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Chapter 1

Introduction to PDE

An ordinary differential equation (ODE) is an equation involving an unknown function y(t),
its ordinary derivatives, and the (single) independent variable. For example: y′(t) = −3y(t) +
t. A partial differential equation (PDE) is an equation involving an unknown function, its
partial derivatives, and the (multiple) independent variables. PDE’s are ubiquitous in science and
engineering; the unknown function might represent such quantities as temperature, electrostatic
potential, value of a financial security, concentration of a material, velocity of a fluid, displacement
of an elastic material, population density of a biological species, acoustic pressure, etc. These
quantities may depend on many variables, and one would like to understand how the unknown
quantity depends on these variables. Typically a partial differential equation can be derived from
physical laws (like Newton’s laws of motion) and/or modeling assumptions (like the no-arbitrage
principle) that specify the relationship between the unknown quantity and the variables on which
it depends. So, often we are given a model in the form of a PDE which embodies physical laws and
modeling assumptions, and we want to find a solution and study its properties.

1.1 Notation

For a given domain Ω ⊂ Rd, and a function u : Ω→ R we will use ux1 , ux2 , ux2x2 ux1x1 , ux1x2 . . .
to denote the partial derivatives of u with respect to independent variables x = (x1, . . . , xd) ∈ Rd.
We may also write

∂u

∂x1
,
∂u

∂x2
,
∂2u

∂x2
2

,
∂2u

∂x2
1

,
∂2u

∂x1∂x2
, . . . , (1.1)

respectively. When d = 2, we may use (x, y) instead of (x1, x2), and we may use

ux, uy, uyy uxx, uxy, . . . or
∂u

∂x
,
∂u

∂y
,
∂2u

∂y2
,
∂2u

∂x2
,
∂2u

∂x∂y
, . . . (1.2)

to denote the partial derivatives.
For much of the course, we will consider equations involving a variable representing time, which

we denote by t. In this case, we will often distinguish the temporal domain from the domain for
the other variables, and we generally will use Ω ⊂ Rd to refer to the domain for the other variables
only. For example, if u = u(x, t) , the domain for the function u is a subset of Rd+1, perhaps Ω×R
or Ω× [0,∞). In many physical applications, the other variables represent spatial coordinates. For
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1.2. EXAMPLES Math 227, J. Nolen

example, u(x, t) might represent the temperature at position x at time t. In financial applications,
however, the variable x might represent non-spatial quantities, like the price of a call option, and in
this case we might use different notation. For example, C(s, t) may denote the value of a European
call option if the underlying stock price is s at time t. Even though the stock price s does not
correspond to physical space, I will typically use the term “spatial variables” to refer to all of the
independent variables except the variable representing time. In fact, one of the most fascinating
points of this course is that the Black-Scholes equation for the price of a European call option can
be transformed to the “heat equation” which models the dissipation of heat in a physical body,
even though heat transfer and the fluctuation of stock prices are very different phenomena.

Normally we will use the notation Du or ∇u to refer to the gradient of u with respect to the
“spatial variables” only. So, Du is the vector Du = (ux1 , ux2 , . . . , uxd). We will use D2u to refer to
the collection of second partial derivatives of u with respect to x. The term ∆u will always refer
to the Laplacian with respect to the spatial coordinates. So, if u = u(x, t) and x ∈ Rd,

∆u =
d∑
j=1

uxjxj =
d∑
j=1

∂2u

∂x2
j

(1.3)

Some people use ∇2u for the Laplacian instead of ∆u. In some PDE literature it is common to use
multi-indices to denote partial derivatives. A multi-index is a vector α = (α1, α2, . . . , αn) with
integers αi > 0, and we define

Dαu =
∂|α|u

∂xα1
1 · · · ∂x

αn
n

(1.4)

where |α| = α1 + · · · + αn is the order of the index. The notation Dku is used to refer to the
collection of kth-order partial derivatives of u.

1.2 Examples

The order of a PDE is the degree of the highest order derivatives appearing in the equation. For
example, if there are two independent variables (x, y), a second-order PDE has the general form

F (uxx, uyy, uxy, ux, uy, u, x, y) = 0.

while a first-order PDE has the general form

F (ux, uy, u, x, y) = 0.

In multi-index notation these could be written as F (D2u,Du, u, x, y) = 0 or F (Du, u, x, y) = 0.
In this course we will discuss only first and second order equations. Here are some examples of
second-order equations:

• The heat equation
ut = uxx + uyy (or, ut = ∆u) (2.5)

• Black-Scholes’ equation

ut = −1
2
σ2(x, t)x2uxx − rxux + ru (2.6)
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1.3. SOLUTIONS AND BOUNDARY CONDITIONS Math 227, J. Nolen

• Dupire’s equation

ut =
1
2
σ2(x, t)x2uxx − rxux (2.7)

• Laplace’s equation
uxx + uyy = 0 (or, ∆u = 0) (2.8)

• Poisson’s equation
uxx + uyy = f(x, y) (or, ∆u = f) (2.9)

• Reaction-diffusion equation
ut = ∆u+ f(u) (2.10)

• The wave equation
utt − c2uxx = 0 (or, utt = ∆u) (2.11)

Here are a few first order equations:

• Transport equation
ut + v(x) ·Du = 0 (2.12)

• Burgers’ equation
ut + uux = 0 (2.13)

• A Hamilton-Jacobi equation
ut + |Du|2 = 0 (2.14)

All of these examples involve a single function u. There are also many interesting systems of
equations involving multiple unknown quantities simultaneously. For example, the famous Navier-
Stokes equations are a second-order system of equations that model the velocity u = {u(i)(x, t)}di=1

of an incompressible fluid:

∂tu
(i) + u · ∇u(i) = ν∆u(i) −∇p, i = 1, . . . , d∑

i

u(i)
xi = 0 (2.15)

1.3 Solutions and Boundary Conditions

We say that a function u solves a PDE if the relevant partial derivatives exist and if the equation
holds at every point in the domain when you plug in u and its partial derivatives. For example, the
function u(x, y) = ex cos(y) solves the PDE uxx + uyy = 0 in the domain Ω = R2. This definition
of a solution is often called a classical solution, and we will use this definition unless stated
otherwise. However, not every PDE has a solution in this sense, and it is sometimes useful to
define a notion of weak solution.

The independent variables vary in a domain Ω, which is an open set that may or may not be
bounded. A PDE will often be accompanied by boundary conditions, initial conditions, or
terminal conditions that prescribe the behavior of the unknown function u at the boundary of
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1.3. SOLUTIONS AND BOUNDARY CONDITIONS Math 227, J. Nolen

the domain under consideration. There are many boundary conditions, and the type of condition
used in an application will depend on modeling assumptions.

Not all solutions to the PDE will satisfy the boundary conditions. For example, there are many
smooth functions that satisfy the Laplace equation (2.8) for all (x, y) in a given smooth domain
Ω. However, if we require that a solution u also satisfies the boundary condition u(x, y) = g(x, y)
for all points (x, y) in the boundary of the domain, with a prescribed function g(x, y), then the
solution will be unique. This is similar to the situation with ODEs: the equation f ′(x) = f(x) for
x ≥ 0 has many solutions (f(x) = Cex), but if we require that f(0) = 27, there is a unique solution
f(x) = 27ex.

The boundary of a domain will be denoted by ∂Ω. One example of a boundary value problem
(BVP) for the Laplace equation might be:

uxx + uyy = 0, for all (x, y) ∈ Ω (PDE)
u(x, y) = g(x, y), for all (x, y) ∈ ∂Ω (boundary condition). (3.16)

Prescribing the value of the solution u = g on the boundary is called the Dirichlet boundary
condition. If g = 0, we say that the boundary condition is homogeneous. There are many other
types of boundary conditions, depending on the equation and on the application. Some boundary
conditions involve derivatives of the solution. For example, instead of u = g(x, y) on the boundary,
we might impose ν · ∇u = g(x, y) for all (x, y) ∈ ∂Ω. Here, the vector ν = ν(x, y) is the exterior
unit normal vector. This is called the Neumann boundary condition.

An example of an initial value problem (IVP) for the heat equation might be:

ut = uxx + uyy, for all (x, y, t) ∈ Ω× (0,∞) (PDE)
u(x, y, t) = g(x, y), for all (x, y, t) ∈ ∂Ω× (0,∞) (boundary condition)
u(x, y, 0) = h(x, y), for all (x, y) ∈ Ω (initial condition). (3.17)

An initial condition is really a boundary condition on the d + 1 dimensional domain, the space-
time domain. Since t will be interpreted as time, we use the term “initial condition” to refer to a
boundary condition imposed on u at an initial time, often t = 0.

There are also applications for which it is interesting to consider terminal conditions imposed
at a future time. For example, terminal value problems (TVP) arise in finance because a
financial contract made at the present time may specify a certain “payoff” at a future time. The
Black-Scholes model for the price of a European call option is the terminal value problem

ut = −1
2
σ2x2u− rxux + ru, t < T

u(x, T ) = max(0, x−K) (3.18)

Here K is the strike price of the option which expires at time T (in the future). Another example
of a terminal value problem is the following Hamilton-Jacobi equation:

ut + |∇u|2 = 0, for all x ∈ Rd, t < T (3.19)
u(x, T ) = g(x), for all x ∈ Rd. (3.20)

Solving a BVP means finding a function that satisfies both the PDE and the boundary condi-
tions. In many cases we cannot find an explicit representation for the solution, so “solving” the
problem sometimes means showing that a solution exists or approximating it numerically.
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1.4. LINEAR VS. NONLINEAR Math 227, J. Nolen

1.4 Linear vs. Nonlinear

An equation is said to be linear if it has the form∑
|α|≤k

aα(x)Dαu = f(x) (4.21)

(linear combination of u and its derivatives) = (function of the independent variables)

A semilinear equation has the form∑
|α|=k

aα(x)Dαu+ a0(Dk−1u, . . . ,Du, u, x) = f(x) (4.22)

A quasilinear equation has the form∑
|α|=k

aα(Dk−1u, . . . ,Du, u, x)Dαu+ a0(Dk−1u, . . . ,Du, u, x) = f(x) (4.23)

An equation that depends in a nonlinear way on the highest order derivatives is called fully non-
linear. For example, the Laplace equation (2.8), the Poisson equation (2.9), the heat equation
(2.5), Dupire’s equation (2.7), Black-Scholes equation (0.1), the wave equation (2.11), and the
transport equation (2.12) are all linear equations. The reaction-diffusion equation (2.10) is semi-
linear. Burgers’ equation (2.13) is a quasilinear equation. The Hamilton-Jacobi equation (3.19) is
fully nonlinear.

If an equation is linear and f ≡ 0 in the expression (4.21), the equation is called homogeneous.
Otherwise it is called inhomogeneous. For example, the Laplace equation (2.8) is homogeneous,
while the Poisson equation (2.9) is the inhomogeneous variety.

Generally linear equations are “easier” than nonlinear equations. One reason for this is that if
u and v solve a linear, homogeneous equation, then so does any linear combination of u and v.
For example, if u and v both solve the heat equation ut = uxx and vt = vxx then the function
w(x, t) = αu(x, t) +βv(x, t) also solves the heat equation. This fact will be used many times in our
analysis of linear equations. If the equation were nonlinear, it might not be so easy to find a nice
PDE solved by w.

1.5 Some Important Questions

Here are some important questions to consider when studying a PDE.

• Is there a solution? This is not always easy to answer. Sometimes there may not be a classical
solution, so one tries to find a weak solution by relaxing some conditions in the problem
or weakening the notion of solution. For some problems, we may be able to construct a
solution only in a region near part of the domain boundary. For time-dependent problems,
sometimes there may be a classical solution only for a short period of time. The ODE analog
is what happens to the solution of the problem u̇ = u2, u(0) = 1: it has a unique solution
u(t) = 1/(1− t) that remains finite only until the time t = 1.

• If so, is the solution unique? Often a PDE will have infinitely many solutions, but only one of
them satisfies the boundary condition under consideration. Nevertheless, verifying uniqueness
of the solution may be difficult, especially when the equation is nonlinear.
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• Does the solution depend continuously on the data (e.g. boundary conditions, initial condi-
tions, terminal conditions)? That is, if we vary the data a little, does the solution behave in
a stable manner or will it change completely? This is a very important property to have if
you want to approximate a solution numerically, or if you want to quantify uncertainty in a
simulation when there may be small fluctuations in the data.

• How can we represent the solution? Often we cannot find an explicit formula for the solution,
even if the solution is unique.

• How regular is the solution? Regularity refers to the smoothness of the solution with re-
spect to the independent variables. If the data in the problem have a certain regularity
(for instance, is twice differentiable), what can we say about the solution? Will the solution
be smoother than the data? Will the solution lose regularity in time? Both can happen:
for instance, the heat equation has a regularizing effect: solution is ”better” than the data,
while Hamilton-Jacobi equations have solutions that may form singularities even if the data
is smooth. Regularity also has practical implications. Roughly speaking, the ability to effi-
ciently and accurately numerically approximate a solution to a PDE is directly related to the
solution’s regularity: the smoother the solution the easier it is to obtain it numerically.

• What are the qualitative/quantitative properties of the solution? How does the solution
change as parameters in the equation change?

• How can we approximate the solution numerically? There is no universal numerical method
that can be used for every PDE. Our theoretical understanding of the solutions helps in the
development of efficient and convergent numerical solution methods.

• Given a solution (or measurements of a real system modeled by a particular PDE) can one
reconstruct parameters in the equation? For instance, can we recover the heat conductivity
if we measure the solution of the heat equation?This is an inverse problem.
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Chapter 2

The Heat Equation, Part I

References:

• Evans, Section 2.3

• Strauss, 2.3-2.5, 3.3, 3.5

2.1 Physical Derivation and Interpretation

For x ∈ Rd and t ∈ R, the heat equation is

ut = ∆u (1.1)

In the case of one dimension spatial dimension, d = 1, this is just ut = uxx. The heat equation
models diffusion or heat transfer in a system out of equilibrium. The function u(x, t) might represent
temperature or the concentration of some substance, a quantity which may vary with time t.

Here is a derivation of the equation based on physical reasoning. Let F (u) denote the flux of the
quantity represented by u; the flux is a vector quantity representing the flow per unit surface area
per unit time. From time t1 to time t2, the net change in ”the amount of u” in a region D ⊂ Rd

is determined by the net flux through the boundary ∂D. This is a conservation assumption – no
material or heat energy is created or destroyed. This means that for any t1 < t2,∫

D
u(x, t2) dx−

∫
D
u(x, t1) dx = −

∫ t2

t1

∫
∂D

F (u) · ν dx dt.

The flux may be modeled as a linear function of ∇u: F (u) = −a∇u, where a > 0 is a constant.
If u represents temperature, this assumption is known as Fourier’s law of heat conduction; if u
represents the concentration of a diffusing material, this is known as Fick’s law. Therefore, the
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2.1. PHYSICAL DERIVATION AND INTERPRETATION Math 227, J. Nolen

function u(x, t) should satisfy∫
D
u(x, t2) dx−

∫
D
u(x, t1) dx = −

∫ t2

t1

∫
∂D

F (u) · ν dx dt (the conservation assumption)

= −
∫ t2

t1

∫
D
∇ · F (u) dx dt (using the Divergence theorem)

=
∫ t2

t1

∫
D
∇ · (a∇u) dx dt (assuming F (u) = −a∇u)

=
∫ t2

t1

∫
D
a∆u dt dx (1.2)

Taking D = Br(x), a ball of radius r centered at a point x, dividing by |D|, and letting r → 0, we
conclude that u must satisfy

u(x, t2)− u(x, t1) =
∫ t2

t1

a∆u(x, t) dt (1.3)

for all x. This is just the integral (in time) form of the heat equation (1.1). Here we have used the
fact that if w(x, t) is a continuous function, then

lim
r→0

1
|Br(x)|

∫
Br(x)

w(y, t) dy = w(x, t) (1.4)

where Br(x) denotes the ball of radius r centered at the point x, and |Br(x)| denotes the volume
of the ball.

If there is an external volumetric source (heat source, injection of material, etc.) or sink (cold
bath, depletion of material, etc.) represented by a function f(x, t), then we have∫

D
u(x, t2) dx−

∫
D
u(x, t1) dx = −

∫ t2

t1

∫
∂D

F (u) · ν dx dt+
∫ t2

t1

∫
D
f(x, t) dx dt.

and the equation for u becomes inhomogeneous:

ut = a∆u+ f(x).

The case f > 0 represents an inflow of material or a heat source. The case f < 0 models outflow of
material or a heat sink. In general f might not have a constant sign, representing the presence of
both sources and sinks. In some models, the source or sink might depend on u itself: f = f(u). For
example, a simple model of an exothermic reaction might be f = cu, where the parameter c > 0
models a reaction rate.

In physical applications, the parameter a > 0 is sometimes called the thermal conductivity
or the diffusivity. Notice that large values of a model rapid heat transfer or rapid diffusion;
small values of a model slow heat transfer or slow diffusion. In some applications, the constant
a is replaced by a matrix aij(x) modeling a situation where the conductivity is variable, as in a
composite material, for example. In this case, the derivation above produces the equation

ut = ∇ · (a(x)∇u) + f (1.5)
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2.2. THE HEAT EQUATION AND A RANDOM WALKER Math 227, J. Nolen

The simple heat equation corresponds to aij(x) ≡ Id (the identity matrix) and f ≡ 0. Assuming
that a(x) is differentiable, we could also write this as

ut =
∑
i,j

aij(x)uxixj + b(x) · ∇u+ f (1.6)

where b(x) = (bj(x)), bj(x) =
∑

i ∂xiaij(x). This equation is said to be in non-divergence form,
while the equation (1.5) is said to be in divergence form. As we will see later, the Black-Scholes
equation has a similar form:

ut = −1
2
σ2(x, t)x2uxx − rxux + ru (1.7)

Here the coefficient in front of the uxx term might depend on both x and t, in general.
We may consider the heat equation for x ∈ Rd, or in a bounded domain Ω ⊂ Rd with appro-

priate boundary conditions. For example, we will consider the initial value problem with Dirichlet
boundary condition

ut = ∆u(x) + f(x, t), x ∈ Ω, t > 0
u(x, t) = h(x, t), x ∈ ∂Ω, t > 0
u(x, 0) = g(x), x ∈ Ω, t = 0 (1.8)

where Ω ⊂ Rd is some smooth, bounded domain. The Dirichlet boundary condition u(x, t) =
h(x, t) on ∂Ω may be interpreted as fixing the temperature at the boundary. Alternatively, the
Neumman boundary condition ν · ∇u(x, t) = g(x, t) corresponds to prescribing the heat flux
at the boundary (perhaps via an insulating layer, which means that g = 0).

2.2 The Heat Equation and a Random Walker

The preceding derivation of the heat equation was based on physical reasoning. Here is a rather
different derivation and interpretation of the heat equation which illuminates its connection with
probability and stochastic processes. Consider a simple random walk Xx(n) on the integers Z. We
suppose that at each time step, the process moves independently either to the left, or to the right
with probability 1/2, and that Xx(0) = x initially. That is

Xx(n) = x+
n∑
j=1

sj (2.9)

where the steps sj are independent, identically distributed random variables with P (sj = +1) = 1/2
and P (sj = −1) = 1/2 for each j.

The exit time

Let us assume that the starting point x ∈ Z lies between two integers a, b ∈ Z: a ≤ x ≤ b. Consider
the random time s(x) that the walker spends before it hits either a or b if it started at x, and let
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2.2. THE HEAT EQUATION AND A RANDOM WALKER Math 227, J. Nolen

τ(x) be its expected value: τ(x) = E(s(x)). As the walker moves initially either to the right or to
the left,with equal probabilities, and spends a unit time to do so, we have the simple relation

τ(x) =
1
2
τ(x− 1) +

1
2
τ(x+ 1) + 1, (2.10)

that may be re-written in the form of a discrete Poisson equation:

−τ(x+ 1) + τ(x− 1)− 2τ(x)
2

= 1, (2.11)

which is supplemented by the boundary conditions τ(a) = τ(b) = 0.

The expected prize value

Now suppose that f(x) is a prescribed smooth function and that after n steps, we evaluate the
expectation

u(x, n) = E [f(Xx(n))] .

You may think of u(x, n) as the expected “payoff” for a random walker starting at point x and
walking for time n. The prize for landing at point Xx(n) = y at time n is f(y), and u(x, n) is the
expected prize value. How does u depend on the starting point x, time n, and prize distribution
f?

At the initial time n = 0, the walker has not moved from its starting point, so we must have
u(x, 0) = E [f(Xx(0))] = f(x). Now consider n > 0. Since Xx(n) is a Markov process, we see that

E [f(Xx(n))] = E [E(f(Xx(n))|Xx(n− 1))]

for each n > 0. The term E(f(Xx(n))|Xx(n − 1)) is the conditional expectation of the payoff at
time n, given the position at time n− 1. We also know that starting from the point Xx(n− 1), the
walker then moves to either Xx(n− 1)− 1 (left) or to Xx(n− 1) + 1 (right), each with probability
1/2. Therefore, we can evaluate this conditional expectation explicitly:

E[f(Xx(n))|Xx(n− 1)] =
1
2
f(Xx(n− 1)− 1) +

1
2
f(Xx(n− 1) + 1).

Taking the expected value on both sides, we conclude that

E [f(Xx(n))] = E [E(f(Xx(n))|Xx(n− 1))]

=
1
2
E[f(Xx(n− 1)− 1)] +

1
2
E[f(Xx(n− 1) + 1)]

Now subtract E [f(Xx(n− 1))] from both sides and we find that

u(x, n)− u(x, n− 1) = E [f(Xx(n))]− E [f(Xx(n− 1))]

=
1
2
E[f(Xx(n− 1)− 1)] +

1
2
E[f(Xx(n− 1) + 1)]− E [f(Xx(n− 1))]

Observe that Xx(n− 1)± 1 = Xx±1(n− 1) almost surely. This observation allows us to express the
change of u with respect to n in terms of changes in u with respect to x:

u(x, n)− u(x, n− 1) =
1
2
E[f(Xx(n− 1)− 1)] +

1
2
E[f(Xx(n− 1) + 1)]− E [f(Xx(n− 1))]

=
1
2
E[f(Xx−1(n− 1))] +

1
2
E[f(Xx+1(n− 1))]− E [f(Xx(n− 1))]

=
1
2

(u(x− 1, n− 1)− 2u(x, n− 1) + u(x+ 1, n− 1)) (2.12)

12
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Observe! The relationship (2.12) looks very much like a discrete version of the heat equation!
Let us explore this further. If we had let the spatial jumps be of size h > 0 instead of size 1 and let
the time steps be of size δ > 0 instead of size 1, the same derivation would lead us to the equation

u(x, t)− u(x, t− δ) =
1
2

(u(x− h, t− δ)− 2u(x, t− δ) + u(x+ h, t− δ))

Here we use t ∈ δZ to denote a point of the form t = nδ for some integer n. Now suppose we make
the clever choice δ = h2/2. Then after dividing both sides by δ we have

u(x, t)− u(x, t− δ)
δ

=
(u(x− h, t− δ)− 2u(x, t− δ) + u(x+ h, t− δ))

h2
(2.13)

Taylor’s theorem tells us that for differentiable v,

v(x, t)− v(x, t− δ)
δ

= vt(x, t) +O(δ).

Also,

v(x+ h) = v(x) + hvx(x) +
h2

2
vxx(x) +O(h3)

v(x− h) = v(x)− hvx(x) +
h2

2
vxx(x) +O(h3)

so that
v(x+ h)− 2v(x) + v(x− h)

h2
= vxx(x) +O(h2).

From this we see that (2.13) is a discrete version of the equation ut = uxx. This suggests that if
we let the step size h→ 0 (with δ = h2/2), the function u (which depends on h) converges to some
function v(x, t) which satisfies vt = vxx.

How does the random walk behave under this scaling limit? If δ = 1/N , h =
√

2/
√
N , and

t = kδ, then the scaled random walk may be written as

Xx(t) = x+
√

2√
N

Nt∑
j=1

sj . (2.14)

For continuous time t > 0, define the piecewise linear function X̃x(t) by interpolating the points
{(n,Xx(n))}n like this:

X̃x(t) = (n+ 1− t)Xx(n) + (t− n)Xx(n+ 1), if t ∈ [n, n+ 1). (2.15)

Since E[sj ] = 0 and E[s2
j ] = 1, the functional central limit theorem implies that the process X̃x(t)

converges weakly, as h → 0, to
√

2Wx(t) where Wx(t) is a Brownian motion with Wx(0) = x (for
example, see Karatsas and Shreve, section 2.4). Therefore, for any fixed t, X̃x(t) converges weakly
to a Gaussian random variable with mean µ = x and variance σ2 = 2t. Hence,

lim
h→0

E[f(Xx(t))] =
∫

R

1√
4πt

e
−|x−y|2

4t f(y) dy (2.16)

13
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In summary, we have observed that in the limit of small step sizes, the “value function” u(x, t) =
E[f(Xx(t))] representing the payoff at time t for a walk started at x satisfies the heat equation with
initial data u(x, 0) = f(x). Alternatively, the formula u(x, t) = E[f(Xx(t))] identifies the solution
to the initial value problem for the heat equation ut = uxx with a functional of Brownian motion.
Later we will use Itô’s formula to study this connection in much more generality. For now, notice
how the following ideas appeared in this formal derivation:

• The Markov property of the random walk

• The fact that the walker steps to the left or right with equal probability (related to the
Martingale property)

• The use of the space-time scaling ratio δ/h2 = constant

Exercises: 1. Perform similar analysis for dimension d = 2. That is, show that the expected
payoff E[f(Xx,y(n))] for the a random walk on the lattice Z2 satisfies a discrete version of the heat
equation ut = uxx + uyy.
2. Consider a random walker on integers with a bias: it jumps to the left with probability p and
to the right with a probability (1 − p). What are the discrete equations for the exit time and the
”prize distribution”? Find their continuous limits as well.
3. Consider a random walker on Z2 with asymmetry: assume that probability to go up or down
is 1/4 − p while the probability to go left or right is 1/4 + p. What is the corresponding discrete
equation for the exit time from a square on the integer lattice, and what is the continuous limit?

2.3 The Fundamental Solution

Observe that the heat equation is a linear equation. Therefore, if u and v are both solutions to
the heat equation, then so is any linear combination of u and v. This fact will be used frequently
in our analysis.

Here we define a very special solution which allows us to construct solutions to initial value
problems. The fundamental solution for the heat equation is the function

Φ(x, t) =
1

(4πt)d/2
e−
|x|2
4t , (3.17)

defined by t > 0. We have already seen this function in our derivation of the relation (2.16). Now
we take this function as the starting point and show how it can be used to solve the heat equation.
This function is also called the heat kernel, and it has the following properties:

(P0) For t > 0, Φ(x, t) > 0 is an infinitely differentiable function of x and t.

(P1) Φt = ∆Φ for all x ∈ Rd and t > 0.

(P2)
∫

Rd Φ(x, t) dx = 1 for all t > 0. Also, for each t > 0, Φ(x, t) is the probability density for
a multivariate Gaussian random variable x ∈ Rd with mean µ = 0 and covariance matrix
Σij = 2tδij (in one dimension, σ2 = 2t).

14
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(P3) For any function g(x) that is continuous and satsifies |g(x)| ≤ C1e
C2|x|, for some C1, C2 > 0,

lim
t→0

∫
Rd

Φ(x, t)g(x) dx = g(0).

In particular, this holds for any continuous and bounded function.

Property P1 is easy if slightly tediously to verify directly by taking deriviatives of Φ(x, t). Property
P2 says that the integral of Φ is invariant in t (remember, no heat created or destroyed). This is
easy to verify by using a change of variables and the following basic fact:∫ ∞

−∞
e−x

2
dx =

((∫ ∞
−∞

e−x
2
dx

)2
)1/2

=
(∫ ∞
−∞

e−x
2−y2 dx dy

)1/2

=
(∫ ∞

0

∫ 2π

0
re−r

2
dθ dr

)1/2

=
(

2π
∫ ∞

0
re−r

2
dr

)1/2

=
√
π, (3.18)

so that ∫
Rd

Φ(x, t)dx =
1

(4πt)d/2

∫
Rd
e−
|x|2
4t dx =

1
πd/2

∫
Rd
e−y

2
dy =

1
πd/2

∫
Rd
e−y

2
1−y22−···−y2ddy

=
1

πd/2

(∫
R
e−z

2
dz

)d
= 1.

Because the integral of Φ(x, t) > 0 is 1 for all t > 0, the function Φ(x, t) defines a probability
density for each t > 0 fixed. In fact, this is just the density for a multivariate Gaussian random
variable with mean zero and covariance matrix Σij = 2tδij (in one dimension, σ2 = 2t). So as
t→∞, the variance grows linearly, and the standard deviation is proportional to

√
t.

Property P3 is a very interesting property which says that as t→ 0 the function Φ(x, t) concen-
trates at the origin. If Φ represents the density of a diffusing material at point x at time t, then
P3 says that all of the mass concentrates at x = 0 as t→ 0. Mathematically this means that that
Φ converges to a Dirac delta function (δ0) in the sense of distributions as t→ 0. Since Φ(x, t) > 0,
you may think of the integral ∫

Rd
Φ(x, t)g(x) dx (3.19)

as a weighted average of the function g(x). In fact, this integral is an expectation with respect
to the probability measure defined by Φ. As t → 0, all of the weight concentrates near the origin
where g = g(0). In order to verify P3 we write:∫
Rd

Φ(x, t)g(x)dx =
1

(4πt)d/2

∫
Rd

e−
|x|2
4t g(x)dx =

1
πd/2

∫
Rd

e−y
2
g(y
√

4t)dy → 1
πd/2

∫
Rd

e−y
2
g(0)dy = g(0),

as t → 0. In the last step we used the Lebesgue Dominated convergence theorem, since for all
t ∈ (0, 1) we have a bound for the integrand by an integrable function independent of t ∈ (0, 1):

e−y
2 |g(y

√
4t)| ≤ C1e

−y2eC2|y|
√

4t ≤ C1e
−y2+2C2|y|,

which is integrable.
Using these properties one may show the following:

15
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Theorem 2.3.1 For any function g(x) that is continuous and satisfies |g(x)| ≤ C1e
C2|x| for some

C1, C2 > 0, the function

u(x, t) =
∫

Rd
Φ(x− y, t)g(y) dy (3.20)

satisfies

(i) u ∈ C∞(Rd × (0,∞)) (u is smooth in x and t for all positive times)

(ii) ut = ∆u, for all x ∈ Rd and t > 0

(iii)
lim

(x,t)→(x0,0+)
u(x, t) = g(x0) (3.21)

So, the function u(x, t) defined by (3.20) solves the initial value problem in Rd with initial data
g(x). The values at t = 0 are defined by continuity, since the formula (3.20) is ill-defined for t = 0.
Nevertheless, property (iii) says that the limit as t → 0+ is well defined and equal to g. Here is a
very interesting point: even if g(x) is merely continuous (not necessarily differentiable), we have a
solution to the heat equation which is actually infinitely differentiable for all positive times! This
is sometimes referred to as the smoothing property of the heat equation. Obviously, not all PDE’s
have this property. For instance, the simple transport equation

ut + ux = 0, u(x, 0) = g(x)

has the solution u(x, t) = g(x − t) which is not at all smoother than the the initial data. The
qualitative difference between the smoothing properties of the heat equation and the transport
equation lies in the fact that the heat equation has a genuinely stochastic representation that
produces the regularizing effect.

Consider the convolution formula:

u(x, t) =
∫

Rd
Φ(x− y, t)g(y) dy.

Since Φ(y, t) is the density for a probability measure, then so is Φ(x − y, t), although the mean is
shifted to the point x. Therefore, this convolution formula is really an expectation

u(x, t) = E [g(Xx(t))] ,

where {Xx(t)}t≥0 denotes a family of normal random variables with mean x and variance 2t. This
is precisely the conclusion (2.16) of our earlier derivation of the heat equation using the discrete
random walk.

Note that if the growth condition |g(x)| ≤ C1e
C2|x| were not satisfied, the integral

∫
Φ(x, t)g(x) dx

might not even be finite. For example, if g(x) = ex
2

the integral is not finite if t is large enough.

Proof of Theorem 2.3.1: First, property (iii) is a simple consequence of P3. Indeed, let
gx(y) = g(x− y), then P3 implies that

lim
t↓0

∫
Φ(x−y, t)g(y)dy = lim

t↓0

∫
Φ(y, t)g(x−y)dy = lim

t↓0

∫
Φ(y, t)gx(y)dy = gx(0) = g(x−0) = g(x).
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Properties (i) and (ii) follow from the fact that we may take derivatives of u by interchanging
integration and differentiation. In general, one cannot do this. However, for t > t0 > 0. the
function Φ(x, t) is smooth with uniformly bounded and integrable derivatives of all orders (their
seize is bounded by constants depending on t0). Therefore, one can compute derivatives, as follows,
invoking the dominated convergence theorem. The partial derivative ut is defined by the limit

∂u

∂t
= lim

h→0

∫
Rd

Φ(x− y, t+ h)− Φ(x− y, t)
h

g(y) dy.

We know that as h→ 0,

lim
h→0

Φ(x− y, t+ h)− Φ(x− y, t)
h

g(y) = Φt(x− y, t)g(y), (3.22)

so we’d like to say that

lim
h→0

∫
Rd

Φ(x− y, t+ h)− Φ(x− y, t)
h

g(y) dy =
∫

Rd
Φt(x− y, t)g(y) dy (3.23)

also holds. If h is sufficiently small (say |h| < ε), then t± h > 0, and Taylor’s theorem implies

Φ(x− y, t+ h)− Φ(x− y, t)
h

= Φt(x− y, t) +R(x, y, t, h), (3.24)

where the remainder R satisfies the bound

R(x, y, t, h) ≤ hmax
|s|≤ε
|Φtt(x− y, t+ s)|. (3.25)

Therefore, we see that for each x∣∣∣∣Φ(x− y, t+ h)− Φ(x− y, t)
h

g(y)
∣∣∣∣ ≤ (max

z
|g(z)|)

(
|Φt(x− y, t)|+ εmax

|s|≤ε
|Φtt(x− y, t+ s)|

)
(3.26)

By computing Φt and Φtt directly, we see that the right hand side of (3.26) is integrable in y.
Therefore, the dominated convergence theorem implies that

∂u

∂t
= lim

h→0

∫
Rd

Φ(x− y, t+ h)− Φ(x− y, t)
h

g(y) dy =
∫

Rd
Φt(x− y, t)g(y) dy.

That is, using the dominated convergence theorem, we may justify bringing the limit inside the
integral in (3.23). Using a similar argument with the dominated convergence theorem, one can
show that

∆u =
∫

Rd
∆Φ(x− y, t)g(y) dy, (3.27)

also holds, so that

ut −∆u =
∫

Rd
(Φt(x− y, t)−∆Φ(x− y, t)) g(y) dy = 0 (3.28)

The last equality holds since Φ is itself a solution to Φt −∆Φ = 0.
In the same way, using the dominated convergence theorem, one may also take higher derivatives

of u(x, t), since Φ is infinitely differentiable, and each derivative is integrable (for t > 0). This
shows that u(x, t) ∈ C∞(Rd× (0,∞)), even if the initial data g(x) is not smooth! In the case d = 1,
Strauss works this out in section 3.5 (see Theorem 1, p. 79).
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2.4 Duhamel’s principle

So far we have derived a representation formula for a solution to the homogeneous heat equation
in the whole space x ∈ Rd with given initial data. With the fundamental solution we may also
solve the inhomogeneous heat equation using a principle called Duhamel’s principle. Roughly
speaking, the principle says that we may solve the inhomogeneous equation by regarding the source
at time s as an initial condition at time s, an instantaneous injection of heat. The solution u is
obtained by adding up (integrating) all of the infinitesimal contributions of this heating.

A steady problem converted to time-dependence

A simply example of how a steady problem can be converted to a time-dependent one is an elliptic
problem of the form

−∇ · (a(x)∇u) = f(x), for x ∈ Ω, (4.29)
u(x) = 0 for x ∈ ∂Ω. (4.30)

This problem is posed in a smooth domain Ω ⊂ Rd, and a(x) is the (possibly varying in space)
diffusion coefficient. If a(x) = 1 then (4.29 is the standard Poisson equation

−∆u = f.

The Dirichlet boundary condition (4.30) mean that the boundary is cold (if we think of u as
temperature). Here is how solution of (4.29)-(4.30) may be written in terms of a time-dependent
problem without a source. Let φ(t, x) be the solution of the initial-boundary-value problem

φt = ∇ · (a(x)∇φ), for x ∈ Ω, (4.31)
φ(x, t) = 0 for x ∈ ∂Ω and all t > 0, (4.32)
φ(x, 0) = f(x) for x ∈ Ω. (4.33)

The function φ(t, x) goes to zero as t → +∞, uniformly in x ∈ Ω – there are various ways to see
that but we will take this for granted at the moment. Consider

ū(x) =
∫ ∞

0
φ(x, t)dt, (4.34)

this function satisfies the boudnary condition ū(x) = 0 for x ∈ Ω, and, in addition, if we integrate
(4.31) in time from t = 0 to t = +∞ we get

−f(x) = ∇ · (a(x)∇ū), (4.35)

which is nothing but (4.31). Hence, ū solves (4.31), so that solution of (4.31) can be represented
as in (4.34) in terms of solutions of the initial-boundary-value problem which may be sometimes
more convenient to solve than the elliptic problem directly. Furthermore, as in reality φ(x, t) goes
to zero exponentially fast in time, a good approximation to ū(x) may be obtained by integration
not from 0 to +∞ but rather over a short initial time period [0, T ].

18
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The time-dependent Duhamel’s principle

Suppose we wish to solve

ut = ∆u+ f(x, t), x ∈ Rd, t > 0 (4.36)

u(x, 0) = g(x), x ∈ Rd.

First, for s ≥ 0, we define the family of functions w̃(x, t; s) solving

w̃t = ∆w̃, x ∈ Rd, t > s

w̃(x, s; s) = f(x, s), x ∈ Rd, t = s.

Notice that for each s, w̃(·, ·; s) solves an initial value problem with initial data prescribed at time
t = s, instead of t = 0. Then set

w(x, t) =
∫ t

0
w̃(x, t; s) ds. (4.37)

So, w̃(x, t; s) represents the future influence (at time t) of heating at time s ∈ (0, t), and w(x, t) may
be interpreted as the accumulation of all the effects from heating in the past. Duhamel’s principle
says that the solution u(x, t) of the initial value problem (4.36) is given by

u(x, t) = uh(x, t) + w(x, t) = uh(x, t) +
∫ t

0
w̃(x, t; s) ds, (4.38)

where uh(x, t) solves the homogeneous problem:

uht = ∆uh, x ∈ Rd, t > 0

uh(x, 0) = g(x), x ∈ Rd. (4.39)

In fact (we will prove below), the function w(x, t) is the solution to the inhomogeneous problem
with zero initial data:

wt = ∆w + f(x, t), x ∈ Rd, t > 0 (4.40)

w(x, 0) = 0, x ∈ Rd

Since the PDE is linear, the combination of uh and w solves (4.36).
Now, by Theorem 2.3.1 we may represent both of the functions w̃ and uh in terms of the funda-

mental solution. Specifically,

w̃(x, t; s) =
∫

Rd
Φ(x− y, t− s)f(y, s) dy

uh(x, t) =
∫

Rd
Φ(x− y, t)g(y) dy (4.41)

Combining this with the Duhamel formula (4.38), we see that

u(x, t) =
∫

Rd
Φ(x− y, t)g(y) dy +

∫ t

0

∫
Rd

Φ(x− y, t− s)f(y, s) dy ds (4.42)
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Theorem 2.4.1 (see Evans Theorem 2, p. 50) Suppose f ∈ C2
1 (Rd × [0,∞)), then the func-

tion defined by (4.42) satisfies

(i) ut = ∆u+ f(x, t) for all t > 0, x ∈ Rd.

(ii) u ∈ C2
1 (Rd × [0,∞))

(iii)
lim

(x,t)→(x0,0+)
u(x, t) = g(x0). (4.43)

Proof: By the above analysis and Theorem 2.3.1, the only thing left to prove is that the function

w(x, t) =
∫ t

0

∫
Rd

Φ(x− y, t− s)f(y, s) dy ds (4.44)

solves the inhomogeneous problem (1.30). We compute derivatives:

w(x, t+ h)− w(x, t)
h

=
1
h

∫ t+h

0
w̃(x, t+ h; s) ds− 1

h

∫ t

0
w̃(x, t+ h; s) ds

=
1
h

∫ t+h

t
w̃(x, t+ h; s) ds

+
∫ t

0

w̃(x, t+ h; s)− w̃(x, t; s)
h

ds

Using the properties of f and Φ and integrating by parts, one can show that

lim
h→0

1
h

∫ t+h

t
w̃(x, t+ h; s) ds = w̃(x, s; s) = f(x, s) (4.45)

and that

lim
h→0

∫ t

0

w̃(x, t+ h; s)− w̃(x, t; s)
h

ds =
∫ t

0
w̃t(x, t; s) ds

=
∫ t

0
∆w̃(x, t; s) ds = ∆w(x, t) (4.46)

Therefore, wt = ∆w + f(x, t). The initial condition is satisfied since

lim
t→0

∣∣∣∣∫ t

0

∫
Rd

Φ(x− y, t− s)f(y, s) dy ds
∣∣∣∣ ≤ lim

t→0

∫ t

0
max
y
|f(y)| ds = 0. (4.47)

So, w(x, 0) = 0. See Evans Theorem 2, p. 50 for more details. �
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Relation to ODE’s

You may have encountered Duhamel’s principle already in the context of inhomogeneous ODEs.
Let us point out the formal connection between the results above and what you may have seen
already. Consider the following homogeneous ODE:

η′(t) = −Aη(t) (4.48)
η(0) = η0. (4.49)

Here η : [0,∞)→ R, and A ∈ R is some positive constant. The solution is the exponential

η(t) = e−tAη0

Now consider the inhomogeneous ODE:

ζ ′(t) = −Aζ(t) + F (t) (4.50)
ζ(0) = ζ0

The solution is:

ζ(t) = e−tAζ0 +
∫ t

0
e−(t−s)AF (s) ds. (4.51)

Exercise: Verify this.

You may think of S(t) = e−tA as a solution operator for the homogeneous equation (4.48). It
maps the initial point η0 to the value of the solution of (4.48) at time t: S(t)η0 7→ e−tAη0. With
this definition, the solution to the inhomogeneous equation (4.51) may be written as

ζ(t) = S(t)ζ0 +
∫ t

0
S(t− s)F (s) ds. (4.52)

Formally, the PDE (4.36) has the same structure as the ODE system (4.50). Letting ζ(t) denote
the function u(·, t), we may write a formal equation

ζ ′(t) = −Aζ + F (t) (4.53)

where A is now an operator acting on the function ζ(t) = u(·, t) according to A : u(·, t) 7→ −∆u(·, t),
and F (t) is the function f(·, t). This idea of defining an ODE for a function that takes values in a
space of functions can be made mathematically rigorous using semigroup theory (for example, see
Evans section 7.4, or the book Functional Analysis by K. Yosida).

Suppose that we know the solution operator S(t) for the homogeneous equation η′ = −Aη,
corresponding to the homogeneous heat equation ut = ∆u. Then the representation (4.52) suggests
that the solution to the inhomogeneous equation should be

u(x, t) = S(t)g(x) +
∫ t

0
S(t− s)f(x, s) ds (4.54)

We have already computed the solution operator S(t) – it is given by convolution with the heat
kernel:

S(t)g(x) =
∫

Rd
Φ(x− y, t)g(y) dy (4.55)
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and

S(t− s)f(x, s) =
∫

Rd
Φ(x− y, t− s)f(y, s) dy. (4.56)

Combining this with (4.54) gives us the solution formula (4.42).

2.5 Boundary Value Problems

On the Half-Line

We now demonstrate a technique for solving boundary value problems for the heat equation on the
half-line:

ut = ∆u, x > 0, t > 0 (5.57)
u(x, 0) = g(x), x > 0
u(0, t) = 0, t > 0.

The boundary condition imposed at x = 0 is the homogeneous Dirichlet condition. The convolution
formula (3.20) gives a solution on the entire line x ∈ R, but this function will not necessarily satisfy
the boundary condition at x = 0. In fact, g is not yet defined for x < 0, so for this problem the
convolution formula does not make sense immediately. So, we need to modify our approach to
solving the problem.

The idea we demonstrate here is to construct a solution on the whole line in such a way that the
condition u(0, t) = 0 is satisfied for all t. Then the restriction of this function to the right half-line
will be a solution to our problem (5.57). To construct a solution on the whole line, we need to
define the initial data for x < 0. The key observation is that if the initial data on the whole line has
odd symmetry, then the heat equation preserves this symmetry. Moreover, any continuous function
f(x) that has odd symmetry (i.e. f(−x) = −f(x)) must satisfy f(0) = 0. Therefore, if u(x, t) has
odd symmetry for all t, then u(0, t) = 0 will be satisfied for all t.

We begin by extending the function g(x) on (−∞, 0) by odd-reflection:

gex(x) = g(x), x ≥ 0, gex(x) = −g(−x), x < 0 (5.58)

This function has odd symmetry: gex(−x) = −gex(x). Then we solve the extended problem

ūt = ∆ū, x ∈ R, t > 0
ū(x, 0) = gex(x), x ∈ R

Using the convolution formula, our solution is

ū(x, t) =
∫

R
Φ(x− y, t)gex(y) dy.

Using a change of variables and the fact that Φ has even symmetry, it is easy to see that ū has
odd-symmetry: ū(−x, t) = −ū(x, t) for all x ∈ R. Therefore, ū(0, t) = 0 for all t > 0, and the
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restriction of ū(x, t) to the half-line satisfies (5.57). So, our solution is (for x ≥ 0):

u(x, t) = ū(x, t) =
∫

R
Φ(x− y, t)gex(y) dy

=
1

(4πt)1/2

∫
R
e−
|x−y|2

4t gex(y) dy

=
1

(4πt)1/2

∫ ∞
0

(
e−
|x−y|2

4t − e−
|x+y|2

4t

)
g(y) dy (5.59)

Inhomogeneous boundary conditions, shifting the data

Suppose we modify the above problem to become

ut = ∆u, x > 0, t > 0 (5.60)
u(x, 0) = g(x), x > 0
u(0, t) = h(t), t > 0

Now the boundary condition at the origin is u(0, t) = h(t) which may be non-zero in general.
Therefore, the reflection technique won’t work without modification, since odd reflection guaranteed
that u = 0 at the boundary. One way to solve boundary value problems with inhomogeneous
boundary conditions is to “shift the data”. That is, we subtract something from u that satisfies
the boundary condition (but maybe not the PDE). In the present case, suppose we have a function
ĥ(x, t) : [0,∞)× [0,∞)→ R such that ĥ(0, t) = h(t). This function ĥ extends h off the axis x = 0.
Then let v(x, t) = u(x, t)− ĥ(x, t). This function v satisfies the homogeneous boundary condition:
v(0, t) = u(0, t) − ĥ(0) = h(t) − h(t) = 0. However, v solves a different PDE. Since u = v + ĥ, we
compute

∂t(v + ĥ) = ∆(v + ĥ) (5.61)

so that v satisfies
vt = ∆v + ∆ĥ− ĥt (5.62)

Putting this all together, we see that u = v + ĥ where v solves

vt = ∆v + f(x, t), x > 0, t > 0 (5.63)

v(x, 0) = g(x)− ĥ(x, 0), x > 0
v(0, t) = 0, t > 0

and f(x, t) = ∆ĥ − ĥt. The price to pay for shifting the data is that now we may have an
inhomogeneous equation and different initial conditions. The key fact that makes this solution
technique possible is the fact that the equation is linear; thus we can easily derive and solve an
equation for the shifted function v.

23



2.5. BOUNDARY VALUE PROBLEMS Math 227, J. Nolen

Another example

Here we illustrate this shifting technique and the reflection technique together. Let us solve the
inhomogeneous equation with inhomogeneous Dirichlet boundary condition:

ut = uxx + k(x, t), t > 0, x > 0
u(x, 0) = g(x), x > 0

u(0, t) = 1, t > 0

We also have added a source term k(x, t) just for illustration. Here we suppose that g(x) ≥ 0 is
smooth, bounded, and g(0) = 1. Let’s find an integral representation formula for u(x, t) involving
g, k, and the fundamental solution Φ(x, t).

The boundary condition is inhomogeneous, so we first shift the function u to transform the
boundary condition into the homogeneous condition. One way to do this would be setting v(x, t) =
u(x, t)−1. Then v(0, t) = u(0, t)−1 = 0, so v satisfies the homogenous boundary condition. There
are other ways to do this, as well. The function v satisfies the modified problem:

vt = vxx + k(x, t), t > 0, x > 0
v(x, 0) = g(x)− 1 := g̃(x), x > 0

v(0, t) = 0, t > 0

We now solve for v and set u = v + 1.
To solve for v, we extend the problem onto the entire line and solve using the fundamental

solution and Duhamel’s principle. To obtain the boundary condition, we extend g̃ and k by odd
reflection:

g̃ex(x) = g̃(x) = g(x)− 1, x ≥ 0, g̃ex(x) = −g̃(−x) = 1− g(−x), x < 0
kex(x) = k(x), x ≥ 0, kex(x) = −k(−x), x < 0

Therefore, using the Duhamel formula (4.42), we construct a solution

v(x, t) =
∫

R
Φ(x− y, t)g̃ex(y) dy +

∫ t

0

∫
R

Φ(x− y, t− s)kex(y, s) dy ds (5.64)

so that

u(x, t) = 1 + v(x, t)

= 1 +
∫

R
Φ(x− y, t)g̃ex(y) dy +

∫ t

0

∫
R

Φ(x− y, t− s)kex(y, s) dy ds (5.65)

= 1 +
1

(4πt)1/2

∫ ∞
0

(
e−
|x−y|2

4t − e−
|x+y|2

4t

)
(g(y)− 1) dy

+
∫ t

0

∫ ∞
0

1
(4πs)1/2

(
e
− |x−y|

2

4(t−s) − e−
|x+y|2
4(t−s)

)
k(y, s) dy ds (5.66)

24



2.6. UNIQUENESS OF SOLUTIONS: THE ENERGY METHODMath 227, J. Nolen

2.6 Uniqueness of solutions: the energy method

Using the fundamental solution we have constructed one solution to the problem

ut = ∆u+ f(x, t), x ∈ Rd, t > 0 (6.67)

u(x, 0) = g(x), x ∈ Rd

where f ∈ C2
1 (Rd × [0,∞)) and |g(x)| ≤ C1e

C2|x|. Is this the only solution? If there were another
solution v, then their difference w = u− v would satisfy

wt = ∆w, x ∈ Rd, t > 0 (6.68)

w(x, 0) = 0, x ∈ Rd

since the equation is linear. We’d like to say that w ≡ 0 for all t > 0 since the initial data is zero.
This would imply that u = v so that the solution is unique. However, it turns out (surprise!) that
there are non-trivial solutions to this initial value problem (6.68). So the solution to (6.67) is not
unique. Nevertheless, the non-trivial solutions to (6.68) must grow very rapidly as |x| → ∞, and if
we restrict our attention to solutions satisfying a certain growth condition, then the only solution
of (6.68) is the trivial solution w ≡ 0. Therefore, under a certain growth restriction, the solution
to (6.67) must be unique:

Theorem 2.6.1 (See Evans Theorem 7, p. 58) There exists at most one classical solution to
the initial value problem (6.67) satisfying the growth estimate

|u(x, t)| ≤ Aea|x|2 , ∀ x ∈ Rd, t ∈ [0, T ] (6.69)

for constants A, a > 0.

From now on, we will always assume that our solutions to the heat equation in the whole space
satisfy this growth condition. Notice that the condition |g(x)| ≤ C1e

C2|x| is within the limits of the
this growth condition.

For boundary value problems in a bounded domain, this technical issue does not arise, and
solutions may be unique. For example, consider the initial value problem with Dirichlet boundary
conditions:

ut = ∆u+ f(x, t), x ∈ Ω, t > 0 (6.70)
u(x, t) = h(x, t), x ∈ ∂Ω, t > 0
u(x, 0) = g(x), x ∈ Ω, t = 0

Theorem 2.6.2 There is at most one solution to the initial value problem (6.70).

Proof: If there were two classical solutions to this problem, then their difference w = u− v would
satisfy (since the equation is linear!):

wt = ∆w, x ∈ Ω, t > 0
w(x, t) = 0, x ∈ ∂Ω, t > 0
w(x, 0) = 0, x ∈ Ω, t = 0
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We wish to show that w(x, t) = 0 for all t ≥ 0 and x ∈ Ω, implying that u = v. To see this, multiply
the equation by w and integrate in x and t:∫ T

0

∫
Ω
wt(x, t)w(x, t) dx dt =

∫ T

0

∫
Ω

(∆w(x, t))w(x, t) dx dt (6.71)

We will use this equality to show that the quantity E(T ) :=
∫

Ωw
2(x, T ) dx must be zero for all T .

The left hand side is:∫ T

0

∫
Ω
wt(x, t)w(x, t) dx dt =

∫ T

0

∫
Ω

1
2
∂

∂t
w2 dx dt

=
1
2

∫
Ω

(∫ T

0

∂

∂t
w2 dt

)
dx

=
1
2

∫
Ω

(w2(x, T )− w2(x, 0)) dx (FTC)

=
1
2

∫
Ω
w2(x, T ) dx =

1
2
E(T )

We may evaluate the right hand side of (6.71) using the fact that w(∆w) = w∇·∇w = ∇·(w∇w)−
∇w · ∇w, so that∫ T

0

∫
Ω

(∆w(x, t))w(x, t) dx dt =
∫ T

0

∫
Ω
∇ · (w∇w)− |∇w|2 dx dt.

The first integral on the right side vanishes, by the divergence theorem and the fact that w = 0 on
the boundary: ∫ T

0

∫
Ω
∇ · (w∇w) dx dt =

∫ T

0

∫
∂Ω
ν · (w∇w) dS(y) dt = 0.

Therefore, ∫ T

0

∫
Ω

(∆w(x, t))w(x, t) dx dt = −
∫ T

0

∫
Ω
|∇w|2 dx dt ≤ 0.

Now returning to (6.71) we see that
1
2
E(T ) ≤ 0.

Obviously, E(T ) ≥ 0. Therefore, E(T ) = 0 for all T . This implies that w(x, T ) ≡ 0 for all T > 0
and x ∈ Ω. �

Exercise: Suppose that in the boundary value problem (6.70) we replace the Dirichlet condition
(u = h on ∂Ω) with the Neumann condition ν · ∇u = g for x ∈ ∂Ω. Here ν is the exterior normal
vector at the boundary. Would Theorem 2.6.2 hold in this case?
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2.7 Properties of Solutions

Infinite speed of propagation

Consider the function
u(x, t) =

∫
Rd

Φ(x− y, t)g(y) dy (7.72)

Suppose that g(y) ≥ 0. Then, since Φ(x, t) > 0 for all x ∈ R and t > 0, the function u(x, t) will be
non-negative for all x ∈ R and t > 0. In fact, if g(y) ≥ 0 is actually positive in some small region D,
then since Φ(x, t) > 0 for all x ∈ R and t > 0, the function u(x, t) given by (7.72) will be positive
for all x ∈ R and t > 0! This phenomenon is called infinite speed of propagation. Even if
the initial data g ≥ 0 is supported only in a small ball, the solution will be nonzero everywhere
for any small time t > 0. This surprising property is quite different from the behavior of other
time-dependent PDE like the wave equation.

Exercise. The heat equation was obtained as a limit of discrete equations appearing from the
random walker model. The random walker, obviously, has a finite speed of propagation. Explain
why there is no contradiction to the infinite speed of propagation of the heat equation and show
that the random walker speed of propagation tends to infinity in the continuum limit.

Comparison principle, Maximum principle

This analysis also shows that the ordering of initial data is preserved by the corresponding solutions,
in the following sense. Suppose that u and v both solve the heat equation (and satisfy the growth
conditions) with initial data

u(x, 0) = g1(x) ≤ g2(x) = v(x, 0) (7.73)

Then the function w = v − u solves the heat equation with initial data g2(x)− g1(x) ≥ 0. So, w is
non-negative for all t > 0, implying that v ≥ u for all x and t > 0.

Even in a bounded domain, solutions to the heat equation obey a comparison principle or max-
imum principle. To state this, we define the sets

ΩT = Ω× (0, T ] (7.74)

for some T > 0. This is an open set in Rd×R. If Ω is a ball in R2, this set is a cylinder. In general,
however, ΩT is called the parabolic cylinder. Then the set

ΓT = ΩT \ ΩT (7.75)

is the boundary portion on the bottom and sides of the cylinder (but not the top!). So, ΓT resembles
a cup, and it is called the parabolic boundary.

Theorem 2.7.1 (Weak Maximum Principle) Suppose that u ∈ C2,1(ΩT ) ∩ C(ΩT ).

(i) Suppose that ut ≤ ∆u for all (x, t) ∈ ΩT . Then

max
(x,t)∈ΩT

u(x, t) = max
(x,t)∈ΓT

u(x, t) (7.76)

That is, the maximum of u must be attained on the boundary.
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(ii) Suppose that ut ≥ ∆u for all (x, t) ∈ ΩT . Then

min
(x,t)∈ΩT

u(x, t) = min
(x,t)∈ΓT

u(x, t) (7.77)

That is, the minimum of u must be attained on the boundary.

The assumption u ∈ C2,1(ΩT ) ∩ C(ΩR) means that u has two space derivatives and one time
derivative that are continuous for (x, t) ∈ ΩT . Also, u is continuous up to the boundary.

Proof: We prove only (i); the proof of (ii) is similar. Suppose that u attains its maximum at an
interior point (x0, t0) ∈ ΩT :

u(x0, t0) = max
(x,t)∈ΩT

u(x, t) (7.78)

At a local maximum, we must have ut = 0 and ∆u ≤ 0. Therefore, ut ≥ ∆u must be satisfied at
this point, which means that ut < ∆u could not hold at the maximum point (x0, t0). Therefore, if
ut < ∆u at all points in ΩT , u cannot have a local maximum in the interior ΩT .

For the general case, ut ≤ ∆u, consider the function wε = u− εt. This function satisfies

wεt = ut − ε ≤ ∆u− ε = ∆wε − ε < ∆wε (7.79)

Therefore, we may apply the preceding argument to wε to conclude that

max
(x,t)∈ΩT

wε(x, t) ≤ max
(x,t)∈ΓT

wε(x, t) (7.80)

Letting ε→ 0, wε → u uniformly, and therefore

max
(x,t)∈ΩT

u(x, t) = lim
ε→0

max
(x,t)∈ΩT

wε(x, t) ≤ lim
ε→0

max
(x,t)∈ΓT

wε(x, t) = max
(x,t)∈ΓT

u(x, t) (7.81)

This proves (i). �

Corollary 2.7.1 (Comparison) Suppose that u and v both solve the heat equation in the bounded
domain ΩT with u(x, t) ≥ v(x, t) for all (x, t) ∈ ΓT . Then u(x, t) ≥ v(x, t) for all x ∈ ΩT . That is,
if u is greater than v on the parabolic boundary, then u is greater than v everywhere in the domain.

Proof: The function w = u − v satisfies the heat equation and is non-negative on the parabolic
boundary ΓT . The weak maximum principle implies that

min
(x,t)∈ΩT

w(x, t) = min
(x,t)∈ΓT

w(x, t) ≥ 0. (7.82)

So, u ≥ v for all (x, t) ∈ ΩT . �

The maximum principle, as we will see later, is a very powerful tool that allows to obtain many
qualitative results for parabolic equations in a very elegant and often effortless manner.
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2.8 Non-constant coefficients

Let Ω be a bounded connected domain in Rn. Consider the operator

Lu = aij(x)
∂2u

∂xi∂xj
+ bi(x)

∂u

∂xi
+ c(x)u

with u ∈ C2(Ω)∩C(Ω). The functions aij , bi and c are always assumed to be continuous in Ω while
L is assumed to be uniformly elliptic:

aij(x)ξiξj ≥ λ|ξ|2 for all x ∈ Ω and all ξ ∈ Rn

with a positive constant λ > 0.
Such operators also obey the weak maximum principle. We will give an elliptic version but the

parabolic version is verbatim the same as for the heat equation.

Theorem 2.8.1 (The Weak Maximum Principle) Suppose that u ∈ C2(Ω) ∩ C(Ω) satisfies u ≥ 0
and Lu ≥ 0 in Ω with c(x) ≤ 0 in Ω. Then u attains its maximum on ∂Ω.

Proof. The proof is very close to that for the heat equation. The main observation is that if

x0 is an interior maximum then ∇u(x0) = 0 while the matrix D2u =
(

∂2u

∂xi∂xj

)
is non-positive

semi-definite. Hence the left side of Lu ≥ 0 may not be positive at an interior maximum, as c ≤ 0
and u ≥ 0. This would be a contradiction were it not for the possibility Lu = 0 that arises if
D2u(x0) is degenerate – the rest of the proof fights this.

Given ε > 0 define w(x) = u(x) + εeαx1 with α to be determined – this will ensure that D2w(x0)
is non-degenerate. Then we have

Lw = Lu+ εeαx1
(
a11α

2 + b1α+ c
)
.

Recall that a11 ≥ λ > 0 and |b1|, |c| ≤ const. Thus we may choose α > 0 so that

a11α
2 + b1α+ c > 0

and thus Lw > 0 in Ω. Therefore the function w attains its maximum in Ω̄ at the boundary ∂Ω.
Indeed, as before, if w attains its (non-negative) maximum at x0 /∈ ∂Ω then ∇w(x0) = 0 and the

matrix Dij =
∂2w

∂xi∂xj
is non-positive definite. Hence we would have

Lw(x0) = aij(x0)D2
ijw(x0) + c(x0)w(x0) ≤ 0

which is a contradiction. Thus x0 ∈ ∂Ω and we obtain

sup
Ω
u ≤ sup

Ω
w ≤ sup

∂Ω
w ≤ sup

∂Ω
u+ ε sup

∂Ω
eαx1 ≤ Cε+ sup

∂Ω
u

with the constant C independent of ε. We let ε→ 0 and finish the proof. �

Corollary 2.8.1 The Dirichlet problem

Lu = f in Ω
u = φ on ∂Ω

with f ∈ C(Ω), φ ∈ C(∂Ω) has a unique solution if c(x) ≤ 0.
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Remark 2.8.1 We first note that the assumption of non-negativity of u is not needed if c = 0.
However, non-positivity of c(x) is essential: otherwise the Dirichlet problem may have a non-unique
solution, as u(x, y) = sinx sin y solves

∆u+ 2u = 0 in Ω
u = 0 on ∂Ω

with Ω = [0, π]× [0, π] ⊂ R2. Second, the assumption that Ω is bounded is also essential both for
uniqueness and for the maximum principle to hold: the function u(x) = log |x| solves

∆u = 0 in Ω
u = 0 on ∂Ω

with Ω = {|x| > 1}.

The most immediate application of the maximum principle is to obtain uniform a priori estimates
on the solutions. We still assume that the matrix aij is uniformly elliptic in Ω̄: aij(x)ξiξj ≥ λ|ξ|2,
λ > 0, and aij , bi and c are continuous in Ω̄. We assume in addition that

sup
Ω
|aij |+ sup

Ω
|bi| ≤ Λ.

The first result deals with the Dirichlet boundary conditions.

Theorem 2.8.2 Assume that u ∈ C2(Ω) ∩ C(Ω̄) satisfies

Lu = f in Ω
u = φ on ∂Ω

for some f ∈ C(Ω̄) and φ ∈ C(∂Ω). There exists a constant C(λ,Λ,diam(Ω)) so that

|u(x)| ≤ max
∂Ω
|φ|+ C max

Ω
|f | for all x ∈ Ω (8.83)

provided that c(x) ≤ 0.

Proof. Let us denote F = maxΩ |f | and Φ = max∂Ω |φ| and assume that Ω lies inside a strip
{0 < x1 < d}. Define w(x) = Φ +

(
eαd − eαx1

)
F with α > 0 to be chosen so as to ensure

Lw ≤ −F in Ω (8.84)
w ≥ Φ on ∂Ω.

We calculate w ≥ Φ on ∂Ω and

−Lw = (a11α
2 + b1α)Feαx1 − cΦ− c

(
eαd − eαx1

)
F ≥ (a11α

2 + b1α)F ≥ (λα2 + b1α)F ≥ F

when α is large enough. Hence w satisfies (8.84). The comparison principle implies that −w ≤ u ≤
w in Ω and in particular

sup
Ω
|u| ≤ Φ +

(
eαd − 1

)
F

so that (8.83) holds. �

30



Chapter 3

Stochastic Processes and Stochastic
Calculus

We already learned that the function

u(x, t) =
∫

R
Φ(x− y, t)g(y) dy =

∫
R

1√
4πt

e−
|x−y|2

4t g(y) dy = E[g(Xx(t))] (0.1)

satisfies the heat equation for x ∈ R, t > 0 with initial data u(x, 0) = g(x) (defined by continuity as
t → 0). The expectation in (0.1) is with respect to a Gaussian random variable Xx(t) with mean
µ = x and variance σ2 = 2t. Now we begin to explore more deeply the connection between second
order linear partial differential equations and stochastic processes.

These notes review basic concepts related to continuous time stochastic processes, Brownian
motion, and stochastic calculus, which are relavent to our study of PDEs. I presume that you have
had some previous exposure to the topics in Section 3.1 of these notes (in Stat219, for example).
The more advanced topics are covered in much greater detail in the Math 236 course; here we only
review and sketch the main ideas that we will need later. There are several excellent texts covering
these topics. Here are a few:

• Course notes for Math136/Stat219, available online.

• B. Oksendal, Stochastic Differential Equations: An Introduction with Applications, Berlin:
Springer-Verlag 2003.

• I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, New York: Springer
1991.

3.1 Continuous Time Stochastic Processes and Brownian Motion

3.1.1 Measure theory

Given a probability space (Ω,F , P ), a continous time stochastic process is a collection of
random variables {Xt(ω)}t∈[0,T ] indexed by the “time variable” t. Here Ω is the sample space, F is
a σ-algebra of subsets of Ω, and P is a probability measure. Recall that a σ-algebra is a collection
of subsets of Ω that is closed under countable unions or intersections. That is,
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(i) Ω ∈ F , ∅ ∈ F

(ii) Ac ∈ F whenever A ∈ F , where Ac = Ω \A.

(iii)
⋃∞
i=1Ai ⊂ F whenever Ai ∈ F for each i = 1, 2, 3, . . . .

(iii)
⋂∞
i=1Ai ⊂ F whenever Ai ∈ F for each i = 1, 2, 3, . . . .

A probability measure P : F → [0, 1] assigns to each set A ∈ F a number P (A) ≥ 0 in such a
way that

(i) P (Ω) = 1

(ii) P (∅) = 0.

(iii) P (
⋃∞
i=1Ai) =

∑∞
i=1 P (Ai) whenever {Ai}∞i=1 is a countable collection of disjoint sets in Ai ∈

F .

So, the collection of sets F are called the measureable sets; these are the sets to which we can
assign a probability. If A is not measureable, we run into problems trying to define P (A).

For each t, Xt(ω) is a measurable random variable taking values in R, or Rd. Measureable means
that for each α ∈ R, the set {ω | Xt(ω) > α} is a measurable set (i.e. contained in F). Thus we
can assign a probability to such sets. If an event A ∈ F satisfies P (A) = 1, we say that A occurs
“with probability 1” or “almost surely”.

For each ω, we say that the function t 7→ Xt(ω) is a sample path or trajectory or realization
of the stochastic process. A nondecreasing family of σ-algebras {Ft}t∈[0,T ], Ft ⊂ F is called a
filtration. This means that Fs ⊆ Ft ⊆ F whenever s ≤ t. We say that the process Xt(ω) is
adapted to the filtration {Ft}t∈[0,T ] if for each t ≥ 0, Xt(ω) is an Ft measurable random variable
(such a process is also said to be non-anticipating). Typically, Ft is defined as

Ft = σ (Xs(ω), s ∈ [0, t]) (1.2)

The notation on the right means the σ-algebra generated by the process up to time t. It is the
smallest σ-algebra contained in F with respect to which Xs(ω) is measurable for each s ∈ [0, t].
One may think of Ft as containing all “information” about the process up to time t. We will always
be working with processes that are also measureable with respect to t, for almost every ω. That is,
the function t 7→ Xt(ω) defines a measurable function of [0, T ] with respect to the Borel σ-algebra
B([0, T ]).

3.1.2 Conditional Expectation

Sometimes we want to estimate the probability of an event given some partial information about
the process. For example, given the history of the process up to time s, we might want to compute
E[f(Xt(ω))], given that Xs(ω) = x is known. This is the idea behind conditional expectation. The
problem is that the quantity f(Xt(ω)) is measurable with respect to Ft, but if t > s then this
quantity may not be measurable with respect to Fs. The conditional expectation of f(Xt(ω)) with
respect to Fs ( the “history up to time s”) is written as

E[f(Xt(ω)) | Fs] (1.3)
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This is a random variable, in general. If η(ω) is a Ft measureable random variable (for example
η(ω) = f(Xt(ω))), then the conditional expectation E[η|Fs] is the Fs measureable random
variable ξ(ω) satisfying

E[ξ(ω)IA(ω)] = E[η(ω)IA(ω)] (1.4)

for all A ∈ Fs. Here IA(ω) is the indicator function of the set A: IA(ω) = 1 if ω ∈ A, IA(ω) = 0
otherwise. We can also write this relationship in integral notation:∫

A
ξ(ω)dP (ω) =

∫
A
η(ω)dP (ω) (1.5)

The point is that ξ is actually Fs measurable, and from the point of view of integration over Fs
measurable sets, ξ is indistinguishable from η. That is, integration of ξ over any set A ∈ Fs is the
same as integration of η over that set. Although η may not be Fs measureable, the integral on
the right hand side of (1.5) makes sense since A ∈ Ft, as well. One can show that the conditional
expectation is uniquely defined, up to modification on a set of measure zero. That is, if ξ1(ω) and
ξ2(ω) both satisfy the definition, then ξ1(ω) = ξ2(ω) almost surely.

One can also show that among all Fs measurable random variables, the conditional expectation
E[η|Fs] is the random variable ξ that minimizes

E[|ξ(ω)− η(ω)|2], (1.6)

provided that these random variables have bounded second moments. So, in this sense the con-
ditional expectation ξ = E[η|Fs] is the best approximation to η among Fs measurable random
variables.

Here are a few very useful properties of conditional expectation. We suppose that η is Ft mea-
sureable with Fs ⊂ Ft (i.e. s < t):

• E[η | Fs] ≥ 0 if η(ω) ≥ 0.

• For constants α1 and α2, E[α1η1(ω) + α2η2(ω) | Fs] = α1E[η1 | Fs] + α2E[η2 | Fs], .

• If φ(ω) is a Fs measurable random variable, then E[φ | Fs] = φ, almost surely.

• If φ(ω) is a Fs measurable random variable, then E[φη | Fs] = φE[η | Fs], assuming these
quantities are finite.

• E[η] = E[E[η |Fs]]

• If φ(ω) is Fs measurable, then

E[φη] = E[E[φη |Fs]] = E[φE[η |Fs]] (1.7)

Suppose η and ξ are two random variables, F measureable. We may define the conditional
expectation of η with respect to ξ as follows. Let Fξ be the σ-algebra generated by ξ(ω). This
is the smallest σ-algebra contained in F with respect to which ξ is measureable. Then we define
E[η|ξ] = E[η|Fξ]. Typically we will encounter quantities like E[Xt2 |Xt1 ] for t2 > t1, where Xt is a
stochastic process.

We may also define the conditional probability of an event with respect to a σ-algebra. Given
an event A ∈ F , we define the conditional probability P (A|Fs) to be the conditional expectation
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E[IA(ω)|Fs], where IA(ω) is the indicator function of the set A. Similarly, we define the conditional
probability of one event with respect to another as P (A|C) = E[IA(ω)|FC ] where FC is the σ-
algebra generated by the random variable IC(ω). Notice that this σ-algebra is particularly simple,
containing only the sets FC = {Ω, ∅, C, Cc}.

3.1.3 Brownian Motion

A real-valued continuous time stochastic process Bt(ω), t ∈ [0, T ], is called a Brownian motion
or Wiener process if

(i) Bt(ω) is a Gaussian process

(ii) E[Bt] = 0 for all t

(iii) E[BtBs] = min(t, s)

(iv) For almost every ω ∈ Ω, the sample path t→ Bt(ω) is a continuous function of t ∈ [0, T ].

In many texts, Brownian motion is denoted by Bt, instead of Bt. This definition says that for each
t, Bt(ω) is a Gaussian random variable with mean zero and variance t:

P (Bt(ω) ∈ [a, b]) =
1√
2πt

∫ b

a
e−

x2

2t dx (1.8)

Notice also that these properties imply that increments of the process (i.e. Bt−Bs) are also mean
zero Gaussian random variables with variance t− s since

E[(Bt −Bs)2] = E[(Bt)2]− 2E[BtBs] + E[B2
s ] = t− 2s+ s = t− s (1.9)

Moreover, if 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 ≤ T , the increments Bt4 − Bt3 and Bt2 − Bt1 are mutually
independent since these random variables are jointly Guassian and uncorrelated:

E[(Bt4 −Bt3)(Bt2 −Bt1)] = E[Bt4Bt2 ] + E[Bt3Bt1 ]− E[Bt4Bt1 ]− E[Bt3Bt2 ]
= t2 + t1 − t1 − t2 = 0 (1.10)

Theorem 3.1.1 There exists a complete probability space (Ω,F , P ), a filtration Ft, and a stochas-
tic process Bt(ω) such that Bt(ω) is a Brownian motion.

There are various ways to construct Brownian motion. For examples and proofs of this theorem,
see the references listed above. The first proof of this result was given by Norbert Wiener (J. Math.
Phys., 1923)

Brownian motion in Rd. Similarly, we may define Brownian motion in Rd. A d-dimensional
Brownian motion is an Rd-valued continuous time stochastic process Bt(ω) = (B1

t (ω), . . . , Bd
t (ω)),

t ∈ [0, T ] such that the components Bi
t(ω) are independent one-dimensional Brownian motions.

Therefore,

(i) Bi
t(ω) is a Gaussian process for each i

(ii) E[Bi
t] = 0 for all t, i = 1, . . . , d
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(iii) E[Bi
tB

j
s ] = min(t, s)δij , for all i and j.

(iv) For almost every ω ∈ Ω, the sample path t → Bt(ω) is a continuous function from [0, T ] to
Rd.

3.1.4 Properties of Brownian Motion

Next, we describe some important properties of one-dimensional Brownian motion. Proofs and
further discussion of these statements may be found in the references listed above.

Markov Property and Independent Increments. Brownian Motion is a Markov process.
This implies that if s < t, the increment Bt(ω) − Bs(ω) is independent of the σ-algebra Fs. In
terms of conditional probability, this means that for any Borel set A,

P (Bt(ω)−Bs(ω) ∈ A | Fs) = P (Bt(ω)−Bs(ω) ∈ A | Bs) (1.11)

Also, for any continuous bounded function f

E[f(Bt −Bs)|Fs] = E[f(Bt −Bs)|Bs] (1.12)

That is, if Bs(ω) is known, then Bt(ω)−Bs(ω) depends on no other information in the past before
time s. In fact,

P (Bt(ω)−Bs(ω) ∈ A | Bs) =
1√

2π(t− s)

∫
A
e
− |Bs−y|

2

2(t−s) dy (1.13)

so that
E [Bt(ω)−Bs(ω) | Bs] = 0 (1.14)

almost surely. For t1 < t2 < t3 < t4 ≤ T , the increments Bt4 − Bt3 and Bt2 − Bt1 are mutually
independent so that

P (Bt4 −Bt3 ∈ A, Bt2 −Bt1 ∈ C) = P (Bt4 −Bt3 ∈ A)P (Bt2 −Bt1 ∈ C) (1.15)

Finite Dimensional Distributions. For any t1 < t2 < t3 < · · · < tn, the random variables
{Btk}nk=1 are jointly Guassian with covariance determined by properties (ii) and (iii) above. Given
any collection of Borel sets {Ak}nk=1, let us compute

P (Btk ∈ Ak, k = 1, . . . n) (1.16)

A set of the form {Btk ∈ Ak, k = 1, . . . n} ⊂ C([0, T ]) is called a cyllinder set. The increments
of Brownian motion are independent. Therefore, B2 = B1 + (B1 − B2) expresses B2 as a sum
of independent Gaussian random variables. Similarly, writing Xj = Bj − Bj−1 for j = 1, . . . , n
(X0 = 0), we may write Bk =

∑k
j=1Xj as a sum of independent Gaussian random variables, each

having mean zero and variance tj − tj−1. Therefore,

P (Bt1 ∈ A1, Bt2 ∈ A2) = P (X1 ∈ A1, X1 +X2 ∈ A2)

=
∫
A1

∫
A2−x1

p(x1; 0, t1)p(x2; 0, t2 − t1) dx2 dx1

=
∫
A1

∫
A2

p(x1; 0, t1)p(x2;x1, t2 − t1) dx2 dx1 (1.17)
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where p(x; y, t) is the Gaussian kernel

p(x; y, t) =
1√
2πt

e−
|x−y|2

2t (1.18)

Proceeding inductively in this way we find that

P (Btk ∈ Ak, k = 1, . . . n) =
∫
A1

· · ·
∫
An

n∏
k=1

p(xk;xk−1, tk − tk−1) dxn · · · dx1

and for any continuous and bounded f : Rn → R

E [f(B1, . . . , Bn)]

=
∫
A1

· · ·
∫
An

f(x1, x2, . . . , xn−1, xn)
n∏
k=1

p(xk;xk−1, tk − tk−1) dxn · · · dx1

When k = 1, we define xk−1 = x0 := 0 in this formula.

The Martingale Property. An Ft-adapted stochastic process Xt(ω) is called a martingale,
sub-martingale, or super-martingale in the following cases:

• Martingale:
E[Xt|Fs] = Xs for all s ∈ [0, t], almost surely (1.19)

• Sub-martingale:

E[Xt|Fs] ≥ Xs for all s ∈ [0, t], almost surely (1.20)

• Super-martingale:

E[Xt|Fs] ≤ Xs for all s ∈ [0, t], almost surely (1.21)

A one-dimensional Brownian motion Bt(ω) is a martingale, since

E[Xt|Fs] = E[Xt −Xs +Xs|Fs] (1.22)
= E[(Xt −Xs)|Xs] + E[Xs|Xs]
= E[(Xt −Xs)] +Xs = 0 +Xs. (1.23)

One may think of a martingale as a “fair game.” If Xt represents a gambler’s account balance at
time t, then the condition E[Xt|Fs] = Xs says that the expected future balance, given the current
balance, is unchanged. So the game favors neither the gambler nor the house. Of course, the
change Xt −Xs may be positive or negative, but its expected value conditioned on Xs is zero. On
the other hand, if Xt is a sub-martingale, then given the gambler’s current account balance, he
may expect his earnings to increase. If Xt is a super-martingale, then given the gambler’s current
account balance, he may expect his earnings to decrease (this seems to be the most realistic model,
given the success of many casinos).

A useful observation is that if Xs is an Fs-martingale and a function φ(x) is convex, then φ(Xs)
is a sub-martingale. This follows from Jensen’s inequality. For instance, if if Xs is a martingale, so
are |Xs|, X2

s , and all X2m
s with m ∈ N. Continuous martingales satisfy a remarkable property that

estimates the maximum of a process by the terminal time statistics.

36



3.1. CONTINUOUS TIME STOCHASTIC PROCESSES AND
BROWNIAN MOTION Math 227, J. Nolen

Theorem 3.1.2 (Continuous Doob inequality) If Mt is a continuous in time martingale, then for
all p ≥ 1, T ≥ 0 and λ > 0 we have

P

[
sup

0≤t≤T
|Mt| ≥ λ

]
≤ 1
λp

E(|MT |p).

We will not prove this result here but rather prove it only for discrete martingales. A sequence Xj is
a martingale with respect to a sequence of σ-algebras Fj if (i) Fn ⊆ Fn+1, (ii) Xn is Fn-measurable,
(iii) E[|Xn|] < +∞, and (iv) E(Xn+1|Fn) = Xn almost surely. It follows that E(Xm|Fn) = Xn

almost surely for all m ≥ n. The discrete Doob’s inequality is the following estimate that bounds
the supremum of Xj in terms of the expectation of the last element:

Theorem 3.1.3 (Discrete Doob’s inequality) Suppose (Xj ,Fj) is a martingale sequenc, 1 ≤ j ≤ n,
then for any l > 0 and any p ≥ 1we have

P
{
ω : sup

1≤j≤n
|Xj | ≥ l

}
≤ 1
lp
E(|Xn|p).

Proof. Let us define S(ω) = sup1≤j≤n |Xj(ω). Then the event E = {ω : S(ω) ≥ l} can be
decomposed as a disjoint union of the sets

Ej = {ω : |X1(ω)| < l, . . . , |Xj−1(ω) < l, |Xj(ω) ≥ l} ,

that is, E =
⋃n
j=1Ej and Ej ∩Em = ∅ for j 6= m. Note that, as |Xj | ≥ l on the set Ej we have an

inequality

P (Ej) ≤
1
lp

∫
Ej

|Xj |pdP.

The function φ(x) = |x|p is convex for p ≥ 1, hence, as we mentioned above, the sequence |Xj |p is
a sub-martingale, thus |Xj |p ≤ E(|Xn|p|Fj), hence

P (Ej) ≤
1
lp

∫
Ej

|Xj |pdP ≤
1
lp

∫
Ej

E(|Xn|p|Fj)dP

Moreover, the set Ej is Fj-measurable as follows immediately from the way Ej is defined, hence

P (Ej) ≤
1
lp

∫
Ej

E(|Xn|p|Fj)dP =
1
lp

∫
Ej

|Xn|pdP,

simply from the definition of E(|Xn|p|Fj). now, summing over all j and using the fact that Ej are
disjoint we obtain

P (E) =
n∑
j=1

P (Ej) ≤
1
lp

n∑
j=1

∫
Ej

|Xn|pdP ≤
1
lp

∫
E
|Xn|pdP ≤

1
lp

∫
Ω
|Xn|pdP =

1
lp

E(|Xn|p),

and we are done. �

Path space C([0, T ]) and Wiener measure. A Brownian motion on a probability space
(Ω,F , P ) induces a probability measure P ∗ on C([0, T ]), the space of real-valued continuous func-
tions on the interval [0, T ]. The σ-algebra on which this measure is defined is the Borel σ-algebra
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(denoted by B(C([0, T ]))) that is generated by the uniform norm. This is the σ-algebra generated
by open and closed sets determined by the metric d(f, g) = ‖f − g‖0 = sups∈[0,T ]|f(s) − g(s)|.
Consequently, the probability space (C([0, T ]),B(C([0, T ])), P ∗) is refered to as the canonical
probability space for Brownian motion, and the measure P ∗ is called the Wiener measure.
The condition B0(ω) = 0 almost surely means that this measure concentrates on functions that are
0 for t = 0.

Regularity. Although sample paths of Brownian motion are continuous, almost surely, they
are not smooth. In fact, with probability one, the sample paths are nowhere differentiable in t.
Thus d

dtBt(ω) is ill-defined for all t. It can be shown, however, that sample paths are almost surely
Hölder continuous with exponent α for any α ∈ [0, 1/2) (this follows from the Kolmogorov Čentsov
Theorem). This means that if α ∈ [0, 1/2) is a fixed constant, then the quantity

sup
s,t∈[0,T ]
s 6=t

|Bt(ω)−Bs(ω)|
|t− s|α

(1.24)

if finite, almost surely, where the bound depends on ω. In other words, for almost every ω, there
is a constant C = C(ω) such that

|Bt(ω)−Bs(ω)| ≤ C|t− s|α (1.25)

holds for all t, s ∈ [0, T ]. This gives us some measure of the continuity of Bt(ω). If Bt(ω) were
differentiable in t, then this condition would be satisfied with α = 1.

3.1.5 Stopping times

A real-valued, F measurable random variable τ(ω) is called a stopping time with respect to a
filtration {Ft}t if the event {τ ≤ t} is Ft measureable for each t. That is {τ ≤ t} ∈ Ft. This means
that at each time t, we may determine whether or not the even has occured. Typically we will
consider stopping times of the form,

τ(ω) = inf{s ≥ 0| Bs(ω) ∈ A} (1.26)

where A is some Borel set in R (or Rd if Bt is multi-dimensional). This stopping time is refered to
as the first hitting time to the set A. On the other hand, the random variable

τ(ω) = sup{s ≥ 0| Bs(ω) ∈ A}

is not a stopping time, since we cannot determine whether the process will re-enter A at some
point in the future (i.e. {τ ≤ t} is not Ft measureable).

3.2 The Itô Integral and Stochastic Differential Equations

In this section we describe a method of giving rigorous meaning to a differential equation of the
form

d

dt
y(t) = g(y(t), t) + f(y(t), t) · (random noise)

= g(y(t), t) + f(y(t), t)B′(t). (2.27)
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In integral form, such and equation would look like

y(T ) = y(0) +
∫ T

0
g(y(s), s) ds+

∫ T

0
f(y(t), s)B′(s) ds. (2.28)

Of course, B(s) is not differentiable for any s, so neither (2.27) nor (2.28) makes any sense.

Total Variation, Riemann-Stieltjes Integrals

Suppose f(t) is a continuous function, then the Riemann-Stieltjes integral of f with respect to
φ(s) over [0, T ] is defined by

I(T ) =
∫ T

0
f(s)dφ(s) := lim

|Γ|→0

m∑
i=1

f(pi) (φ(si)− φ(si−1)) (2.29)

where Γ = {0 = s0 < s1 < · · · < sm = T} is a partition of the interval [0, T ], and each pi is a
point satisfying si−1 ≤ pi ≤ si. By |Γ| → 0 we mean that the maximum distance between two
consecutive points in Γ goes to zero. The limit (2.29) may not exist, in general. However, the
following condition on φ will be sufficient to make sense of this limit. We say that a function
φ : [0, T ]→ R has bounded total variation if

TV (φ) = sup
∑

Γ

|φ(si)− φ(si−1)| <∞ (2.30)

where the supremum is taken over all possible partitions Γ. The expression TV stands for total
variation.

Theorem 3.2.1 If f(s) is continuous over [0, T ], and φ has bounded total variation, then the
integral I(T ) is well-defined and finite.

Notice that if φ(s) = s, then the integral defined by (2.29) is just the usual Riemann-integral.
More generally, it is easy to see that if φ is continuously differentiable, then∫ T

0
f(s)dφ(s) =

∫ T

0
f(s)φ′(s) ds.

Nevertheless, the Riemann-Stieltjes integral may be defined for functions that have bounded varia-
tion but are not necessarily continuously differentiable. Unfortunately, Brownian motion does not
even fit into this class.

Theorem 3.2.2 The sample paths of Brownian motion have unbounded total variation, almost
surely.

Indeed, if Γ is a partition of length m with evenly spaced points si = iT/m, then we may compute
explicitly

E

[∑
Γ

|Bsi −Bsi−1 |

]
=

m∑
i=1

E[|Bsi −Bsi−1 |] = C
m∑
i=1

√
|si − si−1| = Cm

√
T

m
(2.31)

This quantity diverges as m → ∞. This shows that the mean variation is infinite. One can
show that the same is true pathwise, almost surely. Consequently,

∫ T
0 f(s)dBs is not necessarily

well-defined as a Riemann-Stieltjes integral.
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The Itô Integral

In order to define the integral
∫ T

0 f(s)dBs, we first define it for a simple class of processes. Then for
a more general class of processes, we define the integral by approximation. The resulting definition
is called the Itô stochastic integral.

Definition 3.2.1 A stochastic process f(s, ω) is called a simple process or step process if there
is a partition Γ = {0 = s0 < s1 < · · · < sm = T} such that

f(s) = ξi(ω) if s ∈ [si, si+1), i = 0, . . . ,m− 1 (2.32)

and the random variable ξi(ω) is Fsi measurable for each i = 0, . . . ,m− 1, and E[|ξi|2] <∞.

So a step process is piecewise constant with finitely many pieces, and it is easy to see that a step
process is adapted to Ft (non-anticipating). For such a process we define the integral∫ T

0
f(s, ω)dBs(ω) :=

m−1∑
i=0

f(si)(Bsi+1 −Bsi) =
m−1∑
i=0

ξi(ω)(Bsi+1 −Bsi) (2.33)

There are only finitely many terms in the sum, thus there is no problem with convergence of the
sum. Now we extend the definition to a larger class of processes. Let L2([0, T ]) denote the class of
Ft-adapted processes g(s, ω) satisfying

‖g‖L2 :=
(
E

[∫ T

0
g(t, ω)2 dt

])1/2

<∞ (2.34)

Clearly any step process is contained in L2([0, T ]). In fact, the set of all step processes is a dense
subset of L2([0, T ]) in the following sense:

Theorem 3.2.3 For any process g(s, ω) ∈ L2([0, T ]), there is a sequence of bounded step processes
fk(s, ω) ∈ L2([0, T ]) such that

lim
k→∞

E

[∫ T

0
(g(s, ω)− fk(s, ω))2 ds

]
= 0 (2.35)

Proof: This is proved in the book by B. Oksendal (see steps 1,2,3 of section 3.1). The proof is not
difficult, and you should first try to sketch a proof on your own. �

The theorem says that we may approximate g by a sequence of simple processes {fk}k. Since
each fk is a simple process, we may integrate each fk as defined by (2.33). Then we may define the
Itô integral for g by approximation – the integral of g is the limit of the integrals of the fk.

Definition 3.2.2 For g(t, ω) ∈ L2([0, T ]), the Itô integral of g is defined by∫ T

0
g(s, ω)dBs(ω) := lim

k→∞

∫ T

0
fk(s, ω)dBs(ω) (2.36)

where fk(s, ω) is a sequence of bounded step functions approximating g, in the sense of (2.35). The
integrals on the right are defined by (2.33).
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The convergence in (2.36) holds in L2((Ω,F , P )). This means that there exists a square-integrable
random variable η(ω) such that

E[η2] <∞ and lim
k→∞

E

[∣∣∣∣η(ω)−
∫ T

0
fk(s, ω)dBs(ω)

∣∣∣∣2
]

= 0 (2.37)

This random variable is what we call
∫ T

0 g(s, ω)dBs(ω). Moreover, the definition is independent of
the choice of {fk}; if we choose a different approximating sequence, we obtain the same limit (after
modification on a set of zero measure)! Proofs of these statements may be found in the Oksendal
book.

Properties of the Itô Integral

Here are some important properties of the Itô integral:

(i)
∫ T

0 dBs(w) = BT (ω).

(ii) The integral is a linear functional of the process g:∫ T

0
(αg1(s, ω) + βg2(s, ω)) dBs(ω) = α

∫ T

0
g1(s, ω)dBs(ω) + β

∫ T

0
g2(s, ω)dBs(ω) (2.38)

(iii) Itô Isometry: for any f, g ∈ L2([0, T ])

E[|
∫ T

0
g(s, ω) dB|2] =

∫ T

0
E[|g(s, ω)|2] ds (2.39)

and

E[
∫ T

0
g(s, ω) dB ·

∫ T

0
f(s, ω) dB] =

∫ T

0
E[g(s, ω)f(s, ω) ds. (2.40)

(iv) E[
∫ T

0 g(s, ω) dB] = 0.

(v) The indefinite integral I(t, ω) :=
∫ t

0 g(s, ω) dBs(ω) defines a Ft measurable random variable.

(vi) The indefinite integral I(t, ω) :=
∫ t

0 g(s, ω) dBs(ω) is a martingale with respect to the filtration
(Ft)t≥0.

(vii) There is a version of the stochastic process I(t, ω) :=
∫ t

0 g(s, ω) dBs(ω) that has continuous
sample paths.

Proof: Property (i) is obvious, since this is the integral of the step process f(s, ω) ≡ 1. Property
(ii) is also easy to check.

Now we prove (iii). Suppose that g is a simple process (the general case g ∈ L2([0, T ]) follows by
approximation). Then

E[|
∫ T

0
g(s, ω) dB|2] =

m−1∑
j=0

m−1∑
i=0

E
[
g(sj , ω)g(si, ω)(Bsi+1 −Bsi)(Bsj+1 −Bsj )

]
(2.41)
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To evaluate each term in the sum, we condition on Fsk where sk = max(si, sj). Then if i 6= j,

E
[
g(sj , ω)g(si, ω)(Bsi+1 −Bsi)(Bsj+1 −Bsj )

]
= E

[
E[g(sj , ω)g(si, ω)(Bsi+1 −Bsi)(Bsj+1 −Bsj )|Fsk ]

]
= E

[
g(sj , ω)g(si, ω)E[(Bsi+1 −Bsi)(Bsj+1 −Bsj )|Fsk ]

]
= 0 (2.42)

since the increments (Bsi+1 −Bsi) and (Bsj+1 −Bsj ) are independent. However, if i = j, then

E
[
(g(si, ω))2(Bsi+1 −Bsi)2

]
= E

[
E[(g(si, ω))2(Bsi+1 −Bsi)2|Fsi ]

]
= E

[
(g(si, ω))2E[(Bsi+1 −Bsi)2|Fsi ]

]
= E

[
(g(si, ω))2(si+1 − si)

]
= E

[∫ T

0
(g(si, ω))2 ds

]
(2.43)

This fact is the key that allows us to pass to the limit (2.36). Suppose that gk is a sequence of step
functions converging to f in the sense of (2.35). Then without loss of generality, we may assume
that gk is a Cauchy sequence. Therefore, from property (iii),

lim
k,j→∞

E

[
|
∫ T

0
gk(s, ω)dB −

∫ T

0
gj(s, ω)dB|2

]
= lim

k,j→∞
E

[
|
∫ T

0
(gk(s, ω)− gj(s, ω))dB|2

]
= lim

k,j→∞
E

[∫ T

0
|gk(s, ω)− gj(s, ω)|2ds

]
= 0 (2.44)

Thus the random variables
∫ T

0 gk(s, ω)dB are also a Cauchy sequence, so there exists a limit in
L2(Ω,F , P ) (this is a complete metric space).

For property (iv), notice that if g is a step process, then

E[
∫ T

0
g(s, ω) dB] = E

[
m−1∑
i=0

g(si, ω)(Bsi+1 −Bsi)

]

=
m−1∑
i=0

E
[
g(si, ω)(Bsi+1 −Bsi)

]
=

m−1∑
i=0

E
[
E[g(si, ω)(Bsi+1 −Bsi)|Fsi ]

]
=

m−1∑
i=0

E
[
g(si, ω)E[(Bsi+1 −Bsi)|Fsi ]

]
(2.45)

=
m−1∑
i=0

0
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The equality at (2.45) follows from the fact that g(si) is Fsi measureable. By approximation the
same result holds for general g ∈ L2([0, T ]). That is, this property is preserved under the limit
(2.36).

The proof of property (vi) is similar to the proof of properties (iii) and (iv) using the conditioning
idea. Property (vii) can be proved using the maximal martingale inequality and the Borel-Cantelli
lemma. See the references for details. �

Having defined the Itô integral, can now give a rigorous meaning to the “differential equation
with noise” (2.27) and (2.28). For adapted processes G(t, ω), F (t, ω) ∈ L2([0, T ]), we will now use
the notation

dXt = G(t, ω)dt+ F (t, ω)dBt, t ∈ [0, T ] (2.46)

to mean that the process Xt(ω) satisfies the integral equation

Xt(ω) = X0(ω) +
∫ t

0
G(s, ω)ds+

∫ t

0
F (s, ω)dBs(ω) (2.47)

for all t ∈ [0, T ]. Here X0(ω) is some square-integrable random variable. The first integral is a
regular Riemann integral if G is continuous. In general, however, it is a Lebesgue integral. The
second integral is the Itô integral.

The terms in the equation might depend on Xt itself. That is, we say that a process Xt satisfies
the differential equation

dXt = H(Xt, t)dt+K(Xt, t)dBt (2.48)

if Xt(ω) satisfies the integral equation

Xt(ω) = X0(ω) +
∫ t

0
H(Xt, t)ds+

∫ t

0
K(Xt, t)dBs(ω) (2.49)

Theorem 3.2.4 Suppose that H(x, t) and K(x, t) are continuous in both variables and that

|H(x, t)−H(y, t)| ≤ C|x− y|, x, y ∈ R, t ∈ [0, T ] (2.50)
|K(x, t)−K(y, t)| ≤ C|x− y|, x, y ∈ R, t ∈ [0, T ] (2.51)

for some constant C > 0. Then there exists a unique solution Xt(ω) ∈ L2([0, T ]) to the stochastic
equation

dXt = H(Xt, t)dt+K(Xt, t)dBt
X0(ω) = x0 (2.52)

The conditions (2.50) and (2.51) say that the coefficients are uniformly Lipschitz continuous in the
x variable. This is a natural requirement, as Lipschitz continuity is generally a necessary condition
for uniqueness of solutions to ODE’s of the form y′(t) = f(y(t)). This theorem may be proved by
Picard Iteration, as in the case of ODE’s. For details, see the references listed above.
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3.3 Itô’s Formula

In stochastic calculus, Itô’s formula plays the role of the chain rule, which is one of the most
fundamental ideas in ordinary calculus. Suppose that a differentiable function x(t) satisfies the ode

x′(t) = g(x(t), t).

The integral form this equation is

x(t) = x(0) +
∫ t

0
g(x(s), s) ds.

Now the ordinary chain rule tells us that

d

dt
φ(x(t)) = φ′(x(t))x′(t) = φ′(x(t))g(x(t), t) (3.53)

or in integral form,

φ(x(t)) = φ(x(0)) +
∫ t

0
φ′(x(s))g(x(s), s) ds (3.54)

If φ is smooth, then Taylor’s theorem tells us that

φ(x(t)) = φ(x(0)) + φ′(x(0))(x(t)− x(0)) +
1
2
φ′′(x(0))(x(t)− x(0))2 +O(|x(t)− x(0)|3), (3.55)

even if x(t) is not differentiable. If x(t) is differentiable, the term φ′(x(0))(x(t) − x(0)) is O(t),
while the next term 1

2φ
′′(x(0))(x(t)− x(0))2 is O(t2), smaller than O(t) when t is small. Now, for

the purpose of illustration, let us suppose that x(t) = Bt is a Brownian motion (not differentiable).
Plugging in to (3.55) we find that

φ(Bt) = φ(B0) + φ′(B0)(Bt −B0) +
1
2
φ′′(B0)(Bt −B0)2 + h.o.t.,

The increments of Brownian motion are N(0, t). Therefore, the first term φ′(B0)(Bt − B0) is zero
on average, while the second term corresponding to (Bt−B0)2 contributes O(t) on average, unlike
the case when x(t) was differentiable. This suggests that the “chain rule” for φ(Bt) should be (in
integral form):

φ(Bt) = φ(B0) +
∫ t

0
φ′(s) dBs +

1
2

∫ t

0
φ′′(s) ds (3.56)

If Bt were actually differentiable, the normal chain rule would imply that

φ(Bt) = φ(B0) +
∫ t

0
φ′(s)B′(s) ds (3.57)

So, in (3.56) there is an extra term due to the fact that the increments of Bt are O(t) in means
square sense. That is E[(Bt − B0)2] = t. Roughly speaking, we may say that (dBt)2 ≈ dt. The
following theorem makes these ideas more precise.
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Theorem 3.3.1 (Itô’s formula) Suppose φ(x, t) is twice differentiable in x, differentiable in t.
Suppose that the process X(t, ω) satisfies

dXt = F (t, ω) dt+G(t, ω)dBt (3.58)

Then the process Yt(ω) = φ(Xt(ω), t) satisfies

dYt =
(
φx(Xt(ω), t)F (t, ω) + φt(Xt(ω), t) +

1
2
φxx(Xt(ω), t)G2(t, ω)

)
dt+ φx(Xt(ω), t)G(t, ω)dBt

or in integral form,

φ(Xt(ω), t) = φ(X0(ω), 0) +
∫ t

0

(
φx(Xs(ω), s)F (s, ω) + φt(Xs(ω), s) +

1
2
φxx(Xs(ω), s)G2(s, ω)

)
ds

+
∫ t

0
φx(Xs(ω), s)G(s, ω)dBs (3.59)

Proof: See references listed above.�

The differential form of Itô’s formula may also be written as

dYt = φx(Xt(ω), t)dXt + φt(Xt(ω), t)dt+
1
2
φxx(Xt(ω), t)G2(t, ω) dt (3.60)

You can remember this formula by considering Taylor’s formula:

φ(x+ dx, t+ dt) ≈ φ(x, t) + φxdx+ φtdt+
1
2
φxx(dx)2 (3.61)

then using dx = Fdt+GdB you get Itô’s formula by keeping the low order terms, and remembering
that dB ∼ (dt)1/2 and (GdB)2 ∼ G2dt, roughly speaking.

Example 1: Let Xt = Bt and φ(x) = x2. Then by applying Itô’s formula to the process
Yt = (Bt)2 we find that

(Bt)2 =
∫ t

0
2Bs dBs + t (3.62)

Here F ≡ 0 and G ≡ 1. Notice that this is different from what ordinary calculus would predict,
because if φ(t) is differentiable with φ(0) = 0, then∫ t

0
2φ(s)dφ(s) =

∫ t

0
2φ(s)φ′(s) ds =

∫ 2

0

d

ds
(φ(s))2 ds = (φ(t))2 (3.63)

Example 2: Let Xt = Bt and φ(x) = eαx. Then by applying Itô’s formula to the process
Yt = eαBt we find that

Yt = 1 +
∫ t

0
αYs dBs +

α2

2

∫ t

0
Ys ds (3.64)

which may be expressed as

dYt = αYt dBt +
α2

2
Ytdt (3.65)
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Similarly, the function Zt = eαBt−tα
2/2 satisfies

dZt = αZt dBt (3.66)

This shows that Zt is a martingale since

Zt = 1 +
∫ t

0
αZs dBs (3.67)

and the Itô integral is a martingale. (Actually one can easily compute directly that Z is a martingale
without the help of stochastic calculus. Try this on your own.)

Theorem 3.3.2 (Itô Product Rule) Suppose that Xt(ω) and Yt(ω) two stochastic processes sat-
isfying

dXt = F (Xt, t)dt+G(Xt, t)dBt
dYt = H(Yt, t)dt+K(Yt, t)dBt (3.68)

Then the process Zt(ω) = Xt(ω)Yt(ω) satisfies

dZt = (F (Xt, t)Yt +H(Yt, t)Xt +G(Xt, t)K(Yt, t)) dt
+(G(Xt, t)Yt +K(Yt, t)Xt)dBt

= YtdXt +XtdYt +G(Xt, t)K(Yt, t)dt (3.69)

Itô’s Formula in Multiple Dimensions

We can also define vector-valued stochastic integrals using a m-dimensional Brownian motion.
Suppose that G(s, ω) is a matrix valued process such that

Gij(s, ω) ∈ L2([0, T ]), i = 1, . . . d, j = 1, . . . ,m (3.70)

If Bt is a m-dimensional Brownian motion, then

Xt =
∫ t

0
G(s, ω) dBt (3.71)

defines a d-dimensional stochastic process whose components are

X
(i)
t =

m∑
j=1

∫ t

0
Gij(s, ω) dB(j)

t , i = 1, . . . , d (3.72)

Itô’s formula extends to multiple dimensions in the following way.

Theorem 3.3.3 Suppose that Bt is a m-dimensional Brownian motion and that Xt(ω) = (X(i)
t (ω))i

is a d-dimensional stochastic process satisfying

X
(i)
t ω) = X

(i)
0 (ω) +

∫ t

0
F (i)(s, ω) ds+

m∑
j=1

∫ t

0
Gij(s, ω) dB(j)

t , (3.73)
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If φ(x1, . . . , xd, t) is twice-differentiable in the spatial variables, differentiable in t, then the one-
dimensional process Yt := φ(Xt(ω), t) satisfies

dYt = [F (t, ω) · ∇φ(Xt(ω), t) + φt(Xt(ω), t)] dt

+
m∑
j=1

d∑
i=1

∂φ

∂xi
(Xt(ω), t) Gij(t, ω)dB(j)

t

+
1
2

 m∑
k=1

d∑
i,j=1

φxixj (Xt(ω), t)G(ik)(t, ω)G(jk)(t, ω)

 dt

You can remember the last term by Taylor’s formula and the heuristic formula

dB
(i)
t dB

(j)
t ∼ dt, if i = j, (∼ 0, otherwise) (3.74)

so that
(G(kh) dB

(h)
t )(G(qp) dB

(p)
t ) ∼ δhpG(kh)G(qp)dt (3.75)

Thus, off-diagonal terms (p 6= h) vanish in the formula.

3.4 Girsanov Transformation

Suppose that a stochastic process Xt(ω) satisfies the stochastic differential equation

dXt = a(t, ω)dt+ dBt (4.76)

with X0 = 0, where F is an element of L2([0, T ]). In integral form this is

Xt =
∫ t

0
a(s, ω) ds+Bt (4.77)

We may think of this as “Brownian motion shifted by
∫
a ds.” Indeed, this stochastic process induces

a measure on C([0, T ]) which is absolutely continuous with respect to the Wiener measure.
Example. Let us first consider the simple example when a is a constant so that Xt = at + Bt,

that is, obviously, not a Brownian motion. The idea of the Girsanov theorem is to re-weigh the
paths in C[0, T ] in such a way that the process Xt becomes a Brownian motion with respect to the
new measure. This is done as follows. Consider the weight

Zt = e−aBt−a
2t/2

and the new measure dQt = ZtdPt, where Pt is the law of the Brownian motion. Let f(x) be a
scalar function and let us compute

EQ(f(Xt)) =
∫
f(y + at)e−ay−a

2t/2e−y
2/(2t) dy√

2πt

=
∫
f(z)e−a(z−at)−a2t/2−z2/(2t)+2azt/(2t)−a2t2/(2t) dz√

2πt
=
∫
f(z)e−z

2/2 dz√
2πt

= E(f(Bt)),

47



3.4. GIRSANOV TRANSFORMATION Math 227, J. Nolen

where we used the change of variables z = y+at. Hence, the law of Xt with respect to the measure
Q is the same as the law of the Brownian motion.

In the general case when a is not necessarily a constant define the stochastic process

Zt = e−
R t
0 a(t,ω) dWs− 1

2

R t
0 |a(s,ω)|2 ds

Theorem 3.4.1 (Novikov’s Theorem) Suppose that

E
[
e

1
2

R t
0 |a(s,ω)|2 ds

]
<∞ (4.78)

for each t ≥ 0. Then E[Zt] = 1 and Zt is a martingale (with respect to (Ft)t≥0).

Let us verify that Zt is, indeed, a martingale. We write it as Zt = eYt , where

dYt = −a
2(t, ω)

2
dt− a(t, ω)dBt.

Ito’s formula implies that

dZt = eYtdYt +
1
2
eYt(dYt)2 = Zt

[
−a

2(t, ω)
2

dt− a(t, ω)dBt +
a2(t.ω)

2
dt

]
= −a(t, ω)ZtdBt,

hence

Zt = −
∫ t

0
a(s, ω)ZsdBs

is a martingale.
Using the process Zt we define a new probability measure Q on C([0, T ]) given by

Q(A) = E[ZT IA(ω)] (4.79)

where IA(ω) denotes the indicator function of the set A. Now we define a new process B̃t(ω) by

B̃t(ω) = Bt(ω)−
∫ t

0
F (s, ω) ds (4.80)

Theorem 3.4.2 [Girsanov’s theorem] The process Xt(ω) given by (4.76) is a Brownian motion
under the measure Q.

Proof. We start with the following lemma.

Lemma 3.4.1 Let µ and ν be two probability measures on a probability space (Ω,G) such that
dν(ω) = f(ω)dµ(ω) for some f ∈ L1(dµ). Let X be a random variable such that

Eν(|X|) =
∫
|X(ω)|f(ω)dµ(ω) < +∞,

and let H be a subalgebra of G. Then

Eµ(fX|H) = Eν(X|H)Eµ(f |H). (4.81)
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Proof. Let S ∈ H be an H-measurable set, then∫
S

Eν(X|H)fdµ =
∫
S

Eν(X|H)dν =
∫
S
Xdν =

∫
S
Xfdµ =

∫
S

Eµ(fX|H)dµ.

On the other hand, we have, once again, using H-measurability of S:∫
S

Eν(X|H)fdµ = Eµ(Eν(X|H)fχS) = Eµ(Eµ(Eν(X|H)fχS |H)) = Eµ(χSEµ(Eν(X|H)f |H))

= Eµ(χSEν(X|H)Eµ(f |H)) =
∫
S

Eν(X|H)Eµ(f |H)dµ,

and (4.81) follows.
Now, we prove Theorem 3.4.2. We will assume for simplicity that the function a(s, ω) is bounded

by a deterministic constant and will use Levy’s characterization of the Brownian motion. It says
that if Y (t) is a continuous stochastic process such that both Y (t) is a martingale and the process
Y 2(t) − t is a martingale then Y (t) is a Brownian motion. This is what we verify for the process
X(t) given by (4.76). Actually, we will check only that X(t) is a martingale with respect to the
measure Q, and leave verifying this for X2(t)− t to the reader. Let us put K(t) = ZtX(t), then by
Ito’s formula:

dKt = ZtdXt +XtdZt + (dYtdZt) = Zt(adt+ dBt) +XtZt(−adBt) + (dBt)(−ZtadBt)
= Zt(dBt −XtadBt),

hence Kt is a martingale with respect to the measure P . Hence, Lemma 3.4.1 implies that

EQ(Xt|Fs) =
EP (ZtXt|Fs)
EP (Zt|Fs)

=
EP (Kt|Fs)

Zs
=
Ks

Zs
= Xs,

hence Xt is a Q-martingale.
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Chapter 4

Second order linear PDEs and the
Feynman-Kac Formula

References:

• Karatzas and Shreve, Sections 4.4, 5.7
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• M. Kac, Trans. Amer. Math. Soc. Vol. 65 (1949), pp. 1-13.
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• M. Freidlin, Functional Integration and Partial Differential Equations, Princeton University
Press, 1985. Chapters 1-2.

• R. Bass, Diffusions and Elliptic Operators, Springer, 1998.

4.1 The Feynman-Kac Formula

In these notes we study a stochastic representation formula for solutions to certain second-order
linear partial differential equations. This representation is called the Feynman-Kac formula, named
after the physicist Richard Feynman (1918-1988) and mathematician Mark Kac (1914-1984) (see
references above). You may think of the formula as a generalization of the convolution formula for
the solution to the heat equation, which represents a solution to the heat equation as an expectation
with respect to a Gaussian random variable.

The basic result

Here is the basic idea. In what follows, we will work with solutions to initial value problems and
with solutions to terminal value problems. One can switch between these two perspectives through

50



4.1. THE FEYNMAN-KAC FORMULA Math 227, J. Nolen

a simple change of variables: t→ T − t. Suppose that w(x, t) ∈ C2,1(R× [0,∞)) solves the initial
value problem

wt =
σ2(x)

2
wxx + b(x)wx x ∈ R, t > 0 (1.1)

with initial data w(x, 0) = f(x), which is smooth and compactly supported. We also assume that
b(x) and σ(x) are Lipschitz continuous and bounded. We also assume that w is bounded. Then for
t > 0 fixed, the function u(x, s) = w(x, t− s) satisfies the terminal value problem

us +
σ2(x)

2
uxx + b(x)ux = 0, x ∈ R, s < t (1.2)

with terminal condition u(x, t) = f(x). Moreover, u ∈ C2,1(R × (−∞, t]). Now let Bs(ω) be a
standard Brownian motion with filtration (Fs)s≥0. Suppose that, Xs(ω) is an Fs-adapted solution
to the stochastic ODE

dXx
s = b(Xx

s ) ds+ σ(Xx
s )dBs (1.3)

with Xx
0 = x. The existence and uniqueness of such a solution is guaranteed by our assumptions

about b and σ.
Now, a direct application of Ito’s formula shows us that,

u(Xx
t , t)− u(X0, 0) =

∫ t

0

(
us(Xx

s , s) + b(Xx
s )ux(Xx

s , s) +
σ2(Xx

s )
2

uxx(Xx
s , s)

)
ds

+
∫ t

0
σ(Xx

s )ux(Xx
s , s) dBs

=
∫ t

0
σ(Xx

s )ux(Xx
s , s) dBs (due to (1.2))

Therefore, taking the expectation, we find that

E [u(Xx
t , t)] = E [u(Xx

0 , 0)] = u(x, 0), (1.4)

since the Itô integral has zero mean. In terms of w, this shows that

w(x, t) = u(x, 0) = E [u(Xx
t , t)] = E [f(Xx

t )] (1.5)

In summary, these arguments demonstrate the following:

Theorem 4.1.1 (i) Initial value problem: Suppose that w(x, t) ∈ C2,1(R× [0,∞)) is bounded
and satisfies

wt =
σ2(x)

2
wxx + b(x)wx x ∈ R, t > 0

with initial condition w(x, 0) = f(x) ∈ C2
0 (R). Then w(x, t) is represented by

w(x, t) = E [f(Xx
t )]

where dXx
s = b(Xx

s ) ds+ σ(Xx
s )dBs for s ≥ 0 and Xx

0 (ω) = x.
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(ii) Terminal value problem: Suppose that u(x, t) ∈ C2,1(R×(−∞, T ]) is bounded and satisfies

ut +
σ2(x)

2
uxx + b(x)ux = 0 x ∈ R, t < T

with terminal condition u(x, T ) = f(x) ∈ C2
0 (R). Then u(x, t) is represented by

u(x, t) = E
[
f(Xx

T−t)
]

where dXx
s = b(Xx

s ) ds+ σ(Xx
s )dBs for s ≥ 0 and Xx

0 (ω) = x.

Generalizations

To avoid technical difficulties, we have been rather conservative in our assumptions about the initial
conditions and the coefficients. In fact, these representations hold under milder conditions on the
initial data and the coefficients. Now let us suppose that u(x, t) satisfies the second-order linear
PDE

ut +
d∑

i,j=1

1
2
aij(x, t)uxixj +

d∑
j=1

bj(x, t)uxj + c(x, t)u = 0, x ∈ Rd, t < T (1.6)

with terminal condition u(x, T ) = f(x) which is continuous (but not necessarily differentiable or
bounded). We also assume

• The matrix aij is given by aij =
∑

k σikσkj = σσT for some matrix σjk(x, t).

• The matrix aij = aij(x, t) is uniformly positive definite:
∑

ij aijξjξi ≥ µ|ξ|2 for some constant
µ > 0, independent of (x, t).

• Both σij(x, t) and b(x, t) = (bj(x, t)) are Lipschitz continuous in x, continuous in t, and grow
at most linearly in x.

• The funtion c(x, t) is continuous in (x, t) and bounded in x.

• The terminal condition f(x) satisfies the growth condition |f(x)| ≤ Cep|x|2 for some constant
p > 0 sufficiently small.

• u(x, t) satisfies the growth condition |u(x, t)| ≤ Cep|x|2 for x ∈ R, t ∈ [t0, T ] and some constant
p > 0 sufficiently small.

Suppose that for a given (x, t), the process Xx,t
s (ω) : [t, T ]× Ω→ Rd satisfies

dXx,t
s = b(Xx,t

s , s) ds+
∑
j

σij(Xx,t
s , s) dB(j)

s , s ∈ [t, T ] (1.7)

with Xx,t
t (ω) = x. The superscripts indicate that the process Xx,t

s starts at the point x at time t.
Notice that Xx,t

s is a vector, and b(x, s) is also a vector. Then one can prove:

Theorem 4.1.2 Under the assumptions given above, u(x, t) satisfies

u(x, t) = E
[
f(Xx,t

T )e
R T
t c(Xx,t

s ,s) ds
]
. (1.8)
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Sketch of proof: To prove this statement, one may apply Itô’s formula and the product rule to
the process defined by

Hr(ω) = u(Xx,t
r , r)e

R r
t c(X

x,t
s ,s) ds, r ∈ [t, T ]. (1.9)

The fact that the terminal data f(x) may not be smooth or bounded causes some difficulty that
may be overcome by using Itô’s formula with stopping times. For n > 0, let Sn(ω) be the stopping
time Sn = inf{s ≥ t| |Xx,t

s | ≥ n}. Then we conclude that for r ∈ (t, T ),

Hr∧Sn −Ht = u(Xx,t
r∧Sn , r ∧ Sn)e

R r∧Sn
t c(Xx,t

s ,s) ds − u(Xx,t
t , t)

=
∫ r∧Sn

t
e

R s
t c(X

x,t
τ ,τ) dτ

us +
∑
j

bjuxj +
1
2
aijuxixj + c(Xx,t

s , s)u

 ds

+
∫ r∧Sn

t
e

R s
t c(X

x,t
τ ,τ) dτ

∑
i,j

uxiσijdB
(j)
s

=
∫ r∧Sn

t
e

R s
t c(X

x,t
τ ,τ) dτ

∑
i,j

uxiσijdB
(j)
s (using (1.6))

Notice that arguments inside the integrals are evaluated at (Xx,t
s , s). Taking the expectation as

before, we conclude that

u(x, t) = E
[
u(Xx,t

t , t)
]

= E
[
u(Xx,t

r∧Sn , r)e
R r∧Sn
t c(Xx,t

s ,s) ds
]
. (1.10)

Notice that if u itself is not bounded, then the expectation on the right is not obviously finite. This
explains our use of the stopping time – the stopping time restricts Xx,t

r∧Sn to a bounded region, over
which u must be bounded since u is continuous. The next step is to take n→∞. Using the growth
assumptions on u and the coefficients one can show that as n→∞, the above expression remains
finite since P (Sn < r) = O(e−αn

2
) as n→∞. This shows that

u(x, t) = E
[
u(Xx,t

r , r)e
R r
t c(X

x,t
s ,s) ds

]
(1.11)

Then we let r → T . If we knew that u were sufficiently smooth and bounded at r = T , then we
could apply Itô’s formula with r = T in the above formula. This was our approach in the first
section, since we assumed the initial (or terminal) data was C2. In general, however, this is not the
case. Nevertheless, one may use the dominated convergence theorem to show that as r → T ,

lim
r→T

E
[
u(Xx

r , r)e
R r
t c(X

x
s ,s) ds

]
= E

[
f(Xx

T )e
R T
t c(Xx

s ,s) ds
]

(1.12)

even when f is merely continuous and satisfies a growth condition (see Karatzas and Shreve for
more details). �

Next we formulate a similar result for the initial value problem. Suppose that w(x, t) satisfies

wt =
d∑

i,j=1

1
2
aij(x, t)uxixj +

d∑
j=1

bj(x, t)uxj + c(x, t)u, x ∈ Rd, t > 0 (1.13)
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with initial condition w(x, 0) = f(x). Then the function ũ(x,−t) := w(x, t) satisfies (1.7) with
T = 0, and coefficients given by ãij(x, t) = aij(x,−t), b̃(x, t) = b(x,−t), c̃(x, t) = c(x,−t). For
given (x, t) let Xx,t

s (ω) satisfy

dXx,t
s = b(Xx,t

s , t− s) ds+
∑
j

σij(Xx,t
s , t− s) dB(j)

s , s ∈ [0, t] (1.14)

Then the analysis above shows that

w(x, t) = E
[
f(Xx,t

t )e
R t
0 c(X

x,t
s ,t−s) ds

]
. (1.15)

In particular, if c ≡ 0, then
w(x, t) = E

[
f(Xx,t

t )
]
. (1.16)

These are very elegant formulas which have a natural physical interpretation. Here is how I think
about it. The equation (1.13) models the diffusion, transport, and reaction of a scalar quantity
w(x, t). The vector field b is the “drift” or wind. The matrix aij determines the rates of diffusion
in a given direction. The process Xx,t

t may be thought of as the paths of particles diffusing in this
velocity field. The function c(x, t) represents a reaction rate. So, imagine hot, reactive particles
being carried in the wind. Now, consider the formula (1.16) for the case c ≡ 0 (no reaction). What
determines the temperature at a point (x, t)? The temperature at this point is determined by which
particles arrive at point x at time t and how hot those particles were initially. The quantity f(Xx,t

t )
represents the initial “temperature” evaluated at the “end” of the path f(Xx,t

t ). Notice that Xx,t
s

actually runs backwards in the time-frame associated with the PDE. Roughly speaking, f(Xx,t
t )

tells us what information propagates to the point x at time t. The paths are random; formula
(1.16) says that the solution is determined by the expectation over all such particles. In the case
that c 6= 0, formula (1.15) tells us that the reaction heats up each particle along its trajectory,
increasing (or decreasing) its temperature by a factor of e

R t
0 c(X

x,t
s ,t−s) ds. Notice that when aij , b,

and c are independent of t, we can replace t− s in the above expressions with s.

4.1.1 Poisson’s equation

Here we use Itô’s formula to derive a representation for solutions to Poisson’s equation. Suppose
that w(x) is C2 and bounded, and satisfies∑

i,j

1
2
aij(x)wxixj +

∑
j

bj(x)wxj − c(x)w = f(x), x ∈ Rd (1.17)

with c(x) ≥ c0 > 0 for some constant c0 > 0. As before, we assume aij = σσT is uniformly positive
definite, and that a, b, and c satsify the continuity criteria given earlier.

Theorem 4.1.3 Suppose that Xx
t (ω) solves the stochastic differential equation

dXx
t = b(Xx

t ) dt+
∑
j

σij(Xx
t ) dB(j)

t , t ≥ 0

with Xx
0 (ω) = x ∈ Rd, almost surely. The solution w(x) is represented by

w(x) = E

[∫ ∞
0

e−
R s
0 c(X

x
τ ) dτf(Xx

s ) ds
]
. (1.18)
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Proof: Now apply Itô’s formula and the product rule to the process

Ht(ω) = e−
R t
0 c(Xs)dsw(Xx

t ). (1.19)

We compute:

Ht −H0 = w(Xx
t )e−

R t
0 c(X

x
s ) ds − w(Xx

0 )

=
∫ t

0
e−

R s
0 c(X

x
τ ) dτ

∑
j

bjwxj +
1
2

∑
i,j

aijwxixj − c(Xx
s )w

 ds

+
∫ t

0
e−

R s
0 c(X

x
τ ) dτ

∑
i,j

wxiσijdB
(j)
s

=
∫ t

0
e−

R s
0 c(X

x
τ ) dτf(Xx

s ) ds+
∫ t

0
e−

R s
0 c(X

x
τ ) dτ

∑
i,j

wxiσijdB
(j)
s (1.20)

Now we take the expectation of both sides and let t→∞. Due to the lower bound on c(x),

lim
t→∞

∣∣∣E [w(Xx
t )e−

R t
0 c(X

x
s ) ds

]∣∣∣ ≤ lim
t→∞

e−c0t‖w‖∞ = 0 (1.21)

Therefore,

w(x) = −E
∫ ∞

0
e−

R s
0 c(X

x
τ ) dτf(Xx

s ) ds (1.22)

�

4.2 Boundary Value Problems

So far we have considered solutions to partial differential equations posed in the whole space x ∈ Rd.
Itô’s formula also leads to representation formulas for solutions to PDE’s posed in a bounded
domain with appropriate boundary conditions. We consider two types of problems: boundary value
problems for elliptic equations and initial value/terminal value problems for parabolic equations.

Boundary value problems

Suppose that D ⊂ Rd is a smooth, bounded domain. Suppose that w(x) ∈ C2(D̄) (thus it is
bounded) and satisfies∑

i,j

1
2
aij(x)wxixj +

∑
j

bj(x)wxj − c(x)w = f(x), x ∈ D (2.23)

and boundary condition w(x) = g(x) for x ∈ ∂D. Here we suppose that c(x) ≥ 0. How can we
represent the solution? If Xx

t (ω) solves the stochastic differential equation

dXx
t = b(Xx

t ) dt+
∑
j

σij(Xx
t ) dB(j)

t , t ≥ 0
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with Xx
0 (ω) = x ∈ D, then the trajectories will travel outside the set D, where w is not defined.

To overcome this difficulty, we define the stopping time γD(ω) = inf{t | Xx
t ∈ Rd \D}. This is the

first hitting time to the boundary ∂D. Then define the process

Ht(ω) = e−
R t∧γD
0 c(Xs)dsw(Xx

t∧γD). (2.24)

(Recall the notation t ∧ γD := min(t, γD).) Itô’s formula and the product rule then imply that

Ht −H0 = w(Xx
t∧γD)e−

R t∧γD
0 c(Xx

s ) ds − w(Xx
0 )

=
∫ t∧γD

0
e−

R s
0 c(X

x
τ ) dτ

∑
j

bjwxj +
1
2

∑
i,j

aijwxixj − c(Xx
s )w

 ds

+
∫ t∧γD

0
e−

R s
0 c(X

x
τ ) dτ

∑
i,j

wxiσijdB
(j)
s

=
∫ t∧γD

0
e−

R s
0 c(X

x
τ ) dτf(Xx

s ) ds+
∫ t∧γD

0
e−

R s
0 c(X

x
τ ) dτ

∑
i,j

wxiσijdB
(j)
s (2.25)

As before, we now take the expectation of both sides and let t→∞. Let us suppose that E[γD(ω)] <
∞. Therefore, limt→∞ γD(ω)∧ t = γD(ω), almost surely. Consequently, the fact that w is bounded
and that c ≥ 0, we may use the dominated convergence theorem to show that

lim
t→∞

E
[
w(Xx

t∧γD)e−
R t∧γD
0 c(Xx

s ) ds
]

= E
[
w(Xx

γD
)e−

R γD
0 c(Xx

s ) ds
]

= E
[
g(Xx

γD
)e−

R γD
0 c(Xx

s ) ds
]
,

(2.26)
Similarly, using the fact that f is bounded and E[γD] <∞, we may use the dominated convergence
theorem to show that

lim
t→∞

E

[∫ t∧γD

0
e−

R s
0 c(X

x
τ ) dτf(Xx

s ) ds
]

= E

[∫ γD

0
e−

R s
0 c(X

x
τ ) dτf(Xx

s ) ds
]

(2.27)

Therefore, taking t→∞, we obtain a representation for w(x):

w(x) = E
[
g(Xx

γD
)e−

R γD
0 c(Xx

s ) ds
]
− E

[∫ γD

0
e−

R s
0 c(X

x
τ ) dτf(Xx

s ) ds
]
. (2.28)

Notice that with the stronger assumtion c(x) ≥ c0 > 0, we could lift the condition that E[γD] <∞,
which was used in the application of the dominated convergence theorem to obtain (2.27). We
could also lift the restriction that w ∈ C2(D̄), and require only that w ∈ C2(D) ∩C(D̄) (thus, the
second derivatives might blow up at that boundary). To handle this case, stop the process when it
is distance ε from the boundary. Then let ε→ 0.

Example 1: In particular, this representation shows that if w(x) solves ∆w = 0 in D with
w(x) = g(x) for x ∈ ∂D, then

w(x) = E
[
g(x+

√
2BγD)

]
(2.29)

The quantity g(x+
√

2BγD) is the boundary function evaluated at the point where the process first
hits the boundary. The solution to the PDE is the expectation of these values.
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Initial value problems

Suppose that D ⊂ Rd is a smooth bounded domain. Let DT = D × (0, T ] denote the parabolic
cylinder. Suppose that w(x, t) ∈ C2,1(DT ) ∩ C(D̄T ) satisfies the initial value problem

wt =
∑
i,j

1
2
aij(x, t)wxixj +

∑
j

bj(x, t)wxj + c(x, t)w, x ∈ D, t > 0

w(x, 0) = f(x) x ∈ D
w(x, t) = g(x, t) x ∈ ∂D, t ≥ 0

Here we assume c(x, t) is bounded and continuous. For given (x, t) ∈ DT , let Xx,t
s (ω) satisfy

dXx,t
s = b(Xx,t

s , t− s) ds+
∑
j

σij(Xx,t
s , t− s) dB(j)

s , s ∈ [0, t] (2.30)

Define the stopping time γx,tD = inf{s ≥ 0 | Xx,t
s ∈ R\D}. This is the first time the process hits the

boundary of the set D. Then define γx,t = γx,tD ∧ t This is also a stopping time, and it represents
the time at which the process (Xx,t

s , t− s) hits the parabolic boundary (D × {0}) ∪ (∂D × [0, T ]),
which is the boundary of the set DT . For convient notation, let us define the function

k(x, t) =
{

f(x), if t = 0, x ∈ D̄
g(x, t), if t > 0, x ∈ ∂D (2.31)

This function is equal to f(x) at the base of the parabolic boundary, and it is equal to g(x, t) on
the sides of the parabolic boundary.

Theorem 4.2.1 Under the above assumptions, w(x, t) satisfies

w(x, t) = E

[
k(Xx,t

γx,t , γ
x,t)e

R γx,t
0 c(Xx,t

s ,t−s) ds
]

(2.32)

Proof: I leave this as an exercise. It may be proved as in the other cases. �

4.3 Transition Densities

Consider the vector-valued stochastic process defined by

dXt = b(Xt) dt+ σij(Xt) dW
j
t for t > 0, X0(ω) = x. (3.33)

Suppose that aij = σσT is uniformly positive. Suppose also that a and b satisfy the continuity
conditions described previously. Because of the Markov property of Brownian motion, one can
show that Xt is a Markov process satisfying

P (Xt ∈ A | Fs) = P (Xt ∈ A | Xs), ∀ s ∈ [0, t). (3.34)

Suppose that Xt has a smooth transition density p(x, s; y, t). This means that

P (Xt ∈ A | Xs = x) =
∫
A
p(x, s; y, t) dy (3.35)
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and
E [f(Xt) | Xs = x] =

∫
Rd
f(y)p(x, s; y, t) dy (3.36)

for suitable functions f . What equation does p(x, s; y, t) satisfy?
Here is a formal computation that can be made rigorous under suitable smoothness and growth

assumptions on the coefficients b and σij . If f(x) is smooth and compactly supported, then Itô’s
formula tells us that

f(Xt)− f(Xs) =
∫ t

s
Af(Xr) dr +

∫ t

s

∑
ij

∂f

∂xi
(Xr)σij(Xr)dW j

r (3.37)

where A denotes the differential operator

Af(y) :=
1
2

∑
ij

aij(y)fyiyj + b(y) · ∇yf

Conditioning on the event Xs = x and taking the expectation, we obtain

E[f(Xt) | Xs = x]− E[f(Xs) | Xs = x] =
∫ t

s
E[Af(Xr) | Xs = x] dr.

Now using the definition of the transition density, we may write this expression as∫
Rd
f(y)p(x, s; y, t) dy − f(x) =

∫ t

s

∫
Rd

(Af(y))p(x, s; y; r) dy dr (3.38)

Formally differentiating both sides with respect to t, we obtain the equation∫
Rd
f(y)pt(x, s; y, t) dy =

∫
Rd

(Af(y))p(x, s; y; t) dy (3.39)

Now on the right hand side, integrate by parts:∫
Rd

(Af(y))p(x, s; y; t) dy =
∫

Rd
(
1
2

∑
ij

aij(x)fyiyj + b(x) · ∇yf)p(x, s; y; t) dy

=
∫

Rd
f(y)

1
2

∑
ij

∂2

∂yi∂yj
(aij(x)p(x, s; y; t))−∇y · (b(y)p(x, s; y; t))

 dy

=
∫

Rd
f(y)

(
A∗yp(x, s; y, t)

)
dy (3.40)

where A∗y is the adjoint operator defined by

A∗yg(y) :=
1
2

∑
ij

∂2

∂yi∂yj
(aij(y)g(y))−∇y · (b(y)g(y)) (3.41)

In the integration by parts step, the boundary terms vanish since f has compact support. Therefore,
p(x, s; y, t) should satisfy ∫

Rd
f(y)

(
pt(x, s; y, t)−A∗yp(x, s; y, t)

)
dy = 0 (3.42)
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Since f(y) is chosen arbitrarily, and since we assume p to be sufficiently smooth, this implies that
for each fixed x and s, the function u(y, t) := p(x, s; y, t) satisfies ut = A∗yu. That is,

∂

∂t
p(x, s; y, t) = A∗yp(x, s; y, t). (3.43)

As t ↘ s, p(x, s; y, t) as a function of y converges to a delta distribution centered at y = x. This
equation (3.43) is often called the Kolmogorov forward equation for the transition density
p(x, s; y, t). The term “forward” is applied since it describes the forward evolution of the probability
density for Xt.

For fixed y and t, the function u(x, s) = p(x, s; y, t) satisfies a different equation. To derive this
equation, suppose that f is again smooth and compactly supported. We have already shown that
the solution to the terminal value problem

ws +Axw = 0, s < t, x ∈ Rd (3.44)

with terminal data w(x, t) = f(x) has the representation

w(x, s) = E [f(Xt) | Xs = x] =
∫

Rd
f(y)p(x, s; y, t) dy (3.45)

Formally differentiating the integral expression with respect to s and x and using (3.44) we find
that ∫

Rd
f(y)(ps(x, s; y, t) dy +Axp(x, s; y, t)) dy = 0 (3.46)

Since f was arbitrarily chosen this implies that for each y, ps(x, s; y, t) +Axp(x, s; y, t) = 0. Since
x and s were also arbitrarily chosen, this suggests that for each y and t fixed,

∂

∂s
p(x, s; y, t) +Axp(x, s; y, t) = 0. (3.47)

Since the coefficients defining the process Xt are independent of t, the transition density is a function
of t− s:

p(x, s; y, t) = ρ(x, y, t− s) (3.48)

for some function ρ(x, y, r). Then (3.47) shows that for fixed y, ρ(x, y, t) satisfies

∂

∂t
ρ(x, y, t) = Axρ(x, y, t) (3.49)

This equation is often called the Kolmogorov backward equation.
For rigorous proofs of these results, see the following references:

• A. Friedman, Stochastic Differential Equations and Applications, Vol. 1, Academic Press,
1975, Section 6.4, 6.5, especially Thm. 4.7, Thm 5.4, and related discussion.

• A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, 1964., Chapter
9, on construction of fundamental solutions by the parametrix method. See also chapter 1,
section 8, Thm. 15.
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Chapter 5

The Heat Equation, Part II

References:

• W. Strauss, 4.1, 4.2, Chapter 5.

• L.C. Evans, Section 7.1.

When we studied the connection between stochastic calculus and second-order linear PDE, we
learned that solutions to the heat equation in a bounded domain could be represented in terms of
Brownian motion and stopping times of Brownian motion. For example, suppose that D ⊂ Rd is a
smooth bounded domain and that u(x, t) solves the initial value problem

ut = ∆u x ∈ D, t > 0 (0.1)
u(x, 0) = φ(x), x ∈ D

u(x, t) = 0, x ∈ ∂D, t > 0 (0.2)

The solution is represented by
u(x, t) = E [φ(Xx

t )Iγx>t(ω)] (0.3)

where Xx
t = x+

√
2Bt and γx is the first time Xx

t hits the boundary. In these notes we describe an
analytical construction of solutions based on the idea of superposition: the sum of two solutions to
the heat equation is also a solution. As you will see, this idea gives us a method for constructing
and approximating solutions to a wide variety of equations, not just the simple heat equation.

5.1 Separation of Variables and Eigenfunction Expansion

Consider the homogeneous boundary value problem with homogeneous Dirichlet boundary condi-
tion

ut = ∆u, x ∈ D, t > 0
u(x, 0) = φ(x), x ∈ D (1.4)

u(x, t) = 0, x ∈ ∂D, t > 0
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The idea behind the method of separation of variables is to write the solution as a superposition
of functions of the form v(x)θ(t):

u(x, t) =
∑
n=1

vn(x)θn(t) (1.5)

where each term in the series is a solution to the heat equation and boundary condition.
Let us first try to find a function of the form w(x, t) = v(x)θ(t) which satisfies both the PDE

and the boundary condition. The functions v and θ are unknown. Plugging v(x)θ(t) into the PDE
we find:

θ′(t)v(x) = θ(t)∆v (1.6)

Therefore,

−θ
′(t)
θ(t)

= −∆v(x)
v(x)

(1.7)

Since the left side depends only on x, and the right side depends only on t, the the two sides must
be equal to some constant which we will call λ. Therefore, θ and v must satisfy

θ′(t) = −λθ(t) and −∆v = λv (1.8)

The solution must also satisfy the boundary conidition: v(x)θ(t) = 0 for all x ∈ ∂D. Therefore,
either v(x) = 0 for all x ∈ ∂D, or θ(t) ≡ 0. The latter possibility cannot hold if w is to be nontrivial.
So, we find that v must satisfy the boundary value problem

−∆v(x) = λv(x), x ∈ D
v(x) = 0, x ∈ ∂D (1.9)

and θ must satisfy the linear ODE θ′(t) = −λθ(t). We now have learned that if we were able to solve
(1.9) for some constant λ, then we could solve the ODE for θ(t), and the function w(x, t) = v(x)θ(t)
would satisfy

wt = ∆w, x ∈ D
w(x, t) = 0, x ∈ ∂D.

At t = 0, w(x, 0) = v(x)θ(0), and wt(x, 0) = v(x)θ′(0).

Now suppose that for each integer n ≥ 0, vn(x) satisfies

−∆vn(x) = λnvn(x), x ∈ D
vn(x) = 0, x ∈ ∂D (1.10)

for some constants {λn}n, and θn(t) satisfies

θ′n(t) = −λnθn(t) (1.11)

Then, since the equation is linear, we should hope that the sum

u(x, t) =
∑
n

vn(x)θn(t) (1.12)
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satisfies

ut = ∆u, x ∈ D
u(x, t) = 0, x ∈ ∂D

with initial conditions
u(x, 0) =

∑
n

v(x)θ(0). (1.13)

If it happens that φ(x) =
∑

n v(x)θ(0), then we have solved the initial value problem (1.4)!

General Strategy

This analysis suggests the following strategy for solving the initial value problem:

1. Find a set of functions vn(x) and constants λn satisfying (1.10).

2. Represent the initial data as a linear combination of the functions vn(x) by finding numbers
bn such that

φ(x) =
∑
n

bnvn(x) (1.14)

3. For each n, solve the ODE θ′n(t) = −λnθn(t) with initial data θn(0) = bn.

4. Construct the solution: u(x, t) =
∑

n vn(x)θn(t).

This raises several mathematical issues. First, when can we solve (1.10)? Second, supposing that
we have a large set of solutions {vn(x), λn} to (1.10), is it possible to write φ as a linear combination
of the functions vn(x)? That is, under what conditions might we find constants {bn} such that

φ(x) =
∑
n

bnvn(x) (1.15)

also hold? These sums may be infinite series, so we must take care to make sense of the limit
and the mode of convergence. Even if φ has this representation, it is not obvious that the series∑

n vn(x)θn(t) will solve the equation in the classical sense. We might not be able to differentiate
the series term by term.

It turns out that this program is possible in many practical scenarios. The functions vn(x) and
the constants λn which satisfy (1.10) are called eigenfunctions and eigenvalues of the operator
(−∆). The eigenvalues are discrete, and there are infinitely many of them. Moreover, there is a
large class of functions φ(x) that can be represented as a linear combination of the eigenfunctions,
as expressed in (1.15). In general, there is not an explicit formula for the eigenfunctions vn(x) or
the eigenvalues λn, but for certain ideal domains like rectangles and spheres, vn(x) and λn can be
computed explicitly.

One may think of the functions vn(x) as resonant modes which are determined by the domain
and the boundary condition. The technique of separation of variables identifies the solution with
a superposition of these modes. This idea originates from the work of Joseph Fourier on heat
conduction and has very far-reaching applications in mathematics, not just in the solution of the
heat equation.
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Heat equation in a bounded interval

Here we demonstrate the strategy in the case that the domain D = [0, L] is an interval in R. This
is one case where we can compute the functions vn(x) explicitly. The PDE (1.10) is now an ODE

−v′′n(x) = λnvn(x), x ∈ [0, L]
vn(0) = vn(L) = 0. (1.16)

Using the boundary conditions, we see for any integer n > 0 there is a solution of the form

vn(x) = sin(
πnx

L
) (1.17)

with λn =
(
πn
L

)2
> 0. Now the condition (1.15) may be written as:

φ(x) =
∞∑
n=1

bn sin(
πnx

L
). (1.18)

For each n the solution to the ODE θ′(t) = −λnθn(t) with initial data θn(0) = bn is:

θn(t) = bne
−λnt

Therefore, we expect that the infinite series

u(x, t) =
∞∑
n=1

sin(
πnx

L
)θn(t) =

∞∑
n=1

bne
−(nπ

L
)2t sin(

πnx

L
) (1.19)

solves the heat equation. So for each t, the solution is a linear combination of sine functions. Notice
that the coefficient for each mode, decreases exponentially fast in t, with a rate that increases with
the index n.

Now, we need to understand the meaning of the infinite series (1.19). Does the series converge?
Does it define a differentiable function? In what sense does u(x, t) satisfy the initial condition?
Before we can address these questions, let’s review some important properties of trigonometric
series.

5.2 Fourier Series

The preceding analysis in the case that D is an interval leads us to the general question: when can
a function be represented as a linear combination of trigonometric functions? A Fourier Series is
an infinite series of the form

φ(x) =
1
2
A0 +

∞∑
n=1

(
An cos(

nπx

L
) +Bn sin(

nπx

L
)
)
. (2.20)

Assuming the series converges, the function defined by the series is periodic on the interval [−L,L],
but it may not be continuous. The coefficients {An}n, {Bn}n are called the Fourier coefficients
of the function φ. We will consider the following questions:
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• Which functions φ can be represented in this way?

• How can one compute the coefficients of the series for such a function φ(x)?

• In what sense does the series converge to a function φ(x)?

Important Note: To avoid confusion later, we turn our attention now to the interval D =
[−L,L]. Notice that (1.18) has the same form as (2.20) with A0 = 0, An = 0, and Bn = bn.

Orthogonality

For D = [−L,L], we consider the function space

L2(D) =
{
f : D → R |

∫
D
|f(x)|2 dx <∞

}
. (2.21)

This is an infinite dimensional vector space (called a Hilbert space) with inner product

(g, f)2 =
∫
D
g(x)f(x) dx. (2.22)

We say that two functions f and g are orthogonal in the space L2(D) if (f, g)2 = 0. The
orthogonality of f and g is analogous to orthogonality of two vectors in Rd. The inner product
extends the notion of a dot product in Rd to infinite dimensional spaces. The norm of a function
f ∈ L2 is given by ‖f‖ = (f, f)1/2

2 . Recall that in Rd, the Euclidean norm of a vector is given by
‖r‖ = (r · r)1/2. So, the norm ‖f‖ defined on L2(D) generalizes the idea of a norm in Rd.

It is not hard to see that for D = [−L,L],(
cos(

nπx

L
), sin(

mπx

L
)
)

2
=
∫ L

−L
cos(

nπx

L
) sin(

mπx

L
) dx = 0 (2.23)

for all integers n and m. Also, if n 6= m (n and m are integers),(
sin(

nπx

L
), sin(

mπx

L
)
)

2
= 0(

cos(
nπx

L
), cos(

mπx

L
)
)

2
= 0. (2.24)

In the case n = m, however, (
sin(

nπx

L
), sin(

nπx

L
)
)

2
= L(

cos(
nπx

L
), cos(

nπx

L
)
)

2
= L (2.25)

This shows that the terms appearing in the Fourier series are mutually orthogonal.
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Completeness

Here is a truly amazing fact:

Theorem 5.2.1 The set of functions {1}∪{sin(nπx/L)}n∪{cos(nπx/L)}n is complete in L2([−L,L]).

This means that the set of functions {1} ∪ {sin(nπx/L)}n ∪ {cos(nπx/L)}n forms a basis for
the infinite dimensional space L2([−L,L]) just as a set of d mutually orthogonal vectors in Rd

forms a basis for Rd. These functions are mutually orthogonal, and the span of these functions is
dense in the space L2. In other words, given a function φ ∈ L2([−L,L]), we can find finite linear
combinations of the basis functions that approximate φ with arbitrary accuracy (measured in norm
‖·‖2). Again, given a φ ∈ L2 and any ε > 0, one can find coefficients An and Bn and N sufficiently
large such that

‖φ(x)−

(
1
2
A0 +

N∑
n=1

(
An cos(

nπx

L
) +Bn sin(

nπx

L
)
))
‖2 ≤ ε. (2.26)

Therefore, for a function φ(x) ∈ L2(D), the coefficients of the Fourier series (which are uniquely
determined) give us a representation of φ in this infinite-dimensional basis. One might think of
the Fourier coefficients as the “coordinates” of the function φ in this infinite dimensional space. It
certainly is not obvious that any function L2 can be expressed as a sum of sines and cosines.

How can we compute the coefficients An and Bn? Suppose there only finitely many terms in the
sum (2.20):

φ(x) =
1
2
A0 +

N∑
n=1

(
An cos(

nπx

L
) +Bn sin(

nπx

L
)
)

(2.27)

The orthogonality property allows us to compute:(
φ(x), sin(

kπx

L
)
)

2

=
∫ L

−L
φ(x) sin(

kπx

L
) dx

=
N∑
n=1

An

(
cos(

nπx

L
), sin(

kπx

L
)
)

2

+
∑
n=1

Bn

(
sin(

nπx

L
), sin(

kπx

L
)
)

2

Only one term is nonzero:(
φ(x), sin(

kπx

L
)
)

2

= Bk

(
sin(

kπx

L
), sin(

kπx

L
)
)

2

= BkL (2.28)

Therefore,

Bk =
1
L

(
φ(x), sin(

kπx

L
)
)

2

=
1
L

∫ L

−L
φ(x) sin(

kπx

L
) dx, k > 0. (2.29)

Similarly, we may multiply the sum by cos(kπxL ), integrate, and conclude that

Ak =
1
L

(
φ(x), cos(

kπx

L
)
)

2

=
1
L

∫ L

−L
φ(x) cos(

kπx

L
) dx, k ≥ 0. (2.30)

Now suppose we are given any function φ ∈ L2. We can compute the integrals (2.29) and (2.30),
and then form the infinite series (2.20). Does the series converge? If so, in what sense is φ(x) equal
to its Fourier series?
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Theorem 5.2.2 (L2 Convergence of Fourier Series) Let φ(x) ∈ L2([−L,L]) and define Ak
and Bk by (2.30) and (2.29), respectively. If

φN (x) =
1
2
A0 +

N∑
n=1

(
An cos(

nπx

L
) +Bn sin(

nπx

L
)
)

(2.31)

then
lim
N→∞

‖φ− φN‖2 = 0 (2.32)

Proof: See Strauss, Theorem 3, p. 124. �

Theorem 5.2.3 (Pointwise Convergence of Fourier Series) Suppose that φ(x) and φ′(x) are
both piecewise continuous on [−L,L] then for every x ∈ [−L,L],

lim
N→∞

φN (x) =
1
2
(
φ(x+) + φ(x−)

)
(2.33)

In particular, if φ is actually continuous while φ′ is piecewise continuous, then φN converges point-
wise to φ for all x ∈ (−L,L).

Proof: See Strauss, Theorems 2 and 4, p. 124-125, and see section 5.5. �

Theorem 5.2.4 (Parseval’s Equality) For f ∈ L2([−L,L]),

‖f‖22 =
∫ L

−L
|f(x)|2 dx =

L

2
A2

0 + L

∞∑
n=1

(
|An|2 + |Bn|2

)
(2.34)

This shows that for φ(x) ∈ L2([−L,L]) and φN (x) defined by the partial sum (2.31), the error in
approximating φ by φN has L2 norm

‖φ− φN‖22 = L
∞∑

n=N+1

(
|An|2 + |Bn|2

)
(2.35)

So if the coefficients decay to zero very rapidly as n → ∞, this error will converge to zero very
rapidly as N →∞. In this case, φ may be well-approximated in L2 by only a few terms in its Fourier
series. This has great significance for numerical approximation methods (for example, in solving
PDE’s numerically, in image processing, and many other applications). Under what conditions do
the coefficients decay to zero rapidly?

Food for thought: Show that if f(x) ∈ C1([−L,L]) and f(L) = f(−L), then |An| ≤ Cn−1 and
|Bn| ≤ Cn−1 for some constant C > 0, for all n. What if f ∈ Ck for k > 1?
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5.3 Solving the heat equation

Now we return to the boundary value problem (1.4) with D = [0, L]:

ut = uxx, x ∈ D = [0, L] (PDE)
u(0, t) = 0 = u(L, t), (Boundary Condition)

u(x, 0) = φ(x) (Initial Condition) (3.36)

(Note: we now use D = [0, L].) From the method of separation of variables, we expect that the
solution is given by the infinite series

u(x, t) =
∞∑
n=1

sin(
πnx

L
)θn(t) =

∞∑
n=1

bne
−(nπ

L
)2t sin(

πnx

L
) (3.37)

where bn are the Fourier coefficients for φ. We’ll show that the function defined by this series does
indeed solve the equation.

If φ(x) ∈ L2(D), then its Fourier sine series is well-defined, and the coefficients satisfy

‖φ‖2L2 =
n∑
n=1

|bn|2 <∞ (3.38)

This also implies that for each t > 0, u(·, t) ∈ L2(D) since

‖u(·, t)‖2L2 =
∞∑
n=1

|bn|2|e−2λnt| ≤ e−2λ1t
n∑
n=1

|bn|2 ≤ e−2λ1t‖φ‖2L2 (3.39)

In fact, we can show that for each t > 0, u is actually smooth! To see this, we consider the partial
sums defining u:

SN (x, t) =
N∑
n=1

bne
−(nπ

L
)2t sin(

πnx

L
) (3.40)

for each N , this is a smooth function of (x, t) for t > 0, x ∈ D. Moreover, the partial sums must
converge uniformly. To see this, notice that for any M < N

|SN − SM | ≤
N∑

n=M+1

|bn|e−(nπ
L

)2t

≤ max
n
|bn|

N∑
n=M+1

e−(nπ
L

)2t (3.41)

Because the terms in the last sum are exponentially small in n, this difference converges to zero
as N,M → ∞, uniformly in x ∈ D and t ∈ [ε,∞) for any ε > 0. Therefore, SN defines a Cauchy
sequence. To see that it is bounded, notice that

|SN (x, t)| ≤
N∑
n=1

|bn|e−(nπ
L

)2t ≤ max
n
|bn|

N∑
n=1

e−(nπ
L

)2t

67



5.3. SOLVING THE HEAT EQUATION Math 227, J. Nolen

This is uniformly bounded in N , uniformly in x ∈ D and t ∈ [ε,∞) for any ε > 0. Therefore, the
partial sums SN (x, t) (which are continuous) converge uniformly to a function u(x, t):

lim
N→∞

max
x∈D
t∈[ε,∞)

|u(x, t)− SN (x, t)| = 0 (3.42)

Therefore, the function u(x, t) defined by this series is a continuous function.
We can perform the same analysis on the derivatives of SN . Since the partial sums are smooth

functions, we can take derivatives term by term. By applying the same analysis as above to the
functions ∂

∂xSN and ∂
∂tSN , and to all higher derivatives, we find the function u is actually smooth

for t > 0! The derivatives of SN converge uniformly to the derivatives of u for x ∈ D and t ∈ [ε,∞)
for any ε > 0. This fact depends crucially on the exponential decay of the terms in the Fourier
series for u and does not hold for general Fourier series. Since each partial sum satisfies the heat
equation and the Dirichlet boundary condition, this convergence analysis shows that ut = uxx as
well, for all x ∈ D, t > 0. Moreover, u(0, t) = u(L, t) = 0.

What happens as t→ 0? It is not hard to show that as t→ 0,

lim
t→0
‖u(·, t)− φ(·)‖L2(D) = 0 (3.43)

Notice that the function φ need not be continuous, since φ can be any function in L2(D). In
summary we have shown the following

Theorem 5.3.1 Let φ(x) ∈ L2([0, L]). There exists a unique function u(x, t) ∈ C∞((0, L)×(0,∞))
such that

ut = uxx x ∈ [0, L], t > 0
u(0, t) = u(L, t) = 0, t > 0 (3.44)

and
lim
t→0
‖u(·, t)− φ(·)‖L2(D) = 0 (3.45)

The function u is defined by the Fourier sine series (3.37).

The fact that u is unique was proved earlier in the course, assuming existence of a solution. If φ
is continuous and φ(0) = φ(L) = 0, then one can show (by other methods) that u(x, t) → φ(x) as
t→ 0 uniformly in x, not just in the L2 sense.

A remark on boundary conditions

In problem (0.1) we have imposed homogeneous Dirichlet boundary conditions. This sort of problem
would arise in the Black-Scholes model for the price of a double-barrier option after the equation
is transformed to the heat equation. There also are other boundary conditions that are of interest
for various applications. Many common linear boundary conditions have the form

α(x)u+ β(x)
∂u

∂ν
= g(x), x ∈ ∂D (3.46)

where α, β, and g are prescribed functions. The boundary condition has a different interpretation,
depending on the choice of α, β, g, and on the physical model.
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The Dirichlet boundary condition specifies the value of u on the boundary and corresponds
to β ≡ 0. We will assume α ≡ 1, so that the condition may be expressed as:

u(x, t) = g(x), x ∈ ∂D (3.47)

where g is some function that we will assume to be smooth. If u models temperature, then the
Dirichlet condition corresponds to fixing the temperature at the boundary. A common Dirichlet
condition is g ≡ 0. In fact, if g 6= 0, we may transform the problem so that the boundary condition
becomes g ≡ 0, as follows. Suppose that u satisfies

ut = ∆u, x ∈ D
u(x, t) = g(x), x ∈ ∂D (3.48)
u(x, 0) = φ(x) x ∈ D

and that h(x) ∈ C2(D) is any function such that h(x) = g(x) for all x ∈ ∂D. Then, the function
w(x, t) = u(x, t)− h(x) solves

wt = ∆w + f, x ∈ D
w(x, t) = 0, x ∈ ∂D (3.49)

w(x, 0) = φ(x)− h(x), x ∈ D

where f(x) = ∆h(x). Thus, if we can solve a problem of the form (3.49) where g ≡ 0, we can solve
problem (3.48) by setting u(x, t) = w(x, t) + h(x, t).

The Neumann boundary condition specifies the normal derivative of u on the boundary and
corresponds to α ≡ 0, β 6= 0. We will assume β ≡ 1, so that the condition may be expressed as:

∂u

∂ν
= ν · ∇u = g(x), x ∈ ∂D (3.50)

where ν is an exterior unit normal. As in the Dirichlet case, g is often chosen to be identically zero.
If u models heat transfer, this models a situation where the heat flux across the boundary is zero
(because of an insulating material), which is different from setting the temperature to zero.

The Robin boundary condition is the third case where α 6= 0 and β 6= 0. The Robin condition
models the case where the heat flux through the boundary depends on the temperature itself.

The boundary conditions are called homogeneous if g ≡ 0.

Source terms

Suppose we wish to solve the inhomogeneous equation:

wt = wxx + h(x, t), x ∈ D = [0, L]
w(0, t) = 0, w(L, t) = 0,

w(x, 0) = φ(x). (3.51)

As before, we expand the solution in terms of the eigenfunctions vn:

u(x, t) =
∑
n

θn(t)vn(x) (3.52)
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Assuming f(x, t) ∈ L2(D) for all t, we may write

f(x, t) =
∑
n

fn(t)vn(x) (3.53)

By formally plugging these series into the equation and equating coefficients, we see that the ODE’s
for θn(t) are:

θ′n(t) = −λnθn(t) + fn(t) (3.54)

with initial conditions θn(0) = an, where an are the Fourier coefficients of φ. The differences now
is that the ODE for θn is inhomogenous.

Exercise: Using the method of separation of variables, find a representation for the solution
to (3.36) if the Dirichlet boundary condition is replaced by the homogeneous Neumann boundary
condition: ux(0) = ux(L) = 0.

Other generalizations

This separation of variables technique extends to multiple dimensions and to equations with variable
coefficients. For example, consider the problem

ut = ∇ · (a(x)∇u) + f(x, t), x ∈ D
u(x, t) = 0, x ∈ ∂D

u(x, 0) = φ(x). (3.55)

where D ⊂ Rd is a smooth bounded domain. We suppose that 0 ≤ a∗ ≤ a(x) ≤ a∗ for some
constants a∗ and a∗, and that a(x) is sufficiently smooth (for example, a(x) ∈ C2(D̄)). We look for
a solution of the form

u(x, t) =
∑
n

vn(x)θn(t) (3.56)

where the functions vn are eigenfunctions satisfying −∇ · (a(x)∇vn) = λnvn with eigenvalues λn,
and v(x) = 0 for x ∈ ∂D. As before, we express the initial condition in terms of the functions vn:

φ(x) =
∑
n

anvn(x) (3.57)

and we expand the forcing term f in terms of vn:

f(x, t) =
∑
n

fn(t)vn(x) (3.58)

The functions θn(t) satisfy a second-order ODE, as before. If f 6= 0, then these ODE’s will be
inhomogeneous.

When can we do this?

Theorem 5.3.2 There exists a set of eigenfunctions {vn(x)}∞n=1 normalized by
∫
D|vn(x)|2 dx = 1

which forms an orthonormal basis for L2(D).
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Proof: See Evans Theorem 1, section 6.5. �

Therefore, if f, φ ∈ L2(D), the expansions (3.57) and (3.58) are valid, the series converging in
the L2 sense. In general, there is no explicit formula for the eigenfunctions vn or the eigenvalues
λn, as in the case of the Laplacian (∆) when the domain is an interval, rectangle, or sphere.

Whether this series solution satisfies the PDE in the classical sense depends on the smoothness
of the coefficients and on the data. One may show that

Theorem 5.3.3 If the coefficients a(x) are sufficiently smooth and the functions f and φ are
sufficiently smooth with derivatives vanishing at the boundary, then this construction produces a
classical solution to the problem (3.55). In particular, if a(x) ∈ C∞(D), and if f(x), φ(x) ∈ C∞0 (D′)
for some D′ ⊂⊂ D, then u ∈ C∞.

Proof: See Evans, section 7.1. �
.

An excellent reference for Fourier series is: A. Zygmund, Trigonometric Series, Vols. I and II,
Third Edition, Cambridge UP, 2002.
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The Black-Scholes Equation
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In these notes we study the Black-Scholes equation:

ut +
σ2

2
x2uxx + rxux − ru = 0, t < T, x > 0 (0.1)

with terminal condition u(x, T ) = g(x). The function u(x, t) models the fair price of a contingent
claim or “option” based on the market price of an underlying security. The variable x represents
the market price of the security, and the variable t represents time. The fixed time T is called
the expiry or time of maturity. The solution u(x, t) depends on the current time, the current
stock price, the expiry time, and the boundary condition g(x) which is determined by the type of
option. The solution also depends on the parameters σ and r which represent the volatility of the
underlying asset and the risk-free interest rate, respectively.

There are many types of options. A European call option is a contract that entitles the holder
of the option to buy a given stock at price K > 0, called the strike price, at a future time T . If
the option is exercised, the seller of the option is obligated to sell the stock at price K regardless of
the market price of the stock. At the expiry time T (in the future), the market price of the stock
might be greater than or less than K. Therefore, if the price of the stock at time T is greater than
K, then the option holder can buy the stock at K (from the option seller) and immediately sell the
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stock at the higher price (on the market), making a profit. On the other hand, if the market price
of the stock at time T is less than K, then at time T the holder of the option gains nothing from
exercising the option. So, no action is taken; the option is worthless at this point. The question
that Black, Scholes, and Merton were trying to answer in their seminal papers (1973) is: “How
should one set the price of this option contract, given that the stock price now at time t < T is x?”

6.1 Deriving the Black-Scholes equation via risk-neutral pricing

Here we derive the equation (0.1). We suppose that there are two asset classes: a risk-free bond
(treasury note) and a risky stock. Let Yt denote the price of the bond and Xt denote the price of
the stock. We assume that Yt and Xt are governed by the following equations:

dYt = rYtdt

dXt = µXtdt+ σXtdBt (1.2)

The equation for Yt is just an ODE with solution Yt = Y0e
rt. The constant r > 0 is the risk-free

interest rate. The equation for Xt is a stochastic equation modeling random fluctuations in the
stock price. This model of the stock price is called geometric Brownian motion. Using Itô’s
formula we find that the function Ht = log(Xt) satisfies the stochastic equation

dHt =
1
Xt
dXt −

1
2

1
X2
t

σ2X2
t dt

=
1
Xt

(µXtdt+ σXtdBt)−
1
2

1
X2
t

σ2X2
t dt

= (µ− σ2

2
)dt+ σdBt

Therefore, Ht = qt+ σBt with q = µ− σ2/2, and

Xt = eHt = eqt+σBt = e(µ−σ2/2)t+σBt

Notice that Xt > 0 with probability one; the stock price cannot become negative! The expected
stock price is:

E[Xt] = eqtE[eσBt ] = eqt+tσ
2/2 = eµt

So, for this model, µ = 1
t logE[Xt] is the growth rate of the mean stock price. This paramater µ is

called the mean rate of return for the stock.
For a European call option, the holder of the option may buy at price K at time T and then sell

at the current market price, realizing a profit of XT −K, assuming XT ≥ K. If XT < K, then the
holder of the option does not exercise (since he is under no obligation). So he profits 0. Putting
this together, we say that the payoff of a European call option is

g(XT ) = max (XT −K, 0) (1.3)

Sometimes this payoff is denoted by g(XT ) = (XT −K)+, as well. Notice that the payoff is non-
negative.
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What is the right price for the option contract? For a fixed strike K and expiry T , we use u(x, t)
to denote the price of the option at time t if the current market price is Xt = x. Taking into
account the possibility of investing in the risk-free bond with interest rate r, one possible pricing
strategy would be to set

u(x, t) ?= E
[
e−r(T−t)g(XT ) | Xt = x

]
= E

[
e−r(T−t) (XT −K)+ | Xt = x

]
. (1.4)

The factor e−r(T−t) is a discount factor, converting future value at time T to present value at time
t < T . Therefore, under this definition the option price would be the expected net present value of
the payoff g(XT ). However, this seemingly natural definition turns out to be the wrong price!

The correct price is determined by taking the expectation (1.4) with respect to a different measure
called the risk-neutral measure. Under this measure, the discounted stock price X̂t := e−rtXt

is a martingale. The process X̂t is the net present value (at t = 0) of the stock if the price at time
t is Xt, discounted according to the risk-free interest rate r. It satisfies the SDE

dX̂t = (µ− r)X̂t dt+ σX̂t dBt (1.5)

We know that
X̂t = e−rtXt = e(µ−r)teσBt−tσ

2/2.

The second term, eσBt−tσ
2/2, is a martingale with respect to the filtration {F}t (can you show

why?). Therefore, for any s ≤ t,

E
[
X̂t| Fs

]
= e(µ−r)tE

[
eσBt−tσ

2/2| Fs
]

= e(µ−r)teσBs−sσ
2/2

= e(µ−r)(t−s)e(µ−r)seσBs−sσ
2/2

= e(µ−r)(t−s)X̂s

This shows that if µ > r, the discounted price X̂t is a sub-martingale; if µ < r the discounted price
is a super-martingale. Only in the special case that µ = r will the discounted price be a martingale
with respect to the original measure.

So, computing the fair price of the contingent claim boils down to determining the risk-neutral
measure, with respect to which X̂t is a martingale. We can determine this measure using Girsanov’s
theorem, as follows. Girsanov’s Theorem tells us that the shifted process

B̃t = Bt − at

is a Brownian motion under the new measure on (C([0, T ]),F) defined by

P̃ (A) = E
[
eaBT−a

2T/2IA(ω)
]

where IA(ω) denotes the indicator function for the set A ∈ F . Returning to (1.5) we see that

dX̂t = (µ− r + σa)X̂t dt+ σX̂t dB̃t.

So, if we choose a = (r − µ)/σ, we have

dX̂t = σX̂t dB̃t
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Thus, under the measure P̃ , the discounted price X̂t is a martingale, since it satisfies

X̂t = X̂0 +
∫ t

0
σX̂s dB̃s

where B̃s is a Brownian motion under P̃ . Therefore, under this new measure, the stock price (not
discounted) and the bond price satisfy

dYt = rYtdt

dXt = rXtdt+ σXtdB̃t (1.6)

so that both assets have the same mean rate of return, even though the stock price may have a
mean rate of return µ 6= r under the original measure.

We have now determined the risk-neutral measure to be used in pricing the contingent claim.
Therefore, the fair price of the claim is

u(x, t) = Ẽ
[
e−r(T−t)g(XT ) | Xt = x

]
. (1.7)

Pause for a moment and consider this formula. The term e−r(T−t)g(XT ) is the discounted payoff.
However, we are taking the expectation with respect to the risk-neutral measure. Under the measure
P̃ , the process B̃t is a standard Brownian motion. Thus, considering (0.2) and (1.6) we see that
fair price is completely independent of the original mean return rate µ!

Now consider u(x, t) as a function of x and t, where x is the known value of the underlying stock
at time t < T . We have already seen that if B̃t is a Brownian motion, the stochastic process defined
by

dXt = rXtdt+ σXtdB̃t, X0 = x > 0

is associated with the differential operator

Au :=
σ2x2

2
uxx + rxux

In particular, the function u(x, t) is the stochastic representation for a solution to the terminal
value PDE

ut +Au+ c(x, t)u = 0, x > 0, t < T (1.8)

with terminal condition u(x, T ) = g(x), where c(x, t) is just the constant c(x, t) = −r in the present
case. Thus, (0.2) represents a solution to the terminal value problem

ut +
σ2x2

2
uxx + rxux − ru = 0, x > 0, t < T (1.9)

u(x, T ) = g(x), x ∈ R

This PDE is called the Black-Scholes equation. It is a terminal value problem, not an initial
value problem. Notice that the PDE itself does not depend on the specific form of the payoff at
time T . While deriving the fair price (and the resulting equation) we only assumed that the option
may be exercised only at expiry T . The function g(x), however, need not be (x −K)+ as in the
case of a European call.
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6.2 Transformation to heat equation and dimensionless variables

Although the equation (1.9) has variable coefficients and low-order terms, we may transform the
equation into the heat equation through a sequence of simple transformations, as we now demon-
strate. At the same time, we will reduce the number of parameters in the model by transforming to
“dimensionless variables.” This procedure demonstrates an important technique in many other ap-
plications of PDEs, as well. Although there may be many parameters in a PDE model, the solution
to the underlying model may depend on only a few fundamental quantities which are independent
of the system of units chosen to define the parameters. So, it is often useful to change variables to
normalize the units and eliminate unnecessary degrees of freedom.

The basic steps in our transformation of the Black-Scholes equation are those learned in Home-
work 1. Suppose that a function w(x, t) satisfies the heat equation wt = wxx for x ∈ R and
t > 0:

• The function v(x, t) = w(x, T − t) satisfies

vt + vxx = 0, t < T

• For x > 0, the function v(x, t) = w(log(λ−1x), t) satisfies

vt = x2vxx + xvx, x > 0

• The function v(x, t) = w(γx, δt) satisfies

vt =
δ

γ2
vxx

• The function v(x, t) = eαxw(x, t) satisfies

vt = vxx − 2αvx + α2v

• The function v(x, t) = eβtw(x, t) satisfies

vt = vxx + βv

Using these observations, we now start from the Black-Scholes PDE and work toward the heat
equation. Suppose that u(x, t) satisfies the Black-Scholes PDE

ut +
σ2

2
x2uxx + rxux − ru = 0, t < T, x > 0

with the terminal condition u(x, T ) = g(x). There are at least three parameters in the equation:
r, T , and σ and perhaps parameters defining the terminal data g (the strike price K, for example).
Moreover, the variables x and t have specific units (e.g. Dollars, Euros, Yen / seconds, hours, etc.).
First we make a time-change: define the function v1(x, τ) = u(x, T − δτ) for τ > 0. Then v1(x, τ)
satisfies the initial value problem

v1
τ = δ

σ2

2
x2v1

xx + δrxv1
x − δrv1, τ > 0, x > 0
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So, if we choose δ = 2/σ2, we have

v1
τ = x2v1

xx +
2r
σ2
xv1

x −
2r
σ2
v1, τ > 0, x > 0

The initial condition for v1 is v1(x, 0) = u(x, T ) = g(x). Not only have we transformed the problem
to an initial value problem, we have also normalized the temporal units, by scaling with the factor
δ. For convenience, let us define k := 2r

σ2 . Then

v1
τ = x2v1

xx + kxv1
x − kv1, τ > 0, x > 0

Now we transform the terms on the right hand side, working with the highest order terms first.
The variable x lies in the domain [0,∞), and has a specific monetary unit. For λ > 0 a parameter
to be chosen, we change variables according to x = λey for y ∈ R a dimensionless variable. That is,
we define a function v2(y, τ) for y ∈ R by v2(log(λ−1x), τ) = v1(x, τ). Thus, v2(y, τ) = v1(λey, τ),
and a simple computation shows that v2 satsifes

v2
τ = (v2

yy − v2
y) + k(v2

y)− kv2

= v2
yy + (k − 1)v2

y − kv2, τ > 0, y ∈ R

with initial condition v2(y, 0) = g(λey).
Now define v3(y, τ) by v3(y, τ) = eαyv2(y, τ). Thus, v2 = e−αyv3 so that

v2
y = v3

ye
−αy − αv3e−αy, v2

yy = v3
yye
−αy + α2v3e−αy − 2αv3

ye
−αy

and

v3
τ = v3

yy + α2v3 − 2αv3
y + (k − 1)(v3

y − αv3)− kv3

= v3
yy + ((k − 1)− 2α) v3

y +
(
α2 − α(k − 1)− k

)
v3

By choosing α = 1
2(k − 1), this reduces to

v3
τ = v3

yy − (α2 + k)v3, t > 0, y ∈ R

The initial condition for v3 is v3(x, 0) = eαyv2(x, 0) = eαyg(λey).
Next, let v4(y, τ) = eβτv3(y, τ), with β = (α2 + k) = 1

4(k + 1)2. We see that v4(y, τ) satisfies
the heat equation v4

τ = v4
yy, with initial condition v4(y, 0) = eαyg(λey). The function v4 still has

a dimensional value (this is the price of the option in dollars/euros/etc.) So, the last step is to
normalize these units by defining v5(y, τ) = pv4(y, τ), where p is some scaling factor. Thus, v5

satisfies
v4
τ = v4

yy, τ > 0, x ∈ R

with initial condition v5(y, 0) = peαyg(λey).
In summary we made the following transformations:

• v1(x, τ) = u(x, T − δτ), δ = 2/σ2, τ = δ−1(T − t)

• v2(y, τ) = v1(λey, τ), y = log(λ−1x)
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• v3(y, τ) = eαyv2(y, τ), α = 1
2(k − 1), k = 2r/(σ2)

• v4(y, τ) = eβτv3(y, τ), β = 1
4(k + 1)2, k = 2r/(σ2)

• v5(y, τ) = pv4(y, τ).

From now on we drop the super-script and use v(y, τ) = v5(y, τ) to denote the transformed solution.
Working through these transformations in reverse, we see that

u(x, t) = p−1e−α log(λ−1x)e−βδ
−1(T−t)v(log(λ−1x), δ−1(T − t)) (2.10)

An explicit solution formula for the European call option

The terminal data for a European call option is

g(x) = max (x−K, 0)

where K is the strike price (in monetary units). Considering the transformations above, we see
that this terminal condition is transformed to the initial condition

v(y, 0) = peαyg(λey) = peαy max (λey −K, 0) = max (peαyλey − peαyK, 0)

So, if we choose λ = p−1 = K, this becomes

v(y, 0) = max
(
e(α+1)y − eαy, 0

)
= max

(
e

1
2

(k+1)y − e
1
2

(k−1)y, 0
)

Thus, we have transformed the terminal value problem for the price of a European call option to
an initial value problem

vτ = vyy, τ > 0, y ∈ R (2.11)

v(y, 0) = v0(y) := max
(
e

1
2

(k+1)y − e
1
2

(k−1)y, 0
)
, y ∈ R

Notice that although there were originally four parameters in the model (σ, r, T , K) there is now
only one fundamental parameter k. So if we could solve this initial value problem for every k, we
could solve for all possible choices of σ, r, T , and K by reversing the transformations above.

Consider the initial data associated with (2.11). For y = 0, v0(0) = 0. For y < 0, e
1
2

(k+1)y <

e
1
2

(k−1)y, so v0(y) = 0 for y ≤ 0. For y > 0, v0(y) > 0 and v0 grows exponentially in y. Thus, a
solution to (2.11) is given by the convolution formula:

v(y, τ) = Φ ∗ v0 =
∫

R
Φ(y − z, τ)v0(z) dz

=
1√
4πτ

∫ ∞
0

e−
|y−z|2

4τ

(
e

1
2

(k+1)z − e
1
2

(k−1)z
)
dz (2.12)

where Φ is the fundamental solution for the heat equation. This solution is unique among the class
of functions satisfying the usual growth condition.
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Because of the special form of the initial data in (2.11), this convolution integral can be computed
explicitly! Then we may reverse the transformations to compute u(x, t), the price of the option.
To evaluate the integral, we first “complete the square”:

−(y − z)2

4τ
+ cz = − 1

4τ
(
(y − z)2 − cz4τ

)
= − 1

4τ
(
(z − (y + 2cτ))2 − 4c2τ2 − 4cyτ

)
= −(z − (y + 2cτ))2

4τ
+ c2τ + cy (2.13)

Thus, ∫ ∞
0

1√
4πτ

e−
(y−z)2

4τ ecz dz = ec
2τ+cy

∫ ∞
0

1√
4πτ

e−
(z−(y+2cτ))2

4τ dz

= ec
2τ+cy

(
1−Ψ(−y + 2cτ√

2τ
)
)

= ec
2τ+cyΨ(

y + 2cτ√
2τ

) (2.14)

where Ψ(r) = 1√
2π

∫ r
−∞ e

−z2/2 dz (this function Ψ is called the cumulative normal distribution
function). Therefore, the solution to the transformed equation is

v(y, τ) = ec
2
1τ+c1yΨ(

y + 2c1τ√
2τ

)− ec22τ+c2yΨ(
y + 2c2τ√

2τ
) (2.15)

where c1 and c2 are the constants

c1 =
1
2

(k + 1) =
1
σ2

(
r +

σ2

2

)
=
√
β = α+ 1,

c2 =
1
2

(k − 1) =
1
σ2

(
r − σ2

2

)
= α. (2.16)

Now, we combine this computation with our transformations to compute u(x, t):

u(x, t) = Ke−αye−βτv(y, τ) (2.17)

with τ = δ−1(T − t) = σ2(T − t)/2 and y = log(x/K). Notice that in the original variables,

d1 :=
y + 2c1τ√

2τ
=

log(x/K) + (r + σ2

2 )(T − t)
σ
√
T − t

(2.18)

and

d2 :=
y + 2c2τ√

2τ
=

log(x/K) + (r − σ2

2 )(T − t)
σ
√
T − t

(2.19)

Therefore, in view of (2.15), (2.16), and (2.17), the option price is given by the explicit formula

u(x, t) = xΨ(d1)−Ke−r(T−t)Ψ(d2)

This formula is called the Black-Scholes formula for the price of a European call option (see
Black and Scholes, p. 644). Notice that d1 and d2 depend on x, t, σ, T,K, but the function Ψ does
not.
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Barrier options

A barrier option is one that either expires or becomes active when the underlying stock price
crosses a threshold or barrier. One type of barrier option is a down-and-out call option. This is a
call option that expires if the value of the stock price drops below the barrier before the expiration
time T . An up-and-out call option expires if the stock rises above the barrier before time T .
These are also called knock-out options.

The price of a such a barrier option may be computed explicitly for the simple Black-Scholes
model. Suppose that u(x, t) is the price of a down-and-out European call option with knock-out
price of x0 < K. According to the Black-Scholes model, the risk-neutral price is:

u(x, t) = Ẽ
[
I{γx,t≥T} e−r(T−t)g(XT ) | Xt = x

]
. (2.20)

where the stopping time γx,t is the first time the stock price hits the barrier:

γx,t(ω) = inf{s > t | Xs(ω) ≤ x0} (2.21)

and IA is the indicator function of the set A. So, the expectation is taken only over those paths
that do not cross the barrier (over the set {γx,t ≥ T}), since the option expires and is worthless
whenever Xt hits x0 before time T . This function u(x, t) is the solution to the terminal value
problem

ut +
σ2x2

2
uxx + rxux − ru = 0, x > x0, t < T

u(x, T ) = g(x), x > x0

u(x0, t) = 0, t < T (2.22)

This is the Black-Scholes terminal value problem with an additional boundary condition, corre-
sponding to the knock-out price. The domain for x is now the half-line: x > x0.

As in the case of the “plain vanilla” European call, we may transform the equation to the heat
equation via a logarithmic change of variables. Changing variables as before, we may write

u(x, t) = Ke−αy−βτv(y, τ) (2.23)

where y, τ , α, and β are defined as before and v solves the initial value problem

vτ = vyy, y > y0, τ > 0

v(y, 0) = max
(
e

1
2

(k+1)y − e
1
2

(k−1)y, 0
)
, y > y0

v(y0, t) = 0, t < T

The point y0 ∈ R is the transformed barrier y0 = log(λ−1x0) = log(x0/K), and y0 < 0 under the
assumption that x0 < K.

So, we must solve the initial value problem for the heat equation on the half line {y > y0}.
This we can do using the reflection technique. Extend the initial data by odd-reflection about the
point y = y0, and solve the problem on the entire line. The corresponding solution will have odd
symmetry about the barrier: v(y0 + h, t) = −v(y0 − h, t). Consequently, the boundary condition
v(y0, t) = 0 is achieved.
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Notice that the extended initial data may be written as:

vex(y) = v0(y)− v0(2y0 − y), y ∈ R (2.24)

where v0(y) = max
(
e

1
2

(k+1)y − e
1
2

(k−1)y, 0
)

. Suppose that v1 and v2 satisfy the heat equation on

the whole line with initial data v1(y, 0) = v0(y) and v2(y, 0) = v0(2y0− y), then the function v(y, t)
is given by

v(y, t) = v1(y, t)− v2(y, t) = v1(y, t)− v1(2y0 − y, t) (2.25)

Thus,

u(x, t) = Ke−αy−βτv1(y, t)−Ke−αy−βτv1(2y0 − y, t) (2.26)

Notice that the first term is C(x, t), the price of the plain vanilla European call with no barrier.
Consider the second term. Under the relation x = Key, the point 2y0 − y corresponds to x2

0/x.
Therefore,

Ke−αy−βτv1(2y0 − y, t) = e−αyeα(2y0−y)Ke−α(2y0−y)−βτv1(2y0 − y, t) = e−2α(y−y0)C(
x2

0

x
, t) (2.27)

and the price of the barrier option is

u(x, t) = C(x, t)− e−2α(y−y0)C(
x2

0

x
, t)

= C(x, t)−
(
x

x0

)−(k−1)

C(
x2

0

x
, t) (2.28)

since 2α = (k − 1). Recall that k = 2r/σ2. The up-and-out option may be treated in a similar
manner.
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In our derivation of the Black-Scholes equation we assumed that the volatility was a constant,
independent of time and of the stock price itself. This is a significant simplification of the problem
which enabled us to compute the price of some options explicitly. In general, we might model the
volatility as a deterministic function of both the stock price and time σ = σ(x, t), so that under
the risk-neutral measure, the stock price satisfies:

dXt = r(t)Xtdt+ σ(Xt, t) dB̃t (0.1)

where B̃t is a Brownian motion under the risk-neutral measure P̃ . In such a model σ(x, t) is
sometimes called the local volatility. Here we also allow the interest rate to change with time.
Then the price of the option is

u(x, t) = Ẽ
[
e−

R T
t r(s) dsg(XT ) | Xt = x

]
. (0.2)

where g(x) is the payoff. So, under suitable conditions on σ, we see from the Feynman-Kac
representation formula that this represents the solution to the terminal value problem

ut +
σ2(x, t)x2

2
uxx + r(t)xux − r(t)u = 0, t < T, x > 0 (0.3)
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with u(x, T ) = g(x). Now the coefficients in the equation depend on x and t. Suppose that
g(x) = (x−K)+ is the payoff for a European call option. Let us refer to the corresponding solution
by u(x, t;T,K, σ) to emphasise that the solution depends on the strike K, the expiration time T ,
and the volatility function σ.

In this generality, one cannot obtain explicit formulas for option prices u(x, t;T,K, σ) as in the
case of constant volatility. So, one must settle for a numerical solution of the terminal value
problem. What should be used for σ(x, t)? Our goal is to obtain a good estimate of σ given market
data. While we don’t know the future history of the stock, we may have knowledge of the market
prices of various options for various strikes and maturities. Presumably these prices are given by
the solution of the terminal value problem above. So, this suggests the following mathematical
question:

Given a set of times {ti}i, stock prices {Xi}i, strikes {Ki}i, and expiration times {Ti}i,
and given the market prices {Ci}i of call options corresponding to these parameters,
can we find a function σ(x, t) such that

u(Xi, ti;Ti,Ki, σ) = Ci (0.4)

holds for each i? That is, can we find σ so that our model fits the observed market
prices of call options?

This sort of problem is called an inverse problem. If we knew the local volatility σ(x, t) for all x
and t then we could solve the terminal value problem (perhaps, numercally), and knowing market
prices of options is somehow related to such solutions (0.3), assuming our model is a good one. So,
given such “observations of a solution”, can we reconstruct the parameters in the PDE? This sort
of problem arises in many applications of PDEs, not just in financial applications.

7.1 Dupire’s equation

For simplicity we assume r(t) = r is constant in this section.

Theorem 7.1.1 Suppose that the function u(x, t;K,T ) solves (0.3) with terminal data u(x, T ) =
g(x) = (x − K)+. Then for fixed x > 0 and t, the function v(K,T ) = u(x, t;K,T ) satisfies the
initial value problem

vT =
σ2(K,T )K2

2
vKK − rKvK , T > t (1.5)

with initial condition
v(K, t) = (x−K)+ (1.6)

In particular,

σ(K,T ) =

√
2
(
vT + rKvK
K2vKK

)
(1.7)

The equation (1.5) is called Dupire’s equation and the formula (1.7) is called Dupire’s for-
mula. The marvelous result is due to Bruno Dupire (see references above). This tells us that if, for
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fixed x and t, we know the option prices u(x, t;K,T ) for all strikes K and all expiration times T ,
then (1.7) gives us a unique local volatility function σ(K,T ). Notice this tells us the volatility in
the future! Although we can’t observe the stock in the future, observing option prices for various
K and T tells us something about the volatility, assuming that those prices are based on model
(0.3).

Proof: Before proving the theorem, we first recall some results about transition densities for
diffusion processes. For a given x ∈ Rd and s ∈ R, suppose that Y x,s

t is a stochastic process
satisfying

dYt = b(Yt, t) dt+ σ(Yt, t) dBt, t ≥ s
Y x,s
s = x (1.8)

Under suitable assumptions on the coefficients b and σ, this process has a smooth transition density
p(x, s; y, t) that satisfies

P (Y x,s
t ∈ A) =

∫
A
p(x, s; y, t) dy (1.9)

for any Borel set A ⊂ Rd.
For fixed y and t, p(·, ·; y, t) satisfies the backward equation

∂sp+Ax,sp = 0, t > s (1.10)

where Ax is the differential operator defined by

Ax,sf :=
1
2

∑
ij

aij(x, s)fxixj + b(x, s) · ∇xf

Moreover,
lim
s↗t

p(x, s; y, t) = δy(x), (1.11)

the Dirac delta distribution centered at y. If Yt represents a diffusing particle, then roughly speak-
ing, this backward equation describes “how the particles got to where they are today.”

For fixed x and s, p(x, s; ·, ·) satisfies the forward equation

∂tp = A∗y,tp, t > s (1.12)

where A∗y is the adjoint operator defined by

A∗y,tg :=
1
2

∑
ij

∂2

∂yi∂yj
(aij(y, t)g)−∇y · (b(y, t)g) (1.13)

and aij(y, t) = σσT . This describes the evolution of the density forward in time. Moreover,

lim
t↘s

p(x, s; y, t) = δx(y) (1.14)
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Now we prove the result of Dupire. Consider the function w(x, t;K,T ) = er(T−t)u(x, t;K,T ) =
Ẽ[g(XT )|Xt = x], which satisfies

wt +
σ2(x, t)x2

2
wxx + rxwx = 0, t < T, x > 0 (1.15)

with terminal data w(x, T ) = g(x) = (x − K)+. The solution may be expressed in terms of the
transition density for Xt (under the risk-neutral measure):

w(x, t;K,T ) = Ẽ[g(XT )|Xt = x] =
∫ ∞

0
g(y)p(x, t; y, T ) dy

=
∫ ∞
K

(y −K)p(x, t; y, T ) dy (1.16)

Now differentiate this expression twice with respect to K:

∂Kw = −
∫ ∞
K

p(x, t; y, T ) dy, (1.17)

and
∂2
Kw = p(x, t;K,T ). (1.18)

So, wKK is the transition density p(x, t;K,T ) corresponding to the stock price process (under the
risk-neutral measure). Therefore, as a function of K and T , p = wKK must satisfy the forward
equation

pT =
∂2

∂K2

(
σ2(K,T )K2

2
p

)
− ∂

∂K
(rKp), T > t (1.19)

Here x and t are fixed. Thus,

(wKK)T =
∂2

∂K2

(
σ2(K,T )K2

2
wKK

)
− ∂

∂K
(rKwKK), T > t (1.20)

Now we want to obtain an equation for w not for wKK , so we integrate twice with respect to K
to obtain

wT =
σ2(K,T )K2

2
wKK − rKwK + rw + aK + c (1.21)

for some constants a and c. In this step, notice that∫ K

0

∫ K2

0

∂

∂K1
(rK1wK1K1) dK1 dK2 =

∫ K

0
rK2wK2K2 dK2

=
∫ K

0
∂K2(rK2wK2)− rwK2 dK2

= rKwK − rw + const (1.22)

Supposing that as K →∞, w and its derivatives go to zero, this implies that a = c = 0. Thus,

wT =
σ2(K,T )K2

2
wKK − rKwK + rw (1.23)
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Recalling that w = er(T−t)u, we now see that u satisfies Dupire’s equation

uT =
σ2(K,T )K2

2
uKK − rKuK , T > t,K > 0. (1.24)

This is an initial value problem. The initial condition is u(x, t;K, t) = (x − K)+ (in the initial
condition, K is the variable, x is fixed).

As K →∞, u(x, t;K,T )→ 0, and as K → 0, u(x, t;K,T )→ x, since

lim
K→0

u(x, t;K,T ) = Ẽ[e−r(T−t)XT |Xt = x] = x (1.25)

(Recall that the discounted price is a martingale under P̃ ). �

Digital options

A digital option or binary option is one with payoff

gb(x) =
{

0, x < K,
b x ≥ K (1.26)

at the expiration time T . Here b > 0 is some fixed constant. One can also calibrate the model
(0.3)) using these options.

Theorem 7.1.2 Suppose that the function u(x, t;K,T ) solves (0.3) with terminal data

gb(x) =
{

0, x < K,
b x ≥ K (1.27)

Then for fixed x > 0 and t, the function v(K,T ) = u(x, t;K,T ) satisfies the initial value problem

vT =
∂

∂K

(
σ2(K,T )K2

2
∂

∂K
v

)
− rKvK − rv, T > t,K > 0 (1.28)

with initial condition

v(x, t;K, t) =
{

0, x < K,
b x ≥ K (1.29)

This was proved in the paper by O. Pironneau, cited above. Here we present a slightly different
argument following the one presented above for the plain vanilla call.

Proof: Consider the function w(x, t;K,T ) = er(T−t)u(x, t;K,T ) = Ẽ[gd(XT )|Xt = x], which
satisfies

wt +
σ2(x, t)x2

2
wxx + rxwx = 0, t < T, x > 0 (1.30)
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with terminal data w(x, T ) = gb(x), defined above. The solution may be expressed in terms of the
transition density for Xt (under the risk-neutral measure):

w(x, t;K,T ) = Ẽ[gb(XT )|Xt = x] =
∫ ∞

0
gb(y)p(x, t; y, T ) dy

=
∫ ∞
K

bp(x, t; y, T ) dy (1.31)

Now differentiate this expression once with respect to K:

∂Kw = −bp(x, t;K,T ). (1.32)

So, −b−1wK is the transition density p(x, t;K,T ) corresponding to the stock price process (under
the risk-neutral measure). Therefore, as a function of K and T , p = −b−1wK must satisfy the
forward equation

pT =
∂2

∂K2

(
σ2(K,T )K2

2
p

)
− ∂

∂K
(rKp), T > t (1.33)

Here x and t are fixed. Thus,

(wK)T =
∂2

∂K2

(
σ2(K,T )K2

2
wK

)
− ∂

∂K
(rKwK), T > t (1.34)

Now we want to obtain an equation for w not for wK , so we integrate once with respect to K
to obtain

wT =
∂

∂K

(
σ2(K,T )K2

2
wK

)
− rKwK + c (1.35)

for some constants a and c.
Supposing that as K →∞, w and its derivatives go to zero, this implies that c = 0. Thus,

wT =
∂

∂K

(
σ2(K,T )K2

2
∂

∂K
w

)
− rKwK (1.36)

Recalling that w = er(T−t)u, we now see that u satisfies the equation

uT =
∂

∂K

(
σ2(K,T )K2

2
∂

∂K
u

)
− rKuK − ru, T > t,K > 0. (1.37)

This is an initial value problem. The initial condition is

u(x, t;K, t) =
{

0, x < K,
b x ≥ K (1.38)

(in the initial condition, K is the variable, x is fixed).
As K →∞, u(x, t;K,T )→ 0, and as K → 0, u(x, t;K,T )→ x, since

lim
K→0

u(x, t;K,T ) = Ẽ[e−r(T−t)b|Xt = x] = e−r(T−t)b (1.39)

�
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7.2 Model Calibration with Dupire’s Equation

Here we explain one approach to model calibration using Dupire’s equation. This is the approach
presented in the paper by Yves Achdou and Olivier Pironneau, cited above. These notes are
intended to give a high-level explanation and motivation of the main steps of the calibration scheme.

By model calibration, I mean solving the following problem: given current stock price x0 at
time t0, and given strikes {Ki}Ni=1, expiration times {Ti}Ni=1, and market prices {ci}Ni=1 of European
call options corresponding to these parameters, can we find a local volatility function σ(x, t) such
that

u(x0, t0;Ti,Ki, σ) = ci (2.40)

holds for each i? In other words, can we make the model fit the observed data? The function
u(x0, t0;Ki, Ti, σ) denotes a solution to the model (0.3). Since x0 and t0 are fixed, we will use
u(Ki, Ti) or just ui for shorter notation. If the number of data points N is large, then working
directly with (0.3) (or a discretized version) might be impractical. Just to compare ui with ci for
each i requires solving the partial differential equation N times! Dupire’s equation offers an efficient
alternative. Recall that u(K,T ) as a function of K and T solves Dupire’s equation

uT =
σ2(K,T )K2

2
uKK − rKuK , T > t0 (2.41)

with initial condition
u(K, t) = (x−K)+ (2.42)

Right away we see how Dupire’s equation makes model calibration more efficient: comparing ui
with ci for each i = 1, . . . , N requires solving Dupire’s equation only once, and evaluating the
solution at the N points (Ki, Ti).

For simplicity let us suppose that t0 = 0; otherwise we could just replace T with T ′ = T −t0. The
domain for u(K,T ) is infinite. In practice, we truncate the domain to be (K,T ) ∈ Q := [0, K̄]×[0, T̄ ]
and solve the boundary value problem

uT =
σ2(K,T )K2

2
uKK − rKuK , (K,T ) ∈ Q (2.43)

u(K, 0) = (x−K)+, K ∈ [0, K̄] (initial condition)
u(0, T ) = x, T ∈ [0, T̄ ] (boundary condition)
u(K̄, T ) = 0, T ∈ [0, T̄ ] (boundary condition)

The boundary conditions are motivated by (1.25) and preceding comments. Suppose we can solve
Dupire’s equation by some numerical scheme and compare our model to market data . . . what
next? How do we change σ to get a better fit to the data?

The method described in the Achdou-Pironneau paper is called regularized least squares
approximation. Defining η = σ2, we compute the optimal volatility function σ∗(K,T ) =

√
η∗ by

solving a minimization problem:
J(η∗) = min

η
J(η) (2.44)

where J(η) is the objective function

J(η) =

[
N∑
i=1

(u(Ki, Ti)− ci)2

]
+ Jr(η). (2.45)
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The terms u(Ki, Ti) in the objective function depend on η = σ2 in a nonlinear way (through solution
of the PDE). The term inside the sum penalizes discrepancies between the model and the observed
data. The functional Jr(η) is called a regularization term. A simple choice for this term might be

Jr(η) =
∫
Q
ε|∇η|2 dK dT, (2.46)

but there are many other possibilities. The regularization is needed to make the problem tractable.
Since we have only finitely many data points ci there could be multiple solutions to the inverse
problem. Not all of the possible choices of σ∗ will be “nice functions”– smooth and bounded. So,
the regularization term penalizes the bad possibilities. With the regularization term, minimizing
the objective functional is a trade-off between having a good fit to the data and having a solution
that has nice properties. This technique is used in many inverse problems and is sometimes called
Tychonov regularization.

Here is the optimization algorithm used to solve (2.44). We construct a sequence of functions
ηm, m = 1, 2, . . . by the following procedure:

1. Start with ηm(K,T ). This is a function of K and T , perhaps discretized in some way.

2. Compute J(ηm) by computing u(Ki, Ti, η
m) for each i = 1, . . . , N . This requires only one

solution of (2.43).

3. Find a function dη so that J(ηm + dη) < J(ηm).

4. Repeat with ηm+1 = ηm + dη until you are satisfied with the result.

In practice, the function η(K,T ) is discretized. For example, we might represent η as a continuous,
piecewise linear function, determined by its values at finitely many pre-determined points. In this
way, we may represent η as a vector in Rn for some n, perhaps very large. Furthermore, we restrict
η to be uniformly bounded and uniformly positive.

One method of choosing the step direction dη is the method of steepest descent: choose dη
to be a multiple of the gradient ∇ηJ(η). This means using the iteration scheme

ηm+1 = ηm − ρ∇ηJ(ηm) (2.47)

where ρ > 0 is a constant which could be chosen at each step to guarantee that the iterations
lead to a decrease in the objective function. What do we really mean by ∇ηJ? If η is represented
by a finite-dimensional vector (for example, the values of η at the nodal points in a finite-element
representation), then we may interpret ∇ηJ(ηm) to mean the gradient of the nonlinear functional J
with respect to this vector. On the other hand, one can make sense of ∇ηJ even when η is infinite
dimensional (via the Frechét derivative). In this case, we say ∇ηJ(η) is the function of (K,T ) such
that

J(η + dη) = J(η) +
∫
Q

(∇ηJ(η)dη) dK dT + o(‖dη‖) (2.48)

holds for all dη, where ‖dη‖ denotes a norm on the function space (Hilbert space) in which η and
dη reside. In other words, to leading order J(η + dη) is approximately the linear function of dη
given by

J(η + dη) ≈ J(η) + 〈∇ηJ(η), dη〉 (2.49)

where we use 〈f, g〉 to denote the inner product
∫
Q fg dKdT .
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Computing ∇ηJ(η)

We need to compute
∇ηJ(η) =

∑
i

2(ui − ci)∇ηui +∇ηJr(η). (2.50)

or for a given “step direction” dη

〈∇ηJ(η), dη〉 = 〈
∑
i

2(ui − ci)∇ηui, dη〉+ 〈∇ηJr(η), dη〉. (2.51)

For each i, ui = u(Ki, Ti, η) is a function of η = η(K,T ), and ∇ηui is the gradient (or Frechét
derivative) of this function with respect to η. For each i, ui(η) is the value of a solution to a PDE
that depends on η. So ∇ηui tells us how the solution at the point (Ki, Ti) changes with respect to
the parameter η. By definition,

u(Ki, Ti, η + dη) = u(Ki, Ti, η) + 〈∇ηui, dη〉+ (higher order terms) (2.52)

Since the equation solved by u is linear we see that

LηD (u(K,T, η + dη)− u(K,T, η)) =
dη

2
K2 ∂2

∂K2
u(K,T, η + dη)

=
dη

2
K2 ∂2

∂K2
u(K,T, η) + h.o.t. (2.53)

where LηD is the linear differential operator

LηDu := uT −
η(K,T )K2

2
uKK + rKuK (2.54)

appearing in Dupire’s equation. Also, u(K,T, η + dη) − u(K,T, η) = 0 on the boundaries and
initially. Therefore, 〈∇ηui, dη〉 = w(Ki, Ti), where w solves

wT −
η(K,T )K2

2
wKK + rKwK =

dη

2
K2 ∂2

∂K2
u(K,T, η) (2.55)

w(K, 0) = 0, K ∈ [0, K̄] (initial condition)
w(0, T ) = 0, T ∈ [0, T̄ ] (boundary condition)
w(K̄, T ) = 0, T ∈ [0, T̄ ] (boundary condition)

This could be problematic: Given a small change dη, we can compute the leading order change in
ui, 〈∇ηui, dη〉, by solving (2.55). However, we have to solve a PDE for each choice of dη. So if η is
high-dimensional, computing the gradient ∇ηui can be very expensive, since we must know how u
changes as we step in many possible directions dη. The solution to this problem is to use what is
called an adjoint method.

To motivate this method, consider the linear algebra problem of solving Ax = b, for many possible
right-hand-sides, b1, b2, . . . . Here x is a vector and A is an invertible square matrix. Suppose that
what we really care about is not x itself but some functional of x, say g · x = 〈g, x〉 for some given
vector g. Letting G = A−1, the solution is x = Gb. So, the functional of interest is

〈g, x〉 = 〈g,Gb〉 = 〈GT g, b〉 (2.56)
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So if we are able to compute GT g one time, then evaluating the quantity 〈g, x〉 for M > 1 choices of
b means computing M matrix-vector products 〈(GT g), b〉 (rather than solving the equation Ax = b,
M times).

The method described in the Achdou-Pironneau paper is exactly this. Instead of a matrix
equation we have a PDE involving a linear differential operator. The “functional” of interest is:

〈
∑
i

2(ui − ci)∇ηui, dη〉 = 〈
∑
i

2(ui − ci)δKi,Ti(K,T ), w〉 (2.57)

where δKi,Ti(K,T ) denotes the Dirac-delta centered at (Ki, Ti). So,
∑

i 2(ui− ci)δKi,Ti corresponds
to the g in the simple linear algebra example. G = A−1 corresponds to solving the PDE, while
GT corresponds to solving the adjoint problem and w corresponds to Gb. Specifically, we solve the
adjoint problem

∂TP +
∂2

∂K2

(
ηK2

2
P

)
+

∂

∂K
(rKP ) =

∑
i

2(ui − ci)δKi,Ti (2.58)

P (T̄ ,K) = 0
P (T, K̄) = 0

Then

〈∇ηJ, dη〉 = 〈
∑
i

2(ui − ci)δKi,Ti , w〉+ 〈∇Jr, dη〉

=
∫
Q

(
∂TP +

∂2

∂K2

(
ηK2

2
P

)
+

∂

∂K
(rKP )

)
w(K,T ) dKdT + 〈∇Jr, dη〉

= −
∫
Q
P

(
wT −

η(K,T )K2

2
wKK + rKwK

)
dKdT + 〈∇Jr, dη〉

= −
∫
Q

dη

2
PK2 ∂2

∂K2
u(K,T, η) dKdT + 〈∇Jr, dη〉 (2.59)

The last two steps are integration by parts and using the equation solved by w and the boundary
conditions. Notice that u = u(K,T, η) and P = P (K,T, η) do not depend on dη!

The algorithm

Consequently, the steepest decent algorithm becomes:

1. Compute u(K,T, ηm) by solving (2.43) with σ2 = η.

2. Compute P (K,T, ηm) by solving (2.58).

3. Compute ∇ηJ by solving

〈∇ηJ, dη〉 = −
∫
Q

dη

2
PK2 ∂2

∂K2
u(K,T, η) dKdT + 〈∇Jr, dη〉

(computation of the last terms depends on the type of regularization chosen). When η is
discretized, this becomes a linear system of equations.
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4. Take a step:
ηm+1 = π(ηm − ρ∇ηJ(ηm))

5. Measure e = ‖∇ηJ‖. If e is smaller than a predetermined tolerance, stop – we are close to a
minimizer. Otherwise, repeat using ηm+1.

The operator π is a projection onto the space in which η should lie. For example, π might ensure
that the new iteration is bounded and uniformly positive.

See the paper by Achdou and Pironneau for more details about numerical discretization of the
equations, the regularization term, and some numerical results.
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Optimal Control and the HJB
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8.1 Deterministic Optimal Control

Consider the following abstract optimization problem. Let y(s) : [t, T ] → Rd denote the state of
a system at time s ∈ [t, T ]. This vector function could represent many things like the position
and orientation of an aircraft, the amount of capital available to a government, or the wealth of an
individual investor. We’ll suppose that y(s) satisfies the ordinary differential equation

y′(s) = f(y(s), α(s)), s ∈ [t, T ] (1.1)
y(t) = x ∈ Rd

(If d > 1, this is a system of ODEs.) The function f(y, α) : Rd × Rm → Rd models the system
dynamics. We’ll suppose that f is bounded and Lipschitz continuous. The function α(s) : [t, T ]→ A
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is called a control. The control takes values in the set A, a compact subset of Rm. The set of all
possible controls or admissible controls will be denoted by At,T :

At,T = {α(s) : [t, T ]→ A | α(s) is measureable} . (1.2)

When the dependence on t and T is clear from the context, we will simply use A instead. By
choosing α we have some control over the course of the system y(t). For example, in a mechanics
application α(s) might represent a throttle control, which determines how much thrust comes from
an engine. Or, in an economics application α might represent the rate at which economic resources
are consumed.

So, we choose a control α(·) and the system evolves according to (1.1); we’d like to control
the system in an optimal way, in the following sense. Suppose that the function g(x) : Rd → R
represents a final payoff; this is a reward which depends on the final state of the system at time T .
Also, the function r(x, α) : Rd×Rm → R represents a running payoff or running cost. If r > 0,
this would represent additional path-dependent payoff; if r < 0, this would represent operational
costs incurred before the final payoff at time T . Given the initial state of the system y(t) = x, the
optimization problem is to find an optimal control α∗(·) that maximizes net profit:

Jx,t(α∗) = max
α(·)∈A

Jx,t(α) = max
α(·)∈A

[∫ T

t
r(y(s), α(s)) ds+ g(y(T ))

]
(1.3)

If r < 0, this may be thought of as the optimal balance between payoff and running costs. Although,
we may be able to control the system (by choosing α) so that the final payoff g(y(T )) is large, it
may be very expensive to arrive at this state. So, we want to find the optimal control that balances
these competing factors.

Even if an optimal control does not exist, we may study the function

u(x, t) = max
α(·)∈A

Jx,t(α) = max
α(·)∈A

[∫ T

t
r(y(s), α(s)) ds+ g(y(T ))

]
(1.4)

This function is called the value function associated with the control problem. It depends on
x and t through the initial conditions defining y(s). There are many interesting mathematical
questions related to this optimization problem. For example:

1. For given (x, t), is there an optimal control α∗?

2. If so, how can we compute it?

3. How does the value function u depend on x and t? Does it satisfy a PDE?

Some Examples

Here are two examples which fit into this abstract framework.

Example 1: Suppose you want to drive a boat from position x0 at time t to a position xf at
time T . Let x(s) denote the position of the boat, v(s) denote the velocity, then a simple model for
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the boat dynamics might be

x′(s) = v(s)

v′(s) =
α(s)

(m1 +m(s))
− β(v(s))

m′(s) = −k|α(s)|

Here m(s) is the mass of the boat’s fuel, m1 is the boat’s dry weight, the function β(v) ≥ 0 models
drag as the boat moves through the water. The vector α(s) represents a throttle and direction
control, and its magnitude is proportional to the rate of fuel consumption (k is a proportionality
constant). The acceleration is also proportional to the throttle control parameter.

How should we steer the boat in order to minimize fuel consumption? In this setting, the system
state y(s) is the vector y(s) = (x(s), v(s),m(s)). One way to model this problem would be to find

max
α

Jx0,t(α) = max
α

[m(T ) + p(x(T ))] (1.5)

Here p ≤ 0 might be a function satisfying p(x) = 0 if x is close to xf and p(x) << −1 if x is far
from xf . So, although we don’t need to land precisely at xf , there is a big penalty for leaving
the boat far from xf . There is no “running cost” in this model. Notice that it is possible for
m(s) to become negative, which is non-physical. We could fix this modeling issue by modifying the
equations appropriately or by applying an additional state constraint of the form 0 ≤ m(s).

Example 2: Here is a variant of a classic example studied by F. P. Ramsey (see The Economic
Journal, Vol. 38, No. 152, 1928). The problem is to determine how much of a nation’s resources
should saved and how much should be consumed. Let c(s) denote the rate of capital consumption,
let p(s) denote the rate of capital production, and let k(s) denote the amount of capital at time s.
Then the rate change in capital is the difference between the rates of production and consumption:

k′(s) = p(s)− c(s). (1.6)

Suppose that the production is related to capital and consumption as p(s) = P (c(s), k(s)). Suppose
also that consumption is related to capital according to c(s) = α(s)C(k(s)), where α(s) is a control.
Therefore,

k′(s) = P (α(s)C(k(s)), k(s))− α(s)C(k(s)). (1.7)

Given current level of capital k(t) = k0, we’d like to choose a level of consumption (by choosing α)
which maximizes the total utility; this goal might be modeled by the optimal control problem

max
α

Jk0,t(α) = max
α

[∫ T

t
U(c(s)) ds+ UT (k(T ))

]
= max

α

[∫ T

t
U(α(s)C(k(s))) ds+ UT (k(T ))

]
(1.8)

Here U is a utility function, and UT models some payoff representing the utility of having left-over
capital k(T ) at time T .
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8.2 The Dynamic Programming Principle

Theorem 8.2.1 Let u(x, t) be the value function defined by (1.4). If t < τ ≤ T , then

u(x, t) = max
α(·)∈A

[∫ τ

t
r(y(s), α(s)) ds+ u(y(τ), τ)

]
(2.9)

The relation (4.48) is called the Dynamic Programming Principle, and it is a fundamental
tool in the analysis of optimal control problems. It says that if we know the value function at time
τ > t, we may determine the value function at time t by optimizing from time t to time τ and using
u(·, τ) as the payoff. Roughly speaking, this is reminiscent of the Markov property of a stochastic
process, in the sense that if we know u(x, τ) we can determing u(·, t) for t < τ without any other
information about the control problem beyond time τ (ie. times s ∈ [τ, T ]). (More precisely, it
means that u(x, t) satisfies what is called a semi-group property.)

Proof of Theorem 8.2.1: At the heart of this proof of the Dynamic Programming Principle is
the observation that any admissible control α ∈ At,T is the combination of a control in At,τ with a
control in Aτ,T . We will express this relationship as

At,T = At,τ ⊕Aτ,T (2.10)

This notation ⊕ means that if αt(s) ∈ At,τ and ατ (s) ∈ Aτ,T , then the control defined by splicing
αt and ατ according to

α(s) = (αt ⊕ ατ )(s) :=
{
αt(s), s ∈ [t, τ ]
ατ (s), s ∈ [τ, T ]

(2.11)

is an admissible control in At,T . On the other hand, if we have α ∈ At,T , then by restricting the
domain of α to [t, τ ] we obtain an admissible control in At,τ . Similarly, by restricting the domain
of α to [τ, T ] we obtain an admissible control in Aτ,T .

The function u is defined as

u(x, t) = max
α(·)∈A

[∫ T

t
r(y(s), α(s)) ds+ g(y(T ))

]
= max

α(·)∈A

[∫ τ

t
r(y(s), α(s)) ds+

∫ T

τ
r(y(s), α(s)) ds+ g(y(T ))

]
(2.12)

Notice that the first integral on the right depends only on y and α up to time τ , while the last two
terms depend on the values of y and α after time τ . Since a control α ∈ At,T may be decomposed
as α = α1 ⊕ α2 with α1 ∈ At,τ and α2 ∈ Aτ,T , we may maximize over each component in the
decomposition:

u(x, t) = max
α(·)∈A

[∫ τ

t
r(y(s), α(s)) ds+

∫ T

τ
r(y(s), α(s)) ds+ g(y(T ))

]
= max

α1∈At,τ ,
α2∈Aτ,T ,
α=α1⊕α2

[∫ τ

t
r(y(s), α(s)) ds+

∫ T

τ
r(y(s), α(s)) ds+ g(y(T ))

]
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On the right hand side, the system state y(t) is determined by (1.1) with α = α1 ⊕ α2 ∈ At,T .
Therefore, we may decompose the system state as y(s) = y1 ⊕ y2 where y1(s) : [t, τ ] → Rd and
y2(s) : [τ, T ]→ Rd are defined by

y′1(s) = f(y1(s), α1(s)), s ∈ [t, τ ]
y1(t) = x

and

y′2(s) = f(y2(s), α2(s)), s ∈ [τ, T ]
y2(τ) = y1(τ) = y(τ)

Here we use ⊕ to denote the splicing or gluing of y1 and y2 to create y(t) : [t, T ]→ Rd. Therefore,

u(x, t) = max
α1∈At,τ

max
α2∈Aτ,T

y2(τ)=y1(τ)

[∫ τ

t
r(y1(s), α1(s)) ds+

∫ T

τ
r(y2(s), α2(s)) ds+ g(y2(T ))

]

where the initial point for y2(τ) is y2(τ) = y1(τ). Observe that y1 depends only on x and α1, not
on y2 or α2. Since the first integral depends only on α1 and y1, this may be rearranged as

u(x, t) = max
α1∈At,τ

max
α2∈Aτ,T

y2(τ)=y1(τ)

[∫ τ

t
r(y1(s), α1(s)) ds+

∫ T

τ
r(y2(s), α2(s)) ds+ g(y2(T ))

]

= max
α1∈At,τ

∫ τ

t
r(y1(s), α1(s)) ds+ max

α2∈Aτ,T
y2(τ)=y1(τ)

(∫ T

τ
r(y2(s), α2(s)) ds+ g(y2(T ))

)
= max

α1∈At,τ

[∫ τ

t
r(y1(s), α1(s)) ds+ u(y1(τ), τ)

]
(using the definition of u)

= max
α(·)∈A

[∫ τ

t
r(y(s), α(s)) ds+ u(y(τ), τ)

]
(2.13)

This completes the proof. �

Notice that in this proof we have not assumed that an optimal control exists.

8.3 The Hamilton-Jacobi-Bellman Equation

How does the value function depend on x and t? Is it continuous in (x, t)? Is it differentiable?
Does it satisfy a PDE? Unfortunately, the value function may not be differentiable, even in simple
examples! Here is one interesting example of this fact. Suppose that f(x, α) = α, g ≡ 0, and r(x, α)
is defined by

r(x, α) = −ID(x) =
{
−1, x ∈ D
0, x ∈ Rd \D (3.14)
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where D ⊂ Rd is some bounded set. Suppose that the set of admissible controls is defined by (5.53)
with A = {|α| ≤ 1}. In this case, y′(s) = α(s) and |y′(s)| ≤ 1. Therefore, the value function may
be written as

u(x, t) = max
y:[t,T ]→Rd
|y′|≤1, y(t)=x

[∫ T

t
−ID(y(s)) ds

]
(3.15)

Clearly u(x, t) ≤ 0, and the optimum is obtained by paths that spend the least amount of time
in the set D. If x ∈ Rd \D, then u(x, t) = 0, because we could take y(s) = x for all s ∈ [t, T ]. In
this case, the system state doesn’t change, so the integral is zero, which is clearly optimal. On the
other hand, if x ∈ D then the optimal control moves y(s) to Rd \D as quickly as possible and then
stays outside D. Since |y′(s)| ≤ 1, this implies that the value function is given explicitly by

u(x, t) = −min ((T − t), dist(x,R \D)) (3.16)

where
dist(x,R \D) = inf

y∈R\D
|x− y|, (3.17)

is the Euclidean distance from x to the outside of D. Albeit continuous, this function may not be
differentiable! For example, suppose that D = {(x1, x2) ∈ R2 | x2

1 + x2
2 ≤ 1} is the unit disk. In

this case,

u(x, t) =
{
|x| − 1, |x| ≤ 1

0, |x| ≥ 1
(3.18)

for t ≤ T − 1. Thus u(x, t) is not differentiable at the origin x = (x1, x2) = (0, 0) for t < T − 1.

So, in general, the value function may not be differentiable. However, one can still derive a PDE
satisfied by the value function. If the value function is differentiable, this equation is satisfied in
the classical sense. At points where the value function is not differentiable, one can show that the
value function (assuming it is at least continuous) satisfies the PDE in a weaker sense. This weaker
notion of “solution” is called a “viscosity solution” of the PDE. The theory of viscosity solutions is
beyond the scope of this course, so we will formally compute as if the value function were actually
differentiable. For more details about viscosity solutions see the references cited above.

For now, let us use the Dynamic Programming Principle to formally derive an equation solved by
the value function u(x, t). The Dynamic Programming Principle does not require differentiability
of the value function; however, in our computations we assume that the value function is continuous
and differentiable with respect to both x and t. The Dynamic Programming Principle tells us that

u(x, t) = max
α(·)∈A

[∫ τ

t
r(y(s), α(s)) ds+ u(y(τ), τ)

]
(3.19)

To formally derive a PDE for u, we let h ∈ (0, T − t) and set τ = t+ h < T . Then

u(x, t) = max
α(·)∈A

[∫ t+h

t
r(y(s), α(s)) ds+ u(y(t+ h), t+ h)

]
(3.20)

We’ll assume that nearly optimal controls are approximately constant for s ∈ [t, t+ h].
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First, consider the term u(y(t + h), t + h). From the chain rule and our assumption that u is
continuously differentiable in x and t, we conclude that

u(y(t+ h), t+ h) = u(y(t), t) + hy′(t) · ∇u(y(t), t) + hut(y(t), t) + o(h) (3.21)

Recall that a function φ(h) is said to be o(h) (“little oh of h”) if limh→0(φ(h)/h) = 0. So, (3.21)
says that u(y(t+h), t+h) is equal to a linear funciton of h plus something that is o(h) (i.e. higher
order than h, but not necessarily O(h2)). Therefore,

u(y(t+ h), t+ h) = u(y(t), t) + hf(y(t), α(t)) · ∇u(y(t), t) + hut(y(t), t) + o(h)
= u(x, t) + hf(x, α(t)) · ∇u(x, t) + hut(x, t) + o(h) (3.22)

Now, plug this into (3.20):

u(x, t) = max
α(·)∈A

[∫ t+h

t
r(y(s), α(s)) ds+ u(x, t) + hf(x, α(t)) · ∇u(x, t) + hut(x, t) + o(h)

]
(3.23)

The term u(x, t) may be pulled out of the maximum, so that it cancels with the left hand side:

0 = hut(x, t) + o(h) + max
α(·)∈A

[∫ t+h

t
r(y(s), α(s)) ds+ hf(x, α(t)) · ∇u(x, t)

]
(3.24)

Now divide by h and let h→ 0.

0 = ut(x, t) +
o(h)
h

+ max
α(·)∈A

[
1
h

∫ t+h

t
r(y(s), α(s)) ds+ f(x, α(t)) · ∇u(x, t)

]
(3.25)

If α(s) is continuous at t, then as h→ 0,

lim
h→0

1
h

∫ t+h

t
r(y(s), α(s)) ds = r(y(t), α(t)) = r(x, α(t)) (3.26)

So, if the nearly optimal controls are approximately constant for s ∈ [t, t+h], then by letting h→ 0
in (3.25) we conclude,

ut(x, t) + max
a∈A

[r(x, a) + f(x, a) · ∇u(x, t)] = 0, x ∈ Rd, t < T (3.27)

This equation is called the Hamilton-Jacobi-Bellman equation. The function u(x, t) also
satisfies the terminal condition

u(x, T ) = g(x). (3.28)

Notice that the HJB equation if a first-order, fully nonlinear equation, having the form

ut +H(∇u, x) = 0

where the function H is defined by

H(p, x) = max
a∈A

[r(x, a) + f(x, a) · p] , p ∈ Rd (3.29)
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H is sometimes called the Hamiltonian. Observe that the essence of this derivation is the ap-
proximation of the system state by

y(t+ h) ≈ y(t) + hf(y(t), α(t)) (3.30)

and therefore, the “payoff” appearing in the dynamic programming principle is approximately

u(y(t+ h), t+ h) ≈ u(x, t) + (∆y) · ∇u(x, t) + hut(x, t)
≈ u(x, t) + hf(x, α(t)) · ∇u(x, t) + hut(x, t) (3.31)

In addition to telling us how the value function depends on x and t, this PDE suggests what
the optimal control should be. Suppose u(x, t) is differentiable and solves the PDE in the classical
sense. Then

ut +H(∇u, x) = 0 (3.32)

where H(p, x) is defined by (3.29). Then the optimal control is computed by finding (y∗(s), α∗(s))
which satisfies

H(∇u(y∗(s), s), y∗(s)) = r(y∗(s), α∗(s)) + f(y∗(s), a∗(s)) · ∇u(y∗(s), s) (3.33)

and

d

dt
y∗(s) = f(y∗(s), α∗(s)) s > t

y∗(t) = x (3.34)

A simple discrete approximation scheme would be to compute α∗(t) by maximizing:

r(x, a∗) + f(x, a∗) · ∇u(x, t) = max
a

[r(x, a) + f(x, a) · ∇u(x, t)] (3.35)

Then set α∗(t) = a∗, and y∗(t+ h) = x+ hf(x, a∗). Then, replacing x with y∗(t+ h), t with t+ h,
we maximize again to compute α∗(t+ h), and so forth. Of course, this scheme breaks down if u is
not differentiable.

Examples

Example 1: In this example we want to maximize utility from consumption of our resources over
time interval [t, T ]. If c(s) is the rate of consumption, then we model the utility gained from this
consumption as

U =
∫ T

t
e−µsψ(c(s)) ds (3.36)

For example, we might choose ψ to be an increasing, concave function of c like ψ(c) = cν for some
power ν ∈ (0, 1). The factor e−µs is a discount factor. Let us suppose that the rate of consumption
is c(s) = α(s)y(s), where y is our total wealth and α is a control. So, α is approximately the
proportion of total wealth consumed in a unit of time. Instead of consuming resources, we might
invest them in such a way that our total wealth satisfies the ode

y′(s) = qy(s)− c(s) = qy(s)− α(s)y(s) (3.37)
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Without consumption, our wealth would grow exponentially at rate q > 0. So, investing some of
our wealth might allow us to consume more in the long run. The control α(s) should satisfy some
realistic constraints, for example α ∈ A = [0, ā]. Thus, if x denotes the current wealth y(t) = x,
the control problem is to find

u(x, t) = max
α∈A

[∫ T

t
e−µs(α(s)y(s))ν ds+ g(y(T ))

]
(3.38)

The function g models some utility of leaving an amount of unused wealth y(T ) at the final time.
In this example, we can actually compute y(s) explicitly:

y(s) = y(t)eq(t−s)−
R s
t α(τ) dτ (3.39)

To determine the associated HJB equation, notice that f(x, a) = (q − a)x and r(x, a, s) =
e−µs(ax)ν . Therefore, we expect the value function to satisfy

u(x, t) + max
a∈A

[
e−µs(ax)ν + (q − a)x · ∇u

]
= 0. (3.40)

perhaps in a weak sense (viscosity solutions) rather than a classical sense.

Example 2: Here’s an example from engineering. Suppose that r ≡ 0, f(x, a) = −v(x) + a, and
A = {|a| ≤ µ0}. In this case, the HJB equation is

ut(x, t) + max
|a|≤µ0

[−v(x) · ∇u(x, t) + a · ∇u(x, t)] = 0, x ∈ Rd, t < T (3.41)

It is easy to see that the optimal a is a = µ0(∇u)/|∇u|, so that the equation becomes

ut − v(x) · ∇u+ µ0|∇u| = 0 (3.42)

The function G(x, t) = u(x, T − t) satisfies

Gt + v(x) · ∇G = µ0|∇G|. (3.43)

In the combustion community, this equation is called the “G-equation” and is used in computational
models of premixed turbulent combustion. The level set {G = 0} is considered to be the flame
surface. The parameter µ0 corresponds to the laminar flame speed (i.e. the flame speed without
the turbulent velocity field v).

8.4 Infinite Time Horizon

So far we have considered a deterministic control problem with finite time horizon. This means
that the optimization involves a finite time interval and may involve a terminal payoff. One might
also consider an optimization posed on an infinite time interval. Suppose that y : [t,∞) → Rd

satisfies

y′(s) = f(y(s), α(s)), s ∈ [t,∞) (4.44)
y(t) = x ∈ Rd
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Now the domain for the control is also [t,∞). We’ll use A = At,∞ for the set of admissible controls.
For x ∈ Rd, define the value function

u(x, t) = max
α(·)∈A

Jx,t(α) = max
α(·)∈A

[∫ ∞
t

e−λsr(y(s), α(s)) ds
]

(4.45)

The exponential term in the integral is a discount factor; without it, the integral might be infinite.
Notice that there is no terminal payoff, only running payoff. This optimal control problem is said
to involve an infinite time horizon. Notice also that the value functions depends on t in a trivial
way. Since r and f do not depend on t, we may change variables to see that

u(x, t) = e−λtu(x, 0) (4.46)

So, to find u(x, t) it suffices to compute

u(x) = max
α(·)∈A

Jx(α) = max
α(·)∈A

[∫ ∞
0

e−λsr(y(s), α(s)) ds
]

(4.47)

where A = A0,∞.

Theorem 8.4.1 (Dynamic Programming Principle) Let u(x) be the value function defined by
(4.47). For any x ∈ Rd and h > 0,

u(x) = max
α(·)∈A0,h

[∫ h

0
e−λsr(y(s), α(s)) ds+ e−λhu(y(h))

]
(4.48)

Proof: Exercise. �

Using the Dynamic Programming Principle, one can formally derive the HJB equation for the
infinite horizon control problem. The equation is:

−λu+ max
a∈A

[r(x, a) + f(x, α) · ∇u] = 0 (4.49)

which has the form
−λu+H(∇u, x) = 0 (4.50)

with the Hamiltonian H(p, x) defined by

H(p, x) = max
a∈A

[r(x, a) + f(x, a) · p] (4.51)

Exercise: Check these computations.

8.5 Brief Introduction to Stochastic Optimal Control

Thus far, we have considered deterministic optimal control in which the dynamic behaviour of the
system state is deterministic. In a stochastic optimal control problem, the system state y(s) is a
stochastic process. Consequently, the controls also will be stochastic, since we may want to steer
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the system in a manner that depends on the system’s stochastic trajectory. To this end, we now
suppose that the system state Ys(ω) : [t, T ] × Ω → Rd now satisfies the stochastic differential
equation (or system of equations)

dYs = f(Ys, αs, s)ds+ σ(Yt, αs, s)dBs, s ≥ t
Yt = x, a.s. (5.52)

where Bs is a n-dimensional Brownian motion defined on probability space (Ω,F , {Fs}s≥t, P ), and
σ is a d× n matrix.

We control the system state through the control process αs(ω) : [t, T ] × Ω → Rm which is
adapted to the filtration {Fs}s≥t. The set of admissible controls is now

At,T = {αs(ω) : [t, T ]× Ω→ A | αs is adapted to the filtration {Fs}s≥t} . (5.53)

The assumption that the controls are adapted means that we cannot look into the future; the
control can only be chosen on the basis of information known up to the present time. Supposing
that σ and f satisfy the usual bounds and continuity conditions, the stochastic process Ys(ω) is
uniquely determined by the initial condition Yt = x and the control process αs(ω).

Given a time T > t, the abstract stochastic optimal control problem is to maximize

max
α∈At,T

Jx,t(α(·)) = max
α∈At,T

E

[∫ T

t
r(Ys, αs, s) ds+ g(YT ) | Yt = x

]
As before, the function r(y, α, s) represents a running payoff (or running cost, if r < 0), and g
represents a terminal payoff (or terminal cost, if g < 0). Since the system state is a stochastic
process, the net payoff is a random variable, and our goal is to maximize the expected payoff. Even
if an optimal control process does not exist, we may define the value function to be

u(x, t) = max
α∈At,T

E

[∫ T

t
r(Ys, αs, s) ds+ g(YT )| Yt = x

]
(5.54)

Notice that the value function is not random.

Variations

There are variations on this theme. For example, we might add the possibility of a payoff based on
a stopping criteria. In this case, we want to maximize:

max
α∈At,T

E

[∫ γ∧T

t
r(Ys, αs, s) ds+ g(YT )I{γ≥T} + h(Yγ)I{γ<T} | Yt = x

]
Here, the random variable γ(ω) is a stopping time. The function h represents some payoff that is
incurred if γ < T (or, this may represent a penalty if h < 0).

In (5.54) the time horizon is finite. One could also pose an optimal control problem on an infinite
time horizon. For example, one might consider maximizing

max
α∈A

Jx,t(α(·)) = max
α∈A

E

[∫ γ

t
e−λsr(Ys, αs) ds+ e−λγh(Yγ)

]
(5.55)

where γ is a stopping time.
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8.5.1 Dynamic Programming Principle for Stochastic Control

For the stochastic control problem there is a Dynamic Programming Principle that is analogous to
the DPP for deterministic control. Using the Markov Property of the stochastic process Yt, one
can easily prove the following:

Theorem 8.5.1 Let u(x, t) be the value function defined by (5.54). If t < τ ≤ T , then

u(x, t) = max
α∈At,τ

E

[∫ τ

t
r(Ys, αs, s) ds+ u(Yτ , τ) | Yt = x

]
(5.56)

Proof: Exercise. The idea is the same as in the case of deterministic control. Split the inte-
gral into two pieces, one over [t, τ ] and the other over [τ, T ]. Then condition on Fτ and use the
Markov property, so that the second integral and the payoff may be expressed in terms of u(Yτ , τ).�

8.5.2 HJB equation

Using the Dynamic Programming Principle, one can formally derive a PDE for the value function
u(x, t). As in the case of deterministic optimal control, one must assume that the value function
is sufficiently smooth. Because the dynamics are stochastic, we want to apply Itô’s formula in the
way that we used the chain rule to derive the HJB equation for deterministic control. Thus, this
formal computation requires that the value function by twice differentiable.

From Itô’s formula we see that

u(Yτ , τ)− u(x, t) = =
∫ τ

t
[ut(Ys, s) + f(Ys, αs, s) · ∇u(Ys, s)] ds

+
∫ τ

t

1
2

∑
k

∑
i,j

uxixj (Ys, s)σ
jk(Ys, αs, s)σik(Ys, αs, s) ds

+
∫ τ

t
(∇u(Ys, s))Tσ(Ys, αs, s) dBs

=
∫ τ

t
ut(Ys, s) + Lαu(Ys, s) ds+

∫ τ

t
(∇u(Ys, s))Tσ(Ys, αs, s) dBs (5.57)

where L is the second order differential operator

Lαu = f(y, α, s) · ∇u(y, s) +
1
2

∑
k

∑
i,j

uyiyj (y, s)σ
jk(y, αs, s)σik(y, αs, s)

= f(y, α, s) · ∇u(y, s) +
1
2

tr(D2u(y, s)σ(y, α, s)σT (y, α, s)) (5.58)

and D2u is the matrix of second partial derivatives. Now we plug this into the DPP relation
(5.56) and use the fact the martingale term in (5.57) has zero mean. We obtain:

0 = max
α∈At,τ

E

[∫ τ

t
r(Ys, αs, s) ds+ u(Yτ , τ)− u(x, t) | Yt = x

]
= max

α∈At,τ
E

[∫ τ

t
r(Ys, αs, s) ds+

∫ τ

t
ut(Ys, s) + Lαu(Ys, s) ds | Yt = x

]
(5.59)
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Finally, let τ = t+h, divide by h and let h→ 0, as in the deterministic case. We formally obtain
the HJB equation

ut(x, t) + max
a∈A

[r(x, a, t) + Lau(x, t)] = 0. (5.60)

This may be written as

ut(x, t) + max
a∈A

[
r(x, a, t) +

1
2

tr(D2u(x, t)σ(x, a, t)σT (x, a, t)) + f(x, a, t) · ∇u(x, t)
]

= 0 (5.61)

which is, in general, a fully-nonlinear, second order equation of the form

ut +H(D2u,Du, x, t) = 0 (5.62)

Notice that the equation is deterministic. The set of possible control values A ⊂ Rm is a subset of
Euclidean space, and the maximum in the HJB equation (5.70) is over this deterministic set, not
over the set A.

HJB for the infinite horizon problem

Deriving the HJB for the infinite horizon problem is similar. Suppose r = r(y, a) and f = f(y, a).
Suppose that u is the value function defined by

u(x) = max
α∈A

E

[∫ ∞
0

e−λsr(Ys, αs) ds | Y0 = x

]
(5.63)

Then the Dynamic Programming Principle shows that for any τ > 0

u(x) = max
α∈A

E

[∫ τ

0
e−λsr(Ys, αs) ds+ e−λτu(Yτ ) | Y0 = x

]
(5.64)

Using Itô’s formula as before, we formally derive the second order equation equation

−λu(x) + max
a∈A

[r(x, a) + Lau(x)] = 0 (5.65)

8.5.3 Examples

Example 1: In this example, we consider the problem of portfolio optimization. We already
considered the problem of maximizing utility from consumption of resources. In that model, we
assumed that in the absense of consumption the individual’s total wealth grows exponentially
according to a deterministic rate (interest rate). Now we suppose that the individual may invest
money in various asset classes and or consume resources. For simplicity we suppose that the
individual may invest in either a stock (risky) or a bond (risk free growth). Suppose that the stock
and bond satsfiy the equations

dbs = rbs ds

dPs = µPs ds+ σPs dBs (5.66)

Here Bs is a standard Brownian motion. The individual may decide how much money to consume,
how much money to invest in stock, and how much money to invest in bonds. Let cs denote the
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consumption rate. Let πs denote the proportion of investments to put in stocks. Now, if Ys is the
individual’s wealth at time s, Ys satisfies the equation

dYs = (1− πs)rYs ds+ πsµYs ds+ πsσYs dBs − cs ds
= [((1− πs)r + πsµ)Ys − cs] ds+ πsσYs dBs (5.67)

Lets suppose that cs = ηsYs with η ≥ 0, so that the consumption rate cannot be negative. Then
the control has two components: αs = (ηs, πs). Now our goal is to maximize the discounted utility

Jx(α(·)) :=
∫ ∞

0
e−λsU(cs) ds =

∫ ∞
0

e−λsU(ηsYs) ds (5.68)

where U(c) is a utility function, typically increasing and concave. So the value function is

u(x) = max
α∈A

∫ ∞
0

e−λsU(ηsYs) ds (5.69)

Notice that u depends on πs through the definition of Ys.
The HJB equation has the form

−λu(x) + max
η, π

[
U(ηy) + ((1− π)r + πµ− η)xux(x) +

π2σ2

2
x2uxx(x)

]
= 0. (5.70)

This example is based on the paper by Robert Merton, Optimal Consumption and Portfolio Rules
in a Continuous-Time Model, J. Econ. Theory, 3, 1971 pp. 373-413. The model can be solved
explicitly. See lecture notes by M. Soner for details.

Example 2: This example comes from the interesting paper by Leung, Sircar, and Zariphopoulou
cited above. An investor want to optimize her portfolio, investing in either stock or bond, with no
consumption. The problem is that the company in which she invests may default. If this occurs,
she must sell her stock at the market price and put her money in the bond (she can’t re-invest in
another stock for the time interval under consideration). The stock price is modeled as:

dPs = µPsds+ σPsdB
1
s (5.71)

where B1
s is a Brownian motion. The value of the firms assets is modeled as

dVs = νVsds+ ηVs(ρdB1
s + ρ′dB2

s ) (5.72)

where B2
s is an independent Brownian motion, and ρ ∈ (−1, 1), ρ′ =

√
1− ρ2. Default occurs if

the firm’s price Ps drops below a boundary D̃s = De−β(T−s), s ∈ [0, T ], D > 0. Choosing to invest
a ratio πs in the stock (as in the preceding example), the investor’s wealth is Ys where

dYs = (1− πs)rYs ds+ πsµYs ds+ πsσYs dBs (5.73)

and r is the interest rate for the bond. The initial condition is Yt = y. We define the default time,
a stopping time, by

γt = inf{τ ≥ t | Vτ ≤ D̃τ} (5.74)

106



8.5. BRIEF INTRODUCTION TO STOCHASTIC OPTIMAL
CONTROL Math 227, J. Nolen

If γt > T , no default occurs over the time interval in question.
Therefore, the investor wants to optimize

u(x, y, t) = max
πs(·)

E
[
U(YT )I{γt>T} + U(Yγte

r(T−γt))I{γt≤T} | Vt = x, Yt = y
]

(5.75)

Here U(y) is a utility function (U(y) = −e−hy is used in the paper, h > 0). In this case, the HJB
equation is

ut + Lu+ rxux + max
π

[
1
2
σ2π2uxx + π(ρσηuxy + (µ− r)ux)

]
= 0 (5.76)

where L is the operator

Lu =
η2y2

2
uyy + νyuy.

The domain for u is {(t, y, x) |t ∈ [0, T ], x ∈ R, y ∈ [D̃(t),∞)}, and the boundary condition is

u(x, y, T ) = U(x), u(x,De−β(T−t), t) = U(xer(T−t)).

There are other examples in this paper illustrating techniques for valuation of credit derivatives.
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