical insight.

We will now obtain a simplification of the full rotating Boussinesq equations that comes
from the observation that there is a significant difference between the horizontal and the
vertical motion in the atmosphere and ocean: the horizontal motion is typically much more
pronounced. We assume that the background fluid flow is quiescent, ū = 0, and the density
has a background stratified profile

ρ = ρb − bx3,

with b > 0 to ensure that the stratification is stable. The positivity of b corresponds to the less
dense material at higher altitudes. The constant ρb describes the dominant value of density
at an altitude of interest to us, and the deviations from the background profile are assumed
to be relatively small in the Boussinesq approximation framework. The background pressure
profile is determined by the background density as the leading order term in (2.1):

∂p

∂x3

= − g

ρb
ρ(x3), (2.3)

where g is the acceleration due to gravity. Note that both background profiles depend only
on the vertical coordinate x3.

Let us denote the horizontal spatial coordinate and the horizontal component of the ve-
locity by xH = (x1, x2), and uH = (u1, u2). We will also use the notation ∇H = (∂x1 , ∂x2) for
the gradient in the horizontal direction, set u⊥H = (−u2, u1, 0), and

D

Dt
= ∂t + u · ∇, DH

Dt
= ∂t + uH · ∇H .

Note that u⊥H = e3×u. With a slight abuse of notation, we denote by ρ̃, p̃ the full density and
the pressure, respectively, and by ρ and p the deviations of the actual density and pressure
from the background profiles:

ρ = ρ̃− ρ, p = p̃− p.

Then, taking into account (2.3), the leading order of the momentum equation in the
Boussinesq system becomes

DHuH
Dt

+ u3
∂uH
∂x3

+ fu⊥H = −ρ−1
b ∇

Hp, (2.4)

DHu3

Dt
+ u3

∂u3

∂x3

= −ρ−1
b

∂p

∂x3

− g

ρb
ρ. (2.5)

Equations (2.4) and (2.5) describe the horizontal and vertical balances of the momentum.
The Boussinesq approximation is used in the right sides of (2.4) and (2.5), where we divide
by ρb instead of the full density ρ̃.
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As the background density is constant, the leading order term in the continuity equa-
tion (2.2) becomes the incompressibility condition for the fluid flow:

divHuH +
∂u3

∂x3

= 0. (2.6)

In the next order of the continuity equation, we obtain

Dρ

Dt
= −u3

∂ρ

∂x3

. (2.7)

Equations (2.4), (2.5), (2.7) and (2.6) constitute the rotating Boussinesq system. The system
is set in the half-space R3

+ = {x ∈ R3, x3 ≥ 0}. We prescribe the no flow boundary condition
at x3 = 0, that is,

u3(x1, x2, 0) = 0.

The non-dimensional equations

Let us non-dimensionalize the system by introducing some typical scales into the problem.
This will help us determine which terms in the equations should play the key role in the
phenomena we are trying to model, and which can be neglected. We have the following
physical parameters and scales: L is the mean horizontal length scale, U is the mean horizontal
advective velocity, Te = L/U is the eddy turnover time scale, TR = f−1 is the rotation time
scale associated with the planetary motion. Finally, the buoyancy time scale TN is measured
by N = T−1

N , given by

N =

(
−gρ−1

b

∂ρ

∂x3

)1/2

.

It is easy to see that TN defined above has the dimension of time. Let us rescale the variables
accordingly:

x′ =
x

L
, t′ =

t

Te
, u′ =

u

U
, ρ′ =

ρ

ρb
, p′ =

p

p
.

We arrive at the non-dimensional form of rotating Boussinesq system (omitting primes in the
notation):

DHuH
Dt

+ u3
∂uH
∂x3

+ (Ro)−1u⊥H = −P∇Hp (2.8)

DHu3

Dt
+ u3

∂u3

∂x3

= −P ∂p

∂x3

− Γρ (2.9)

Dρ

Dt
= Γ−1(Fr)−2u3. (2.10)

The incompressibility condition does not change. Here Ro, Fr, Γ, P are non-dimensional
parameters, defined as follows:

Ro =
TR
Te

=
U

Lf
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is the Rossby number, the ratio of the planetary rotation time scale to the horizontal advective
motion time scale. The Froude number

Fr =
TN
Te

=
U

LN

is the ratio of the buoyancy time scale to the horizontal advective motion time scale. The
Euler parameter

P =
p

ρbU2

compares the mean pressure to the pressure of the inertial forces. Finally,

Γ =
gL

U2
,

is the ratio of the mean potential energy to the mean kinetic energy.

Ertel’s theorem

The absolute vorticity takes into account the planetary rotation and is defined as

ωa = ω + (Ro)−1e3,

where ω = curl u. We will also need the non-dimensionalized total density ρ̃ given by

ρ̃ = ρ− Γ−1(Fr)−2x3 + 1.

It satisfies
Dρ̃

Dt
= 0. (2.11)

The following observation, known as Ertel’s Theorem will be useful to us in the passage to
the surface quasi-geostrophic equation.

Theorem 2.1 For a smooth solution of non-dimensionalized rotating Boussinesq system, we
have

D

Dt
(ωa · ∇ρ̃) = 0. (2.12)

Proof. Note that
D

Dt
(ωa · ∇ρ̃) =

Dωa
Dt
· ∇ρ̃+ ωa ·

D∇̃ρ
Dt

. (2.13)

Let us denote by ∇u the matrix with the entries (∇u)ij = ∂jui. Then, applying the gradient
to (2.11), we get

∂tρ̃+ (u · ∇)∇ρ̃+ (∇u)t∇ρ̃ = 0. (2.14)

Therefore, the second term in the right side of (2.13) is

ωa ·
D∇̃ρ
Dt

= −ωa · (∇u)t∇ρ̃.
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Next, notice that (2.8) and (2.9) can be combined as

Du

Dt
+ (Ro)−1e3 × u = −P∇p− Γρe3. (2.15)

Let us apply the curl to (2.15). The curl of the first term in the left side is

curl
(Du
Dt

)
= curl(ut + u · ∇u) =

Dω

Dt
− ω · (∇u),

as in the vorticity formulation of the 3D Euler equations (verify this computation using the
vector calculus if you have not seen it before!). For the second term in the left side of (2.15),
we note that

curl(e3 × u) = −
(∂u1

∂x3

,
∂u2

∂x3

,
∂u3

∂x3

)
= −(∇u)e3.

The first term in the right side of (2.15) is a gradient, hence its curl vanishes. The curl of the
last term in the right side is

curl(ρe3) = ∇⊥Hρ,

where ∇⊥H = (∂2,−∂1). Putting everything together, we get

Dω

Dt
− ω · (∇u)− (Ro)−1(∇u)e3 = −Γ∇⊥Hρ.

As ω · ∇u = (∇u)ω, this is
Dωa
Dt

= (∇u)ωa − Γ∇⊥Hρ. (2.16)

Thus, the first term in the right side of (2.13) equals

Dωa
Dt
· ∇ρ̃ = ∇ρ̃ · (∇u)ωa − Γ∇⊥Hρ · ∇Hρ = ∇ρ̃ · (∇u)ωa. (2.17)

Combining (2.14) and (2.17), we see that

D

Dt
(ωa · ∇ρ̃) = −ωa · (∇u)t∇ρ̃+∇ρ̃ · (∇u)ωa = 0,

finishing the proof. �

The quasi-geostrophic equations

Now we are ready to present the assumptions that reduce the rotating Boussinesq system to
a simpler system of equations. This simpler system is well known, is often used, and is called
quasi-geostrophic (QG).

The Rossby number is small. In a large scale atmospheric motion, typically the Rossby
number is in the range Ro ∼ 10−2− 10−3. Thus, we assume that the Rossby number is small,
and denote Ro = ε, with ε� 1. The reader should keep in mind that in a tornado, Ro ∼ 103.
So this assumption is not unreasonable for modeling large scale atmospheric motion, but
certainly not for modeling of a tornado.
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The geostrophic balance: the rotation and the pressure are in a balance, that is the
Coriolis force and the mean pressure are of a similar order in the horizontal momentum
equation: P = Ro−1.

The Froude number is small. We assume that the Froude number is both small and
is of the same order as the Rossby number: Fr = FRo, with the constant F = O(1). This
assumption means that the buoyancy time is small compared to the eddy turnover time, so the
fluid is highly stratified. In the rest of this section we will assume that F = 1. Otherwise, it
can be normalized this way in the quasi-geostrophic system below by rescaling the x3 variable.

The kinetic energy is small: we assume that Γ = (Fr)−1.
To summarize, the assumptions are

Ro = ε� 1, P = ε−1, F r = ε, Γ = ε−1.

With these assumptions, the rotating Boussinesq system turns into

DHuεH
Dt

+ uε3
∂uεH
∂x3

= −ε−1(uε,⊥H +∇Hpε) (2.18)

DHuε3
Dt

+ uε3
∂uε3
∂x3

= −ε−1

(
∂pε

∂x3

+ ρε
)

(2.19)

Dρε

Dt
= ε−1uε3, divHu

ε
H +

∂uε3
∂x3

= 0. (2.20)

Also, Ertel’s Theorem gives

D

Dt

(
(ω + ε−1e3) · ∇(ρ− ε−1x3)

)
= −ε−1 D

Dt

(
ω3 −

∂ρ

∂x3

− εω · ∇ρ
)

= 0. (2.21)

We will think of ε as a small parameter, and will consider a formal asymptotic expansion of
the solution into a series in powers of ε :

uεH = u
(0)
H + εu

(1)
H +O(ε2); uε3 = u

(0)
3 + εu

(1)
3 +O(ε2)

ρε = ρ(0) + ερ(1) +O(ε2); pε = p(0) + εp(1) +O(ε2).

Let us substitute these expansions into the system (2.18), (2.19) and (2.20). The leading
terms will be of the order ε−1.

From (2.18), we obtain

u
(0)
H = −∇⊥Hp(0), (2.22)

the geostrophic balance. It implies, in particular, that

∆Hp
(0) = ω

(0)
3 . (2.23)

The vertical momentum equation gives

∂p(0)

∂x3

= −ρ(0). (2.24)

This equality is known as the hydrostatic balance.
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The density equation leads to u
(0)
3 = 0. The incompressibility condition is then automati-

cally satisfied to the leading order:

divHu
(0)
H +

∂u
(0)
3

∂x3

= divH∇⊥Hp(0) = 0.

Next, since u
(0)
3 = 0, the Ertel theorem , to the leading order, gives

DH

Dt

(
ω

(0)
3 −

∂ρ(0)

∂x3

)
= 0. (2.25)

According to (2.24), we have
∂ρ(0)

∂x3

= −∂
2p(0)

∂x2
3

.

Substituting this identity and (2.23) into (2.25), we obtain

DH

Dt

(
∆Hp

(0) +
∂2p(0)

∂x2
3

)
= 0. (2.26)

The system of equations (2.23), (2.24) and (2.26):

∆Hp
(0) = ω

(0)
3 (2.27)

∂p(0)

∂x3

= −ρ(0) (2.28)

DH

Dt

(
∆Hp

(0) +
∂2p(0)

∂x2
3

)
= 0, (2.29)

is called the quasi-geostrophic (QG) system, and the quantity in the parentheses in (2.26) is
called the ”potential vorticity”. One can, in fact, prove the convergence of the solutions of
the rotating Boussinesq system to the solutions of the QG equation as ε→ 0 [88] (for a finite
time while solutions are known to remain smooth).

The surface quasi-geostrophic equation

To obtain the surface quasi-geostrophic equation, we make one more assumption: the potential
vorticity is originally zero, that is,

∆p(0)(0, x) = 0.

See [72] for a discussion of this assumption. It follows from (2.26) that this remains true for
all times, so p(0)(x, t) is a harmonic function:

∆p(0)(t, x) = 0, x ∈ R3
+, t ≥ 0. (2.30)

Consider the boundary of our half-space, the plane x3 = 0. On this plane, according
to (2.20), and since u3 vanishes on the boundary, the density ρ(0)(t, xH , 0) satisfies a closed-
form advection equation

∂tρ
(0) + uH · ∇Hρ(0) = 0. (2.31)
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In addition, we get from (2.24)

∂p(0)

∂x3

∣∣∣∣
x3=0

= −ρ(0)(xH , 0). (2.32)

Let us recall the following fact.

Lemma 2.2 Suppose that a function p is harmonic and bounded in R3
+, and is continuous

up to the boundary along with the first and second order derivatives. Then

∂p

∂x3

∣∣∣∣
x3=0

= −(−∆H)1/2p(x1, x2, 0), (2.33)

where ∆H denotes the Laplacian in horizontal variables x1 and x2.

That is, the normal derivative at the boundary of a function harmonic in the half-space R3
+

is equal to the planar fractional 1/2-Laplacian of the trace of this harmonic function on the
boundary.

Let us postpone the proof of the lemma and finish the derivation of the SQG equation.
Given the result of Lemma 2.2, (2.32) leads to the relation between the density and the
pressure on the surface {x3 = 0}:

ρ(0)(t, xH , 0) = (−∆H)1/2p(0)(t, xH , 0).

But then, by geostrophic balance (2.22), we have on the boundary x3 = 0

u
(0)
H (t, xH , 0) = −∇⊥Hp(0)(t, xH , 0) = −∇⊥H(−∆H)−1/2ρ(0)(t, xH , 0). (2.34)

If we now drop the sub-script H and set θ(t, x) = ρ(0)(t, x, 0), then equations (2.31) and (2.34)
together become

θt + u · ∇θ = 0, (2.35)

u(t, x) = −∇⊥(−∆H)−1/2θ(t, x), (2.36)

which is exactly the inviscid SQG equation (modulo the sign change but such is life).
One can solve this equation on the plane and then recover p(0) on the half-space from the value
of its normal derivative, thus solving the QG system in the leading order for the particular
class of initial data with vanishing potential vorticity.

Let us also mention that another version of the SQG equation, which is well motivated from
the physical point of view is the critical SQG equation, with the dissipative term described
by the fractional Laplacian of the power 1/2:

∂tρ
(0) + uH · ∇Hρ(0) + (−∆H)1/2ρ(0) = 0. (2.37)

Note that, since by our assumptions the function p(0) is harmonic in R3
+, the relationship (2.32)

implies that ρ(0) is harmonic in R3
+ as well. Then, Lemma 2.2 implies that

(−∆H)1/2ρ(0)(t, xH , 0) = −∂ρ
(0)

∂x3

(t, xH , 0).
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One may use this identity tp show that the additional dissipative term in (2.37) describes the
heat loss due to a boundary layer effect and models the so-called Ekman pumping. We refer
to, for example, [102] for further discussion of this phenomenon.

It remains to prove Lemma 2.2. The formal reason why it holds is quite simple: taking
the Fourier transform in the horizontal variables of the Laplace equation

∆Hp+
∂2p

∂x2
3

= 0,

gives
∂2p̂(ξ, x3)

∂x2
3

= 4π2|ξ|2p̂(ξ, x3).

Boundedness of p̂(ξ, x3) as x3 → +∞ implies that

p̂3(ξ, x3) = p̂(ξ, 0)e−2π|ξ|x3 ,

so that
∂p̂(ξ, 0)

∂x3

= −2π|ξ|p̂(ξ, 0),

which is the Fourier transform form of (2.33).
To give a more careful proof, recall that the two dimensional Poisson kernel is given by

P2
h(x) = c2h(|x|2 + h2)−3/2,

where c2 is a positive constant. Observe that P2
h(x) is the derivative of the three dimensional

Laplacian Green’s function (|x|2 + h2)−1/2 with respect to h. We first claim that

p(x1, x2, h) = P2
h ∗ p = c2

∫
R2

hp(y1, y2, 0)

(|x− y|2 + h2)3/2
dy1dy2. (2.38)

Indeed, the link of P2
h and the Laplacian’s Green’s function allows to verify that the function

in the right side of (2.38) is harmonic in R3
+. Fruthermore, one can show that for the right

choice of c2, the Poisson kernel P2
h is an approximation of identity as h → 0. Therefore, the

right hand side of (2.38) converges to p(x1, x2, 0) as h→ 0. Well known uniqueness properties
of harmonic functions imply then that the equality (2.38) holds.

Exercise 2.3 Verify the claims in the preceding paragraph via a direct computation.

In the next section we will discuss the Poisson kernels in more detail. In particular, we

will see that the Fourier transform of the Poisson kernel P̂2
h(k) is e−h|k|, as expected from the

formal computation at the start of this proof. This helps explain the convergence of P2
h to

the δ-function as h→ 0.
Now, we have

∂p

∂h
(x1, x2, h) = c2

∫
R2

(
p(y1, y2, 0)

(|x− y|2 + h2)3/2
− 3h2p(y1, y2, 0)

(|x− y|2 + h2)5/2

)
dy1dy2.
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A direct computation which is best carried out in the polar coordinates shows that the kernel

1

(|x|2 + h2)3/2
− 3h2

(|x|2 + h2)5/2

is mean zero in R2, so we may write

∂p

∂h
(x1, x2, h) = c2

∫
R2

( 1

(|x− y|2 + h2)3/2
− 3h2

(|x− y|2 + h2)5/2

)
(p(y, 0)− p(x, 0))dy. (2.39)

Observe that, due to the symmetry of the kernel, the first order terms in the Taylor expansion
of p(y, 0) near (x, 0) integrate out to zero, so that∣∣∣ ∫

R2

3h2

(|x− y|2 + h2)5/2
(p(y, 0)− p(x, 0)) dy

∣∣∣ ≤ ∫
R2

Ch2min(|x− y|2, 1)

(|x− y|2 + h2)5/2
dy

≤ C

(
h2 +

∫
|x−y|≤1

h1/2

|x− y|3/2
dy

)
→ 0, (2.40)

as h→ 0. On the other hand, one can show that

lim
h→0

∫
R2

1

(|x− y|2 + h2)3/2
(p(y, 0)−p(x, 0)) dy = P.V.

∫
R2

1

|x− y|3
(p(y, 0)−p(x, 0)) dy, (2.41)

where the principal value integral is defined as

P.V.

∫
R2

1

|x− y|3
(p(y, 0)− p(x, 0)) dy = lim

ε→0

∫
|x−y|≥ε

1

|x− y|3
(p(y, 0)− p(x, 0)) dy. (2.42)

Exercise 2.4 Verify (2.41).

In Lemma 4.1 below, we will see that (2.42) is exactly equal to (−∆H)1/2p(x1, x2, 0). This
completes the proof of the lemma. �

3 Ruling out the front singularity

In the paper of Constantin, Majda and Tabak, where the SQG equation was essentially first
introduced in the mathematical literature, a scenario for a finite time singularity formation
has been proposed. The scenario involves a particular initial condition, where the level sets of
the temperature (density) contain a hyperbolic saddle point. Numerical simulations showed
that the arms of the saddle tend to close in a finite time, producing a sharp front along a
curve. Later, more careful numerical studies of Ohkitani-Yamada [101] and Constantin-Nie-
Schorghofer [37] suggested that instead of the finite time singularity, the derivatives of the
temperature grow as a double exponential in time. Analytically, the closing hyperbolic saddle
scenario has been studied by D. Cordoba in [39], where he showed that the angle of the saddle
cannot decrease faster than a double exponential in time. Our goal in this section is to provide
a proof of the result due to D. Cordoba and C. Fefferman [36], which shows that the solutions
of the SQG equation cannot in general form a front-like singularity along a curve – under
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certain mild conditions on the geometry of the singularity formation. We will mostly follow
the arguments of [36] in this section.

Assume that a smooth decaying function θ(t, x) solves the inviscid SQG equation

∂tθ + (u · ∇)θ = 0, (3.1)

u = (∂2(−∆)−1/2θ,−∂1(−∆)−1/2θ), (3.2)

with the initial condition θ(0, x) = θ0(x), for t ∈ [0, T ). Let us define the stream function

ψ = (−∆)−1/2θ,

so that u = ∇⊥ψ = (∂2ψ,−∂1ψ). The Fourier transforms of the functions ψ and θ are related
by

ψ̂(ξ) =
1

2π|ξ|
θ̂(ξ).

The function ĝ(ξ) = 1/|ξ|, in dimension n = 2, is a Schwartz distribution, which is radially
symmetric and homogeneous of degree (−1). Therefore, its inverse Fourier transform is a
Schwartz distribution g(x) which is homogeneous of degree −2 − (−1) = −1, and is also
radially symmetric. Hence, g(x) = c/|x|, with a constant c that may be computed but is
of no particular importance so we will not dwell on its value. Thus, the stream function is
given by

ψ(x) = (−∆)−1/2θ(x) = c1

∫
R2

θ(y)

|x− y|
dy, (3.3)

with an appropriate constant c1.
Let us now assume that a level curve of the function θ(t, x) can be parametrized by

x2 = φρ(t, x1) for x1 ∈ [a, b], (3.4)

where φρ ∈ C1([0, T ), [a, b]), in the sense that

θ(t, x1, φρ(t, x1)) = ρ for x1 ∈ [a, b], t ∈ [0, T ). (3.5)

We obtain from (3.4) and (3.5):

∂θ

∂x1

+
∂θ

∂x2

∂φρ
∂x1

= 0,
∂θ

∂t
+

∂θ

∂x2

∂φρ
∂t

= 0, (3.6)

when evaluated at (t, x1, φρ(t, x1)). The SQG equation (3.1) for θ(t, x) used in (3.6), together
with the expression u = ∇⊥ψ, gives

∂φρ
∂t

= − ∂θ/∂t

∂θ/∂x2

=
(u · ∇θ)
∂θ/∂x2

=
∂ψ

∂x2

∂θ/∂x1

∂θ/∂x2

− ∂ψ

∂x1

= − ∂ψ
∂x2

∂φρ
∂x1

− ∂ψ

∂x1

. (3.7)

On the other hand, we also have

∂

∂x1

(ψ(t, x1, φρ(t, x1))) =
∂ψ

∂x1

+
∂ψ

∂x2

∂φρ
∂x1

, (3.8)
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and therefore,
∂φρ
∂t

= − ∂

∂x1

(ψ(x1, φρ(x1, t), t)). (3.9)

Equation (3.9) can be used to compute the change in the area between two level curves of θ
over the interval x1 ∈ [a, b] :

d

dt

∫ b

a

(φρ2(t, x1)− φρ1(t, x1)) dx1 = −ψ(t, b, φρ2(t, b)) + ψ(t, a, φρ2(t, a))

+ψ(t, b, φρ1(t, b))− ψ(t, a, φρ1(t, a)) (3.10)

= ψ(t, b, φρ1(t, b))− ψ(t, b, φρ2(t, b))− (ψ(t, a, φρ1(t, a))− ψ(t, a, φρ2(t, a)).

Let us define the local thickness of the front δ(x1, t) by

δ(t, x1) = |φρ2(t, x1)− φρ1(t, x1)|.

We say that the solution exhibits a semi-uniform collapse on a curve if (3.4) and (3.5) hold
(for fixed values ρ1 and ρ2), if

minx1∈[a,b]δ(t, x1)→ 0, as t→ T,

and if the thickness of the front δ(t, x1) satisfies

minx1∈[a,b]δ(t, x1) ≥ cmaxx1∈[a,b]δ(t, x1) (3.11)

for all t ≤ T, with a constant c > 0 that is independent of t. We call the value b−a the length
of the front. The first condition above means that the front collapses and θ(t, x) becomes
singular at the time T , and the second means that the front collapse is uniform, so that the
singularity at the time T happens along a curve.

The following theorem shows that semi-uniform collapse along a front of a positive length
is not possible for the solutions of the SQG equation.

Theorem 3.1 For a solution of the SQG equation with a semi-uniform front, the thickness
of the front must satisfy

δ(t) ≡ 1

b− a

∫ b

a

(φρ2(x1, t)− φρ1(x1, t)) dx1 ≥ e−e
At+B

(3.12)

for all t for which the semi-uniform front persists. Here, the constants A and B may depend
only on the length of the front, the constant c in (3.11), the initial thickness of the front, and
on the L1 and L∞ norms of the initial data θ0.

Proof. Since the fluid velocity in the SQG equation is incompressible, it is straightforward to
check that any Lp, 1 ≤ p ≤ ∞ norm of smooth solution does not change in time. From (3.10),
we see that ∣∣∣∣ ddtδ(t)

∣∣∣∣ ≤ C

b− a
supx1∈[a,b]|ψ(t, x1, φρ2(t, x1))− ψ(t, x1, φρ1(t, x1))|. (3.13)
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Next, using (3.3), we can write

ψ(t, z2)− ψ(t, z1) = c1

∫
R2

θ(t, y)

(
1

|y − z2|
− 1

|y − z1|

)
dy. (3.14)

Since we are interested in the regime where the thickness of the front is small, and the front
collapse is semi-uniform, we can assume without loss of generality that τ = |z2 − z1| < 1/2.
Let us split the integral in the right side of (3.14) into three regions:

|y − z1| ≤ 2τ, 2τ ≤ |y − z1| ≤ 1, and |y − z1| ≥ 1.

We denote the contributions from these three regions by I1, I2 and I3. To estimate I1, note
that

|I1| ≤ C‖θ0‖L∞
∫
|z1−y|≤2τ

∣∣∣∣ 1

|y − z2|
− 1

|y − z1|

∣∣∣∣ dy (3.15)

≤ C‖θ0‖L∞
∫
|z1−y|≤2τ

( 1

|y − z2|
+

1

|y − z1|

)
dy ≤ Cτ.

The term I3 is also easy to bound: as |z1 − z2| ≤ 1/2, we have

|I3| ≤ c1

∫
|z1−y|≥1

|θ(y)|
∣∣∣∣ z2 − z1

|y − z1||y − z2|

∣∣∣∣ dy ≤ 2c1‖θ0‖L1τ ≤ Cτ. (3.16)

Finally, let us estimate I2. The mean value theorem implies that there is a point s(y) on the
line connecting z1 and z2 such that∣∣∣∣ 1

|y − z2|
− 1

|y − z1|

∣∣∣∣ =

∣∣∣∣(y − s) · (z2 − z1)

|y − s|3

∣∣∣∣ .
As we are considering the region 2τ ≤ |y − z1| ≤ 1, for any point s on the line connecting z1

and z2, we have

|y − s| ≥ |y − z1| − |z1 − s| ≥ |y − z1| − τ ≥
1

2
|y − z1|.

Taking this into account, we obtain

|I2| ≤ C‖θ0‖L∞
∫

2τ≤|y−z1|≤1

∣∣∣∣(y − s(y)) · (z2 − z1)

|y − s(y)|3

∣∣∣∣ dy ≤ C‖θ0‖L∞τ
∫

2τ≤|y−z1|≤1

1

|y − z1|2
dy

≤ Cτ log τ−1. (3.17)

Combining (3.15), (3.16) and (3.17), we get

|ψ(z2, t)− ψ(z1, t)| ≤M |z2 − z1| log |z2 − z1|−1, (3.18)

whenever |z2 − z1| < 1/2, with the constant M that depends only on the initial data θ0.
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It follows from (3.13) and (3.18) that∣∣∣∣ ddtδ(t)
∣∣∣∣ ≤ M

b− a
supx1∈[a,b]

(
|φρ2(x1, t)− φρ1(x1, t)| log |φρ2(x1, t)− φρ1(x1, t)|−1

)
≤ CM

b− a
δ(t) log δ(t)−1. (3.19)

The last inequality follows from the definition of δ(t), and the assumption that the front is
semi-uniform. By standard arguments, the differential inequality (3.19) implies that

δ(t) ≥ δ(0)e
CM
b−a t

,

from which the conclusion of the theorem follows. �
In general, the question whether solutions of the inviscid SQG equation develop a singu-

larity in a finite time remains open. There is no clear candidate scenario for the singularity
formation in the case of the smooth initial data, but, on the other hand, the current analytical
methods fall far short from providing a general global regularity proof. In the next section, we
will consider the SQG equation with the dissipation in the form of a fractional Laplacian. As
we have mentioned, the fractional Laplacian of the power 1/2 is physically motivated. More
general powers are then natural to consider for mathematical reasons. Interestingly, as we
will see in the next section, the 1/2 power also carries a very special mathematical meaning –
it is critical. This means, informally, that at this power the dissipation precisely balances the
strength of the nonlinearity. While one can expect the global regularity when the dissipation
is stronger than the nonlinearity, the critical case is more subtle and can not be decided in a
simple way. In the supercritical case, when the dissipation is weak, one expects that the finite
time singularity vs global regularity question should be decided by the nonlinearity. However,
things may be more complicated than that – for many supercritical PDE this basic question
remains open.

4 Global regularity for the subcritical SQG equation

We will discuss below the dissipative SQG equation

∂θ

∂t
+ (u · ∇)θ + (−∆)αθ = 0, u = ∇⊥(−∆)1/2θ, θ(x, 0) = θ0(x), (4.1)

with α > 0. We will start with the maximum principle that applied to solutions of the
dissipative SQG equation with all α > 0 and shows that ‖θ(t)‖L∞ ≤ ‖θ0‖L∞ . Next, we
will use the maximum principle and a Gagliardo-Nirenberg inequality to prove the global
in time existence of smooth solutions in the subcritical case α > 1/2. The “truly difficult”
case α = 1/2 requires a very different approach and is considered in the next section.

The maximum principle

The first step in the analysis of the dissipative SQG equation is to establish the L∞ maximum
principle. Let us begin by deriving an explicit formula for the fractional Laplacian. The
argument below is taken from [41].
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Lemma 4.1 Let 0 < α < 1, and let f(x) be a C∞0 (Rd) function, then

(−∆)αf(x) = CαP.V.

∫
R2

f(x)− f(y)

|x− y|d+2α
dy. (4.2)

Here, Cα > 0 is a constant that can be computed explicitly. The same formula remains valid
in the periodic case if f ∈ C∞(Td), given that we periodize f(x) and regard the integral (4.2)
in this sense.

Proof. Recall the following formula which generalizes (3.3) to all α ∈ (0, 1):

r(x) = (−∆)−αf(x) = cαP.V.

∫
Rd

f(y)

|x− y|d−2α
dy. (4.3)

This is proved as (3.3): the Fourier transform of the function r(x) is

r̂(ξ) =
1

(2π|ξ|)2α
f̂(ξ).

The inverse Fourier transform of ĝ(ξ) = 1/|ξ|2α is a radially symmetric function which is
homogeneous of degree −d − (−2α). Thus, g(x) = cα/|x|d−2α. Then, (4.3) follows from the
fact that the multiplication operation on the Fourier side corresponds to a convolution in the
physical space.

We now can write

(−∆)αf(x) = (−∆)α−1(−∆)f(x) = −cαP.V.
∫
Rd

∆f(y)

|x− y|d−2+2α
dy

= −cα lim
ε→0

∫
|x−y|≥ε

∆y(f(y)− f(x))

|x− y|d−2+2α
dy := lim

ε→0
(−∆)αε f(x).

An application of Green’s theorem gives us (here, we denote by νy the inward normal to the
sphere |x− y| = ε at the point y)

(−∆)αε f(x) = Cα

∫
|x−y|≥ε

f(x)− f(y)

|x− y|d+2α
dy +

∫
|x−y|=ε

(f(y)− f(x))
∂

∂νy

[
|x− y|−d+2−2α] dσ(y)

−
∫
|x−y|=ε

|x− y|−d+2−2α∂(f(y)− f(x))

∂νy
dσ(y) = I1 + I2 + I3. (4.4)

The last two terms can be estimated as

I2 = ε−d+1−2α

∫
|x−y|=ε

(f(y)− f(x)) dσ(y) = O(ε2−2α),

and

I3 = ε−d+2−2α

∫
|x−y|=ε

∂(f(x)− f(y))

∂νy
dσ(y) = O(ε2−2α).

Therefore, passing to the limit as ε→ 0, we obtain (4.2). The periodic analog can be derived
similarly to how it was done in Lemma 2.20 in the previous chapter. �

The formula (4.2) is very convenient for the derivation of the L∞ maximum principle.
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Lemma 4.2 Suppose that f(x) ∈ C∞0 (R2), or f ∈ C∞(T2) and mean zero, 0 ≤ α ≤ 1,
and 1 ≤ p <∞, then ∫

|f(x)|p−2f(x)(−∆)αf(x) dx ≥ 0. (4.5)

Proof. The cases α = 0 and α = 1 are easy to check directly. For 0 < α < 1, we have∫
|f |p−2f(−∆)αf dx = lim

ε→0

∫
|f |p−2f(−∆)αε f dx = lim

ε→0

∫
|f |p−2fI1 dx,

where I1 is the same as above in (4.4). Observe that∫
|f |p−2fI1 dx = cα

∫ ∫
|x−y|≥ε

|f(x)|p−2f(x)
(f(x)− f(y))

|x− y|2+2α
dxdy

= −cα
∫ ∫

|x−y|≥ε
|f(y)|p−2f(y)

(f(x)− f(y))

|x− y|2+2α
dxdy

by relabeling the variables. Symmetrizing, we get∫
|f |p−2fI1 dx =

cα
2

∫ ∫
|x−y|≥ε

(
|f(x)|p−2f(x)− |f(y)|p−2f(y)

) (f(x)− f(y))

|x− y|2+2α
dxdy ≥ 0,

so that (4.5) holds. �
Now the L∞ maximum principle follows easily and in more generality.

Corollary 4.3 (L∞ Maximum Principle) Let θ(t, x) and u(t, x) be smooth functions on
either R2 or T2 (rapidly decaying in the R2 case) satisfying

θt + u · ∇θ + (−∆)αθ = 0,

with 0 ≤ α ≤ 1, and either ∇ · u = 0 or ui = ∂iG(θ), with some smooth function G(θ). Then
for 1 ≤ p ≤ ∞ we have

‖θ(·, t)‖Lp ≤ ‖θ0‖Lp .

Proof. We compute

d

dt

∫
|θ|p dx = p

∫
|θ|p−2θ(−u · ∇θ − (−∆)αθ) dx = −p

∫
|θ|p−2θ(−∆)αθ dx ≤ 0,

where we integrated by parts, used that ∇ · u = 0 or ui = ∂iG(θ), and applied Lemma 4.2. �

The regularity for the subcritical SQG equation

The L∞ maximum principle makes the dissipation exponent α = 1/2 critical for the SQG
equation (as well as for the Burgers equation). This means that for α > 1/2 the dissipation
term is strong enough to control the nonlinearity and prevent the singularity of the solutions
in a ”simplistic fashion”. One can see this intuitively by comparing the relative sizes of the
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nonlinear term u · ∇θ and the dissipative term (−∆)αθ. We know that ‖θ‖L∞ is controlled.
Then, since for the SQG equation the fluid flow

u = ∇⊥((−∆)1/2θ),

is dimensionally the same as θ, we can expect a similar control of u. This is not quite true: u
is the Riesz transform of θ and, as we have discussed in the previous chapter, the Riesz
transform is bounded on Lp for 1 < p < ∞ but not on L∞. But let us for now proceed
with a rough heuristic argument. Assuming we can control ‖u‖L∞ , the balance is between
the terms ‖u‖L∞|∇θ| and (−∆)αθ. If there is a sharp front of width h then the first term is
of the size ‖u‖L∞h−1, while the second is of the size h−2α. Because of the (presumed) bound
on ‖u‖L∞ , the dissipation should win if α > 1/2. If α = 1/2, then, naively, one would expect
nonlinearity to be able to dominate for large initial data since ∇θ is, roughly, of the same size
as (−∆)1/2θ and ‖u‖L∞ would be ”large”. Somewhat surprisingly, this is not the case, and
global regularity remains true for α = 1/2. We will first sketch global regularity proof for the
subcritical case α > 1/2, which is a fairly standard argument. We will then give a proof of
the critical regularity, which is also simple but uses novel ideas.

Let us begin by stating the analog of the Biot-Savart formula for the SQG equation
velocity.

Proposition 4.4 The velocity u for the SQG equation can be determined from θ by the
following formula

u(x) =
1

2π
P.V.

∫
R2

(x− y)⊥

|x− y|3
θ(y) dy. (4.6)

The formula is valid for θ ∈ C1 ∩ L1(R2) or θ ∈ C1(T2) with zero mean. In the latter case,
we extend θ periodically to all R2 in the integral (4.6).

Proof. Consider the R2 case first. According to (4.3), we have

(−∆)−1/2θ(x) = c

∫
R2

f(y)

|x− y|
dy,

and the explicit constant c = (2π)−1 can be found in [110]. Computing the distributional
derivatives of the above expression, we obtain (4.6). The periodic case can be handled in the
manner similar to the 2D Euler case in Lemma 2.20. �

Exercise 4.5 Work out carefully the details of the sketched argument, justifying the differ-
entiation, using the definition of the principal value.

The main result in the subcritical case is the following theorem.

Theorem 4.6 Let θ0(x) ∈ C∞(T2), and α > 1/2. Then there exists a unique global smooth
solution θ(t, x) of (4.1) with the initial condition θ0.

Proof. We choose to present the T2 case but the whole space argument is similar. We also
do not pursue the most general assumptions on the initial data. As we have discussed in the
introduction, the local in time existence of a smooth solution can be established by standard
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means. The key for the global in time existence argument is to obtain global a priori bounds
on the sufficiently high order Sobolev norms of solution. This would allow us to use the local
in time argument repeatedly and to continue the solution up to an arbitrary time.

Let us multiply (4.1) by (−∆)sθ and integrate. We get

1

2

d

dt
‖θ‖2

Hs +

∫
(−∆)sθ(−∆)αθdx =

∫
T2

(u · ∇)θ(−∆)sθ dx.

As ∫
T2

(−∆)sθ(−∆)αθdx =

∫
T2

|(−∆)(α+s)/2θ|2dx,

we deduce that
1

2

d

dt
‖θ‖2

Hs + ‖θ‖2
Hs+α =

∫
T2

(u · ∇)θ(−∆)sθ dx. (4.7)

The second term in the left side of (4.7) is the dissipation that helps us, while the term in the
right side, which comes from the nonlinearity, is ”dangerous”.

Note that (−∆)sθ is a sum of derivatives of the order 2s of the form ∂i1∂i1 . . . ∂is∂isθ. Let
us integrate by parts, transferring exactly half of the matching derivatives to the term (u·∇)θ.
We obtain a sum of terms of the form∫

T2

∂i1 . . . ∂is((u · ∇)θ)∂i1 . . . ∂isθ dx.

Let us apply the Leibnitz rule in the first factor. Note that when all derivatives fall on θ, we
obtain

1

2

∫
T2

(u · ∇)(∂i1 . . . ∂isθ)
2 dx. (4.8)

This term is potentially very dangerous – a priori it depends on the derivatives of θ of the
order s + 1. Hence, it would be impossible to control it by the dissipative term ‖θ‖Hs+α

unless α > 1, while we only assume that α > 1/2. Fortunately, this term vanishes after
integration by parts due to the incompressibility of u, and is therefore not a problem. All
other summands can be written in the form∫

T2

(Dlu)(Ds−l+1)(θDsθ) dx,

where each D stands for some partial derivative and l may vary from 1 to s. Let us estimate
every integral using the Hölder inequality∣∣∣∣∫

T2

(Dlu)(Ds−l+1θ)(Dsθ) dx

∣∣∣∣ ≤ ‖Dlu‖Lpl‖Ds−l+1θ‖Lql‖Dsθ‖Lnl , (4.9)

with
1

pl
+

1

ql
+

1

nl
= 1. (4.10)

The powers pl, ql and nl will be chosen soon. At the moment we obtain

d

dt
‖θ‖2

Hs ≤ C

s∑
l=1

‖Dlu‖Lpl‖Ds−l+1θ‖Lql‖Dsθ‖Lnl − ‖θ‖2
Hs+α . (4.11)
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Observe that
‖Dlu‖Lpl ≤ C‖Dlθ‖Lpl ,

since Dlu is a Riesz transform of Dlθ, and 1 < pl < ∞. Singular integral operators such
as the Riesz transform are known to be bounded on Lp spaces with 1 < p < ∞, see, for
example, [109] for the proof. Thus, we actually have

d

dt
‖θ‖2

Hs ≤ C

s∑
l=1

‖Dlθ‖Lpl‖Ds−l+1θ‖Lql‖Dsθ‖Lnl − ‖θ‖2
Hs+α . (4.12)

Our goal is to beat the first term in the right side of (4.11), which may produce growth
by the last term, which comes with the negative sign. To this end, we will need to use the
following version of the Gagliardo-Nirenberg inequality.

Theorem 4.7 Suppose that f ∈ C∞(Td) and m is an integer such that 1 ≤ m ≤ r, then

‖Dmf‖L2r/m ≤ C‖f‖1−m/r
L∞ ‖(−∆)r/2f‖m/rL2 . (4.13)

Here, Dm denotes an arbitrary partial derivative of order m.

The inequality (4.13) is well known; it is contained, for example, in the encyclopedic refer-
ence [91]. However we are not aware of the source containing a simple and easily accessible
proof. For this reason, we include a sketch of the proof of (4.13) in Section 6.1 at the end of
this chapter. Let us just mention here that the inequality (4.13) is dimensionally correct: if x
has the dimension of length L, then the left side of (4.13) has the dimension

(L−m(2r/m)Ld)m/(2r) = L−m+dm/(2r),

and the right side of this inequality has the dimension

(L−2rLd)m/(2r),

which is the same. Often, the Gagliardo-Nirenberg inequalities that are dimensionally correct,
are actually true, but see Section 6.1 for an actual proof.

The reason we choose this particular Gagliardo-Nirenberg inequality is clear – we have
control over ‖θ‖L∞ , so using (4.13) would reduce the overall power of the potentially dangerous
cubic term in the right side (4.11). The price in the form of the Hr-Sobolev norm that we
need to pay is not bad, as long as r < s+α, which is the good term in the right side of (4.11).

We will use Theorem 4.7 to bound each term in the cubic nonlinearity in the right side
of (4.12), always using the same r. This will give us, for each 1 ≤ l ≤ s:

pl =
2r

l
, ql =

2r

s− l + 1
, nl =

2r

s
.

Condition (4.10) becomes then

l

2r
+
s− l + 1

2r
+

s

2r
= 1,
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or r = s + 1/2. It is exactly this little calculation that determines the critical α = 1/2 – the
dissipation involves the Sobolev norm Hs+α, and to have any hope to beat the nonlinearity
with such dissipation, we need s+α > r, meaning α > 1/2. With this choice, the cubic term
in (4.12), for each 1 ≤ l ≤ s, can be estimated using (4.13) as

‖Dlu‖Lpl‖Ds−l+1θ‖Lql‖Dsθ‖Lnl ≤ C‖θ‖aL∞‖θ‖bHs+1/2 , (4.14)

with

a = 1− 2

pl
+ 1− 2

ql
+ 1− 2

nl
= 1,

and

b =
2

pl
+ 2

2

ql
+

2

nl
= 2,

so that
‖Dlu‖Lpl‖Ds−l+1θ‖Lql‖Dsθ‖Lnl ≤ C‖θ‖L∞‖θ‖2

Hs+1/2 . (4.15)

Putting these estimates into (4.11), together with the L∞ maximum principle, we get

d

dt
‖θ‖2

Hs ≤ C‖θ‖L∞‖θ‖2
Hs+1/2 − ‖θ‖2

Hs+α ≤ C‖θ0‖L∞‖θ‖2
Hs+1/2 − ‖θ‖2

Hs+α . (4.16)

It remains to observe that, as α > 1/2, we may use Hölder’s inequality to get

‖θ‖2
Hs+1/2 = C

∑
n∈Z2

|n|2s+1|θ̂n|2 ≤ C
(∑
n∈Z2

|n|(2s+1)p|θ̂n|(2−a)p
)1/p(∑

n∈Z2

|θ̂n|aq
)1/q

, (4.17)

for any

0 < a < 2 and
1

p
+

1

q
= 1.

As α > 1/2, we may choose

p =
2(s+ α)

2s+ 1
> 1,

and q and a so that
1

p
= 1− a

2
,

1

q
=
a

2
.

With this choice of the parameters, (4.17) becomes

‖θ‖2
Hs+1/2 ≤ C‖θ‖(2s+1)/(s+α)

Hs+α ‖θ‖(2α−1)/(s+α)

L2 ≤ C‖θ0‖(2α−1)/(s+α)

L2 ‖θ‖(2s+1)/(s+α)

Hs+α . (4.18)

Thus, (4.16) can be written as a differential inequality

d

dt
‖θ‖2

Hs ≤ C1‖θ‖βHs+α − C2‖θ‖2
Hs+α , (4.19)

with the constants C1 and C2 that depend on the initial data and

β =
2s+ 1

s+ α
< 2,
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for α > 1/2. Therefore, there exists M > 0 which depends on C1 and C2 so that

d

dt
‖θ(t)‖Hs ≤ 0 if ‖θ(t)‖Hs+α > M. (4.20)

As θ has mean zero, we also know that

‖θ‖Hs+α ≥ ‖θ‖Hs .

Therefore, we know from (4.20) that ‖θ(t)‖Hs is decreasing if ‖θ(t)‖Hs > M . These two
observations imply that ‖θ‖Hs is bounded globally in time if α > 1/2. The argument clearly
fails if α = 1/2. �

Exercise 4.8 We have used the same value r = s+ 1/2 above, as we applied the Gagliardo-
Nirenberg inequality to estimate each of ‖Dlu‖Lpl , ‖Ds−l+1θ‖Lql and ‖Dsθ‖Lnl . Show that
using a different r1,2,3 for each of these terms, would not allow us to improve the value of the
critical α = 1/2.

5 The regularity of the critical SQG equation

For the critical case α = 1/2, we need new ideas. The critical SQG equation has the form

θt + u · ∇θ = −(−∆)1/2θ, (5.1)

u = ∇⊥(−∆)−1/2θ,

θ(0, x) = θ0(x).

The problem of the regularity of its solutions has been solved a few years ago independently
by Kiselev, Nazarov and Volberg [77], and by Caffarelli and Vasseur [29] using very different
methods. By now, there are several more proofs [34, 35, 79]. The proof of Constantin, Tarfulea
and Vicol [35] shows most clearly how dissipation controls the nonlinearity. We will follow
the original proof in [77], which is less explicit but elegant.

Theorem 5.1 The critical surface quasi-geostrophic equation with periodic smooth initial
data θ0(x) has a unique global in time smooth solution. Moreover, the following estimate
holds for all times:

‖∇θ(t, ·)‖∞ ≤ C‖∇θ0‖∞ exp exp{C‖θ0‖∞} . (5.2)

In fact, the key to the proof of Theorem 5.1 is the a priori estimate (5.2), as the following
proposition implies.

Proposition 5.2 Assume that θ(t, x) is a smooth, local in time solution to the critical SQG
equation with smooth initial data. Suppose that T > 0 is the first time such that some Sobolev
norm of the solution blows up: ‖θ(t, ·)‖Hs →∞ as t→ T. Then we also have

lim
t→T
‖∇θ(x, t)‖L∞ →∞.
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Exercise 5.3 Prove Proposition 5.2 using the following strategy. Suppose, for the sake of a
contradiction, that some Sobolev norm of the solution blows up at t = T while ‖∇θ(t)‖L∞
remains bounded. We can follow the proof of Theorem 4.6 but now we have a much better
control of the function θ(t, x) because of the a priori information that ‖∇θ(t)‖L∞ is uniformly
bounded in time. In particular, we can base the Gagilardo-Nirenberg inequalities on ‖∇θ‖L∞
instead of ‖θ‖L∞ . This will give a lower power of ‖θ‖s+1/2 in the estimate of the nonlinearity
than in the dissipative term even for α = 1/2, leading to a differential inequality for ‖θ‖Hs

that will show that ‖θ‖Hs is decreasing if it is large. Thus, if ‖∇θ‖L∞ ≤ C < ∞ on [0, T ],
then we have a bound on any Hs norm of θ(x, t) preventing it from going to infinity at t = T.
Fill in the (technical) details.

We note that sharper results are available in the literature. The L∞ norm is barely not
enough to handle the critical case, so the control of any positive Hölder norm of the solution
should suffice to prove the global in time regularity. Indeed, it has been shown by Constantin
and Wu [38] that controlling Cβ, β > 1 − 2α, norm of the solution is sufficient to prove
regularity for the supercritical SQG equation with (−∆)α dissipation.

The modulus of continuity

The main idea of the proof will be to try to estimate a certain well chosen modulus of
continuity of the solution.

Definition 5.4 A function ω : R+ 7→ R+ is a modulus of continuity if ω(0) = 0, ω is contin-
uous, increasing and concave. We will also require that ω is piecewise C1 on (0,∞). That is,
its derivative is continuous, apart from possibly a finite number of points where the one-sided
derivatives exist but may not be equal. A function f obeys a modulus of continuity ω if

|f(x)− f(y)| < ω(|x− y|) for all x 6= y.

We say that an evolution equation for θ(t, x) preserves ω if θ(t, x) obeys a modulus of conti-
nuity ω for all times t > 0 provided that the initial data θ0(x) obeys ω.

A classical example of a modulus of continuity is ω(ξ) = ξβ, 0 < β < 1, corresponding to
functions of the Hölder classes.

The flow term u · ∇θ in the dissipative quasi-geostrophic equation can potentially make
the modulus of continuity of θ worse while the dissipation term (−∆)αθ tends to make it
better. Our aim is to construct some special moduli of continuity for which the dissipation
term always prevails, and such that every periodic C∞-function θ0 obeys one of these special
moduli of continuity.

The critical (α = 1/2) SQG equation has a simple scaling invariance: if θ(t, x) is a solution,
then so is θ(Bt,Bx), for any B > 0. This means that if we manage to find one modulus of
continuity ω that is preserved by the evolution for all periodic solutions (that is, with arbitrary
lengths and spacial orientations of the periods), then the whole family

ωB(ξ) = ω(Bξ)

of moduli of continuity will also be preserved for all periodic solutions.
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Note that if a modulus of continuity ω is unbounded, then any given C∞ periodic function
has the modulus of continuity ωB for a sufficiently large B > 0. Also, if the modulus of
continuity ω has a finite derivative at 0 and θ obeys ω, then ‖∇θ‖∞ ≤ ω′(0). Thus, due to
Proposition 5.2, our task in the proof of global in time regularity of the solutions reduces
to constructing an unbounded modulus of continuity with a finite derivative at 0 that is
preserved by the critical SQG evolution.

Exercise 5.5 Given an unbounded modulus of continuity ω and smooth periodic initial
data θ0(x), find explicitly B0 such that for B > B0, the function θ0 obeys ωB. The con-
stant B0 should only depend on ω, ‖θ0‖L∞ , and ‖∇θ0‖L∞ .

From now on, we will also assume that in addition to unboundedness and the condi-
tion ω′(0) < +∞ our modulus of continuity will satisfy

lim
ξ→0+

ω′′(ξ) = −∞.

This assumption is of a purely technical nature but will be very useful for us. One simple
observation is the following

Lemma 5.6 If a smooth periodic function f obeys a modulus of continuity ω with

ω′(0) < +∞ and lim
ξ→0+

ω′′(ξ) = −∞, (5.3)

then
‖∇f‖∞ < ω′(0) . (5.4)

The key here is the strict inequality: the less or equal bound in (5.4) follows easily without
the extra assumptions (5.3) on ω′′(ξ).

Proof. Indeed, take a point x ∈ Rd at which max |∇f | is attained and consider the point

y = x+ ξe,

where

e =
∇f
|∇f |

.

Then we must have
f(y)− f(x) ≤ ω(ξ), for all ξ ≥ 0. (5.5)

The left side above is at least

f(y)− f(x) ≥ |∇f(x)|ξ − ‖∇
2f‖∞
2

ξ2,

while the right side in (5.5) can be represented as

ω(ξ) = ω′(0)ξ − ρ(ξ)ξ2,

with ρ(ξ)→ +∞ as ξ → 0+. Thus, we have

|∇f(x)| ≤ ω′(0)− (ρ(ξ)− ‖∇
2f‖∞
2

)ξ for all ξ > 0,

and it remains to choose small enough ξ > 0 ensuring ρ(ξ) > |∇2f‖∞/2, showing that (5.4)
holds, with a strict inequality. �
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Modulus of continuity of the velocity

Before we begin the analysis of the SQG dynamics, we link the moduli of continuity obeyed
by θ and by u.

Lemma 5.7 If the function f obeys a modulus of continuity ω, then

u = (∂2(−∆)−1/2f,−∂1(−∆)1/2f)

has the modulus of continuity

Ω(ξ) = A

(∫ ξ

0

ω(η)

η
dη + ξ

∫ ∞
ξ

ω(η)

η2
dη

)
, (5.6)

with some universal constant A > 0.

Observe that for ω(ξ) that is Hölder near zero, ω(ξ) = Cξα with 0 < α < 1, the modulus of
continuity Ω(ξ) given by (5.6) has the Hölder behavior with the same exponent. On the other
hand, for ω(ξ) that is Lipschitz near zero, we get an extra logarithm in Ω(ξ), coming from
the second term in (5.6). This is an illustration of a well known fact (see e.g. [109]) that the
Riesz transforms are bounded on Cα but not on the space of Lipschitz functions.

Proof of Lemma 5.7. The Riesz transforms

R1,2 = ∂1,2(−∆)−1/2

are singular integral operators with explicit kernels of the form

K(r, ζ) = r−2Ω(ζ),

where (r, ζ) are the polar coordinates (see (4.6)). The function Ω is smooth and∫
S1

Ω(ζ)dσ(ζ) = 0. (5.7)

Assume that the function f satisfies

|f(x)− f(y)| < ω(|x− y|)

for some modulus of continuity ω. Take any x, y with |x− y| = ξ, and consider the difference

P.V.

∫
K(x− z)f(z) dz − P.V.

∫
K(y − z)f(z) dz. (5.8)

The mean zero property (5.7) of Ω allows us to write∣∣∣∣P.V.∫
|x−z|≤2ξ

K(x− z)f(z) dz

∣∣∣∣ =

∣∣∣∣P.V.∫
|x−z|≤2ξ

K(x− z)(f(z)− f(x)) dz

∣∣∣∣ < C

∫ 2ξ

0

ω(r)

r
dr.

Since ω is concave and ω(0) = 0, the function ω(r)/r is decreasing, thus we have∫ 2ξ

0

ω(r)

r
dr ≤ 2

∫ ξ

0

ω(r)

r
dr.
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A similar estimate holds for the second integral in (5.8) for the region |y − z| ≤ 2ξ. Next,
let x̃ = (x+ y)/2 and note that if |x− z| > 2ξ, then

|x̃− z| ≥ |x− z| − |x̃− x| ≥ 3ξ

2
,

and similarly for z such that |y − z| ≥ 2ξ. In addition, whenever |x̃− z| > 3ξ, we have both

|x− z| ≥ 2ξ, and |y − z| ≥ 2ξ.

Thus, we can write, once again using (5.7):∣∣∣∣∫
|x−z|≥2ξ

K(x− z)f(z) dz −
∫
|y−z|≥2ξ

K(y − z)f(z) dz

∣∣∣∣
=

∣∣∣∣∫
|x−z|≥2ξ

K(x− z)(f(z)− f(x̃)) dz −
∫
|y−z|≥2ξ

K(y − z)(f(z)− f(x̃)) dz

∣∣∣∣
≤
∫
|x̃−z|≥3ξ

|K(x− z)−K(y − z)||f(z)− f(x̃)| dz

+

∫
3ξ/2≤|x̃−z|≤3ξ

(|K(x− z)|+ |K(y − z)|)|f(z)− f(x̃)| dz = I + II.

Since

|K(x− z)−K(y − z)| ≤ C
|x− y|
|x̃− z|3

when |x̃− z| ≥ 3ξ, the first integral is estimated by

I ≤ Cξ

∫ ∞
3ξ

ω(r)

r2
dr.

The second integral is estimated by

II ≤ Cω(3ξ)

∫ 3ξ

3ξ/2

rdr

ξ2
≤ Cω(3ξ).

Once again, as the function ω is concave and ω(0) = 0, we have ω′(r) ≤ ω(r)/r, thus

II ≤ 3C

∫ 3ξ

0

ω(r)

r
dr ≤ 9C

∫ ξ

0

ω(r)

r
dr.

This completes the proof of Lemma 5.7. �

Breaking a modulus of continuity

A breakthrough scenario

Next, we determine what must happen for the solution θ(t, x) of the critical SQG equation
to break a modulus ω that θ0 obeys.
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Lemma 5.8 (The breakthrough lemma) Suppose that the smooth periodic initial con-
dition θ0 obeys the modulus of continuity ω, but the solution θ(T, x) no longer obeys it at
some T > 0. Then, there must exist a time t1 such that for all t < t1, θ(t, x) obeys ω, while
at t = t1 there exist x 6= y such that

θ(t1, x)− θ(t1, y) = ω(|x− y|).

Proof. Suppose that θ obeys the modulus of continuity ω at a time t0 ≥ 0:

|θ(t0, x)− θ(t0, y)| < ω(|x− y|) for all x 6= y.

We claim that then θ obeys then modulus of continuity ω for all t > t0 sufficiently close to t0.
Indeed, by Lemma 5.6, at the moment t0 we have

‖∇θ‖∞ < ω′(0).

By the continuity of the derivatives, this inequality also holds for t > t0 close to t0, which
guarantees the inequality

|θ(t, x)− θ(t, y)| < ω(|x− y|) for small |x− y|.

Also, since ω is unbounded and ‖θ‖∞ doesn’t grow with time, we automatically have

|θ(t, x)− θ(t, y)| < ω(|x− y|) for large |x− y|.

The final observation is that, due to the periodicity of θ, for each y ∈ T2 fixed, it suffices to
check the inequality

|θ(t, x)− θ(t, y)| < ω(|x− y|)

for x in a compact set K ⊂ R2. Thus, we are left with the task to show that, if

|θ(t0, x)− θ(t0, y)| < ω(|x− y|) for all x ∈ K, δ ≤ |x− y| ≤ δ−1,

with some fixed δ > 0, then the same inequality remains true for a short time beyond t0. But
this immediately follows from the uniform continuity of θ. This proves that the set S of t for
which θ obeys ω is open. As θ(T, x) does not obey ω, the set of such times is bounded from
above. Consider its supremum t1. By continuity, we must have

|θ(t1, x)− θ(t1, x)| ≤ ω(|x− y|) for all x 6= y.

On the other hand, as the set S is open, t1 6∈ S,hence the function θ does not obey ω at t1.
Thus, we can find x 6= y as in the statement of the lemma. �

An unbreakable modulus of continuity

The main idea now is to construct a modulus of continuity for which the breakthrough scenario
is impossible. Let ω be a modulus of continuity obeyed by θ0 and let t1 be the first time when
the modulus is touched: there exist some “breakthrough points” x, y ∈ T2 so that

θ(t1, x)− θ(t1, y) = ω(|x− y|). (5.9)
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We are going to choose ω so that if (5.9) holds but

|θ(t, x1)− θ(t, x2)| ≤ ω(|x1 − x2|), for all 0 ≤ t ≤ t1 and all x1, x2 ∈ T2, (5.10)

then
∂t(θ(x, t)− θ(y, t))|t1 < 0, (5.11)

which is a contradiction. Therefore, for this choice of ω we must have

|θ(t, x)− θ(t, y)| < ω(|x− y|), (5.12)

if
|θ0(x)− θ0(y)| < ω(|x− y|). (5.13)

In addition, we will choose ω so that the above property holds not only for ω itself but also
for its rescaled versions ωB(ξ) = ω(Bξ). As we have mentioned, given any initial data we are
able to find B > 0 so that

|θ0(x)− θ0(y)| < ωB(|x− y|). (5.14)

As a consequence, we will have

|θ(t, x)− θ(t, y)| < ω(|x− y|). (5.15)

It will follow then that
‖∇θ(t)‖L∞ ≤ ω′B(0), for all t ≥ 0,

providing an a priori L∞-bound on θ(t, x). Proposition 5.2 will then imply that θ(t, x) is
regular for all t ≥ 0.

We start the search for such ω by computing

∂t(θ(t, x)− θ(t, y))|t=t1 = −(u · ∇θ)(t1, x) + (u · ∇θ)(t1, y) (5.16)

− (−∆)1/2θ(t1, x) + (−∆)1/2θ(t1, y).

Here, x and y are the breakthrough points, and t1 is the breakthrough time. The two terms
in the right side of (5.15) will be estimated separately.

An estimate for the flow term

We first look at the flow term in the right side of (5.16) and estimate how dangerous it is.
Observe that

(u · ∇θ)(t1, x) =
d

dh
θ(t1, x+ hu(t1, x))

∣∣
h=0

,

and similarly for y, so that

(u · ∇θ)(t1, x)− (u · ∇θ)(t1, y)

= lim
h→0

1

h
(θ(t1, x+ hu(t1, x))− θ(t1, x)− θ(t1, y + hu(t1, y)) + θ(t1, y)).

Lemma 5.7 implies that

|θ(t1, x+ hu(t1, x))− θ(t1, y + hu(t1, y))| ≤ ω(|x− y|+ h|u(t1, x)− u(t1, y)|)
≤ ω(ξ + hΩ(ξ)),
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where, as in (5.6),

Ω(ξ) = A

(∫ ξ

0

ω(η)

η
dη + ξ

∫ ∞
ξ

ω(η)

η2
dη

)
.

We have set here ξ = |x− y|. Since

θ(t1, x)− θ(t1, y) = ω(ξ),

we conclude that

(u · ∇θ)(t1, x)− (u · ∇θ)(t1, y) ≤ lim
h→0

1

h
(ω(ξ + hΩ(ξ))− ω(ξ)) ≤ Ω(ξ)ω′(ξ) . (5.17)

Switching the role of x and y, we obtain

|(u · ∇θ)(t1, x)− (u · ∇θ)(t1, y)| ≤ Ω(ξ)ω′(ξ) . (5.18)

An estimate for the dissipative term

According to Lemma 2.2, the fractional Laplacian of a smooth function θ can be represented as

−(−∆)1/2θ(x) = lim
h→0

1

h
(Ph ∗ θ(x)− θ(x)) , (5.19)

where Ph(x) is the 2-dimensional Poisson kernel

Ph(x) = c2h(|x|2 + h2)−3/2,

with an appropriately chosen constant c2 to ensure that Ph(x) → δ(x) as h → 0, in the
sense of distributions. The formula (5.19) is easy to verify on the Fourier side. In fact, it is
straightforward to use the Fourier transform to compute the Poisson kernel in any dimension:

Pdh(x) = cdh(|x|2 + h2)−
d+1
2 . (5.20)

The computation below will use the following dimensional reduction formula:∫
R
P2
h(x1, x2) dx2 = P1

h(x1). (5.21)

These formulae hold for all smooth periodic functions regardless of the lengths and spatial
orientation of the periods, which allows us to freely use the scaling, translation and rotation.

Exercise 5.9 Compute explicitly, with the help of the Fourier inversion that

P1
h(x) =

h

π(x2 + h2)
, (5.22)

and the relation (5.21). Finally, verify the formula (5.20) for the Poisson kernel in a general
dimension.
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Thus, our task is to estimate
(Ph ∗ θ)(x)− (Ph ∗ θ)(y),

under the assumption that θ obeys a modulus of continuity ω. Since everything is transla-
tionally and rotationally invariant, we may assume that x = (ξ/2, 0) and y = (−ξ/2, 0). We
will show, after a somewhat lengthy computation, that

(Ph ∗ θ)(x)− (Ph ∗ θ)(y)− ω(|x− y|) ≤ 1

π

∫ ξ/2

0

ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)

η2
dη

+
1

π

∫ ∞
ξ/2

ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)

η2
dη. (5.23)

Then, taking into account that x and y are such that

θ(t1, x)− θ(t1, y) = ω(|x− y|),

together with (5.19), the corresponding term in (5.16) can be estimated as

−(−∆)1/2θ(t1, x) + (−∆)1/2θ(t1, y)

= lim
h→0

1

h
(Ph ∗ θ(t1, x)− Ph ∗ θ(t1, x)− (θ(t1, x)− θ(t1, y)))

≤ 1

π

∫ ξ/2

0

ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)

η2
dη

+
1

π

∫ ∞
ξ/2

ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)

η2
dη. (5.24)

Note that both terms in the right side of (5.24) are strictly negative. For the first term, this
follows immediately from the concavity of ω:

1

2
[ω(ξ + 2η) + ω(ξ − 2η)] ≤ ω(ξ).

For the second term, note that

ω(2η + ξ)− ω(2η − ξ) = 2ω′(ζ)ξ,

with some ζ ∈ (2η − ξ, 2η + ξ). In the domain of integration of the second term in the right
side of (5.23), we have η > ξ/2, thus

ζ > 2η − ξ > ξ.

Concavity of ω implies then that

ω′(ζ) < ω′(ξ) ≤ ω(ξ)

ξ
,

and thus
ω(2η + ξ)− ω(2η − ξ) = 2ω′(ζ)ξ ≤ 2ω(ξ). (5.25)
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Therefore, both terms in the right side of (5.23) are negative, so that the dissipation may help
us to ensure that (5.11) holds, that is,

∂t(θ(x, t)− θ(y, t))|t1 < 0, (5.26)

if

|θ(t, x1)− θ(t, x2)| ≤ ω(|x1 − x2|), for all 0 ≤ t ≤ t1 and all x1, x2 ∈ T2,

and θ(t1, x)− θ(t1, y) = ω(|x1 − x2|), (5.27)

which is our ultimate goal.
To start the computation leading to (5.23), let us write (omitting the time dependence)

(Ph ∗ θ)(x)− (Ph ∗ θ)(y) =

∫
R2

[Ph(
ξ

2
− η, ν)− Ph(−

ξ

2
− η, ν)]θ(η, ν) dηdν

=

∫
R
dν

∫ ∞
0

[Ph(
ξ

2
− η, ν)− Ph(−

ξ

2
− η, ν)]θ(η, ν)dη

+

∫
R
dν

∫ ∞
0

[Ph(
ξ

2
+ η, ν)− Ph(−

ξ

2
+ η, ν)]θ(−η, ν) dη.

As Ph(x1, x2) is even in x1, we may re-write the last expression as

(Ph ∗ θ)(x)− (Ph ∗ θ)(y) =

∫
R
dν

∫ ∞
0

[Ph(
ξ

2
+ η, ν)− Ph(−

ξ

2
+ η, ν)](θ(η, ν)− θ(−η, ν) dη.

Since ξ > 0, η > 0, and, once again, Ph(x1, x2) is even in x1, and monotonically decreasing
in |x1|, we have

Ph(
ξ

2
+ η, ν)− Ph(−

ξ

2
+ η, ν) ≥ 0,

and thus

(Ph ∗ θ)(x)− (Ph ∗ θ)(y) ≤
∫
R
dν

∫ ∞
0

[Ph(
ξ

2
− η, ν)− Ph(−

ξ

2
− η, ν)]ω(2η) dη.

Now, we may use the dimension reduction formula (5.21) to integrate out the ν-variable:

(Ph ∗ θ)(x)− (Ph ∗ θ)(y) ≤
∫ ∞

0

[P1
h(
ξ

2
− η)− P1

h(−ξ
2
− η)]ω(2η) dη.

Using the symmetry of P1
h(x1) one more time, this becomes

(Ph∗θ)(x)−(Ph∗θ)(y) ≤
∫ ξ

0

P1
h(
ξ

2
−η)ω(2η) dη+

∫ ∞
0

P1
h(
ξ

2
+η)[ω(2η+2ξ)−ω(2η)] dη. (5.28)

The same symmetry means that the first integral above can be re-written as∫ ξ

0

P1
h(
ξ

2
− η)ω(2η) dη =

∫ ξ/2

−ξ/2
P1
h(η)ω(ξ − 2η) dη =

∫ ξ/2

0

P1
h(η)[ω(ξ + 2η) + ω(ξ − 2η)] dη.
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Thus, (5.29) becomes

(Ph ∗ θ)(x)− (Ph ∗ θ)(y) ≤
∫ ξ/2

0

P1
h(η)[ω(ξ + 2η) + ω(ξ − 2η)] dη (5.29)

+

∫ ∞
ξ/2

P1
h(η)[ω(2η + ξ)− ω(2η − ξ)] dη .

As ∫ ∞
0

P1
h(η) dη =

1

2
,

we conclude that

(Ph ∗ θ)(x)− (Ph ∗ θ)(y)− ω(ξ) ≤
∫ ξ/2

0

P1
h(η)[ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)] dη

+

∫ ∞
ξ/2

P1
h(η)[ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)] dη .

Using the explicit formula (5.23) for P1
h, dividing by h and passing to the limit h → 0+, we

finally conclude that the contribution of the dissipative term to our derivative is bounded
from above by

(Ph ∗ θ)(x)− (Ph ∗ θ)(y)− ω(|x− y|) ≤ 1

π

∫ ξ/2

0

ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)

η2
dη

+
1

π

∫ ∞
ξ/2

ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)

η2
dη (5.30)

which is (5.23).

The choice of the modulus of continuity

Summarizing the estimates (5.18) and (5.24) for the fluid and dissipation terms, respectfully,
in (5.16), we have so far shown that for any concave modulus of continuity we have

∂t(θ(t, x)− θ(t, y))|t=t1 ≤ Ω(ξ)ω′(ξ) +
1

π

∫ ξ/2

0

ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)

η2
dη

+
1

π

∫ ∞
ξ/2

ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)

η2
dη. (5.31)

Recall that x and y realize the modulus of continuity at the time t1:

θ(t1, x)− θ(t1, y) = ω(|x− y|),

and the function Ω(ξ) is given by (5.6):

Ω(ξ) = A

(∫ ξ

0

ω(η)

η
dη + ξ

∫ ∞
ξ

ω(η)

η2
dη

)
, (5.32)
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As we have mentioned, we will construct a special modulus of continuity so as to make the
right side of (5.31) negative. This will contradict the assumption that t1 is the first time
when a pair of point realizes the modulus of continuity ω, and will prove the claim that this
modulus of continuity survives forever, so that the solution of the critical SQG equation is
regular globally in time.

To define the modulus of continuity, consider two small positive numbers δ > γ > 0 to be
determined later and define the continuous function ω by

ω(ξ) = ξ − ξ
3
2 when 0 ≤ ξ ≤ δ

and
ω′(ξ) =

γ

ξ(4 + log(ξ/δ))
when ξ > δ .

Note that, for small δ, the left derivative of ω at δ is

ω′(δ−) = 1− 3

2
δ1/2,

while the right derivative equals

ω′(δ+) =
γ

4δ
<

1

4
< ω′(δ−).

Therefore, the function ω is concave if δ is small enough. It is clear that

ω′(0) = 1, lim
ξ→0+

ω′′(ξ) = −∞,

and that ω is unbounded (it grows at infinity as a double logarithm). The hard part, of
course, is to show that, for this ω, the negative contribution to the right side of (5.31) coming
from the dissipative term prevails over the positive contribution coming from the flow term.
More precisely, we have to check the inequality

A

[∫ ξ

0

ω(η)

η
dη + ξ

∫ ∞
ξ

ω(η)

η2
dη

]
ω′(ξ) +

1

π

∫ ξ/2

0

ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)

η2
dη

+
1

π

∫ ∞
ξ/2

ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)

η2
dη < 0 for all ξ > 0 . (5.33)

As we have mentioned, this inequality together with (5.31) would imply that

∂t(θ(x, t)− θ(y, t))|t1 < 0, (5.34)

if

|θ(t, x1)− θ(t, x2)| ≤ ω(|x1 − x2|), for all 0 ≤ t ≤ t1 and all x1, x2 ∈ T2,

and θ(t1, x)− θ(t1, y) = ω(|x1 − x2|). (5.35)

This is a maximum principle for the modulus continuity, ensuring that θ(t, x) obeys ω for
all t ≥ 0 if θ0 obeys ω, and that would finish the proof of Theorem 5.1.
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Chcking the inequality (5.33)

We will refer to

P = A

[∫ ξ

0

ω(η)

η
dη + ξ

∫ ∞
ξ

ω(η)

η2
dη

]
ω′(ξ) > 0,

as the positive part of the left side of (5.33), and to

N =
1

π

∫ ξ/2

0

ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)

η2
dη

+
1

π

∫ ∞
ξ/2

ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)

η2
dη = N1 +N2

as the negative part. Recall that the integrands both in N1 and N2 are negative because of
the concavity of ω.

Let is first assume that 0 ≤ ξ ≤ δ. Since ω(η) ≤ η for all η ≥ 0, we have∫ ξ

0

ω(η)

η
dη ≤ ξ,

and ∫ δ

ξ

ω(η)

η2
dη ≤ log

δ

ξ
.

We also have ∫ ∞
δ

ω(η)

η2
dη =

ω(δ)

δ
+ γ

∫ ∞
δ

1

η2(4 + log(η/δ))
dη ≤ 1 +

γ

4δ
< 2 .

Observing that ω′(ξ) ≤ 1, we conclude that the positive part is bounded by

P ≤ Aξ(3 + log
δ

ξ
).

To estimate the negative part, we just use N1. Note that

ω(ξ + 2η) ≤ ω(ξ) + 2ω′(ξ)η

due to the concavity of ω, and

ω(ξ − 2η) ≤ ω(ξ)− 2ω′(ξ)η − 2ω′′(ξ)η2,

due to the second order Taylor formula and monotonicity of ω′′ on [0, ξ]. Inserting these
inequalities into the integral in N1, we get the bound

N1 ≤
1

π

∫ ξ/2

0

ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)

η2
dη ≤ 1

π
ξω′′(ξ) = − 3

4π
ξ1/2 .

Therefore, we have

P +N ≤ P +N1 ≤ Aξ(3 + log
δ

ξ
)− 3

4π
ξ1/2 < 0, for ξ ∈ (0, δ],
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if δ is small enough.

Finally, let us assume that ξ ≥ δ. In this case, we use the bounds

ω(η) ≤ η for 0 ≤ η ≤ δ,

and

ω(η) ≤ ω(ξ) for δ ≤ η ≤ ξ.

Hence, we have, for the first integral in the positive part∫ ξ

0

ω(η)

η
dη ≤ δ + ω(ξ) log

ξ

δ
≤ ω(ξ)

(
2 + log

ξ

δ

)
because

ω(ξ) ≥ ω(δ) >
δ

2
if δ is small enough.

The second integral in the positive part can be bounded as∫ ∞
ξ

ω(η)

η2
dη =

ω(ξ)

ξ
+ γ

∫ ∞
ξ

dη

η2(4 + log(η/δ))
≤ ω(ξ)

ξ
+
γ

ξ
≤ 2ω(ξ)

ξ

if γ < δ/2 and δ is small enough. Thus, the positive part is bounded from above by

P ≤ Aω(ξ)

(
4 + log

ξ

δ

)
ω′(ξ) = Aγ

ω(ξ)

ξ
, for ξ ≥ δ.

To estimate the negative term, we will now rely on N2. Due to the concavity of ω, we
have (see (5.25))

ω(2η + ξ)− ω(2η − ξ) ≤ ω(2ξ), for all η ≥ ξ

2
.

In addition, for ξ ≥ δ, we have

ω(2ξ) = ω(ξ) + γ

∫ 2ξ

ξ

dη

η(4 + log(η/δ))
≤ ω(ξ) +

γ log 2

4
≤ 3

2
ω(ξ)

if γ < δ/10. Therefore, N2 can be bounded as

N2 =
1

π

∫ ∞
ξ/2

ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)

η2
dη ≤ − 1

2π

∫ ∞
ξ/2

ω(ξ)

η2
dη = − 1

π

ω(ξ)

ξ
.

It follows that

P +N ≤ P +N2 ≤
ω(ξ)

ξ
(Aγ − 1

π
) < 0,

if γ is small enough. This completes the proof of Theorem 5.1. �
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6 Finite time blow up: the Burgers equations

No story in nonlinear PDE is complete without a finite time blow up example. Such example
is not available for the SQG equation or the classical 3D equations of fluid mechanics. We
will therefore consider a more basic but still quite interesting equation - the Burgers equation.
The lack of nonlocality in the nonlinear term makes this equation much more amenable to
analysis.

In this section, we will prove finite time blow up for the supercritical dissipative Burgers
equation given by

∂tθ + θθx + (−∆)αθ = 0, θ(x, 0) = θ0(x). (6.1)

We will consider equation set in one dimension with periodic boundary conditions. The main
result we will prove is

Theorem 6.1 Suppose that α ≥ 1/2, and θ0 is smooth. Then there exists a unique smooth
solution θ(x, t) of (6.1).

Suppose that α < 1/2. Then there exist smooth θ0 such that the corresponding solution
blows up in finite time.

The proof of the first part of the Theorem is similar to the SQG equation case. In fact
the argument is simpler due to the advection velocity being equal to just θ.

Exercise. Carry out the global regularity proof for the critical Burgers equation. What
would you get in place of the estimate (5.2)?

For the Burgers equation without dissipation, finite time shock formation is well known
and can be shown by the method of characteristics (see e.g. [52]). This method does not
work for the dissipative part of the equation. The equation (6.1) has two terms each of
which is relatively easy to understand: local nonlinear term and fractional heat equation
dissipative term. One way to analyze equation with such structure is to use a method called
time splitting. The origin of this method is the Trotter formula which says that

eA+B = lim
n→∞

(
eA/neB/n

)n
where A, B are for example bounded self-adjoint operators (see e.g. [105], [112]). This
formula can be generalized to nonlinear setting, and time splitting approach was used in [76]
to prove the second part of Theorem 6.1. However this method is fairly technical. We will
use a different, less direct approach based on construction of Lyapunov functional (following
[50]). Let us first illustrate this approach by providing a proof of loss of regularity of solutions
to inviscid Burgers. This method will be easier to generalize to the viscous case than the
characteristics approach.

Suppose that the period is equal to 2. Consider θ0 which is odd, and θ0(x) ≥ 0 for
−1 ≤ x ≤ 0. It is not difficult to show, using uniqueness of solutions, that the solution
θ(x, t) is odd, too, at least while it remains smooth. This is similar to the proofs of symmetry
conservation for the solutions of 2D Euler equation that we carried out in the previous chapter.
Let

L(t) = −
∫ 1

0

θ(x, t)

xσ
dx.
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Note that if σ < 2, the integral defining L(t) is convergent while θ(x, t) remains smooth, due
to its oddness. Now while θ(x, t) is smooth,

L′(t) = −
∫ 1

0

∂tθ(x, t)

xσ
dx =

1

2

∫ 1

0

∂x(θ(x, t))
2

xσ
dx =

σ

2

∫ 1

0

θ(x, t)2

x1+σ
dx.

By Hölder inequality,∣∣∣∣∫ 1

0

θ(x, t)

xσ
dx

∣∣∣∣ ≤ (∫ 1

0

θ(x, t)2

x1+σ
dx

)1/2(∫ 1

0

x1−σ dx

)1/2

.

Thus L′(t) ≥ CL(t)2, and L(0) > 0 by choice of initial data. Hence L(t) has to blow up in
finite time, and therefore θ(x, t) has to lose regularity in finite time.

The proof of the second part of Theorem 6.1 follows a similar idea.
Proof. [Proof of Theorem 6.1] Suppose again that the period is equal to 2. Take as before

θ0 to be odd and θ0(x) ≥ 0 for −1 ≤ x ≤ 0. Let us introduce a weight function

w(x) =

{
sgn(x)

(
|x|−δ − 1

)
, |x| ∈ (0, 1),

0 x /∈ (−1, 1),
(6.2)

0 < δ < 2. Consider L(t) = −
∫ 1

−1
θ(x, t)w(x) dx. Note that L(0) ≥ 0. Then

L′(t) =
1

2

∫ 1

−1

∂x(θ(x, t)
2)w(x) dx+

∫ 1

−1

(−∆)αθ(x, t)w(x) dx. (6.3)

Assuming that θ(x, t) remains smooth, we can integrate by parts in the first integral in (6.3),
obtaining

1

2
θ(x, t)2w(x)

∣∣∣∣1
−1

+
δ

2

∫ 1

−1

θ(x, t)2|x|−1−δ dx,

where the first term vanishes due to (6.2). On the other hand,

−
∫ 1

−1

θ(x, t)w(x) dx ≤
(∫ 1

−1

θ(x, t)2|x|−1−δ dx

)1/2(∫ 1

−1

|x|1−δ
)1/2

.

Therefore, similarly to the inviscid computation,∫ 1

−1

θ(x, t)2|x|−1−δ dx ≥ CL(t)2.

Next, consider ∫
R
(−∆)αθ(x, t)w(x) dx.

Recall that

(−∆)αθ(x) = P.V.

∫
R

θ(x)− θ(y)

|x− y|1+2α
dy,

where θ(y) is extended periodically to R.
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First, we claim that∫
R
(−∆)αθ(x, t)w(x) dx =

∫
R
θ(x, t)(−∆)αw(x) dx. (6.4)

Indeed, ∫
R
P.V.

∫
R

θ(x)− θ(y)

|x− y|1+2α
dyw(x) dx = lim

ε→0

∫
|x−y|≥ε

(θ(x)− θ(y))w(x)

|x− y|1+2α
dydx =

1

2
lim
ε→0

∫
|x−y|≥ε

(θ(x)− θ(y))w(x) + (θ(y)− θ(x))w(y)

|x− y|1+2α
dxdy =

1

2
lim
ε→0

∫
|x−y|≥ε

θ(x)(w(x)− w(y)) + θ(y)(w(y)− w(x))

|x− y|1+2α
dxdy = lim

ε→0

∫
|x−y|≥ε

θ(x)
w(x)− w(y)

|x− y|1+2α
dydx.

To estimate (6.4), we need to control (−∆)αw(x).

Lemma 6.2 Assume 0 < δ < 1. Then
(i) If |x| ≥ 1, we have |(−∆)αw(x)| ≤ C|x|−2−2α.
(ii) If |x| < 1, we have |(−∆)αw(x)| ≤ C|x|−δ−2α.
In particular, if δ ∈ (0, 1− 2α), then

∫
R |(−∆)αw(x)| dx ≤ C.

Let us finish the proof of Theorem 6.1 using Lemma 6.2. Given α < 1/2, choose δ so that
1 − 2α > δ > 0. With such choice of parameters, it follows from Lemma 6.2 and our earlier
computations that L′(t) ≥ C1L(t)2−C2. If L(0) is sufficiently large, this differential inequality
implies finite time blow.

Exercise. Verify carefully the last claim.
Note that L(t) cannot diverge; for our parameters the integrand is absolutely integrable

even if θ(x, t) is not smooth but just bounded. Rather, we obtain a contradiction with our
assumption that θ(x, t) remains smooth for all times. The estimates we got from integration
by parts no longer hold true after some finite time due to loss of regularity.

Proof. [Proof of Lemma 6.4] Since (−∆)αw(x) is odd, it is enough to consider x ≥ 0. For
x ≥ 1, we have

(−∆)αw(x) = −
∫ 1

−1

w(y)

|x− y|1+2α
dy = −

∫ 1

0

(y−δ − 1)((x− y)−1−2α − (x+ y)−1−2α) dy. (6.5)

If x ≥ 2, the right hand side of (6.5) does not exceed

Cx−2−2α

∫ 1

0

(y−δ − 1)y dy ≤ Cx−2−2α

by mean value theorem. If 1 ≤ x ≤ 2, observe that (x− y)−1−2α − (x+ y)−1−2α is decreasing
in x if x ≥ 1 and y ∈ [0, 1]. So the expression is maximal when x = 1 :∣∣∣∣∫ 1

0

(y−δ − 1)((x− y)−1−2α − (x+ y)−1−2α) dy

∣∣∣∣ ≤ ∣∣∣∣∫ 1

0

y−δ(1− yδ)(1− y)−1−2α dy

∣∣∣∣ ≤ C

if 2α < 1, δ < 1. This completes the proof of (i).
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Consider next 1 > x ≥ 0. Set r = y − x, then

(−∆)αθ(x) = P.V.

∫
R

w(x)− w(x+ r)

r1+2α
dr = P.V.

∫ 1−x

−1−x

w(x)− w(x+ r)

r1+2α
dr + (6.6)

w(x)

∣∣∣∣∫ −1−x

−∞
r−1−2α dr +

∫ ∞
1−x

r−1−2α dr

∣∣∣∣ .
Look at the last term. The first integral is controlled by C(x+1)−2αw(x) ≤ Cx−δ. The second
integral gives

(x−δ − 1)

∫ ∞
1−x

r−1−2α dr ≤ Cx−δ(1− xδ)(1− x)−2α ≤ Cx−δ

if 2α < 1.
Consider the first term on the right hand side of (6.6),

P.V.

∫ 1−x

−1−x

w(x)− w(x+ r)

r1+2α
dr =

∫ −x
−1−x

x−δ − 2 + |x+ r|−δ

r1+2α
dr+P.V.

∫ 1−x

−x

x−δ − |x+ r|−δ

r1+2α
dr.

(6.7)
In the first integral on the right hand side,∣∣∣∣∫ −x

−1−x

1

r1+2α
dr

∣∣∣∣ ≤ Cx−2α,

so only
∫ −x
−1−x

|x+r|−δ
r1+2α dr needs estimating, the rest can be bounded by Cx−2α−δ. Now∫ −x
−1−x

|x+ r|−δ

r1+2α
dr =

∫ 1+x

x

1

r1+2α|x− r|δ
dr =

∫ 3x/2

x

1

r1+2α|x− r|δ
dr +∫ 1+x

3x/2

1

r1+2α|x− r|δ
dr ≤ Cx−1−2α

∫ x/2

0

y−δ dy + Cx−δ
∫ 1+x

3x/2

r−1−2α dr ≤ Cx−2α−δ.

So it is left to estimate the last term on the right hand side of (6.7),

P.V.

∫ 1−x

−x

x−δ − |x+ r|−δ

r1+2α
dr =

∫ −x/2
−x

x−δ − |x+ r|−δ

r1+2α
dr + P.V.

∫ 1−x

−x/2

x−δ − |x+ r|−δ

r1+2α
dr.

The first integral on the right hand side does not exceed

Cx−1−2α

(
x1−δ +

∫ x/2

0

y−δ dy

)
≤ Cx−2α−δ.

For the second integral, note that |x+r| ≥ x/2 in the range of integration, so x−δ−|x+r|−δ ≤
Cx−δ−1r. Then

P.V.

∫ 1−x

−x/2

x−δ − |x+ r|−δ

r1+2α
dr ≤ Cx−δ−1

∫ 1−x

−x/2
r−2α dr ≤ Cx−δ−2α

if 1− x ≤ x. If 1− x > x, we need to also estimate∫ 1−x

x

x−δ − |x+ r|−δ

r1+2α
dr ≤ x−δ

∫ 1−x

x

r−1−2α dr ≤ Cx−δ−2α.
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6.1 Appendix: A Gagliardo-Nirenberg inequality

In this section we will prove a Gagliardo-Nirenberg inequality

Theorem 6.3 Suppose f ∈ C∞0 (Rd). Let 1 ≤ m ≤ s, with m integer. Then

‖Dmf‖L2s/m ≤ C‖f‖1−m/s
L∞ ‖(−∆)s/2f‖m/sL2 (6.8)

Here Dm denotes an arbitrary partial derivative of order m.

Exercise. Given this inequality for functions in Rd, prove the analogous estimate for the
Td case.

We note that this is just one of the larger family of Gagliardo-Nirenberg inequalities.
When checking which inequality of this sort may be possible, the first test to apply is scaling:
change f(x) to f(λx) and see if both sides scale the same. Another test to verify is whether
the strength of the derivative on the right hand side controls that on the left hand side (when
powers of the norms are taken into account). The inequality (6.3) verifies the scaling and is
sharp for the second check: m = (2s/2)m/s. Now let us prove it.

First, recall Littlewood-Paley decomposition. Take ϕ ∈ C∞0 (Rd), ϕ radial, radially de-
creasing, non-negative, ϕ(ξ) = 1 if |ξ| ≤ 1, and ϕ(ξ) = 0 if |ξ| ≥ 2. Set ψ(ξ) = ϕ(ξ/2)−ϕ(ξ).
Denote ψl(ξ) = ψ(2−lξ), l ∈ Z. Then

∑
l∈Z ψl(ξ) = 1 for every ξ 6= 0. Define Littlewood-Paley

projections of a function f as Plf(x) = (ψl(ξ)f̂(ξ))̌ = Ql∗f(x), where f̂(ξ) denotes the Fourier
transform of f , and ǧ denotes the inverse Fourier transform of the function g. Observe that for
a smooth function f , f(x) =

∑
l∈Z Plf(x). We will use a short hand notation fl(x) ≡ Plf(x).

Note that we can also write fl(x) = Ql ∗ f(x), where Ql(x) = ψ̌l(x) = 2ldQ1(2lx) =
2ldψ̌(2lx). In particular, ‖Ql‖L1 does not depend on l.

Lemma 6.4 Let Dmf denote any partial derivative of f ∈ C∞0 (Rd) of order m. Then

‖Dmf‖2
L2 ≤ C

∑
l∈Z

22lm‖fl‖2
L2 . (6.9)

Also, for every s ∈ R,
‖(−∆)sf‖2

L2 ∼
∑
l∈Z

22ls‖fl‖2
L2 . (6.10)

Here ∼ means both upper and lower bounds with some universal positive constants.

Proof. After taking Fourier transform, we see that both (6.9) and (6.10) would follow from∫
Rd
|ξ|2m|f̂(ξ)|2 dξ ∼

∫
Rd
|f̂(ξ)|2

∑
l∈Z

22lm|ψl(ξ)|2.

But from definition of ψl it follows that 1 ≥
∑

l∈Z |ψl(ξ)|2 ≥ c > 0 for all ξ 6= 0. This together
with support location of ψl finishes the proof of (6.9) and (6.10).
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Proof. [Proof of Theorem 6.3] Without loss of generality, we can assume that ‖f‖L∞ = 1.
Write f(x) =

∑
l∈Z fl(x). Observe that ‖fl‖L∞ ≤ ‖Q1‖L1 . Let us write the left hand side of

(6.8) as ∫
Rd

∣∣∣∣∣∑
l∈Zd

2lm
(
2−lmDmfl

)∣∣∣∣∣
2s/m

dx. (6.11)

Set gl = 2−lmDmfl. Denote η(ξ) = ψ(ξ)ξi1 . . . ξim , where ξij in the product corresponding to
partial derivatives in Dm. Observe that η ∈ C∞0 , so that η̌ ∈ L1. Then

‖gl‖L∞ ≤ ‖(2−lmξi1 . . . ξimψl)̌ ‖L1 = ‖(η(2−lξ)̌ ‖L1 = ‖2ldη̌(2lx)‖L1 = ‖η̌‖L1 .

Coming back to (6.11), consider
∣∣∑

l∈Z 2lmgl(x)
∣∣2s/m at some fixed x. Look at subsums over

all l such that 2−k‖η̌‖L1 ≤ gl(x) ≤ 2−k+1‖η̌‖L1 , k ∈ N. Denote such l by notation gl ∼ 2−k.
This set certainly may depend on x, but we will suppress this in notation. Then

∑
l∈Z

2lmgl(x) =
∞∑
k=1

∑
gl∼2−k

2lmgl(x).

Lemma 6.5 For every x, we have gl(x) → 0 as l → ±∞. Therefore, each gl ∼ 2−k set is
finite.

Proof. Recall that

gl(x) = 2ld
∫
R
η̌(2l(x− y))g(y) dy.

The fact that gl(x)→ 0 as l → −∞ follows immediately from g ∈ C∞0 ⊂ L1. For the l →∞
case, note that

∫
Rd η̌(y) dy = 0 (since η(0) = 0). The result then follows from the following

statement which is left as an exercise.

Exercise. Suppose that f, g ∈ C∞0 , and
∫
Rd f dx = 0. Then

∫
Rd 2ldf(2l(x− y))g(y) dy → 0

as l→ 0.

Consider now
∑

gl∼2−k 2lmgl(x). Denote lmax the maximal value of l such that gl ∼ 2−k.
By Lemma 6.4, such maximal value exists. Then

∑
gl∼2−k

2lm|gl(x)| ≤ 8‖η̌‖L12lmaxm2−k ≤ 8‖η̌‖L1

 ∑
gl∼2−k

22sl|gl(x)|2
m/2s

2−k(s−m)/s. (6.12)

Indeed, the sum on the right hand side is simply a geometric progression (up to a factor
of two), perhaps with gaps, and as such it is dominated by the largest term in the series.
Summing up estimates (6.12) in k and using Hölder inequality, we get

∑
l∈Z

2lm|gl(x)| ≤ 8‖η̌‖L1

∞∑
k=1


 ∑
gl∼2−k

22lm|gl(x)|2
m/2s

2−k(s−m)/s

 ≤ C

(∑
l∈Z

22ml|gl(x)|2
)m/2s

.
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Then

‖Dmf‖2s/m

L2s/m ≤
∫
Rd

(∑
l∈Z

2lm|gl(x)|

)2s/m

dx ≤ C

∫
Rd

∑
l∈Z

22sl|gl(x)|2 dx ≤

C

∫
Rd

∑
l∈Z

22(s−m)l|ξ|2m|ψl(ξ)|2|f̂(ξ)|2 dξ ≤ C‖f‖2
s.

The last step follows similarly to proof of (6.10). Since ‖f‖L∞ was normalized to be one, this
is exactly (6.8).
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